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Foreword

The Advanced Textbooks in Control and Signal Processing series is designed as a

vehicle for the systematic textbook presentation of both fundamental and innovative

topics in the control and signal processing disciplines. It is hoped that prospective

authors will welcome the opportunity to publish a more rounded and structured

presentation of some of the newer emerging control and signal processing tech-

nologies in this textbook series. However, it is useful to note that there will always

be a place in the series for contemporary presentations of foundational material in

these important engineering areas.

It is currently quite a challenge to compose and write a new introductory text-

book for control courses. One issue is that the electrical engineering discipline has

grown and evolved immeasurably over the years. It now encompasses the fields of

power systems technology, telecommunications, signal processing, electronics,

optoelectronic and control systems engineering all served with a smattering of

computer science. The undergraduates and postgraduates are faced with the

unenviable task of selecting which subjects to study from this smorgasbord of

topics.

Many academic institutions have introduced a modular semester structure to

their engineering courses. This has the advantage of allowing undergraduates and

postgraduates to study a set of basic modules from each of the disciplines before

specializing through a selection of advanced subject modules. This means the

student obtains a good foundational grounding in the electrical engineering disci-

pline. Such an approach requires an introductory control course textbook of suffi-

cient depth to be useful but not so advanced as to leave students bewildered given

that the subject of control has a substantial mathematical content.

Other institutions have managed to retain an Automatic Control Department or

Group where the main course is a first degree in control engineering per se. Such

departments are also likely to offer master and Ph.D. postgraduate qualifications in

the control discipline too. In these departments, the requirements of control systems

theory for mathematics can be met by specific control mathematics course modules.

An introductory control engineering textbook in this context can have considerably

more analytical depth too.
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There is one more consideration to add into this discussion of introductory

control systems engineering course textbooks. The spectrum of control involves

systems theory, systems modeling, control theory, control design techniques, sys-

tem identification methods, system simulation and validation, controller imple-

mentation techniques, control hardware, sensors, actuators, and system

instrumentation. Quite how much of each area to include in an introductory control

course is something usually decided by the course lecturer, the institutional

resources available, the academic level of the course, and the time available for the

student to study control. But these issues will also have a considerable influence on

the type, level, and structure of any introductory course textbook that is proposed.

László Keviczky, Ruth Bars, Jenö Hetthéssy, Csilla Bányász form a team of

control academics who have worked in various Hungarian higher educational

institutions, primarily the Department of Automation and Applied Informatics at the

Budapest University of Technology and Economics, Hungary, and latterly with the

Computer and Automation Research Institute of the Hungarian Academy of

Science. Their introductory control course textbook presented here has evolved and

been refined through many years of teaching practice. The textbook focuses on the

control and systems theory, control design techniques, system simulation and

validation part of the control curriculum and is supported by a substantial volume of

MATLAB® exercises (ISBN 978-981-10-8320-4).

The textbook can be used by undergraduates in a first control systems course.

The technical content is self-contained and provides all the signals and systems

material that would be needed for a first control course. This is an obvious

advantage for the student reader and also the lecturer as it avoids the need for a

supplementary mathematical textbook or course. The use of the Youla parameter-

ization approach is a distinctive feature of the text, and this approach will also be of

interest to graduate students. The Youla parameterization approach has the

advantage of unifying a number of control design methods.

Many popular undergraduate texts give cursory space to the PID controller yet it

is a controller that is widely used in industry. In this control textbook, there is a

good chapter on PID control and this will chime well with the more industrially

orientated undergraduate and academic lecturer. Also valuable is the material

presented in Chapter 13 on the tuning of discrete PID controllers. To close the

textbook, the authors present an outlook chapter, Chapter 16, that directs the reader

toward more advanced topics.

Industrial Control Centre M. J. Grimble

Glasgow, Scotland, UK M. A. Johnson

January 2017
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Preface

“Navigare necesse est”, i.e., the ship must be navigated, said the Romans in

Antiquity. “Controlare necesse est”, i.e. systems must be controlled, we have been

saying since the technological revolution of the nineteenth century. Really, in our

everyday life, or in our environment, one can hardly find equipment that does not

contain at least one or more control tasks solved by automation instead of by us, or,

more importantly, for our comfort.

In an iron, a temperature control system is operated by a relay, in a gas-heating

system the temperature is also controlled, and in more sophisticated systems the

temperature of the environment is also taken into consideration. In our homes,

modern audio-visual systems contain dozens of control tasks, e.g., the regulation

of the speed of the tape recorders, the start and stop operation of the equipment;

similar operation modes of the CD and DVD systems; the temperature control

of the processor in our PC, the positioning of the hard disks’ heads, etc. In cars, the

quantity of petrol used and the harmonized operation of the brakes are all controlled

by automatic controllers. An aircraft could not fly without controllers, since its

operation is a typical example of an unstable system. The number of control tasks in

modern aircraft is more than one hundred. The universe could not have been

investigated by humankind without the automatic control and guidance systems

used at launching rockets, satellites, and ballistic missiles. In the recent Mars

explorers, sophisticated high-level, so-called intelligent components, have been

employed.

In complex, industrial processes the number of tasks to be solved is over a

thousand or ten thousand. The quantity and quality of the products, as well as the

safety of the environment, could not be guaranteed without these automatically

operated systems. Launching products in the market requires the accurate control of

a number of variables.

In almost all assembly factories—from simple production beltways to robots—

automatic control is applied.

xi



With the development of medical biology, it was discovered that in any organ,

and so in human beings, dozens of basic control processes are at work (i.e., the

control of the blood pressure, the body temperature, the level of the blood-sugar

content, the level of hormones) and the present techniques are approaching the level

when some of these tasks can be taken over in case of illnesses or some problems.

Several basic processes of economics (e.g., supply and demand, storage–

inventory, macro- and micro-balance) afford possibilities for automatic control.

The everyday person hardly meets directly with the concept of automatic con-

trol, even though they operate several pieces of equipment by pushing buttons,

switches, or using instrument panels. That is why control is often considered to be a

hidden technology. This phenomenon used to be the reason for the ignorant opinion

that there is no need for studying the theory of control and regulation, since it comes

embedded in the equipment. But do not forget that such equipment has to be

designed and produced, and brought to the market. Only those countries can be

considered “developed” ones, that are in the front ranks in the development of these

kinds of instruments and processes.

In the modern technologies of the twenty-first century, the basic processing,

evaluating and decision-making tasks are executed by computers. The observation

of the signals and characteristics of real-time processes, the transfer of executive

commands, are made by digital communication. The above three areas (Control–

Computation–Communication = C3) are often considered to be in close synergy.

The goal of this book is to summarize the knowledge required in the introductory

courses of university education in these subjects. Each chapter, of course, can have

different priorities, but they try to provide useful, basic knowledge in order to

continue studies of the higher levels of control theory.

This textbook deals with single variable (single input, single output), linear,

constant parameter systems, so, with the simplest systems. Multivariable, nonlinear,

varying parameters, stochastic systems are not considered. (Similarly, the theory

of the modern adaptive, optimal, and robust controllers is not discussed.) It has to

be admitted that the real world is more complex, i.e., multivariable, nonlinear; thus,

the material of this textbook is only the first step in studying the control methods of

real systems. It also has to be mentioned though that several practical tasks can be

solved with quite good results by applying these simplified approaches.

In this book, relatively great attention is devoted to the subject of “Signals and

Systems” essential in the basic courses of control theory. In the Appendices,

important mathematical fundamentals are summarized. The reason for this is to

provide a comprehensive source for students and readers, not requiring additional

textbooks to understand this textbook. If anyone’s knowledge of certain fields is

doubtful, it can be refreshed in the corresponding chapters.

There are many formulas in this textbook. This subject area, this field requires

them, which sometimes is threatening to students. The complexity of the necessary

computations, however, never exceeds the complexity of engineering computations,

but where it cannot be performed by hand, the necessary computational resources

and softwares are referred to. It has to be noted that this level is a basic requirement

for the engineers employed by companies working for international markets. It has
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to be added, however, that the theoretical knowledge can really become useful only

with many years of practical experience.

Nothing is more practical than a good theory!

The authors believe that this textbook provides a suitable basis for the basic level

(B.Sc.) education of those faculties, where control theory is to be taught, and where

the goal is to prepare a master’s level (M.Sc.) education.

This textbook has been written by a working group of the Department of

Automation and Applied Informatics, Budapest University of Technology and

Economics. The group is headed by László Keviczky. This material is based on,

long experience and textbooks used by the department, but, of course, it is not

comparable with those in goals and coverage. The following members of the group

played primary roles in writing the different chapters:

Chapter 1. Ruth Bars

Chapter 2. Ruth Bars

Chapter 3. László Keviczky

Chapter 4. Ruth Bars

Chapter 5. Ruth Bars

Chapter 6. László Keviczky and Ruth Bars

Chapter 7. László Keviczky

Chapter 8. László Keviczky and Ruth Bars

Chapter 9. László Keviczky

Chapter 10. László Keviczky

Chapter 11. Jenő Hetthéssy

Chapter 12. László Keviczky and Csilla Bányász

Chapter 13. László Keviczky and Jenő Hetthéssy

Chapter 14. László Keviczky

Chapter 15. László Keviczky

Chapter 16. László Keviczky and Csilla Bányász

Appendix. László Keviczky, Ruth Bars, Jenő Hetthéssy and Csilla Bányász

In the typographical preparation of this textbook, Csilla Bányász had the

determining role. The figures were prepared partly with the help of the Ph.D.

students Ágnes Bogárdi-Mészöly, Zoltán Dávid, and Gábor Somogyi.

An essential part of this textbook is the practical laboratory material published in

a separate volume (MATLAB® Exercises), as well as several examples, helping the

students in a good preparation for exams.

Budapest, Hungary László Keviczky

Ruth Bars

Jenő Hetthéssy

Csilla Bányász

Preface xiii



Contents

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 The Basic Elements of a Control Process . . . . . . . . . . . 6

1.1.2 Signals and Their Classification . . . . . . . . . . . . . . . . . . 7

1.1.3 Representation of System Engineering

Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.4 Open- and Closed-loop Control, Disturbance

Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.5 General Specifications for Closed-Loop Control

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.6 Simple Control Examples . . . . . . . . . . . . . . . . . . . . . . 17

1.2 On the History of Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Systems and Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.1 Types of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3.2 The Properties of a System . . . . . . . . . . . . . . . . . . . . . 26

1.3.3 Examples of the Transfer Characteristics of Some

Simple Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3.4 Linearization of Static Characteristics . . . . . . . . . . . . . 29

1.3.5 Relative Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.4 Practical Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

xv



2 Description of Continuous Linear Systems in the Time,

Operator and Frequency Domain . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1 Description of Continuous Systems in the Time Domain . . . . . . 38

2.1.1 Solution of an n-th Order Linear Differential

Equations in the Time Domain . . . . . . . . . . . . . . . . . . 38

2.1.2 State Space Representation of Linear Differential

Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.3 Typical Input Excitations, Unit Impulse and Step

Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.1.4 System Response to an Arbitrary Input Signal . . . . . . . 46

2.1.5 Solution of a First-Order Differential Equation . . . . . . . 49

2.2 Transformation from the Time Domain to the Frequency

and Operator Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2.1 FOURIER series, FOURIER integral, FOURIER

transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2.2 The LAPLACE Transformation . . . . . . . . . . . . . . . . . . . . 57

2.2.3 The Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . 60

2.2.4 Basic Connections of Elementary Blocks,

Block-Scheme Algebra, Equivalent Block

Manipulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.3 Investigation of Linear Dynamical Systems in the Frequency

Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.3.1 Graphical Representations of the Frequency

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.4 Transfer Characteristics of Typical Basic Blocks . . . . . . . . . . . . 76

2.4.1 Ideal Basic Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.4.2 Lag Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.4.3 Proportional, Integrating and Differentiating Lag

Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

2.4.4 Influence of the Zeros of the Transfer Function . . . . . . 95

2.4.5 Non-minimum Phase Systems . . . . . . . . . . . . . . . . . . . 99

2.4.6 Quick Drawing of Asymptotic BODE Diagrams . . . . . . . 101

2.4.7 Influence of Parameter Changes . . . . . . . . . . . . . . . . . 102

2.5 Approximate Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

2.5.1 Dominant Pole Pair . . . . . . . . . . . . . . . . . . . . . . . . . . 104

2.5.2 Approximation of Higher Order Plants by First- and

Second-Order Time Lag Models with Dead-Time . . . . 105

2.5.3 Approximation of a Dead-Time by Rational Transfer

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

2.6 Examples of the Description of Continuous-Time Systems . . . . 108

2.6.1 Direct Current (DC) Motor . . . . . . . . . . . . . . . . . . . . . 109

2.6.2 Modeling of a Simple Liquid Tank System . . . . . . . . . 116

2.6.3 A Simple Two Tank System . . . . . . . . . . . . . . . . . . . . 119

xvi Contents



2.6.4 A Simple Heat Process . . . . . . . . . . . . . . . . . . . . . . . . 122

2.6.5 The Moving Inverted Pendulum . . . . . . . . . . . . . . . . . 124

3 Description of Continuous-Time Systems in State-Space . . . . . . . . . 127

3.1 Solution of the State-Equations in the Complex Frequency

Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

3.2 Solution of the State-Equations in the Time Domain . . . . . . . . . 132

3.3 Transformation of the State-Equations, Canonical Forms . . . . . . 133

3.3.1 Diagonal Canonical Form . . . . . . . . . . . . . . . . . . . . . . 134

3.3.2 Controllable Canonical Form . . . . . . . . . . . . . . . . . . . 136

3.3.3 Observable Canonical Form . . . . . . . . . . . . . . . . . . . . 138

3.4 The Concepts of Controllability and Observability . . . . . . . . . . 140

3.4.1 The KALMAN Decomposition . . . . . . . . . . . . . . . . . . . . 147

3.4.2 The Effect of Common Poles and Zeros . . . . . . . . . . . 148

3.4.3 The Inverted Pendulum . . . . . . . . . . . . . . . . . . . . . . . . 152

4 Negative Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.1 Control in Open- and Closed-Loop . . . . . . . . . . . . . . . . . . . . . 155

4.2 The Basic Properties of the Closed Control Loop . . . . . . . . . . . 157

4.3 The Feedback Operational Amplifier . . . . . . . . . . . . . . . . . . . . 162

4.4 The Transfer Characteristics of the Closed Control Loop . . . . . . 164

4.5 The Static Transfer Characteristics . . . . . . . . . . . . . . . . . . . . . . 168

4.6 Relationships Between Open- and Closed-Loop Frequency

Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

4.6.1 The M � a and E � b Curves . . . . . . . . . . . . . . . . . . . 176

4.7 The Sensitivity of a Closed Control Loop to Parameter

Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

4.8 Requirements for Closed-Loop Control Design . . . . . . . . . . . . . 184

4.9 Improving the Disturbance Elimination Properties of the

Closed-Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

4.9.1 Disturbance Elimination Scheme (Feedforward) . . . . . . 189

4.9.2 Cascade Control Schemes . . . . . . . . . . . . . . . . . . . . . . 190

4.10 Compensation by Feedback Blocks . . . . . . . . . . . . . . . . . . . . . 194

4.11 Control with Auxiliary Manipulated Variables . . . . . . . . . . . . . 195

5 Stability of Linear Control Systems . . . . . . . . . . . . . . . . . . . . . . . . 197

5.1 The Concept of Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.2 Stability of the Closed-Loop System . . . . . . . . . . . . . . . . . . . . 200

5.3 Mathematical Formulation of the Stability of Continuous

Time Linear Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . 202

5.4 Analytical Stability Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

5.4.1 Stability Analysis Using the ROUTH Scheme . . . . . . . . . 205

5.4.2 Stability Analysis Using the HURWITZ Determinant . . . . 206

Contents xvii



5.5 Stability Analysis Using the Root Locus Method . . . . . . . . . . . 207

5.5.1 Basic Relationships of the Root Locus Method . . . . . . 208

5.5.2 Rules for Drawing Root Locus . . . . . . . . . . . . . . . . . . 210

5.5.3 Examples of the Root Locus Method . . . . . . . . . . . . . . 212

5.5.4 Root Locus in the Case of Varying a Parameter

Different from the Gain . . . . . . . . . . . . . . . . . . . . . . . 216

5.6 The NYQUIST Stability Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 217

5.6.1 Illustration of the Evolution of Undamped

Oscillations in the Frequency Domain . . . . . . . . . . . . . 217

5.6.2 The Simple NYQUIST Stability Criterion . . . . . . . . . . . . 218

5.6.3 The Generalized NYQUIST Stability Criterion . . . . . . . . . 221

5.6.4 Examples of the Application of the NYQUIST

Stability Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

5.6.5 Practical Stability Measures . . . . . . . . . . . . . . . . . . . . 228

5.6.6 Structural and Conditional Stability . . . . . . . . . . . . . . . 232

5.6.7 Stability Criteria Based on the BODE Diagrams . . . . . . . 234

5.7 Robust Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

6 Regulator Design in the Frequency Domain . . . . . . . . . . . . . . . . . . 241

6.1 On the Relationships Between Properties in the Time- and

Frequency-Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

6.2 Quality Requirements in the Frequency Domain . . . . . . . . . . . . 243

6.3 Methods to Shape the Open-Loop Frequency Characteristics . . . 246

7 Control of Stable Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

7.1 The YOULA-Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . 254

7.2 The SMITH Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

7.3 The TRUXAL-GUILLEMIN Controller . . . . . . . . . . . . . . . . . . . . . . 266

7.4 The Effect of a Constrained Actuator Output . . . . . . . . . . . . . . 267

7.5 The Concept of the Best Reachable Control . . . . . . . . . . . . . . . 270

7.5.1 General Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

7.5.2 Empirical rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

8 Design of Conventional Regulators . . . . . . . . . . . . . . . . . . . . . . . . . 277

8.1 The PID Regulator Family and Design Methods . . . . . . . . . . . . 278

8.1.1 Tuning of P Regulators . . . . . . . . . . . . . . . . . . . . . . . 283

8.1.2 Tuning of I Regulators . . . . . . . . . . . . . . . . . . . . . . . . 284

8.1.3 Tuning of PI Regulators . . . . . . . . . . . . . . . . . . . . . . . 284

8.1.4 Tuning of PD Regulators . . . . . . . . . . . . . . . . . . . . . . 286

8.1.5 Tuning of PID Regulators . . . . . . . . . . . . . . . . . . . . . . 287

8.1.6 Influence of the Dead-Time . . . . . . . . . . . . . . . . . . . . . 290

8.1.7 Realization of PID Regulators . . . . . . . . . . . . . . . . . . . 291

xviii Contents



8.2 Design of Residual Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 293

8.2.1 Simple Residual System with Dead-Time and

Integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

8.2.2 Simple Residual System with Integrator and Time

Lag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

8.3 Empirical Regulator Tuning Methods . . . . . . . . . . . . . . . . . . . . 300

8.3.1 Methods of ZIEGLER and NICHOLS . . . . . . . . . . . . . . . . . 300

8.3.2 Method of OPPELT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

8.3.3 Method of CHIEN-HRONES-RESWICK . . . . . . . . . . . . . . . . 302

8.3.4 Method of STREJC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

8.3.5 Relay Method of ÅSTRÖM . . . . . . . . . . . . . . . . . . . . . . 303

8.3.6 Method of ÅSTRÖM-HÄGGLUND . . . . . . . . . . . . . . . . . . . 305

8.4 Handling Amplitude Constraints: “Anti-Reset Windup” . . . . . . . 306

8.5 Control of Special Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

8.5.1 Control of a Double Integrator . . . . . . . . . . . . . . . . . . 308

8.5.2 Control of an Unstable Plant . . . . . . . . . . . . . . . . . . . . 312

8.6 Regulator Design Providing a 60° Phase Margin by Pole

Cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

9 Control Systems with State Feedback . . . . . . . . . . . . . . . . . . . . . . . 325

9.1 Pole Placement by State Feedback . . . . . . . . . . . . . . . . . . . . . . 327

9.2 Observer Based State Feedback . . . . . . . . . . . . . . . . . . . . . . . . 331

9.3 Observer Based State Feedback Using Equivalent Transfer

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

9.4 Two-Step Design Methods Using State Feedback . . . . . . . . . . . 338

9.5 The LQ Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

10 General Polynomial Method for Controller Design . . . . . . . . . . . . . 343

11 Sampled Data Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

11.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

11.2 Holding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

11.3 Description of Discrete-Time Signals, the z-Transformation

and the Inverse z-Transformation . . . . . . . . . . . . . . . . . . . . . . . 361

11.3.1 Basic Properties of the z-Transformation . . . . . . . . . . . 361

11.3.2 The z-Transformation of Elementary Time Series . . . . . 363

11.3.3 The Inverse z-Transformation . . . . . . . . . . . . . . . . . . . 365

11.3.4 Initial and Final Value Theorems . . . . . . . . . . . . . . . . 368

11.4 Description of Sampled Data Systems in the Discrete-Time

and in the Operator and Frequency Domain . . . . . . . . . . . . . . . 368

11.4.1 The State-Space Model . . . . . . . . . . . . . . . . . . . . . . . . 369

11.4.2 Input-Output Models Based on the Shift Operator . . . . 372

11.4.3 Modeling Based on the z-Transformation . . . . . . . . . . . 375

11.4.4 Analysis of DT Systems in the Frequency Domain . . . . 381

Contents xix



11.4.5 Transformation of Zeros . . . . . . . . . . . . . . . . . . . . . . . 384

11.5 Structural Properties of State Equations . . . . . . . . . . . . . . . . . . 385

12 Sampled Data Controller Design for Stable Discrete-Time

Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

12.1 The YOULA Controller for Sampled Data Systems . . . . . . . . . . . 393

12.2 The SMITH Controller for Sampled Data System . . . . . . . . . . . . 397

12.3 The TRUXAL-GUILLEMIN Regulator for Sampled

Data Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

12.4 Design of Regulators Providing Finite Settling Time . . . . . . . . . 400

12.5 Predictive Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

12.6 The Best Reachable Discrete-Time Control . . . . . . . . . . . . . . . 411

12.6.1 General Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

12.6.2 Empirical Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

13 Design of Conventional Sampled Data Regulators . . . . . . . . . . . . . 413

13.1 Design Methods for the Discrete-Time PID Regulator

Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

13.1.1 Tuning of Sampled Data PI Regulators . . . . . . . . . . . . 417

13.1.2 Tuning of Sampled Data PD Regulators . . . . . . . . . . . 418

13.1.3 Tuning of Sampled Data PID Regulators . . . . . . . . . . . 420

13.2 Other Design Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

13.2.1 Design of an Intermediate Continuous-Time

Regulator and its Discretization . . . . . . . . . . . . . . . . . . 424

13.2.2 Design of Discrete-Time Regulators Using

Discrete-Time Process Models . . . . . . . . . . . . . . . . . . 435

13.2.3 Design of Discrete-Time Regulators Using

Continuous-Time Process Models . . . . . . . . . . . . . . . . 435

13.3 Design of Discrete-Time Residual Systems . . . . . . . . . . . . . . . . 439

13.3.1 Continuous-Time Second Order Process

with Two Time Lags and Dead-Time . . . . . . . . . . . . . 439

13.3.2 The TUSCHÁK Method . . . . . . . . . . . . . . . . . . . . . . . . . 441

13.3.3 Discrete-Time Second Order Process with Time

Lag and Dead-Time . . . . . . . . . . . . . . . . . . . . . . . . . . 444

14 State Feedback in Sampled Data Systems . . . . . . . . . . . . . . . . . . . . 447

14.1 Discrete-Time Pole-Placement State Feedback Regulator . . . . . . 449

14.2 Observer Based Discrete-Time Pole Placement State

Feedback Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

14.3 Two-Step Design Methods Using Discrete-Time State

Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

14.4 Discrete-Time LQ State Feedback Regulator . . . . . . . . . . . . . . . 457

xx Contents



15 General Polynomial Method for the Design of Discrete-Time

Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

16 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

16.1 Norms of Control Engineering Signals and Operators . . . . . . . . 465

16.1.1 Norms of Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

16.1.2 Operator Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

16.2 Basic Methods of the Numerical Optimization . . . . . . . . . . . . . 469

16.2.1 Direct Seeking Methods . . . . . . . . . . . . . . . . . . . . . . . 469

16.2.2 Gradient Based Methods . . . . . . . . . . . . . . . . . . . . . . . 471

16.3 Introduction to Process Identification . . . . . . . . . . . . . . . . . . . . 474

16.3.1 Identification of Static Processes . . . . . . . . . . . . . . . . . 474

16.3.2 Identification of Dynamic Processes . . . . . . . . . . . . . . 477

16.3.3 Discrete-Time to Continuous-Time Transformation . . . . 480

16.3.4 Recursive Parameter Estimation . . . . . . . . . . . . . . . . . 481

16.3.5 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

16.4 Iterative and Adaptive Control Schemes . . . . . . . . . . . . . . . . . . 484

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

Pictures of Some of the Scientists Cited in This Book . . . . . . . . . . . . . . . 523

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

Contents xxi



Notations

H Transfer functions of continuous-time systems

G Transfer functions of discrete-time systems

C Controller transfer function

P Process transfer function

G (or Pd) Discrete-time process pulse transfer function

S Sensitivity function

T Complementary sensitivity function

L Transfer function of an open control loop

K Gain of a control loop

k Transfer coefficient of a control loop

Q YOULA parameter

tð Þ Continuous time

k½ � Discrete time

L . . .f g LAPLACE transform

F . . .f g FOURIER transform

Z . . .f g z-transform

s Complex variable (L transformation)

z Complex variable (Z transformation)

r (or yr) Reference signal

y Controlled variable

e Error signal

u Actuating signal (or output of the regulator)

yni Input noise

yn (or yno) Output noise

yz Measurement noise

a; b; c; . . . Vector

aT; bT; cT; . . .

Row vector

A;B;C; . . . Matrix

AT Transpose of a matrix

adj(A) Adjunct of a matrix

xxiii



detðAÞ (or Aj j) Determinant of a matrix

x State variable

A; b; c; d Parameters of the state equation (continuous)

F; g; h; d (or F; g; c; d) Parameters of the state equation (discrete)

diag a11; a22; . . .; ann½ � Diagonal matrix

I ¼ diag 1; 1; . . .; 1½ � Unit matrix

Ts Sampling time

Td Dead time (continuous)

d Time delay (discrete)

Th Additional time delay

v tð Þ Step response function

w tð Þ Weighting function

x Frequency

xc Crossover (cut-off) frequency

F jxð Þ Frequency spectrum of a continuous signal

F� jxð Þ Frequency spectrum of a sampled signal series

G jxð Þ (or Pd jxð Þ) Frequency spectrum of a discrete-time model

A, B, C, D, G, F , R, X , Y, V Polynomials

deg Af g Order of a polynomial

A sð Þ ¼ 0 Characteristic equation

U Limit of the control output

grad f ðxÞ½ � Gradient vector

8x For all x

\ (or arc . . .ð Þ) Angle of a complex number or functions

e ...ð Þ (or exp . . .ð Þ) Exponential function

ln . . .ð Þ Natural logarithm

lg . . .ð Þ Base 10 logarithm

E . . .f g Expected value

plim . . .f g Probability limit value

eA Matrix exponential

ln Að Þ Matrix logarithm

CT Continuous time

DT Discrete time

SRE Step response equivalent

PFE Partial fractional expansion

■ End of example

xxiv Notations



Chapter 1

Introduction

Control means a specific action to reach the desired behavior of a system. In the

control of industrial processes generally technological processes, are considered,

but control is highly required to keep any physical, chemical, biological, commu-

nication, economic, or social process functioning in a desired manner.

Control methods should be used whenever some quantity must be kept at a

desired value. For example, control is used to maintain the temperature of our flat at

a comfortable specific value both in winter and summer. Controlling an aircraft, the

pilot (or the robot pilot) has to execute extremely diverse control tasks to keep the

speed, the direction, and the altitude of the aircraft at desired values. Control

systems are all around us, in the household (e.g., setting the program of a washing

machine, ironing by on-off temperature control, air conditioning, etc.), in trans-

portation, space research, communication, industrial manufacturing, economics,

medicine, etc. A lot of control systems do operate in living organisms as well.

Control systems are everywhere in our surroundings. A control system is real-

ized e.g., when taking a shower, where the temperature of the shower is to be kept

at a comfortable value (Fig. 1.1). If the temperature sensed by our body differs from

its desired value, we intervene by opening the cold tap or the warm tap. After being

mixed, the water goes through the shower pipe. The effect of the change takes place

after a delay. The effect of the delay has to be considered when deciding on a

possible newer execution. The control process taking place is symbolized by the

block-diagram shown in Fig. 1.2.

Figure 1.3 shows schematically a control system for room temperature control.

Figure 1.4 illustrates some processes which require control to ensure appropriate

performance. The speed or angular position of the motor, as well as the level of the

tank, is to be kept at a constant value. The temperature of the liquid flowing through

the heat exchanger has to be maintained. In the chemical reactor, the quality and

quantity of the materials being created during the chemical reaction have to be

maintained. In the distillation column the individual components of the crude oil are
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cold water

hot water

Fig. 1.1 Shower-bath as a control task

Fig. 1.2 Control block-scheme of the shower-bath

relay heating unit

Thermostat

actual room 

temperature

desired room 

temperature

switching the 

heating on or off

Fig. 1.3 Room temperature control

to be separated. For this purpose, the temperatures of the plates in the column have

to be appropriately controlled relative to each other. Furthermore, in everyday

practice in the household and in a variety of production processes different control

tasks have to be solved.

In what follows, the control processes of technological systems will be dis-

cussed. The control of industrial processes plays a significant role in ensuring better

product quality, minimizing energy consumption, increasing safety and decreasing

environmental pollution.
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In the manufacturing production processes of material goods, mass and energy

conversion takes place. Appropriate control is to be applied to ensure the suitable

starting, maintenance and stopping of these processes. For example, in a thermal

power station the chemical energy of the coal is converted to heat energy by

burning. The heat is then used to produce steam. The steam drives the turbine,

creating mechanical rotation energy. The turbine rotates the rotor of a synchronous

generator in the magnetic field of the stator. This creates electric energy. All these

processes must be operated in a prescribed way. The processes have to be started,

and their performance has to be ensured according to the given technological

prescriptions. For example, in electrical energy production, it has to be ensured that

the voltage and frequency be kept at prescribed constant values within a given

accuracy in spite of load changes during the day. Stopping the processes has to be

executed safely.

To maintain the processes in a desired manner means keeping different physical

quantities at constant values or altering them according to given laws. Such

physical quantities could be, for instance, the temperature or pressure of a medium,

the composition of a material, the speed of a machine, the angular position of an

axe, the level in a tank, etc.

A process is a system which is connected to its environment in many ways. For

example, a thermal power station converts the chemical energy of the fuel to

electrical energy. The system consists of several pieces of interconnected equipment

(furnace, turbine, synchronous generator, auxiliary equipment). The system con-

verts the input quantity (fuel) to the output quantity (electrical energy), while it has

multi-faceted relations with its environment (it produces waste material, transfers

inQ

outQ
a

h

Cooling liquid

Liquid flow

Cooling liquid

Reagent

chemicals

Product

Cooling liquid

Inflow

Head product

Bottom

product

Motor Tank Heat exchanger

Chemical reactor Distillation column

Fig. 1.4 Some typical control tasks
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heat into the environment, produces mechanical vibration and noise, etc.).

Figure 1.5 illustrates the relation of the system and its environment. If the operation

of the turbine is investigated, then the relation of the system and its environment is

considered in a different way (Fig. 1.6). In this case the system is the turbine, which

converts the thermal energy of the steam into electrical energy.

The quantities going from the environment into the system are the inputs, while

the quantities going from the system into the environment are the outputs. With

control—by appropriately manipulating the input quantities—the output quantities

are to be maintained according to the given requirements.

SYSTEM

furnace, steam turbine,

synchronous generator,

auxiliary equipment

Heating fuel

(chemical energy) 

Waste material Cooling

Electrical energy

Noise
Vibration

ENVIRONMENT

Fig. 1.5 The system and its environment

GeneratorTurbine

SYSTEM

Steam

Dead steam

Electrical Energy

ENVIRONMENT

Fig. 1.6 The system and its environment (as a detailed part of the system in Fig. 1.5)
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1.1 Basic Concepts

Control means the specific actions to influence a process in order to start it, to

appropriately maintain it, and to stop it.

Control is based on information obtained from the process and its environment

through measurements. Measuring instruments are needed to measure the different

physical quantities involved in the control. Based on the knowledge of the control’s

aim and on the information obtained from the process and its environment, a

decision is made about the appropriate manipulation of the process input. It is

characteristic for control that high energy processes are influenced by low energy

causes.

The methodology of control is that specifically designed external equipment is

connected to the process and then, based on data obtained by measurements or in

other ways, it directly modifies the input variables and in that way influences

indirectly the output variables. The control system is the joint system made up of

the interconnected plant to be controlled and the control equipment.

Control can be performed manually or automatically. In manual control the

operator makes a decision and manipulates the input quantity of the process based

on the observed output quantity. In automatic control automatic devices execute the

functions of decision making and executing the manipulation. Taking a shower is a

case of manual control (Fig. 1.1), Fig. 1.7 also illustrates manual control. The

operator observes the level of the liquid in the tank and sets the required level by the

valve position of the tap influencing the amount of the outlet liquid. Figure 1.8

shows an automatic level control in a tank. The level of the liquid is sensed by a

floating sensor. If the level differs from its required value, the valve influencing the

input flow will be opened more or less.

Fig. 1.7 Level control by hand
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Control engineering dealswith the properties and behavior of control systems,with

the methods for their analysis and design, and with the question of their realization.

1.1.1 The Basic Elements of a Control Process

A control process consists of the following operations (Fig. 1.9):

Sensing: gaining information about the process to be controlled and its environment

Decision making: processing the information and, based on the aim of the control

taking decisions about the necessary manipulations

Disposition: giving a command for manipulation

Signal processing: determine the characteristics of intervention, acting

Intervention, Acting: the modification of the process input according to the

disposition.

The individual operations are executed by the appropriate functional units.

Fig. 1.8 Automatic level control in a water tank

Control 

goal

Information 

gathering, 

sensing

Information 

processing, 

decision

Actuator PROCESS

Manipulated 

process 

input

Disturbance

Controlled 

variable

Fig. 1.9 Functional diagram of a control system
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1.1.2 Signals and Their Classification

To control a process it is required to measure its changes. Changes of the process

occur as consequences of external and internal effects. The features of the process

which manifest its motion, and also the external and internal effects, are represented

by signals. The signal is a physical quantity, or a change in a physical quantity,

which carries information. The signal is capable of acquiring, transferring, as well

as storing information. Signals can be observed by measurement equipment.

Signals have a physical form (e.g., current, voltage, temperature, etc.)—this is the

carrier of the signal. Signals also have informational content—which shows the

effect represented by the signal (e.g., change of the current versus time).

Signals can be classified in different ways.

According to its temporal evolution

a signal is continuous if it is continuously maintained without interruption over a

given range of time,

a signal is discrete-time or sampled if it provides information only at determined

points in time in a given duration of time.

According to its set of value

a signal is contiguous if its set of value is contiguous,

a signal is fractional if its set of value is non contiguous and can take only definite

values.

According to the form of representation of the information

a signal is analog if the value of the signal carrier directly represents the infor

mation involved,

a signal is digital if the information is represented by digits which are the coded

digital values of the signal carrier.

According to the definiteness of the signal value

a signal is deterministic if its value can definitely be given by a function of time,

a signal is stochastic if its evolution is probabilistic, which can be described using

statistical methods.

The characteristic signals of a process are its inputs, outputs, and internal signals.

Those input signals which are supposed to be used as inputs modifying the output

of the process are called manipulated variables or control variables. The other input

variables are disturbances.

1.1.3 Representation of System Engineering Relationships

The various parts of a control system are in interaction with each other. The

relations of the individual parts can be represented by different diagrams. As was

mentioned earlier, a piece of equipment which performs some control task is called

functional unit (e.g., sensor, actuator, etc.). The symbols for the functional units

also appear in the diagrams characterizing the connections of the elements of the

control system.

1.1 Basic Concepts 7



A structural diagram gives an overview of the pieces of equipment forming the

system and shows their connections. First of all it highlights those parts of the

system which are substantial from the control viewpoint. Generally, a structural

diagram uses the standard notation of the specific field under consideration.

Considering the performance of a control system, what is of primary interest is

not the operation of the individual functional units, but rather the spreading effect of

the information induced by their operation. An operational block diagram shows

the connection and interaction of the individual control units disregarding their

physical characteristics. In a block diagram the units are represented by rectangles.

A line supplied with an arrow directed to a rectangle symbolizes the input signal,

while a directed line going out of a rectangle represents the output signal. The

direction of the arrow is also the direction of the flow of information. In the

rectangles the functions of the structural units are indicated (e.g., sensor, actuator

element, controller, etc.).

When realizing a control system, the requirements for the process and the aim of

the control have to be formulated first. Then, to solve the control problem, the

individual structural control units are chosen. These units are connected to the

process and to each other according to the control structure. It has to be analyzed

whether the control system meets the quality specifications. To do this it is required

to examine the signal transfer properties of the individual elements and also the

signal transfer in the interconnected system. In a block diagram the individual

elements of the operational diagram are described by their signal transfer properties,

i.e., by the mathematical formula giving the relationships between the outputs and

inputs. These relationships can be mathematical equations, tables, characteristics,

operation commands, etc. The signal transfer properties of the individual elements

can be given by a mathematical description of the physical operation of the element,

where the values of the parameters involved in the equations are also given. To

indicate some frequently used operations, accepted symbols are written inside the

rectangles (e.g., the symbol of integration). The symbols of summation and sub-

traction are shown in Fig. 1.10. A chain of effect is a set of connected elements

along a given direction.

A block diagram can be considered as the mathematical model of the control

system. In this model, mainly the signal transfer properties of the system are kept in

view, other properties are ignored.

The static and dynamic behavior of the control system can be investigated based

on the block diagram. The block diagram also provides the basis for the design of

the control system.

Fig. 1.10 Symbols of summation and subtraction
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Of course, when the control system is actually implemented, in addition to its

signal transfer properties, other aspects should also be taken into account (e.g.,

energy constraints, standardized solutions, etc.).

1.1.4 Open- and Closed-loop Control, Disturbance

Elimination

If the information is not gained directly from the measurement of the controlled

signal, an open-loop control is realized. If the information is derived by directly

measuring the controlled signal, a closed-loop control or feedback control is

obtained. Figure 1.11 gives the operational block diagram of a closed-loop control

system.

An example of an open-loop control system is the control of a washing machine

according to a time schedule of executing consecutive operations (rinsing, washing,

spin drying). The output signal (the cleanness of the cloths) is not measured. An

open-loop control is realized also if the heating of a room is set depending on the

external temperature.

In the case of a closed-loop (feedback) control the controlled signal itself is

measured. The control error, i.e., the deviation between the actual and the desired

value of the controlled signal, influences the input of the process. The functional

units are the sensor (measuring equipment), the unit providing the reference signal,

the subtraction unit, the amplifier and signal forming unit, and the executing and

actuator unit. The characteristic signals of the processes are measured by sensors.

The measuring instruments provide signals which are proportional to the different

physical quantities measured. The requirements set for the sensors are the

following:

– reliable operation in the range of the measurements

– linearity in the range of the measurements

– accuracy
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Fig. 1.11 Operational block diagram of the closed-loop control system
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– small dead-time compared to the time constants of the process

– low measurement noise.

A sensor measures the physical quantity which is to be controlled and transforms

it to another physical quantity which is proportional to the actual value of the

controlled signal, and can be compared to the reference signal provided by the

reference unit. The error signal operates the controller. The output signal of the

controller is amplified, formed and operates the acting element (actuator) which

provides the input signal (manipulated variable) for the process. The error signal

gives the deviation of the actual output signal from its desired value. If it is different

from zero, the system input is to be modified to eliminate the error.

The different functional units are selected according to practical considerations.

The control system is built from the individual control elements (sensors which

measure the given physical variables in the required range, controllers, actuators,

miscellaneous elements) available on the market.

The basis of a closed-loop control system is negative feedback. The command

for modifying the input of the process is performed based on comparing the ref-

erence signal and the actual value of the output signal to be controlled. (There are

different schemes for realizing control systems, but all of them are based on neg-

ative feedback.)

Because of the dynamics of the plant and the individual elements of the control

system, signals need time to go through the control loop. A well designed controller

takes the dynamics of the closed-loop system into consideration and ensures the

fulfillment of the quality specifications imposed on the control system.

Comparison of open-loop and closed-loop control

If the relationship between the control signal (manipulated variable) and the con-

trolled signal (process variable) is known and reliable information is available on all

the elements and all the disturbances in the control circuit, then open-loop control

can ensure good control performance. But if our knowledge about the plant and

about the disturbances is inaccurate, then the performance of the open-loop control

will not be satisfactory. Open-loop control provides a cheap control solution, as it

does not apply expensive sensors to measure the controlled quantity, but instead it

uses apriori information or information gained about external physical quantities for

decision making. In open-loop control there are no stability problems.

Closed-loop control is more expensive than open-loop control. The controlled

variable is measured by sensor equipment, and manipulation of the input signal of

the plant is executed based on the deviation between the reference signal and the

measured output signal. Closed-loop control is able to track the reference signal and

to reject the effect of the disturbances. As the actual value of the controlled signal is

influenced by the disturbances, closed-loop control rejects the effect of the distur-

bances which are not known in advance, and also compensates the effect of the

parameter uncertainties of the process model. If any kind of effect has caused the

difference between the output signal and its required value, the closed-loop control

is activated to eliminate the deviation. But because of the negative feedback
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stability problems may occur, oscillations may appear in the system. The stability of

the control system can be ensured by the appropriate design of the controller.

If the disturbance is measurable, then closed-loop control is often supplemented

by feedforward using the measured value of the disturbance. A block diagram of the

feedforward principle is shown in Fig. 1.12. A signal depending on the measured

disturbance variable is fed forward to some appropriate summation point of the

control loop. This means an open-loop path which relieves the closed-loop control

in disturbance rejection. This forward path tries to compensate the effect of the

disturbance. This manipulation works in open-loop, the disturbance variable

influences the controlled variable, but the manipulation does not affect the distur-

bance variable.

A classical example of feedforward compensation is the compound excitation of

a direct current (DC) generator (Fig. 1.13). The armature voltage is the controlled

variable, the excitation is the control (manipulated) variable. The load current

(disturbance variable) decreases the armature voltage of the generator. With com-

pound excitation, part of the excitation is created by the load current itself, thus the

disturbance variable directly produces the effect of eliminating itself. In this way the

armature voltage of the generator is greatly stabilized. For more accurate voltage

control, an additional closed-loop configuration can be applied.
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Fig. 1.12 Feedforward control (disturbance compensation)
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Let us consider the stirring tank in Fig. 1.14, wherew1 is the inflow quantity of the

mixture of materials A and B flowing into the tank. In the mixture the partial rate of

material A is x1.w2 is the inflow quantity of the pure material A, x2 ¼ 1.w denotes the

amount of the outflowmaterial of partial rate x. It is supposed thatw1 is constant, x2 is

constant, and the mixing process in the tank works ideally. The control aim is to keep

the composition x of the outflow material (the controlled variable) at a prescribed

value in spite of the variations in x1 (disturbance variable). Manipulations can be

executed by modifying the inflow quantity w2 (control or manipulated variable) by

setting the position of the valve. The control is realized by a closed-loop control, if x is

measured and w2 is set depending on this measurement (Fig. 1.15). An open-loop

control is built if the composition x1 of the inflow mixture material is measured, and

the inflow amount w2 is modified accordingly (Fig. 1.16). Figure 1.17 shows a

feedforward solution, where both the composition x of the outflow material and the

composition x1 of the inflow mixture are measured, and the inflow quantity w2 is set

according to both measured values (In the figures, the standard symbols for the

sensors, controllers, and valves are employed, see Appendix A.3).

The next example shows the speed control of a motor with open-loop and

closed-loop control. In a CD player the disc has to be rotated at steady speed. A DC

motor can be used as actuator. The angular velocity is proportional to the terminal

voltage of the motor. Figure 1.18 shows the solution of the task in open-loop

control. The terminal voltage of the motor is provided by a direct current power

supply through an amplifier. The velocity is proportional to the terminal voltage.

Figure 1.19 schematically presents the solution using closed-loop control.

Figure 1.19a gives the structural diagram, while 1.19b shows the operational dia-

gram. The speed of the motor is measured with a tachometer generator, whose

output voltage is proportional to the velocity. The measured voltage is compared to

the reference signal voltage set by the power supply, which is proportional to the

prescribed value of the speed. The error signal operates the actuator DC motor.
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Fig. 1.14 Stirring tank
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With closed-loop control more accurate and more reliable operation can be

reached. Closed-loop control ensures not only reference signal tracking, but elim-

inates speed changes resulting from possible changes in the load, as well.

In practice, besides closed-loop control, open-loop control systems are also

given an important role. When starting and stopping a complex system, a series of

complex open-loop control operations has to be executed. Generally, intelligent
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Fig. 1.17 Feedforward composition control of a liquid in a tank
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Programmable Logic Controller (PLC) equipment is used to realize the open-loop

control. To keep various physical quantities at their required constant values

closed-loop control systems are applied.

1.1.5 General Specifications for Closed-Loop Control

Systems

The main goal of a closed-loop control system is to track the reference signal and to

reject the effect of the disturbances. Regarding the quality of the performance of the

control system static and dynamic requirements are prescribed.

First of all a closed-loop control has to be stable, i.e., oscillations of steady or

increasing amplitude in the loop variables are not allowed. After the change of the

input signals a new balance state has to be reached. The problem of instability

comes from the negative feedback realizing the closed-loop control. As after the

appearance of the control error the manipulation of the process input can be exe-

cuted only in a delayed fashion, it may occur that undesired transients do appear in

the system (e.g., in Fig. 1.1 when taking a shower the water can be too hot or too

cold, the desired temperature is not settled.) Stable behavior can be ensured by

appropriate controller design. (The stability of a control system will be discussed in

detail in Chap. 5).

Static specifications give the allowed maximum value of the steady error of the

reference signal tracking, and the allowed remaining steady deviation in the output
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Fig. 1.19 Closed-loop angular velocity control of a CD player
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signal occurring as the effect of the disturbances, after deceasing of the transients, in

steady state. It depends on the technology and on the process to be controlled

whether deviations can be allowed at all, and if so, what their maximum possible

value can be.

Dynamic specifications give prescriptions for the course of the transients. Let us

consider the step response of the closed-loop control system (Fig. 1.20) with the

indicated maximum value ymax and steady-state value yss ¼ ysteady�state. The over-

shoot r in percentages is expressed by

r ¼ ymax � yss

yss
� 100%

There are processes where aperiodic performance is required (e.g., machine

tools, landing of an airplane, etc.), while in other processes often an overshoot of 5–

10% is tolerable.

The settling time ts specifies the time it takes for the step response of the

closed-loop control system to settle down within an accuracy of � D% (generally

�(1–2)%) of its steady state value. Usually the number of allowed oscillations

within the settling time is also prescribed.

The control signal in the control system is the output signal of the actuator. The

control signal (or manipulated variable) can only take a restricted value corre-

sponding to its physical realization (e.g., a valve setting the inflow liquid quantity in

a tank can provide a maximum amount of liquid passing through in its totally open

state, and is not able to provide more, in spite of possibly receiving such a com-

mand.). If a higher value were to be forced, the actuator would be saturated at only
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Fig. 1.20 Dynamic quality specifications
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releasing its maximum possible amount, thus temporarily “opening” the control

loop. The phenomenon of possible saturation of the manipulated variable (control

signal) should be considered already in the control design phase, and it has to be

ensured that the manipulated variable be within its specified range, or if never-

theless it exceeds it, effects substantially distorting the normal operation of the

control loop should be avoided.

A control system is designed for the process to be controlled ensuring the quality

specifications. The model of the process describing its signal transfer properties is

obtained by mathematical description reflecting its physical operation. The values

of the parameters in the equations are determined generally by measurements. Thus

in their values uncertainties may occur. The closed-loop control has to operate

appropriately (in a robust way) even if the actual parameters of the process and the

parameters considered in its model do differ to some extent.

The requirements set for the closed-loop control system have to be realistic. For

example, extremely fast settling can not be required from a slow heating process, as

this would result in extremely high control signals. Instead, it is necessary to relax

the strictness of the prescriptions in order to get a realizable solution.

Chapter 4 deals in more detail with the quality specifications set for a

closed-loop control system.

1.1.6 Simple Control Examples

Next, some examples of closed-loop control will be presented.

Temperature control

Figure 1.21 shows a schematic structural diagram of a device producing warm

water with a prescribed temperature. The water is circulating in tubes located in the

stokehold of a furnace. The coal used for firing is delivered from the coal container

to the heating equipment by a conveyor driven by an electrical motor. The velocity

of the conveyor and thus the amount of the transported coal is controlled by the

speed of the motor. On the basis of the difference between the prescribed tem-

perature of the warm water and its measured actual value the controller sets the

terminal voltage determining the speed of the electrical motor through a pream-

plifier and a power amplifier. Figure 1.22 shows a block diagram of the temperature

control.

Speed control

Figure 1.23 shows the structural diagram of the speed control of a direct current

(DC) motor with constant external excitation. The speed of the motor can be

changed by the terminal voltage (manipulated variable). The machine driven by the

motor produces a changing load for the motor (disturbance), and produces variation

in the speed. The terminal voltage of the motor can be changed by an electronic unit
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with thyristors. The speed of the motor is measured by a tachometer generator,

which gives a voltage proportional to the speed (angular velocity). The error voltage

is obtained by comparing this voltage with the reference signal voltage provided by

the power supply. Its magnitude is amplified by the power amplifiers E1 and E2 and

its shape is modified by a filter. Thus the manipulated variable is produced. The

function of the manipulated variable is to change the firing angle of the thyristors.

As a consequence, the terminal voltage, as the control signal, will be increased or

decreased in order to reach the speed prescribed by the reference voltage of the

power supply. A block diagram of the speed control is given in Fig. 1.24.

Level control, composition control, moisture control

Frequent tasks in industrial chemical processes are the following: level control in a

tank, pressure control, temperature control, composition control of mixed materials,

moisture control, etc. Figure 1.25 shows two solutions for liquid level control. In

the upper figure the manipulation is executed by the control of the inflow. In the
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lower figure the manipulation is executed by the control of the outflow. Figure 1.26

illustrates pH control. Figure 1.27 gives a schematic solution for the moisture control

of a granular material in a drying process. The moisture content of the material is

measured, and in case of its deviation from the desired value, the speed of the

conveyor belt is modified or the inflow of the drying steam (or hot air) is changed.

Fig. 1.25 Level control in a

tank

Fig. 1.26 pH control
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1.2 On the History of Control

Control engineering even today is a developing discipline. New facilities and new

techniques raise new theoretical questions, and open up the way to novel appli-

cations. Applying negative feedback is not a new principle, however: the ancient

Greeks already used it. Looking back at the history of control engineering, some

tendencies can be observed.

The application of negative feedback relates to the solution of engineering tasks.

The development of control engineering is tightly connected to practical problems

that waited for a solution in a stage of humanity’s history. Some periods which had

a significant influence at the development of control technique were

– the ancient Greek and Arab culture (*300 BC to *1200 AD),

– the industrial revolution (18th century, but the beginnings already around 1600)

– the beginnings of telecommunication (1910–1945)

– the appearance of computers, the beginning of space research (1957–)

Considering these eras we may establish that humanity was looking first for their

place in space and time, and then tried to shape the environment to make life more

comfortable; industrial production contributed to this. Then, using also
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1.2 On the History of Control 21



communication, humans found their place and position in society, and then tried to

get connected to the universe.

Already the ancient Greeks used several automata. One of the first closed-loop

control systems was the water clock of KTESIBIOS in Alexandria (270 BC). The

equipment used a float to sense the level of a tank and to keep it at a constant value.

If the water level in the tank decreased, a valve opened and refilled the tank.

A constant level ensured a constant value of the outflow of the water. The

outflowing water filled a second tank. The level of this tank changed proportionally

to the time. The Byzantine PHILON (250 BC) also used a float controller to control

the oil level of an oil lamp. HERON of Alexandria (first century AD) applied similar

devices for level control, wine dosage, opening doors of churches, etc.

Arab engineers between 800 and 1200 AD used several controllers with floating

balls. They initiated the on-off controllers, which operate by switching on and off

the manipulating variable.

With the invention of mechanical clockwork, water clocks with floating balls

were forgotten.

In the era of the industrial revolution many types of automatic equipment were

invented. In these systems, the tasks of automatic level, temperature, pressure and

speed control were carried out. Already from the beginning of the 17th century

there were several control applications (speed control of windmills, temperature

control of furnaces (Cornelis DREBBEL), pressure control (PAPIN), etc.). The dis-

covery of the steam engine (SAVERY and NEWCOMEN, *1700) indicates the begin-

ning of the industrial revolution. The centrifugal controller of James WATT

(Fig. 1.28) is considered the first industrial control system, which was applied to the

speed control of a steam engine. The position of the centrifugal sensor depends on

the speed of the steam engine. This sensor sets the position of the piston valve

through the actuating lever, thus influencing the amount of steam inflowing to the

Pivot
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Arm

Fig. 1.28 Centrifugal

controller
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steam engine, changing its speed. (It is interesting to mention that almost another

hundred years had to pass until MAXWELL gave the exact mathematical description

of the system with differential equations).

After the industrial revolution an essential step forward in the development of

control engineering was the use of mathematical methods for the description of

control circuits. This made possible a more rigorous and exact investigation of

control systems.

A new era of control engineering started with the invention of the telephone,

with the application of feedback operational amplifiers to compensate for the

damping occurring in the transmission of the information.

During the Second World War a lot of high precision control systems were

worked out, e.g., automatic flight control systems, radar antenna positioning sys-

tems, control equipment of submarines, etc. Then later on these techniques also

gained applications in industrial production.

The general application of computers opened a new era in the development of

control systems. The computer is no longer only an external device, to facilitate the

control design, but becomes part of control systems in real time applications. The

process and the process control computer are connected via peripherials, and the

process control software calculates the control signal at every sampling time instant

and forwards it to the process input. Thus the computer became a basic part of the

control loop.

Industrial robots executing precision tasks appeared. The robot is a computer

controlled automaton. Several times, human attributes have been imitated in robots,

e.g. in robot manipulators the motion of the human hand is imitated. Mobile robots

are aimed to be equipped with some intelligence, such as observing and avoiding

obstacles moving in space.

Space research means a newer challenge for control systems. Tracking

space-craft, placing artificial space objects in a given orbit requires extremely

accurate, learning control systems which are able to adapt to changing circum-

stances. In these systems safe operation is extremely important.

Nowadays when realizing different control systems the control principles, the

computer and communication systems and their interaction have to be considered

together. The new technical possibilities facilitate new ways of control applications.

The appearance of the new miniaturized sensors and manipulating elements opens

new perspectives in control techniques. In industrial production processes, dis-

tributed control systems have appeared; a large number of control systems dis-

tributed in space are coordinated to ensure high quality production. These systems

communicate, change information, forward commands and execute them in a

coordinated way. Hardware and software elements (PLC-s, profibus, TCP/IP,

industrial network standards, etc.) ensuring the operation at this level appeared.

Control theory deals with the construction and analysis and synthesis of

closed-loop control systems. The classical period of control theory (*till 1960)

gave the basic concepts of the operation, analysis and synthesis of closed-loop

control systems based on negative feedback.
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In the modern era of control theory (*1960–1980), the state space description

of control systems and controller design methods based on this model have gained

attention.

Nowadays design methods of robust reliable control systems which are less

sensitive to parameter changes are in the forefront of interest. Control of non-linear

systems, application of intelligent learning systems which are able to recognize

environmental changes and adapt to them, application of distributed control systems

using network connections and communication, open new perspectives in control

theory and control engineering.

1.3 Systems and Models

Building a model is a significant part of analyzing a control system. The model

describes the signal transfer properties of a system in mathematical form. With a

model, the static and dynamic behavior of a system can be analyzed without per-

forming experiments on the real system. Based on the model, calculations can be

executed and the behavior of the system can be simulated numerically. A model of

the system can also be used for controller design.

The choice of the elements of a control system is based on practical consider-

ations. The operation of a control system can be followed in the structural diagram,

which shows the connections and interactions of the individual units building the

control system. The mathematical model of the elements of the control loop

describes their signal transfer properties. In a control loop the signal transfer

properties of all the elements are given by mathematical relationships. A block

diagram can be considered as a mathematical model of the control loop. With a

block diagram, the static and dynamic properties of the control system can be

analyzed, and it can be determined whether the system satisfies the quality

specifications.

The signal transfer properties of the individual elements can be given by

mathematical relationships describing their physical operation. A deep under-

standing of the physical operation is required to derive its mathematical description.

The parameters in the mathematical equations can be determined by calculations or

by measurements.

The static and dynamic behavior of a system can also be obtained by analyzing

the input signals and the output signals resulting from the effect of the input signals.

For the execution of an experiment providing information for system analysis, it is

important to choose the input signals appropriately. This procedure requires some

form of a system model, and determines the parameters in such a way that the

outputs of the system and that of the model be closest to each other in terms of a

cost function. This procedure is called identification.

As the values of the parameters are generally determined by measurements, their

values are not quite accurate, but usually the range of the parameter uncertainties

can be given.
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To obtain a model of a system generally physical modeling and identification are

used together (Fig. 1.29).

The model is reliable if its output for a given input approximates well the real

output of the system. The domain of validity of the model can be obtained (e.g., in

which range of the input signal it is valid).

1.3.1 Types of Models

A model is static if its output depends only on the actual value of its input signal.

For example, a resistance where the input signal is the voltage and the output signal

is the current is a static system. A model is dynamic if its output depends on

previous signal values as well. An electrical circuit consisting of serially connected

resistor and capacitor is a dynamical system, since the voltage drop on the

capacitance depends on the charge, and thus on the previous values of the current.

A model can be linear or non-linear. The static characteristic plots the steady

values of an output signal versus the steady values of an input signal. If the static

characteristics are straight lines, the system is linear, otherwise it is non-linear.

A model can be deterministic or stochastic. The signals of a deterministic model

can be described by analytical relationships. In a stochastic model, the signals can

be given by probabilistic variables and contain uncertainties.

Spatially, a model can have either lumped or distributed parameters. Lumped

parameter systems can be described by ordinary differential equations, while dis-

tributed parameter systems can be described by partial differential equations.

A model can be a continuous-time (CT) or a discrete-time (DT) model.

A continuous-time model gives the relationship between its continuous input and

output generally in the form of a differential equation. If the input and the output are
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sampled, the system is a discrete-time or sampled data system, where the rela-

tionship between the input and the output signals is described by a difference

equation.

Considering the number of the input and the output signals, the model can be

Single Input Single Output (SISO), Multi Input Multi Output (MIMO), Single Input

Multi Output (SIMO) or Multi Input Single Output (MISO). Besides the input and

the output signals state variables of the system can also be defined. The state

variables are the internal variables of the system, whose current values have

evolved through the previous changes of the signal in the system. Their values can

not be changed abruptly when the input signals change abruptly. The current values

of the input signals and that of the state variables determine the further motion of

the system.

Our investigations will be restricted to the control of dynamic, linear, SISO,

lumped parameter systems. The literature basically applies the following four

methods to describe such systems:

– linear lumped parameter differential equations of order n

– state space equations

– the transfer function and frequency function

– time functions.

1.3.2 The Properties of a System

Some important system properties—which characterize the relationship between

the input and the output—are linearity, causality and time invariance.

Linearity: A system is linear if the superposition and homogeneity principles are

applicable to it. If for an input signal u1 the output signal of the system is

y1 ¼ f u1ð Þ, and for the input signal u2 the output signal is y2 ¼ f u2ð Þ, then the

superposition principle means that y1 þ y2 ¼ f u1 þ u2ð Þ; according to the homo-

geneity principle, a k-fold change in the input signal yields a k-fold change in the

output signal: k y ¼ f k uð Þ. It can also be stated that for the input signal au1 þ bu2
the output signal is ay1 þ by2.

Causality: at a given time instant the output depends on the past and the current

input values, but it does not depend on future input values.

Time invariance: A system is time invariant if its response to the input signal

does not depend on the time instant of applying the input signal: to an input signal

shifted by a dead-time of s, it gives the same response shifted by the dead-time s

(Fig. 1.30). In a time invariant system, for the delayed output the following rela-

tionship holds: ys tð Þ ¼ y t � sð Þ.
Linear time invariant systems generally are referred by the acronym LTI.
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1.3.3 Examples of the Transfer Characteristics of Some

Simple Systems

Next, some examples will demonstrate how to describe mathematically the signal

transfer properties of physical systems, i.e., how to give the relationships between

the input and the output signals. The description of the behavior of physical systems

generally leads to differential equations.

Example 1.1 A mechanical system

Let us consider the mechanical system shown in Fig. 1.31, which can model a part

of the chassis of a car. m denotes the mass, c1 and c2 are spring constants, and k is

the damping coefficient of the oil brake. A concentrated mass is supposed. In the

Fig. 1.31 Scheme of a

mechanical system
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springs, forces proportional to the position are created. The damping piston pro-

vides a braking force proportional to the velocity. The following force balance

equations can be written. The force created by the upper spring is expressed as

c1 x1 � x2ð Þ ¼ f . The equation expressing the balance of forces acting on the mass is

m
d2x2

dt2
¼ c1 x1 � x2ð Þ � c2x2 � k

dx2

dt
:

It can be seen that the behavior of the system is described by a differential

equation. By solving the differential equation, the motions x1 and x2 as function of

time can be calculated as the responses to the given force. ■

Example 1.2 Direct current (DC) generator

Let us investigate the signal transfer of the externally excited DC generator shown

in Fig. 1.32 between its input signal, the excitation voltage ug, and its output signal,

the armature voltage uk. The resistance of the excitation coil is Rg and its inductance

is Lg. The following differential equation can be written for the excitation circuit:

Lg
dig

dt
þRgig ¼ ug

Assume that the machine works within the linear section of its magnetic char-

acteristic, thus Lg can be considered constant. The generator is not loaded. The

terminal voltage of the generator is proportional to the excitation flux, or supposing

a linear magnetic characteristics the terminal voltage is proportional to the excita-

tion current: uk ¼ Kgig, where Kg is a constant depending on the structural data of

the machine, its units are [V/A]. ■

Example 1.3 A chemical process

Let us consider the mixing tank shown in Fig. 1.33. A solution of concentration co
is mixed with water to obtain a solution of concentration ck. The amount qv of the

inflow water is constant, the amount qo of the inflow solution is controlled by a

valve. The concentration is given by the amount of the dissolved material in one

liter of the solution expressed in grams. The input signal of the system is the

gi

gg L,R

gu

ku

Fig. 1.32 Scheme of an

externally excited direct

current generator
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position h of the plunger, the output signal is the concentration ck of the obtained

solution. The amount of the inflow solution is proportional to the position of the

plunger: qo ¼ K h. The amount of the outflow solution is the sum of the amount of

the inflow solution and the inflow water: qk ¼ qo þ qv. During time Dt the amount

of the dissolved material getting into the tank of volume V is qocoDt, and at the

same time dissolved material of amount qkckDt leaves the tank. The change of the

concentration is:

Dck ¼
qoco � qkck

V
Dt:

The differential equation of the system is obtained by taking the limit Dt ! 0:

dck

dt
þ qk

V
ck ¼

dck

dt
þ qo

V
ck þ

qv

V
ck

¼ dck

dt
þ K

V
ckhþ

qv

V
ck ¼

coK

V
h

The relationship is non-linear, as the product of the output signal ck and the input

signal h appears in the equation. But supposing qo � qv, then qk � qv ¼ constant,

and a constant qk can be taken into consideration in the differential equation. Thus a

linear differential equation is obtained.

dck

dt
þ qv

V
ck ¼

coK

V
h

■

1.3.4 Linearization of Static Characteristics

Investigation of non-linear systems is a difficult task. The analysis can be simplified

if the non-linear characteristics are linearized in a given vicinity of a working point.

Thus in the surrounding of the working point the non-linear system is approximated

by a linear model supposing only small changes in the input signals.

Mixer

oo ,cq

vv
,cq

h

kk
,cq

Fig. 1.33 Mixing tank
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Let us consider the non-linear static characteristics y ¼ f uð Þ shown in Fig. 1.34.

At the working point u ¼ uo; yo ¼ f uoð Þ the TAYLOR series of the function is:

y ¼ yo þDy ¼ f uoð Þþ f 0 uoð Þ u� uoð Þþ � � �

Neglecting the higher degree terms, the linearized model is given by

y� yo ¼ Dy ¼ f 0 uoð Þ u� uoð Þ ¼ f 0 uoð ÞDu

The linearized model replaces the static characteristics at the working point by

the gradient. Of course the steepness depends on the working point.

Linearization in the case of several inputs

Let the output signal y be a function of the vector of the input variables

u ¼ u1; u2; . . .; un½ �T. Thus y is a scalar-vector function. Let the vector uo ¼
u1o; u2o; . . .; uno½ �T denote the working point. In a small vicinity of the working

point the value of the output signal can be approximated by the TAYLOR expansion

y ¼ yo þDy ¼ f uoð Þþ
X

n

i¼1

@f uð Þ
@ ui

�

�

�

�

uo

ui � uioð Þþ � � �

¼ f uoð Þþ d f uð Þ
d u

�

�

�

�

uo

" #T

u� uoð Þþ � � �

Neglecting the second and higher order derivatives, the small change in the

function f uð Þ around the working point can be given by the following linear

relationship:

Dy ¼
X

n

i¼1

Ai Dui:

y = f (u)

ou uΔ

yΔ

oy

u

Fig. 1.34 A non-linear static

characteristic with single

input–single output
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The linearized block diagram is shown in Fig. 1.35. The Ai coefficients are the so

called static transfer coefficients of the linearized model, whose values depend on

the working point.

Example 1.4 Linearization of the moment equation of a DC motor

The moment m in a direct current (DC) motor is proportional to the product of

the flux u in the excitation coil and the armature current i (Fig. 1.36). The product

of these two changing variables results in a non-linear relationship.

m ¼ mo þDm ¼ kui ¼ kuoio þ
@ m

@ u

�

�

�

�

uo;io

Duþ @ m

@ i

�

�

�

�

uo;io

Di

Determining the derivatives and considering that the value of the moment in

the working point is mo ¼ kuoio, the change of the moment around the working

point can be calculated according to the following relationship:

Dm ¼ kioDuþ kuoDi. ■

i

ϕ oki

okϕ

ϕΔ

iΔ

mΔ

Fig. 1.36 The moment in the DC motor is proportional to the product of the excitation flux and

the armature current
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Fig. 1.35 Linearization of

multi-input single-output

static characteristics
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Example 1.5 Linearization of the tank equation

In a tank, the increase of the liquid level depends on the difference between the flow

rate of the input liquid and that of the output liquid (Fig. 1.37). Let us denote the

input flow by Qin, and the output flow by Qout, respectively. The cross section of the

tank is denoted by A, and the cross section of the outflow tube is denoted by a. The

liquid level is H. The change of the liquid level is described by the following

differential equation:

A
dH

dt
¼ Qin � Qout

The output liquid flow depends on the velocity v of the outflow, which is

proportional to the square root of the level.

Qout ¼ av ¼ a
ffiffiffiffiffiffiffiffiffi

2gH
p

¼ b
ffiffiffiffi

H
p

In steady-state, the level does not change, so the input and output flows are

equal: Qin ¼ Qout.

The steady-state value of the level will be H ¼ Q2
in=b

2. The static characteristic

of the tank, viz., the relationship between the liquid level and the input flow, is

non-linear (Fig. 1.38).

H

in,oQ

inQ

oH

Fig. 1.38 Static

characteristics of the tank

inQ

out
Qa

H

Fig. 1.37 Setting the liquid

level in a tank
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Let us denote the values of the working points by the index zero, and the

changes around the working point with lower case letters

H ¼ Ho þ h

Qin ¼ Qin;o þ qin

The outflow can be expressed with the first order TAYLOR approximation of the

square root expression as

Qout ¼ b
ffiffiffiffi

H
p

� b
ffiffiffiffiffiffi

Ho

p
þ b

1

2
ffiffiffiffiffiffi

Ho

p h

The differential equation expressed with the working point values and the small

changes around them is:

A
d ðHo þ hÞ

dt
¼ Qin;o þ qin � b

ffiffiffiffiffiffi

Ho

p
� b

2
ffiffiffiffiffiffi

Ho

p h

As the derivative of a constant Ho working point value is zero, and

Qin;o ¼ b
ffiffiffiffiffiffi

Ho

p
, for the small changes around the working point the following dif-

ferential equation can be given:

A
dh

dt
¼ qin �

b

2
ffiffiffiffiffiffi

Ho

p h

This is a linear differential equation whose parameters depend on the working

point. ■

1.3.5 Relative Units

The transfer factors (gains) of the elements in a control system have dimensions. In

the previous example of the liquid tank, the units of the working-point-dependent

transfer gain resulting from the static characteristics is cm/(l/min). In the case of a

motor, the output signal is the speed, the input signal is the voltage, thus the

dimension of the transfer gain is (rad/s)/V. If the actual values of both the input and

the output signals are related to their maximum values, the signals can be given

with dimensionless relative values, which are between 0 and 1. The signals to be

compared should be normalized identically. For example, the maximum values of

the reference signal, the controlled signal and the error signal have to be the same.

Quantities with the dimension of time can also be given with relative values, if

they are related to a maximum value chosen for the time variable.

As an example, let us consider the construction shown in Fig. 1.39. The DC

motor M moves the rod R through transmission gears. The input signal of the motor
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is its terminal voltage u tð Þ, and its output signal is the position y tð Þ of the rod

(plunger). Neglecting the transients the displacement of the rod is proportional to

the integral of the speed of the motor, and the speed is proportional to the terminal

voltage. If the application of a terminal voltage of 200 V produces displacement of

the rod by 5 cm within 10 s, then after time t the displacement is

y tð Þ ¼ 5 cm

10 s � 200 V

Z

t

0

u tð Þ dt ¼ 2:5 � 10�3 cm

V s

Z

t

0

u tð Þ dt

as the effect of the input voltage u tð Þ.
Let us take tmax ¼ 50 s as the unit of time, ymax ¼ 20 cm as the unit position and

umax ¼ 200 V as the unit of voltage. The relative units related to their basic units are:

trel ¼
t

tmax

¼ t

50 s
; yrel ¼

y

ymax

¼ y

20 cm
; urel ¼

u

umax

¼ u

200 V

With relative units the displacement of the rod can be given by the following

relationship:

yrel tð Þ ¼
5 cm
20 cm

10 s
50 s

� 200V
200V

Z

trel

0

urel tð Þ dtrel ¼ 1:25

Z

trel

0

urel tð Þ dtrel

1.4 Practical Aspects

The design and implementation of a control system is an iterative task. First the

requirements set for the control system have to be formulated. Then based on the

physical operation of the process, its mathematical model is established, whose

parameters are determined by measurements and identification procedures. The

controller is designed for the process model considering the given requirements.

Then the operation of the control system is checked by simulation. If necessary, the

controller is redesigned. During the implementation, the adjustment of the con-

troller is refined.

M

R

)(ty

n

u(t)

Fig. 1.39 Position control
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In a control problem three basic tasks may occur.

It is necessary to create the model P of the process: the signal transfer properties

of each element have to be determined based on the physical relationships

describing the behavior of the element, or from its input and output measurement

data by identification (Figs. 1.40 and 1.41).

If the input signal and the element P are known, the output signal can be

determined and the behavior of the element can be analyzed (Fig. 1.42).

If the element P is given and the course of its required output signal is pre-

scribed, then the task is to determine the input signal which ensures this behavior.

The input of the plant is created by a control circuit. This is the synthesis or

controller design task (Fig. 1.42).

Control engineering is an interdisciplinary area of science. The operation of the

process is to be understood, to do this there is a need of knowledge of physical,

chemical, biological, etc. phenomena. Mathematical knowledge is required for

system modeling as well as the analysis and synthesis of control systems. To

investigate the operation of control systems, knowledge is needed about signals,

systems, and the behavior of systems with negative feedback. During the design,

rational considerations and basic restrictions also have to be taken into account. The

design has to cover economic, safety, environmental protection, etc. aspects as well.

To fulfill a more complex control task, the coordinated work of different profes-

sionals is needed.

During the realization, the state of the system has to be observed—the consid-

ered output signal has to be measured by the appropriate measuring equipment, it is

required to manipulate the process input—an actuator has to be selected. The

measurement noise of the sensors, the signal ranges of the actuators, the limits of

the produced actuating effects, all have to be taken into account. Several times the

measured data have to be transferred across longer distances, thus data transfer has

to be ensured. There are standards, so called protocols for data transfer which have

P
?)(tu ref)( ytyFig. 1.42 Synthesis

?P
)(tu )(tyFig. 1.40 Identification

P
)(tu ?)(tyFig. 1.41 Analysis
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to be considered. The control signal has to be determined with an appropriate

calculation algorithm, and has to be forwarded to the input of the process. In the

design of the control algorithm the disturbances acting on the process, the uncer-

tainties in the process parameters and also the restrictions due to practical real-

ization have to be taken into account. During the control, real data are elaborated

and real time signal transfer is realized. In signal transfer, non-deterministic signal

delays do appear, which may distort the operation. The connection and exchange of

information between the individual elements have to be addressed using appropriate

interface elements.

Besides the continuous-time control systems computer control systems have

gained more and more applications. The process and the process controller com-

puter are connected via A/D (analog to digital) and D/A (digital to analog) con-

verters. The computer executes the essential control functions in real time,

repeatedly at the sampling instances. In industrial process control systems, dis-

tributed control systems are implemented, where spatially distributed control sys-

tems operate in an aligned fashion, communicating with each other.
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Chapter 2

Description of Continuous Linear

Systems in the Time, Operator

and Frequency Domain

The aim of controlling a plant is to maintain the required value of the controlled

(output) signal prescribed by the reference signal in spite of disturbances. The

control system has to meet the quality specifications set for the control system. The

quality specifications prescribe the static accuracy (the tolerable static error) of the

control system and also the properties of its dynamic response (the settling time, the

allowed value of the overshoot, etc.). The comparison of the factual and the pre-

scribed behavior can be done based on the analysis of the static and dynamic

response of the control system.

Various processes can be described mathematically by similar differential

equations (or by a set of differential equations), which give the relationships

between the individual variables and their changes. Mechanical motions, electrical

and magnetic phenomena, heat processes, gas- and liquid flow, etc., can all be

described by differential equations.

In a closed-loop control system different units executing specific control oper-

ations are connected to ensure the appropriate functioning of the process. The

mathematical model of the closed-loop control system is a block diagram, which

shows how the units are connected to each other and also represents the signal

transfer properties of the individual units. Based on this model the operation of the

closed-loop control system can also be given by a differential equation. In the

sequel the behavior of systems described by lumped parameter, continuous linear

differential equations will be investigated.

As the solution of the differential equation is sometimes cumbersome, several

methods have been developed to simplify the calculations. Transforming the dif-

ferential equation into the domain of the LAPLACE transform, an algebraic equation

has to be solved instead of a differential equation. Examination of the process in the

frequency domain provides fast approximate methods to evaluate the properties of

the time response.

In the sequel, methods for analyzing lumped parameter, linear time invariant

continuous-time systems in the time domain, the LAPLACE operator and the
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frequency domain will be summarized. (These methods are known from the subject

“Signals and Systems”, here those relationships are considered which are important

from control aspects.)

2.1 Description of Continuous Systems

in the Time Domain

A continuous-time (CT) linear single-input single-output (SISO) time invariant

system can be described in the time domain by a differential equation of order n or

by a system constructed by a set of n first-order differential equations (the so-called

state space equation), or it can be characterized by typical time responses given for

typical input excitations.

2.1.1 Solution of an n-th Order Linear Differential

Equations in the Time Domain

A linear CT time-invariant system can be described by the following n-th order

differential equation:

any
nð Þ tð Þþ an�1y

n�1ð Þ tð Þþ � � � þ a1 _y tð Þþ aoy tð Þ
¼ bmu

mð Þ tð Þþ bm�1u
m�1ð Þ tð Þþ � � � þ b1 _u tð Þþ bou tð Þ

ð2:1aÞ

where u denotes the input signal, y is the output signal, _y is the first derivative of the

output signal, _u is the first derivative of the input signal, y nð Þ denotes the n-th

derivative of the output signal, while u mð Þ denotes the m-th derivative of the input

signal.

If the output responds with a delay (the so-called dead-time) to changes in the

input signal, then the argument on the right side of the differential equation should

be t � Td, where Td denotes the dead-time. Then the differential equation is given in

the following form:

any
nð Þ tð Þþ an�1y

n�1ð Þ tð Þþ � � � þ a1 _y tð Þþ aoy tð Þ
¼ bmu

mð Þ t � Tdð Þþ bm�1u
m�1ð Þ t � Tdð Þþ � � � þ b1 _u t � Tdð Þþ bou t � Tdð Þ : ð2:1bÞ

Dead-time appears, e.g., in transport processes, where the change of the input

signal can be measured with a delay in a farer measurement point. The necessary

condition of physical realizability is
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m� n ð2:2Þ

as only in the case of the fulfillment of this condition will the output signal remain

finite for finite changes of the input signal.

From the theoretically infinite number of solutions of the differential equation

that solution has to be chosen which satisfies the boundary conditions of the

function y. The solution has to fulfill n conditions prescribed for y tð Þ and its

derivatives. The boundary conditions generally are initial conditions, i.e., they are

given as y 0ð Þ; _y 0ð Þ; . . .; y n�1ð Þ 0ð Þ.
The right side of the equation is the excitation g tð Þ

g tð Þ ¼ bmu
mð Þ tð Þþ bm�1u

m�1ð Þ tð Þþ � � � þ bou tð Þ ð2:3Þ

Equations (2.1a) and (2.1b) is an inhomogeneous differential equation, which if

g tð Þ ¼ 0 becomes a homogeneous equation.

In the following, different forms and solutions of the differential Eq. (2.1a) will

be discussed, but the considerations can also be applied to Eq. (2.1b). Often the

differential equation is written in the following, so called time constant form:

Tn
n y

nð Þ tð Þþ Tn�1
n�1y

n�1ð Þ tð Þþ � � � þ T1 _y tð Þþ y tð Þ

¼ A smmu
mð Þ tð Þþ sm�1

m�1u
m�1ð Þ tð Þþ � � � þ s1 _u tð Þþ u tð Þ

h i ð2:4Þ

where A ¼ bo=ao is the gain of the system, which gives the relation between the

output and input signals in steady state. The gain is not a pure number, it has a

physical dimension. Ti ¼
ffiffiffiffiffiffiffiffiffiffiffi

ai=ao
i
p

and sj ¼
ffiffiffiffiffiffiffiffiffiffiffi

bj=bo
j
p

are time constants with the

dimension of seconds.

The advantage of the time constant form is that even without solving the dif-

ferential equation, on the basis of the parameters it is possible to approximately

outline the course of the time responses for typical input signals.

The above definition of the system gain is valid only if ao and bo are different

from zero. If e.g., ao ¼ 0, the gain is defined as A ¼ bo=a1 and in this case the

interpretation of the time constants is also changed.

The behavior of the system in the time domain can be obtained by solving the

differential equation. The solution consists of two components, the general solution

yh tð Þ of the homogeneous equation and one particular solution yi tð Þ of the inho-

mogeneous equation.

y tð Þ ¼ yh tð Þþ yi tð Þ ð2:5Þ

The characteristic equation is obtained by substituting the derivatives of y

multiplying y by the appropriate powers of s in the homogeneous equation. Thus

the characteristic equation turns out to be
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ans
n þ an�1s

n�1 þ � � � þ a1sþ ao ¼ 0: ð2:6Þ

The general solution of the homogeneous equation has the form

yh tð Þ ¼ k1e
s1t þ k2e

s2t þ � � � þ kne
snt ð2:7Þ

where s1; s2; . . .; sn are the roots of the characteristic equation of the system (the

roots of polynomials with real coefficients can only be real or complex conjugate

pairs). The constants ki have to be determined from the initial conditions.

If in the solution of the characteristic equation multiple roots show up, the

corresponding exponential terms are multiplied by the powers of t. For example if

there is a triple root, then the general solution of the homogeneous equation is given

in the following form:

yh tð Þ ¼ k1 þ k2tþ k3t
2

� �
es1;2;3t þ k4e

s4t þ � � � þ kne
snt ð2:8Þ

Let f uð Þ denote a particular solution of the inhomogeneous equation which

depends on the input signal u. Supposing that f uð Þ has been found by some

procedure—e.g., by the method of variation of parameters or by simple

considerations—the general solution of the differential Eqs. (2.1a) and (2.1b)

becomes

y tð Þ ¼ yh tð Þþ f uð Þ ¼ k1e
s1t þ � � � þ kne

snt þ f uð Þ: ð2:9Þ

The constants ki have to be determined by a knowledge of the initial conditions.

To solve the differential equation in the time domain often requires following a

complicated and cumbersome procedure. The characteristic equation has an analytic

solution only for n� 4. To find one particular solution of the inhomogeneous

equation is a demanding computational task in the case of sophisticated input

signals.

From the form of the differential equation some statements can be made con-

cerning the initial and final values of the step response. Let us analyze the form

(2.1a) of the differential equation. Let the input signal be a step given by

g tð Þ ¼ bo 1 tð Þ. At time point t ¼ 0 only the highest derivative could jump. (I.e., the

two sides of the differential equation have to be in balance at each time point. If

there were a jump also in a lower order derivative of the output signal, this would

result in a DIRAC impulse change in the higher order derivatives.)

any
nð Þ t ¼ 0ð Þ ¼ bo;

So

y nð Þ t ¼ 0ð Þ ¼ bo=an:
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(Considering e.g., mechanical motion, when the force acting on the mass

changes, first only the acceleration changes and this change will produce further

changes in the velocity and the position.)

It has to be mentioned that if the excitation signal also contains the first

derivative of the input signal, then at the initial point the n-th and also the (n� 1)-th

derivative of the output signal will jump. The general rule is that for a step-like

excitation at time point t = 0 the (n� m)-th derivative of the output signal will

jump. If the transients are decaying, all derivatives of the output signal will be zero,

and the output signal will have settled at the value determined by the static gain:

y t ! 1ð Þ ¼ bo=ao.
The physical content behind the formal mathematical solution of the differential

equation can be interpreted as follows.

The differential equation describes the motion of a system. The reason for the

motion on the one hand is the input signal u tð Þ, and on the other hand, a component

of the motion appears as a consequence of the past inputs, as before the appearance

of the input signal at the time instant t ¼ 0 the system was not in a steady state. The

past history of the system is characterized unambiguously by its initial conditions.

As a response to the excitation signal g tð Þ a new steady state will be reached, which

is determined by the solution of the inhomogeneous equation, which is independent

of the initial conditions. This new steady state for time instant t ¼ 0 would pre-

scribe initial conditions which depend on the excitation. If the values of the actual

initial conditions do not coincide with the initial values corresponding to the

excitation, this indicates that the state of the system is different from the steady state

prescribed by the excitation. This deviation can not disappear abruptly, as there are

energy storing elements in the system which can only change their state gradually

by energy conveyance or distraction. Changes in the state need a finite amount of

time. The balancing movement is the transient motion which is described by the

solution of the homogeneous differential equation.

The solution of the differential equation can be decomposed into a

quasi-stationary and a transient component. The quasi-stationary component is the

output signal of the system in steady state as a response to the input signal (see

Appendix A.2). The transient component depends on the dynamics of the system,

as determined by the roots of the characteristic equation.

As an example, let us analyze an electrical circuit consisting of a resistor and an

inductor. A sinusoidal voltage gets switched on, as the input (Fig. 2.1a). The

quasi-stationary steady state is represented by a sinusoidal alternating current I tð Þ
which is delayed, compared to the input alternating voltage by a given angle,

determined by the parameters of the circuit. If the switching on of the voltage

happens at time instant t1 when the current is zero, then the state of the system

coincides with the steady state corresponding to the input signal and in this case no

transient motion occurs (Fig. 2.1b). But if the switching occurs at a time instant t2
when the current has a non-zero value I t2ð Þ 6¼ 0, then the system is not in steady

state. The deviation between the actual current i t2ð Þ ¼ 0 and the steady state current

I t2ð Þ is compensated by the transient component Di tð Þ, which is superposed onto
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I tð Þ. This transient component ensures the resulting zero value of the current at the

switching time instant, and then it will decease exponentially (Fig. 2.1c).

The course of the motion of the transient shows the fundamental properties of

the system. If the transient components are decreasing in time, then a new steady

state corresponding to the excitation will be reached, i.e., the system is stable. But

an increasing transient motion means unstable performance. In this case a new

steady state will not be reached. Undamped oscillating periodic transient motion

means a stability limit, when the system is resonant to sinusoidal input signals

whose frequency is equal to the frequency of the transient oscillations. The stability

of the system can be determined based on the roots of the characteristic equation.

To analyze the transient response it is enough to consider the solution of the

homogeneous equation which provides the free motion of the system. The free

u(t)
i(t)

(a)

u(t)

tt1

i(t) = I(t)

(b)

u(t)

tt2

I(t)

i(t)

∆i(t)

(c)

Fig. 2.1 RL circuit and its transients
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response stems from the fact that the system is not in steady state at the time instant

t ¼ 0 (e.g., because the system previously had been moved away from its steady

state). In this case a stable system tends to reach its steady state again through the

transient motion. The transient phenomena of a system excited by an input signal

are similar as a consequence of the superposition, but now the steady state value is

replaced by the motion generated by the excitation input signal.

2.1.2 State Space Representation of Linear Differential

Equations

The state of a system described by a differential equation at time instant t ¼ 0 is

unambiguously determined by the initial conditions. Besides the input and output

signals inner signals can also be considered in the system, characterizing the state of

the system at each time instant. These variables—the so called state variables—can

be, e.g., the output signal and its derivatives. Their main property is that they can

not respond abruptly to an abrupt change of the input signal: time is needed to

gradually change their values. From the actual values of the state variables and the

input signal, the value of the output signal at the next time instant can be

determined.

Introducing the state variables the differential equation of order n can be

transformed into a system of n first-order differential equations.

As an example let us consider the differential Eqs. (2.1a) and (2.1b) with

excitation g tð Þ ¼ bo u tð Þ. Expressing y nð Þ, the highest derivative, the differential

equation can be represented by the block diagram shown in Fig. 2.2. On the basis of

this block diagram, with the knowledge of the input signal and the initial

Fig. 2.2 State space form of the differential equation
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conditions, the differential equation can be solved iteratively. In the block diagram

the outputs of the integrators behave like state variables. Let us denote the state

variables by x1; x2; . . .; xn. With these state variables the differential equation can be

transformed to the following form.

_x1 ¼ x2
_x2 ¼ x3

..

.

_xn ¼ � ao
an
x1 � a1

an
x2 � � � � � an�1

an
xn þ bo

an
u

y ¼ x1

ð2:10Þ

In general, a system consisting of n first-order differential equations can be

written in the following vector/matrix form.

_x tð Þ ¼ Ax tð Þþ b u tð Þ
y tð Þ ¼ cTx tð Þþ d u tð Þ

ð2:11Þ

The elements of x are the state variables, A; b; cT are the matrices and vectors

describing the system, and d is a scalar parameter. The output signal depends on the

input signal generally through the state variables, but through the scalar gain by d a

direct connection also exists between the input and the output signals. The state

space representation of a dynamical system is shown in Fig. 2.3.

The state space form of a dynamical system also shows properties of the system

which otherwise remain hidden when solving the differential equation describing

the input/output relationship. Solving a set of first-order differential equations is

generally simpler than solving the differential equation of order n.

Chapter 3 discusses the state space description of a control systems, the solution

of the state equation and related topics.

Fig. 2.3 State space representation of a dynamical system
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2.1.3 Typical Input Excitations, Unit Impulse

and Step Responses

The solution of the differential equation of the closed-loop control system gives the

time evolution of the output signal for an arbitrary input signal. The calculation of

one particular solution of the inhomogeneous equation is easier in the case of a

simple input signal.

It is expedient to excite the system with a typical input signal which can generate

a significant transient motion. Then the time evolution of the output signal will be

characteristic for the signal transfer properties of the system, and consequences for

the structure and the parameters of the system can be drawn from its shape.

When examining the behavior of a closed loop control system, it is expedient to

choose an input signal resulting in a response which provides information about the

reference signal tracking properties of the control system. If the system has to track

and maintain a constant value, then a step-like input signal is appropriate. If it has to

follow a changing reference signal, then a linearly changing ramp signal is to be

chosen as input signal.

The most important typical input signals are the following:

– unit impulse function (DIRAC delta): d tð Þ
– unit step function: 1 tð Þ,
– unit ramp function: t 1 tð Þ,
– unit parabolic function: t2

2
1 tð Þ.

The responses obtained for the typical input signals are shown in Fig. 2.4.
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Fig. 2.4 Typical input signals and responses
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The DIRAC delta is an impulse of unity area and infinite amplitude acting at the

zero time instant. It is a mathematical abstraction, which can be derived as the limit

of a rectangular impulse with width Dt and height 1=Dt, when Dt ! 0. The

weighting function denoted by w tð Þ is the response of the system to a DIRAC delta

input. The weighting function is characteristic for the system. From its evolution

over time, one can draw conclusions about the structure and the parameters of the

system, and even its stability. The weighting function characterizes the transient

properties of the system. It behaves like the free response, as the exciting input

signal acts for an infinitesimal time at time instant t ¼ 0, but meanwhile, because of

its finite energy content, it moves the output signal and its derivatives away from

their steady position.

The unit step signal jumps at time instant t ¼ 0 from 0 to 1. Its value is zero for

t\0, and is one for t� 0. The output of the system for a unit step input is called the

unit step response and is denoted by v tð Þ.
The value of the unit ramp function for t\0 is zero, and for t� 0 it is t. The

response of the system to the ramp signal is called the unit ramp response.

The value of the unit parabolic function for t\0 is zero, and for t� 0 it is t2=2.
The system response to this input is called the unit parabolic response.

The step, ramp and parabolic responses also characterize the system. The rela-

tionship between the typical input signals is the following:

d tð Þ ¼ d

dt
1 tð Þ; 1 tð Þ ¼ d

dt
t1 tð Þ; 1 tð Þ ¼ d

dt2
t2

2
1 tð Þ: ð2:12Þ

(It has to be mentioned here that the unit step can not be differentiated according

to the conventional definition of differentiation. In fact, the relationship between

signals d tð Þ and 1 tð Þ can be interpreted using the theory of distributions.)

At the output of a linear system the relationship between the typical responses is

the same as the relationship between the corresponding input signals. (This rela-

tionship can be derived by applying the linearity property.)

w tð Þ ¼ dv tð Þ
dt

; v tð Þ ¼ dvt tð Þ
dt

; vt tð Þ ¼
dvt2 tð Þ
dt

: ð2:13Þ

Here vt tð Þ is the unit ramp response and vt2 tð Þ is the unit parabolic response (thus
the weighting function is the derivative of the step response, the step response is the

derivative of the ramp response, etc.).

2.1.4 System Response to an Arbitrary Input Signal

If the weighting function or the unit step response of the system is known, then with

zero initial conditions the output can also be calculated for an arbitrary input signal.

The response of the system will provide one particular solution of the inhomoge-

neous equation.
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Let us determine the system response for an arbitrary input signal with the

knowledge of the weighting function. The input signal u tð Þ can be approximated by

a series of shifted rectangular pulses (Fig. 2.5). Let the width of the pulses be Ds.

The number of the pulses up to a given time point t is N. The area of a pulse is

approximately u sð ÞDs. The response of the system to a rectangular input pulse

shifted by s relative to time instant 0 is at time instant t approximately

w t � sð Þu sð ÞDs. At a given time instant t the value of the output signal is influenced

by all the pulses appearing as components of the input signal before the given time

instant. In a linear system, the effect of the individual pulses on the output is

superposed, thus the output signal can be approximately determined as

y tð Þ � ~y tð Þ ¼
XN

i¼1

w t � sið Þ u sið ÞDs:

Taking the limit Ds ! 0 the output signal is expressed as

~y tð Þ ¼
XN

i¼1

w t � sið Þ u sið ÞDs ! y tð Þ

¼
Z t

0

w t � sð Þ u sð Þ ds; if Ds ! 0:

ð2:14Þ

or substituting t � s ¼ t

y tð Þ � ~y tð Þ ¼
XN

i¼1

w tið Þu t � tið ÞDt ð2:15Þ

u( )
u

∆

w(t- )u( )∆

t

Fig. 2.5 Conceptual

representation of the

convolution integral
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or taking the limit Dt ! 0

~y tð Þ ¼
XN

i¼1

w tið Þ u t � tið ÞDt ! y tð Þ

¼
Z t

0

w tð Þ u t � tð Þ dt; if Ds ! 0;

ð2:16Þ

Equations (2.14) and (2.16) give the convolution integral or the FALTUNG the-

orem. Applying the convolution integral instead of the solution of the differential

equation a simpler expression is evaluated, but for a more complex input signal the

calculation of this integral is also cumbersome.

Equation (2.15) provides a possibility for numerical evaluation in case the

weighting function is decreasing. The values of the weighting function have to be

given at sampling points ti ¼ 0;Dt; 2Dt; . . .; N � 1ð ÞDt. It is supposed that for the

further course of the weighting function w iDtð Þ � 0, if i�N. Besides the actual

value of the input signal, (N � 1) previous values have to be stored.

The output signal can be approximately calculated as

~y tð Þ � w 0ð Þu tð Þþw Dtð Þu t � Dtð Þþw 2Dtð Þu t � 2Dtð Þ½
þ � � � þw N � 1ð ÞDtð Þu t � N � 1ð ÞDtð Þ�Dt

(This form is also called the HANKEL form, or the weighting function model.)

The response of the system to an arbitrary input signal can also be calculated

with the knowledge of the step response. The input signal can be approximated by a

sum of shifted steps (Fig. 2.6). The output signal is obtained by superposing the

responses to these shifted step inputs of given amplitudes.

The output signal can also be approximated by the following relationship:

~y tð Þ ¼ u 0ð Þv tð Þþ
XN

i¼1

v t � sið ÞDu sið Þ ð2:17Þ

t

u

u(0)



u(1)

u(2)

u(3)

Fig. 2.6 The input signal can

be built from superposed

shifted step signals
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or at the individual time points:

~y 0ð Þ ¼ u 0ð Þv 0ð Þ
~y Dsð Þ ¼ u 0ð Þv 1ð ÞþDu 1ð Þv 0ð Þ
~y 2Dsð Þ ¼ u 0ð Þv 2ð ÞþDu 1ð Þv 1ð ÞþDu 2ð Þv 0ð Þ
..
.

If Ds is small, the output signal can be calculated with appropriate accuracy on

the basis of the above relationship. If Ds ! 0 the output signal turns out to be

y tð Þ ¼ u 0ð Þ v tð Þþ
Z t

0

v t � sið Þ du sð Þ
ds

ds ð2:18Þ

This expression is known as the DUHAMEL theorem.

2.1.5 Solution of a First-Order Differential Equation

A first-order differential equation is a special case of the n-th order differential

equation given by Eq. (2.1a). Now n ¼ 1, and let m ¼ 0. Let us determine the

weighting function and the step response of the system described by a first-order

differential equation and derive the expression of the output signal for an arbitrary

input excitation using the convolution integral. The differential equation takes the

following form:

a1 _y tð Þþ aoy tð Þ ¼ bou tð Þ ð2:19Þ

Assume zero initial condition: y t ¼ 0ð Þ ¼ y 0ð Þ. According to Eq. (2.4) the dif-

ferential Eq. (2.19) gets normalized in the following time constant form:

T _yðtÞþ yðtÞ ¼ AuðtÞ ð2:20Þ

where T ¼ a1=ao is the time constant and A ¼ bo=ao is the gain.

The behavior of the electrical circuit consisting of a resistor and an inductor

shown in Fig. 2.1 can be described by a first-order differential equation. The

KIRCHHOFF voltage law for this circuit is as follows:

L
diðtÞ
dt

þRiðtÞ ¼ uðtÞ:

The equation can be written in the form given by Eq. (2.20).
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Let us solve the differential equation applying a unit step input signal

u tð Þ ¼ 1 tð Þ. The characteristic equation is Tsþ 1 ¼ 0. Its root is s1 ¼ �1=T . The

general solution of the homogenous equation is yh tð Þ ¼ k1e
�t=T . For unit step input

in steady state the derivative of the output signal is zero, and

yih tð Þ ¼ y t ! 1ð Þ ¼ A.

The complete solution is y tð Þ ¼ yh tð Þþ yih tð Þ ¼ k1e
�t=T þA. The value of the

parameter k1 can be determined from the knowledge of the initial condition:

y 0ð Þ ¼ 0 ¼ k1 þA. Thus, the complete solution, the analytical expression of the

unit step response is

y tð Þ ¼ v tð Þ ¼ A 1� e�t=T
� �

; t� 0 ð2:21Þ

which reaches its steady state value exponentially approximately within a time of

3T with an accuracy of 5%.

The derivative of the unit step response results in the weighting function

wðtÞ ¼ dvðtÞ
dt

¼ A

T
e�t=T : ð2:22Þ

The unit step response and the weighting function are shown in Fig. 2.7, where

the time constant T can be indicated in the figure based on the relationship

_v 0ð Þ ¼ w 0ð Þ ¼ A=T .
Knowing the weighting function the output signal can be calculated for an

arbitrary input signal using the convolution integral. The complete solution

v(t)

w(t)

t

t

T

A

T

Fig. 2.7 Unit step response

and weighting function of a

system described by a

first-order differential

equation
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considering also the effect of a non-zero initial condition is calculated according to

the following relationship:

y tð Þ ¼ A

T
e�

1
T
ty 0ð Þþ

Z t

0

e�
1
T
ðt�sÞuðsÞds

2

4

3

5: ð2:23Þ

2.2 Transformation from the Time Domain

to the Frequency and Operator Domains

An advantageous way to analyze lumped parameter differential equations is to use

function transformations which transform the original functions of time to related

functions. This transforms the original differential equation to an algebraic equa-

tion. Such transformations include the FOURIER and the LAPLACE transformations.

2.2.1 FOURIER series, FOURIER integral, FOURIER

transformation

A periodic signal y tð Þ can be expressed as the sum of harmonic (sinusoidal)

components. This sum gives the FOURIER series, whose individual elements belong

to discrete frequencies. Suppose the time period of the signal is T and its basic

frequency xo ¼ 2p=T . The complex form of the FOURIER series is

y tð Þ ¼
X1

n¼�1
cne

jnxot ð2:24Þ

t

1

1−

2

T
−

2

T

Fig. 2.8 Periodic signal
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Fig. 2.10 Approximation of a periodic signal with harmonic components
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where n is an integer and

cn ¼
1

T

ZT=2

�T=2

yðtÞe�jnxotdt ð2:25Þ

cn is a complex number and further on cn ¼ �c�n, where �c denotes complex

conjugate. The cn are the amplitudes assigned to the discrete frequencies x ¼ nxo

and compose the amplitude spectrum of the periodic signal y tð Þ.
The FOURIER series can be given in real form as well, where the frequency

components belonging to the same positive and negative frequency are closed up to

sine and cosine functions.

Figure 2.8 shows a periodic function. Figure 2.9 gives the amplitude-frequency

spectrum of the signal. Figure 2.10 illustrates the approximation of the function

with the basic harmonic and with three FOURIER components, respectively. The

more FOURIER components are considered, the better is the approximation of the

periodic signal.

(It should be mentioned that the sine and cosine functions compose an orthog-

onal system. The FOURIER series is an orthogonal expansion of a periodic signal.)

In practice the input of a system generally is not periodic, but aperiodic (e.g., the

unit step) in nature. An absolute integrable aperiodic function, where

Z1

�1

yðtÞj jdt ¼ finite; ð2:26Þ

can be described in the form of a FOURIER integral, which is obtained by taking the

limit T ! 1 in the FOURIER series. That is, an aperiodic function can be considered

as a periodic function whose time period tends to infinity. The derivation of an

aperiodic function from a periodic function is illustrated in Fig. 2.11. By increasing

the time period, the lines in the spectrum of the amplitude-frequency function are

getting closer to each other, and in the limit the spectrum becomes continuous,

every frequency appears in the signal with a certain weight. Instead of (2.24), the

FOURIER integral is obtained by taking the limit T ! 1:

y tð Þ ¼ 1

2p

Z1

�1

Y jxð Þejxtdt ð2:27Þ

where Y jxð Þ is the complex spectrum of the signal, the so called FOURIER transform

of the signal y tð Þ, which is given by the following relationship:

Y jxð Þ ¼
Z1

�1

y tð Þe�jxtdt ¼ F y tð Þf g ð2:28Þ
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Fig. 2.11 Increasing the time period, the periodic function approximates an aperiodic function

and the frequency spectrum becomes continuous
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This is the basic expression of the FOURIER transform. The signal can be

reconstructed from its FOURIER transform by the inverse FOURIER transformation,

given by formula (2.27).

If y tð Þ is different from zero only in the time domain t� to, then it is a one-sided

time function and its FOURIER transform is also one-sided. Without restriction of

generality, it can be supposed that to ¼ 0. Then y tð Þ is called a positive time

function.

The FOURIER transform exists only if the signal is absolutely integrable, i.e.,

relationship (2.26) holds. This means that the square integral of the signal also

exists, the signal has a finite energy content. Namely the energy can be expressed in

the frequency domain by the PARSEVAL or the RAYLEIGH theorem as

Z1

�1

y2 tð Þdt ¼ 1

2p

Z1

�1

Y jxð ÞYð�jxÞdx: ð2:29Þ

Applying the FOURIER transformation to a differential equation an algebraic

equation is obtained. Let us calculate the first time derivative of Eq. (2.27).

_y tð Þ ¼ 1

2p

Z1

�1

jxY jxð Þejxtdt:

It can be seen that the FOURIER transform of _y tð Þ is jxY jxð Þ; so in the frequency

domain, differentiation by t is simplified to multiplication by jx.

It was seen that both the periodic and the aperiodic signals can be given by

superposition of sinusoidal signals of different frequencies. Periodic signals can be

approximated by the sum of sinusoidal signals of given discrete frequencies, where

the higher frequency components appear with lower amplitude. Aperiodic signals

contain all frequency components with a certain weighting. If a linear system is

excited by a signal which is approximated by the sum of its sinusoidal components

of different frequencies, using the superposition theorem the output signal can be

approximated by the sum of the system responses for the individual components of

the input signal. The approximation of the output signal is better if more frequency

components are taken into account. Figure 2.12 shows the output of a system

described by a second order differential equation in the case of a periodic rectan-

gular input signal, and also illustrates the approximation of the input and the output

signal with four and ten FOURIER components, respectively. It can be seen that both

the input and the output signals are approximated well by ten components.
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Based on the above considerations, if the responses of a linear system are known

for sinusoidal input signals, then theoretically its time response for an arbitrary

input signal can also be given approximately.

u

y

t

t

(a)

u

y

t

t

(b)

Fig. 2.12 Approximation of the periodic input and output signals of a second order system
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2.2.2 The LAPLACE Transformation

Condition (2.26) of absolute integrability imposes a severe limit to the application

of FOURIER transforms. This condition is not fulfilled for a number of practically

applied signals (e.g., the unit step).

For practical applicability, the FOURIER transformation has to be modified to

make it usable for non-integrable signals as well.

The scope of validity of the one-sided FOURIER transformation can be signifi-

cantly extended if the function y tð Þ to be transformed is first multiplied by the

function e�rt, thus ensuring the condition of absolute integrability of the resulting

function for a wide range of functions. Then the FOURIER transform of the resulting

function is determined. Under the condition r[ 0, all the power functions, and

under the condition r[ a also the exponential function eat with positive values of

a, become absolutely integrable between t ¼ 0 and 1. The FOURIER transform of

the function obtained by multiplying the original function with e�rt is called the

LAPLACE transform of the original function.

The LAPLACE transform for one-sided functions starting at t ¼ 0:

L yðtÞf g ¼
Z1

�1

y tð Þe�rte�jxtdt ¼
Z1

0

y tð Þe�stdt ¼ YðsÞ;

where the transformation variable s ¼ rþ jx is a complex number with positive

real part. Thus the LAPLACE transform of a function y tð Þ is

YðsÞ ¼ L yðtÞf g ¼
Z1

0

y tð Þe�stdt ð2:30Þ

and the inverse LAPLACE transform is

yðtÞ ¼ L�1 YðsÞf g ¼ 1

2pj

Zrþ j1

r�j1

YðsÞestds: ð2:31Þ

The path of integration is to be chosen in such a way that Y sð Þ be in its range of

regularity, i.e., the singular places are to be the left of the path. In practical cases

this general inversion formula can be replaced by methods which can be handled

more easily, but with a narrower scope of validity (e.g., the expansion theorem).

(Taking the limit s ! jx the LAPLACE transform provides the FOURIER transform if it

exists.) Table 2.1 gives the LAPLACE transforms of some important functions. All the

functions are considered one-sided.
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Some important operational rules of the LAPLACE transformation follow.

Linearity

The LAPLACE transformation is a linear operation. If the individual time functions

are multiplied by constants and summed, then the LAPLACE transform of the

resulting function can be calculated in a similar way.

L c1y1 tð Þþ c2y2 tð Þf g ¼ c1Y1 sð Þþ c2Y2 sð Þ ð2:32Þ

Differentiation

L _y tð Þf g ¼ sY sð Þ � y �0ð Þ
L €y tð Þf g ¼ s2Y sð Þ � sy �0ð Þ � _y �0ð Þ

ð2:33Þ

If the function jumps at time instant t ¼ 0, in the LAPLACE transform of the

derivative the initial value to be considered is the value of the function just before

the jump (t ¼ �0). If the initial values of the function and all of its derivatives are

zeros, then differentiation with respect to time is reduced to multiplication by the

appropriate power of s in the operator domain.

The differentiation of a LAPLACE transform with respect to s leads to multipli-

cation in the time domain as follows:

L tyðtÞf g ¼ � d

ds
YðsÞ: ð2:34Þ

Table 2.1 LAPLACE transforms of some functions

y tð Þ Y sð Þ
d tð Þ 1

1 tð Þ 1
s

t 1
s2

tn n!
snþ 1

e�at 1
sþ a

1� e�at a
s sþ að Þ

te�at 1

sþ að Þ2

1
ðn�1Þ! t

n�1e�at 1
sþ að Þn

sin xtð Þ x
s2 þx2

cos xtð Þ s
s2 þx2
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Integration

L
Z t

0

yðsÞds

8

<

:

9

=

;
¼ 1

s
YðsÞ ð2:35Þ

Dead-time, shift in the s domain

L y t � sð Þf g ¼ e�ssY sð Þ; y tð Þ ¼ 0 if t\s ð2:36Þ

L e�aty tð Þf g ¼ Y sþ að Þ: ð2:37Þ

Shifting the initial point of y to the right by s in the operator domain means

multiplication of the transformed function by e�ss.

Initial and final value theorem

y t ¼ þ 0ð Þ ¼ lim
s!1

sY sð Þ

y t ! 1ð Þ ¼ lim
s!0

sY sð Þ
ð2:38Þ

The relationship related to the steady state (t ! 1) can only be applied if the

poles of Y sð Þ are on the left side of the complex plane, i.e., the transients are

decaying, the steady state does exist (the relationship gives a false result, e.g., for a

sinusoidal signal or for an exponentially increasing signal).

Convolution

L
Z t

0

y1ðsÞy2ðt � sÞds

8

<

:

9

=

;
¼ Y1ðsÞY2ðsÞ: ð2:39Þ

In the operator domain of the LAPLACE transformation, the convolution integral

can be calculated by simply multiplying the LAPLACE transforms of the individual

functions.

Inverse LAPLACE transform of a rational fraction

Calculation of the inverse LAPLACE transform by (2.31) is rarely applied. In general,

analyzing linear systems with constant parameters, the LAPLACE transform of a

signal is a rational fraction (i.e., a quotient of polynomials with real coefficients).

Y sð Þ ¼ G sð Þ
H sð Þ ¼

bms
m þ bm�1s

m�1 þ � � � þ bo
sn þ an�1sn�1 þ � � � þ ao

; m� n: ð2:40Þ

2.2 Transformation from the Time Domain to the Frequency and Operator Domains 59



A rational function can be separated into partial fractions, and the inverse

LAPLACE transform of the partial fraction can be calculated. This is the so called

expansion theorem, which is simple if the denominator has single poles.

Y sð Þ ¼
Xn

i¼1

ri

s� si
where ri ¼

G sið Þ
H0 sið Þ ; ð2:41Þ

H0 is the derivative of H with respect to s. The time function is

y tð Þ ¼
Xn

i¼1

rie
sit: ð2:42Þ

For a multiple pole, the number of terms in the partial fractional expansion of the

rational fraction that must be employed is equal to the multiplicity of the pole. For

example, if the i-th pole is a double pole, then the partial fraction terms are

ri1

s� si
þ ri2

s� sið Þ2
; ð2:43Þ

whose inverse transform according to Table 2.1 is ðri1 þ tri2Þesit.

2.2.3 The Transfer Function

Applying the LAPLACE transformation to the differential equation, an algebraic

equation is obtained. With zero initial conditions the derivatives are simply replaced

by multiplications by the appropriate powers of the variable s. The solution of the

algebraic equation gives the LAPLACE transform of the output signal. By the inverse

LAPLACE transformation, we get the output signal in the time domain.

Applying the LAPLACE transformation to the differential Eq. (2.1a) supposing

zero initial conditions the following equation is obtained:

ans
nY sð Þþ an�1s

n�1Y sð Þþ � � � þ a1sY sð Þþ aoY sð Þ
¼ bms

mU sð Þþ bm�1s
m�1U sð Þþ � � � þ b1sU sð Þþ boU sð Þ

or

Y sð Þ ¼ bms
m þ bm�1s

m�1 þ � � � þ b1sþ bo

ansn þ an�1sn�1 þ � � � þ a1sþ ao
U sð Þ ¼ H sð ÞUðsÞ ð2:44aÞ

where Y sð Þ ¼ L y tð Þf g; U sð Þ ¼ L u tð Þf g; and H sð Þ is the so called transfer function.
For physically realizable systems, m� n. In this case the transfer function is called
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proper. If the stricter condition m\n is also fulfilled, the H sð Þ transfer function is

strictly proper. The difference in the degrees, n� m, is called the pole-excess.

For systems containing also series dead-time the LAPLACE transform of differ-

ential equation (2.1b) is

ans
nY sð Þþ an�1s

n�1Y sð Þþ � � � þ a1sY sð Þþ aoY sð Þ
¼ bms

mU sð Þþ bm�1s
m�1U sð Þþ � � � þ b1sU sð Þþ boU sð Þ

� �
e�sTd

or

Y sð Þ ¼ bms
m þ bm�1s

m�1 þ � � � þ b1sþ bo

ansn þ an�1sn�1 þ � � � þ a1sþ ao
e�sTdU sð Þ ¼ H sð ÞUðsÞ ð2:44bÞ

The transfer function of a system is the ratio of the LAPLACE transforms of its

output and input signals (Fig. 2.13).

H sð Þ ¼ Y sð Þ
U sð Þ ð2:45Þ

Different forms of the transfer function

In the sequel, systems without dead-time will be considered. The transfer

function can be given in polynomial/polynomial form as

H sð Þ ¼ bms
m þ bm�1s

m�1 þ � � � þ b1sþ bo

ansn þ an�1sn�1 þ � � � þ a1sþ ao
ð2:46Þ

The numerator and the denominator have real or complex conjugate poles. Let

us denote the roots of the numerator—the zeros of the transfer function—by

z1; z2; . . .; zm, and the roots of the denominator—the poles of the transfer function—

by p1; p2; . . .; pn. The zero-pole-gain form of the transfer function is

H sð Þ ¼ k
s� z1ð Þ s� z2ð Þ � � � s� zmð Þ
s� p1ð Þ s� p2ð Þ � � � s� pnð Þ ; ð2:47Þ

u(t) y(t)

U(s) Y(s)

System

H(s)

Fig. 2.13 A linear system

can be described by its

transfer function
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where the value of the gain factor is k ¼ bm=an. The transfer function can also be

given in partial fractional form as (supposing single roots):

H sð Þ ¼
Xn

i¼1

ri

s� pi
; ð2:48Þ

where pi denotes the poles while ri denotes the residues of the transfer function.

Both the poles and the residues can take real or complex conjugate values.

In control applications many times it is advantageous to feature the reciprocals of

the roots, the so called time constants in the transfer function. Introducing the

notations si ¼ �1=zi and Ti ¼ �1=pi the time constant form of the transfer function

is obtained as:

H sð Þ ¼ A
1þ ss1ð Þ 1þ ss2ð Þ. . . 1þ ssmð Þ
1þ sT1ð Þ 1þ sT2ð Þ. . . 1þ sTnð Þ ; ð2:49Þ

where si and Ti are real or complex numbers and A is the gain whose value is

expressed as

A ¼ bo

ao
¼ k

�z1ð Þ. . . �zmð Þ
�p1ð Þ. . . �pnð Þ :

For zeros and poles that have the values of zero, the conversion is not performed.

It is reasonable to combine the complex conjugate pairs of root both in the

numerator and the denominator into second order terms with real coefficients. Let,

e.g., p1 ¼ aþ jb and p2 ¼ �p1 ¼ a� jb be complex conjugate poles. Multiplying

together the root factors, the following relationship is obtained:

s� p1ð Þ s� p2ð Þ ¼ s� a� jbð Þ s� aþ jbð Þ
¼ s2 � 2asþ a2 þ b2

¼ s2 þ 2nxosþx2
o

where x2
o ¼ a2 þ b2 and n ¼ �a=xo.

In time constant form,

s2 þ 2nxosþx2
o ¼ x2

o 1þ 2n

xo

sþ 1

x2
o

s2
	 


:

Introducing the time constant To ¼ 1=xo the part of the right hand side of the

equation in brackets can be written in a form like 1þ 2nTosþ T2
o s

2 . The frequency

xo is called the natural frequency and n is the damping factor of the second degree

term.
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Combining the terms with complex conjugate roots the transfer function can be

written in the following form.

H sð Þ ¼ A

si

Qc
1 1þ ssj
� �Qc

1 1þ 2fjsojsþ s2s2oj

� �

Qe
1 1þ ssj
� �Q f

1 1þ 2njTojsþ s2T2
oj

� � ð2:50Þ

If i\0, the element contains the effect of a differentiation.

If i ¼ 0, the element is proportional.

If i[ 0, the element contains the effect of an integration.

These effects clearly appear when the transients generated by the input signal

have already decayed.

In the case of dead-time the above transfer functions have to be multiplied by

e�sTd .

The relation of the transfer function to the weighting function and the unit step

response

With the transfer function the output signal can be determined as the response to

a given input excitation.

Y sð Þ ¼ H sð ÞUðsÞ
y tð Þ ¼ L�1 Y sð Þf g ¼ L�1 H sð ÞUðsÞf g

ð2:51Þ

Knowing the transfer function the weighting function and the unit step response

can easily be calculated.

The weighting function is the system response to a DIRAC delta impulse in the

time domain. As L d tð Þf g ¼ 1; the LAPLACE transform of the weighting function is

the transfer function

Y sð Þ ¼ U sð ÞH sð Þ ¼ L d tð Þf gH sð Þ ¼ H sð Þ

Hence the weighting function is

w tð Þ ¼ L�1 H sð Þf g and vice versa H sð Þ ¼ L w tð Þf g ð2:52Þ

Thus the LAPLACE transform of the weighting function of a system is the transfer

function of the system. With the knowledge of the weighting function the system

response to an arbitrary input signal can be determined with the convolution

integral. In the domain of the LAPLACE transformation, convolution is transformed to

multiplication:

y tð Þ ¼ L�1 Y sð Þf g ¼ L�1 HðsÞUðsÞf g ¼
Z t

0

wðt � sÞuðsÞds: ð2:53Þ
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The unit step response is the system response in the time domain to a unit step

input signal. The LAPLACE transform of the unit step response is

YðsÞ ¼ UðsÞH sð Þ ¼ L 1 tð Þf gH sð Þ ¼ 1

s
H sð Þ:

The unit step response can be obtained by an inverse LAPLACE transformation of

the above expression.

v tð Þ ¼ L�1 H sð Þ
s

� �

: ð2:54Þ

The unit step response of a proportional element is illustrated in Fig. 2.14.

The initial and final value of the unit step response and also the initial values of

its derivatives can be determined on the basis of the transfer function. Using the

initial value theorem the initial value of the unit step response is:

v 0ð Þ ¼ lim
s!1

s
H sð Þ
s

¼ lim
s!1

H sð Þ ð2:55Þ

The initial value of the r-th order derivative of the unit step response is:

vðrÞ 0ð Þ ¼ lim
s!1

s
srH 0ð Þ

s
¼ lim

s!1
srH 0ð Þ ð2:56Þ

Letting s ! 1 in the transfer function (2.44a) and (2.44b), the highest degree

terms dominate in the numerator and the denominator:

vðrÞ 0ð Þ ¼ lim
s!1

sr
bms

m

ansn
¼ lim

s!1
bm

an

sr

sn�m
: ð2:57Þ

If the degrees of the numerator and the denominator are identical, the unit step

response jumps at time instant t ¼ 0. If there is a difference between the degrees of

the denominator and the numerator, there is a jump at t ¼ 0 in the derivative of

order r ¼ n� m, and the value of the lower order derivatives is zero at t ¼ 0. If the

v(t)

t

Fig. 2.14 Unit step response
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difference in the degree is 1, the value of the unit step response at t ¼ 0 is zero, but

the value of the first derivative is different from zero: the unit step response starts

with a finite slope. If the difference of the degrees of the denominator and the

numerator is 2, then the initial value of the unit step response and also of its first

derivative (initial slope) is zero, and the initial value of the second derivative is

non-zero. The greater the degree difference is, the better the step response fits to the

time axis at the initial point t ¼ 0.

The steady state value of the step response (supposing that a steady state is

reached at all, i.e., in (2.50) the real value of all of the poles is negative) is

v t ! 1ð Þ ¼ lim
s!0

s
H sð Þ
s

¼ lim
s!0

H sð Þ ð2:58Þ

In this case in expression (2.50) the terms containing the variable s can be

neglected.

If i ¼ 0, the steady state value of the system for a unit step input will settle down

to the value of the static gain A. Elements with this property are called proportional

elements. If i[ 0, the element has the effect of integration and the output signal

tends to infinity if t ! 1, linearly if i ¼ 1, and quadratically if i ¼ 2. If i\0, the

element has the effect of a differentiation and the steady value of the step response is

zero (see Fig. 2.15).

The poles of the transfer function characterize the transient response. Real poles

result in aperiodic transients, while complex conjugate poles provide oscillating

transients. A pole at the origin means an integration. Poles on the left side of the

complex plane give decreasing transients, while poles on the right side lead to

increasing transients. Figure 2.16 shows poles of systems located in different areas of

the complex plane as well as the shapes of the corresponding weighting functions.

v(t)

t

i = 2

i = 1

i = 0

i = -1

Fig. 2.15 Stationary

behavior of the unit step

response
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2.2.4 Basic Connections of Elementary Blocks,

Block-Scheme Algebra, Equivalent Block

Manipulations

In a closed-loop control system the elements are connected to each other. The way

they are connected and interact get defined in block diagrams.

The three basic ways of connecting elements are

– serial connection,

– parallel connection, and

– feedback connection.

Let us determine the resulting transfer functions of the different basic connection

types.

Serial connection

In serial connection the output of the considered element is the input of the next one

(Fig. 2.17).

Im s

Re s

t tt

t

t t

Fig. 2.16 Poles of the transfer function and types of the related weighting functions

)(1 sH
)(1 sY )(sY ≡ )(sU

)()( 21 sHsH
)(sY

)(2 sH
)(sU

Fig. 2.17 Serial connection
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The LAPLACE transform of the output signal is

Y sð Þ ¼ Y1 sð ÞH2 sð Þ ¼ U sð ÞH1 sð ÞH2 sð Þ

Thus the resulting transfer function is obtained by multiplying the transfer

functions of the individual elements.

H sð Þ ¼ H1 sð ÞH2 sð Þ

Parallel connection

In parallel connection the input of the individual elements is the same, and the

outputs are summarized (Fig. 2.18). The LAPLACE transform of the output signal is

Y sð Þ ¼ Y1 sð Þþ Y2 sð Þ ¼ U sð Þ H1ðsÞþH2ðsÞ½ �

Thus the resulting transfer function is the sum of the transfer functions of the

individual elements.

H sð Þ ¼ H1 sð ÞþH2 sð Þ

It is to be emphasized that above contraction of H1 and H2 is only possible if

their inputs are the same and their outputs are summarized exclusively in one

common point.

Feedback connection

We talk about feedback if the output of an element—passing through another

element—is added or subtracted from its input. Addition realizes positive feedback,

while subtraction means negative feedback. The basic connection of a closed loop

control system is the negative feedback. Based on Fig. 2.19 let us determine the

resulting transfer function of a feedback circuit.

Fig. 2.18 Parallel connection

Fig. 2.19 Feedback scheme
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The LAPLACE transform of the output signal is

Y sð Þ ¼ E sð ÞH1 sð Þ ¼ U sð Þ � H2 sð ÞY sð Þ½ �H1 sð Þ

Rearranging Y sð Þ ¼ H1 sð Þ= 1þH1 sð ÞH2 sð Þð Þ½ �U sð Þ, the resulting transfer func-

tion is

H sð Þ ¼ H1 sð Þ
1� H1 sð ÞH2 sð Þ :

In the denominator the negative sign stands for positive feedback. The transfer

function L sð Þ ¼ H1 sð ÞH2 sð Þ is called the loop transfer function.

The mathematical analysis of a closed-loop control system is greatly facilitated

by block diagrams. The analysis can be simplified in many cases if the block

diagram is converted to another, equivalent form using conversion rules. With a

conversion, a simpler form or a more advantageous structure for the calculations

can be obtained. Blocks and signals can be relocated with the conversion, but the

effects of the individual input signals on the output signals have to remain

unchanged. In the sequel some rules for equivalent conversions will be presented.

The junction points from the same signal can be interchanged (Fig. 2.20). The

location of the summation points can be interchanged (Fig. 2.21). Figure 2.22

shows the equivalent relocation of the summation points. Relocation of a junction

point is shown in Fig. 2.23.

Example 2.1 In the block diagram of Fig. 2.24 the system is given by two serially

connected elements characterized by their transfer functions. The disturbance acts

between the two elements. Let us transform the disturbance to the output or to the

input. Figure 2.25 shows the converted block diagrams. ■

Example 2.2 Let us determine the resulting transfer function of the complex control

scheme shown in Fig. 2.26 between the output signal y and the reference signal r.

The steps of the conversion of the block diagram and the calculation of the

resulting transfer function are shown in Fig. 2.27. ■

)(3 sX

)(4 sX)(1 sX

)(2 sX

≡
)(3 sX

)(4 sX)(1 sX

)(2 sX

Fig. 2.21 The summation points are interchangeable

Fig. 2.20 The junction points are interchangeable
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1X

2X

H
2X ≡ 1X

2X

2X
H

H

(a)

1X
H

2X ≡ 1X 2X
H

1X

H

11X

(b)

Fig. 2.23 Relocation of a junction point

≡
±

1X

2X

3X
H

+

±

1X

2X

3X+
H

H

(a)

≡
±

1X 3X+
H

2X

±

1X
3X

H
+

2X

H

1

(b)

Fig. 2.22 Equivalent relocation of the summation points

u

1
P

2
P

y

ny

Fig. 2.24 The disturbance acts between the two serially connected elements

u
1P 2P

y

2P

noy

u
1P 2P

y

1

1

P

niy

Fig. 2.25 The disturbance can be relocated to the output or to the input of the process
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Fig. 2.26 Multiloop control system
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−
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−

1H
543

43
2

1 HHH

HH
H

−
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−

r y+
−
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327543
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1 HHHHHH

HHH
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−
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64321732543
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1 HHHHHHHHHHH

HHHH

++−
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Fig. 2.27 Steps of conversion of a block diagram
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Example 2.3 Let us give the resulting transfer function of the circuit shown in

Fig. 2.28.

The steps of the conversion of the block diagram and the determination of the

resulting transfer function are given in Fig. 2.29. ■

1H
3H

4H

−

u y+
+

+
3

2

H

H(a)

1H
3H

4H

−

u y+
+

+
3

2

H

H
(b)

43

3

3

2
1

1
1

HH

H

H

H
H

+







+

yu

(c)

Fig. 2.29 Steps of conversion of the block diagram

1H
3H

4H

2H

−

u y+ +
+

Fig. 2.28 Control system

with forward path
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2.3 Investigation of Linear Dynamical Systems

in the Frequency Domain

In the sequel, the outputs of a linear system for sinusoidal input signals will be

investigated. The system responses for sinusoidal input signals—as we have seen in

Sect. 2.2 in relation to FOURIER analysis—contain basic information about system

responses to other, non-sinusoidal inputs, as well, as a given input signal can be

expanded to a sum of sinusoidal components. In a linear system, summing the

responses for the individual sinusoidal input signal components yields an approx-

imation of the output signal for the given input signal.

The basic property of stable linear systems is that for sinusoidal input signals in

steady state, after the decaying of the transients they respond with sinusoidal output

signals of the same frequency as that of the input signal (Fig. 2.30). The amplitude

and the phase angle of the output signal, however, depend on the frequency.

Let the input signal of the system be u tð Þ ¼ Ausin xtþuuð Þ; t� 0. The output

signal is

y tð Þ ¼ ysteady tð Þþ ytransient tð Þ:

The output signal in steady (quasi-stationary) state is

ysteady tð Þ ¼ Aysin xtþuy

� �
:

(Let us remark that ysteady tð Þ is generally not equal to the steady state final value

yss of the transient signal introduced earlier.) The frequency function is a complex

function representing the frequency dependence of two system properties, the

amplitude ratio Ay=Au and the phase difference uy � uu

� �
: It can be proven that

formally the frequency function can be derived from the transfer function by

substituting s ¼ jx; which gives the direct relationship between the operator

domain of the LAPLACE transformation and the frequency domain.

H jxð Þ ¼ H sð Þjs¼jx¼ H jxð Þj jeju xð Þ ¼ a xð Þeju xð Þ ð2:59Þ

In the frequency function, the expressions for the amplitude function a xð Þ (the
absolute value of the frequency function) and the phase function u xð Þ (the phase

angle of the frequency function) are

)(sH
transient( ) sin( )y yy t A t y= ω + ϕ +( ) sin( )u uu t A t= ω + ϕ

Fig. 2.30 Response of a linear system to a sinusoidal input signal
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a xð Þ ¼ H jxð Þj j ¼ Ay xð Þ
Au xð Þ and

u xð Þ ¼ arg H jxð Þf g ¼ uy xð Þ � uu xð Þ

Proof Suppose the transfer function of the system is

H sð Þ ¼ k
s� z1ð Þ s� z2ð Þ. . . s� zmð Þ
s� p1ð Þ s� p2ð Þ. . . s� pnð Þ

For the sake of simplicity, let us suppose there are only single poles and zeros.

The LAPLACE transform of the sinusoidal input signal is

U sð Þ ¼ Aux

s2 þx2
:

The output signal can be written in partial fractional form as

Y sð Þ ¼ U sð ÞH sð Þ ¼ Aux

s2 þx2
k

s� z1ð Þ s� z2ð Þ � � � s� zmð Þ
s� p1ð Þ s� p2ð Þ � � � s� pnð Þ

¼ a

sþ jx
þ �a

s� jx
þ b1

s� p1
þ b2

s� p2
þ � � � þ bn

s� pn

where a and �a are complex conjugate residues. By means of the inverse LAPLACE

transformation the output signal in the time domain is calculated to be

y tð Þ ¼ L�1 Y sð Þf g ¼ ae�jxt þ �aejxt þ b1e
p1t þ b2e

p2t þ � � � þ bne
pnt

For a stable system, the transients resulting from those partial fractions which

contain the poles of the system are decreasing and the quasi-stationary response—

as seen from the above formula—is a sinusoidal signal with the same frequency as

that of the input signal.

Let us determine the values of the residues a and �a based on the above partial

fractional description given for Y sð Þ.

a ¼ Aux

s2 þx2
H sð Þ sþ jxð Þ









s¼�jx

¼ �Au

2j
H �jxð Þ

and �a ¼ Au

2j
H jxð Þ
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So

Ysteady sð Þ ¼ �Au

2j
H �jxð Þ 1

sþ jx
þ Au

2j
H jxð Þ 1

s� jx

¼ �Au

2j
H jxð Þj je�ju xð Þ 1

sþ jx
þ Au

2j
H jxð Þj jeju xð Þ 1

s� jx

and the steady state, quasi-stationary component of the output signal is

ysteady tð Þ ¼ Au

2j
H jxð Þj j ej xtþuð Þ � e�j xtþuð Þ

h i

¼ Au H jxð Þj jsinðxtþuÞ

Thus it has been proved that the frequency function can be obtained from the

transfer function by substituting s ¼ jx, i.e., H jxð Þ ¼ H sð Þjs¼jx.

Note that the frequency function is the FOURIER transform of the weighting

function, if it exists.

When a system is excited by an input signal which produces transients, initially

the high frequencies (faster in time) are dominant, and subsequently the low fre-

quency properties are dominant. Taking the limit jx ! 0 gives the steady state, i.e.,

the steady state value of the unit step response (t ! 1) is equal to the amplitude of

the frequency function at x ¼ 0. The initial value of the unit step response is equal

to the value of the frequency function as x ! 1.

2.3.1 Graphical Representations of the Frequency

Functions

The frequency function can be plotted in several forms. The NYQUIST diagram draws

the frequency function in the complex plane as a polar diagram. For each value of

the frequency function in the selected frequency range a point can be given in the

complex plane corresponding to the pair of values a xð Þ and u xð Þ: Connecting
these points by a contour forms the NYQUIST diagram. When plotting the NYQUIST

diagram, generally the frequency is taken between zero and infinity (Fig. 2.31). The

arrow shows the direction of increasing frequency parameter. Often the curve is

supplemented by values calculated for negative frequencies. In this case the dia-

gram is called the complete NYQUIST diagram. The part of the diagram given for the

frequency range �1\x\0 (indicated by the dashed line in the figure) is the

mirror image of the curve plotted for positive frequencies related to the real axis.

The NYQUIST diagram can also be considered as the conformal mapping of the

straight line s ¼ jx, �1\x\1 according to the function H sð Þ.
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The shape of the NYQUIST diagram characterizes the system. Analyzing the

NYQUIST diagram a qualitative picture can be obtained of important system prop-

erties (e.g., stability).

The BODE diagram simultaneously plots the absolute value a xð Þ and the phase

angle u xð Þ of the frequency function versus the frequency in a given frequency

range (Fig. 2.32). Generally the frequency scale is logarithmic in order to cover a

Im H(jω)

Re H(jω)

0<ω<∞−

∞<ω<0

0=ω∞=ω
1ϕ

1ω

1a

Fig. 2.31 NYQUIST diagram

Fig. 2.32 BODE diagram
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wide frequency range. The frequency range when the frequency is changed by a

factor 10 is called a decade. (In music, the word octave is used, which gives a

frequency band when the frequency is changed by a factor of two.) The absolute

value—following telecommunication tradition—is scaled in decibels. The decibel

(dB) employs the base 10 (decimal) logarithm of a number, then this value is

multiplied by 20. The phase angle is drawn in a linear scale.

The advantage of the BODE diagram on the one hand is that multiplying indi-

vidual frequency function components—because of the logarithmic scale—the

BODE diagrams of the individual components are simply added. On the other hand a

further advantage is that generally the BODE amplitude-frequency diagram can well

be approximated by its asymptotes. From the course and from the breakpoints of the

asymptotic amplitude-frequency curve, a quick evaluation can be made about

fundamental system properties.

2.4 Transfer Characteristics of Typical Basic Blocks

As was seen, a linear time-invariant (LTI) system can be described by the differ-

ential Eq. (2.1b),

any
nð Þ tð Þþ an�1y

n�1ð Þ tð Þþ � � � þ a1 _y tð Þþ aoy tð Þ
¼ bmu

mð Þ t � Tdð Þþ bm�1u
m�1ð Þ t � Tdð Þþ � � � þ b1 _u t � Tdð Þþ bou t � Tdð Þ

or in time constant form it can be given by the transfer function in the following

form:

H sð Þ ¼ A

si

Qc
1 1þ ssj
� �Qd

1 1þ 2fjsojsþ s2s2oj

� �

Qe
1 1þ sTj
� �Q f

1 1þ 2njTojsþ s2T2
oj

� � e�sTd ð2:60Þ

In particular cases the order of the differential equation is given, and possibly

some terms are missing, and the transfer function contains only some elements of

the general form. The general linear element described by H sð Þ can be built as the

combination of some appropriately chosen simple basic elements.

In the sequel, the time and frequency characteristics of the most important

transfer elements will be investigated. These elements are the proportional, inte-

grating, differentiating, dead-time and lag elements, and elements obtained by their

series and parallel connection.
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2.4.1 Ideal Basic Blocks

The ideal basic elements are the pure proportional, integrating, differentiating ele-

ments and the dead-time element.

Proportional (P) element

Its differential equation is aoy tð Þ ¼ bou tð Þ, which actually is an algebraic equation.

A proportional element is for instance an amplifier in its linearity range. The

transfer function is a constant, also called the gain factor.

H sð Þ ¼ HP sð Þ ¼ A ¼ bo=ao: ð2:61Þ

Its weighting function is a DIRAC delta of area A, its unit step response is a step

function of amplitude A. Its NYQUIST diagram is a single point at the real axis. Its

BODE amplitude diagram is a straight line parallel to the frequency axis, its phase

angle is zero at all frequencies. The characteristics are shown in Table 2.2.

Integrating (I) element

Its differential equation is

a1
dyðtÞ
dt

¼ bouðtÞ;

or in time constant form

TI
dyðtÞ
dt

¼ uðtÞ; or
dyðtÞ
dt

¼ KIuðtÞ;

where KI ¼ 1=TI and TI is the integrating time constant. The solution of the dif-

ferential equation is:

y tð Þ ¼ 1

TI

Z t

0

uðtÞdtþ c

With zero input signal the system maintains the output signal corresponding to

its previous state. The integrating element has a memory property. The signal at its

output can be constant only if the value of its input signal is zero. The actual value

of its output signal depends on the past values of the input signal.

An example for a physical realization of an integrating element is a liquid tank if

its input signal is the rate of inflow of the liquid and its output signal is the level in

the tank, or the relationship between the terminal voltage of a capacitor and its
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charging current, or the relationship between the change of the angular position of a

motor as the function of the angular speed. Its transfer function is:

H sð Þ ¼ HI sð Þ ¼ 1

sTI
¼ KI

s
ð2:62Þ

and its frequency function is

HI jxð Þ ¼ 1

jxTI
¼ KI

jx
:

Its weighting function is a step, its unit step response is a ramp, which reaches

unity after an elapsed time equal to the integrating time constant. Its NYQUIST

diagram for positive x values is a straight line going through the negative imaginary

axis. The amplitude of the frequency function is 20lg HðjxÞj j ¼ �20lgxTI, so the

BODE amplitude-frequency diagram is a straight line of slope −20 dB/decade,

crossing the 0 dB axis at 1=TI. When the frequency is increased by a factor of ten,

the amplitude is decreased by a factor of ten (it decreases by −20 dB). The value of

the phase angle is −90° at all frequencies. The characteristic functions are shown in

Table 2.2.

Note that if the element contains two integrating effects, its transfer function is

H sð Þ ¼ KI=s
2 ¼ 1=s2T2

I , its NYQUIST diagram goes through the negative real axis,

the slope of the straight line of its BODE amplitude diagram is −40 dB/decade,

which crosses the zero dB axis at frequency
ffiffiffiffiffi
KI

p
, and its phase angle is −180° at all

frequencies.

Differentiating (D) element

Its differential equation in time constant form is

y tð Þ ¼ sD
duðtÞ
dt

The corresponding transfer function is

H sð Þ ¼ HD sð Þ ¼ ssD; ð2:63Þ

and the frequency function:

HD jxð Þ ¼ jxsD:

Its weighting function consists of two DIRAC delta signals of the same area but of

opposite sign. Its unit step response is a DIRAC delta of area sD. Its ramp response is

a step of amplitude sD. Differentiating elements in reality appear only in systems

where impulses and step-like inputs are excluded and can not be applied. The ideal

differentiating element can not be realized, as a real physical device is not able to

produce a DIRAC delta pulse as a response to a step input. It can be seen that the
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differentiating element gives zero output for a constant input signal. Therefore a

D element is never connected serially in a closed control loop, as it would break off

the loop in steady state.

The NYQUIST diagram of the differentiating element for positive x values is a

straight line going through the positive imaginary axis. Its BODE diagram is a

straight line of slope +20 dB/decade crossing the zero dB axis at 1=sD. The phase

angle is +90° at all frequencies. The characteristic curves are given in Table 2.2.

An example for the physical realization of the ideal differentiating element is a

transformer with open secondary circuit, where the input signal is the primary

current, and the output signal is the induced voltage in the secondary coil. But in the

primary circuit because of known physical laws, the primary current can not be

changed in a step-like fashion.

Dead-time (H) element

Real processes often contain dead-time. If in a technological process a material

(solid, liquid or gaseous) is transported from one place to another, then in the model

of the process a transportation delay, the so called dead-time has to be considered.

In the dead-time element a delay Td appears between the output and the input

signals, which can be described by the following time function:

y tð Þ ¼ 0; if t\Td
u t � Tdð Þ; if t� Td

�

Its differential equation is an algebraic equation:

aoy tð Þ ¼ bou t � Tdð Þ; or yðtÞ ¼ Auðt � TdÞ:

Its transfer function is a transcendental function:

HðsÞ ¼ HHðsÞ ¼ Ae�sTd : ð2:64Þ

The frequency function is

HHðjxÞ ¼ Ae�jxTd ;

where the absolute value and the phase angle are expressed by

a xð Þ ¼ e�jxTd








 ¼ A and uðxÞ ¼ arg e�jxTd

� �
¼ �xTd:

The characteristic functions are shown in Table 2.2.

The weighting function is a DIRAC delta signal of area A shifted by the delay Td,

the unit step response is a step of amplitude A shifted by Td . The NYQUIST diagram

consists of overlapping circles of radius A with their centers in the origin, where the

endpoint of vector HH jxð Þ turns by an angle of �xTd with increasing x. Vectors

shifted by angle 2p are coincident. The BODE amplitude diagram is a straight line
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parallel to the frequency axis (it is the same as the amplitude diagram of the ideal

P element), and the phase angle changes with the frequency in a linear way. At

frequency x ¼ 1=Td the phase angle is �1 rad ¼ �57:3	.
Dead-time exists in every real system, but its effect is significant only if the time

of the transients in the system is comparable to the dead-time. In describing mass

and energy transfer phenomena, the dead-time can not be neglected (mass transfer

on conveyor or pipeline, convection, etc.).

2.4.2 Lag Blocks

Operations described by the ideal basic elements are influenced by energy storage

elements which always show up in real devices. Their effect is taken into consid-

eration by the so called lag elements. The basic types are the first and the second

order lag element.

First order lag element

This element can be described by the following differential equation given in

time constant form:

T
dyðtÞ
dt

þ yðtÞ ¼ AuðtÞ

Solving for the derivative of the output signal:

dyðtÞ
dt

¼ A

T
uðtÞ � 1

T
yðtÞ:

The output signal can be obtained by integrating its derivative. According to the

above expression the element can be represented as an integrator fed back by a

constant (Fig. 2.33).

The transfer function of this element is

HðsÞ ¼ HTðsÞ ¼
A

1þ sT
ð2:65Þ

Fig. 2.33 The first order lag

element can be interpreted as

an integrator fed back by a

constant gain
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and its frequency function is

H jxð Þ ¼ A

1þ jxT
:

By the inverse LAPLACE transformation, expressions for the weighting function

and the unit step response can be obtained:

w tð Þ ¼ A

T
e�t=T and v tð Þ ¼ A 1� e�t=T

� �

; t� 0:

The functions are shown in Fig. 2.34. Let us observe in the figure the excised

sections cut by the initial slopes of the unit step response and the weighting

function, respectively.

For positive x values the NYQUIST diagram is a half circle, which starts at x ¼ 0

from point A of the real axis of the complex plane, and goes to the origin as x ! 1
(Fig. 2.35).

To determine the BODE diagram let us express the absolute value of the fre-

quency function.

20 lg HðjxÞj j ¼ 20 lgA� 20 lg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þx2T2
p

Fig. 2.34 Weighting function and unit step response of a first order lag element

Fig. 2.35 NYQUIST diagram

of a first order lag element
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Supposing A ¼ 1 the first term is zero. Let us apply the following

approximations:

If xT\\1; 20 lg HðjxÞj j � 0

If xT[[1; 20 lg HðjxÞj j � �20 lgxT

If xT ¼ 1; 20 lg HðjxÞj j ¼ �20 lg
ffiffiffi

2
p

� �3dB

The approximate BODE diagram goes along the 0 dB axis till the so called corner

frequency x1 ¼ 1=T , then it continues with a straight line of slope −20 dB/decade.

At the corner frequency the accurate value of the amplitude is �20 lg
ffiffiffi

2
p

� �3 dB

(Fig. 2.36). In the figure the accurate diagram is denoted by a thin line. If the gain is

not unity, then the BODE diagram is shifted parallel up or down by (20 lgA). The

system can be considered as a low-pass filter which passes the low frequency

signals, and attenuates the high frequency signals.

In the low frequency domain, the first order lag element can be approximated by

a proportional element and in the high frequency domain by an integrating element.

In the time domain this means that as t ! 1 the element shows proportional

properties, its output signal settles down to a constant value corresponding to the

unit step input, while for t ¼ 0, when the input signal is switched on, it shows an

integrating effect.

The expression for the phase angle is uðxÞ ¼ �arctgxT: The phase function is

shown in Fig. 2.36. At the corner frequency x1 ¼ 1=T the phase shift is �45	, the
slope of the curve is �66	/decade (see A.2.1 of Appendix A.5 for the element

H sð Þ ¼ 1þ sT).

Fig. 2.36 BODE diagram of a

first order lag element
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An example of a first order lag element is an electrical circuit consisting of a

serially connected resistor and inductor, where the input signal is the terminal

voltage and the output is the current.

Second order oscillating nð Þ element
The second order proportional element can be described by the following differ-

ential equation:

a2
d2yðtÞ
dt2

þ a1
dyðtÞ
dt

þ aoyðtÞ ¼ bouðtÞ:

This differential equation describes, for instance, the behavior of an electrical

circuit consisting of a resistor R, an inductor L and a capacitor C (Fig. 2.37), or a

mechanical system consisting of a mass m, a spring with spring constant c and a

fluid friction element with friction coefficient k (Fig. 2.38).

For the electrical circuit the following KIRCHHOFF voltage law holds:

u ¼ iRþ L
di

dt
þ 1

C

Z

idt

The input signal is the terminal voltage u, the output signal is either the current i

or the charge q ¼
R
idt.

L
d2q

dt2
þR

dq

dt
þ 1

C
q ¼ u

In the mechanical example the following differential equation gives the rela-

tionship between the external force F applied to the mass and the position h.

R L

u
i

C

Fig. 2.37 The behavior of an

electrical circuit consisting of

a resistor, an inductor and a

capacitor can be described by

a second order differential

equation

m
F

c

k

h

Fig. 2.38 The behavior of a

mechanical system consisting

of a mass, a spring and a fluid

friction element can be

described by a second order

differential equation
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m
d2h

dt2
þ k

dh

dt
þ ch ¼ F

It is worth mentioning that there is a close analogy between the electrical circuit

and the mechanical system.

Dividing both sides of the differential equation by the coefficient ao, the dif-

ferential equation can be transformed to the so called time constant form:

T2 d
2yðtÞ
dt2

þ 2nT
dyðtÞ
dt

þ yðtÞ ¼ AuðtÞ

where A ¼ bo=ao is the gain, which gives the steady state value of the output signal

for unit step input, T ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

a2=ao
p

is the time constant, n ¼ a1=2
ffiffiffiffiffiffiffiffiffi
aoa2

p
is the

damping factor, all of which influence the dynamic behavior of the system. The

transfer function of this element is

H sð Þ ¼ Hn sð Þ ¼ A

1þ 2nTsþ T2s2
: ð2:66Þ

The poles of the second order oscillating element (the roots of the denominator)

are:

s1;2 ¼ � n

T
� 1

T

ffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � 1

q

: ð2:67Þ

The poles are real negative values if n[ 1; we get two coinciding negative real

values if n ¼ 1; and we get two complex conjugate values if n\1. Let us determine

the step responses for each of the three cases.

(a) Aperiodic case, n[ 1. The transfer function can be interpreted as two, serially

connected first order lag elements:

H sð Þ ¼ A=T1T2
sþ 1=T1ð Þ sþ 1=T2ð Þ ; where

T1 ¼ �1=s1 and T2 ¼ �1=s2:

The unit step response is

v tð Þ ¼ L�1 1

s
H sð Þ

� �

¼ L�1 A=T1T2
s sþ 1=T1ð Þ sþ 1=T2ð Þ

� �

¼ A 1� T1

T1 � T2
e�t=T1 þ T2

T1 � T2
e�t=T2

	 
 ð2:68Þ
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and the weighting function is

w tð Þ ¼ L�1 H sð Þf g ¼ A
1

T1 � T2
e�t=T1 � 1

T1 � T2
e�t=T2

	 


ð2:69Þ

The weighting function is the derivative of the unit step response. The initial

value and the initial derivative of the unit step response are zero. The initial value of

the weighting function is zero, and the value of its first derivative is A=T1T2.

(b) Aperiodic boundary case, n ¼ 1. The transfer function is:

H sð Þ ¼ A

1þ sTð Þ2
¼ A=T2

sþ 1=Tð Þ2
:

The weighting function can be calculated by the inverse LAPLACE transformation

of the transfer function:

w tð Þ ¼ A

T2
te�t=T ; t� 0: ð2:70Þ

The unit step response is:

v tð Þ ¼ L�1 1

s

A=T2

sþ 1=Tð Þ2

( )

¼ L�1 a

s
þ b

sþ 1=T
þ c

sþ 1=Tð Þ2

( )

where a ¼ A, b ¼ �A and c ¼ �A=T . Thus

vðtÞ ¼ A 1� e�t=T � 1

T
te�t=T

	 


; t� 0: ð2:71Þ

(c) Oscillating case, n\1. The transfer function is:

H sð Þ ¼ A

1þ 2nTsþ T2s2
¼ A=T2

s� s1ð Þ s� s2ð Þ ;

where

s1;2 ¼ � n

T
� j

1

T

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
q

¼ �nxo � jxp ¼ a� jb

are complex conjugate poles.
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Here xo ¼ 1=T is the so called natural frequency, which is the absolute value of

the vector starting from the origin and pointing to one of the complex poles. The

poles of the oscillating element are depicted in Fig. 2.39.

Here xp ¼ b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
p

=T is the oscillation frequency of the periodic com-

ponent of the unit step response and the weighting function, respectively; it is the

imaginary part of the pole. Thus x2
o ¼ a2 þ b2 and cosu ¼ n; where u is the angle

of the vector representing the pole formed with the negative real axis. If T changes

and n is constant, the poles move on a straight line forming an angle u with the

negative real axis.

The weighting function is obtained by the inverse LAPLACE transformation of the

transfer function:

w tð Þ ¼ Axo
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
p e�nxotsinxp; t� 0: ð2:72Þ

and the unit step response is:

v tð Þ ¼ A 1� e�n�xot

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
q

cosxptþ sinxpt

	 
" #

; t� 0: ð2:73Þ

Figure 2.40 shows the unit step responses for different damping factors.

The overshoot of the unit step response expressed in percentages in case of n\1

(obtained by differentiating the unit step response) is

r ¼ vmax � vss

vss
100% ¼ e

�npffiffiffiffiffiffi
1�n2

p
100%: ð2:74Þ

s

ϕ

0ω
2

p

1
1

T
ω = − ξ

o

1

T
ω =

cosξ = ϕ

Fig. 2.39 Poles of a second

order oscillating element
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The location of the first maximum of the unit step response (peak time) is

tc ¼
p

xp

¼ p

xo

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
p and the corresponding peak frequency is

xp ¼ xo

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
q

: ð2:75Þ

The settling time is defined as the time instant ta, such that for t[ ta the unit step

response function remains within a given D% band around its steady state value.

The following condition can be given for the envelope of the unit step response:

e�nxota ¼ D

100
;

whence the settling time is ta ¼ ln 100=Dð Þ=nxo. For D ¼ 2% or D ¼ 5% the set-

tling time is approximately 4=nxo or 3=nxo, respectively.

Let us now determine the frequency function of the oscillating element. The

expression of the absolute value of the frequency function is:

H jxð Þj j ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2T2ð Þ2 þ 4n2T2x2

q : ð2:76Þ

t

v(t)

ξ  = 0.2

ξ = 0.7

ξ = 1

ξ = 2

Fig. 2.40 Unit step responses of a second order oscillating element with damping factors

n ¼ 0:2; 0:7; 1; 2
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and its phase angle is

u xð Þ ¼ �arctg
2nTx

1� x2T2
ð2:77Þ

The NYQUIST diagram (Fig. 2.41) at x ¼ 0 starts at point A of the real axis of the

complex plane. As x ! 1 it goes to the origin. In between it passes through two

quarters of the complex plane. If n\0:5, in a given frequency range the curve

shows amplification, the values of the amplitudes exceed the value taken at x ¼ 0.

If n ¼ 0, the curve runs on the real axis, and at x ¼ xo ¼ 1=T it has a

discontinuity.

Let us determine the BODE amplitude-frequency curve and its asymptotic

approximation. The expression of the absolute value in decibels is

20 lg HðjxÞj j ¼ 20 lgA� 20 lg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2T2ð Þ2 þ 4n2T2x2

q

with A ¼ 1 the first term is zero.

Let us apply the following approximations:

if xT 
 1; 20 lg HðjxÞj j � 0

if xT � 1; 20 lg HðjxÞj j � �40 lgxT ; as besides the fourth degree term all the

other terms can be neglected,

if xT ¼ 1; 20 lg HðjxÞj j ¼ �20 lg2n. At the corner frequency (also called the

breakpoint frequency) the absolute value depends only on the damping factor.

Supposing A ¼ 1 at the natural frequency the absolute value of the frequency

function is H jxoð Þj j ¼ 1=2n, and the phase angle is �90	. (For the slope of the

phase-frequency curve �132	=n/decade is obtained according to the calculations in

A.2.1 of Appendix A.5) Another characteristic point of the frequency function is

the resonance frequency (xr), where the amplitude takes its maximum value.

ξ  = 0.2

ξ = 0.7

ξ = 2
Re

Im

ξ = 0 ξ = 0

Fig. 2.41 NYQUIST diagram

of a second order lag element
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Calculating the derivative of the expression of the absolute value and setting it

equal to zero, the following relationship is obtained:

xr ¼
1

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2n2
q

: ð2:78Þ

A resonance frequency exists if n\
ffiffiffiffiffiffiffi

0:5
p

� 0:707. At this frequency the abso-

lute value is

H jxrð Þj j ¼ 1

2n
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
p : ð2:79Þ

The cut-off frequency (xc) is defined as the frequency where the absolute value

of the frequency function is unity. Supposing the gain A ¼ 1, this condition is

fulfilled if

1� x2
cT

2
� �2 þ 4n2T2x2

c ¼ 1;

whence

xc ¼
1

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1� 2n2
� �

q

: ð2:80Þ

The relation between the characteristic frequencies (in case of n\0:5) is

xr\xp\xo\xc: ð2:81Þ

If n\1, the first three frequencies are very close to each other (Fig. 2.42).

Often when the asymptotic BODE amplitude-frequency curve is plotted, the

accurate amplitude values are calculated only at the resonance and the natural

frequencies, where significant amplification may occur.

The BODE diagrams for damping factors n ¼ 0:2; 0:7; 1; 2 are given in Fig. 2.43.

In the low frequency domain the asymptote of the amplitude-frequency curve is a

horizontal line, and in the high frequency domain when x � 1=T the asymptote is

a straight line of slope −40 dB/decade. (If n[ 1, it is expedient to decompose the

transfer function into a product of two first order lag elements, and in between the

two breakpoints to put in an additional asymptote of slope −20 dB/decade.) The

phase-frequency curve starts at 0	, then it tends to reach �180	, while its value at

the natural frequency is �90	. Its steepness is bigger if the damping factor is

smaller. The smaller the damping factor is, the higher the tendency towards

oscillations and overshoot in the time domain and high amplification in the fre-

quency domain. For damping factors higher than 0.6 the overshoot is within 10%,

and in the amplitude-frequency function there is no significant amplification.
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Fig. 2.43 BODE diagram of the oscillating element for n ¼ 0:2; 0:7; 1; 2
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Fig. 2.42 Amplitude-frequency diagram of the oscillating element
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2.4.3 Proportional, Integrating and Differentiating

Lag Blocks

Complex elements can be assembled by the serial or parallel connection of the basic

elements.

By series connection of the pure proportional, integrating or differentiating

elements with lag elements first order, second order, nth order proportional (PT1,

PT2,…), first order, second order, nth order integrating (IT1, IT2,…), as well as first

order, second order, nth order differentiating elements (DT1, DT2,…) can be

derived.

The transfer functions, unit step responses, NYQUIST and BODE

amplitude-frequency diagrams of these elements are given in Table 2.3. The

NYQUIST diagrams are obtained by multiplying the NYQUIST diagrams of the series

component elements. In the considered frequency values the vectors of the indi-

vidual components have to be multiplied (the phase angles are added, the absolute

values are multiplied). The multiplication has to be executed for all the considered

frequencies. The approximate BODE amplitude diagrams can easily be composed by

adding the asymptotic BODE diagrams of the serially connected components.

In the unit step responses, the proportional, integrating or differentiating char-

acteristics of an element are represented by the steady state performance. The lag

elements influence the initial response and the transients.

In the low frequency domain the NYQUIST diagram shows a performance cor-

responding to the NYQUIST diagram of the proportional, integrating or differentiating

element, then with increasing frequency it passes through as many quarters of the

plane as the number of the lag elements suggests. The asymptotic BODE diagram in

the low frequency domain starts according to the proportional, integrating or dif-

ferentiating effect. Each lag element produces a change of the slope with −20 dB/

decade at the reciprocal of the corresponding time constant. Thus the parameters of

the element can be read from the approximate BODE diagram.

Often it is sufficient to plot the approximate BODE amplitude-frequency diagram.

In some systems, besides the approximate diagram, it is also necessary to accurately

determine the amplitude at some critical points or in a given frequency range. For

example, in the case of an integrating element serially connected to a second order

lag element containing complex conjugate poles, the course of the NYQUIST or the

BODE diagram has also to be given accurately in the surroundings of the corner

point. The transfer function of the element is

H sð Þ ¼ KI

s 1þ 2nTsþ s2T2ð Þ :
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The BODE and the NYQUIST diagrams with different damping factors n are shown

in Fig. 2.44. With a small damping factor, the frequency function may have very

high amplifications around the natural frequency of the second order oscillating

element.

|H(jω)|

ω

1

T

20dB/decade−

60dB/decade−

IK

Re

Im

1

c IKω =

Fig. 2.44 BODE and NYQUIST diagrams of a second order oscillating block serially connected to an

integrating element
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2.4.4 Influence of the Zeros of the Transfer Function

The zeros are the roots of the numerator of the transfer function given in Eq. (2.47).

H sð Þ ¼ k s� z1ð Þ s� z2ð Þ. . . s� zmð Þ
D sð Þ

Here D sð Þ denotes the denominator of the transfer function. The zeros are

z1; z2; . . .; zm. The system can be accelerated by inserting zeros located at the left

side of the complex plane. Let us analyze the characteristic functions of the so

called ideal PD element

1þ ss ¼ s sþ 1=sð Þ

appearing in the numerator. Here the zero is z1 ¼ �1=s. The unit step response, the

NYQUIST and the BODE diagrams are shown in Fig. 2.45.

This element in itself is unrealizable, for a DIRAC delta appears in its unit step

response. The approximate BODE diagram is the mirror image relative to the fre-

quency axis of the BODE diagram of the first order lag element. The

amplitude-frequency curve can be approximated by 0 dB till the corner point 1=s,
and by a straight line of slope +20 dB/decade beyond it. Its phase angle is positive,

u xð Þ ¼ þ arctgxs:
By inserting a zero, the system can be accelerated. To demonstrate this effect let

us consider the circuit in Fig. 2.46, where a phase-lead element is connected serially

to a first order lag element. For a unit step input signal, at the first instant a signal of

ten times amplitude appears at the output of the PLead element, which is the input

of the first order lag element. At the beginning the first order lag element acts as if it

should reach this value according to its time constant, thus its output starts with a

remarkable slope, and when its input signal is decreased, its output has almost

reached the required steady value. The cost of this acceleration is the so called

overexcitation, which is the ratio of the initial and final values of the signal at the

input of the element. Acceleration can be reached if the overexcitation is larger than

1. Often it is expedient to apply mathematical pole cancellation, when a pole

causing the undesirable slow behavior is cancelled by a zero, and a pole leading to a

more favorable behavior is inserted into the system.

In a realizable way a zero can be inserted into a system only together with a pole.

Let us determine the characteristic functions of the realizable

HðsÞ ¼ A
1þ ss

1þ sT

element for s\T (phase-lag: PLag) and for s[ T (phase-lead: PLead). The unit

step response, the NYQUIST and the BODE diagrams are shown in Table 2.4.
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Fig. 2.45 Unit step response, NYQUIST and BODE diagrams of the ideal PD element with transfer

function 1þ ss

96 2 Description of Continuous Linear Systems in the Time …



To demonstrate the accelerating effect of the zeros let us consider the transfer

function below:

H sð Þ ¼ 1þ ss

1þ sð Þ 1þ 10sð Þ :

Let the value of the time constant s in the numerator be 0, 1, 5 and 10. The step

responses are shown in Fig. 2.47.

If there are only poles (which are stable) in the transfer function, the phase angle

curve versus the frequency changes monotonically. Phase angles belonging to the

poles are negative. Inserting zeros adds some positive phase angles to the original

phase function, and the monotonity of the phase function is impaired. “Buckling”

appears in a given frequency range of the NYQUIST diagram. (Later on it will be

shown that with the appropriate choice of zeros the NYQUIST diagram can be

modified expediently to evade regions of the complex plane which are undesirable

considering the transient behavior.) The slope of the asymptotic BODE diagram is

changed by +20 dB/decades at the breakpoint corresponding to the zeros, and the

phase angle is modified by positive values. Figure 2.48 shows the change of the

NYQUIST diagram, while Fig. 2.49 illustrates the change of the BODE diagram when a

zero is inserted into the system.

t

1

u

t

1

10

t

1

10

101 10

1

s

s

+
+

1

1 10s+

Fig. 2.46 Inserting a zero may accelerate the system at the cost of certain overexcitation

t

v(t)

0=τ1
=τ

5=τ

10=τ

Fig. 2.47 Unit step

responses with different

values of the zero
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2.4.5 Non-minimum Phase Systems

Non-minimum phase systems are systems, whose zeros are located on the right

hand side of the complex plane.

If a system is of minimum phase, i.e., the zeros of its transfer function are on the

left hand side of the complex plane, then the phase angle belonging to the poles is

negative, and the phase angle belonging to the zeros is positive. Thus the phase

angle curve can be unambiguously assigned to the asymptotic amplitude curve.

Im

Re

Fig. 2.48 Insertion of a zero changes the monotonicity of the phase diagram: a “buckling”

appears in the NYQUIST diagram

|H(jω)|

ω

φ(ω)

Fig. 2.49 The effect of insertion of a zero in the BODE diagram
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A pole in the right (unstable) half-plane modifies the BODE phase-frequency

diagram by positive phase angle. A zero in the right half plane modifies it by

negative phase angles, thus a zero does not decrease a negative phase angle, but

increases it. (This property motivated the denomination of non-minimum phase

systems.)

To illustrate the non-minimum phase property let us consider the following two

transfer functions:

Ha sð Þ ¼ 1þ sT

1þ sT1
and Hb sð Þ ¼ 1� sT

1þ sT1
:

For positive values of T1 and T both systems are stable. Ha has a left hand, while

Hb has a right hand side zero. The amplitude-frequency functions of the two sys-

tems are the same:

a xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xTð Þ2

1þ xT1ð Þ2

s

;

while their phase angles differ from each other:

ua xð Þ ¼ �arctan
x T1 � Tð Þ
1þx2T1T

and ub xð Þ ¼ �arctan
x T1 þ Tð Þ
1þx2T1T

:

Comparing the two curves in Fig. 2.50a it is clearly seen that in each frequency

range ua xð Þj j is less than ub xð Þj j:
Every non-minimum phase system Hnmp can be converted to the product of a so

called all-pass phase element Hap and a minimum phase element Hmp.

Hnmp sð Þ ¼ 1� sT

1þ sT1
¼ 1� sT

1þ sT

1þ sT

1þ sT1
¼ Hap sð ÞHmp sð Þ: ð2:82Þ

The property of an all-pass non-minimum phase element is that its

absolute-frequency function is a unity constant at all frequencies. The transfer

function of the n-th order all-pass element in case of real poles is

Hap sð Þ ¼
Yn

i¼1

1� sTi

1þ sTi
¼
Yn

i¼1

s� si

sþ si
: ð2:83Þ

Non-minimum phase systems have an unusual behavior in the time domain. For

example, in the case of one right side zero, the unit step response starts in the

direction opposite to its steady state value, then changing direction it finally reaches

its steady state. Figure 2.50b shows the unit step response of the system given by

100 2 Description of Continuous Linear Systems in the Time …



the transfer function H sð Þ ¼ 1� 4sð Þ= 1þ sð Þ 1þ 10sð Þ. Chemical processes and

furnaces often have the non-minimum phase property.

2.4.6 Quick Drawing of Asymptotic BODE Diagrams

The asymptotic BODE diagram can be easily drawn based on the previous consid-

erations. In the case of proportional elements the BODE amplitude diagram starts

parallel to the frequency axis with zero phase. The BODE amplitude diagram of a

system containing one integrator starts with slope of �20 dB/decade and with phase

�90	, while in the case of two integrators it starts with slope �40 dB/decade and

with phase �180	. Lag elements change the slope of the asymptotic BODE ampli-

tude diagram at the breakpoints by �20 dB/decade. Zeros change the slope by

þ 20 dB/decade at the corresponding breakpoints. Dead-time does not modify the

amplitude diagram, but significantly changes the phase angle.

The corner frequencies of the asymptotic amplitude diagram are the reciprocals

of the time constants. As an example the asymptotic BODE amplitude-frequency

diagram belonging to the transfer function

(a)

v(t)

t

1

(b)

ϕ ω( )

−90°

0°
l ω

−180°

ϕb ω( )

ϕa

g

ω( )

Fig. 2.50 Frequency function and unit step response of a non-minimum phase system
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H sð Þ ¼ 16ð1þ sÞ
s2ð0:02sÞð1þ 0:01sÞ

is shown in Fig. 2.51. Around the crossing point with the 0 dB axis the absolute

value of the frequency function can be approximated by the expression 16=x (the

absolute value of the lag elements here can be approximated by 1). At the crossing

point the absolute value is 1, thus xc � 16. With similar approximations the

characteristic values of the BODE amplitude diagram can easily be determined.

2.4.7 Influence of Parameter Changes

When modeling a real system, generally the parameters of the differential equation

or the transfer function describing the system are determined by measurements

considering a modeling procedure. Thus their values are non accurate, and they may

vary within a given range around their nominal values. When analyzing the system

or designing the controller, it is important to take into consideration the effects of

changes in the parameters.

From the time constant form of the transfer function, it is easy to determine the

effect of changes in the parameters on the characteristic functions of the system.

Table 2.5 illustrates the effect of parameter changes on the unit step responses and

the BODE diagrams for some typical elements.

|H(jω)|

ω
1

50

4

16c =ω 100

40dB/decade−

40dB/decade−

20dB/decade−

60dB/decade−

Fig. 2.51 Rapid plotting of the asymptotic BODE amplitude-frequency diagram
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2.5 Approximate Descriptions

In practice it often makes sense to approximate a higher order model of a system by

a simpler model which can be treated more easily. Besides the larger time constants,

the smaller ones generally can be neglected, or their effect can be interpreted as a

dead-time effect. In the sequel some frequently applied approximations will be

given. It is an important remark that if the controller is designed for the lower order

approximate model of the system, the performance of the control system has to be

checked always with the higher order original model of the system!

2.5.1 Dominant Pole Pair

A closed-loop control system is often characterized by its so called dominant pole

or dominant pole pair. The dominant pole is defined as the pole of the transfer

function which is the closest to the imaginary axis. The pair of complex conjugate

poles which is the closest to the imaginary axis is called the dominant pole pair

(Fig. 2.52). If the other poles to the left are far away from the dominant poles (their

real part is at least three times the value of the real part of the dominant poles), then

the transients due to these poles have practically decayed by the time the effect of

the dominant poles prevails. Thus the effect of the poles far to the left can be

neglected and the behavior of the complete system can be approximated well by the

behavior of a second order oscillating element formed by the dominant pole pair

H sð Þ ¼ 1

1þ 2nTsþ T2s2
¼ x2

o

x2
o þ 2nxosþ s2

:

ss

ϕ

0ω
pω

dominant 

pole pair

fast transient further poles

o

1

T
ω =

cosξ = ϕ

2
p

1
1

T
ω = − ξ

Fig. 2.52 Dominant pole pair
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(See the description of the properties of the second order oscillating (n) element

discussed previously in this chapter.)

2.5.2 Approximation of Higher Order Plants by First-

and Second-Order Time Lag Models with Dead-Time

The unit step response of a proportional element containing several lags starts from

zero if the degree of the denominator of its transfer function is higher than the

degree of its numerator. The pole excess (the number of the poles minus the number

of the zeros) indicates which derivative has non zero value at the initial point.

Aperiodic proportional elements with several time lags can be well approxi-

mated by a first order lag serially connected to a latent dead-time (TL) (Fig. 2.53). If

the system shows oscillating behavior, it can be well approximated by a second

order oscillating element with latent dead-time.

Sometimes the aperiodic proportional element with several lags is taken into

account with an equivalent pure dead-time (Fig. 2.54).

2.5.3 Approximation of a Dead-Time by Rational Transfer

Functions

The transfer function of the pure dead-time element is the transcendental function

HH sð Þ ¼ e�sTd , which can be approximated by a rational fraction.

The pure dead-time element can be approximated by the series connection of an

infinite number of first order lag elements with the same time constant. As known

from mathematics e�x can be expressed as the limit of the series

e�x ¼ lim
n!1

1þ x

n

� ��n

:

t

v(t)
T

TL

Fig. 2.53 A proportional

element containing several

lags can be approximated by a

first-order lag element serially

connected to a latent

dead-time
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Applying the formula for the transfer function of a dead-time element the STREJC

approximation is obtained:

HH sð Þ ¼ e�sTd ¼ lim
n!1

1þ s
Td

n

	 
�n

� 1

1þ Td
n
s

� �n ð2:84Þ

By this relationship the dead-time element is approximated by a lag element

containing a pole with multiplicity n, whose equivalent dead-time is nTd=n ¼ Td.

The more lags are serially connected, the better the approximation is. Figure 2.55

shows the unit step response of the STREJC approximation of the dead-time element

for n ¼ 2; 5; 10.
Another approximation of the dead-time element is the PADE approximation,

which approximates the transfer function of the dead-time by non-minimum phase

rational fractions, where the first elements of the TAYLOR expansion are equal to the

first elements of the TAYLOR expansion of the exponential expression of the transfer

function of the dead-time element.

The n-th order PADE approximation gives a rational fraction where there are n

zeros and n poles, differing only in their sign.

t

v(t)

TE

Fig. 2.54 Approximation of

a proportional element

containing more lags with an

equivalent TE pure dead-time

v(t

t

n 
=
 2

n 
=
 5

n 
=
 1

0

)

Fig. 2.55 Unit step responses of the dead-time element with STREJC approximation for n = 2, 5,

10
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HH sð Þ ¼ e�sTd � s�s1ð Þ. . . s�snð Þ
sþ s1ð Þ. . . sþ snð Þ ¼ HPADE sð Þ: ð2:85Þ

The absolute value of the frequency function of the rational fraction for any

value of s ¼ jx is 1, thus, similarly to the frequency function of the dead-time

element, only its phase angle changes with the frequency. Such elements are called

all-pass filters. The PADE approximation is a non-minimum phase rational function.

The poles si and the coefficients of the numerator and the denominator can be

determined by taking the first NþMþ 1 terms of the TAYLOR expansion of the

transfer function HH sð Þ as the first NþMþ 1 terms of the rational fraction transfer

function HPADE sð Þ. Here M is the degree of the numerator and N is the degree of the

denominator of the rational function (M�N).

e�x ¼
X1

i¼0

bix
i �

PM
k¼0 dkx

k

PN
j¼0 cjx

j
:

In the equation there are N þMþ 2 unknown coefficients, therefore choosing

co ¼ 1, NþMþ 1 linear equations can be written for the remaining NþMþ 1

parameters, assuming the condition mentioned above. With this method the fol-

lowing form is obtained for the case N ¼ M ¼ 3:

e�x � 1� 1
2
xþ 1

10
x2 � 1

120
x3

1þ 1
2
xþ 1

10
x2 þ 1

120
x3

:

Expressions of the first- and second order PADE approximations according to

similar calculations are the following:

e�x � 1� 1
2
x

1þ 1
2
x
; e�x � 1� 1

2
xþ 1

12
x2

1þ 1
2
xþ 1

12
x2

:

Table 2.6 First, second and third order PADE approximations of the dead-time element e�sTd

Dead-time element H sð Þ ¼ e�sTd

First order PADE approximation
H sð Þ � 2� sTd

2þ sTd

Second order PADE approximation
H sð Þ � 12� 6sTd þ sTdð Þ2

12þ 6sTd þ sTdð Þ2

Third order PADE approximation
H sð Þ � 120� 60sTd þ 12 sTdð Þ2� sTdð Þ3

120þ 60sTd þ 12 sTdð Þ2 þ sTdð Þ3
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The approximations are summarized in Table 2.6. The higher the degree of the

rational fraction, the more terms are identical in the TAYLOR approximations of the

two functions.

Figure 2.56 shows the unit step responses of the PADE approximation for the

first-, second- and third order cases. It can be seen that the approximations do not fit

well at the initial point, but approximate well the steady state. With higher order

approximations the step responses fit better the step response of the dead-time element.

2.6 Examples of the Description of Continuous-Time

Systems

When creating the model of a process, we wish to characterize the transfer prop-

erties between the input and the output signals. The process can be described by its

differential equation, state equation or by its transfer functions. To determine the

process model the physical operation of the process should be known as precisely

as possible. Then the physical operation has to be described by mathematical

relationships. The parameters in the equations can be determined based on a priori

knowledge or by measurements.

Generally, physical processes are non-linear. To approximate non-linear systems

by linear models which can be handled more easily, the most commonly applied

technique is the linearization of the equations describing the system in the vicinity

of the operating point. In this case the range of the changes where the linearization

is valid has to be specified.

t

v(t)

first order

second 

order

third order

Fig. 2.56 Unit step responses of first-, second- and third-order PADE approximations of a

dead-time element
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Often it is expedient to introduce relative units which give the actual values of

the signals relative to their maximum values. Thus the values of the variables lie

between 0 and 1.

For controlling a system, a model of the process is required. The control system

is designed to meet the quality specifications taking the model of the process into

consideration. In the sequel, the determination of mathematical models of some

processes will be shown. The aim of the discussion is to show how we can reach the

model giving the relationship between the input and the output signals starting from

the physical description of the operation. (Based on the obtained model often

further, deeper considerations may become necessary to describe more accurately

the properties of the process.)

2.6.1 Direct Current (DC) Motor

Let us analyze the signal transfer properties of an armature controlled DC motor

with constant external excitation. The scheme of the motor is given in Fig. 2.57.

The output signal of the motor is the angular velocity x, the input signals are the

terminal voltage (armature voltage) ua and the load torque mt acting on the shaft

(disturbance). The excitation voltage ue is constant.

One control task might be to keep the angular velocity of the motor at a given

constant value despite the changing load. The manipulating variables could be the

armature voltage and the excitation voltage (which at first is considered constant).

The resistance and the inductance of the armature are denoted by Ra and La,

respectively. The load torque reduced to the motor shaft is denoted by mt and the

armature current is denoted by ia.

First let us think about the physical operation of the motor. The motor converts

electrical energy to mechanical energy. In the excitation coil, a constant field

current is created, which creates a constant magnetic flux in the air gap (it is

supposed that this flux is proportional to the excitation current). Switching on the

Ra La

Ua

ia

Ue = const

Ui

mt

ω

Fig. 2.57 Scheme of a DC motor with external excitation
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armature voltage ua, an armature current ia is created in the armature circuit, which

generates flux in the armature. The interaction of the excitation flux and the

armature flux generates a torque which—working against the load—rotates the

rotor. When the rotor rotates, a back emf ui is induced according to the LENZ law.

The inputs of the plant are the armature voltage ua and the load torque mt

(disturbance). The output signal is the angular velocity x. The armature current ia
can also be considered as an output signal, which could take high values on starting,

breaking or loading the motor.

The behavior of the system can be characterized by the KIRCHHOFF equation

written for the armature circuit and the equation describing the mechanical motion.

In the armature circuit the armature voltage keeps in balance with the sum of the

resistive, inductive and the induced voltages. The induced voltage is proportional to

the product of the constant excitation voltage and the angular speed by a factor of

k1. The difference of the motor torque and the disturbance load torque provides the

accelerating torque, which can be expressed by the product of the inertia load and

the angular acceleration. The motor torque is proportional to the product of the

excitation flux and the armature current by a factor of k2. The mathematical

equations describing the behavior of the motor are:

ua ¼ iaRa þ La
dia
dt

þ ui ui ¼ k1ux

m� mt ¼ H dx
dt

m ¼ k2u ia
ð2:86Þ

(It should be mentioned that k1 and k2 are the same constants.) Let us find the

LAPLACE transforms of the equations above:

ua sð Þ ¼ ia sð Þ Ra þ sLað Þþ k1uxðsÞ
k2u iaðsÞ � mtðsÞ ¼ HsxðsÞ

Based on these equations—following the cause-effect relations—the block dia-

gram shown in Fig. 2.58 can be derived. The difference between the armature

aa sLR +
1

ϕ1k

ua

−

−
ia

mt

m ω
ϕ2k

Θs

1

Fig. 2.58 Block diagram of a DC motor
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voltage and the induced voltage creates the armature current. The interaction of the

armature current and the excitation flux generates the rotation torque of the

machine. The difference of the motor torque and the load torque provides the

acceleration torque, which finally determines the angular velocity.

Two state variables can be given in the system: these are the angular velocity x

and the armature current ia, whose instantaneous values are determined by the past

motions in the system, and their values can not be changed abruptly by an abrupt

change of the input signals. In the block diagram they appear at the output of an

integrator (let us observe that a lag element can always be built as an integrator fed

back by a constant). Let us describe the state equation of the motor. The general

form of the state equation is:

_x ¼ AxþBu

y ¼ cTxþ dTu

where x is the state vector, u denotes the vector of the input signals and y is the

output signal (MISO system). Here

x ¼ x1
x2

� �

¼ ia
x

� �

; u ¼ ua
mt

� �

: ð2:87Þ

The state equation is obtained by rearranging the differential equation.

dia

dt
¼ 1

La
ua �

Ra

La
ia �

1

La
k1ux

dx

dt
¼ 1

H
k1uia �

1

H
mt

ð2:88Þ

In vector-matrix form it becomes the following.

_x1

_x2

� �

¼
dia
dt
dx
dt

2

4

3

5 ¼
� Ra

La

�k1u
La

k2u
H

0

" #zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{
A

ia

x

� �

þ
1
La

0

0 � 1
H

" #zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
B

ua

mt

� �

y ¼ x ¼ 0 1½ �
zfflfflffl}|fflfflffl{

cT

ia

x

� �

þ 0 0½ �
zfflfflffl}|fflfflffl{

dT

ua

mt

� �

ð2:89Þ

The overall transfer functions between the output and the input signals in the

feedback system can be obtained based on the block diagram. The same result is

obtained if the superposition principle is applied to a linear system. In this case, first

the LAPLACE transforms stemming from the original differential equations are

considered supposing zero load disturbance torque, then the ratio of the LAPLACE
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transforms of the angular velocity and the armature voltage is expressed, and

finally, supposing zero armature voltage, the relation between the angular velocity

and the load torque is determined. (Of course the transfer relations can be obtained

from the state space representation form, as well.)

The overall transfer functions are:

x sð Þ
ua sð Þ









mt¼0

¼

k2u

HLa

s2 þ s
Ra

La
þ k1k2u

2

HLa

¼
1

k1u

s2
HLa

k1k2u2
þ s

HRa

k1k2u2
þ 1

¼ Am

s2TmTe þ sTm þ 1
;

ð2:90Þ

where Am ¼ 1=k1u is the transfer gain of the motor. Multiplying it with the steady

value of the armature voltage yields the steady value of the angular velocity.

Tm ¼ HRa=k1k2u
2 is the so called electromechanical time constant, whose value

depends both on the electrical and mechanical parameters. Te ¼ La=Ra is the

electrical time constant. The relationship between the angular velocity and the load

torque is

x sð Þ
mt sð Þ









ua¼0

¼
� 1

H
sþ Ra

La

� �

s2 þ s Ra

La
þ k1k2u2

HLa

¼
� Ra

k1k2u2 1þ s La
Ra

� �

s2 HLa
k1k2u2 þ s HRa

k1k2u2 þ 1

¼ � At 1þ sTeð Þ
s2TmTe þ sTm þ 1

:

ð2:91Þ

Here the gain factor At gives the static effect of the load torque on the angular

velocity. The negative sign indicates that by increasing the load, the steady value of

the angular velocity is decreased.
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Fig. 2.59 Transfer functions

of a DC motor
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With the overall transfer functions, the model of the motor can also be described

by the block scheme shown in Fig. 2.59.

The relationship between the angular velocity and the armature voltage can be

characterized by a proportional element with two time lags. In the relationship

between the angular velocity and the load torque, besides the second order pro-

portional effect, there is also a parallel second order differentiating effect. Whether

the evolution of the transients is aperiodic or oscillating depends on the ratio of the

electrical and the electromechanical time constants. If Tm\4Te, oscillations appear

in the transients.

Let us derive the model of the motor also for the case when the excitation voltage

is varying. The magnetic flux in the air gap is proportional to the excitation current ie.

The resistance of the excitation coil is Re, its inductance is Le. Thus the inputs of the

motor are: the armature voltage ua, the excitation voltage ue and the disturbance load

torque mt. Its output signals are the angular velocity x and the armature current ia.

The operation of the motor is described by the following equations:

ua ¼ iaRa þ La
dia

dt
þ ui ui ¼ k1ux

m� mt ¼ H
dx

dt
m ¼ k3u ia ¼ k2k3ieia

u ¼ k2ie

ð2:92Þ

The system is non-linear, as the induced voltage and the torque of the motor can

be given as the product of two changing variables. Let us express from the equa-

tions above the derivatives of the state variables ia and x. The state equation of the

system is

dia

dt
¼ �Ra

La
ia �

k1k2

La
iexþ 1

La
ua ¼ f1 ia; ie;x; uað Þ

dx

dt
¼ 1

H
k2k3ieia �

1

H
mt ¼ f2 ia; ie;mtð Þ

ð2:93Þ

Let us formulate a linearized model of the system valid for small changes around

the operating point. In the state equation, the variables are replaced by the sum of

their operating points and the small variations around it. The operating points of the

individual variables are denoted by uao; iao; ieo;mto;xo. Around the operating point

the variables are given as

ua ¼ uao þDua

ia ¼ iao þDia

ie ¼ ieo þDie

mt ¼ mto þDmt

x ¼ xo þDx

ð2:94Þ
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In a small vicinity of the operating point, a multivariable function can be

expressed as the sum of the operating point and the small variations around it:

f � fo þDf ¼ fo þ
X

i

@f

@xi









x1o;x2o

Dxi:

For the non-linear expressions in our state equation the following relationships

are valid:

iex ¼ ieoxo þD iexð Þ ¼ ieoxo þ ieoDxþxoDie

ieia ¼ ieoiao þ ieoDia þ iaoDie
ð2:95Þ

The linearized state equations valid around the operating point are:

d iao þDiað Þ
dt

¼ �Ra

La
iao þDiað Þþ 1

La
uao þDuað Þ

� k1k2

La
ieoxo �

k1k2

La
ieoDx� k1k2

La
xoDie

d xo þDxð Þ
dt

¼ k2k3

H
ieoiao þ

k2k3

H
ieoDia þ

k2k3

H
iaoDie

� 1

H
mto �

1

H
Dmt

ð2:96Þ

From the equations above the following relationships are valid among the

operating points:

diao

dt
¼ 0 ¼ �Ra

La
iao þ

1

La
Uao �

k1k2

La
ieoxo

dxo

dt
¼ 0 ¼ � k2k3

H
ieoiao �

1

H
mto

ð2:97Þ

It can be seen that the values of the operating points are not independent. The

operating point values of the load torque and the excitation current determine

the operating point value of the armature current. The operating point values of

the armature current, the armature voltage and the excitation current determine the

operating point value of the angular velocity.

For small changes around the operating point, the following equations can be

written:

dDia

dt
¼ �Ra

La
Dia �

k1k2

La
ieoDxþ 1

La
Dua �

k1k2

La
xoDie

dDx

dt
¼ k2k3

H
ieoDia þ

k2k3

H
iaoDie �

1

H
Dmt

ð2:98Þ
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Let us describe the linearized equations in vector-matrix form:

dDia

dt
dDx

dt

2

6
4

3

7
5 ¼

�Ra

La
� k1k2

La
k2k3

H
0

2

6
4

3

7
5

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{
A

Dia
Dx

� �

þ
1

La
� k1k2

La
xo 0

0
k2k3

H
iao � 1

H

2

6
4

3

7
5

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
B

Dua
Dia
Dmt

2

4

3

5: ð2:99Þ

Using the LAPLACE transform of the equations, the block diagram of the lin-

earized system is depicted in Fig. 2.60.

The overall transfer functions are

Dx

Dua








 Die ¼ 0
Dmt¼ 0

¼

k2k3ieo

sH Ra þ sLað Þ

1þ k1k
2
2k3i

2
eo

sH Ra þ sLað Þ

¼

1

k1k2ieo

1þ s
HRa

k1k
2
2k3i

2
eo

þ s2
HLa

k1k
2
2k3i

2
eo

Dx

Dua








 Dua ¼ 0
Dmt¼ 0

¼
k2k3iao

1
sH

� k1k
2
2
k3xoieo

sHRa þ sLa

1þ k1k
2
2k3i

2
eo

sH Ra þ sLað Þ

¼

iao

k1k2i2eo
Ra þ sLað Þ � xo

ieo

1þ s
HRa

k1k
2
2k3i

2
eo

þ s2
HLa

k1k
2
2k3i

2
eo

Dia

Dmt








 Dua ¼ 0
Die ¼ 0

¼

k1k2ieo

sH Ra þ sLað Þ

1þ k1k
2
2k3i

2
eo

sH Ra þ sLað Þ

¼

1

k2k3ieo

1þ s
HRa

k1k
2
2k3i

2
eo

þ s2
HLa

k1k
2
2k3i

2
eo

ð2:100Þ

The transfer functions have a second order proportional character. It can be seen

that the individual transfer functions have the same denominator. The values of the

parameters (transfer gains and time constants) also depend on the values of the

aa sLR +
1∆ua

−

−
∆ia

∆mt

∆ω

Θs

1

021 eikk

032 eikk

021 ωkk 032 aikk

−

∆ie

Fig. 2.60 Block diagram of a DC motor with variable external excitation considering

linearization
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operating point. The excitation current can be changed around its nominal value

only within a restricted range to avoid a “runaway” of the motor. Increasing the

excitation current—depending on the value of the operating point—in steady state

may increase or decrease the value of the angular velocity. If iaoRa=k1k2ieo[xo, an

increase of the excitation current increases the angular velocity, otherwise it

decreases it.

2.6.2 Modeling of a Simple Liquid Tank System

Determining the relationship between the inflow and outflow of a liquid and the

level in the tank is a basic task not only in technological processes, but also in

logistical and general economic systems and also in biological processes. Let us

consider first the simplest formulation of this task for the case seen in Fig. 2.61.

Here h is the level of the fluid, A hð Þ is the cross section of the tank, a is the cross

section of the tube of the outflow fluid, u ¼ qin is the inflow fluid stream, while

y ¼ qout is the outflow fluid stream. Supposing a constant fluid density the following

relationship can be written for the change of the amount V of fluid in the tank:

dV

dt
¼ qin � qout ¼ u� y ð2:101Þ

For the outflow fluid, the following relationship holds:

qout ¼ a
ffiffiffiffiffiffiffiffi

2gh
p

: ð2:102Þ

a

u = q
in

y = q
out

A = A h( )
h

a

u = q
in

y = q
out

h

A = const. ≠ A h( )

Fig. 2.61 Fluid tanks with varying and constant cross sections
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According to the principle of conservation of energy the potential energy of the

liquid upside is transformed to motion energy of the outflow liquid, i.e.,

mgh ¼ mv2=2. Hence the velocity v of the outflow fluid is expressed as v ¼ ffiffiffiffiffiffiffiffi
2gh

p
,

and the volumetric velocity is qout ¼ av.

The state variable can be chosen in different ways. One possible method is that

the accumulation in the tank is expressed with the fluid level. In case of varying

cross section

V ¼
Zh

0

AðxÞdx: ð2:103Þ

The previous equations can be written in the following form:

dh

dt
¼ 1

AðhÞ qin � qoutð Þ ¼ 1

AðhÞ qin � a
ffiffiffiffiffiffiffiffi

2gh
p� �

¼ 1

AðhÞ u� a
ffiffiffiffiffiffiffiffi

2gh
p� �

y ¼ qout ¼ a
ffiffiffiffiffiffiffiffi

2gh
p

ð2:104Þ

Thus the behavior of the tank can be described by a first order non-linear

differential equation. The state equation is linearized around the equilibrium

operating point qout ¼ qin ¼ u ¼ y:

qout ¼ qin ¼ qo ¼ a
ffiffiffiffiffiffiffiffiffiffi

2gho
p

whence

ho ¼
q2o

2ga2
:

The cross section at a height of ho is denoted by Ao. The linearized equation

written for the signal changes Dh and Dqout is

dDh

dt
¼ a

ffiffiffiffiffiffiffiffiffiffi
2gho

p

2Aoho
Dhþ 1

Ao

Dqin ¼ � qo

2Aoho
Dh

þ 1

Ao

Dqin ¼ � 1

To
Dhþ 1

Ao

Dqin

Dqout ¼
a
ffiffiffiffiffiffiffiffi
2gh

p

ho
Dh ¼ qo

ho
Dh

ð2:105Þ

The quantity

To ¼
2Aoho

qo
¼ 2� total fluid amount m3½ �

fluid stream m3=s½ � ð2:106Þ
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can be considered as the time constant of the system. A time of To=2 is needed to

fill the volume Aoho with fluid stream qo. An equivalent block diagram is shown in

Fig. 2.62. From the figure the transfer function can be given formally as

HðsÞ ¼ 1

1þ AðhÞ
a
ffiffiffiffiffiffiffiffi
2gh

p s

ð2:107Þ

where the virtual time constant is To ¼ A hð Þ=a ffiffiffiffiffiffiffiffi
2gh

p
. It is worthwhile to compare it

with the time constant obtained by linearization around the operating point

To ¼
2Aoho

a
ffiffiffiffiffiffiffiffiffiffi
2gho

p ¼ 2ho
Ao

a
ffiffiffiffiffiffiffiffiffiffi
2gho

p ¼ 2hoTðhoÞ: ð2:108Þ

(The transfer function is formal as it is valid only in the linear range.)

+
−

Fig. 2.62 Equivalent block diagram of a fluid tank

A1

a1

h1 y1

A2

a2

h2 y2

Fig. 2.63 Scheme of a two

tank system
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2.6.3 A Simple Two Tank System

Let us now consider the two tank system shown in Fig. 2.63. The liquid flow into

the upper tank is controlled by a valve. The liquid flows from the upper tank to the

lower tank and then it flows out. One task could be to keep the levels of the liquid in

the tanks constant.

The output signals are the levels in the tanks, the input signal is the amount of

the inflow liquid. To build a model of the system let us think over the physical

operation of the system. The velocity of the liquid flowing out of a tank depends on

the level of the liquid in that tank. The balance of the potential and the kinetic

energy is given by the following equation:

mgh ¼ 1

2
mv2:

This relationship is valid for both tanks. Hence the velocity of the outflow liquid

can be expressed as v ¼ ffiffiffiffiffiffiffiffi
2gh

p
.

The process can be characterized with the following signals:

– u the amount of the inflow liquid into the upper tank,

– h1 the level in the upper tank,

– A1 and A2 cross sections of the tanks,

– a1 and a2 cross sections of the tubes of the outflow liquid from the two tanks,

– y1 the outflow liquid stream from the upper tank,

– h2 the level in the lower tank,

– y2 the outflow liquid stream from the lower tank.

The outflow depends on the velocity of the liquid, the cross section of the

outflow pipe, and the viscosity factor l of the liquid: y ¼ avl ¼ a
ffiffiffiffiffi
2g

p ffiffiffi

h
p

l ¼ k
ffiffiffi

h
p

.

It can be seen that the relationship is non-linear. The rise in the level in the tanks

depends on the difference between the amount of inflow and outflow. The smaller

the cross section of the tank, the faster the rise. The following differential equations

can be written for the two tanks:

dh1

dt
¼ 1

A1

u� k1
ffiffiffiffiffi

h1
p� �

¼ b1u� a1
ffiffiffiffiffi

h1
p

dh2

dt
¼ 1

A2

k1
ffiffiffiffiffi

h1
p

� k2
ffiffiffiffiffi

h2
p� �

¼ b2
ffiffiffi

h
p

1 � a2
ffiffiffiffiffi

h2
p

ð2:109Þ

where

b1 ¼
1

A1

; a1 ¼
k1

A1

; b2 ¼
k1

A2

; a2 ¼
k2

A2

:
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As the levels can be considered as state variables, the two first order differential

equations above give the non-linear state equation of the system. It is expedient to

give the individual variables in relative units, relating their actual values to their

maximum values.

hrel ¼
h

hmax

and urel ¼
u

umax

: ð2:110Þ

Thus the differential equations can be given in the following form:

dh1;rel

dt
¼ b1;relurel � a1;rel

ffiffiffiffiffiffiffiffiffi

h1;rel
p

dh2;rel

dt
¼ b2;rel

ffiffiffiffiffiffiffiffiffi

h1;rel
p

� a2;rel
ffiffiffiffiffiffiffiffiffi

h2;rel
p

ð2:111Þ

where

b1;rel ¼
1

A1

umax

h1;max

; a1;rel ¼
k1

A1

ffiffiffiffiffiffiffiffiffiffiffi
h1;max

p

h1;max

b2;rel ¼
k1

A2

ffiffiffiffiffiffiffiffiffiffiffi
h1;max

p

h2;max

; a2;rel ¼
k2

A2

ffiffiffiffiffiffiffiffiffiffiffi
h2;max

p

h2;max

:

For easier handling, often a non-linear system is linearized around given operating

points. Thus for small variations the system can be considered linear. Let us give the

TAYLOR expansion of the non-linear function
ffiffiffi

h
p

around the operating point ho.

f hð Þ ¼
ffiffiffi

h
p

�
ffiffiffiffiffi

ho
p

þ 1

2
ffiffiffiffiffi
ho

p h� hoð Þ

The higher order terms of the TAYLOR expansion are neglected. Let us denote the

small variations by D, thus

h� ho ¼ Dh; urel ¼ uo þDu; h1;rel ¼ h1o;rel þDh1; h2;rel ¼ h2o;rel þDh2

The linearized equations are:

d h1o;rel þDh1
� �

dt
¼ b1;rel uo þDuð Þ � a1;rel

ffiffiffiffiffiffiffiffiffiffiffi

h1o;rel
p

þ 1

2
ffiffiffiffiffiffiffiffiffiffiffi
h1o;rel

p Dh1

 !

d h2o;rel þDh1
� �

dt
¼ b2;rel

ffiffiffiffiffiffiffiffiffiffiffi

h1o;rel
p

þ 1

2
ffiffiffiffiffiffiffiffiffiffiffi
h1o;rel

p Dh1

 !

� a2;rel
ffiffiffiffiffiffiffiffiffiffiffi

h2o;rel
p

þ 1

2
ffiffiffiffiffiffiffiffiffiffiffi
h2o;rel

p Dh2

 !

ð2:112Þ
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The relationships between the operating points are

dh1o;rel

dt
¼ 0 ¼ b1;reluo � a1;rel

ffiffiffiffiffiffiffiffiffiffiffi

h1o;rel
p

dh2o;rel

dt
¼ 0 ¼ b2;rel

ffiffiffiffiffiffiffiffiffiffiffi

h1o;rel
p

� a2;rel
ffiffiffiffiffiffiffiffiffiffiffi

h2o;rel
p

ð2:113Þ

For small changes around the operating point, the following equations are

obtained.

dDh1

dt
¼ b1;relDu�

a1;rel

2
ffiffiffiffiffiffiffiffiffiffiffi
h1o;rel

p Dh1

dDh2

dt
¼

b2;rel

2
ffiffiffiffiffiffiffiffiffiffiffi
h1o;rel

p Dh1 �
a2;rel

2
ffiffiffiffiffiffiffiffiffiffiffi
h2o;rel

p Dh2

ð2:114Þ

It can be seen that the parameters in the equations depend on the operating

points. The parameters can be determined from measurements (filling and emptying

the tanks), and also from geometrical data. Let us give the transfer function of the

linearized process when the output signal is Dh2, the change of the level in the

lower tank, and the input signal is Du, the change of the inflow liquid. Let us

introduce the following notations:

d1 ¼ b1;rel; c1 ¼
a1;rel

2
ffiffiffiffiffiffiffiffiffiffiffi
h1o;rel

p ;

d2 ¼
b2;rel

2
ffiffiffiffiffiffiffiffiffiffiffi
h1o;rel

p ; c2 ¼
a2;rel

2
ffiffiffiffiffiffiffiffiffiffiffi
h2o;rel

p :

With this notation, the state equations are

dDh1

dt
¼ d1Du� c1Dh1

dDh2

dt
¼ d2Dh1 � c2Dh2

and hence the transfer function is

HðsÞ ¼ d1
1=s

1þ c1=s
d2

1=s

1þ c2=s
¼ K

1þ sT2ð Þ 1þ sT1ð Þ : ð2:115Þ

The process can be considered as a proportional two lag element where the time

constants and the gain are as follows.
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T1 ¼
1

c1
¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
h1o;rel

p

a1;rel
; T2 ¼

1

c2
¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
h2o;rel

p

a2;rel
;

K ¼
2b1;rel

ffiffiffiffiffiffiffiffiffiffiffi
h2o;rel

p

a2;rel
:

ð2:116Þ

It can be seen that the parameters depend on the operating point.

2.6.4 A Simple Heat Process

Let us analyze the heat process of a system consisting of two heat sources. The

arrangement is shown in Fig. 2.64. The temperature changes in several connected

pieces in electrical equipment can be modeled by analyzing the heat transfer pro-

cesses in two embedded bodies. For example the heat transfer processes in slots of

electrical machines, where the copper winding is placed in the iron slots can be

analyzed on the basis of this model.

A body of mass m2 and specific heat g2 where power p2 is converted to heat

closes around a body of mass m1 and specific heat g1 where the heat power is p1.

The surface of the bodies contacting each other is denoted f1 and has heat transfer

coefficient h1. That in contact with the external environment is denoted by f2, and

has the heat transfer coefficient h2.

Let us determine the change of temperatures t1 and t2 in the two bodies after

switching on the heat generation, supposing that earlier the temperature of the

system was equal to the environmental temperature. The input signals of the system

are the heating powers p1 and p2, respectively, the disturbance is the environmental

temperature to, the output signals are the t1 and t2 temperatures of the bodies.

The behavior of the system can be described as follows. The temperature of the

two bodies starts growing after switching on the heat.

f2, h2
m2, g2, p2

f1, h1

m1, g1

p1, 1

0

Fig. 2.64 A system

consisting of two heat sources
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Fig. 2.65 Block diagram of the heat process

One part of the generated heat energy is stored in the heat capacity of the bodies,

increasing their temperatures, while the second part—as the effect of the temper-

ature difference—leaves, entering the environment through the interfacial surface. It

is supposed that the bodies are homogeneous, because of their good heat transfer

properties a temperature difference does not take shape inside the bodies.

In the inner body the heat generated through time Dt partly increases the tem-

perature of the body by Dt1 degrees, and partly leaves into the outer body. The heat

transfer depends on the difference of the temperatures in the two bodies, on the size

of the interfacing surface and on the heat transfer coefficient. In the outer body the

heat generated by the heat power p2 is added to the amount of heat coming from the

inner body. This resulting heat partly increases the temperature of the outer body by

Dt2 degrees, and partly goes into the environment.

The temperatures t1 and t2 can be taken as the state variables of the system.

Describing the heat balance equations for the two bodies yields:

p1Dt ¼ g1m1Dt1 þ h1f1ðt1 � t2ÞDt
p2Dtþ h1f1ðt1 � t2ÞDt ¼ g2m2Dt2 þ h2f2ðt2 � toÞDt

ð2:117Þ

Dividing the equations by g1m1Dt and g2m2Dt, respectively, then taking the limit

Dt ! 0 and rearranging the equations, expressing the derivatives of the temperature

changes the following equations are obtained.

dt1

dt
¼ � h1f1

g1m1

t1 þ
h1f1

g1m1

t2 þ
1

g1m1

p1

dt2

dt
¼ h1f1

g2m2

t1 �
h1f1 þ h2f2

g2m2

t2 þ
1

g2m2

p2 þ
h2f2

g2m2

to

ð2:118Þ

These equations give the state equation of the system. Based on these equations,

a block diagram of the system can be built (Fig. 2.65). From the block diagram, the

resulting transfer functions between the individual output and input signals can be

calculated and the time responses of the output signals for given input signal

changes can also be derived.
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2.6.5 The Moving Inverted Pendulum

The diagram of the investigated mechanical system is shown in Fig. 2.66. A rod of

length l mounted on a cart of mass M is considered weightless. It can be moved

around a joint. At the end of the rod, a ball of mass m is mounted. A force f acts on

the cart. This device is the so called inverted pendulum, which has an unstable

mechanical behavior. One control task could be to keep the mass m at the upper

balance point by appropriate movements of the cart. A juggler in the circus realizes

such a hand control, balancing the rod. A similar construction can work as part of a

mobile robot. The stable control of an unstable process is not an easy task.

A control algorithm is to be designed considering the model of the plant.

Let us consider the NEWTON equations describing the mechanical behavior of the

system to move the masses M and m. In the rigid rod compulsion forces þF and

�F arise. The force-acceleration relations for the rigid rod in various directions are:

M€x ¼ f � F sinH

m€xm ¼ F sinH

m€ym ¼ F cosH� mg

ð2:119Þ

Adding the first two equations, and then multiplying the second equation by

cosH and the third equation by sinH and subtracting them from each other the

expression of the F compulsion force can be eliminated from the equations.

With these manipulations the following equations are obtained:

M€xþm€xm ¼ f

M€xm cosH�M€ym sinH ¼ mg sinH
ð2:120Þ

Let us calculate the derivatives of xm and ym.

m +F

mg

l

ym

-F f

x

xm

M

Fig. 2.66 Mechanical model

of the inverted pendulum
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xm ¼ xþ l sinH ym ¼ l cosH

_xm ¼ _xþ l _H cosH _ym ¼ �lH sin H

€xm ¼ _x� l _H
2
sinHþ l €HcosH €ym ¼ �l _H

2
cosH�l €HsinH

ð2:121Þ

Substituting the expressions for €xm and €ym into the previous equations, the

following non-linear differential equations are obtained to describe the behavior of

the inverted pendulum.

ðMþmÞ€x� ml _H
2
sinHþml €H cosH ¼ f

m€x cosHþml €H ¼ mg sinH

Expressing the second order derivatives from both equations yields the

following

€x ¼ 1

Mþm
f þml _H

2
sinH� ml €H cosH

� �

€H ¼ g

l
sinH� 1

l
€x cosH

ð2:122Þ

For small movements around the perpendicular position and for small changes in

the angular position, a linearized model of the system can now be given. It is

assumed that the approximations H � 0 and _H � 0; sinH � H and cosH � 1 can

be employed. With these simplifying assumptions the equations can be transformed

to the following form:

€x ¼ �mg

M
Hþ 1

M
f

€H ¼ g

l

Mþm

M
H� 1

Ml
f

ð2:123Þ

Here, H; _H; x and _x can be chosen as the state variables. The state equation can

be written in the form

_H
€H

_x

€x

2

6
6
4

3

7
7
5
¼

0 1 0 0
g

l
Mþm
M

0 0 0

0 0 0 1

� mg

M
0 0 0

2

6
6
4

3

7
7
5

H
_H

x

_x

2

6
6
4

3

7
7
5
þ

0

� 1
Ml

0
1
M

2

6
6
4

3

7
7
5
f ð2:124Þ

The output signal can be H or the state variables in x. From these equations the

transfer functions between the outputs H or x and the input signal f can be

determined:
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H1 sð Þ ¼ H sð Þ
f sð Þ ¼ �1=Ml

s2 � a2
¼ � 1=Ml

ðsþ aÞðs� aÞ ð2:125Þ

and

H2 sð Þ ¼ x sð Þ
f sð Þ ¼

1
M

s2 � b2
� �

s2 s2 � a2ð Þ ¼
1
M

sþ bð Þ s� bð Þ
s2 sþ að Þ s� að Þ ð2:126Þ

where a2 ¼ g

l
Mþm
M

and b2 ¼ g

l
. It can be seen that the transfer function of the

linearized system contains an unstable pole, and also a non-minimum phase zero

does appear. The control of this system is not a simple task.
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Chapter 3

Description of Continuous-Time

Systems in State-Space

The so-called state-equations are widely used in the scientific and engineering fields

for the description of dynamical systems. The necessity for this kind of description

is explained in different ways. Perhaps the easiest way is the recognition that the

operation of a wide class of complex dynamical systems can be modeled with

relatively high precision by the first order vector differential equations

dx tð Þ

dt
¼ _x tð Þ ¼ f x tð Þ; u tð Þ½ �

y tð Þ ¼ g x tð Þ; u tð Þ½ �

ð3:1Þ

The state variables of the system as scalar components are collected in a vector x

called the state vector. The system input is u, and the output is y. The dimension of

x is called the degree or the order of the system. The function f x; uð Þ represents the
varying “speed” of the state vector as the function of the states and the input signal.

The function g x; uð Þ is called sensor or measurement function since it provides the

output of the system. Let’s call attention here to the fact that f x; uð Þ and g x; uð Þ do
not depend on time in an explicit way. (But here we emphasize that nevertheless the

signals of the state-equations obviously depend on time!) This kind of system is

called a time-invariant system. The state variables contain the information about the

past of the system, and the future values of the signals can be predicted, therefore

the state vector behaves like the memory of the system.

In engineering systems the state vectors are often related to the basic physical

processes, where the relations necessary to describe the storage of the mass, flow,

impulse, and power, have to be determined. (It has to be noted, however, that in

certain fields, e.g. in chemistry, the definition of the state vector is different from the

above general system-theoretical concept: it mostly reflects the variables—like

pressure, temperature, composition, etc.—representing the physico-chemical state

of the investigated material, mixture, compound, etc.)
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The state variables as coordinates define a space (state-space). The state vector

x tð Þ is interpreted in this space. The motion of the end point of the vector represents

the motion of the system. The curve described by the motion of the end point of the

state vector gives the state-trajectory.

A special class of the non-linear dynamical systems is given by the Eq. (3.1),

whose possible equilibrium state xo; uoð Þ (where _x ¼ 0) is obtained from the

equation

f xo; uoð Þ ¼ 0: ð3:2Þ

(Remark: In general, several equilibrium states can be obtained. These equi-

librium states can provide different stable states. The performance of these states

requires the investigation of the second order derivatives of f x; uð Þ.)
The static systems can be described by degenerate state-equations, since they do

not have memory, or the corresponding states, so they can be described by the

second equation of (3.1) by itself

y ¼ g uð Þ ð3:3Þ

Taking the TAYLOR-expansion at the point uo, we get

y ¼ g uoð Þþ
dg uoð Þ

du
u� uoð Þþ � � � ¼ g uoð Þþ g0 uoð Þ u� uoð Þþ � � � ð3:4Þ

and the linearized model

y� yo ¼ Dy ¼ y� g uoð Þ ¼ g0 uoð Þ u� uoð Þ ¼ g0 uoð ÞDu ð3:5Þ

can be obtained from the first order term of (3.4).

The linearized model replaces the original curve with its tangent at the operating

point uo and establishes a static linear connection between the changes Dy;Duð Þ
around the operating point.

Actually the linearization of the state-space Eq. (3.1) can also be given in a very

similar way.

With the following notation, valid for changes around the equilibrium state

xo; uoð Þ, i.e.

x ¼ xo þDx; u ¼ uo þDu; y ¼ yo þDy ð3:6Þ

let us calculate the first order linearized approach of (3.1)

dx

dt
¼ f xo þDx; uo þDuð Þ � f xo; uoð Þþ

df xo; uoð Þ

dxT
Dxþ

df xo; uoð Þ

du
Du

y ¼ g xo þDx; uo þDuð Þ � g xo; uoð Þþ
dg xo; uoð Þ

dxT
Dxþ

dg xo; uoð Þ

du
Du

ð3:7Þ
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Let us use the fact that at the equilibrium point f xo; uoð Þ ¼ 0 and let us introduce

the notation yo ¼ g xo; uoð Þ, so the linearized model valid for small changes takes

the form

d x� xoð Þ

dt
¼

dDx

dt
¼ A x� xoð Þþ b u� uoð Þ ¼ ADxþ bDu

y� yo ¼ Dy ¼ cT x� xoð Þþ d u� uoð Þ ¼ cTDxþ dDu

ð3:8Þ

where the following notations are employed

A ¼
df xo; uoð Þ

dxT
; b ¼

df xo; uoð Þ

du

cT ¼
dg xo; uoð Þ

dxT
; d ¼

dg xo; uoð Þ

du

ð3:9Þ

The obtained model is a linear time-invariant (LTI) system, i.e. it does not

change in time. It is a widely used practice that the original variables x; u; y are used
instead of the small changes Dx;Du;Dyð Þ for simplicity, but they are considered as

the changes around the operating point. In this way we arrive at the linear, constant

parameter (LTI) state-space equation of the system generally applied in the theory

of systems and control,

dx tð Þ

dt
¼ Ax tð Þþ bu tð Þ

y tð Þ ¼ cTx tð Þþ du tð Þ

or simply

dx

dt
¼ Axþ bu

y ¼ cTxþ du

ð3:10Þ

Here the parameter matrices of the system are A; b; cT; d. Since in this book

single-input single-output (SISO) systems are considered, in the n-order case, A is

an n� nð Þ square matrix, which is the so called state matrix, b is an n� 1ð Þ column

vector, cT is a row vector of dimensions 1� nð Þ, and d is a scalar. The block

diagram of the state-Eq. (3.10) can be seen in Fig. 3.1.

Fig. 3.1 Block diagram of the linear time invariant system
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3.1 Solution of the State-Equations in the Complex

Frequency Domain

The state-equations can be transferred to the complex frequency domain by the

LAPLACE transformation of (3.10). Let us denote the transformed time functions

x; u; y by X sð Þ;U sð Þ; Y sð Þ. Taking the rules of transformation of derivatives into

account we get

sX sð Þ ¼ AX sð Þþ bU sð Þþ x 0ð Þ ¼ AX sð Þþ bU sð Þþ Ix 0ð Þ

Y sð Þ ¼ cTX sð Þþ dU sð Þ
ð3:11Þ

In the first equation, the vector of the initial conditions x 0ð Þ can be considered as

an input which has an effect on the system via the identity matrix I. From the first

equation we get

X sð Þ ¼ sI � Að Þ�1
bU sð Þþ x 0ð Þ½ � ¼ sI � Að Þ�1

bU sð Þþ sI � Að Þ�1
x 0ð Þ: ð3:12Þ

According to the rules of matrix inversion

sI � Að Þ�1¼
adj sI � Að Þ

det sI � Að Þ
¼

adj sI � Að Þ

A sð Þ
¼

W sð Þ

A sð Þ
¼ U sð Þ: ð3:13Þ

Here W sð Þ ¼ adj sI � Að Þ is the transpose of a matrix whose elements are the

signed sub-determinants belonging to the corresponding elements of the matrix

sI � Að Þ. The determinant of that matrix, det sI � Að Þ is the denominator of the

transfer function, and is an n-degree polynomial in s:

A sð Þ ¼ sn þ k1s
n�1 þ � � � þ kn�1sþ kn ¼ P

n

i�1
s� kið Þ ¼ det sI � Að Þ: ð3:14Þ

A sð Þ is the so-called characteristic polynomial of the matrix A. The roots

k1; . . . kn of the characteristic equation A sð Þ ¼ 0 are the eigenvalues of A, called

the poles of the system.

The elements of the matrix in the numerator of (3.13) are also polynomials in s,

but since they come from an n� 1ð Þ order sub-determinant, they can have at most

order n� 1ð Þ, consequently the quotients of each element and A sð Þ represent

strictly proper transfer functions.

According to (3.12) the motion of the state vector is determined by the initial

condition x 0ð Þ and the input signalU sð Þ. Since the characteristic polynomial is in the

denominators of all the elements depending on x 0ð Þ, as a consequence of the

expansion theorem, their time functions are exclusively determined by the poles of the

system. This part of the solution describes the motion of a un-excited system from any

initial position to its equilibrium point and it exclusively depends on one of the

parameters, i.e., on the state matrix A both in the frequency and time domains.
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In the case of excitation, in each element of the solution depending on U sð Þ, the
denominator contains not only A sð Þ but also the denominator polynomial of U sð Þ,
so the time functions depend not only on the poles of the system but also on the

poles of the input. This part of the solution gives the motion of the excited system.

From Eqs. (3.11) and (3.12), the output is

Y sð Þ ¼ cT sI � Að Þ�1
bU sð Þþ x 0ð Þ½ � þ dU sð Þ: ð3:15Þ

The output of the excited motion, when x 0ð Þ ¼ 0 is

Y sð Þ ¼ cT sI � Að Þ�1
bþ d

h i

U sð Þ: ð3:16Þ

Thus the transfer function of the system is

P sð Þ ¼
Y sð Þ

U sð Þ
¼ cT sI � Að Þ�1

bþ d
�

�

d¼0
¼ cT sI � Að Þ�1

b ¼
B sð Þ

A sð Þ
: ð3:17Þ

The first term of P sð Þ is strictly proper since it consists of a linear combination of

only proper elements (see (3.13), i.e., the order of the adjoint is always lower than

that of the determinant). Thus if d ¼ 0, then P sð Þ is strictly proper, the order of the

numerator being lower by at least one than that of the denominator. If d 6¼ 0, then

P sð Þ is proper, i.e. the order of the numerator is equal to that of the denominator.

The physical meaning of d is how the input directly influences the output without

any dynamics. Note, that this effect does not disappear even for very high fre-

quencies, thus P jx ! 1ð Þ ¼ d. This means, at the same time, that the jump of the

transfer function at time t ¼ 0 is v t ¼ 0ð Þ ¼ d. In practice the case d 6¼ 0 is usually

traced back to the case d ¼ 0 by introducing a new output ~y ¼ y� du. The case

d 6¼ 0 can also be considered as an imperfect linearization which needs a certain

correction.

Example 3.1 Let the parameter matrices of the system be

A ¼
�3 �2

1 0

� �

; b ¼
1

0

� �

; cT ¼ 2 2½ �;

and compute the transfer function using (3.17).

P sð Þ ¼
B sð Þ

A sð Þ
¼ cT sI � Að Þ�1

b ¼
1

s2 þ 3sþ 2
2 2½ �

s �2

1 sþ 3

� �

1

0

� �

¼
1

s2 þ 3sþ 2
2sþ 2 �4þ 2sþ 6½ �

1

0

� �

¼
2sþ 2

s2 þ 3sþ 2
¼

sþ 1

0:5s2 þ 1:5sþ 1

■
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3.2 Solution of the State-Equations in the Time Domain

The solution of the state-Eq. (3.10) in time domain can also be given in closed form

x tð Þ ¼ eAtx 0ð Þþ

Z

t

0

eA t�sð Þbu sð Þds ¼ eAtx 0ð Þþ

Z

t

0

eA t�sð Þu sð Þds

2

4

3

5b: ð3:18Þ

The first term represents the motion of the un-excited system starting from the

initial point x 0ð Þ, the second term is the convolution integral, i.e., the excited

motion starting from the initial point x 0ð Þ ¼ 0.

To check (3.18), let us differentiate the above equation with respect to time:

dx tð Þ

dt
¼ AeAtx 0ð Þþ

Z

t

0

AeA t�sð Þbu sð Þdsþ bu tð Þ ¼ Ax tð Þþ bu tð Þ; ð3:19Þ

which proves the correctness of (3.18). (See the detailed derivation in Chap. A.3.1

of Appendix A.5.) Here, eAt is the fundamental matrix of the system, which is

defined by its TAYLOR-series, convergent for all t, as is valid for matrix functions in

general.

eAt ¼ IþAtþ
1

2
Atð Þ2 þ � � � þ

1

n!
Atð Þn þ � � � : ð3:20Þ

By differentiating the equation, a very interesting and important feature of the

fundamental matrix can be obtained.

deAt

dt
¼ AþA2tþ

1

2
A3t2 þ � � � þ

1

n� 1ð Þ!
Antn�1 þ � � �

¼ A IþAtþ
1

2
Atð Þ2 þ � � � þ

1

n!
Atð Þn þ � � �

� �

¼ AeAt ¼ eAtA

ð3:21Þ

Comparing (3.12) and (3.18), the LAPLACE-transform of the fundamental matrix

for U sð Þ ¼ 0 is

L eAt
� �

¼ sI � Að Þ�1¼ U sð Þ; ð3:22Þ

which provides a new relationship for the computation of the fundamental matrix:

eAt ¼ L�1 sI � Að Þ�1
n o

¼ L�1 U sð Þf g ð3:23Þ
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Combining (3.10) and (3.18) shows that the output of the system is

y tð Þ ¼ cTeAtx 0ð Þþ cT
Z

t

0

eA t�sð Þu sð Þds

2

4

3

5bþ du tð Þ ð3:24Þ

In the case of zero initial conditions x 0ð Þ ¼ 0ð Þ and d ¼ 0, the weighting

function of the system for the excitation u tð Þ ¼ d tð Þ can be easily obtained from the

last equation

w tð Þ ¼ cTeAtb ¼ cTL�1 sI � Að Þ�1
n o

b ¼ L�1 cT sI � Að Þ�1
b

n o

¼ L�1 cTU sð Þb
� �

¼ L�1 P sð Þjd¼0

� �

ð3:25Þ

See the details for the weighting function computation in Chap. A.3.2 of

Appendix A.5.

As a consequence of matrix function operations and the CAYLEY-HAMILTON

theorem the fundamental matrix can also be computed in the form of finite sum:

eAs ¼ ao sð ÞIþ a1 sð ÞAþ � � � þ an�1 sð ÞAn�1 ð3:26Þ

since the state matrix A satisfies its characteristic equation, i.e.

A Að Þ ¼ 0: ð3:27Þ

(See the proofs in A.3.3 of Appendix A.5.)

3.3 Transformation of the State-Equations,

Canonical Forms

The input and output signals of a system are usually certain physical variables. The

state variables, however, depend on the chosen coordinate system. The parameter

matrices A; b; cT also depend on the coordinate system. Introduce the new state

vector z, which can be obtained from x by a linear transformation z ¼ Tx where T is

regular. Using (3.10) the new state-equations are

dz

dt
¼ T Axþ buð Þ ¼ TAT�1zþTbu ¼ ~Azþ ~bu

y ¼ cTxþ du ¼ cTT�1zþ du ¼ ~cTzþ ~du

ð3:28Þ
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where

~A ¼ TAT�1; ~b ¼ Tb; ~cT ¼ cTT�1; ~d ¼ d: ð3:29Þ

It is easy to check that the weighting function and the transfer function of the

system are invariant under linear transformations:

w tð Þ ¼ ~cTe
~At~b ¼ cTT�1eTAT

�1tTb ¼ cTeAtb ð3:30Þ

H sð Þ ¼ ~cT sI � ~A
	 
�1~b ¼ cTT�1 sI � TAT�1

	 
�1
Tb ¼ cT sI � Að Þ�1

b ð3:31Þ

In (3.30) the following simple identity (obtained by TAYLOR series of ex) was

employed

e TAT�1ð Þt ¼ TeAtT�1: ð3:32Þ

It is well known, that a linear transformation has certain special directions in

which the vectors keep their directions, only their lengths change by a factor of ki,

i.e.

Avi ¼ kivi; i ¼ 1; . . .; n: ð3:33Þ

Here vi is the eigenvector of A, and ki is its eigenvalue. The eigenvalue problem

can also be formulated in a different way, i.e. as a homogeneous system equations

in n unknown variables

kiI � Að Þv ¼ 0; ð3:34Þ

where the variables are the components of v. This system of equations has a

solution different from the trivial one v ¼ 0ð Þ if the condition

det kiI � Að Þ ¼ A kið Þ ¼ 0 ð3:35Þ

is satisfied, i.e. the eigenvalues ki are the roots of the characteristic polynomial. If

the roots are single, then the total number of the eigenvalues is n, and each has only

one eigenvector of unit length.

3.3.1 Diagonal Canonical Form

In the case of single eigenvalues, by choosing a special transformation matrix Td,

one can make TdA Tdð Þ�1
diagonal:
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~Ad ¼ TdA Tdð Þ�1¼ K ¼

k1 0 . . . 0

0 k2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . kn

2

6

6

6

4

3

7

7

7

5

¼ Ad ¼ diag k1; k2; . . .; kn½ �:

ð3:36Þ

The necessary transformation matrix Td is the inverse of the matrix of the

eigenvectors

Td ¼ v1; v2; . . .; vn½ ��1: ð3:37Þ

The canonical state-equation (canonical form) obtained by the diagonal trans-

formation is

dz

dt
¼

k1 0 . . . 0

0 k2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . kn

2

6

6

6

6

4

3

7

7

7

7

5

zþ

b1

b2

..

.

bn

2

6

6

6

6

4

3

7

7

7

7

5

u ¼ Kzþ bu

y ¼ c1 c2 . . . cn½ �zþ du ¼ cTzþ du

ð3:38Þ

The transfer function of the transformed system is

P sð Þ ¼
X

n

i¼1

bici
s� ki

þ d: ð3:39Þ

Thus the transfer function can be obtained in partial fraction form from the

canonical one. Note that the eigenvalues of A appear in the denominator. The

transfer function remains unchanged if the product of bi and ci remains constant.

Thus there are a great many canonical forms which are different in the matrices b

and cT but have the same transfer function.

In the case of single poles, the state-equation system in the canonical coordinates

consists of n independent first order differential equations. Each individual state

variable can be assigned to an individual pole of the system.

If the characteristic equation has multiple roots, the matrix Ad can be diago-

nalized only in exceptional cases, but its JORDAN-form, in general, can be given by

J ¼

J1 0 . . . 0

0 J2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . Jm

2

6

6

6

4

3

7

7

7

5

: ð3:40Þ
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Here, each Ji is a square matrix (a JORDAN block) of dimension equal to the

multiplicity of the eigenvalue ki, whose main diagonal contains the eigenvalues and

there are ones in the first off-diagonal right from the main diagonal, all the other

elements are zeros. If, e.g., k1 is a triple eigenvalue, the sub-matrix J1 has the form

J1 ¼
k1 1 0

0 k1 1

0 0 k1

2

4

3

5: ð3:41Þ

(The number of ones depends on how many linearly independent eigenvectors

can be found for the multiple eigenvalue k1. If only one such an eigenvector exists

—which is the normal case corresponding to (3.38)—then all elements of the

off-diagonal are ones. If the number of the independent eigenvectors has increased

by one compared to the previous case, then the number of ones decreases by one. If

there exists the same number of independent eigenvectors as the multiplicity, the

JORDAN block is diagonal. In other cases, finding the transformation matrix needs

special considerations, which are not discussed here.)

3.3.2 Controllable Canonical Form

It is the most common practice in modeling to directly derive the state-equations

from the differential equations formulated for the physical variables. In many cases,

however, the initial information is a transfer function, or a linear differential

equation of order n. This procedure is often called the description or construction

(reconstruction) of the state-equations. Suppose that the operation of the system is

described by the differential equation

dny

dtn
þ a1

dn�1y

dtn�1
þ � � � þ any ¼ b1

dn�1u

dtn�1
þ � � � þ bnu: ð3:42Þ

The equation valid for the LAPLACE-transforms is

Y sð Þ ¼
b1s

n�1 þ � � � þ bn�1sþ bn

sn þ a1sn�1 þ � � � þ an�1sþ an
U sð Þ ¼

B sð Þ

A sð Þ
U sð Þ ¼ P sð ÞU sð Þ: ð3:43Þ

Introduce the following state variables with their LAPLACE-transforms

X1 sð Þ ¼
sn�1

A sð Þ
U sð Þ

X2 sð Þ ¼
sn�2

A sð Þ
U sð Þ ¼

1

s
X1 sð Þ

dx2

dt
¼ x1

..

. ..
.

Xn sð Þ ¼
1

A sð Þ
U sð Þ ¼

1

s
Xn�1 sð Þ

dxn

dt
¼ xn�1

ð3:44Þ
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On this basis,

sX1 sð Þ ¼ �a1X1 sð Þ � � � � � anXn sð ÞþU sð Þ
dx1

dt
¼ �a1x1 � � � � � anxn þ u

Y sð Þ ¼ b1X1 sð Þþ � � � þ bnXn sð Þ y ¼ b1x1 þ � � � þ bnxn

ð3:45Þ

Thus the resulting state-equations are

dx

dt
¼

�a1 �a2 . . . �an�1 �an

1 0 . . . 0 0

0 1 . . . 0 0

..

. ..
. . .

. ..
. ..

.

0 0 . . . 1 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

xþ

1

0

0

..

.

0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

u

y ¼ b1 b2 . . . bn�1 bn½ �x

ð3:46Þ

This form with its special system matrices is called the controllable canonical

form or phase-variable form

Ac ¼

�a1 �a2 . . . �an�1 �an
1 0 . . . 0 0

0 1 . . . 0 0

..

. ..
. . .

. ..
. ..

.

0 0 . . . 1 0

2

6

6

6

6

4

3

7

7

7

7

5

; bc ¼

1

0

0

..

.

0

2

6

6

6

6

4

3

7

7

7

7

5

; cTc ¼ b1 b2 . . . bn�1 bn½ �:

ð3:47Þ

The special feature of this form is that every state variable, except the last one, is

the derivative of the next state variable in the action direction, and all state variables

are fed back to the first one. The feedback factors are the negative coefficients of the

characteristic equation which appear in the first row of matrix A. The input has

effect only on x1. The feedforward factors representing the output are the coeffi-

cients of the numerator of the transfer function.

If P sð Þ is not strictly proper, i.e., B sð Þ ¼ b0os
n þ b01s

n�1 þ � � � þ b0n�1sþ b0n, the

d ¼ b0o also occurs in the state-equation. In this case new coefficients bi must be

computed from the original coefficients b0i by the following decomposition

P sð Þ ¼
B sð Þ

A sð Þ
¼

b0os
n þ b01s

n�1 þ � � � þ b0n�1sþ b0n
sn þ a1sn�1 þ � � � þ an�1sþ an

¼ bo þ
b1s

n�1 þ � � � þ bn�1sþ bn

sn þ a1sn�1 þ � � � þ an�1sþ an
: ð3:48Þ
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The second term is already strictly proper and the coefficients of the numerator

can be computed by the relationships bi ¼ b0i � b0oai ¼ b0i � boai bo ¼ b0o
	 


.

The characteristic polynomial of the controllable canonical form is

A sð Þ ¼ det

sþ a1 a2 . . . an�1 an
�1 s . . . 0 0

0 �1 . . . 0 0

..

. ..
. . .

. ..
. ..

.

0 0 . . . �1 s

2

6

6

6

6

4

3

7

7

7

7

5

¼ An sð Þ ¼ sAn�1 sð Þþ an; ð3:49Þ

where a recursive relationship is obtained by decomposing the last row. It is

obvious that

An sð Þ ¼ sn þ a1s
n�1 þ . . .þ an�1sþ an ¼ A sð Þ ð3:50Þ

i.e. the characteristic polynomial is the denominator of the transfer function.

Therefore the special matrix Ac is called the accompanying (complementary) matrix

of A sð Þ.
Note that the parameter matrix selection

�Ac ¼

0 1 . . . 0 0

..

. ..
. . .

. ..
. ..

.

0 0 . . . 1 0

0 0 . . . 0 1

�an �an�1 . . . �a2 �a1

2

6

6

6

6

4

3

7

7

7

7

5

; �bc ¼

0

0

0

..

.

1

2

6

6

6

6

4

3

7

7

7

7

5

; �cTc ¼ bn bn�1 . . . b2 b1½ �

ð3:51Þ

also provides the controllable canonical form, where the serial number of the state

variables is the opposite of what appeared in the form (3.47).

3.3.3 Observable Canonical Form

To create this form, let us introduce the state variables with their LAPLACE-trans-

forms according to the recursions

X1 sð Þ ¼ Y sð Þ

sX1 sð Þ ¼ �a1X1 sð ÞþX2 sð Þþ b1U sð Þ
dx1

dt
¼ �a1x1 þ x2 þ b1u

sX2 sð Þ ¼ �a2X1 sð ÞþX3 sð Þþ b2U sð Þ
dx2

dt
¼ �a2x1 þ x3 þ b2u

..

. ..
.

sXn sð Þ ¼ �anX1 sð Þþ bnU sð Þ
dxn

dt
¼ �anx1 þ bnu

ð3:52Þ
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where Y sð Þ corresponds to (3.43). Based on the relationships above the following

state-equations can be written

dx

dt
¼

�a1 1 0 . . . 0

�a2 0 1 . . . 0

..

. ..
. ..

. . .
.

0

�an�1 0 0 . . . 1

�an 0 0 . . . 0

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

xþ

b1

b2

..

.

bn�1

bn

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

u

y ¼ 1 0 . . . 0 0½ �x

ð3:53Þ

This form with its special system matrices

Ao ¼

�a1 1 0 . . . 0

�a2 0 1 . . . 0

..

. ..
. ..

. . .
. ..

.

�an�1 0 0 . . . 1

�an 0 0 . . . 0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

; bo ¼

b1
b2

..

.

bn�1

bn

2

6

6

6

6

6

4

3

7

7

7

7

7

5

; cTo ¼ 1 0 . . . 0 0½ �

ð3:54Þ

is called observable canonical form. The special feature of this form is that its

output is the state variable x1 itself, which is fed back to the inputs of all the state

variables. The feedback factors are the negative coefficients of the characteristic

equation, and thus they appear in the first column of Ao. Note that the parameter

matrix selection

�Ao ¼

0 . . . 0 0 �an
1 . . . 0 0 �an�1

..

. . .
. ..

. ..
. ..

.

0 . . . 1 0 �a2
0 . . . 0 1 �a1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

; �bo ¼

bn
bn�1

..

.

b2
b1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

; �cTo ¼ 0 0 . . . 0 1½ �

ð3:55Þ

also provides the observable canonical form, where the serial number of the state

variables is the opposite to what appeared in (3.53).

If P sð Þ is not strictly proper, d ¼ bo also appears in the state-equation and the

statements made in connection with (3.48) are also valid.

(If the poles and the partial fractional forms of the transfer function are known,

then further canonical forms can be constructed.)
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3.4 The Concepts of Controllability and Observability

A very important question of control is how to influence arbitrarily all state vari-

ables by the input. This question can be answered by the controllability theorem

introduced by KALMAN.

A system is state controllable if its state vector can be driven from an initial state

x toð Þ to an arbitrary final state x tvð Þ in a finite time tv � toð Þ by a control signal u. If

this definition is fulfilled only for the output, then the system is output controllable.

In the case of linear time invariant systems, the starting time is chosen to ¼ 0ð Þ, and
the initial state can be given as x 0ð Þ. By this definition, the controllability is

connected to the system. If the controllability exists for a certain initial state, then it

remains for any initial state, since from any x 0ð Þ the system can be driven to x tvð Þ
by an appropriate control signal.

Controllability can best be explained in canonical coordinates. If in the canonical

form (3.38) bi is zero for a state variable, then this state can not be controlled. This

means, that there is no parallel component, but only a perpendicular component, of

any control to the eigenvector belonging to the eigenvalue ki, thus the effect of the

control always remains in the plane perpendicular to the eigenvector. (As a con-

sequence of the canonical form the system can only be controlled if the poles of the

canonical coordinates are different.)

If the system is not state controllable, the output, however, may be controllable if

at least one state variable is controllable and the ci belonging to it is not zero [see

(3.39)].

In coordinates different from the canonical ones, the above conditions can not be

directly recognized because of the relationships between the state variables,

therefore they have to be replaced by more general criteria.

For simplicity, choose the initial condition x 0ð Þ ¼ 0. Then the solution of the

state-Eq. (3.18) has the form

x tð Þ ¼

Z

t

0

eA t�sð Þu sð Þds

2

4

3

5b ¼

Z

t

0

eAsu t � sð Þds

2

4

3

5b ð3:56Þ

and using the finite sum form of the fundamental matrix [see (3.26)], it can be

written as

eAs ¼ ao sð ÞIþ a1 sð ÞAþ � � � þ an�1 sð ÞAn�1 ð3:57Þ

The solution of the state-equation is obtained in closed form as

x tð Þ ¼ b

Z

t

0

ao sð Þu sð ÞdsþAb

Z

t

0

a1 sð Þu sð Þdsþ � � � þAn�1b

Z

t

0

an�1 sð Þu sð Þds:

ð3:58Þ
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Thus the right-hand side of the equation is a linear combination of the columns

of the controllability matrix

Mc ¼ b Ab . . . An�1b
� �

ð3:59Þ

Thus the condition of that each point of the state-space be reachable means that

Mc must have n linearly independent columns, i.e. Mc must be invertible and

regular. Since Mc depends on A and b, the controllability of the pair A; b is a quite

accepted convention.

If the above statements are referred to the output, then the condition of output

controllability is that at least one element of

mT
c ¼ cTb cTAb . . . cTAn�1b

� �

ð3:60Þ

must be non zero.

The controllability matrix of the controllable form (3.46) has the special form

Mc
c ¼

1 a1 a2 . . . an�1

0 1 a1 . . . an�2

..

. ..
. ..

. . .
. ..

.

0 0 0 . . . a1
0 0 0 . . . 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

�1

; ð3:61Þ

which can be seen very easily by taking the product Mc
c Mc

c

	 
�1

bc Acbc . . . Acð Þn�1
bc

� �

1 a1 a2 . . . an�1

0 1 a1 . . . an�2

..

. ..
. ..

. . .
. ..

.

0 0 0 . . . a1

0 0 0 . . . 1

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

¼ wo w1 w2 . . . wn�1½ �

ð3:62Þ

Based on the special construction of the state matrices Ac and bc [see (3.47)], it

can be seen that

wo ¼ bc

w1 ¼ a1bc þAcbc

..

.

wn�1 ¼ an�1bc þ an�2Acbc þ � � � þ Acð Þn�1
bc

ð3:63Þ
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where the following recursive relationship holds:

wk ¼ akbc þAcwk�1: ð3:64Þ

The use of the recursive relationship

wo w1 w2 . . . wn�1½ � ¼

1 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0

..

. ..
. ..

. . .
. ..

.

0 0 0 . . . 1

2

6

6

6

6

4

3

7

7

7

7

5

¼ I ð3:65Þ

proves the validity of (3.61).

The special matrix Mc
c obtained by the controllable canonical form—which is

always derived from the transfer function—is regular, since it is the inverse of a

regular matrix. (The determinant of a triangular matrix is the product of its diagonal

elements, which is now equal to one.) The name of this canonical form comes from

the above features, where only the observability (see later) can be investigated by

the pair Ac; c
T
c .

It is an interesting question how the linear transformation z ¼ Tx influences the

controllability matrix. Based on (3.29), one can write

~b ¼ Tb

~A~b ¼ TAT�1Tb ¼ TAb

..

.

~A
n�1~b ¼ TAn�1b

ð3:66Þ

on the basis of which it follows that

~Mc ¼ ~b ~A~b . . . ~A
n�1~b� ¼ T b Ab . . . An�1b

� �

¼ TMc

h

ð3:67Þ

Based on the above form of the controllability matrix, any controllable systems

can be rewritten into controllable canonical form by using the transformation matrix

Tc ¼ Mc
c Mcð Þ�1

.

The controllability matrix, however, is not always derived from the transfer

function. In this case, of course, the direct investigation of the controllability matrix

Mc is required.
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u

S

S

Fig. 3.2 A non-controllable

system

Example 3.2 The complete state-equation of a system (see the block diagram in

Fig. 3.2) consisting of identical first order sub-systems is

dx

dt
¼

�1 0

0 �1

� �

xþ
1

1

� �

u ¼ Axþ bu: ð3:68Þ

The controllability matrix is

Mc ¼ b Ab½ � ¼
1 �1

1 �1

� �

ð3:69Þ

which is singular, so the system is not controllable. ■

An other essential question of control is, whether each state variable can be

observed by measuring the output. This question can be answered by the observ-

ability theorem introduced by KALMAN.

Observability—being related to the controllability—gives an answer to the

question, whether the initial state at the starting point of the measurements can be

reconstructed by measuring the input and output signals of a system of unknown

state during a certain time. The system is observable if x toð Þ can be determined from

the signals y tð Þ and u tð Þ observed in the interval to\t\tv.

It is enough to perform the investigation only for u tð Þ � 0, i.e., for the motion

generated by the initial values. Observability can be diagnosed in the most easiest

way in canonical coordinates. Two criteria have to be fulfilled: the signal y must

depend on all canonical state variables; and the poles of the systems must be

different. Thus if any ci in (3.38) is zero, the output does not have any information

concerning the given canonical state variable, so it cannot be reconstructed from the

measurements. This means that there is no observation which would have parallel

component, to the eigenvector belonging to the eigenvalue ki, only perpendicular

component, so the effect of the observation always remains in the plane perpen-

dicular to the eigenvector.
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In coordinates different from the canonical ones, the above conditions can not

directly be recognized due to the interrelationships between the state variables,

therefore they have to be replaced by more general criteria.

In the discussion of controllability, the controllability of the state variables was

investigated and the output was disregarded. Here in the discussion of observability,

the input is disregarded, as was mentioned earlier. Consider the following system.

dx

dt
¼ Ax

y ¼ cTx

ð3:70Þ

By consecutive differentiations of the output the equation

y;
dy

dt
; . . .;

dn�1y

dtn�1

� �T

¼

cT

cTA

..

.

cTAn�1

2

6

6

4

3

7

7

5

x ð3:71Þ

is obtained and the state vector can be unambiguously determined from the output

and its derivatives, if the observability matrix

Mo ¼

cT

cTA

..

.

cTAn�1

2

6

6

4

3

7

7

5

ð3:72Þ

has n linearly independent rows. Thus Mo must be invertible and regular. Since Mo

depends on A and cT, this problem is used to be cited as the observability of the pair

A; cT. (In (3.71)—due to the CAYLEY-HAMILTON theorem—there is no need to

compute derivates of higher order than n� 1ð Þ, see A.3.3 of Appendix 5.).

The observability matrix of the observable canonical form is very special

Mo
o ¼

1 0 . . . 0 0

a1 1 . . . 0 0

a2 a1
. .
.

0 0

..

. ..
.

. . . 1 0

an�1 an�2 . . . a1 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

�1

ð3:73Þ

which can be seen very easily, if the product Mo
o

	 
�1
Mo is computed, i.e.
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1 0 . . . 0 0

a1 1 . . . 0 0

a2 a1
. .
.

0 0

..

. ..
.

. . . 1 0

an�1 an�2 . . . a1 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

cTo
cToAo

..

.

cTo Aoð Þn�1

2

6

6

6

4

3

7

7

7

5

¼

wT
o

wT
1

..

.

wT
n�1

2

6

6

6

4

3

7

7

7

5

ð3:74Þ

Based on the special construction [see (3.54)] of the system matrices, one has

wT
o ¼ cTo

wT
1 ¼ a1c

T
o þ cToAo

..

.

wT
n�1 ¼ an�1c

T
o þ an�2c

T
oAo þ . . .þ cTo Aoð Þn�1

ð3:75Þ

where there exists the following recursive relationship

wT
k ¼ akc

T
o þwT

k�1Ao ð3:76Þ

Using this recursive relationship

wT
o

wT
1

..

.

wT
n�1

2

6

6

6

4

3

7

7

7

5

¼

1 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0

..

. ..
. ..

. . .
. ..

.

0 0 0 . . . 1

2

6

6

6

6

4

3

7

7

7

7

5

¼ I ð3:77Þ

which proves the validity of (3.73).

The special Mo
o obtained by the observable canonical form—which is always

derived from the transfer function—is always regular, since it is the inverse of a

regular matrix. (The determinant of a triangle matrix is the product of the diagonal

elements, which is now equal to one.) The name of this canonical form comes from

the above features, where only the controllability can be investigated by the pair

Ao; bo.

It is an interesting question how the linear transformation z ¼ Tx influences the

observability matrix. Based on (3.29), one has that

~cT ¼ cTT�1

~cT~A ¼ cTT�1TAT�1 ¼ cTAT�1

..

.

~cT~A
n�1

¼ cTAn�1T�1

ð3:78Þ

In matrix form, this is
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~Mo ¼

~cT

~cT~A

..

.

~cT~A
n�1

2

6

6

6

4

3

7

7

7

5

¼

cT

cTA

..

.

cTAn�1

2

6

6

4

3

7

7

5

T�1 ¼ MoT
�1 ð3:79Þ

Based on the above form of the observability matrix, any observable system can

be rewritten in observable canonical form by using the transformation matrix T�1
o ¼

Moð Þ�1
Mo

o (i.e., To ¼ Mo
o

	 
�1
Mo).

The observability matrix, however, is not always derived from the transfer

function. In this case, of course, the direct investigation of the observability matrix

Mo is required.

Example 3.3 The complete state-equation of a system consisting of identical first

order subsystems (see the block diagram in Fig. 3.3) is

dx

dt
¼

�1 0

0 �1

� �

x ¼ Ax

y ¼ 1 1½ � ¼ cTx

ð3:80Þ

The observability matrix is

Mo ¼
1 1

�1 �1

� �

ð3:81Þ

which is singular, thus the system is not observable. ■

Fig. 3.3 A non-observable

system
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3.4.1 The KALMAN Decomposition

The concepts of controllability and observability make it possible to understand the

structure of a linear system. Remember that the space of controllable states is the

sub-space defined by the columns of the controllability matrix. If its dimension is n, then

the whole space is controllable. Let us introduce the notation xc for the controllable

states, and x�c for the non-controllable states. In this case the state-equation is

d

dt

xc
x�c

� �

¼
A11 A12

0 A22

� �

xc
x�c

� �

þ
b1
0

� �

u ð3:82Þ

where it can be clearly seen from the structure that the states x�c cannot be influenced

by u. Similarly, let us introduce the notation xo for the observable states and x�o for

the non-observable states. Then the state-equation

d

dt

xo
x�o

� �

¼
A11 0

A21 A22

� �

xo
x�o

� �

y ¼ cT1 0T
� � xo

x�o

� � ð3:83Þ

is obtained, where it can be well seen, that there is no component in the output for

the states x�o.

A linear system can be decomposed into four sub-systems:

– Sco controllable and observable xco
– Sc�o controllable and non-observable xc�o
– S�co non-controllable and observable x�co
– Sco non-controllable and non-observable xco

where the corresponding state variables are also presented (the entering arrows

mean the effect of the input and the regarding state sub-system). The complete

KALMAN decomposition of the linear system is

d

dt

xco

xc�o

x�co

xco

2

6

6

6

4

3

7

7

7

5

¼

A11 0 A13 0

A21 A22 A23 A24

0 0 A33 0

0 0 A43 A44

2

6

6

6

4

3

7

7

7

5

xco

xc�o

x�co

xco

2

6

6

6

4

3

7

7

7

5

þ

b1

b2

0

0

2

6

6

6

4

3

7

7

7

5

u ¼ Axþ bu

y ¼ cT1 0T cT2 0T
� �

x

ð3:84Þ

The block diagram representing each sub-system is shown in Fig. 3.4. Following

the arrows of the block diagram it can be seen that the input influences the
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sub-systems Sco and Sc�o, but the output depends only on the sub-systems Sco and

S�co. The sub-system Sco does not belong either to the input or to the output.

The transfer function of the entire system can be obtained by simple computation

P sð Þ ¼ cT1 sI � A11ð Þ�1
b1; ð3:85Þ

i.e., it is completely determined by the sub-system Sco. In contrast it can be stated

that only the controllable and observable sub-system of the whole system can be

determined from the transfer function.

3.4.2 The Effect of Common Poles and Zeros

A very old problem of control, namely the canceling of poles and zeros, can be

explained by the KALMAN decomposition. To illustrate it let us consider the fol-

lowing example.

Example 3.4 Let the transfer function of the process be

P sð Þ ¼
Y sð Þ

U sð Þ
¼

s� 1

s� 1
¼ 1; ð3:86Þ

i.e., the numerator and the denominator have common roots, thus one zero and one

pole are equal. In this case a common root, at the same time, means also an unstable

pole. It can be seen easily that the following differential equation corresponds

formally to the transfer function (3.86):

+

+

y
S

co

S
co 

S
c o

S
c o 

u
Fig. 3.4 KALMAN

decomposition of the linear

system
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dy

dt
� y ¼

du

dt
� u: ð3:87Þ

The solution obtained by integration of the differential equation is

y tð Þ ¼ u tð Þþ cet ð3:88Þ

where c is a constant. In the method of canceling, it must never be forgotten that the

complete solution of the state-equation is performed according to (3.18), which

contains also the initial condition, whose dynamics (an un-excited system) depends

on the poles of the whole system, even also on the possibly cancelled pole. If this

pole is unstable, then its non-disappearing effect occurs unpleasantly in the solution.

The trivial system y tð Þ ¼ u tð Þ obtained from (3.86) after the pole cancellation is

obviously not equal to (3.88). The Eq. (3.86) can be brought to the following form

P sð Þ ¼ bo þ
b1

s� 1
¼ dþ

b1

s� 1
¼ 1þ

0

s� 1
ð3:89Þ

Based on this the controllable canonical form can be easily written as

dx1

dt
¼ x1 þ u; y ¼ u ð3:90Þ

which is not observable, and an observable canonical form can also be defined as

dx2

dt
¼ x2; y ¼ x2 þ u ð3:91Þ

which is not controllable. ■

The KALMAN-form of the whole system corresponding to Eqs. (3.90) and (3.91)

is shown in Fig. 3.5, which consists of the sub-systems Sc�o, S�co and Sco. The Sco is a

static system with transfer function P sð Þ ¼ 1. The Sc�o is a non-observable but

controllable subsystem, while S�co is not controllable, but is an observable

sub-system.

Fig. 3.5 The complete

KALMAN-form of the system of

transfer function (3.86)
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Note that if the transfer function of the system is given, then first the common

divisors of the numerator and denominator have to be investigated. The common

factor can only be a common root. It is reasonable to continue the simplification

until there are no more common divisors. Such polynomials are called relatively

prime. A transfer function P sð Þ ¼ B sð Þ=A sð Þ is called irreducible (i.e., can not be

simplified) if the polynomials A sð Þ and B sð Þ are relatively prime, which is an

algebraic condition for the special DIOPHANTINE (or BEZOUT) equation

A sð ÞX sð ÞþB sð ÞY sð Þ ¼ 1 ð3:92Þ

to have a solution, i.e., the corresponding SILVESTER matrix must be regular (see

more details in Chap. 9).

If a transfer function is not reducible, the related state-equation corresponds to

the controllable and observable sub-system Sco of the KALMAN-form and the other

sub-systems do not exist.

Equations (3.90) and (3.91) can be generalized to the case when the controllable

and observable system Sco A; b; cT ; df g is irreducible, and the numerator and also

the denominator of the transfer function P sð Þ are extended by a common factor

(s� p) referring to a real pole. For this general case the state-equation of the

redundant non-controllable and non-observable system can be given as

_xr ¼
_x

_x1
_x2

2

4

3

5 ¼
A 0 0

0T p 0

0T 0 p

2

4

3

5

x

x1
x2

2

4

3

5þ
b

1

0

2

4

3

5u ¼ Arxr þ bru

y ¼ cT 0 1
� �

xr þ du ¼ cTr xr þ du

: ð3:93Þ

Example 3.5 Assume that the transfer function of the process is

P sð Þ ¼
2 sþ 1ð Þ

sþ 1ð Þ sþ 2ð Þ
¼

2sþ 2

s2 þ 3sþ 2
¼

b1sþ 2

s2 þ 3sþ 2
:

It is easy to form the parameter matrices of the controllable canonical form,

which are

Ac ¼
�3 �2

1 0

� �

; bc ¼
1

0

� �

and cTc ¼ 2 2½ �:

The controllability matrix of this canonical form is

Mc
c ¼ bc Acbc½ � ¼

1 �3

0 1

� �

:
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It is easy to check that the determinant of this matrix is det Mc
c

	 


¼ 1, as a

consequence the process is controllable. The observability matrix of this canonical

form is

Mc
o ¼

cTc
cTcAc

� �

¼
2 2

�4 �4

� �

:

Note that the determinant of this matrix is det Mc
o

	 


¼ 0; as a consequence the

process is not observable.

Now form the parameter matrices of the observable canonical form, which are

Ao ¼
�3 1

�2 0

� �

; bo ¼
2

2

� �

and cTo ¼ 1 0½ �:

The controllability matrix of this canonical form is

Mo
c ¼ bo Aobo½ � ¼

2 �4

2 �4

� �

:

It is easy to check that the determinant of this matrix is det Mo
c

	 


¼ 0; as a

consequence the process is not controllable. The observability matrix of this

canonical form is

Mo
o ¼

cTo
cToAo

� �

¼
1 0

�3 1

� �

:

Note that the determinant of this matrix is det Mo
o

	 


¼ 1; as a consequence the

process is observable. This example shows and explains very nicely the meaning of

the above matrices.

Observe and check that the irreducible equivalent transfer function

l

mg

α

Fig. 3.6 Scheme of the

inverted pendulum
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P sð Þ ¼
2 sþ 1ð Þ

sþ 1ð Þ sþ 2ð Þ
¼

2

sþ 2

is already controllable and observable. ■

3.4.3 The Inverted Pendulum

Next the simplest case of the moving inverted pendulum shown in Chap. 2.6 is

investigated, i.e., when the suspension of the pendulum is fixed. Via this example

almost all of the methods of this Chapter from the linear modeling to the investi-

gation of the controllability and observability issues can be demonstrated.

In order to determine the state-equation of the inverted pendulum, given in a

simple schematic form in Fig. 3.6, introduce the following state variables: x2 ¼
da=dt and x1 ¼ a (the angular velocity and the angular position). From the equality

of the moments calculated for the center of the angular position it follows that

J
d2a

dt2
¼ mglsin að Þþmuglcos að Þ; ð3:94Þ

where it is assumed that the mass m is concentrated at the end of an ideal,

weightless pendulum of length l, the inertia relating to the center of the rotation is

denoted by J. The actuating signal is the horizontal acceleration of the value

ug (measured in g), the output is the angular position a. The non-linear state-

equation is obtained as

dx

dt
¼ _x ¼ f x; uð Þ ¼

da=dt

mgl

J
sin da=dtð Þþ

mglu

J
cos að Þ

2

4

3

5 ¼
x2

sin x1ð Þþ ucos x1ð Þ

� �

y ¼ a ¼ x1

ð3:95Þ

where choosing
ffiffiffiffiffiffiffiffiffiffiffiffi

J=mgl
p

as a time unit, the last, normalized form in Eq. (3.95)

results. Thus the state-equation is a nonlinear, time-invariant, second order vector

differential equation.

Let us linearize the equation in the case of zero actuating signal. The equilibrium

point is

_x ¼ 0 ¼ f u ¼ 0ð Þ ¼
x2

sin x1ð Þ

� �

¼
0

0

� �

;
x2 ¼ da=dt ¼ 0

sin x1ð Þ ¼ sin að Þ ¼ 0
ð3:96Þ

where a ¼ 0 and a ¼ p. At the first equilibrium point the pendulum is in the

position upside, but in the second it is in down-side. Determining the derivatives

with respect to x and u of the function f x; uð Þ yields
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df x; uð Þ

d x
¼

0 1

cos x1ð Þ � usin x1ð Þ 0

� �

and
df x; uð Þ

d u
¼

0

cos x1ð Þ

� �

: ð3:97Þ

Evaluating the derivates at the upper point (u ¼ 0; x1 ¼ 0 and x2 ¼ 0) the

parameter matrices

A ¼
0 1

1 0

� �

; b ¼
0

1

� �

and cT ¼ 1 0½ � ð3:98Þ

are obtained. Computing the transfer function (by using A.1.10) yields

G sð Þ ¼ cT sI � Að Þ�1
b ¼

1

det
s �1

�1 s

� � 1 0½ �
s 1

1 s

� �

0

1

� �

¼
1

s2 � 1
s 1½ �

0

1

� �

¼
1

s2 � 1
¼

1

sþ 1ð Þ s� 1ð Þ

ð3:99Þ

The root s ¼ 1 shows that at this operating point the system is unstable. It can be

easily checked that the controllability matrix

Mc ¼
0 1

1 0

� �

ð3:100Þ

is regular, thus the system is controllable. In this case the observability matrix,

which is

Mo ¼
1 0

0 1

� �

: ð3:101Þ

is also regular, thus the system is observable. Coming from the simplicity of the

above task, the DT control of the inverted pendulum is a typical and spectacular

laboratory example all over the world for controlling an unstable process. (The

complexity of the task increases drastically by placing more pendulums on top of

each other.)

Evaluating the derivates in the lower point (u ¼ 0; x1 ¼ p and x2 ¼ 0), the

parameter matrices

A ¼
0 1

�1 0

� �

; b ¼
0

�1

� �

and cT ¼ 1 0½ � ð3:102Þ

are obtained. Calculate the transfer function [by using (A.1.10)] yields
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G sð Þ ¼ cT sI � Að Þ�1
b ¼

1

det
s �1

1 s

� � 1 0½ �
s 1

�1 s

� �

0

�1

� �

¼
1

s2 þ 1
s 1½ �

0

�1

� �

¼
�1

s2 þ 1
¼

�1

sþ jð Þ s� jð Þ

ð3:103Þ

The roots on the imaginary axis indicate that at this operating point the process is

an oscillating system without any damping. Do not forget that no kind of damping

(e.g., air or ordinary friction) is taken into consideration in the model. Simple

computations similar to the above show that even at this operating point the system

is controllable and observable.
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Chapter 4

Negative Feedback

The aim of a control system is to ensure reference signal tracking as well as

disturbance rejection. The control system must not be not very sensitive to mea-

surement noise or to plant/model mismatch.

The designed control system has to ensure various quality specifications. Also, it

has to be technically realizable and eligible in terms of economic and other (e.g.,

environmental protection or safety) viewpoints.

4.1 Control in Open- and Closed-Loop

If, when deciding whether intervention in a process is necessary, the information is

taken not from the output of the process but from another source, or a priori

knowledge about the process or its environment is used, then the realized structure

is called open-loop control (Fig. 4.1). Here P denotes the transfer function of the

process (plant), C is the transfer function of the controller (regulator), r denotes the

reference signal, y is the output signal, while yni and yno denote the input and the

output disturbances, respectively.

The reference signal tracking would be ideal if the control device realized the

inverse of the transfer function of the plant. With open-loop control, the reference

signal tracking can be realizable, but open-loop control is not able to reject the

effect of the disturbances.

The effect of the measurable output disturbance could be eliminated by feed

forward of the disturbance according to Fig. 4.2.

Generally the perfect inverse of the transfer function of the plant is not realizable

(If e.g., the process contains dead time, its inverse would mean the prediction of a

future output value. The signal transfer is also non-realizable if the degree of the

numerator of the inverse transfer function is higher than that of its denominator.).

Approximating the inverse of the process can be realized by feeding back an

amplifier of high gain K through the transfer function of the plant (Fig. 4.3).
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Using the above structure the transfer function of the controller is:

Ĉ ¼ K

1þKP sð Þ ¼
1

1
K
þP sð Þ �

1

P sð Þ : ð4:1Þ

The control is realized through negative feedback if the input signal (the ma-

nipulated variable) of the process is affected by the difference between the measured

output signal and its desired prescribed value. The measured output value is gen-

erally noisy because of the noise component yz released by the measurement

equipment. Based on the error signal e the controller C generates the manipulated

variable u, which modifies the output signal of the process P. The output signal of

the process changes according to the dynamics of the process until it reaches its

desired value. Control via negative feedback is called closed-loop control. The

block diagram of a closed-loop control system is given in Fig. 4.4. Often the

reference signal is filtered by a filter element given by the transfer function

F (denoted by the dotted line in the figure).

Comparing Figs. 4.3 and 4.4 shows that the two systems are the same if the

disturbances and the measurement noise are not considered, the filter is supposed to

be unity (F ¼ 1) and in the closed-loop system the controller is proportional,

chosen as C ¼ K. But as in the closed-loop system the output signal is fed back, not

the control signal, in addition to reference signal tracking, the closed-loop system is

also able to reject the effects of the disturbances and the measurement noise.

Whatever effect is causing a deviation of the output signal from its desired value,

C P
yr

niy noyFig. 4.1 Open-loop control

r

−

1−
= PC

y
P

noyFig. 4.2 Open-loop control

with feed forward

r y
PK

P
^

C

−

Fig. 4.3 Open-loop control

with an element

approximating the inverse of

the process
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the error signal will be different from zero, creating a control signal to eliminate the

deviation.

In a closed-loop control structure the best reference signal tracking is achieved

by adjusting the controller C to ensure that the relationship between the control

signal u and the reference signal r according to U sð Þ=R sð Þ ¼ C= 1þCPð Þ would

provide the inverse of the process model. If the exact inverse is non-realizable, then

its best realizable approximation can be employed. (It has to be mentioned that

generally the inverse of the process could be well approximated only within a given

frequency range.)

A comparison of open-loop and closed-loop control was given in Chap. 1. In the

sequel, the main properties of closed-loop control will be discussed.

4.2 The Basic Properties of the Closed Control Loop

The main properties of closed-loop control systems will be illustrated through some

simple examples.

Stability. A basic requirement for a closed-loop control system is that for a finite

change in the input signal it should respond with a finite change in the output signal,

i.e. a steady state should be reached. In a control system realized by negative

feedback oscillations with steady or increasing amplitudes may occur. The reason

for this is that the execution of the decision to change the process output is delayed

by the process dynamics. High gains in the control system may increase the

unfavorable inertial change of the signals to such an extent that the control system

will not be able to reach a steady state. Stability will be discussed in detail in

Chap. 5.

Reference signal tracking. With a closed-loop control realized by negative

feedback, the output signal should follow the reference signal as accurately as

possible. In the control system in Fig. 4.5 the plant is described by a first-order lag

and the controller is a proportional element. If a step reference signal is to be

tracked, there will be a steady state error in the system, as only a steady constant

input signal is able to produce a constant signal value at the output of the first-order

lag. The value of the steady state error will be esteady ¼ 1= 1þAPAð Þ. This error will

C P
y

F
r 1

r e

−

u

zy

niy noy

Fig. 4.4 Closed-loop control system
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be small if the loop-gain K ¼ APA is high. Static accuracy in the steady state could

be ensured by applying an integrating controller instead of a proportional controller.

The property of an integrator is that its output can be constant only if its input (the

error signal) finally has reached the value zero.

Stabilization of an unstable process. An unstable process can be stabilized by

negative feedback.

Example 4.1 Let us consider the system given in Fig. 4.6. For unit step input, the

output of the closed-loop system for t � 0 is yðtÞ ¼ L�1 K=s s� 2ð Þf g
¼ K e2t � 1ð Þ=2, which tends to infinity if t ! 1. With a proportional negative

feedback b, the resulting transfer function is

T sð Þ ¼ Y sð Þ
R sð Þ ¼

K
s�2

1þ Kb
s�2

¼ K

sþKb� 2
:

The feedback system is stable, i.e. its transients decay for any b satisfying

K b[ 2. �

Decreasing the effect of the disturbance in the output signal. In the open-loop

control in Fig. 4.7 the disturbance appears entirely in the output. In the feedback

system the effect of the disturbance in the output signal is decreased by 1= 1þA bð Þ,
i.e., the higher the value of the loop gain A b, the better the feedback reduces the

effect of the disturbance.

Feedback can improve the transient response. Let us consider the first-order lag

element in Fig. 4.8. With a constant feedback b the resulting transfer function is

Fig. 4.5 Closed-loop control system with proportional controller

Fig. 4.6 An unstable system can be stabilized by negative feedback
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T sð Þ ¼ Y sð Þ
R sð Þ ¼

K

1þ bK

1

1þ s T1
1þbK

¼ K 0 1

1þ sT 0
1

:

The time constant has been decreased, so the system is faster. At the same time

the gain also has been decreased, which generally has to be compensated using a

filter of the appropriate gain (as shown in Fig. 4.4).

Feedback decreases the sensitivity of the process to parameter changes.

In Fig. 4.9 the gain of the proportional element without feedback is 10. Suppose

the gain of the feedback system is the same: A1= 1þA1bð Þ ¼ 10. Choose the value

of A1 to be 1000. With this value, b ¼ 0:099 is obtained. If the value of the input

signal is 10, then in both systems the value of the output signal is 100. Reduce both

values A and A1 by 2%. Then A ¼ 9:8 and A1 ¼ 980. In the original system then the

output value decreases to 98, while in the feedback system it remains quite close to

Fig. 4.7 Negative feedback decreases the effect of a disturbance

Fig. 4.8 Feedback modifies the transient response

Fig. 4.9 With feedback the system becomes less sensitive to parameter changes
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100 (99.98). In the feedback system the error appearing because of the parameter

change is 1þA1bð Þ times less than in the original system.

In the range of high gains the feedback system creates the approximate inverse of

the feedback element.

Let us consider the circuit in Fig. 4.10. The element given by the transfer function

H1 sð Þ is fed back with negative feedback through an element given by H2 sð Þ. The
resulting transfer function is H sð Þ ¼ H1 sð Þ= 1þH1 sð ÞH2 sð Þ½ �. In the frequency

range where H1 jxð ÞH2 jxð Þj j is much higher than 1, the resulting transfer function

approximates the inverse of the transfer function H2. In that portion of the fre-

quency domain, where the absolute value of the loop frequency function is much

less than 1, the resulting frequency function approximates the frequency function

H1 of the forward path.

Feedback has a linearizing effect.

Let us consider the static non-linear characteristics in Fig. 4.11a. The character-

istics can be divided into three linearized ranges, where the linear transfer gain of

the individual ranges is determined by the slope A of the straight line fitted to the

curve at the given operating point. Suppose the value of the proportional feedback

gain is b. In the feedback system the slope of the individual linearized ranges of the

static characteristics is A= 1þAbð Þ. The bigger is A b, the better the transfer gain

approximates the value of 1=b, becoming independent of the slopes A of the

individual ranges of the static characteristics. Figure 4.11b shows the gains of the

linearized individual parts with feedback gain b ¼ 10. It can be seen that the slopes

in the different ranges are almost the same, the characteristic is approximately linear

in the whole domain. For b ¼ 100 the linearization is still better (with slopes

0:00998, 0:00995 and 0:0099).
It has to be emphasized that while the non-linear characteristics have been

linearized to a great extent, considering the input u1 the ranges of the linearized

sections have been changed compared to the original sections. For example, if

b ¼ 10:

Fig. 4.10 In the range of high gains the feedback creates the approximate inverse of the feedback

element

160 4 Negative Feedback



If 0� u� 1, then yv ¼ 5u and u ¼ u1 � 50u, hence u1 ¼ 51u and yv ¼ 5
51
u1.

If 1\u� 2, then yv ¼ 3þ 2u and u ¼ u1 � 10 3þ 2uð Þ, hence u ¼ 1
21
u1 � 30

21

and yv ¼ 3
21

þ 2
21
u1.

If 2\u� 3, then yv ¼ 5þ u and u ¼ u1 � 10 5þ uð Þ, hence u ¼ 1
11

u1 � 50
11

and

yv ¼ 5
11

þ 1
11
u1.

Feeding back an integrator by a static non-linear element results in the inverse of

the non-linear characteristics.

Let us consider the circuit given in Fig. 4.12. Negative feedback is applied to an

integrator through a static quadratic non-linear element. As the output of the

integrator can be constant only if its input, i.e. the error signal, becomes zero,

r ¼ y2, and y ¼ ffiffi

r
p

, i.e. the circuit realizes the inverse of the non-linearity in the

feedback path.

(a) (b)
Static characteristics with constant feedback Feedback has a linearization effect

(Feedback has a linearizing effect, but the ranges of the linearized sections associated

to the new input u
1

have been changed)

Fig. 4.11 Linearization by feedback.

Fig. 4.12 Feeding back an

integrator by a non-linear

static element realizes the

inverse characteristics
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4.3 The Feedback Operational Amplifier

With the invention of the telephone and the development of telecommunication,

high gain amplifiers were used to compensate the damping of signals over long

transmission lines. Invented by BLACK, the amplifier with negative feedback (1927)

ensured a stable solution to decrease the sensitivity of vacuum tube amplifiers to the

change of their characteristics, and at the same time it linearized, to a great extent,

the nonlinear characteristics of the amplifier.

Operational amplifiers built of integrated circuits are also used in control circuits

for amplification and compensation.

Let us analyze the signal transfer properties of the feedback operational ampli-

fier. Its circuit is shown in Fig. 4.13. In the input and feedback path, resistors,

capacitors or an interconnection of resistors and capacitors can be employed. For

the sake of simplicity let us consider resistors both in the forward and the feedback

path. The gain G of the amplifier is of a very high value (in the range of 104�108).

Let us determine the transfer function and the corresponding block diagram of

the operational amplifier.

The output voltage can be expressed as

U2 ¼ �GU: ð4:2Þ

If the input current I can be neglected (e.g. the input resistance of the amplifier is

high) then the following KIRCHHOFF voltage law equation can be written for the

input point of the amplifier:

U1 � U

R1

¼ U � U2

R2

: ð4:3Þ

Let us express the variable U using this equation.

U ¼ R2

R1 þR2

U1 þ
R1

R2

U2

� �

: ð4:4Þ

Substituting this expression into (4.2), the following equation is obtained after

some manipulations:

Fig. 4.13 Feedback

operational amplifier
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U2

U1

¼ �R2

R1

1

1þ 1
G

1þ R2

R1

� � : ð4:5Þ

It can be seen that if G ! 1, the resulting transfer gain is determined by the

ratio of the two resistances. For high values of G, the transfer gain keeps its value

quite close to its nominal value even in the case of possible changes in G. (Note that

if impedances Z1 and Z2 are used in the input and the feedback path instead of

resistors, the transfer function of the operational amplifier will be approximately

�Z2=Z1, and depending on the representation of the impedances, different mathe-

matical operations can be realized.)

Based on the above relationships, a block diagram of the feedback operational

amplifier can be found. Figure 4.14 shows three equivalent schemes.

Fig. 4.14 Equivalent block diagrams of the feedback operational amplifier
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4.4 The Transfer Characteristics of the Closed

Control Loop

The behavior of a closed-loop control system can be investigated by the overall

transfer functions exhibiting the relationships between the output and the input

signals.

As the systems are assumed to be linear, the superposition theorem can be

applied. The effect of the various external signals can simply be summed to obtain

the output signal.

Let us determine the overall transfer functions between the controlled signal y,

the error signal e, and the control signal u as the output signals, and the reference

signal r, the output disturbance yno, the input disturbance yni, and the measurement

noise yz as input signals.

According to Fig. 4.4, the relationships between these input and output signals

are

Y sð Þ ¼ F sð ÞC sð ÞP sð Þ
1þC sð ÞP sð Þ R sð Þþ 1

1þC sð ÞP sð Þ Yno sð Þþ P sð Þ
1þC sð ÞP sð Þ Yni sð Þ

� C sð ÞP sð Þ
1þC sð ÞP sð Þ Yz sð Þ, ð4:6Þ

E sð Þ ¼ F sð Þ
1þC sð ÞP sð ÞR sð Þ � 1

1þC sð ÞP sð Þ Yno sð Þ � P sð Þ
1þC sð ÞP sð Þ Yni sð Þ

� 1

1þC sð ÞP sð Þ Yz sð Þ, ð4:7Þ

U sð Þ ¼ F sð ÞC sð Þ
1þC sð ÞP sð ÞR sð Þ � C sð Þ

1þC sð ÞP sð Þ Yno sð Þ � C sð ÞP sð Þ
1þC sð ÞP sð Þ Yni sð Þ

� C sð Þ
1þC sð ÞP sð Þ Yz sð Þ, ð4:8Þ

On the basis of these relationships, the output signals can be determined with the

knowledge of the input signals. From the time evolution of the output signals it can

be verified whether the control system satisfies the quality specifications or not.

It has to be emphasized that the frequency ranges of the different input signals

are generally different. The reference signal and the disturbances generally contain

low frequency components, whereas the measurement noise generally is a zero

mean signal containing high frequency components. If the absolute value of the

frequency function obtained from an overall transfer function by substituting

s ¼ jx—considering a given input signal—is approximately unity over a signifi-

cant frequency range, then the system tracks the signal, but if the transfer function

approximates zero, the system attenuates the considered input signal.
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It can be seen that all the overall transfer functions have the same denominator,

namely 1þC sð ÞP sð Þ, which is the characteristic polynomial of the closed-loop

control system. The roots of the characteristic polynomial determine the stability

and the dynamic properties of the transients of the control system. For stable

performance it is required that the transients of the output signal should decrease,

i.e. the roots of the characteristic equation should be at the left hand side of the

complex plane. Chapter 5 deals in detail with methods of stability investigation.

From Eq. (4.7) it can be seen, that if the filter F sð Þ is a proportional element with

gain unity, then the error of reference signal tracking and the error of output

disturbance rejection are the same, i.e., the control system follows the reference

signal with the same dynamics and the same static error as it rejects the effect of the

output disturbance in the output signal. With the appropriate choice of filter F sð Þ it
can be ensured that the properties of reference signal tracking and of disturbance

rejection would be different.

If F sð Þ ¼ 1 the control system is called a One-Degree of Freedom (ODOF)

system, while if F sð Þ is given by a non-unity transfer function, it is called

Two-Degree of Freedom (TDF) system. In the case of an ODOF, 4 overall transfer

functions determine the overall signal transfer properties between the output signals

(the controlled signal y and the manipulated variable u) and the input signals (the

reference signal, the disturbances, and the measurement noise), but in the TDOF

case, 6 overall transfer functions are needed for this determination.

As the disturbance yni can always be transformed to an equivalent output dis-

turbance, and the signs do not have to be considered, it is sufficient to investigate

the following 6 overall transfer functions.

Y

R
¼ FCP

1þCP
;

Y

Yz
¼ �CP

1þCP
;

Y

Yni
¼ P

1þCP

U

R
¼ FC

1þCP
;

U

Yz
¼ �C

1þCP
;

E

Yno
¼ 1

1þCP

ð4:9Þ

The first column characterizes reference signal tracking, the second column

characterizes the properties of the disturbance rejection and the third column

characterizes the rejection of measurement noise. If F sð Þ ¼ 1, the second and third

columns give the 4 characterizing transfer functions. Arranging these functions into

matrix form, a transfer function matrix of the closed-loop control system is

obtained. To ensure the stability of the closed-loop control system, all the overall

transfer functions have to be stable. Also, all the overall transfer functions have to

ensure the prescribed dynamic behavior between the given input and output signals.

One of the usual controller design procedures is the cancellation of the unfa-

vorable poles of the plant P with the zeros of the controller C. But it can be seen

that the dynamics of the plant P remains in the expression of the overall transfer

function between the output signal and the input disturbance. It is not allowed to

cancel the unstable poles of the plant, as though they become invisible in the

relationship between the output signal and the reference signal, they do appear in

the transfer relationship between the output signal and the input disturbance. (It has
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to be mentioned that even regarding the relationship between the output and the

reference signal the unstable pole can not be cancelled quite accurately, as its value

generally is obtained by measurements or modeling which certainly involves errors,

or its value may change over time; therefore the pole cancellation is never perfectly

accurate and instability persists in the system.)

It is reasonable to design a controller in two steps. First the controller C is to be

designed to ensure the appropriate rejection of the disturbances and the measure-

ment noise, then the filter F is to be designed for appropriate reference signal

tracking.

For good reference signal tracking if F sð Þ ¼ 1, the so called complementary

sensitivity function T ¼ CP= 1þCPð Þ has to approximate 1 on those frequencies

which characterize the input signal. This means that at these frequencies, the

condition CP � 1 has to be fulfilled. Consider the overall transfer function S sð Þ ¼
1= 1þC sð ÞP sð Þ½ � giving the relationship between the error signal and the reference

signal. S sð Þ is also called the sensitivity function. Time domain analysis shows that

the error signal contains signal components originating from the poles of the

closed-loop and also from the poles of the reference signal. Once the transients

decay in the error signal, the quasistationary components originating from the poles

of the reference signal are maintained. If C sð Þ contains the poles of the reference

signal, in the error signal the poles of the controller cancel the poles of the reference

signal. In this case tracking the reference signal R sð Þ the steady-state error becomes

zero. Thus C sð Þ ¼ KcR sð Þ, where Kc � 1. Considering the disturbance rejection, if

the condition CP � 1 is fulfilled, then the LAPLACE transform of the error signal as a

response for the input and the output disturbances is approximately:

E sð Þ � � 1=C sð ÞP sð Þ½ �Yno sð Þ � 1=C sð Þ½ �Yni sð Þ. For good rejection of the input

disturbance it is suggested to choose C sð Þ ¼ KcYni sð Þ for the controller dynamics,

where Kc � 1. Appropriate output disturbance rejection can be reached by

choosing the controller dynamics according to C sð Þ ¼ KcYno sð Þ, again with Kc � 1

(supposing that the amplitudes of the frequency function of the plant are not too

high in the characteristic frequency range of the disturbance). To ensure good

reference signal tracking and good disturbance rejection the controller has to

contain the dynamics of both the reference and the disturbance signals. The fol-

lowing example demonstrates the effects of the designed controller to the behaviour

of the control system.

Example 4.2 The transfer function of the plant is P sð Þ ¼ 1= 1þ 0:5sð Þ3. Suppose
the transfer function of the controller is C sð Þ ¼ 0:5 1þ 0:5sð Þ=s. Let us accelerate
the reference signal tracking of the system with an appropriate prefilter F. Its gain is

1, and let it compensate the complex conjugate poles of the closed-loop control

system, replacing them with two identical (real and faster) poles. Apply an F sð Þ ¼

s2 þ 1:161sþ 0:7044ð Þ= 0:7044 1þ 0:4sð Þ2
� �

transfer function as the prefilter.

Figure 4.15 shows the unit step responses of the different output signals in the

closed-loop control circuit. It can be seen that the dynamic behavior of the control

system is different for the reference signal and for the input disturbance. It can be
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observed that applying the filter accelerates the settling of the controlled output

signal. The price paid for this is an overexcitation in the control signal. Figure 4.16

shows the frequency functions of the closed-loop control system. From the course

of the frequency functions some evaluation of the time responses can also be

derived. The frequency range where the disturbance rejection is efficient is also

observable. For example, the third curve in the figure shows that the output will

have its highest amplitude around frequency x ¼ 1 for a sinusoidal input distur-

bance. From the sixth curve it can be concluded that the system attenuates the effect

of the sinusoidal output disturbances up to the frequency x ¼ 1, but beyond this

frequency it tracks the disturbances.

From the second curve of Fig. 4.15 or from the equivalent left upper curve of

Fig. 4.17 it can be seen that the control system tracks the unit step reference signal

without steady state error. The controller contains an integrating element, whose

pole is at the origin in the complex plane. Thus the controller contains the pole of

the unit step signal (whose LAPLACE transform is 1/s). Let us investigate the time

evolution of the output signal with the given controller with prefilter F ¼ 1 pro-

vided an exponential reference signal by r tð Þ ¼ exp �0:1tð Þ. The LAPLACE trans-

form of the reference signal is R sð Þ ¼ 1= sþ 0:1ð Þ. The reference signal and the

output signal are shown on the right upper curve of Fig. 4.17. It can be seen that the

Fig. 4.15 Typical unit step responses of the closed-loop control system
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tracking is not accurate: after the transients decay, the output does not fit exactly

the input signal. Let us change now the controller according to

C1 sð Þ ¼ 4 1þ 0:5sð Þ= 1þ 10sð Þ ¼ 0:4 1þ 0:5sð Þ= sþ 0:1ð Þ. Now the pole of the

controller is the same as the pole of the input signal. The right lower curve shows

that after the transient period the output signal exactly tracks the input signal. But

now the controller transfer function does not contain the pole of the unit step

reference signal, therefore in the unit step response there will be a static deviation

(left lower figure). �

4.5 The Static Transfer Characteristics

If the closed-loop control system is stable, its steady state (or static in other words)

properties can be determined on the basis of Eqs. (4.6)–(4.8) using the final value

theorem of the LAPLACE transformation.

The signal transfer properties of closed-loop control circuits in steady state, i.e.,

the accuracy of reference signal tracking and of disturbance rejection in steady state

depends on the so called type number and the loop gain of the system. The static

Fig. 4.16 Amplitude-frequency functions of the closed-loop control system
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accuracy also depends on the time evolution of the reference or the disturbance

signal.

Let us suppose that L sð Þ ¼ C sð ÞP sð Þ, the transfer function of the open-loop (the

so-called loop transfer function) is given in its time constant form:

L sð Þ ¼ C sð ÞP sð Þ ¼ K

si

Qc
j¼1 1þ ssj
� �

Qd
j¼1 1þ 2fjsojsþ s2s2oj

� �

Qe
j¼1 1þ sTj
� �

Q

f

j¼1

1þ 2njTojsþ s2T2
oj

� �

e�sTd ¼ K

si
Lt sð Þ:

ð4:10Þ

Here the variable i is the type number, indicating the number of the integrators in

the loop (in practice its value can be 0, 1 or 2), K denotes the loop gain. Lt sð Þ
represents the transfer function determining the transient response of the control

circuit. Its important property is that it does not influence the steady state behavior,

i.e., Lt s ¼ 0ð Þ ¼ 1.

The overall transfer function between the error signal and the reference signal in

the case where F sð Þ ¼ 1 is

E sð Þ ¼ 1

1þ L sð ÞR sð Þ ¼ si

si þKLt sð ÞR sð Þ: ð4:11Þ

Fig. 4.17 Reference signal tracking is realized without steady-state error, if the controller contains

the pole of the reference signal
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The steady state value of the error signal is

lim
t!1

e tð Þ ¼ lim
s!0

sE sð Þ: ð4:12Þ

Let us analyze the reference signal tracking properties of the closed-loop control

system for unit step, unit ramp and parabolic input signals. The LAPLACE transforms

of these reference signals are R sð Þ ¼ 1=s j, where j ¼ 1 for the unit step, j ¼ 2 for

the unit ramp, and j ¼ 3 for the parabolic reference input signal.

In case of a 0-type system, the steady state error is:

for a unit step reference signal; lim
t!1

e tð Þ ¼ lim
s!0

s 1
s

1
1þKLt sð Þ ¼ 1

1þK
;

for a unit ramp reference signal; lim
t!1

e tð Þ ¼ lim
s!0

s 1
s2

1
1þKLt sð Þ ¼ 1;

for a parabolic reference signal; lim
t!1

e tð Þ ¼ lim
s!0

s 1
s3

1
1þKLt sð Þ ¼ 1:

ð4:13Þ

For a 1-type system, the steady state error is:

for a unit step reference signal; lim
t!1

e tð Þ ¼ lim
s!0

s 1
s

s
sþKLt sð Þ ¼ 0;

for a unit ramp reference signal; lim
t!1

e tð Þ ¼ lim
s!0

s 1
s2

s
sþKLt sð Þ ¼ 1

K
;

for a parabolic reference signal; lim
t!1

e tð Þ ¼ lim
s!0

s 1
s3

s
sþKLt sð Þ ¼ 1:

ð4:14Þ

For a 2-type system, the steady state error is:

for a unit step reference signal; lim
t!1

e tð Þ ¼ lim
s!0

s 1
s

s2

s2 þKLt sð Þ ¼ 0

for a unit ramp reference signal; lim
t!1

e tð Þ ¼ lim
s!0

s 1
s2

s2

s2 þKLt sð Þ ¼ 0

for a parabolic reference signal; lim
t!1

e tð Þ ¼ lim
s!0

s 1
s3

s2

s2 þKLt sð Þ ¼ 1
K

ð4:15Þ

In the following table, the values of the steady state errors are summarized.

Type number i = 0 i = 1 i = 2

unit step reference signal, j = 1 1
1þK

0 0

unit ramp reference signal, j = 2 1 1
K

0

parabolic reference signal, j = 3 1 1 1
K

A 0-type system tracks the step reference signal with steady state (static) error,

whose value is less if the loop gain of the control circuit is higher (Fig. 4.18). But a

high loop gain may cause an unstable behavior of the control system. A 0-type

system is not able to track the ramp or the parabolic reference signals.

170 4 Negative Feedback



A 1-type control system containing one integrator tracks the step reference signal

without steady state error. It can follow the ramp reference signal with a steady state

error (Fig. 4.19). But it can not track the parabolic reference signal.

A 2-type system containing two integrators tracks the step and the ramp signals

without steady state error (Fig. 4.20), and is able to follow the parabolic reference

signal with a static error.

It can be seen, that coinciding with the previous statement related to the con-

ditions of accurate reference signal tracking, the closed-loop control system is

capable of tracking a reference signal whose LAPLACE transform contains poles at

the origin of the complex plane without steady state error only if the loop transfer

function contains as many poles at zero (integrators) as there are poles at zero of the

LAPLACE transform of the reference signal. If the plant does not contain the required

Fig. 4.18 A 0-type system

tracks the unit step reference

signal with steady state error

Fig. 4.19 A 1-type system

tracks the ramp reference

signal with steady state error
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number of integrators ensuring the desired static accuracy, the integrators have to be

put in the controller.

The effect of improving the static accuracy by inserting integrators in the control

loop can be demonstrated by the following considerations. If the control system is

of type 0, i.e. it is proportional, a constant signal value at its output can be main-

tained only by a constant input signal. Therefore it is necessary that also the error

signal take a constant value. The property of the integrator is that its output reaches

a constant value when its input finally becomes zero. If there is an integrator in the

forward path of the closed-loop control circuit, then for a unit step reference signal

the output signal will increase until the error signal—the input signal of the inte-

grator—reaches zero. If the reference signal is a unit ramp, then at the output of the

integrator a signal change with constant slope can be reached by a constant input

signal, which means a constant error signal, i.e. a constant static deviation.

It can be seen that increasing the number of the integrators in the loop improves

the static properties of the closed-loop control system. More specifically, increasing

the loop gain reduces the static tracking error. But the number of integrators can not

be increased to more than two, as this would lead to stability problems which could

not be handled easily. Increasing the gain may also cause stability problems.

Static accuracy and stability are contradictory requirements. With controller

design a satisfactory compromise has to be created to satisfy both requirements.

Fig. 4.20 A 2-type system

tracks the ramp reference

signal without static error

Fig. 4.21 Block diagram of a

closed-loop control circuit

172 4 Negative Feedback



The evolution of the steady-state signal values in a closed-loop control circuit

could also be demonstrated by a four-quarter-plane figure. On the four axes the

error signal (e), the measured signal (ye), the controlled signal (y) and the control

signal (u) are indicated, respectively. Generally positive signal values are supposed.

The block diagram is shown in Fig. 4.21. Generally the static characteristics of the

plant and of the sensor are non-linear (but usually they are linearized in a vicinity of

a given operating point). Stable behavior is supposed.

For a 0-type system, the four-quarter-plane curves are shown in Fig. 4.22. The

right upper quarter represents the element creating the difference signal, where the

location of the straight lines depends on the signal r. The static characteristic of the

controller (left upper quarter) is generally linear, possibly saturating. The static

characteristics of the plant (generally non-linear) is in the left lower quarter, here the

effects of a disturbance and of parameter changes on the characteristics can be

demonstrated. The right lower quarter shows the characteristic of the sensor, i.e. the

measurement equipment, which sometimes is also non-linear. In the case of a

0-type system there is a steady state error (e 1ð Þ 6¼ 0).

In Fig. 4.22, which shows the four-quarter-plane static relations, it can be seen

how the static states change if, e.g., the reference signal change. It can be inves-

tigated how the steady states change if y uð Þ, i.e., the static characteristic of the plant,
changes as a consequence of parameter changes. (A similar four-quarter-plane

representation was first introduced by SZILÁGYI.)

Figure 4.23 shows the static curves for a 1-type closed-loop control system. As

now the static error for a step reference signal is zero, only the two lower quadrants

of the plane are of interest. Now it would be sufficient to draw only these two, but

for the sake of comparability the same coordinate system is given as before.

y

u

e

r

ro

eo

uo

yo

ye

Fig. 4.22 Static

characteristic curves of a

0-type closed-loop control

system
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4.6 Relationships Between Open- and Closed-Loop

Frequency Characteristics

In a closed-loop control system L ¼ CP is called the loop transfer function

(Fig. 4.24). The overall transfer function of a closed-loop realized by negative

feedback (Fig. 4.25) calculated between the output signal and the reference signal is

T ¼ CP= 1þCPð Þ ¼ L= 1þ Lð Þ, which is also called the complementary sensitivity

function. Observe that T ¼ 1� S ¼ 1� 1=ð1þ LÞ, where S ¼ 1=ð1þCPÞ ¼
1=ð1þ LÞ is the sensitivity function. Regarding the frequency course of this

function, approximate considerations can be given.

In the frequency range where

L jxð Þj j � 1; T jxð Þj j � 1; ð4:16Þ

y

u

e

r

rouo

yo

eo 0 ye

Fig. 4.23 Static

characteristics curves of a

1-type closed-loop control

system

C P
yrFig. 4.24 Open-loop control

C
e yr

-
P

Fig. 4.25 Closed-loop

control
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while in the frequency range where

L jxð Þj j � 1, T jxð Þj j � L jxð Þj j: ð4:17Þ

The approximations are not valid in the vicinity of the cut-off frequency.

Figure 4.26 shows typical amplitude-frequency curves of the open- and the

closed-loop. The open-loop is a first order lag element serially connected to an

integrating element. Curves 1, 2, 3 give the BODE amplitude-frequency diagrams of

the open- and the closed-loop for three different loop gains. The highest gain is in

the case of curve 3. It can be seen that the closed-loop diagrams approximate the

value 1 up to the cut-off frequency of the open-loop, and then follow the course of

the open-loop diagrams. For higher loop gains, the closed-loop curve shows an

amplification in the vicinity of the cut-off frequency, which indicates the appearance

of complex conjugate poles in the closed-loop transfer function and transients with

decreasing oscillations in the unit step response. Figure 4.27 gives the unit step

responses of the closed-loop system with the three different loop gains.

Fig. 4.26 Typical course of

the amplitude-frequency

functions of the open- and the

closed-loop

Fig. 4.27 Unit step

responses of the closed-loop

system
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If there is no amplification in the amplitude diagram of the closed-loop, the

closed-loop can be approximated by a first order lag element with unit gain and

time constant reciprocal to the cut-off frequency xc: T sð Þ � 1= 1þ s=xcð Þ. The next
time constant which changes the slope of the approximating amplitude curve to

−40 dB/decade can be neglected in this case. The unit step response approximates

the steady state exponentially, and approximately within 3 time constants reaches

its steady state within 5% accuracy. Increasing the loop gain the slope of the curve

around the cut-off frequency will be −40 dB/decade, and the time of decaying of the

oscillations can be approximated by 10 times the time constant (1=xc) of the second

order oscillating element. Thus the settling time can be given by the following

approximate relationship:

3

xc

\ts\
10

xc

: ð4:18Þ

To avoid oscillations a long section of slope −20 dB/decade has to be created

around the cut-off frequency (before and after it) in the BODE amplitude-frequency

diagram of the open-loop. To accelerate the system the cut-off frequency has to be

set to higher values.

4.6.1 The M � a and E� b Curves

For a deeper analysis of the relationship between the frequency functions of the

open and the closed-loop systems, let us analyze the following considerations. The

complementary sensitivity function of the closed-loop system is given by

T sð Þ ¼ C sð ÞP sð Þ
1þC sð ÞP sð Þ ¼

L sð Þ
1þ L sð Þ : ð4:19Þ

In controller design, the relationship between the transfer function T sð Þ of the

closed-loop and the transfer function L sð Þ ¼ C sð ÞP sð Þ of the open-loop is taken into
account. This relationship seems to be simple, but actually it means a conformal

non-linear mapping from the L sð Þ complex plane to the T sð Þ complex plane. The

complexity of this non-linear relationship is the reason why the controller can not

always be designed unambiguously using simple methods.

For each point of the complex plane the mapping point (complex vector)

according to relationship (4.19) can be determined. The absolute value of this

vector is depicted on the vertical axis in Fig. 4.28. (The phase angle can also be

visualized similarly.) Let us plot on the complex plane the NYQUIST diagram of the

open-loop (shown as a thick line in the figure). If the points of this NYQUIST curve

are projected to the three dimensional curve, the absolute values of the frequency

function of the closed-loop are obtained. The BODE amplitude-frequency diagram of

the closed-loop is visualized drawing these values versus the frequency.

The frequency function of the closed-loop can be given by its amplitude and

phase angle:
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T jxð Þ ¼ L jxð Þ
1þ L jxð Þ ¼ M xð Þej a xð Þ: ð4:20Þ

From Fig. 4.28 it can be seen that for high amplifications in the open-loop (in the

horizontal plane, points which are far from the origin) the amplification of the

closed-loop approximates the constant value 1. This relationship is seen also from

the approximation

T jxð Þj j ¼ L jxð Þ
L jxð Þþ 1

	

	

	

	

	

	

	

	

Lj j�1

� 1: ð4:21Þ

As in control systems the amplification of the open-loop in the low frequency

domain is generally high, the amplification of the closed-loop here is approximately

1. Similarly it can also be seen that for points with low amplification in the

open-loop (in the horizontal plane points close to the origin) the corresponding

closed-loop points are of low amplification values, too.

T jxð Þj j ¼ L jxð Þ
L jxð Þþ 1

	

	

	

	

	

	

	

	

Lj j�1

� L jxð Þj j:

As the amplification of physical systems decreases at high frequencies, this

relationship shows that at high frequencies the amplifications of the open- and the

closed-loop are approximately the same, i.e. negative feedback at these frequencies

does not change the open-loop.

Fig. 4.28 The relationship between the amplitude diagrams of the open- and the closed-loop
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It can also be seen that the curve has a singularity at the point (� 1þ 0j) of the

complex plane, therefore for controller design the investigation of the neighborhood

of this point will have a great importance. The closer we are to (� 1þ 0j), the

higher the amplification of the closed-loop will be. When designing a control

system, among the given quality specifications the prescribed value of the allowed

overshoot is an important requirement. The overshoot in the step response of the

closed-loop system is a time domain property, which is determined by the ampli-

fication of the amplitude in the frequency domain. Therefore it is important to

investigate the location of the points in the complex plane where the closed-loop

amplitudes Tj j ¼ M are identical. The points of the frequency function of the

closed-loop system where the amplitudes are identical are located on circles in the

complex plane. This can be seen easily, solving the equation

M ¼ L jxð Þ
1þ L jxð Þ

	

	

	

	

	

	

	

	

¼ uþ jv

1þ uþ jv

	

	

	

	

	

	

	

	

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2

1þ 2uþ u2 þ v2

r

: ð4:22Þ

The equation of the curves belonging to a constant amplitude M are obtained by

rearranging the above equation as

u� M2

1�M2

� �2

þ v2 ¼ M

1�M2

� �2

: ð4:23Þ

This is the equation of a circle with radius r and center point uo; voð Þ, where

r ¼ M

1�M2

	

	

	

	

	

	

	

	

, uo ¼
M2

1�M2
and vo ¼ 0: ð4:24Þ

The circles belonging to different constantM amplitude values of the closed-loop

are shown in Fig. 4.29.

The M ¼ 1 constant curve is a vertical line at u ¼ �0:5. For M[ 1 the curves

are to the left, and for M\1 they are to the right of this line. If M tends to infinity,

the curves shrink to point (� 1þ 0j), and if M tends to zero, the circle will be of

infinitesimal radius around the origin.

Similarly to the circles belonging to constant M values, curves belonging to

constant a values can also be given (4.20), which are also circles. These circles

(both for constant M and constant a values) are called ARCHIMEDES circles. The two

curve systems together are called M � a curves.

If the NYQUIST diagram of the open-loop is plotted in the complex plane where

the constant M curves are also drawn, the amplitude-frequency diagram of the

closed-loop can be obtained by reading the appropriate M values corresponding to

the individual points of the NYQUIST diagram. The highest amplitude of the

closed-loop is determined by how close the NYQUIST diagram of the open-loop

approaches (� 1þ 0j). The highest value of M will be determined by the

circle-tangential to the NYQUIST diagram.
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Some characteristic features of the M curves are shown on the complex plane in

Fig. 4.30. The frequency xb, where the frequency function L jxð Þ intercepts the

circle of M ¼ 1=
ffiffiffi

2
p

, gives the so called bandwidth of the closed-loop system. In

the figure the cut-off frequency xc and the frequency xa where M ¼
ffiffiffi

2
p

are also

-1 1

Mm

M ω( )

M = 2 M = 1 2

M = 1

ωb

ω c

v t( )

vm

ωm

ωm

ω
a

Fig. 4.30 Some characteristic features of the M curves in the complex plane: shape of the unit

step response and the amplitude-frequency characteristics

Fig. 4.29 Constant M curves
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indicated. At the frequency xm, the closed-loop system has its maximal amplitude

value. The maximal value is the highest value of M belonging to the

circle-tangential to the NYQUIST curve of the open-loop. The amplitude-frequency

diagram of the closed-loop has amplification only if the NYQUIST diagram of the

open-loop intersects the vertical line corresponding to M ¼ 1, thus there is a fre-

quency range where the NYQUIST curve is to the left of this line. At the intersection

frequency T jxð Þj j ¼ 1.

Approximate relationships can be given between the maximal amplification

Mm ¼ Mmax of the closed-loop amplitude-frequency curve and the maximum value

vm of the step response (Fig. 4.30).

Mm � 1:5 vm �Mm � 0:1
1:25�Mm � 1:5 vm � Mm

Mm � 1:25 vm\Mm

ð4:25Þ

To avoid oscillations and a big overshoot in the time response, high amplifi-

cation is not allowed in the amplitude-frequency diagram of the closed-loop. The

ideal and the real frequency curves of the closed-loop are shown in Fig. 4.31. Here

xcc is the cut-off frequency of the closed-loop.

Similarly to the M � a curves of the T jxð Þ frequency function, the so called

E � b curves can be constructed based on the overall error transfer function S jxð Þ
(sensitivity function).

S jxð Þ ¼ 1

1þ L jxð Þ ¼ E xð Þejb xð Þ: ð4:26Þ

Drawing the curves belonging to constant values of E is very simple, as

E ¼ S jxð Þj j ¼ 1

1þ L jxð Þj j ð4:27Þ

Fig. 4.31 Ideal and real frequency function of the closed-loop system
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and the 1þ L jxð Þj j in the denominator is equal to the distance from the point

(� 1þ j0). These curves are concentric circles around (� 1þ 0j) with radius 1=E.
The curve belonging to E ¼ 1 has special significance.

In Fig. 4.32 the curves belonging to M ¼ 1, E ¼ 1, Lj j ¼ 1 also the distance

1þ Lj j are indicated. It is shown how to determine the maximal value Mm with the

open-loop NYQUIST diagram. The interception points x1 and x2 of the L jxð Þ
characteristics and the E ¼ 1 circle indicate the range where S jxð Þj j\1.

4.7 The Sensitivity of a Closed Control Loop to Parameter

Uncertainties

The parameters of a process are never known quite accurately. Also, the process

may change over time. The environment of the process may change and as a

consequence the parameters of the process may also change within a given range.

Negative feedback decreases the sensitivity of the system to parameter changes. In

controller design it is advisable to take the possible parameter changes into con-

sideration. The behavior of the control system has to be acceptable not only for the

nominal parameter values, but throughout the whole possible range of the parameter

changes.

Fig. 4.32 Curves corresponding to M ¼ 1, E ¼ 1 and Lj j ¼ 1
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Let us analyze the behavior of the system if the transfer function of the process

changes from its nominal value Po sð Þ to P sð Þ ¼ Po sð ÞþDP sð Þ. The overall transfer
function of the open-loop is L ¼ CP, whose small change is

DL ¼ @L

@P
DP ¼ CDP: ð4:28Þ

The relative change is expressed by

DL

L
¼ CDP

CP
¼ DP

P
: ð4:29Þ

The overall transfer function of the closed-loop realized by negative feedback

(Fig. 4.25) is

T ¼ CP

1þCP
, ð4:30Þ

whose small change is

DT ¼ @T

@P
DP ¼ C

1þCPð Þ2
DP: ð4:31Þ

The relative value of the change is

DT

T
¼ 1

1þCP

DP

P
¼ S

DP

P
, ð4:32Þ

where S is the sensitivity function of the closed-loop:

S ¼ DT=T

DP=P
¼ 1

1þCP
: ð4:33Þ

The sensitivity function shows how much a relative change of the process

ðDP=PÞ influences the relative change of the resulting transfer function ðDT=TÞ. In
the frequency range where L jxð Þj j ! 1, the sensitivity function takes small val-

ues, thus even big parameter changes in the process have a small effect on the

resulting closed-loop transfer function, and also on the output signal of the

closed-loop.

For an infinitesimally small change (DP ! 0):

@T

T
¼ S

@P

P
, ð4:34Þ
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whence

S ¼ @T=T

@P=P
¼ @ ln T

@ lnP
: ð4:35Þ

The resulting transfer function T of the closed-loop is also called the comple-

mentary sensitivity function, as the following relationship holds:

Sþ T ¼ 1: ð4:36Þ

Typical amplitude-frequency curves of the loop transfer function L, the sensi-

tivity function S, and the complementary sensitivity function T are shown in

Fig. 4.33.

Let us consider now the sensitivity of the control system with respect to

parameter changes in the feedback element (Fig. 4.34). This sensitivity function can

be defined by the following relationship:

SH ¼ DT=T

DH=H
: ð4:37Þ

Fig. 4.33 Typical amplitude-frequency curves of the loop, the sensitivity function and the

complementary sensitivity function

C P
r e y

–

H

Fig. 4.34 Feedback control

circuit, the sensor has

dynamic characteristics
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Now

T ¼ CP

1þCPH
, thus DT ¼ @T

@H
DH ¼ � CPð Þ2

1þCPHð Þ2
DH, ð4:38Þ

and

DT

T
¼ SH

DH

H
¼ � CPH

1þCPH

DH

H
¼ � L

1þ L

DH

H
: ð4:39Þ

As SH ¼ �L= 1þ Lð Þ ¼ �T has to take approximately the value of 1 in a wide

frequency range to ensure good reference signal tracking, the parameter changes in

the feedback element may significantly influence the output signal. Therefore it is

required to measure the output signal very accurately, or to realize unity feedback.

Formulas (4.6)–(4.8) giving the relationships between the input and the output

signals can also be given by the sensitivity functions.

Y sð Þ ¼ F sð ÞT sð ÞR sð Þþ S sð ÞYno sð ÞþP sð ÞS sð ÞYniðsÞ � T sð ÞYz sð Þ ð4:40Þ

E sð Þ ¼ F sð ÞS sð ÞR sð Þ � S sð ÞYno sð Þ � P sð ÞS sð ÞYni sð Þ � S sð ÞYz sð Þ ð4:41Þ

U sð Þ ¼ F sð ÞC sð ÞS sð ÞR sð Þ � C sð ÞS sð ÞYno sð Þ � T sð ÞYni sð Þ � C sð ÞS sð ÞYz sð Þ ð4:42Þ

So with the sensitivity functions, not only the effects of parameter changes can

be investigated, but also the signal transfer properties of the control system can be

analyzed.

4.8 Requirements for Closed-Loop Control Design

A closed-loop control system has to meet prescribed quality specifications. These

specifications depend on the control aims, on the technology of the considered

process and also on the process itself.

In a rolling-mill, e.g., the uniform thickness of the steel sheet has to be ensured

with high accuracy. The aim of the utilization of the steel sheet will also influence

the desired accuracy. In a heat treatment process the temperature has to be set

according to a given program. In the treated material undesirable alterations should

not happen. This requirement influences the prescribed accuracy of the reference

signal tracking. The accuracy of directing an airplane into a path and then tracking

the path is important to reach the destination station while ensuring the avoidance of

other airplanes. The prescription of the required settling time is also important. This

requirement has to consider the dynamics of the process. In case of a very slow

process, a big acceleration can not be expected, as this would require too high,

practically unrealizable manipulating input signals. The prescriptions should be
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tailored to the opportunities. The prescriptions consider both the static and the

dynamic properties of the closed-loop control system.

The requirements set for a closed-loop control system are:

– stability

– appropriate static accuracy for reference signal tracking and disturbance

rejection

– attenuation of the effect of measurement noise

– insensitivity to parameter changes

– prescribed dynamic (transient) behavior

– consideration of the restrictions stemming from the practicality of the

realization.

A linear closed-loop control system is stable, its steady state is achieved, if the

roots of the characteristic equation are on the left side of the complex plane (see

Sects. 4.2 and 4.5).

Static accuracy of the control system for typical input signals (step, ramp,

parabolic input) is determined by the number of the integrators in the open-loop

(Sect. 4.5).

Disturbance rejection, attenuation of measurement noise, and the effects of param-

eter changes can be investigated by the sensitivity functions (Sects. 4.6 and 4.7).

The prescribed dynamic behavior is generally given by the characteristic

parameters of the unit step response v tð Þ of the closed-loop system (Fig. 4.35).

Fig. 4.35 Dynamic specifications of a control system
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The static error for a unit step input is

1� vss: ð4:43Þ

The overshoot of the unit step response is

r ¼ vmax � vss

vss
100%. ð4:44Þ

The settling time ts is the time when the unit step response of the closed-loop

system reaches its steady state within 	ð2� 5Þ% accuracy.

During the rise time Tr the step response starting from 10% reaches 90% of its

steady state value. The time of reaching the maximum value is denoted by Tm.

In control techniques the main point of controller design is to find an acceptable

compromise between a large overshoot and a long settling time. This compromise

can be formulated on the one hand by prescribing the distance of the loop frequency

function from the point (� 1þ 0j), which characterizes the stability limit (see

Sect. 5.6). On the other hand, a quality index can be formulated, which can be the

minimum (optimum) value of an integral criterion. This optimum value indicates a

balance between the two extreme transients. In this case the quality of the control

performance is evaluated on the basis of an integral of the error signal

e tð Þ ¼ v 1ð Þ � v tð Þ. The controller parameters are chosen to reach the minimum of

this error integral.

The formulas for the different criteria involving integrals are as follows:

I1 ¼
R

1

0

e tð Þdt linear control error area ð4:45Þ

(it can be applied only to aperiodic systems, it can be evaluated analytically)

I2 ¼
R

1

0

e2 tð Þdt quadratic control error area ð4:46Þ

(it can be calculated analytically)

I3 ¼
R

1

0

e tð Þj jdt ¼ IAE Integral of Absolute value Error ð4:47Þ

I4 ¼
R

1

0

t e tð Þj jdt ¼ ITAE Integral of Timemultiplied byAbsolute value Error ð4:48Þ

I3 and I4 can be evaluated only by simulation.
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Linear control error area.

With simple considerations the following relationship can be obtained:

I1 ¼ lim
t!1

Z

t

0

e sð Þds ¼ lim
s!0

s
E sð Þ
s

¼ E 0ð Þ, ð4:49Þ

where E sð Þ ¼ L e tð Þf g is the LAPLACE transform of the error signal. For an aperiodic

control system given by the transfer function T sð Þ where T 0ð Þ ¼ A (see Fig. 4.36)

T sð Þ ¼ A

Qm
k¼1 1þ sskð Þ

Qn
j¼1 1þ sTj
� � ¼ AT 0 sð Þ, ð4:50Þ

let us calculate the linear control error area. According to (4.49),

I1 ¼
Z

1

0

A� v tð Þð Þ dt ¼ A� T sð Þð Þ 1
s


 �

s¼0

¼ A
1� T 0 sð Þ

s


 �

s¼0

¼ A

Qn
j¼1 1þ sTj
� �

�
Qm

k¼1 1þ sskð Þ
s
Qn

j¼1 1þ sTj
� �

" #

s¼0

¼ A
X

n

j¼1

Tj �
X

m

k¼1

sk

 !

ð4:51Þ

The time constants in the denominator of the transfer function increase the linear

control error area, but the time constants in its numerator decrease it. Thus by

introducing zeros, the system can be accelerated.

For aperiodic transients an equivalent dead time Te can be defined, which is the

dead time of the step function of amplitude A measured from time point t ¼ 0,

whose linear control error area is equal to the control error area of the step response

of the considered transfer function.

Fig. 4.36 Linear control area of an aperiodic process
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Te ¼
I1

A
¼
X

n

j¼1

Tj �
X

m

k¼1

sk: ð4:52Þ

Quadratic control error area

The quadratic control error area can be evaluated also in the frequency domain

using the PARSEVAL theorem.

I2 ¼
Z

1

0

e2 tð Þdt ¼ 1

2p j

Z

1

�1

E �sð ÞE sð Þds ¼ 1

p

Z

1

0

E jxð Þj j2dx: ð4:53Þ

The quadratic control error area can be calculated analytically. For lower degree

cases for strictly proper LAPLACE transforms of the error signal (m\ n) of the form

E sð Þ ¼
Pm

i¼0 ci s
i

Pn
i¼0 di s

i
ð4:54Þ

calculation formulae have been derived for evaluation of the I2 integral for a given

degree and for given ci and di parameters. A general formula in algorithmic form

can also be given, which provides a special, not too complex recursive algorithm. It

should be mentioned that minimizing the quadratic error area as a function of a

controller parameter generally results in a flat minimum. Unfortunately the optimal

transient generally gives a quite high overshoot (20–25%), so this optimal controller

can not be used in high quality control systems.

Absolute value criteria

It is difficult to evaluate a criterion using the absolute value of the error. Instead of

analytical calculation the minimum can rather be determined by simulation or with

searching optimization methods. The minimum of the cost function is generally

sharp. The Integral of Time multiplied Absolute value Error (ITAE) criterion

punishes the error values at the beginning of the time scale less than those occurring

at later time points. The optimum (minimum) of this criterion provides beautiful

transients with *5% overshoot.

4.9 Improving the Disturbance Elimination Properties

of the Closed-Loop

An adequately designed closed-loop control system ensures good reference signal

tracking and also the rejection of the effects of input and output disturbances. If

along the path from the disturbance to the output there are signal components with
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large time constants, then the disturbance rejection will be slow. Of course, in

controller design considerations related to disturbance rejection have to be also

taken into account.

Disturbance rejection can be improved if not only the effects caused by the

disturbance in the output signal are utilized for disturbance rejection, but possibly

some internal measurable signals are also used in which the effect of the disturbance

appears already earlier than in the output signal. Utilizing the available information

in the control circuit, better, deliberate decisions can be made, and thus the quality

of the control system can be improved.

4.9.1 Disturbance Elimination Scheme (Feedforward)

If the disturbance is measurable, the quality of the control system, especially its

disturbance rejection properties, can be significantly improved by letting it drive a

feedforward. Based on the measured value of the disturbance it is possible to execute

actions to reject it before its effect would appear in the controlled variable. The block

diagram of feedforward control is shown in Fig. 4.37. With appropriate design of the

feedforward controller Cn sð Þ the effect of the disturbance can be significantly

decreased or even totally compensated. The disturbance acts on the output through

two paths. The resulting transfer function between the output and the disturbance is

Y sð Þ
Yn sð Þ ¼

Pn sð ÞþCn sð ÞP sð Þ
1þC sð ÞP sð Þ : ð4:55Þ

The effect of the disturbance will not appear in the output signal if the numerator

of the above expression is zero, i.e. if

r e

n
y

y

nC s

nP s

C s P s

Fig. 4.37 Block diagram of feedforward control
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Pn sð ÞþCn sð ÞP sð Þ ¼ 0: ð4:56Þ

Hence the transfer function of the feedforward compensator is:

Cn sð Þ ¼ �Pn sð Þ
P sð Þ : ð4:57Þ

If this transfer function is realizable (i.e. if the degree of its numerator is not

higher than the degree of its denominator and furthermore P sð Þ does not contain

dead time), the effect of the feedforward is perfect: the effect of the disturbance does

not appear at all in the output signal. If Cn sð Þ is non-realizable, its transfer function
has to be approximated by the best realizable controller.

Feedforward supplements the closed-loop control circuit with an open-loop path.

The efficiency of the feedforward compensation depends on how accurately the

effect of the disturbance on the output signal is known, and how much it is possible

to compensate it with the available manipulations.

As an example let us consider the control scheme of a belt dryer furnace shown

in Fig. 4.38. In the electrically heated furnace the material to be dried goes through

the conveyor G driven by the motor M. The controlled signal is the moisture

content of the material leaving the furnace. At a given conveyor speed the material

abides in the furnace for a given time. The manipulated variable is the heating

power, which can be changed by a voltage u across the resistance R. The humidity

of the material leaving the furnace is measured. It is compared to the reference

signal. In case of deviation, the heating power is modified through a PI controller.

(A PI controller consists of a proportional (P) and an integrating (I) element con-

nected in parallel, see Chap. 8). The main disturbance source is the change of the

humidity of the incoming material. Time is needed to eliminate the effect of the

disturbance. The control system comes into operation only after the effect of the

disturbance has been detected at the output. Thus for a certain time the humidity of

the outcoming material will differ from its desired value. If the humidity of the

incoming material is measurable, then based on this measured value the heating

power could be immediately set to a value which on the basis of a priori knowledge

expectably would be needed to ensure the prescribed humidity value through the P

part of the controller. (The integrating part of the controller can not be included in

the feedforward path, as its output can not reach a finite steady state because of the

constant input signal.) The feedforward part of the controller is denoted by the

dashed line in Fig. 4.38. Then the closed-loop control circuit has to eliminate only

the error component resulting from the inaccuracy of the a priori knowledge.

4.9.2 Cascade Control Schemes

Several times the processes can be separated into serially connected parts, and

besides the output signal the intermediate signals can also be measured. Figure 4.39

shows the block diagram of a process which consists of two serially connected
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parts. The disturbances may act on the output or between the two parts of the

process. It is supposed that the disturbances themselves are not measurable.

The block diagram of the conventional feedback control is shown in Fig. 4.40.

The closed-loop control system is able to track the reference signal and also to

reject the effect of the disturbances. To activate the disturbance rejection it is

necessary that the effect of the disturbance should appear at the output. Then an

Fig. 4.38 Control scheme of a belt dryer furnace with feedforward

Fig. 4.39 A process which can be separated into two serially connected parts

Fig. 4.40 Block diagram of feedback control

4.9 Improving the Disturbance Elimination Properties of the Closed-Loop 191



error signal appears in the closed-loop which activates the control circuit to elim-

inate the effect of the disturbance. If the P1 sð Þ part of the process contains the larger
time constants, the rejection of the disturbance yn2 acting between the two parts of

the process will be slow.

It is worthwhile to create an inner loop using the measurable y2 signal, which is

capable of supporting a fast rejection of the inner disturbance. As the effect of the

inner disturbance appears sooner in signal y2 than in the output y1, the inner loop

can rather quickly decrease the effect of the inner disturbance. The outer loop

ensures good reference signal tracking, the rejection of the output disturbance and

further attenuation of the effect of the inner disturbance which has been already

decreased by the inner loop. The block diagram of the control circuit with two loops

—called a cascade control—is shown in Fig. 4.41. The advantage of cascade

control compared to a single-loop feedback control is manifested if part P1 sð Þ of the
plant contains the large time constants and/or dead time, while part P2 sð Þ contains the
smaller time constants. The controller of the inner loop C2 sð Þ, is designed for fast

performance of the internal loop, thus the inner loop will quickly reject the internal

disturbance. With the controller C1 sð Þ of the outer loop, good reference signal

tracking and rejection of the external disturbance is to be ensured. The inner

controller could be of structure P or PD. In the inner loop the feedback provides

acceleration, thus because of the smaller time constants the compensation of the

outer loop will be easier. The controller in the outer loop which ensures the quality

specifications could be of structure PI or PID. (A PID controller consists of parallel

connected proportional (P), integrating (I) and differentiating (D) elements, see

Chap. 8.)

In some applications it is expedient to put a saturation after the external con-

troller. As the output of the external controller provides the reference signal of the

internal loop, by restricting its value, the internal signal y2 can also be kept within

prescribed limits.

Of course if the process can be separated into more than two components, where

the internal signals are measurable, a cascade control can be realized with several

nested control circuits.

Cascade control is applied generally in the speed or position control of electrical

drives, where the output variable is the speed or the position, and the internal variable is

the current. In this case the aim of cascade control is mainly the restriction of the armature

current. Namely, the current may reach very high values when starting, breaking or

loading the motor, while the speed is developed more slowly because of the mechanical

inertia of the system. Thus it is not enough to feed back only the speed, the current also

Fig. 4.41 Block diagram of cascade control
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has to be observed, and its value has to be kept within the allowed range. The cascade

control of a DC motor is shown schematically in Fig. 4.42.

Figure 4.43 shows a cascade control solution for room temperature control. The

controlled variable is the # temperature of room T, which is set to the required value

by the air blown across the steam heated heat exchanger H. The manipulated variable

is the steam blowing through the heat exchanger, which is set by valve B. The main

disturbance is the pressure of the steam, as the amount of the steam, i.e. the heating

power entering the heat exchanger H depends on the pressure in a given valve

position. For the cascade stage the internal controlled variable could be the temper-

ature #k of the steam coming out of the heat exchanger, as the effect of the change

of the heating power is observed sooner in #k than in the room temperature #.

Fig. 4.42 Cascade control of a DC motor

Fig. 4.43 Cascade solution for room temperature control
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In a single loop closed-loop control circuit only the output signal is fed back. In

cascade control, besides the output signal, one or more measurable internal signals

are also fed back, thus improving the quality of the control. The control system will

be faster, and could reject the internal disturbances more effectively. These internal

variables generally are the state variables of the system.

In a system, the internal variables, the so called state variables, determine the

dynamic behavior of the system. Their instantaneous values depend on the previous

moves of the input signal. With the knowledge of the actual values of the state

variables and the input signal, the states of the system and the output signal at the

next time point can be determined.

When building a closed-loop control system not only the measurement of a

single output signal or of some additional inner signals considered in cascade loops

is important, but it is essential to measure and feed back all the state variables (in a

system described by a differential equation of order n, their number is n). This

control concept is called state feedback, which can be considered as a generalization

of the cascade control concept. Chapter 10 deals with state feedback control in

detail.

4.10 Compensation by Feedback Blocks

If some internal signals of a process are measurable, applying feedback on them the

performance of the control system can favorably be influenced. The block diagram

of feedback compensation is shown in Fig. 4.44. The equivalent series compen-

sation can be determined in a straightforward way. The advantage of feedback

compensation is that besides modifying the performance of the closed-loop system

it linearizes the relationship between the output and the input signals of the internal

loop and considerably decreases the effect of parameter changes. The internal loop

is also effective in rejecting internal disturbances. Compensation by a feedback

block may also show an advantageous behavior when the control signal is saturated.

Fig. 4.44 Block diagram of compensation by a feedback block
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With appropriate internal feedback, the inverse of the process can be generated,

providing a favorable control solution.

Generally it is sufficient to have an internal loop working only in the transient

state, while in the steady state only the external loop is efficient. This can be

accomplished by feedback through a differentiating element combined with a first

order lag: Cv sð Þ ¼ Avss= 1þ sT1ð Þ.

4.11 Control with Auxiliary Manipulated Variables

Typically there are several possibilities for manipulation at the process input.

Depending on the properties of the process one of the manipulated variables is

fundamental, while the others can be used as auxiliary possibilities applied, in

general, only temporarily.

The block diagram of a control system with an auxiliary loop is shown in

Fig. 4.45. As an application example, let us consider the control of the belt dryer

furnace shown earlier in Fig. 4.38. If the humidity of the material coming into the

furnace changes abruptly, without feedforward its effect on the output is recognized

only when the furnace is already full of the material of changed quality. In this case,

if only the heating of the furnace is modified, a relatively large amount of the

material comes out of the furnace with humidity that differs from the required value,

as the thermal inertia of the furnace is big and the temperature can only be changed

slowly. The manipulation becomes more effective if the speed of the conveyor is

also changed temporarily by changing the speed of the motor M. Thus the residence

time of the material in the furnace is shortened. The auxiliary manipulation can only

be temporary, which can be achieved by e.g. using a proportional controller in the

auxiliary loop, that influences the armature voltage of the motor. In the main control

loop, a PI controller is applied, thus in steady state the error signal is zero, and then

the auxiliary circuit becomes inactive.

Fig. 4.45 Block diagram of a control system with two loops applying an auxiliary manipulated

variable
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Chapter 5

Stability of Linear Control Systems

In practical applications, the stability of the control system is an important

requirement. A control task can not be realized with an unstable control loop. The

stability of a control system has to be distinguished from the stability of the process

itself. There are cases when an unstable process has to be stabilized and controlled

with a closed-loop control system. There are processes which would not even

operate without control, the closed-loop control stabilizes the process. The best

known examples of such systems are the control of an airplane, or in everyday life,

riding a bicycle.

Closed-loop control circuits may present surprising phenomena. These phe-

nomena are due to the process dynamics, inertia and time-delays. Therefore the

processes can not follow immediately the commands acting on their input.

Generally, the time of the response of a process is not within the time scale of

human reactions (sometimes it is much slower, and sometimes much faster). In

some cases the short time response does not agree with what we would experience

waiting for a bit longer time (e.g., non-minimum phase processes). Therefore

experimental investigation of the stability is not acceptable in operating and con-

trolling real processes, which are generally very expensive. Precise mathematical

methods are needed to analyze the stability of control systems.

5.1 The Concept of Stability

If a system has the property that it will get back into the equilibrium state again after

moving away from its equilibrium state, then it is stable.

If the system is non-linear, its stability depends on the input signal and also on

the operating point. In this case, stability is a characteristic of a state of the system,

and not of system as a whole. In case of a linear system, stability is characteristic for
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the system. Stability depends on the system’s structure and parameters, but does not

depend on the input signal. As far as stability is concerned, a number of various

formulations exist.

Stability of an un-excited system

A system is stable if after removing it from its equilibrium state and allowing it to

move freely, it returns to its original state. If the system moves away from its

original state, its behavior is unstable. The system is on the boundary of stability

and unstability if after removal from the equilibrium state it does not return to it, but

remains in its close vicinity, which depends on the extent of the removal (e.g. it

makes un-damped oscillations with bounded amplitude around the initial state). In

non-linear systems, the system is also considered stable if in the boundary case

removing it from the steady state it returns to an arbitrarily prescribed small vicinity

of the steady state. The system is asymptotically stable if after removing it from its

equilibrium state it returns to its original state. A stable linear system is asymp-

totically stable. In the case of asymptotic stability the weighting function w tð Þ of a
linear system is decreasing in the following sense:

lim
t!1

w tð Þ ¼ 0 ð5:1Þ

and furthermore w tð Þ is absolutely integrable, i.e.

Z

1

0

w tð Þj jdt\1 ð5:2Þ

Stability of an excited system

A system is stable if it responds to any bounded input signal with a bounded output

signal, from any initial condition. Stability of the excited system is called Bounded-

Input–Bounded-Output (BIBO) stability.

For linear systems, stability is a system property. Stability does not depend on

the magnitude of the excitation. Additionally, for linear systems, if the un-excited

system is stable, then the excited system is also stable. Stability can be checked

unambiguously from the system response to a simple input signal.

Internal stability

A closed-loop control system fulfills the requirement of internal stability if its

output signal and all of its inner signals respond in a stable way to any outer

excitation signal. Let us investigate the control system shown in Fig. 5.1. Besides

tracking the reference signal r the rejection of the effect of disturbance yni and yno
acting at the input and the output of the plant P, respectively and the effect of the

measurement noise yz on the output are also investigated. The system is stable if for
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all the considered bounded input signals the controlled output signal y, the

manipulated control variable u and the error signal e are bounded. It can be shown

that in the structure of Fig. 5.1 it is always sufficient to choose two arbitrary

external and two arbitrary internal signals. Internal stability requires the investi-

gation of the stability of the following four overall transfer functions: CP= 1þCPð Þ,
1= 1þCPð Þ, P= 1þCPð Þ, C= 1þCPð Þ. This can be characterized by the transfer

matrix of the closed-loop control circuit

Tt ¼
CP

1þCP
P

1þCP
C

1þCP
1

1þCP

� �

ð5:3Þ

A closed-loop control system has the property of internal stability if Tt is stable,

i.e. all its elements are stable. Internal stability is equivalent to the stability of the

excited system if the open-loop system has no non-observable or non-controllable

right side poles (i.e. the zeros of the controller do not cancel the pole in the right

half-planes of the plant). (It has to be emphasized that it is not allowed to cancel an

unstable pole of the plant with a right side zero of the controller, as the unstable

pole would become invisible only in the relationship between the output signal and

the reference signal, but would remain in the relationship between the output signal

and the disturbance acting at the input of the plant.)

LYAPUNOV stability

According to the LAGRANGE energy theorem a system is in balance if its potential

energy is minimal. LYAPUNOV prescribes the determination of a scalar function of

energy property (the so called LYAPUNOV function) belonging to the differential

equation or state equation of a general nonlinear system with constant coefficients.

If in the considered range of the state variables this function is positive and its

derivative is negative, the system is asymptotically stable. The methods of

LYAPUNOV provide sufficient conditions for the determination of the stability

properties of nonlinear systems. Choosing a LYAPUNOV function is not always a

r e
C

u

yni yno

P
y

yn

−

Fig. 5.1 Block diagram of a closed-loop control system
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simple task. LYAPUNOV suggests first the investigation of the stability of the lin-

earized system at individual operating points. Of course, the method of LYAPUNOV

can also be applied to investigate the stability of a linear system. But for linear

systems, it is expedient to use simpler direct methods.

5.2 Stability of the Closed-Loop System

Negative feedback, which is the basic structure of a closed-loop control system,

also involves the risk of instability. To demonstrate this let us consider the control

loop shown in Fig. 5.2. Assuming a step-like abrupt change of the reference signal,

the output signal starts to grow from zero. Then the error signal decreases starting

from an initial value of 1. If the gain of the controller is high, first a large input

signal appears at the plant input, which results in a sharp rise in the output signal.

The dynamics of this change is determined by the dynamics of the process P and

the controller C, i.e., by the gains and the time constants of the corresponding

transfer functions. When the output signal reaches its required value, viz., the one

prescribed by the reference signal, the error signal reaches zero. But because of the

inertia of the system, the signals will not be settled immediately at their required

values, but maintaining their trend they will continue changing further, according to

their actual slope. If the output signal exceeds its prescribed value, the error signal

becomes negative, and after a while the output signal will start decreasing. With

large time constants of the process and high gains of the controller, the overshoot

may be significant. Steady or increasing oscillations may appear in the control

system. The problem of stability emerges because the system uses the information

supplied by the error signal in a delayed manner, and if the gains are high, during

the delay time the output signal “runs away” so much that the control system will

not be able to bring it back to its required value. The parameters of the controller

always have to be chosen in such a way that the control system is stable.

The instability of a feedback control system is caused by large time constants

and high gains. This phenomenon is illustrated by the behavior of the control

system shown in Fig. 5.3. The process is represented by a pure dead-time with unit

gain, given by its step response. The dead-time element follows its input signal u

after a time specified by Td. The controller is a pure proportional element with gain

A, thus the loop gain is K ¼ A. Let us investigate the signals in the control circuit

for K ¼ 0:5, 1 and 2. The evolution of the signals can be easily followed.

r e C
u

P
y

−

Fig. 5.2 Dynamics of a

control system
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Figure 5.4 shows the reference signal, the error signal, and the controlled output

signal. With K ¼ 0:5 the control system is stable (but it is inaccurate: the output

signal settles at 1/3 instead of the required value 1). In the case of K ¼ 1, steady

oscillations appear: the system is on the borderline between stability and instability.

With K ¼ 2, the system is unstable.

The values of the individual signals can also be given analytically in the con-

sidered time ranges according to Table 5.1.

r e
K

y

−

1

d
T t

u

Fig. 5.3 Control system with dead-time

Fig. 5.4 Signals in a control circuit with dead-time

Table 5.1 Signal values in a

closed-loop control system

with dead-time

Time range t Error signal e Output signal y

0�Td 1 0

Td�2Td 1� K K

2Td�3Td 1� K 1� Kð Þ K 1� Kð Þ
3Td�4Td 1� K 1� K 1� Kð Þ½ � K 1� K 1� Kð Þ½ �
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It is seen that with the progress of time the error signal e can be given by a

geometrical series with quotient �K. If K\1, the series converges to

lim
t!1

e tð Þ ¼ 1= 1þKð Þ, and the limit value of the output signal is

lim
t!1

y tð Þ ¼ K= 1þKð Þ. Thus the stability limit is K ¼ 1. The higher the value of K,

the smaller the steady error in the control circuit, but the requirement of stability

sets a limit for increasing K. Stability and static accuracy are often contradictory

requirements. In the design of a control system, an appropriate compromise has to

be realized to ensure both stability and the required static accuracy.

Stability is an important property for a linear system. In the case of instability the

control system “runs away” even if it is excited only temporarily by some noise,

e.g. an impulse acts at its input. Figure 5.5 shows the signals in the case of K ¼ 2

when the reference signal is a short time impulse of amplitude unity.

5.3 Mathematical Formulation of the Stability

of Continuous Time Linear Control Systems

If an un-excited closed-loop control system is asymptotically stable then the time

function describing its transients contains components that are decreasing functions

of time. The transient time function is a combination of exponential components

whose exponents are the roots of the characteristic equation of the system.

In a controllable and observable control system (when the zeros of the controller

do not cancel the poles of the plant) the roots of the characteristic equation are

identical to the poles of the overall transfer function of the closed-loop. Formally,

the characteristic equation of the differential equation describing the system is

equivalent to the denominator of the overall transfer function of the closed-loop

system.

That is, the overall transfer function of the closed-loop between the output signal

y and the reference signal r is

T sð Þ ¼ Y sð Þ
R sð Þ ¼

C sð ÞP sð Þ
1þC sð ÞP sð Þ ¼

C sð ÞP sð Þ
1þ L sð Þ : ð5:4Þ

The differential equation of the system is the inverse LAPLACE transform of

1þ L sð Þ½ �Y sð Þ ¼ C sð ÞP sð ÞR sð Þ ð5:5Þ

and the characteristic equation is, formally,

1þ L sð Þ ¼ 0: ð5:6Þ

Thus the roots of the characteristic equation are the same as the poles of the

overall transfer function of the closed-loop system.
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If the loop transfer function is a rational fraction, i.e. L sð Þ ¼ N sð Þ=D sð Þ where
N sð Þ and D sð Þ are polynomials, then the characteristic equation can also be given

in the following form:

r

1

e

Td

4

1

-2

t

t

y

–8

–4

–16

8

2

t

Fig. 5.5 The signals at the

output of an unstable system

“run away” even if a short

time signal acts at its input
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A sð Þ ¼ D sð ÞþN sð Þ ¼ 0 ð5:7Þ

or

ans
n þ an�1s

n�1 þ � � � þ a1sþ ao ¼ an s� p1ð Þ s� p2ð Þ. . . s� pnð Þ ¼ 0: ð5:8Þ

If the system is described by its state equation with state matrix A, then the

characteristic equation can be given by the relationship

det sI � Að Þ ¼ 0: ð5:9Þ

(see also Chap. 3).

If the coefficients of the characteristic equation are real numbers, then the roots

of the equation are real numbers or pairs of complex conjugate numbers.

The condition for asymptotic stability is that the real part of the poles pi of the

closed-loop have negative real parts, as this condition ensures that the transients are

decreasing function of time. This condition can also be formulated as follows: a

closed-loop control system is asymptotically stable if all of its poles lie in the left

half-plane of the complex plane.

If any of the poles lies in the right half-plane, the system is unstable. If besides

the poles in the left half-plane there are poles in the origin, then there is an inte-

grating effect in the system, for step input its output signal goes to infinity. If there

are pairs of complex conjugate simple poles on the imaginary axis, then steady

oscillations do appear in the transients. In the case of multiple poles, the amplitudes

of the oscillations are increasing. In practice, only asymptotic stability is acceptable.

5.4 Analytical Stability Criteria

Stability can be decided from the location of the roots of the characteristic equation

which are the poles of the closed-loop system.

If there is no dead-time, the characteristic equation is an algebraic equation,

whose roots can be given analytically provided the degree is less than 5 (GALOIS

theorem). For higher degrees, numerical root searching methods can be applied

which determine the roots with a given accuracy.

If the system contains dead-time, then the characteristic equation is a tran-

scendental equation D sð ÞþN sð Þe�sTd ¼ 0, whose solution is not simple, and in the

case of instability it is difficult to decide how to stabilize the system. In this case, the

characteristic equation can be approximated by a rational functional approximation

of the dead-time, or the investigation has to be done in the frequency domain (see

Sect. 5.6).

Several procedures have been elaborated to determine the stability without

solving the characteristic equation. These procedures are referred to as stability

criteria.
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If there is no dead-time, then based on the relationships between the roots and

the coefficients of the algebraic equation it can be checked with analytical stability

criteria whether all the roots lie in the left half of the complex plane, i.e., whether

the system is stable or not.

A necessary condition for stability is that all the coefficients of the characteristic

equation must be of the same sign and none of the coefficients can be zero. This can

be seen easily based on Eq. (5.8). That is, if all the poles have negative real parts,

then by multiplying the root factors, all the coefficients will be positive. If there are

also pairs of complex conjugate roots with negative real parts, then multiplying the

root factors the obtained coefficients are also positive. Suppose p1;2 ¼ �a� jb,

where a[ 0 and b[ 0. Let us multiply together the two corresponding factors

s� �aþ jbð Þ½ � s� �a� jbð Þ½ � ¼ s2 þ 2asþ a2 þ b2. The coefficients are evidently

positive. In the first- and second-degree cases the sameness of the signs of the coeffi-

cients is not only a necessary, but also a sufficient condition for stability. In the sequel,

two analytical methods will be given, without proof for checking stability.

5.4.1 Stability Analysis Using the ROUTH Scheme

Let us build the following scheme from the coefficients of the characteristic

polynomial given in (5.8):

an an�2 an�4 an�6 . . .

an�1 an�3 an�5 an�7 . . .

bn�2 bn�4 bn�6 bn�8 . . .

cn�3 cn�5 cn�7 cn�9 . . .

..

.

ð5:10Þ

where

bn�2 ¼
an�1an�2 � anan�3

an�1

; bn�4 ¼
an�1an�4 � anan�5

an�1

; bn�6 ¼
an�1an�6 � anan�7

an�1

; . . .

cn�3 ¼
bn�2an�3 � an�1bn�4

bn�2

; cn�5 ¼
bn�2an�5 � an�1bn�6

bn�2

; . . .

ð5:11Þ

The length of the rows is decreasing. If the degree of the characteristic poly-

nomial is n, the scheme consists of nþ 1 rows. The arrangement given by (5.10)

and, (5.11) is called the ROUTH scheme.

A system is stable if all the coefficients of its characteristic equation are positive

and all the elements of the first column of its ROUTH scheme are positive. If not all

the elements in the first column are positive, the system is unstable, and the number

of the changes in the signs gives the number of poles of the closed-loop system that

lie in the right half-plane. A zero in the first column indicates that the characteristic
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equation has a root on the imaginary axis. In this case, the scheme can be continued

by taking an arbitrarily small e value instead of zero.

Example 5.1 Suppose the loop transfer function of a control circuit is

L sð Þ ¼ K=s 1þ sð Þ 1þ 5sð Þ. In a closed-loop circuit, a unit negative feedback is

applied. Let us determine the value of the critical gain K that brings the control

system to the stability limit. The characteristic equation is

1þ L sð Þ ¼ 1þ K

s 1þ sð Þ 1þ 5sð Þ ¼ 0;

or

5s3 þ 6s2 þ sþK ¼ 0:

As all the coefficients have to be positive, the necessary condition for stability is

K[ 0.

The Routh scheme is :

5 1

6 K
6�5K
6

0

K

:

To ensure stability, all the elements of the first column have to be positive. Thus

the condition for stability is

0\K\1:2: �

5.4.2 Stability Analysis Using the HURWITZ Determinant

Let us build the following HURWITZ determinant of dimension n� n from the

coefficients of the characteristic polynomial (5.8)

an�1 an�3 an�5 an�7 . . .

an an�2 an�4 an�6 . . .

0 an�1 an�3 an�5 . . .

0 an an�2 an�4 . . .

0 0 an�1 an�3 . . .

..

.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

ð5:12Þ

Elements with negative indices are taken to be zeros. The system is stable if all

the coefficients of the characteristic equation are positive and all the subdetermi-

nants along the main diagonal are also positive: Di[ 0. The subdeterminants are:
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D1 ¼ an�1j j; D2 ¼ an�1 an�3

an an�2

�

�

�

�

�

�

�

�

; D3 ¼
an�1 an�3 an�5

an an�2 an�4

0 an�1 an�3

�

�

�

�

�

�

�

�

�

�

�

�

; . . .;Dn: ð5:13Þ

Example 5.2 Let us investigate the stability of the system analyzed in Example 5.1

on the basis of the HURWITZ determinant. The characteristic equation is

5s3 þ 6s2 þ sþK ¼ 0:

As all the coefficients have to be positive, K[ 0.

The HURWITZ determinant is

6 K 0

5 1 0

0 6 K

�

�

�

�

�

�

�

�

�

�

�

�

: ð5:14Þ

The subdeterminants along the main diagonal are

D1 ¼ 6[ 0; D2 ¼ 6� 5K[ 0 andD3 ¼ KD2[ 0:

Thus the condition of stability is 0\K\1:2. �

5.5 Stability Analysis Using the Root Locus Method

The root locus gives the location of the roots of the characteristic equation of the

closed-loop system in the complex plane as a parameter (generally the loop gain)

changes between zero and infinity.

If the roots are in the left half-plane, the system is stable. At the critical gain the

root locus crosses the imaginary axis. At gains where the root locus has moved to

the right half-plane, the system becomes unstable.

From the root locus, not only the stability of the closed-loop system can be

checked, but from the location of the roots, also the dynamic properties can be

determined approximately.

For drawing the root locus, the characteristic equation has to be solved for

different parameter values. Today’s computer techniques and CAD programs pro-

vide considerable help in drawing the root locus branches. But often there is the

need for a rapid qualitative analysis to assist the designer in design considerations.

Therefore, several rules have been elaborated to support the quick sketching of the

root locus. (It is also called the EVANS method, after the name of the developer of

the method.)
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5.5.1 Basic Relationships of the Root Locus Method

The characteristic equation of the closed-loop control circuit 1þ L sð Þ ¼ 0 can be

written also in the following form:

L sð Þ ¼ �1 ¼ k

QZ
j¼1 s� zj

� �

QP
i¼1 s� pið Þ

; ð5:15Þ

where Z denotes the number of zeros, P is the number of poles and k, is the loop

gain factor of the pole-zero form.

For all the points of the root locus the absolute value condition

L sð Þj j ¼ 1 ð5:16Þ

and the phase condition

u ¼ �N180�; N ¼ 1; 3; 5; . . . ð5:17Þ

have to be fulfilled.

This means that for the construction of the root locus, those points in the

complex plane are to be looked for that fulfill both the phase condition and the

absolute value condition.

Let us denote the absolute value of the vector connecting the zero zj with an

arbitrary point s of the complex plane by Cj, and its phase angle with the positive

real axis by cj. The absolute value of the vector connecting the pole pi with the

same point s is denoted by Di, while its phase angle is denoted by di (Fig. 5.6). That

is

s� zj ¼ Cje
jcj ð5:18Þ

Fig. 5.6 Notation for the

vectors connecting the points

of the root locus with the

poles and zeros of the

open-loop
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and

s� pi ¼ Die
jdi : ð5:19Þ

The phase condition can be given in the following form:

X

Z

j¼1

cj �
X

P

i¼1

di ¼ �N180�; N ¼ 1; 3; 5; . . . ð5:20Þ

or

X

P

i¼1

di �
X

Z

j¼1

cj ¼ �N180�; N ¼ 1; 3; 5; . . . ð5:21Þ

For the absolute value condition, the following relationship holds:

QP
i¼1 Di

QZ
j¼1 Cj

¼ k: ð5:22Þ

A point in the complex plane is a point of the root locus if for that point both the

phase condition and the absolute value condition are fulfilled.

The phase condition can also be formulated as follows: a point s on the complex

plane is the point of the root locus if from the sum of the angles of the vectors

connecting the zeros of the open-loop with that point s one subtracts the sum of the

angles of the vectors connecting the poles of the open-loop with s and gets an odd

multiple of �180�.
The absolute value condition states that a point s is the point of the root locus if

dividing the product of the absolute values of the vectors connecting the poles with

point s by the product of the absolute values of the vectors connecting the zeros

with point s yields the loop gain factor.

Generally, the points of the root locus are determined from the phase condition,

and the value of the loop gain factor corresponding to the considered point is

obtained from the absolute value condition. Then from the loop gain factor, the loop

gain K belonging to the time constant form of the transfer function of the open-loop

is calculated by

K ¼ L sð Þjs¼0¼ k

QZ
j¼1 �zj

� �

QP
i¼1 �pið Þ

: ð5:23Þ

5.5 Stability Analysis Using the Root Locus Method 209



5.5.2 Rules for Drawing Root Locus

There are some simple rules which facilitate drawing the root locus:

1. The root locus is symmetrical with respect to the real axis.

2. The number of its branches is equal to the number of poles of the open-loop

transfer function.

3. The root locus starts from the poles of the open-loop when K ¼ 0 and runs to

the zeros or to infinity when K ! 1. If the number of poles is P and the

number of zeros is Z, then Z branches of the root locus run to the zeros and

P� Z branches run to infinity. If P ¼ Z, the whole root locus is located in a

finite range of the complex plane.

4. Sections of the root locus will be on the real axis if to the right of the considered

point the sum of the poles and zeros is odd. (It is sufficient to count the real poles

and zeros, as the complex poles or complex zeros appear in pairs.)

5. The direction of the asymptotes of the root locus is given by the angles

a ¼ �N180�

P� Z
; N ¼ 1; 3; 5; . . . ð5:24Þ

6. The asymptotes of the root locus cross the real axis at the point calculated by the

following relationship:

xo ¼
PP

i¼1 pi �
PZ

j¼1 zj

P� Z
¼

PP
i¼1 Repi �

PZ
j¼1 Rezj

P� Z
: ð5:25Þ

7. The location of leaving or entering the real axis can be determined by the

equation

X

P

i¼1

1

x� pi
�
X

Z

j¼1

1

x� zj
¼ 0 ð5:26Þ

8. The critical gain factor can be determined from the characteristic equation by the

ROUTH scheme or the HURWITZ determinant. The crossing points with the

imaginary axis can be calculated from the characteristic equation assuming that

in this case two of its roots are pure imaginary complex conjugate roots.

Explanation of the drawing rules

1. As the coefficients of the characteristic equation are real numbers, its roots are real

or complex conjugate pairs. Therefore the root locus is symmetrical to the real axis.

2. The degree of the characteristic equation is equal to the number of the poles

of the open-loop. Namely, if the transfer function of the open-loop is a

rational fraction, L sð Þ ¼ N sð Þ=D sð Þ, the characteristic equation is

1þ L sð Þ ¼ 1þN sð Þ=D sð Þ ¼ 0, or D sð ÞþN sð Þ ¼ 0. As the degree of D sð Þ is
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greater than or equal to the degree of N sð Þ, the degree of the characteristic

equation will be equal to the degree of D sð Þ, and the number of its roots will be

equal to the number of poles of the open-loop. Thus with a change of the loop

gain the root locus will have as many branches as the number of poles of the

open-loop.

3. From relationship (5.15)

�k ¼
QP

i¼1 s� pið Þ
QZ

j¼1 s� zj
� � ; P	 Z: ð5:27Þ

k ¼ 0 holds if s ¼ pi. Thus the root locus starts from the poles of the open-loop

when k ¼ 0. k ¼ 1 holds if s ¼ zj or s ! 1. Thus if k ! 1 the roots of the

characteristic equation run into the zeros of the open-loop, or if P[ Z then the

number P� Z of the roots goes to infinity.

4. If a point s of the root locus is on the real axis, the vectors connecting it with the

complex conjugate poles (or zeros) make an angle of 0� or 360� considering the

pairs, therefore they can be disregarded. The real poles or zeros if they are to the

left of the considered point s, make an angle of 0�, while if they are to the right

of the point, they make an angle of 180�. To fulfill the phase condition (5.17),

the sum of the number of the poles and the zeros to the right of s has to be odd.

5. The asymptotes approach the very distant points of the root locus, from where

the pi poles and the zj zeros of the open-loop are all seen under the same angle a:

Pa� Za ¼ �N180� ð5:28Þ

hence the angles of the asymptotes are

a ¼ �N180�

P� Z
; N ¼ 1; 3; 5; . . . ð5:29Þ

6. Taking into consideration the poles with weight +1 and the zeros with weight

−1, the crossing point of the asymptotes with the real axis is just at the center of

gravity, as looking at the system from a longer distance it can be replaced by its

center of gravity. The rule can be derived analytically as well.

7. The phase condition is fulfilled also for a point x where the root locus steps out

or arrives at the real axis. According to Fig. 5.7 leaving the real axis with a small

Fig. 5.7 Determination of

the place where the root locus

leaves the real axis
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e distance perpendicularly and replacing the small angles with their tangents the

following relationship can be written:

X

P

i¼1

e

x� pi
�
X

Z

j¼1

e

x� zj
¼ 0 ð5:30Þ

Now (5.26) follows from (5.30).

8. On the borderline between stability and unstability, the characteristic equation

has roots on the imaginary axis.

5.5.3 Examples of the Root Locus Method

Example 5.3 Let us consider the system given in Examples 5.1 and 5.2. The loop

transfer function is L sð Þ ¼ K=s 1þ sð Þ 1þ 5sð Þ. A negative feedback of unity is

applied. The loop transfer function in zero-pole form is

L sð Þ ¼ k

s sþ 1ð Þ sþ 0:2ð Þ ;

where k ¼ 0:2K is the loop gain. Determine the root locus. The varying parameter

is the loop gain k.

On the basis of the construction rules it can be seen that the root locus has three

branches. The branches start from s1 ¼ 0, s2 ¼ �0:2, and s3 ¼ �1, the poles of the

loop transfer function, and go to infinity. On the real axis the root locus has a

section between the points 0 and �0:2, and in the range between �1 and �1.

Between the points 0 and �0:2 the root locus steps off of the real axis. The angle of

the asymptotes going to infinity is a ¼ �N180�= 3� 0ð Þ: at N ¼ 1 the angle is

�60�, and at N ¼ 3 it is 180�. The asymptotes cross the real axis at

�1:2=3 ¼ �0:4. The point where the root locus steps out of the real axis is cal-

culated by solving equation 1
x
þ 1

xþ 1
þ 1

xþ 0:2 ¼ 0. The solutions are: x1 ¼ �0:7055

and x2 ¼ �0:0945. Only x2 can be a solution, since the root locus may not have a

point at x1. Figure 5.8 shows the root locus. The critical loop gain kcr can be

determined from the characteristic equation by either the ROUTH or the HURWITZ

criterion. The root locus crosses the imaginary axis at this gain. In Examples 5.1

and 5.2 its value was calculated by both methods. The stability range of the system

is 0\K\1:2 or 0\k\0:24, respectively. The characteristic equation at the critical
value kcr ¼ k ¼ 0:24 is:

s sþ 1ð Þ sþ 0:2ð Þþ 0:24 ¼ s3 þ 1:2s2 þ 0:2sþ 0:24 ¼ 0
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Fig. 5.8 Root locus of an

integrating two lag element

with negative unity feedback

Two of the roots are on the imaginary axis. Thus

s3 þ 1:2s2 þ 0:2sþ 0:24 ¼ sþ cð Þ sþ jgð Þ s� jgð Þ ¼ sþ cð Þ s2 þg2
� �

¼ s3 þ cs2 þg2sþ cg2:

Comparing the coefficients, we obtain

c ¼ 1:2 and g ¼
ffiffiffiffiffiffiffi

0:2
p

¼ 0:4472:

The oscillation frequency is determined by the g interception with the imaginary

axis. �

Further examples for root loci

The root loci of some systems (without proper scaling) are shown in Table 5.2.

Comparing the figures, it can be seen that a new pole pushes away the branches of

the root locus, while a new zero attracts them.

Figure 5.9 shows that in the case of three poles, the introduction of a zero,

modifies the shape of the root locus. By appropriate location of the zero the

closed-loop system can be stabilized over the whole range of the gain factor.

Figure 5.10 gives the root locus of an unstable open-loop system. The transfer

function of the open-loop is

L sð Þ ¼ k sþ 1ð Þ
s s� 1ð Þ sþ 6ð Þ :

This open-loop system has an unstable pole. Inserting an additional zero can

ensure that the closed-loop system becomes stable with for appropriate choice of

the gain ðk[ kcr ¼ 7:5Þ.
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The shape of the root locus shows an analogy to the electrostatic field. If positive

and negative charges are located in a plane, the asymptotes of the electrostatic field

take the shape of the root locus, if the positive charges are replaced by the poles and

the negative charges by the zeros. (Generally the analogy with the potential field of

sources and sinks can be considered.)

Table 5.2 Root loci of typical systems

P Z

0 1

Transfer function Root locus Transfer functions Root locus

1 K

s
K
1þ sT1

1þ sT2
T1[ T2

K

1þ sT
K
1þ sT1

1þ sT2
T2[ T1

2 K

1þ sT1ð Þ 1þ sT2ð Þ
K 1þ sT2ð Þ

1þ sT1ð Þ 1þ sT3ð Þ

K

1þ s2nT þ s2T2

K 1þ sT1ð Þ
1þ s2nT þ s2T2

3 K

1þ sT1ð Þ 1þ sT2ð Þ 1þ sT3ð Þ
K 1þ sT4ð Þ

1þ sT1ð Þ 1þ sT2ð Þ 1þ sT3ð Þ

K

1þ s2nT1 þ s2T2
1

� �

1þ sT2ð Þ
K 1þ sT2ð Þ

1þ s2nT1 þ s2T2
1

� �

1þ sT3ð Þ
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Fig. 5.9 The effect of a zero to the root locus

Fig. 5.10 Stabilization of an

unstable open-loop with

negative feedback by

inserting a zero
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5.5.4 Root Locus in the Case of Varying a Parameter

Different from the Gain

If the root locus is to be determined as a function of a parameter different from the

gain factor, then the characteristic equation has to be transformed to the form

aH sð Þ ¼ �1

where a is the varying parameter and H sð Þ is the transfer function obtained as a

result of the transformation. Drawing the root locus, a takes the role of the gain and

H sð Þ is a constructed loop transfer function.

Example 5.4 The procedure will be presented when the open-loop is a proportional

element with two time lags where, instead of the gain factor, a pole (the time

constant) of the system varies from zero to infinity. The transfer function of the

open-loop is

L sð Þ ¼ 10

sþ að Þ sþ 2ð Þ :

The varying parameter is now alpha (the pole is �a). The characteristic equation

is

sþ að Þ sþ 2ð Þþ 10 ¼ 0

or

s sþ 2ð Þþ a sþ 2ð Þþ 10 ¼ 0:

Rearranging yields

1þ a
sþ 2

s2 þ 2sþ 10
¼ 0:

The root locus is determined for the transfer function

H sð Þ ¼ a
sþ 2

s2 þ 2sþ 10

(see Fig. 5.11). It can be seen that for small values of a ð0\a\8:3246Þ there
are decaying oscillations in the closed-loop system. If a increases further, the

transients is aperiodic. �

Today’s modern computer techniques make possible—beside the effect of the

change of the loop gain—to observe the effect of an additional parameter as well. In

this case the usual root locus is calculated for the discrete values of the other

parameter (e.g., a), and an array (in layers) of curves is drawn in three dimensions
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(3D). The fundamental two dimensions are represented by the complex plane itself,

above it the further root-loci are plotted “in layers”. Thus the third axis is for the

variable a. For 3D graphical representation, a variety of powerful software tools are

known, which makes it possible to depict very useful surfaces.

5.6 The NYQUIST Stability Criteria

With the analytical ROUTH-HURWITZ stability criteria, the stability of a closed-loop

control system can be determined based on the coefficients of the characteristic

equation, but in the case of instability it is difficult to tell how to change the

parameters of the system to ensure the appropriate dynamical performance.

The root locus gives an expressive picture of the change of the location of the

roots of the closed-loop characteristic equation in the complex plane versus a

parameter, thus a comprehensive view can be obtained of the stability and

dynamical properties of the system.

With the NYQUIST stability criterion, the stability of the closed-loop control

system can be determined based on the frequency diagram of the open-loop. The

method is expressive, and in the case of instability it can be easily determined how

to modify expediently the structure and the parameters of the system. By appro-

priately forming the frequency function—i.e., introducing new zeros and poles—

the prescribed properties of the closed-loop system, in addition to its stability, as

well as its required static and dynamical properties can be ensured.

5.6.1 Illustration of the Evolution of Undamped Oscillations

in the Frequency Domain

The characteristic equation of a closed-loop control system is 1þ L sð Þ ¼ 0, where

L sð Þ is the open-loop transfer function. Substituting s ¼ jx it can be checked

Fig. 5.11 Root locus of a

proportional system with two

time lags when one of its

poles is varied
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whether the equation has a solution on the imaginary axis. If there exists a fre-

quency xo fulfilling the condition 1þ L jxoð Þ ¼ 0, that is L jxoð Þ ¼ �1, then in the

closed-loop system, an un-damped oscillation arises with this frequency, thus the

system gets to the borderline of stability. In this case the NYQUIST diagram of the

open-loop goes through the point �1þ 0j of the complex plane.

The evolution of un-damped oscillations can be illustrated as follows. Let us

consider the control loop in Fig. 5.12. The NYQUIST diagram of the open-loop goes

through the �1þ 0j point at frequency xo. Imagine that the system is opened at

points B-K. Let the reference signal r be a sinusoidal signal with frequency xo. The

system transfers this signal with the same amplitude but with opposite sign. If now

the points B-K are connected again, because of the negative feedback the error

signal e coincides with the sinusoidal input signal. This un-damped sinusoidal

signal will be maintained in the system even if the reference signal is removed.

Oscillations with this frequency do appear in the system even in the case when the

reference signal is not the considered sinusoidal signal, but a different deterministic

signal, e.g., a unit step. That is, since in the frequency spectrum of the reference

signal all the frequencies do appear, the reference signal can be built from these

sinusoidal components. A component of frequency xo is maintained in the system.

5.6.2 The Simple NYQUIST Stability Criterion

Let us suppose that the transfer function of the open-loop has no poles on the right

half of the complex plane, thus the open-loop is stable.

Let us draw the frequency function in the complex plane for the domain

�1\x\1 (the complete NYQUIST diagram). Go through the NYQUIST diagram in

the direction of increasing frequencies.

If the NYQUIST diagram does not encircle the point �1þ 0j, the closed-loop control

system is stable.

If the NYQUIST diagram crosses the point �1þ 0j, the system is at the stability limit.

If the NYQUIST diagram encircles the point �1þ 0j, the system is unstable.

In a simpler formulation, it is sufficient to draw the NYQUIST diagram only for

positive x. If we go through the diagram from x ¼ 0 to1, and the point �1þ 0j is

to the left of the curve, the closed-loop control system is stable. If the curve crosses

r e y

−

1− Re

Im

o
ω

)j( ωL

K
B

Fig. 5.12 NYQUIST diagram

of an open-loop control

system, where the closed-loop

is working at the stability

limit
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the point �1þ 0j, the system is at the stability limit. If the point �1þ 0j is to the

right of the curve, the system is unstable.

The simple NYQUIST stability criterion can be proved based on conformal

mapping. The NYQUIST diagram of L jxð Þ is the conformal mapping of the imaginary

axis by the function L sð Þ as x changes between �1 and þ1 (Fig. 5.13). Let us

consider the straight lines �rþ jx and rþ jx, which are parallel to the imaginary

axis. Here, r is a given positive number.

Conformal mapping preserves the angles and ratios. Therefore a conformal

mapping of the straight line �rþ jx according to L �rþ jxð Þ lies to the left of the

curve L jxð Þ, while conformal mapping of the straight line rþ jx according to

L rþ jxð Þ lies to its right. So if the curve L jxð Þ crosses the real axis to the right of

the point �1þ 0j, and thus does not encircle it, then the equation L sið Þ ¼ �1 can be

fulfilled only for roots with negative real part, i.e. the transients are decreasing. In

this case the closed-loop control system is stable. Similarly, if the curve L jxð Þ
crosses the real axis to the left of the point �1þ 0j, and thus encircles it, then the

equation L sið Þ ¼ �1 can be fulfilled only for roots with positive real part, therefore

the amplitude of the transients is increasing and the system is unstable.

Example 5.5 Let us consider the closed-loop control circuit in Fig. 5.14. Let us

determine the critical loop gain based on the NYQUIST stability criterion.

Figure 5.15 shows the NYQUIST diagram of the open-loop for the case of the

stability limit. The NYQUIST diagram goes through the point �1þ 0j of the complex

Fig. 5.13 The simple NYQUIST stability criterion can be proved by conformal mapping

Fig. 5.14 Stability analysis

of a proportional system with

three time lags
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plane at frequency xo. At this frequency the phase angle of the frequency function

is −180° and its absolute value is 1. So we have

u xoð Þ ¼ �3arctg xoTð Þ ¼ �180�;

whence xoT ¼
ffiffiffi

3
p

. Thus Kkrit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þx2
oT

2
p� �3¼ 8, which does not depend on the

value of the time constant T . �

Example 5.6 The NYQUIST stability criterion can also be applied to systems with

dead-time. Let us consider a control system containing dead-time (see Fig. 5.3).

The NYQUIST diagram of the open-loop is a circle with radius K which keeps on

circling itself infinitely many times as the frequency increases (Fig. 5.16). At the

Fig. 5.15 NYQUIST diagram

of a proportional system with

three time lags at the stability

limit

Fig. 5.16 NYQUIST diagram

of a pure dead-time system
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stability limit, it crosses the point �1þ 0j, thus Kcrit ¼ 1, in agreement with

Fig. 5.4., and the convergence condition given in Table 5.1. �

5.6.3 The Generalized NYQUIST Stability Criterion

The generalized NYQUIST stability criterion gives a condition for stability even for

the case when the open-loop has poles in the right half-plane, i.e., the open-loop is

unstable. The question is whether the closed-loop can be stabilized with negative

feedback.

The generalized NYQUIST stability criterion can be formulated as follows: If the

open-loop is unstable and the number of its poles lying in the right half-plane is P,

then the closed-loop control system is asymptotically stable if the complete NYQUIST

diagram ð�1\x\1Þ of the open-loop encircles the point �1þ 0j counter-

clockwise (considered as the positive direction) as the number of the poles of the

open-loop is in the right half-plane (i.e., P times).

The complete NYQUIST diagram is given now more precisely than in the for-

mulation in the previous subsection. In the s plane the straight line s ¼ jx

ð�1\x\1Þ is closed with a half-circle on the right side with infinite radius, as

in Fig. 5.17. The conformal mapping of this closed curve by the function L sð Þ gives
the complete NYQUIST diagram of the open-loop. (If the degree of the denominator

of the rational fraction L sð Þ is higher than the degree of its numerator, then the

half-circle of infinite radius is mapped into the zero point.) If L sð Þ has a pole on the

Fig. 5.17 Creating the

complete NYQUIST diagram
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imaginary axis, then the closed curve is modified to get around the given point from

the right or from the left with a half-circle of infinitesimal radius d. If the curve gets

around the pole on the imaginary axis from the right as pictured in Fig. 5.18., then

the pole can be considered as a pole in the left half-plane. If the roundabout is

executed from the left, then the pole is considered as being on the right side.

The generalized NYQUIST stability criterion can be demonstrated through con-

siderations related to complex functions. Let f sð Þ be the following function of the

complex variable s: f sð Þ ¼ s� soð Þm, where so is a given point. Let us investigate

how the vector f sð Þ changes if the final point of the vector s� so goes through a

closed curve on the s-plane clockwise, where on this curve the function f sð Þ is

regular (differentiable).

If so is inside the closed curve (Fig. 5.19a), then the vector s� so starting from

an initial point and passing through the curve clockwise gets into its original

position, and its phase angle changes by �2p. In the meantime the mapping by the

function f sð Þ rotates from the starting point by an angle of �m2p on the curve

determined by f sð Þ. This curve encircles the origin a total of m turns clockwise (m is

positive) or counter-clockwise (m negative) (Fig. 5.19b). But if the point so is

outside the closed curve (Fig. 5.19c), passing through the closed curve the angle of

vector s� so first is increasing in one direction, then it is decreasing with the same

value in the other direction, and finally the curve described by f sð Þ does not encircle
the origin (Fig. 5.19d).

Let us apply the above considerations to the characteristic function of a

closed-loop control system. Let the transfer function of the open-loop be a rational

Fig. 5.18 The closed curve

to be mapped when L sð Þ has a
pole on the imaginary axis
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fraction whose numerator and denominator are the polynomials N sð Þ and D sð Þ, so
that, L sð Þ ¼ N sð Þ=D sð Þ. The characteristic function is then

1þ L sð Þ ¼ 1þ N sð Þ
D sð Þ ¼ D sð ÞþN sð Þ

D sð Þ ¼ k
s� z1ð Þ s� z2ð Þ. . . s� znð Þ
s� p1ð Þ s� p2ð Þ. . . s� pnð Þ : ð5:31Þ

The roots of the numerator are denoted by zi, which are the zeros of 1þ L sð Þ.
The roots of the denominator are denoted by pi, which are the poles of 1þ L sð Þ.
Here, k is a constant. The poles of 1þ L sð Þ coincide with the poles of the transfer

function of the open-loop. (Multiple poles appear in the expression when there are

multiple, i.e. repeated factors.)

Let us consider the closed curve on the complex plane shown in Fig. 5.17. Go

through the curve on the imaginary axis from �1 to þ1, then close the curve

with a half-circle on the right half plane whose radius tends to infinity. Map this

curve according to the characteristic function given by (5.31). For all the factors in

Eq. (5.31), the above considerations related to complex functions are valid. (For the

zeros so ¼ z1; z2; . . .; zn and m ¼ 1, while for the poles so ¼ p1; p2; . . .; pn and

m ¼ �1.) The phase angle of 1þ L sð Þ is the sum of the phase angles of the

individual factors taken with the appropriate signs. If the function 1þ L sð Þ has Z
zeros and P poles in the right half-plane, inside of the curve in Fig. 5.17, then the

Fig. 5.19 Considerations in the complex plane
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number of times the conformal mapping by the function 1þ L sð Þ of the considered
closed curve encircles the origin clockwise is the difference of the number of zeros

and the number of poles inside this curve. The difference between the phase angles

of the initial and the final states is �2p Z � Pð Þ, and the number R of windings

around the origin is

R ¼ P� Z ð5:32Þ

where a counterclockwise encirclement is defined as positive (see the detailed

derivation in A.5.1. of Appendix A.5).

Simply consider the function 1þ L sð Þ as if looking at the curve produced by

L sð Þ from �1þ 0j (Fig. 5.20). The mapping of L sð Þ along the closed curve in

Fig. 5.17 (the so-called complete NYQUIST diagram) encircles the point �1þ 0j

point R ¼ P� Z times.

Now, P is the number of the poles of the characteristic function in the right

half-plane. But these poles, according to (5.31), coincide with the right side

unstable poles of the open-loop. Also, Z is the number of the zeros of the char-

acteristic equation in the right half-plane. In the case of stable behavior, the char-

acteristic equation has no zeros in the right half-plane. Thus the condition for

stability is

Z ¼ 0 i:e: R ¼ P: ð5:33Þ

The simple NYQUIST stability criterion can be derived from the generalized

NYQUIST stability criterion. If the open-loop system has no poles in the right

half-plane, i.e. if, P ¼ 0, the closed-loop is stable if R ¼ 0, so the NYQUIST diagram

does not encircle the point �1þ 0j. In most practical cases the open-loop is stable,

and it is in the closed-loop system that the feedback may cause unstable behavior.

But sometimes unstable processes have to be dealt with, that is they are to be

Fig. 5.20 Relationship of

vectors L sð Þ and 1þ L sð Þ
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stabilized by control systems with negative feedback. For example the inverted

pendulum is an unstable process. A juggler in the circus is able to balance the

leaning rod using the appropriate motions, which are faster than the dynamics of the

rod (Fig. 5.21). Thus his body realizes a controller in a closed-loop control system.

The automatic solution for stabilizing the motion of the inverted pendulum is shown

in Fig. 5.22.

5.6.4 Examples of the Application of the NYQUIST Stability

Criteria

Example 5.7 Consider the open-loop transfer function

L sð Þ ¼ 5

1� s
¼ � 5

s� 1
:

Let us analyze the stability of the closed-loop control system.

Fig. 5.21 A juggler can

balance the rod underpinned

at its bottom edge

Fig. 5.22 Stabilizing the

motion of an inverted

pendulum
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Fig. 5.23 Stability analysis of an unstable system with negative feedback

The system has a pole in the right half-plane, thus P ¼ 1. The NYQUIST diagram

is shown in Fig. 5.23. As the NYQUIST diagram does not encircle the point �1þ 0j,

R ¼ 0, thus the closed-loop is unstable.

The system can be stabilized if a so called compensation element of a constant

gain by A ¼ �1 is connected into the forward path. This element changes the sign

of the points of the NYQUIST diagram reflecting it about the origin (dashed-dotted

curve). Thus the number of windings around �1þ j0 will be R ¼ P ¼ 1. �

Example 5.8 Let us consider for example the case when the open-loop is an L sð Þ ¼
KI=s integrator, whose pole is at the origin. The closed curve is created by getting

around the pole from the right. By mapping this curve according to L sð Þ the

complete NYQUIST diagram shown in Fig. 5.24a is obtained. The case involving

getting around the pole from the left is demonstrated in Fig. 5.24b. In the s-plane,

the points denoted by 1, 2 and 3 on the small circle surrounding the pole are mapped

into the points 1′, 2′ and 3′ in the L sð Þ-plane. In case (a) P ¼ 0 and R ¼ 0, in case

(b) P ¼ 1 and R ¼ 1, thus in both cases the stable behavior of the system can be

established. �

Example 5.9 Let the transfer function of an open-loop be a proportional element

with three time lags, L sð Þ ¼ K= 1þ sT1ð Þ 1þ sT2ð Þ 1þ sT3ð Þ½ �. The poles

p1 ¼ �1=T1, p2 ¼ �1=T2, p3 ¼ �1=T3 are all in the left half-plane, thus P ¼ 0. Let

us apply the generalized NYQUIST stability criterion. The complete NYQUIST diagram

obtained by mapping of the curve given in Fig. 5.17 is shown in Fig. 5.25. If the

NYQUIST diagram goes through �1þ j0, the system is at the stability limit. If the

NYQUIST diagram does not include the point �1þ j0 (K1 loop gain), R ¼ P ¼ 0,

thus the control system is stable. If the NYQUIST diagram includes the point �1þ 0j

(K2 loop gain), R 6¼ P, thus the control system is unstable. To determine the number

of windings R, let us put the spike of an imaginary compass on the point �1þ 0j,

and with the other end of the compass pass through the NYQUIST diagram from

x ¼ �1 to þ1. The number of windings is R ¼ �2 (clockwise). The
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characteristic equation has two roots in the right half-plane, so, Z ¼ 2, and as

R ¼ �2 ¼ P� Z ¼ 0� Z, in this case the system is unstable. �

In the case of a stable open-loop, it is sufficient to use the simple NYQUIST

stability criterion. In the stable case �1þ 0j lies to the left of the NYQUIST diagram

drawn for positive frequencies, whereas in the unstable case it is to the right of that

curve. The simplified stability investigation can be applied also to the cases when

the open-loop contains integrators, and thus there are poles at the origin.

Fig. 5.24 Stability analysis of a control circuit (an integrator is fed back by a unity constant gain)
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5.6.5 Practical Stability Measures

In case of a stable open-loop, the closed-loop is stable if the NYQUIST diagram of the

open-loop does not encircle the point �1þ 0j. It can be said that the system has a

certain amount of stability reserve, if the NYQUIST diagram is kept sufficiently far

from the point �1þ 0j.

Some measures can be defined indicating how far is the NYQUIST diagram of the

open-loop from the point �1þ 0j. Such measures include the phase margin, the

gain margin, the modulus margin and the delay margin.

Fig. 5.25 Stability analysis

of a proportional system with

three time lags

Fig. 5.26 Interpretation of

the phase margin
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Phase Margin

Let us draw the NYQUIST diagram of the open-loop for positive frequencies. Let us

determine the intersection point of the NYQUIST diagram with the circle of unit

radius. The frequency belonging to this point is called the cut-off frequency and is

denoted by xc. Let us connect the origin and the intersection point with a straight

line. The angle formed by this straight line with the negative real axis is called the

phase margin (Fig. 5.26):

ut ¼ u xcð Þþ 180� ¼ argL jxcð Þþ 180�: ð5:34Þ

If the phase margin is positive, the system is stable. If the phase margin is zero,

the system is at the stability limit. If the phase margin is negative, the system is

unstable.

Thus for the stability of the control system the following statements can be

made:

ut[ 0 Stable system

ut ¼ 0 Boundary of stability

ut\0 Unstable system

ð5:35Þ

The stability of the system can be evaluated based on the phase margin as a

single measure only if the NYQUIST diagram of the open-loop crosses the unit circle

only once.

Gain Margin

Let us determine the intersection point of the NYQUIST diagram with the negative

real axis and also the distance j ¼ 1þ L jx180ð Þj j of this point from the point

�1þ 0j (Fig. 5.27). the distance j is called the gain margin. It is apparent that for

j[ 0 the stability domain of the simple NYQUIST criterion is obtained. The stability

Fig. 5.27 Interpretation of

the gain margins
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of the system can be evaluated based on the gain margin as a single measure only if

the NYQUIST diagram of the open-loop crosses the negative real axis only once.

The modified gain margin j0, is defined by the intercept j0 ¼ L jx180ð Þ ¼ 1� j

seen in Fig. 5.27. If j0\1, the system is stable. If j0 ¼ 1, the system is at the

stability limit. If j0[ 1, the system is unstable. Thus for the stability of the control

system the following statements can be made:

j0\1 Stable system

j0 ¼ 1 Boundary of stability

j0[ 1 Unstable system

ð5:36Þ

The meaning of j is more expressive than that of j0, however the reciprocal of j0

specifies the factor by which multiplying the actual loop gain the system reaches the

stability limit. Therefore it is straightforward to also use the measure gt ¼ 1=j0 ¼
1= L jx180ð Þj j as the relative gain margin. Multiplying the loop gain by gt the value

of the critical gain is obtained. With simple considerations, the inequalities

gt 	Mm= Mm � 1ð Þ and ut 	 2 arcsin 1=Mmð Þ can be derived. (See (4.25) for the

interpretation of Mm.)

Figure 5.28 shows the NYQUIST diagram of a system where neither the phase

margin nor the gain margin can be interpreted. (Such a NYQUIST diagram is formed

if oscillating elements and zeros are included in the transfer function of the system.)

In this case the whole NYQUIST diagram has to be considered. Based on the simple

NYQUIST stability criterion the stability can be evaluated: as going through the curve

the point �1þ 0j is to the right side of the curve, the system is unstable.

Besides stability, the relevant transient performance is also required. To ensure

an overshoot less than 10% in the step response of a closed-loop system, the desired

phase margin is about 60�, and the desired relative gain margin gt is about 2

ðj 
 j0 
 0:5Þ. These values can be considered characteristic if there are no res-

onant frequencies in the loop frequency function.

Fig. 5.28 When the phase

margin and the gain margin

can not be interpreted
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The appropriate phase margin and gain margin do not give reliable information

about the stability margin of the system in every case. Let us consider, e.g. the

NYQUIST diagram in Fig. 5.29. In spite of the fact that both the phase margin and the

gain margin are appropriate, there may occur high amplifications in the frequency

function L= 1þ Lð Þ of the closed-loop in the vicinity of the cut-off frequency, as

with increasing frequency the amplitude of L is only slightly changed, while the

amplitude of 1þ L decreases significantly. High amplification in the

amplitude-frequency curve of the closed-loop in the vicinity of the cut-off frequency

indicates oscillations in the unit step response. Furthermore, if the parameters of the

plant change a little, the closed-loop system may even become unstable. The phase

margin and the gain margin characterize the stability properties of the system only if

the NYQUIST diagram does not go too close to the unit circle before and after the

cut-off frequency.

Fig. 5.29 When the dynamic

behavior of the system is not

satisfactory even if the phase

margin and the gain margin

are of appropriate values

Fig. 5.30 Interpretation of

the modulus margin
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Modulus Margin

The qm is the minimum of the distance of point �1þ 0j from the NYQUIST diagram,

i.e., it is the radius of the smallest circle tangential to the diagram and centered at

�1þ 0j (Fig. 5.30). The modulus margin shows how far the most sensitive point of

the system is from the stability limit. As a reasonable prescription, let the modulus

margin be qm[ 0:5.
The modulus margin is also called NYQUIST stability margin. An important

formula is that qm can be expressed as the reciprocal of the maximum of the

absolute value of the sensitivity function (see Chap. 6):

qm ¼ 1

max
x

S jxð Þj j ¼ min
x

S�1 jxð Þ
�

�

�

� ¼ min
x

1þ L jxð Þj j ð5:37Þ

The three margins ut; j;qm are analogous concepts, as each of them tries to

guarantee somehow the distance from the point �1þ 0j.

Delay Margin

The delay margin gives the smallest value of the dead-time Tmin by which—

inserting it serially as an extra dead-time into the loop—the closed-loop control

system would reach the stability limit. The delay margin can be calculated from the

phase margin measured in radians by the following formula:

Tmin ¼
ut

xc

; ð5:38Þ

where xc denotes the cut-off frequency.

With these stability margins, not only can the stability be evaluated, but it can

also be established, “how far” the system is from the stability limit.

5.6.6 Structural and Conditional Stability

Let us suppose that the open-loop is stable, thus the stability of the closed-loop can

be evaluated according to the simplified NYQUIST stability criterion.

Most systems generally are stable for small loop gains: they reach the stability

limit at a given critical gain, then increasing the gain further they show unstable

behavior. (Such a control system is obtained by negative feedback of a proportional

plant with three time lags, see Examples 5.5 and 5.9.)

But there are also systems which—because of their structure—remain stable at

any value of the loop gain. Such systems are called structurally stable systems. For

example a first order or a second order lag element or a pure integrator or an

integrator serially connected to a first order lag with negative constant feedback

have this property, as their NYQUIST diagram does not encircle the point �1þ 0j

even if the loop gain is arbitrarily increased. By increasing the loop gain the system
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will not become unstable, but its stability margins do decrease. The NYQUIST dia-

grams of such systems are shown in Fig. 5.31.

There are systems which are stable in given regions of the loop gain, while in

other regions they show unstable behavior. In the case of such systems the loop

gain has to be set carefully. These systems are called conditionally stable systems.

Figure 5.32 shows an example of the NYQUIST diagram of a conditionally stable

system. Besides being influenced by the poles, the course of the NYQUIST diagram is

influenced by the zeros as well. If the gain is small, the point �1þ 0j is to the left of

the NYQUIST diagram, so for small gains the control system is stable. By increasing

the gain, the point �1þ 0j will be to the right of the diagram, so the control system

becomes unstable. By increasing the gain further, the point �1þ 0j will get to the

left of the diagram, so the control system will become stable again. Increasing the

gain even more the diagram will encircle again the point �1þ 0j, causing again

unstable performance.

Fig. 5.31 NYQUIST diagrams

of structurally stable systems

Fig. 5.32 NYQUIST diagram

of a conditionally stable

system
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5.6.7 Stability Criteria Based on the BODE Diagrams

The phase margin and the gain margin can also be read from the BODE diagram. The

absolute value of the frequency function at the cut-off frequency xc is 1. The BODE

amplitude-frequency diagram crosses the horizontal 0 dB axis at this frequency.

The deviation of the phase angle from �180� at this frequency gives the phase

margin. The absolute value at the frequency where the phase angle is u ¼ �180�

gives the value of the parameter j in dB-s, and from this the gain margin can be

determined (Fig. 5.33).

If the open-loop is of minimum phase (i.e. its transfer function does not contain

zeros or poles in the right half-plane), and furthermore the control system does not

contain dead-time, the stability can be determined very simply from the approxi-

mate BODE amplitude-frequency curve of the open-loop.

Then from the BODE amplitude diagram the course of the phase angle follows

unambiguously, as the phase angle belonging to the poles is negative and the phase

angle belonging to the zeros is positive, changing according to arctangent curves.

A minimum phase system which does not contain dead-time is stable if the

asymptotic BODE amplitude diagram of the open-loop crosses the frequency axis at

a straight line section of slope −20 dB/decade. The system is surely unstable if the

slope of the crossing is equal to or greater than −60 dB/decade. If the slope of the

intersection is −40 dB/decade, then the system can be stable or unstable depending

on the phase margin, which in this case is surely very small (Fig. 5.34).

The above statement can be shown based on the following deliberations. Let us

consider the asymptotic BODE diagram in Fig. 5.35. The cut-off frequency lies on a

straight line of slope �20dB=decade. The phase angle in the vicinity of the cut-off

Fig. 5.33 Reading the phase margin and the gain margin from the BODE diagram
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frequency xc approximates �90�. The phase angle resulting from a breakpoint

which is to the right of the cut-off frequency (especially if it is far away from xc, at

least located at 5xc or at a still higher frequency) will only slightly affect the phase

angle at xc. Before the straight line of slope �20dB=decade the approximate BODE

diagram might have a horizontal section or a section with slope −20 or −40 dB/

decade. The courses of the phase angle resulting from these parts of the BODE

diagram are indicated in the figure by dashed, dotted and dashed-dotted lines,

respectively. The effect of these sections on the phase angle at frequency xc is small

(especially if the breakpoint before xc is far away, located at less than xc=5). Thus
the system surely has a positive phase margin, which is expected to be satisfactory

not only for ensuring stability, but also for guaranteeing the appropriate transient

behavior.

If the cut-off frequency is located at a straight line of slope −40 dB/decade, the

phase angle at frequency xc may approach or even exceed �180� with the phase

angle resulting from the previous breakpoints. Thus the system will get close to the

stability limit (Fig. 5.36). In this case, evaluating the stability requires calculating

the value of the phase margin.

Fig. 5.34 Stability of a minimum phase system without dead-time can be determined from the

approximate BODE amplitude-frequency diagram
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If the cut-off frequency is located on a straight line of slope −60 dB/decade or

more, then the phase margin surely will become negative.

Thus, to ensure stability, the cut-off frequency has to be located on a straight line

of slope −20 dB/decade. (This section has to be long enough to ensure a satis-

factory phase margin of about 60�.)

Fig. 5.35 The system surely has positive phase margin if the cut-off frequency is located on a

straight line of slope −20 dB/decade

Fig. 5.36 The system is close to the stability limit if the cut-off frequency is located on a straight

line of slope −40 dB/decade
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If the open-loop is of non-minimum phase type, or contains also dead-time, then

the stability can not be evaluated considering only the BODE amplitude diagram. In

this case the BODE amplitude and phase diagram have to be jointly taken into

account.

5.7 Robust Stability

Generally, the parameters of the plant are determined from measurement data. The

parameters may change around their nominal values in a given range. The

closed-loop control system has to be stable throughout the given uncertainty ranges

of the parameters.

Suppose that the open-loop is stable. The controller designed for the nominal

plant ensures the stability of the nominal closed-loop control system. Let us analyze

whether the system remains stable with the parameter uncertainties of the

open-loop. Stability is maintained if the NYQUIST diagram of the modified open-loop

does not encircle the point �1þ 0j.

The uncertainty of the plant is expressed by the absolute model error

DP ¼ P� P̂ ð5:39Þ

and the relative model error

‘ ¼ DP

P̂
¼ P� P̂

P̂
; ð5:40Þ

Fig. 5.37 Change of the NYQUIST diagram of an uncertain system
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where P̂ is the available nominal model used for the design, and P is the real plant.

If there is an uncertainty of DP (or parameter change) in the transfer function of the

plant, then applying the same controller this uncertainty appears in the absolute

error DL ¼ CDP of the loop transfer function, while its relative error

‘L ¼ DL

L̂
¼ L� L̂

L̂
¼ CP� CP̂

CP̂
¼ P� P̂

P̂
¼ ‘ ð5:41Þ

is equal to the relative model error. Here L̂ denotes the nominal, while L denotes the

real loop transfer function.

Robust stability means, that the closed-loop control system should not reach an

unstable behavior even in the worst case of the parameter changes. The bound for

DL can be formulated based on Fig. 5.37 taking into account simple geometrical

considerations: the NYQUIST diagram will not encircle the point �1þ 0j, if the

following relationship is satisfied for all the frequencies:

DL jxð Þj j ¼ ‘ jxð Þj j L̂ jxð Þ
�

�

�

�

\ 1þ L̂ jxð Þ
�

�

�

� 8x: ð5:42Þ

With further straightforward manipulations on (5.42) the necessary and sufficient

condition for robust stability can be obtained as

‘ jxð Þj j\ 1þ L̂ jxð Þ
L̂ jxð Þ

�

�

�

�

�

�

�

�

¼ 1

T̂ jxð Þ
�

�

�

�

8x; ð5:43Þ

where T̂ ¼ L̂= 1þ L̂
� �

is the nominal supplementary sensitivity function. Condition

(5.43) can also be expressed as

T̂ jxð Þ
�

�

�

�

\

1

‘j j 8x: ð5:44Þ

It is a common practice to express the above inequalities for robust stability also

in the following form:

T̂ jxð Þ
�

�

�

� ‘j j\1 8x: ð5:45Þ

This form is also called the dialectic relationship of robust stability. In the design

process, the first factor T̂ jxð Þ
�

�

�

� is calculated for the supposed (known) nominal

parameters of the plant, thus it depends on the designer. The second factor ‘j j does
not (or only partly) depend on the designer, as it contains the uncertainties in the
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knowledge of the plant or its unexpected parameter changes. In those frequency

ranges where the uncertainty is large, unfortunately only a small transfer gain can

be designed for the closed-loop. Where T̂ jxð Þ
�

�

�

� is high, very accurate information

has to be available to guarantee a small error. The higher the absolute value of the

complementary sensitivity function, the smaller the permissible parameter

uncertainty.

Condition (5.43), which considers the whole frequency range, is fairly strict,

therefore generally it is replaced by a more practical condition if the maximum

value of T̂ jxð Þ
�

�

�

� is known. Suppose

T̂m ¼ max
x

T̂ jxð Þ
�

�

�

� ð5:46Þ

With this value, (5.43) can be simplified to the following satisfactory condition:

‘ jxð Þj j\ 1

T̂m
8x ð5:47Þ

(Let us refer to Chap. 4, where M xð Þ is defined as M xð Þ ¼ T jxð Þj j.)
If the open-loop is unstable, and the feedback stabilizes the nominal system, then

the closed-loop system remains stable with the parameter uncertainties if the

number of the poles of the open-loop in the right half-plane does not change, and

the number of windings of the NYQUIST diagram around the point �1þ 0j does not

change either.
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Chapter 6

Regulator Design in the Frequency

Domain

A closed-loop control system has to meet several prescribed quality specifications.

These specifications are:

– stability

– prescribed static accuracy for reference signal tracking and disturbance rejection

– attenuation of the effect of measurement noise

– insensitivity to parameter changes

– prescribed dynamical (transient) behavior

– consideration of constraints resulting from practical realization.

Generally the performance of a control system does not meet all these

requirements. The required operation can be ensured by an appropriate design of

the control system. The most frequent control scheme is the serial control loop

shown in Fig. 6.1. For the plant to be controlled a serially connected controller is to

be designed which ensures the stability of the closed-loop control system and

fulfills the prescribed quality specifications.

In the control loop PðsÞ is the transfer function of the plant, while CðsÞ is the
transfer function of the controller (regulator). The controlled output signal y is fed

back with a negative sign and compared to the reference signal. The disturbance is

taken into account by a signal ynðtÞ acting on the output of the plant. This distur-

bance model is generally satisfactory to handle practical situations.

In the sequel, some considerations are given for controller design based on

relationships in the frequency domain.
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6.1 On the Relationships Between Properties

in the Time- and Frequency-Domain

The quality specifications can be demonstrated in the frequency domain, looking as

well at the course of the frequency functions of the open-loop and of the

closed-loop.

The stability and the susceptibility of the system to oscillations is characterized

by the amplification of the BODE amplitude-frequency curve of the closed-loop.

Amplification may occur in the vicinity of the cut-off frequency in the open-loop

diagram. To determine the stability, the oscillatory behavior, the transient response

the course of the frequency function has to be investigated in the middle frequency

range (Sect. 4.6). As shown previously the settling time can be estimated from the

cut-off frequency. Stability investigation on the basis of the NYQUIST and the BODE

diagrams has been dealt with in detail in Chap. 5.

Static properties of the control system can be determined from the course of the

frequency function in the low frequency range. As seen, the error of the reference

signal tracking and of the disturbance rejection in the case of step, ramp and

quadratic input signals depends on the type number (the number of integrators in

the open-loop) of the control system and on the value of the loop gain. In the case of

a type 0 control, the approximate BODE amplitude diagram of the open-loop starts in

the low frequency range with a straight line parallel to the 0 dB axis with the value

Ko of the loop gain. For control systems of type 1, the diagram starts with a straight

line of slope −20 dB/decade. Extending this line it crosses the 0 dB axis at the

frequency K1 corresponding to the loop gain. In the case of control system of type

2, the BODE diagram starts with a straight line of slope −40 dB/decade, whose

extension crosses the horizontal axis at
ffiffiffiffiffiffi

K2

p
. To ensure the static requirements, the

low frequency range of the open-loop BODE diagram has to be shaped appropriately

(Fig. 6.2).

Based on the relationship of the open-loop and the closed-loop frequency

functions (Sect. 4.6) several statements can be given. These statements have to be

considered as criteria to design control systems able to ensure good reference signal

tracking, disturbance and noise rejection, and to compensate the effect of parameter

uncertainties:

-

r(t)

R(s)

e(t)

)(sE
C(s)

U(s)
P(s)

u(t)

(t)ny

y(t)

Y(s)

Fig. 6.1 Closed loop control system with serially connected controller
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– for good reference signal tracking, LðjxÞj j should be large.

– for effective rejection of the input and output disturbances, LðjxÞj j should be

large.

– for good rejection of measurement noise, LðjxÞj j should be small.

– to compensate the effect of the parameter uncertainties of the plant, LðjxÞj j
should be large.

– to avoid too high actuating control signals, the acceleration should be moderate

and, xc should not be too high.

Some requirements are contradictory, and can not be ensured simultaneously for

a given frequency range. Therefore different prescriptions have to be given for

different frequency ranges. Section 6.2. formulates the quality requirements in the

frequency domain in more detail.

6.2 Quality Requirements in the Frequency Domain

As already seen in Chaps. 4 and 5, the quality specifications can also be demon-

strated in the frequency domain on the course of the closed-loop and the open-loop

frequency functions. The behavior of the closed-loop control system is character-

ized by the overall frequency function of the closed-loop system. As previously

Fig. 6.2 Static accuracy of the control system is characterized by the low frequency range of the

open-loop amplitude-frequency curve
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seen, the maximal amplification Mm of the amplitude-frequency function of the

closed-loop characterizes the overshoot of the step response in the time domain. An

experimental observation is that if Mm\1:25, then there is no significant overshoot

in the step response. Many times a closed-loop system can be well approximated by

a dominant pair of poles, thus it can be replaced by a second order oscillating

element, whose damping factor determines the maximal value of the overshoot. If

there is no amplification in the amplitude-frequency curve of the closed-loop, then

there is no overshoot in the step response. If the damping factor of the approxi-

mating oscillating element is higher than 0.5, the transients will be aperiodic. If the

value of the damping factor is around 0.6–0.7, then the overshoot of the step

response is about 5–10%.

On the basis of the relationships between the transfer functions of the open and

the closed-loop, instead of analyzing the frequency function of the closed-loop we

may analyze the amplitude-frequency curve of the open-loop, as well. The over-

shoot is related to the phase margin. If ut � 60�, the damping factor is n � 0:7; n
also increases by increasing ut. With ut[ 90�, the transient behavior becomes

aperiodic. If the phase margin decreases, the damping factor also decreases. For

ut � 30�, the damping factor range of n � 0:2� 0:3, which results in significant,

but still decaying oscillations. These simple considerations are satisfactory for

orientation.

The control system has to be designed to meet the quality specifications. This

can be accomplished by designing an appropriate controller. The BODE diagram of

the open-loop has to be shaped to ensure the prescriptions (this procedure is called

loop-shaping, [see Fig. 6.3]).

The prescriptions for reference signal tracking and for disturbance rejection, and

for attenuating the effects of measurement noise, are contradictory in relation to the

shape of the BODE amplitude diagram LðjxÞj j. But in practice, generally, the

characteristic frequency range of the reference signal and that of the measurement

noise are different: the reference signal contains components in a lower frequency

range, while the measurement noise mainly contains high frequency components.

Thus LðjxÞj j can be large in the low frequency domain, and small in the high

frequency domain.

The course of the amplitude diagram in the low frequency domain determines

the static properties. In case of type number 0 the BODE diagram starts horizontally,

with type number 1 the initial slope is −20 dB/decade, while in case of type 2 it is

−40 dB/decade. The prescribed static accuracy determines the required type

number of the control system.

The middle frequency range determines the stability and the dynamical prop-

erties of the control system. As shown in Chap. 5, to ensure stability the cut-off

frequency xc has to be located on a quite long straight line with a slope of −20 dB/

decade. This condition is sufficient to ensure stability if the system is of

minimum-phase and does not contain dead-time. Otherwise the value of the phase

margin or the gain margin has to be calculated. A positive phase margin, or gain

margin whose value is higher than 1, ensures stability. Besides stability, the

appropriate dynamic behavior (an overshoot less than 10%) can be provided if the
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phase margin is about 60�. Later it will be seen that for minimum-phase systems

containing dead-time Td the phase margin will be about 60� if the cut-off frequency
is chosen to be xc � 1=2Td ¼ 0:5=Td. The settling time is related to the cut-off

frequency. The higher xc is, the shorter the settling time is. As seen in Chap. 4, the

settling time can be estimated as 3=xc\ts\10=xc.

In a conventional control structure (Fig. 6.1) in open-loop systems containing

dead-time, the cut-off frequency can not be increased beyond one half of the

reciprocal of the dead-time. This sets a limit to the acceleration of the system. To

achieve a higher xc, an advanced control scheme should be considered (e.g. a SMITH

predictor, see Chap. 12).

By shaping the low frequency and the high frequency sections of the BODE

amplitude diagram according to Fig. 6.3 the suppression of the measurement noise

and the insensitivity of the control system to the parameter uncertainties can be

ensured, as well.

Often the different requirements are contradictory. A satisfactory compromise

has to be reached to ensure stability, a good dynamic response, fast performance

and the required constraints on the value of the control signal. The control system

can be accelerated only by applying a large control action. This high control signal

is to be ensured by the actuator which generally has limits due to its physical

realization.

Fig. 6.3 Considerations for loop-shaping on the BODE amplitude-frequency diagram
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In practice the controller is able to provide signals only within a given range. It is

important that during the operation the control signal uðtÞ remains within this range,

that is, its maximum value should not exceed the physically reachable maximum

value. If a command is given that would require a control signal value exceeding

the maximum, the actuator will be saturated: its output will be at the maximum

value until—with an increase of the output signal—the error signal reaches such a

small value that the output signal of the controller would go out of the saturation

domain. The designer of the control system has to consider this phenomenon

already in the controller design phase.

Thus during the controller design process the shape of the open-loop frequency

function around the point �1þ 0j has to be formed. In the complex plane, the point

�1þ 0j can be described by two conditions, namely the gain is 1 and the phase

angle is �180�, that is, LðjxÞj j ¼ 1 and u ¼ �180�.
In the design procedure these two conditions can be handled as follows: in the

case of the fulfillment of one of these conditions, how far is the second one from the

value given above? If the gain is 1, then the phase deviation is given by the phase

margin at the cut-off frequency, whereas if the phase angle is �180�, then the gain

margin can be calculated from the value of the gain. If the controller is designed for

a prescribed phase margin, then the phase angle of the frequency function has to be

set at the frequency belonging to the unity gain (which is the cut-off frequency).

Thus the shape of the open-loop frequency function around the cut-off frequency

xc is critical. In some cases it is not sufficient to determine the phase angle only at

this frequency, but the shape of the frequency function has to be examined also in

its vicinity.

Figure 6.4 shows two NYQUIST diagrams with identical phase margins. The

diagram of L1 after the cut-off frequency goes quickly to the origin, whereas the

diagram of L2 approximates the point �1þ 0j. For the first system the amplitude of

the closed-loop system Tj j ¼ L=ð1þ LÞj j ¼ Lj j= 1þ Lj j quickly decreases after xc,

whereas in the second case it may show significant amplification. In this latter case

the absolute value of the sensitivity function Sj j ¼ 1= 1þ Lj j also has amplification

in this frequency range.

6.3 Methods to Shape the Open-Loop Frequency

Characteristics

Employing the frequency function HðjxÞ for control system analysis let us consider

the BODE theorems. The first BODE theorem states that under some conditions (stable

and minimum-phase system without dead-time) the amplitude-frequency function

of HðjxÞ unambiguously determines the phase-frequency function. That is at a

given frequency xo
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argH jxoð Þ ¼ 2xo

p

Z

1

0

log HðjxÞj j � log H jxoð Þj j
x2 � x2

o

dx

¼ 1

p

Z

1

0

d log HðjxÞj j
d logx

log
xþxo

x� xo

�

�

�

�

�

�

�

�

dx � p

2

d log HðjxÞj j
d logx

:

ð6:1Þ

According to this relationship, at a given x ¼ xo, the complete shape of the

phase-frequency curve contributes to form the value u xoð Þ through the expression

of the definite integral above. At the same time, because of the inner weighting

function

log
xþxo

x� xo

�

�

�

�

�

�

�

�

; ð6:2Þ

the far points have only a barely noticeable effect on the function in the vicinity of

xo. Equation (6.1) means that if in the vicinity of a point, the slope (in logarithmic

scale) of the approximate amplitude curve is þ 1, then the corresponding phase

angle is þ p=2. (In decibels +20 dB/decade corresponds to a slope of þ 1).

A similar relationship can be given for how the amplitude-frequency function

relates to the phase-frequency function, that is, the relationship is unique and

mutual. The relationship is not unique for non-minimum-phase systems.

If the breakpoint frequencies of the frequency function are far enough from each

other, then the phase-frequency curve belonging to the long straight lines of the

approximated amplitude-frequency curve is horizontal with a value of

uðxÞ � �jp=2, whereas close to the breakpoints, it is not horizontal and the phase

angle can be approximated by uðxÞ � �ð2jþ 1Þp=4.

Fig. 6.4 The shape of the

NYQUIST diagram around xc

and around �1þ 0j affects

significantly the overshoot
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In the previous chapters it was shown that the stability and robustness properties,

static and dynamic behavior of the closed-loop system all can be designed by the

loop-shaping of the frequency function of the open-loop. BODE, partly on an

empirical basis, came to the conclusion that the optimal (ideal) form of the loop

frequency function LðjxÞ is

LidðjxÞ ¼
1

ðjxÞg : ð6:3Þ

If g is not an integer, then in the complex plane the NYQUIST diagram is a straight

line going through the origin. Integrators of order n are special cases of this general

form when g is an integer. But non-integer forms cannot be realized by lumped

parameter linear systems, therefore this expectation is only of theoretical signifi-

cance and we can only try to approximate it. If at the cut-off frequency xc the phase

margin ut were set according to a characteristic given by LidðjxÞ, then any

uncertainty in the gain of LidðjxÞ would not influence the design condition (i.e., the

prescribed ut). The ideal case is best approximated if the slope of the phase

characteristic du=dx is minimal at the cut-off frequency xc. This can be ensured if

the breakpoint frequencies in the neighborhood of xc are far away from it (see

BODE’s first theorem).

Discussing the interpretation of the modulus margin, it was seen that its value is

the reciprocal of the maximum absolute value of the sensitivity function. According

to the geometric representation its value is the closest distance of the NYQUIST

diagram from the point �1þ 0j. For NYQUIST curves which have parts in the third

and the fourth quadrant (these are the so-called positive real systems) the absolute

value of the sensitivity function can not be higher than 1. But among the non

positive real systems there can also be such systems where the sensitivity is less

than 1. On the basis of the M � a and E � b curves (see Sect. 4.6.) the range where

both conditions, SðjxÞj j ¼ EðxÞ� 1 and TðjxÞj j ¼ MðxÞ� 1 are fulfilled at the

same time can be given simply. Figure 6.5 shows the restricted area (crosshatched),

where there will already be amplification in SðjxÞj j or in TðjxÞj j. In the figure the

sensitivity function SðjxÞ belonging to LðjxÞ has no amplification. The necessary

condition to achieve this is that the pole excess of LðsÞ be 1, that is, if x ! 1 the

condition LðjxÞ � �jx is fulfilled. (In the figure as a curiosity it is also shown, that

for systems of integrating type generally Re LðjxÞ½ �x!0 6¼ 0, that is, the curve starts

not from the imaginary axis, a fact not widely known). On the basis of the geo-

metrical interpretation it can easily be understood that for the so-called positive real

frequency functions ðRe HðjxÞ½ � � 0Þ (which have less significance in control the-

ory, but more importance in telecommunication) the condition of avoiding ampli-

fication in SðjxÞ is automatically fulfilled.

The intersection points of LðjxÞ with the unit circle E ¼ 1 and the straight line

M ¼ 1 also contain significant information about the course of the frequency

characteristics of the open and the closed-loop.

According to Fig. 6.6 the sensitivity function SðjxÞ at low frequencies starts

from zero. At x1 it reaches the value 1, then at xc the absolute value of LðjxÞ will
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be 1. Exceeding its maximum value at x3 again it will satisfy SðjxÞj j ¼ 1. If at high

frequencies LðjxÞ tends to zero, then SðjxÞ tends to 1. From this analysis we can

conclude that the frequency functions of dead-time systems (which may also

contain lag elements, integrators, etc.) can never avoid the circle E ¼ 1, therefore

SðjxÞj j always has amplification. (The condition E ¼ 1 is also called the

KALMAN-HO condition).

Based on the construction rules of the M � a and E � b curves it is easy to

construct the circles (crosshatched areas) shown in Fig. 6.7 to ensure the conditions

SðjxÞj j � 2 and TðjxÞj j � 2. The frequency belonging to M ¼
ffiffiffi

2
p

=2 is the band-

width of the closed-loop system.

Fig. 6.5 Areas restricting

amplification of the sensitivity

and the supplementary

sensitivity functions

Fig. 6.6 Following the

course of SðjxÞ and TðjxÞ
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Unfortunately there are also theoretical limits to the arbitrary shaping of the

sensitivity function. According to the second BODE theorem, if LðjxÞ tends to zero

more quickly than 1=jx for high values of x (that is, the pole excess is at least 2),

then the following integral equation is valid:

Z

1

0

log SðjxÞj jdx ¼
Z

1

0

log
1

1þ LðjxÞj j dx ¼ p
X

i

Re pi; ð6:4Þ

where the pi denote the unstable poles. Consider the simplest case, when there are

no poles in the right half-plane, so LðsÞ is stable or is on the boundary of stability.

Then

Z

1

0

log SðjxÞj jdx ¼ 0: ð6:5Þ

This equation can be interpreted more easily, as it represents the so-called

water-bed effect, which means that if SðjxÞj j is pressed at one point, it will bulge at

another one. If for example for low frequencies we make an effort to decrease the

values of SðjxÞj j, then at high frequencies it will be high. This is because we

calculate the integral of the logarithm of an absolute value, thus the area of SðjxÞj j
below 1 will be equal to the area above 1 (in logarithmic scale the area below the

zero dB scale will be equal to the area above it).

Note that drawing the NYQUIST diagram and also considering the relationships

discussed above can convince one, that significant properties, such as the stability and/

or robustness of the control system, can be determined from the course of the fre-

quency function. These properties can be recognized in a somewhat more involved

Fig. 6.7 Restricted areas

ensuring the conditions

SðjxÞj j � 2 and TðjxÞj j � 2
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way from the BODE diagram. Unfortunately the quantitative properties cannot be

concluded exactly from either the NYQUIST diagram nor the BODE diagram.

Example 6.1 Let us consider the control system with the open-loop transfer

function

LðsÞ ¼ 1þ ss

sTI 1þ sT1ð Þ : ð6:6Þ

The frequency function is

LðjxÞ ¼ 1þ jxs

jxTI 1þ jxT1ð Þ ¼
s� T1

TI 1þx2T2
1

� �� j
1þx2sT1

xTI 1þx2T2
1

� � ¼ Re xð Þþ j Im xð Þ:

ð6:7Þ

The value of the real part at zero frequency is

Re x ! 0ð Þ ¼ s� T1

TI
¼ s

TI
� T1

TI
¼ [ 0; if s[ T1

\0; if s\T1

�

ð6:8Þ

and

Reðx ! 0Þ ¼ s� T1

TI
\1; if s\T1 þ TI ð6:9Þ

which is a necessary condition to avoid amplification in the supplementary sensi-

tivity function TðjxÞ. The pole excess of the loop transfer function is 1, which is the
necessary condition to avoid amplification in the sensitivity function. Let us

examine the sufficient condition as well. The sensitivity function is obtained by a

simple calculation according to

S ¼ 1

1þ L
¼ sTI 1þ sT1ð Þ

sTI 1þ sT1ð Þþ 1þ ssð Þ : ð6:10Þ

The frequency function of the sensitivity function is

SðjxÞ ¼ jxTI 1þ jxT1ð Þ
jxTI 1þ jxT1ð Þþ 1þ jxsð Þ ¼

�x2TIT1 þ jxTI

1� x2TIT1ð Þþ jx TI þ sð Þ : ð6:11Þ

The function SðjxÞ has no amplification if

SðjxÞj j2¼ E2 ¼ x2T2
I 1þx2T2

1

� �

1� x2TIT1ð Þ2 þx2 TI þ sð Þ2
� 1 ð6:12Þ
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Solving the inequality above, the following sufficient condition is obtained:

s

TI
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2T1

TI

r

� 1: ð6:13Þ

The complementary sensitivity function is

T ¼ L

1þ L
¼ 1þ ss

sTI 1þ sT1ð Þþ 1þ ssð Þ ð6:14Þ

and its frequency function is

TðjxÞ ¼ 1þ jxs

jxTI 1þ jxT1ð Þþ 1þ jxsð Þ ¼
1þ jxs

1� x2TIT1ð Þþ jx TI þ sð Þ : ð6:15Þ

Now, TðjxÞ has no amplification if

TðjxÞj j2¼ M2 ¼ 1þx2s2

1� x2TIT1ð Þ2 þx2 TI þ sð Þ2
� 1: ð6:16Þ

From the solution of the inequality s� T1 � TI=2 is obtained as a sufficient

condition. So there is no amplification if

T1 � TI=2� s� T1 þ TI ð6:17Þ

With the root locus method it can be seen that the closed-loop system is

structurally stable. If s[ T1, then there are only real poles. If s\T1, then real poles

are obtained only for the ranges KI\K1 and KI[K2, and in the range K1\KI\K2

the poles are complex conjugate pairs, where

K1;2 ¼
2T1

s
� 1

� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2T1

s
� 1

� �2

�1

s

: � ð6:18Þ
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Chapter 7

Control of Stable Processes

In the initial period, heuristic, trial-and-error methods based on rule of thumb were

widely used for controller design. At the same time a great effort was made to

elaborate a general mathematical methodology for a theoretical approach to design

methods. The transfer function of an mth-order controller has 2mþ 1ð Þ unknown

parameters. While tuning the higher order controllers it was noticed that a certain

design goal can be reached by many parameter sets, moreover, as a consequence, in

many cases the parameters were not independent, so the parameterization of the

controller was redundant. The main question is how to parameterize a general,

stable controller to solve the basic design tasks of a closed-loop control system with

a minimum number of non-redundant parameters. The most important solution is

provided by the so-called YOULA-parameterization. The YOULA-parameter, as a

matter of fact, is a stable (following from its definition), regular transfer function.

Q sð Þ ¼
C sð Þ

1þC sð ÞP sð Þ
or; for simplicity; Q ¼

C

1þCP
; ð7:1Þ

where C sð Þ is a stabilizing controller and P sð Þ is the transfer function of the stable

process. The inner stability of a system is defined by the fact, that introducing a

bounded input signal at any point of the system provides a bounded output signal at

any other point of the loop (see Sect. 5.2). For the investigation of inner stability,

the so-called transfer matrix of the closed-loop has to be constructed

Tt P;Cð Þ ¼

CP

1þCP

P

1þCP

C

1þCP

1

1þCP

2

6
6
4

3

7
7
5
¼

1

1þCP

CP P

C 1

� �

ð7:2Þ

The transfer matrix represents the connection between two independent outer

and two inner signals. The closed-loop is inner stable, if and only if, all elements of

Tt P;Cð Þ are stable.
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7.1 The YOULA-Parameterization

The transfer matrix can also be expressed by the YOULA parameter Q sð Þ instead of

the controller C sð Þ:

Tt P;Qð Þ ¼
QP P 1� QPð Þ
Q 1� QP

� �

: ð7:3Þ

Here it can be easily seen that the inner stability is ensured by any stable Q sð Þ for
a stable process.

It follows from the definition of the YOULA parameter that the structure of the

realizable and stabilizable controller is fixed in the control loop parameterized in

this way, i.e.,

C sð Þ ¼
Q sð Þ

1� Q sð ÞP sð Þ
or; for simplicity C ¼

Q

1� QP
: ð7:4Þ

The YOULA-parameterized (YP) control loop is shown in Fig. 7.1, where r is the

reference signal, e is the error signal, u is the output of the controller (the actuating

signal), yn is the disturbance signal affecting the output, and y is the output signal of

the process, i.e., the controlled variable.

The overall transfer function of the closed-loop (the complementary sensitivity

function) is

T sð Þ ¼
C sð ÞP sð Þ

1þC sð ÞP sð Þ
¼ Q sð ÞP sð Þ or; more simply; T ¼

CP

1þCP
¼ QP; ð7:5Þ

which is linear in Q sð Þ. (This linearity, as will be seen later, will facilitate to a great

extent the design of the required dynamics of the one degree of freedom (ODOF)

closed-loop.) The sensitivity function has the form

S sð Þ ¼
1

1þC sð ÞP sð Þ
¼ 1� Q sð ÞP sð Þ or; for simplicity;

S ¼
1

1þCP
¼ 1� QP:

ð7:6Þ

Fig. 7.1 The YP control loop

254 7 Control of Stable Processes



The relationship between the most important signals of the closed-loop can be

obtained by simple calculations:

u ¼ Qr � Qyn

e ¼ 1� QPð Þr � 1� QPð Þyn ¼ Sr � Syn

y ¼ QPrþ 1� QPð Þyn ¼ Trþ Syn

ð7:7Þ

The effect of r and yn on u and e is completely symmetrical (not considering the

sign). Thus in this system the input of the process depends only on the outer signals

and on Q sð Þ.
It is interesting to see that the YP controller of (7.4) can be realized by the simple

control loop of positive feedback shown in Fig. 7.2. Using this scheme the control

loop of Fig. 7.1 can be transferred to the equivalent block scheme of Fig. 7.3 by

identical conversions. This latter scheme is called an internal model control (IMC).

The basic principle of this control is that only the deviation ðeÞ (i.e. the error signal)
of the process output and the model output is fed back. This error signal is zero in

the ideal case when the inner model is completely equivalent to the process. This

case is presented in Fig. 7.3. In reality, however, the transfer function P̂ sð Þ of the
inner model is only a good approximation of the true process P sð Þ, since the

original system is not known. For simplicity, only the ideal case is investigated

here.

Fig. 7.2 The realization of

the YP controller

Fig. 7.3 The equivalent IMC

loop
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Based on the last equation of (7.7) it can be seen that the IMC has the transfer

function QPr for the tracking of the reference signal. If the inverse of Q is con-

nected in series to the control loop of Fig. 7.1 according to Fig. 7.4a, then the

tracking performance becomes independent of Q, i.e., it becomes that given by Pr0,

which means that practically the closed-loop is “opened”. It can be easily checked

that this block scheme is equivalent to that of Fig. 7.4b. It has to be noted that here

the reference signal has a direct effect on the input of the process: it does not go

through the controller and the whole closed-loop. The effect of the controller

(concerning the reference signal) is in operation only when the inner model is not

equal to the real process.

Following the above train of thought, the extension of the YOULA-para-

meterization can also be introduced for two-degree of freedom (TDOF) control

loops. To do this let us simply introduce the parameter Qr for designing the tracking

behavior and connect it in series to the control loop of Fig. 7.4. Then we get the

block scheme of Fig. 7.5. The resulting transfer characteristics of this system are

u ¼ Qryr � Qyn

e ¼ 1� QrPð Þyr � 1� QPð Þyn ¼ 1� Trð Þyr � Syn

y ¼ QrPyr þ 1� QPð Þyn ¼ Tryr þ 1� Tð Þyn ¼ Tryr þ Syn

ð7:8Þ

where the tracking performance can be designed by choosing the parameter Qr in

Tr ¼ QrP, while the performance of the disturbance rejection can be designed by

choosing Q in T ¼ QP. Thus these two performances can be handled separately.

The reference signal of the whole system is noted by yr. The same preconditions are

valid for Qr and Q. The transfer function of the TDOF closed-loop referred to the

reference signal Tr is analogous to the complementary sensitivity function Tof the

ODOF system for the tracking.

(a) (b)

Fig. 7.4 Block schemes for “opening” the closed-loop

Fig. 7.5 Two degree of freedom version of the YP-controller
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The IMC of Fig. 7.3 can be further developed according to Fig. 7.6. Here the

predicted value ŷn of the output noise yn is constructed from the difference e

between the output of the process and the model by the predictor Rn. Similarly the

predictor Rr provides the prediction ŷr of the reference signal yr. The disturbance

compensation of the loop works by giving the predicted value �ŷn through the

inverse of the process to the input of the process, thus in the case of an exact

estimation, the disturbance is eliminated. The tracking works in a similar way. Here

the operation of Rr can be referred to as a reference model (the desired system

dynamics), therefore the introduced predictor is also referred to as a reference

model. It is generally required that these predictors have to be strictly proper with

unit static gain, i.e., Rn x ¼ 0ð Þ ¼ 1 and Rr x ¼ 0ð Þ ¼ 1.

The best operation of a TDOF control loop can be attained by the special

conditions Rr ¼ Rn ¼ 1 or 1� Rn ¼ 0, but,—as will be shown later,—it can not be

realized in most practical systems.

The block scheme of Fig. 7.6 can be redrawn to the equivalent form of Fig. 7.7.

Note that the transfer function—in the ideal case, i.e., when the inverse of the

process is realizable and stable—is

Cid ¼
RnP

�1ð Þ

1� RnP�1ð ÞP
¼

Q

1� QP
¼

Rn

1� Rn

P�1; ð7:9Þ

which is the YP-controller with the YOULA parameter

Q ¼ RnP
�1: ð7:10Þ

For the tracking, however, the parameter is

Qr ¼ RrP
�1: ð7:11Þ

It can be seen that the controller Cid is realizable if the pole excess of Rn is

greater than or equal to that of the process, i.e., a pole excess of j can be easily

ensured by the reference model Rn ¼ 1= 1þ sTnð Þ j.

Fig. 7.6 The extension of the

control loop based on the

ideal IMC
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The most important signals of the closed-loop for the ideal case are

uid ¼ RrP
�1yr � RnP

�1yn

eid ¼ 1� Rrð Þyr � 1� Rnð Þyn ¼ 1� T id
r

� �
yr � Sidyn

yid ¼ Rryr þ 1� Rnð Þyn ¼ T id
r yr þ 1� Tidð Þyn ¼ T id

r yr þ Sidyn

ð7:12Þ

thus in the ideal case, T id
r ¼ Rr and Tid ¼ Rn, which are our design goals.

Note that the previously followed thoughts presented only the main idea of the

YOULA-parameterization and its equivalency with the control based on IMC. There

is, however, a very critical point of the realizability of the resulting schemes,

namely the realizability of the inverse of the process P. Unfortunately, this, in

general—disregarding some rare exceptions—is not true for continuous-time (CT)

systems. For practical applications, versions of the above approach have to be found

where all elements of the TDOF system are realizable.

To introduce a generally applicable controller, let us assume the transfer function

of the process has the following factored form

+

-

+yr yuŷr
+ ++

CONTROLLER

INVERSE

MODEL

PROCESS yn

PRr P
1

Rn

1- Rn

Cid

(a)

(b)

Fig. 7.7 Equivalent ideal control loops using the extended IMC principle
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P sð Þ ¼ Pþ sð Þ�P sð Þ�¼ Pþ sð ÞP� sð Þe�sTd ; or; for short;

P ¼ Pþ
�P� ¼ PþP�e

�sTd ;
ð7:13Þ

where Pþ is stable, and its inverse is also stable and realizable (ISR). The inverse of
�P� is unstable (Inverse Unstable: IU) and not realizable (IUNR). P� is inverse

unstable (IU). Here, in general, the inverse of the dead-time part e�sTd is not

realizable, because it would be an ideal predictor. The generalized IMC principle

can also be applied to the general process structure that is shown in Fig. 7.8.

The block scheme of Fig. 7.8 can be redrawn into the equivalent form of

Fig. 7.9, where the realizable YP-controller of optimal structure obtained for the

general case has the form

Copt ¼
Qopt

1� QoptP
¼

RnGnP
�1
þ

1� RnGnP�e�sTd
¼

RnKn

1� RnKnP
¼ RnGnC

0
opt; ð7:14Þ

where the optimal YOULA parameter is

Qopt ¼ RnGnP
�1
þ ¼ RnKn where Kn ¼ GnP

�1
þ ð7:15Þ

and

Qr ¼ RrGrP
�1
þ ¼ RrKr where Kr ¼ GrP

�1
þ : ð7:16Þ

The obtained general control loop—due to the YP – gives structurally the best

controller for stable processes. Further optimality of the controller can be set by the

embedded transfer functions Gr and Gn. To understand this, let us consider again

the most important signals of the TDOF closed-loop in the optimal case:

Fig. 7.8 The optimal control loop based on the generalized IMC principle
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uopt ¼ RrGrP
�1
þ yr � RnGnP

�1
þ yn

eopt ¼ 1� RrGrP�e
�sTd

� �
yr � 1� RnGnP�e

�sTd
� �

yn ¼ 1� Topt
r

� �
yr � Soptn yn

yopt ¼ RrGrP�e
�sTdyr þ 1� RnGnP�e

�sTd
� �

yn ¼ Topt
r yr þ 1� Topt

n

� �
yn ¼ Topt

r yr þ Soptn yn

ð7:17Þ

where the equalities Topt
r ¼ RrGrP�e

�sTd and Topt
n ¼ RnGnP�e

�sTd occur.

Compare the ideal output yid of (7.12) with the optimal output yopt of (7.17). It

can be easily seen that the ideal and the designed transfer functions determined by

the reference models Rr and Rn can not be reached, only approximated. The element

P�e
�sTd appearing in the approximate transfer functions can not be eliminated,

therefore it is called an invariant factor. Thus the dead-time e�sTd and the inverse

unstable (IU) term P� of the process can not be eliminated by any controller. In

case of CT processes, this latter term contains the unstable zeros of the

non-minimum phase processes and those poles of the stable poles which could not

get into the invertible Pþ of (7.13). In practice, only the necessary number of the

slowest poles (whose number corresponds to the number of the stable zeros in P) of

P are usually included in Pþ , the rest should be added to P�. The effect of the

invariant P� can only be attenuated by the transfer functions Gr and Gn.

The formulation of the deviation of the outputs of the ideal and best reachable

(optimal) control loops is

Dy ¼ yid � yopt ¼ Rr 1� GrP�e
�sTd

� �
yr þRn 1� GnP�e

�sTd
� �

yn; ð7:18Þ

where the error comes from the transfer function Rx 1� GxP�e
�sTdð Þjx¼r;n both for

the tracking and noise rejection. The minimization of this error in terms of different

criteria (in theoretical investigations, the so-called H2 and H1 optimality) can be

accomplished by the optimal choice of Gxjx¼r;n. (The discussion of optimality is not

the subject of this book.)

Further equivalent forms of the best reachable optimal control loop are shown in

Fig. 7.10. From these the simplest one that is realizable has to be chosen.

Figure 7.10b gives advice for the realization of a system having dead-time. The

control loop shown in Fig. 7.9 is called the most general (generic) form of a TDOF

systems. (The YOULA-parameterization has been extended to TDOF systems by

KEVICZKY and BÁNYÁSZ by introducing two further parameters, Rr and Rn instead of

yr yu

y

+

+ +

+
+

-

Rr K r
RnK n

1− RnK nP
PP

Copt

yn

e

Fig. 7.9 The equivalent optimal control loop corresponding to the generalized IMC principle
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Q (called the K-B-parameterization). The derivation of the generic schemes and

their optimization possibilities are also connected to their names).

The questions of realizability can be dealt with in long discussions. If the design

of the optimal controller includes also the optimization of Gr and Gn, then the

procedure itself must also ensure the realizability of the transfer functions GrP� and

GnP�, and the realizability of the other factors, (like RrGrP
�1
þ , RnGnP

�1
þ and

(a)

(b)

Fig. 7.10 Equivalent forms of the best reachable (optimal) control loops

yr yu

y

+

+ +

+
+

-

PPRrP+
−1

RnP+
−1

P

+

+

Copt

yn

Fig. 7.11 A realizable YOULA-parameterized control loop with the choice Gr ¼ Gn ¼ 1
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RnGnP�), has to also be considered. As was mentioned earlier, the theory con-

cerning the optimality of Gr and Gn is not discussed here. In this case the choice

Gr ¼ Gn ¼ 1 does not change the invariant P�, i.e., it appears, as a consequence,

unchanged in the signals of the system

u ¼ RrP
�1
þ yr � RnP

�1
þ yn

e ¼ 1� RrP�e
�sTd

� �
yr � 1� RnP�e

�sTd
� �

yn ¼ 1� Trð Þyr � Snyn

y ¼ RrP�e
�sTdyr þ 1� RnP�e

�sTd
� �

yn ¼ Tryr þ 1� Tnð Þyn ¼ Tryr þ Snyn

ð7:19Þ

furthermore the realizability of the transfer functions RrP
�1
þ , RnP

�1
þ and RnP� is

required. It is evident that in this case the realizability can be simply handled by the

appropriate choice of the order of the reference models Rr and Rn, and of the pole

excess, e.g., by prescribing Rr ¼ 1= 1þ sTrð Þ j (and the same for Rn). A realizable,

but not optimal control loop can be seen in Fig. 7.11.

Although the controller is theoretically realizable, it can not be expected in

practice that for CT systems an ideal dead-time element modeling the time-delay of

the process can be realized in the inner positive feedback loop of the controller and

in the serial compensator. Therefore in the case of time-delay CT systems, the

above discussed optimal control scheme has only theoretical importance. In some

cases, the time-delay term can be approximated by higher order PADE-series. In

computer controlled cases (for sampled DT controls), however, the method can be

fully applied (see Chap. 12).

Example 7.1 Let the controlled system be a first order time-delay lag

P ¼
1

1þ 10s
e�5s i:e: Pþ ¼

1

1þ 10s
; �P� ¼ e�5s and P� ¼ 1; ð7:20Þ

which should be sped up by the control. Let the tracking and disturbance cancel-

lation reference models be

Rr ¼
1

1þ 4s
and Rn ¼

1

1þ 2s
: ð7:21Þ

Since P� ¼ 1, there is nothing to be optimized, i.e., Gr ¼ 1 and Gn ¼ 1 can be

chosen. The optimal controller is

Copt ¼
RnGnP

�1
þ

1� RnGnP�e�sTd
¼

1

1� Rne�sTd
RnP

�1
þ ¼

1

1� 1
1þ 2s

e�5s

1þ 10s

1þ 2s

¼
1þ 10s

1þ 2s� e�5s
ð7:22Þ

and the serial compensator has the form
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RrKr ¼ RrGrP
�1
þ ¼ RrP

�1
þ ¼ 1þ 10sð Þ= 1þ 4sð Þ; ð7:23Þ

thus the optimal TDOF control loop has the structure shown in Fig. 7.12. Observe

that Copt s ¼ 0ð Þ ¼ 1, i.e., the controller has integrating behavior, which results

from the condition Rn s ¼ 0ð Þ ¼ 1.

It can be easily checked, that the output of the closed system is

yopt ¼ Rre
�sTdyr þ 1� Rne

�sTd
� �

yn ¼
1

1þ 4s
e�5syr þ 1�

1

1þ 2s
e�5s

� �

yn;

ð7:24Þ

which completely corresponds to the designed TDOF control loop. ∎

Example 7.2 Let the controlled process be a second order lag

P ¼
1þ 5sð Þ 1þ 6sð Þ

1þ 10sð Þ 1þ 8sð Þ
¼ Pþ i:e:; P� ¼ 1: ð7:25Þ

Suppose that the tracking and disturbance cancellation models are again of the

form (7.21). Since P� ¼ 1, there is nothing to be optimally compensated, i.e.,

Gr ¼ 1 and Gn ¼ 1 can be chosen. Now the optimal controller is

yr yu

y

+

+ +

+
+

- +

+ e
−5s

1 +10s

e
−5s

1 +10s

e
−5s

1 +10s

1 +10s

1 + 4s

P

Copt

P

1 +10s

1+ 2s

yn

P

Fig. 7.12 The optimal control loop of Example 7.1

yr yu

y

+

+ +

+
+

-

P

Copt

P

yn

1

2s

1+10s( ) 1+ 8s( )

1+ 5s( ) 1+ 6s( )

1+10s( ) 1 + 8s( )

1+ 4s( ) 1+ 5s( )1 + 6s( )

Fig. 7.13 The optimal control loop of Example 7.2
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Copt ¼
RnGnP

�1
þ

1� RnGnP�e�sTd
¼

Rn

1� Rn

P�1 ¼
1

2s

1þ 10sð Þ 1þ 8sð Þ

1þ 5sð Þ 1þ 6sð Þ
¼ Cid ð7:26Þ

thus it corresponds to the ideal controller. The serial compensator, however, has the

form

RrKr ¼ RrGrP
�1
þ ¼ RrP

�1 ¼
1þ 10sð Þ 1þ 8sð Þ

1þ 4sð Þ 1þ 5sð Þ 1þ 6sð Þ
: ð7:27Þ

It is evident, that the controller is of integrating type, as is also shown in

Fig. 7.13.

Note that in ideal case the term Rn= 1� Rnð Þ in the controller corresponds to an

integrator, whose integrating time is equal to the time constant of the first order

reference model Rn. ∎

7.2 The SMITH Controller

The handling of the time-delay of the processes has required the special attention of

the designers of the control loops from the beginning. First Otto SMITH suggested a

technique by means of which it was thought for a long time that the controller can

be designed without the consideration of the dead-time. To understand his method

let us consider a simple dead-time process of (7.13)

P sð Þ ¼ Pþ sð Þ�P� sð Þ ¼ Pþ sð Þe�sTd or; more simply; P ¼ Pþ
�P� ¼ Pþ e

�sTd ;

ð7:28Þ

where Pþ is stable. Figure 7.14a shows the original idea of SMITH. Since this figure

is equivalent to Fig. 7.14b, his main goal can be clearly seen, namely to separate the

original dead-time loop into a closed-loop which does not contain the time-delay

(a) (b)

Fig. 7.14 The block scheme of the SMITH controller
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and a serially connected dead-time. So the controller Cþ regulating the process Pþ

can be designed by a conventional method.

By simple block manipulations, Fig. 7.14a can be redrawn to the equivalent

forms of Fig. 7.15a, b.

The IMC structure of the Fig. 7.15a clearly shows that the SMITH controller is a

YP-controller with a special YOULA parameter

Qþ ¼
Cþ

1þCþPþ
¼

CþPþ

1þCþPþ
P�1

þ ¼
Lþ

1þ Lþ
P�1

þ ¼ RþP
�1
þ ð7:29Þ

if the controller Cþ stabilizes the delay free part of the process Pþ . Here Lþ ¼
CþPþ is the loop transfer function of the closed system of Fig. 7.14b, furthermore

the complementary sensitivity function

Tþ ¼ Rþ ¼
Lþ

1þ Lþ
ð7:30Þ

will be the reference model Rþ . Since in the IMC structure the inner model predicts

the output of the process, the name SMITH-predictor derives from this phenomenon.

At the time of its introduction the IMC principle and the YOULA-parameterization

were not yet known.

Figure 7.15b shows the equivalent complete closed control loop, where the

serial (YOULA-parameterized) controller is

Cs ¼
Qþ

1� QþPþ e�sTd
¼

Cþ

1þCþPþ 1� e�sTdð Þ
¼ CþKS; ð7:31Þ

which, at the same time, also shows the inner closed-loop referring to the real-

ization. Here KS means the serial transfer function by which the SMITH controller

modifies the effect of the original controller Cþ .

-

y
+

r
C+ P+e

−sTd

P+ 1− e
− sTd

( )

Cs

-

+

(a) (b)

Fig. 7.15 Equivalent SMITH controller block schemes
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Thus

KS ¼
1

1þCþPþ 1� e�sTdð Þ
¼

1

1þ Lþ 1� e�sTdð Þ
: ð7:32Þ

At the stability limit Lþ ¼ �1, we get

KS ¼
1

1þ �1ð Þ 1� e�sTdð Þ
¼

1

1� 1þ e�sTd
¼ esTd

�
�
xc
¼ ejxcTd ; ð7:33Þ

which causes the SMITH controller to add a significant positive phase advance to the

original closed-loop, which is why it can be applied very successfully for stabi-

lization in many cases. At the same time it is very sensitive to a change of the

parameters.

Unfortunately it should be repeated that in the practice for CT systems one

cannot expect to realize an ideal dead-time element only its higher order lag

approximation can be implemented for the application of a SMITH controller (see

what was stated about Example 7.1 of the previous chapter).

To complete the evaluation of the SMITH controller it has to be also mentioned

that it can be used only for the design of a one-degree of freedom (ODOF) system,

i.e., for tracking. The controller designs the tracking of the reference signal only in

an indirect way, as the expression Tþ ¼ Rþ of (7.30) shows. From the elaboration

of the concept of YOULA-parameterization it has been known that simple design

method is also available for TDOF systems both for tracking and disturbance

rejections via the design of the reference models.

7.3 The TRUXAL-GUILLEMIN Controller

Prior to the YOULA-parameterization, TRUXAL and GUILLEMIN recommended a simple

algebraic method for the control design of ODOF systems. According to the

method the required design goal has to be formulated for the transfer function of the

closed-loop

-

+

+

+ PRn
yr 1

P

CTG

Fig. 7.16 The realization of the TRUXAL-GUILLEMIN controller
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Rn ¼ T ¼
CP

1þCP
ð7:34Þ

from which a simple algebraic equation results for C:

CP ¼ Rn þCPRn: ð7:35Þ

Solving for the controller we get

C ¼
Rn

1� Rn

1

P
¼ CTG: ð7:36Þ

Note that this form is the same as the simple case of the YOULA controller Cid in

(7.9). The realization of the controller can be made according to the Fig. 7.16.

Thus Rn corresponds to one of the reference models of the YOULA method. For

the ODOF case, however, Rn ¼ Rr. Let the reference model be Rn ¼ Bn=An, and

the process be P ¼ B=A. So the polynomial form of the controller is

CTG ¼
Bn

An � Bn

A

B
: ð7:37Þ

The controller is realizable if the pole excess of Rn is greater than or equal to that

of the process. If Rn has unity gain ðRn 0ð Þ ¼ 1Þ, then the type of the controller is

one. TRUXAL observed that the loop transfer function L ¼ F=skD ¼ CP of type k

can be established by the reference model

Rn ¼ T ¼
N

N þ skD
¼

fo þ f1sþ . . .þ fk�1s
k�1

fo þ f1sþ . . .þ fk�1sk�1 þ sk þ . . .þ dnR þ ksnR þ k

¼
fo þ f1sþ . . .þ fk�1s

k�1

fo þ f1sþ . . .þ fk�1sk�1 þ sk 1þ . . .þ dnRs
nRð Þ

; nR � k � 1� n� m

ð7:38Þ

where the first k terms of the denominator are equal to the numerator.

7.4 The Effect of a Constrained Actuator Output

The control signals applied in the closed control systems, or the output of the

actuator whose task is to increase that signal to the proper level, are always

amplitude constrained.

u tð Þj j �Umax ð7:39Þ

This means that a jump of any size in u, or a significant change in the starting

value of the signal related to its final value, i.e., arbitrary overexcitation is
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impossible. It was shown in Sect. 2.4 that a pole cancellation can be made by

adding extra zeros which results in speeding up the system. This speeding up

always requires overexcitation (energy surplus). The optimal control methods

discussed in this chapter almost always applied a certain kind of pole cancellation,

i.e., overexcitation (see Fig. 7.17). The above mentioned amplitude constraints in

practice mean, that in spite of computing the optimal control parameters, the pro-

vided output cannot be realized because of the constraints. The reachable speed-up

really depends on the applicable overexcitation.

t
0

Umax

Umax

Fig. 7.17 Typical control

output (actuator signal) in the

case of overexcitation
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Fig. 7.18 Design of the

signal domain for the control

output
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The design of the signal domain for the control output needs special care and the

knowledge of the equipment employed. In general, the working point is set to the

center of the signal domain, and the possible changes compared to this point have to

be designed to perform without saturation (Fig. 7.18).

In spite of the most careful design it may happen that the control output violates

the signal domain. In this case the original design goal has to be reduced. The

advantage of the KB-parameterization of the generic TDOF control loops is that in

this case it is enough to redesign only the problematic (very demanding) reference

models Rr or Rn by less demanding design conditions. This process can usually be

made in small steps by iteration. The iteration steps may include both the model

simulation and an experiment on the real system. (In case of lower order reference

models it is possible to elaborate explicit design formulas for determining the time

constant of the model (bandwidth) with the knowledge of the process model and the

amplitude constraints Umax.)

In many cases not only the amplitude of the control output has constraints but its

changing velocity is also limited in practice. Let us think of the control valves of big

pipes, where the motor needs time to transfer the valve from one position to

another. Handling these so-called velocity constraints by analytic methods is more

difficult, so only simulation and practical experiment remain as a solution. The

applied method is the same as earlier: the demand required by the design goal has to

be reduced.

Summarizing, it can be stated that the fastest reachable control depends, pri-

marily and to a great extent, on the limitations of the control output. This limitation,

however, does not depend on the control design method, but on the type of the

equipment used in the given technology. So any improvement can be made only by

changing the equipment itself or by redesigning the whole technology.

The Concept and Computation of Dynamic Overexcitation

In control systems the actuator signal u tð Þ has an important role because this is the

input of the process and the physical constraints appear here. Due to the change of

the reference signal r tð Þ transient processes take place according to the dynamics of

the system. During a transient, in general, the actuator signal might have a higher

value than its static one. The extent or magnitude of this can be described by the

dynamic overexcitation. The definition of dynamic overexcitation is

ut ¼
Umax

u t ! 1ð Þ
ffi

u 0ð Þ

u1
:

In general the maximum value is the initial value, therefore, for the sake of the

simplicity of the computations, this is used as an approximation. The dynamic

overexcitation can be interpreted this way only when u1 is not equal to zero. This

happens when the process contains an integrator, since in this case the system can

get to a steady state only if the input of the integrator becomes zero. Here the

dynamic overexcitation is replaced by Umax.
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7.5 The Concept of the Best Reachable Control

7.5.1 General Theory

In the previous section, the basic importance of the constraints relating to the output

of the actuator for ensuring the reachable/attainable/obtainable best control has been

emphasized. Based on the Sects. 7.1–7.3, however, further constraints not

depending on us have to be mentioned. Of these, the dead-time of the process is the

most important, which is invariant for any kind of regulation method, i.e., its effect

can not be eliminated.

Other such factors are the unstable zeros of the process, which also can not be

eliminated by any method. The effect of the invariant zeros on the transients can be

compensated (decreased or attenuated) to a certain extent. (This compensation can

be made by the optimal choice of the embedded filters Gr and Gn, which is not the

topic of this book.)

Thus both the dead-times and the unstable zeros are considered independent

features of the process that can not be influenced by the control design methods,

only by the redesign of the whole process or technology.

So far, in the long discussion of the different control design methods, it was

supposed that the transfer function P of the process is known. In reality the exact

transfer function of the process is not known: only its model P̂ is available. This

distinction was used, until now, only in the discussion of the concept of robust

stability in Sect. 5.7. For the closed-loop control design it should be noted that the

complementary sensitivity function

T̂ ¼
CP̂

1þCP̂
ð7:40Þ

resulting from the ODOF model based design is not equal to the real one

T ¼
CP

1þCP
¼ T̂

1þ ‘

1þ T̂‘
: ð7:41Þ

Here ‘ means the relative uncertainty of the process model of (5.40). The sen-

sitivity function of the real closed-loop can be written in the following decomposed

form:
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S ¼ 1� Rnð Þ
|fflfflfflfflffl{zfflfflfflfflffl}

Sdes

þ Rn � T̂
� �

|fflfflfflfflffl{zfflfflfflfflffl}

Sreal

� T � T̂
� �

|fflfflfflffl{zfflfflfflffl}

Smod

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
Sperf

¼ Sdes þ Sreal þ Smod

¼ 1� Rnð Þ
|fflfflfflfflffl{zfflfflfflfflffl}

Sdes

þ Rn � Tð Þ
|fflfflfflfflffl{zfflfflfflfflffl}

Sperf

¼ Sdes þ Sperf ¼ 1� T̂
� �

|fflfflfflffl{zfflfflfflffl}

Scontr

þ Smod

¼ 1� T̂
� �

|fflfflfflffl{zfflfflfflffl}

Sdes þ Sreal

þ Smod ¼ Scontr þ Smod

ð7:42Þ

Here Sdes ¼ 1� Rnð Þ is the design loss, Sreal ¼ Rn � T̂
� �

is the realizability loss,

and Smod ¼ � T � T̂
� �

¼ T̂ � T represents the modeling loss part of the sensitivity

function. In the other form Scontr ¼ 1� T̂
� �

is the term referring to the control loss,

and Sperf ¼ Rn � Tð Þ is the performance loss. Each term can be simply interpreted

and explained very easily. The meaning of the reference model Rn has been dis-

cussed in the previous chapters. It is obvious that there are trivial equalities S ¼

1� T and Ŝ ¼ 1� T̂ , where

Ŝ ¼
1

1þCP̂
and S ¼

1

1þCP
¼ Ŝ

1

1þ T̂‘
¼ Ŝþ Smod: ð7:43Þ

The term Smod can be further simplified:

Smod ¼ S� Ŝ ¼ T̂ � T ¼ �
T̂ Ŝ‘

1þ T̂‘
¼ �T̂S‘

�
�
‘!0

� �T̂ Ŝ‘: ð7:44Þ

It can be seen easily that T̂ Ŝ
�
�

�
� has its maximum at the cut-off frequency xc, so the

model must be the most accurate in the vicinity of this frequency.

For TDOF control loops the complete transfer function corresponding to the

concept of the complementary sensitivity function is obtained by adding an

extension as Tr ¼ FT , in general. For the model based control

Tr ¼ T̂r
1þ ‘

1þ T̂‘
ð7:45Þ

again, as it was in (7.41).

Obviously the triviality Sr ¼ 1� Tr and the triple decomposition introduced in

(7.42)

Sr ¼ 1� Rrð Þþ Rr � T̂r
� �

� Tr � T̂r
� �

¼ Srdes þ Srreal þ Srmod ð7:46Þ

7.5 The Concept of the Best Reachable Control 271



also exist.

The term Srmod can be further simplified

Srmod ¼ T̂r � Tr ¼ �
T̂rŜ‘

1þ T̂‘
¼ �T̂rS‘

�
�
‘!0

� �T̂rŜ‘: ð7:47Þ

The ideal control loop has to follow the signals prescribed by Rr and Rn (more

exactly 1� Rn), thus the ideal output of the closed-loop is

yid ¼ yo ¼ Rryr � 1� Rnð Þyn ¼ yor þ yon ð7:48Þ

according to (7.12).

Theoretically, instead of (7.48) only

y ¼ Tryr � Syn ¼ Tryr � 1� Tð Þyn ð7:49Þ

can be obtained, and even this has to be modified according to the model based

design

ŷ ¼ T̂ryr � Ŝyn ¼ T̂ryr � 1� T̂
� �

yn: ð7:50Þ

The deviation between the ideal and the theoretically reachable output is

Dy ¼ yo � y ¼ Rr � Trð Þyr � Rw � Tð Þyn ¼ Srperfyr � Snperfyn; ð7:51Þ

where Srperf refers to the performance loss concerning the tracking and Snperf ¼ Sperf

means the performance loss concerning the disturbance rejection. A similar

expression can be obtained for the deviation between the ideal output ðyoÞ and ŷ

obtained by the model based design

Dŷ ¼ yo � ŷ ¼ Rr � T̂r
� �

yr � Rn � T̂
� �

yn ¼ Srrealyr � Snrealyn: ð7:52Þ

Note that in the above expressions the terms Sreal and Srreal can be made zero only

in the case of inverse stable systems, while these terms can never be made zero for

inverse unstable systems.

The above triple decomposition of the sensitivity functions gives a good insight

into the limit-optimality of the closed-loop control systems, i.e., to the characteri-

zation of the best reachable control. To this end, distinct optimality criteria have to

be created for each term, i.e.,

Jtracking � Jrdes þ Jrreal þ Jrmod ¼ Srdes









þ Srreal









þ Srmod











Jcontrol � Jndes þ Jnreal þ Jnmod ¼ Sdesk kþ Srealk kþ Smodk k
ð7:53Þ
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both for the tracking and disturbance rejection behaviors. Here the notation . . .k k is

used for expressing the optimality criterion. (Strictly speaking, in mathematical

analysis this notation is used to refer to the chosen norm of the transfer function.)

Optimization of the Design Loss

The optimization of the first term primarily means the determination of the best

(fastest) reachable reference models Rr ¼ Ropt
r and Rn ¼ Ropt

n , i.e. the solution of the

optimization task under the following limitations

Ropt
r ¼ arg min

Rr

Jrdes
� �

�
�
�
�
u2U

� �

¼ arg min
Rr

1� Rrk k

�
�
�
�
u2U

� �

Ropt
n ¼ arg min

Rn

Jndes
� �

�
�
�
�
u2U

� �

¼ arg min
Rn

1� Rnk k

�
�
�
�
u2U

� � ð7:54Þ

where the chosen criteria Jrdes ¼ 1� Rrk k and Jndes ¼ 1� Rnk k express that each

reference model has to approach as closely as possible the ideal term. This task has

to be solved under the limitation u 2 U concerning the output of the controller.

Here U usually means the allowed domain for u, e.g. the amplitude constraints

U : uj j � 1 [see Sect. 7.4].

Equation (7.54) constitutes a very difficult optimization task because the solu-

tion is always on the border of the constrained domain. An analytical solution,

except for some low order simple cases, can not be found. The optimal reference

models are usually determined by simulation CAD tools. Note that for the solution

of the task (7.54), under the given constraints, faster reference models can not be

applied. Quite the opposite: if no solution is obtained for a reference model pro-

viding the required goals under a given constraint, then there is no other possibility

than to choose a less demanding (usually slower) reference model. Thus the best

(fastest) reachable output of the closed-loop basically depends on the limitations of

the controller output. In (7.54), of course, both the controller and the process, i.e.,

the whole real closed-loop, appear in a very complicated way, therefore its opti-

mality depends on the process, on the model and also on the invariant factors.

Since the reference model is an important parameter of the general YOULA design,

the condition of robust stability shown in (5.45) can also be guaranteed with it. Based

on (7.5) it can be seen easily that the condition (5.45) for YP control loops is

QP̂‘
�
�

�
�
\1 8x: ð7:55Þ

This condition can be further simplified to the condition

Rnj j\
1

‘j j
or ‘j j\

1

Rnj j
8x: ð7:56Þ
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Based on this condition it can be stated that by choosing a first order reference

model Rn, robust stability can be ensured even for the case of 100% relative model

error.

Optimization of the Realizability Loss

The purpose of this task is to optimize the realizability losses Jrreal and Jnreal in terms

of

Gopt
r ¼ arg min

Gr

Jrreal
� �

� �

¼ arg min
Gr

Rr � T̂r










� �

Gopt
n ¼ arg min

Gn

Jnreal
� �

� �

¼ arg min
Gn

Rn � T̂










� � ð7:57Þ

which can be ensured by the optimal choice of Gr ¼ Gopt
r and Gn ¼ Gopt

n (see

Sect. 7.1). As was mentioned earlier the conditions Rr ¼ T̂r and Rn ¼ T̂n can be

theoretically reached in the ISR case, which means the trivial solution Gr ¼ Gn ¼ 1.

For the more general IU case, the optimal transfer functions have to be determined.

The Optimization of the Modeling Loss

The optimization of the modeling loss Jrmod means the determination of a special

optimal excitation yr ¼ yoptr applied as a reference signal, and the optimal process

model P̂ ¼ P̂opt obtained as the solution of the so-called minimax problem below

P̂opt ¼ arg min
P̂

max
yr

Jrmod

� �
� �� �

¼ arg min
P̂

max
yr

Srmod











� �� �

: ð7:58Þ

This task has two steps: The optimal reference signal (depending on the crite-

rion) usually provides the maximum variance in the output in the case of an

amplitude constrained yr. Measuring the output of the closed-loop the process

model ensuring the minimum of the optimality criterion Srmod









 of the modeling

loss has to be determined by a proper modeling (identification) method. The task

(7.58) is called worst case identification task.

It is not an easy task to optimize all the three terms simultaneously. In practice,

an iteration technique is used where in a particular step the solution of only one

optimality problem is solved.

(As a criterion . . .k k mentioned above, usually the H2 or H1 norms, frequently

applied in the higher level control theory, are chosen. As it was mentioned earlier,

these tasks are not discussed in this book, although a short description can be found

in Chap. 16.)
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7.5.2 Empirical rules

It has already been seen in the investigation of the best reachable control systems

that the basic constraint derives from the saturation of the actuator signal and the

process dynamics itself. One of the most important dynamical limits is the

dead-time of the process, which can not be eliminated, since the system can not

respond in a shorter time than the dead-time. The first-order PADE approximation of

a dead-time lag has already been discussed, according to which

e�sTd �
1� sTd=2

1þ sTd=2
¼

s� 2=Td
sþ 2=Td

¼
s� zj

sþ zj
; ð7:59Þ

i.e., by the right-hand zero zj approximation it corresponds to a time-delay lag

Td ¼ 2=zj. This also means, at the same time, that the right-hand zeros of the

process correspond, in any way, to certain limits. An unstable zero with a small

value corresponds to a high dead-time.

It can be assumed that the unstable poles of the process can also result in

constraints. It can be expected that in order to stabilize an unstable process, a

sufficiently fast controller is required.

Summarizing, the constraints can derive from the dead-time and the unstable

zeros ðzjÞ and poles ðpjÞ (located in the right half-plane) of the process dynamics.

Based on fundamental theoretical considerations and practice, the constraints are

the following:

– a right-half-plane unstable (RU) zero zj has the following limit for the cross-

frequency

xc\0:5zj ð7:60Þ

A slow RU zero has especially a very bad effect.

– the dead-time also limits the cross-frequency, based on the practice

xc\0:5
1

Td
ð7:61Þ

– an RU pole requires a high cross-frequency

xc[ 2pj ð7:62Þ
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– systems, having both RU zeros and poles simultaneously can not be controlled,

in general, only if the poles and zeros are far enough from each other.

pj[ 6zj ð7:63Þ

– unstable dead-time systems can not be controlled, unless the separation (dis-

tance) condition

pj\0:16
1

Td
ð7:64Þ

is fulfilled.
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Chapter 8

Design of Conventional Regulators

The aim of controller design is to ensure that the closed-loop control system meets

the quality specifications. A block diagram of a control system is shown in Fig. 6.1.

This structure is called a series control structure, as the regulator (sometimes called

controller) is serially connected to the plant. The regulator is designed considering

the properties of the plant and the specifications.

After the choice of the control structure, the parameters of the regulator have to

be set. In the frequency domain with the appropriate choice of the regulator the

frequency function of the open-loop is shaped according to the quality specifica-

tions (Fig. 6.2).

In Chap. 7 we could see, that for stable processes, precise theoretical methods

are available to determine the optimal structure and the optimal parameters of the

regulator for different cases. But already long before the elaboration of these the-

oretical methods, a well established class of control equipment was widely used in

the control of industrial processes. This type of regulators has its determining

significance even today. The development of the technology of electronic devices—

which made possible the realization of more and more complicated transfer func-

tions—played a significant role in the development of these conventional or clas-

sical regulators. Passive R-L-C circuits and precise operational amplifiers provided

the technological basis for the development of the simple so-called PID regulator

family. (In the case of regulators using mechanical, pneumatic, etc., signals only

some restricted forms were realized, mainly because of realization constraints.)

PID regulators react proportionally to the current error value, take into consid-

eration the past error signal history with the integral of the error signal, and count

the future error signal trend by the differential of the error. Figure 8.1 shows [1] that

the PID regulator calculates the manipulated variable (the control signal) with the

P effect which is proportional to the error, with the I effect, the integral of the error,

and the D effect, the differential of the error.

Application of PID regulators is quite general: more than 90% of the realized

industrial control systems work with this type of regulator. In industrial process

control the most frequently applied controllers are the PID regulators, as the quality
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specifications mostly can be fulfilled applying them, they have an easily realizable

simple structure, and the effect of the parameter changes can easily be evaluated.

The design of PID regulators can be discussed as a design method in the frequency

domain or as a pole-zero cancellation technique.

8.1 The PID Regulator Family and Design Methods

The transfer function of the ideal PID regulator can be given in the following two

forms:

CPID ¼ AP 1þ 1

sTI
þ sTD

� �

¼ AP þ kI
1

s
þ kDs ¼

AP

TI

1þ sTI þ s2TITD

s
: ð8:1Þ

Here the regulator parameters are AP, the proportional transfer gain, TI the

integrating time constant, and TD the differentiating time constant. The unit step

response of the regulator is expressed as

v tð Þ ¼ L�1 1

s
CPID sð Þ

� �

¼ AP þ
AP

TI
tþAPTDd tð Þ t� 0; ð8:2Þ

which is seen in Fig. 8.2.

Fig. 8.1 The PID regulator

calculates the manipulated

variable from the current, the

past and the future trend (the

slope) of the error signal

AP

2AP

TI

t

v t( )

APTD

Fig. 8.2 Unit step response

of the ideal PID regulator
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The PID regulator consists of parallel connected proportional (P), integrating

(I) and differentiating (D) effects. The analytical expression (time function) of the

ideal regulator, that is the operation executed on the error signal, e tð Þ is given by

u tð Þ ¼ APe tð Þþ kI

Z

t

0

e sð Þdsþ kD
de tð Þ
dt

: ð8:3Þ

This expression clearly shows the mentioned characteristics of the three regu-

lator channels.

The regulator has a pole at the origin. It also has two zeros, which in the case of

TI � 4TD, are located on the negative real axis. This condition requires a significant

separation of the integrating and differentiating time constants, which requires a

fourfold distance at least of the corresponding breakpoints in the

amplitude-frequency diagram.

The location of the poles and zeros of the PID regulator in the complex plane is

shown in Fig. 8.3. Its asymptotic BODE amplitude-frequency and phase-frequency

diagram is seen in Fig. 8.4. The ideal PID regulator is non-realizable, it is used only

for theoretical considerations and explanations. By ensuring the realizability of the

D effect (combining it with a serially connected lag element with a small time

constant) an approximate, but realizable PID regulator is obtained.

The transfer function of the approximate PID regulator can be given in the

following form:

C
_

PID ¼ AP 1þ 1

sTI
þ sTD

1þ sT

� �

¼ AP

TI

1þ s TI þ Tð Þþ s2TI TD þ Tð Þ
s 1þ sTð Þ : ð8:4Þ

The unit step response is expressed as

v
_
tð Þ ¼ L�1 1

s
C
_

PID sð Þ
� �

¼ AP þ
AP

TI
tþ APTD

T
e�t=T t� 0 ð8:5Þ

and is shown in Fig. 8.5. The location of the poles and zeros of the approximate

PID regulator is shown in Fig. 8.6. The asymptotic BODE amplitude-frequency and

phase-frequency diagram is given in Fig. 8.7.

Fig. 8.3 Poles and zeros of

the ideal PID regulator
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Fig. 8.4 Asymptotic BODE diagram of the ideal PID regulator

Fig. 8.5 Unit step response

of the approximate PID

regulator

Fig. 8.6 Poles and zeros of

the approximate PID

regulator
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Now the regulator has two poles, one at the origin and the second at �1=T in the

complex plane, and its two zeros located on the negative real axis if

TD � TI � Tð Þ2=4TI. Again, this condition requires a significant separation of the

integrating and the differentiating time constants, that is, a significant distance

between the corresponding breakpoint frequencies.

The unit step response of the approximate PID regulator does not now start with

the d tð Þ (DIRAC delta) function at t ¼ 0; nevertheless the value of the initial jump

expressed by AP 1þ TD=Tð Þ may exceed the linearity range of the actuator and the

equipment could be saturated. This situation is to be avoided, as on the one hand the

normal operation mode of the actuator is ensured only in the linear range, and on

the other hand the tuning of the regulator for stable performance, for the prescribed

quality specifications, accuracy, etc., ensures the required behavior only in the case

of linear models. The ratio TD=T which determines the initial jump is called the

overexcitation. Its value in real control systems should not exceed the limit of

TD=T � 10; and frequently should be even lower, with an allowable upper value of

4� TD=T � 6: This realization limit determines first of all the fastest reachable

transient (the cut-off frequency) for a control system of a given process.

Note that a modified version of PID regulators is often used, which significantly

attenuates the effect of a possible abrupt change of the reference signal on the

output signal in the closed-loop control system through a simple mechanism. In

these regulators the manipulated variable—instead of the usual relationship (8.3)—

is calculated by the expression u tð Þ ¼ APep tð Þþ kI
R t

0
e sð Þdsþ kDded tð Þ=dt; where

Fig. 8.7 Asymptotic BODE diagram of the approximate PID regulator
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ep tð Þ ¼ br tð Þ and ed tð Þ ¼ cr tð Þ; setting parameters b and c whose values generally

are between 0.2 and 0.8.

From the ideal PID regulator, the following different types of regulators can be

obtained:

P AP

I
1

sTI
¼ KI

s

PI AP 1þ 1

sTI

� �

PD AP 1þ sTDð Þ

ð8:6Þ

In the approximate PID regulator, the PD effect is considered by the transfer

function

PD AP

1þ sTD

1þ sT
: ð8:7Þ

This element is also called a phase-lead or phase-lag element, as in the case of

TD[ T it realizes an approximate differentiating (PD), whereas if TD\T , it pro-

vides an approximate PI effect.

In many practical cases the parameterization of the approximate PID regulator

can be given in the following form:

C
_

PID ¼ AP

1þ sTIð Þ 1þ sTDð Þ
sTI 1þ sTð Þ : ð8:8Þ

The advantage of this form is that it locates the breakpoint frequencies exactly at

1=TI, 1=TD and 1=T , which belong to the given integrating, differentiating time

constants and to the time constant of the lag element. The location of the poles and

the zeros is seen in Fig. 8.8.

Now the poles of the regulator are at the origin ðp1 ¼ 0Þ and at p2 ¼ �1=T and

the zeros are at �1=TI and �1=TD.
The PID regulator can also be considered as a general second order regulator,

which has sufficient degrees of freedom to provide an appropriate solution for many

simple control applications.

Fig. 8.8 Location of the

poles and zeros of the

approximate PID regulator

according to (8.8)
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8.1.1 Tuning of P Regulators

The P regulator ðCP sð Þ ¼ APÞ generally results in a 0-type control system (except if

the process itself contains an integrating effect). The 0-type control system has a

finite steady error with a value of 1= 1þKð Þ; and the gain of the closed-loop

transfer function is K= 1þKð Þ; where K ¼ APP 0ð Þ is the gain of the open-loop (and
not of the regulator!). It is also called the loop-gain and P 0ð Þ is the gain of the

process. In this case, when realizing the regulator, a static compensation factor (a

calibration factor) with a value of 1þKð Þ=K is applied to ensure accurate reference

signal tracking. The proportional regulator means the multiplication of the transfer

function of the process by a constant factor, which influences only the amplitude of

the frequency function, and has no effect on the phase characteristic: CP jxð Þj j ¼ AP;

u xð Þ ¼ arg CP jxð Þf g ¼ 0:
By changing the value of the constant AP the loop gain and thus the cut-off

frequency can be set. The BODE amplitude diagram can be shifted parallel, thus the

cut-off frequency can be changed to ensure the appropriate phase margin for the

control system.

The control system can be stabilized by a P regulator, the overshoot of the unit

step response can be kept within the permissible limit by setting the appropriate

phase margin. As the cut-off frequency can not be increased significantly, the

control system will work slowly. If the process does not contain integrating ele-

ments, the control system is of 0-type, which can track only the unit step reference

signal. The control system works with a constant steady state error.

In industrial regulators, instead of the AP gain of the proportional regulator, the

so-called proportional band (PB) is set, which is defined as PB ¼ 1=AP½ �100%. The

proportional band is that range of the input signal in which the output signal runs

through its entire range.

In the P regulator only one parameter, the AP gain, can be set. This means that

the prescribed static error and the prescribed phase margin can not always be

ensured at the same time. These two prescriptions can be fulfilled together only in

fortunate cases. In the usual design procedure first the maximal loop gain Kmax utoð Þ
is determined belonging to the prescribed phase margin uto. The maximal reachable

loop gain gives the minimal reachable static error

emin ¼ min e sð Þjs¼0

� �

¼ 1= 1þKmax utoð Þ½ �: ð8:9Þ

If the task is given in a reverse way, that is, if Kmin has to be calculated from the

maximal allowed error, then

Kmin ¼ 1=emaxð Þ � 1; emax\1: ð8:10Þ

If the condition Kmin\Kmax is fulfilled, then the twofold criterion has a solution,

otherwise it does not. P compensation shifts the BODE amplitude-frequency diagram

of the process parallel to the horizontal axis with the value of the regulator gain

AP ¼ K=P 0ð Þ: The value of the shift initially is determined by Kmax or Kmin.
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8.1.2 Tuning of I Regulators

The aim of applying an I regulator is to ensure a 1-type control system which

provides zero steady state error in the case of a step reference signal. The design of

the I regulator given by the transfer function

CI ¼
1

sTI
¼ KI

s
ð8:11Þ

is relatively simple, as it has only one parameter. Thus the maximal loop gain

Kmax utoð Þ which provides the prescribed phase margin uto can be determined easily

with the usual design methods, then KI ¼ Kmax=P 0ð Þ:

8.1.3 Tuning of PI Regulators

In the case of P regulators one could see that the allowable maximal loop gain

Kmax utoð Þ, whose value depends on the performance criterion generally is not high

enough to ensure a small enough steady state error. To eliminate this problem PI

regulators can be used, which ensure at least 1-type number for the control system,

thus the steady state error will be zero in the case of a step-like reference or

disturbance signal. The transfer function of the regulator is

CPI sð Þ ¼ AP 1þ 1

sTI

� �

¼ KI

1þ sTI

s
: ð8:12Þ

With the choice TI ¼ max Tif g ¼ T1, the largest time constant of the process can

be cancelled. Then the maximal loop gain Kmax utoð Þ that provides the prescribed

phase margin uto can be determined by the usual design methods, and then the

integral gain of the regulator is calculated by KI ¼ AP=TI ¼ Kmax=P 0ð Þ: The

amplitude-frequency diagram of the open-loop L jxð Þ starts with a slope of −20 dB/

decade at low frequencies, as the PI regulator reallocates the smallest breakpoint

frequency ð1=T1Þ belonging to the largest time constant of the process to the origin.

Furthermore it shifts the amplitude-frequency diagram of the process parallel to the

horizontal axis by KI.

Based on the parallel form of the transfer function, the unit step response of the

regulator can be drawn easily, whereas the product form provides the possibility of

easily sketching the asymptotic BODE amplitude diagram. Figure 8.9 gives the unit

step response and the BODE diagram of the PI regulator, the latter is plotted for

AP ¼ 1: If the gain is different, the BODE amplitude diagram is shifted parallel.

PI regulators ensure a high gain in the low frequency domain. The integrating

effect increases the type number of the control system by 1. In case of a propor-

tional process, the static error will be zero for a step-like reference signal. By

appropriately placing the cut-off frequency, a stable control system can be obtained

with the required phase margin. As the cut-off frequency can not be put into the

high frequency domain, the control system will be slow.
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An approximate realization of the PI regulator is the phase-lag element described

by the transfer function

~CPI sð Þ ¼ AP

1þ sTI

1þ sT
¼ CPL sð Þ; ð8:13Þ

where T[ TI. Now by the choice TI ¼ max Tif g ¼ T1 the smallest breakpoint

frequency ð1=T1Þ is shifted left to the point 1=T : The amplitude-frequency diagram

of the loop transfer function L jxð Þ starts now with 0 slope, thus the control system

remains of 0 type. By applying ~CPI the straight line section of slope −20 dB/decade

becomes longer, thus a higher allowable Kmax utoð Þ gain can be ensured than with a

simple P regulator. A single approximate PI regulator can reallocate a single

breakpoint to a lower frequency.

Figure 8.10 gives the unit step response and the BODE diagram of the phase-lag

element. It can be seen that this element approximates the characteristics of the PI

element for small time instants in the time domain and in the high frequency range

Fig. 8.9 The unit step response and the approximating BODE diagram of the PI regulator

Fig. 8.10 Unit step response and the approximate BODE diagram of the phase-lag element
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in the frequency domain. For sinusoidal inputs the output signal is phase-delayed

related to the input signal. As this regulator does not contain an integrating effect, it

does not ensure zero steady state error.

8.1.4 Tuning of PD Regulators

The ideal PD regulator given by the transfer function CPD sð Þ ¼ 1þ sTD can not be

realized, therefore only the approximate realizable phase-lead form

~CPD sð Þ ¼ AP

1þ sTD

1þ sT
¼ AP 1þ ss

1þ sT

� �

; TD ¼ T þ s ð8:14Þ

has practical applications, which formally is the same as ~CPI. The difference is that

here TD[ T; and the time constant of the differentiating channel is s. With the

choice TD ¼ T2, where T2 is the second largest time constant of the process, the ~CPD

regulator lengthens the higher frequency part of the straight line of slope −20 dB/

decade by shifting the breakpoint frequency 1=T2 to the right to point 1=T : This
improves the phase conditions, to reach a given phase margin the value of xc can be

increased, which results in a faster settling process. There is a limit for the choice of the

time constant T, as in the unit step response of the regulator at t ¼ 0 there is a jump of

value APTD=T ; which decreases asymptotically, its final value is AP. So the value of

the overexcitation is g ¼ TD=T ; which is the same as the pole placement ratio. Not

every actuator can execute this jump. The big mechanical actuators can tolerate

2-3-fold, whereas the more advanced electronic devices can bear at most a 10-fold

jump. Therefore during regulator design an average 3-5-fold jump is allowed, then

in practice it is tested whether the regulator is saturated (that is reaches the limit of

its signal range). In some cases the choice of TD ¼ T3 (where T3 is the third largest

time constant) is also possible, but the effect of this has smaller significance.

Figure 8.11 gives the unit step response and the BODE diagram of the PD reg-

ulator. The latter is drawn for AP ¼ 1: If the gain is different, the BODE amplitude

diagram is shifted parallel. This element is also called a phase-lead element, as its

phase angle is positive, that is in case of a sinusoidal input signal the output signal

is accelerated in phase relative to the input signal.

The accelerating effect of the control system can be understood the most easily in

case of a PD regulator. The inertial behavior of the processes can be overtaken only

by conveying extra accelerating energy. This is ensured by the overexcitation (see

Sect. 2.4).

The PD regulator is used if the system has to be accelerated. This acceleration is

reached if the straight line section of slope +20 dB/decade of the PD regulator is

placed in the frequency range where the slope of the BODE diagram of the process is

−40 dB/decade. Thus the straight line section of the loop transfer function with

slope −20 dB/decade is lengthened, and the cut-off frequency can be placed at a

higher frequency. The higher the value of the parameter g; the bigger the

acceleration.
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Thus the PD regulator places one single breakpoint (generally the second one) of

the BODE diagram at a higher frequency, but at the same time an overexcitation is

produced which is equal to the ratio of the new and the old breakpoint. The

amplitude-frequency diagram of the process is shifted parallel to the horizontal axis

by AP.

With the PD regulator the system can be stabilized. The system can be accel-

erated. Setting an appropriate phase margin the prescribed dynamic behavior can be

reached. But as the regulator is of proportional type, with proportional processes the

control system will have a static error for unit step reference signal.

The acceleration effect can be explained by the fact that at the beginning the

error signal—exciting the PD regulator—produces a high signal at the regulator

output, and the process temporarily starts to track this higher signal with its time

constant. Thus the output signal starts with a big slope. In the control system then

the error signal decreases, and the output signal settles at its steady value.

8.1.5 Tuning of PID Regulators

The simplest PID regulator parameterization is given by (8.8), that is

~CPID ¼ AP

1þ sTIð Þ 1þ sTDð Þ
sTI 1þ sTð Þ : ð8:15Þ

This regulator is the combination of the previous two (PI and PD) regulators,

resulting in their series connection. Thus the design procedure shown previously

has to be repeated here. The integrating time is set by the choice

TI ¼ max Tif g ¼ T1, whereas TD ¼ T2 is chosen for the differentiating time. By this

design the straight line section of slope −20 dB/decade on the BODE diagram of the

loop transfer function is lengthened by the maximal possible extent provided by the

Fig. 8.11 Unit step response and the approximate BODE diagram of the PD regulator
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structure of the regulator. In the control circuit after determining Kmax utoð Þ; the
maximal integrating gain belonging to the prescribed phase margin uto, the inte-

grating gain factor of the regulator is obtained according to KI ¼ AP=TI ¼
Kmax=P 0ð Þ: Regarding the choice of the time constant T of the approximate dif-

ferentiating effect the considerations discussed in the design of PD regulators are

also valid here, but the overexcitation in control circuits containing integrating

effects is calculated in a different way. As the output of an integrator is changing

until its input reaches the zero value, therefore the steady state of the control system

is reached if the error signal has settled to zero. The initial jump of the PID regulator

in the case of a unit step reference signal is APTD=T : The steady state value of the

process input is 1=P 0ð Þ: The overexcitation now is calculated by g ¼
APP 0ð ÞTD=T ¼ KTD=T : Thus the overexcitation is obtained by the product of the

loop gain and the pole placement ratio.

The form (8.15) of the regulator can be used straightforwardly for the analysis in

the frequency domain. Figure 8.12 gives the unit step response and the BODE

diagram of the PID regulator, the latter is drawn for AP ¼ 1: If the gain is different,

the BODE amplitude diagram is shifted parallel.

PID regulators are used when the static accuracy of the control system has to be

increased and the system also has to be accelerated. With the initial −20 dB/decade

slope of the BODE diagram of the PID regulator, the low frequency range of the

open-loop BODE diagram is modified, thus increasing the type number and the static

accuracy. With the straight line section of slope +20 dB/decade of the BODE dia-

gram of the regulator, the performance in the middle frequency range is modified.

As by ensuring the appropriate phase margin, now the cut-off frequency can be

placed to a higher value, thus a faster behavior of the control system can be reached.

The performance of the PID regulator can be approximated by the so-called

phase-lag-lead element. Its transfer function is

CFKS sð Þ ¼ AP

1þ sT1

1þ sT3

1þ sT2

1þ sT4
; where T3[ T1[ T2[ T4:

Fig. 8.12 Unit step response and the approximate BODE diagram of the PID regulator
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The unit step response and the approximate BODE diagram of the phase-lag-lead

element is given in Fig. 8.13. As this element does not contain an integrating effect,

it will not ensure a zero steady state error in the control system.

The regulator is designed for the process (or for its model) to fulfill the quality

specifications. First a decision has to be made about the regulator structure con-

sidering the given process and the prescriptions. Then the parameters of the reg-

ulator are chosen. For example in a PID regulator there are four free parameters,

AP; TI; TD and T: Regulator design means the choice of the parameters. The design

can be executed in the time or in the frequency domain. Several procedures and

methods have been elaborated to execute the design. The diversity of the design

methods comes also from the fact that in the individual applications the design

specifications may differ significantly. In many cases the prescriptions create con-

tradictory requirements. In the general case, this corresponds to an optimization

problem, when a proper compromise is formed to satisfy the contradictory

requirements. In practice often some iteration procedure (intelligent guessing) is

applied instead of executing the optimization (Table 8.1).

The presented P, PI, PD and PID regulators are also called compensators.

Let us summarize the practical rules for the design of the PID-like regulators

using pole cancellation.

Fig. 8.13 Unit step response and the approximating BODE diagram of the phase-lag-lead element

Table 8.1 Summarizing the regulator design

Regulator TI TD A KI

P AP ¼ K=P 0ð Þ
I KI ¼ Kmax=P 0ð Þ
PI T1 KPI ¼ Kmax=P 0ð Þ
PD T2 KPD ¼ Kmax=P 0ð Þ
PID T1 T2 KPID ¼ Kmax=P 0ð Þ

8.1 The PID Regulator Family and Design Methods 289



The P regulator can be used if there are no high requirements for the static

accuracy of the control system, and the control system can be slow. If the process

contains an integrating effect, then the static accuracy will be appropriate also with

the proportional regulator.

PI regulators are used if accurate tracking is required in steady state for a unit

step reference signal. The integrating effect will ensure an accurate settling. With PI

regulators, the control system will be slow.

PD regulators accelerate the control system. This effect is reached by the

overexcitation provided by the regulator.

PID regulators are used if both the static accuracy and the speed of the control

system have to be increased.

In the case of a proportional process, the parameters of the regulator applying

pole cancellation technique are chosen as follows: the parameter TI, the integrating

time constant is chosen equal to the largest time constant of the process (this is the

pole belonging to the smallest breakpoint frequency), and the parameter TD is taken

equal to the second largest time constant. Thus the zeros of the regulator cancel the

poles of the process. The parameter T which appears in the denominator of the

realizable differentiating element is given in by T ¼ TD=g; where g is the pole

placement ratio, which specifies the frequency shift of the compensated pole

realized by the PD element. If it is chosen to be a higher value, the control system

will be faster at the price of a higher maximum value of the control signal. As AP

does not influence the phase-frequency course of the open-loop, it is used to set the

prescribed phase margin.

If the process is not proportional, the type of the regulator can be decided on the

basis of the approximate BODE diagram to fulfill the quality specifications. Pole

cancellation can be applied expediently also in this case.

8.1.6 Influence of the Dead-Time

The effect of the dead-time can be considered relatively simply in the case of series

compensation, as

HH sð Þ ¼ e�sTd ) HH jxð Þ ¼ e�jxTd ¼ e�jud ð8:16Þ

This means that L jxð Þ; the frequency characteristic of the loop transfer function,

is modified by an element of unit amplitude and of phase angle ud ¼ �xTd, thus

only the phase characteristic is changed. This can be taken into account by pre-

scribing the required phase margin to be ud
to ¼ uto þxTd instead of the original uto.

As the transfer function of the dead-time is a non-rational function, computer

programs which are not prepared for handling such functions (e.g., MATLAB®)

can not easily take its effect into account. In this case the transfer function of the

dead-time can be approximated by a rational fraction.

Rational fractional approximations of the dead-time were discussed in Sect. 2.5.
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8.1.7 Realization of PID Regulators

Analog regulators can be realized based on different physical conceptions (elec-

tronic, pneumatic, hydraulic, etc.). The electronic realization is built by a feedback

operational amplifier (Fig. 8.14). The operational amplifier has a very high voltage

amplification (105–107), its input resistance is also high. The relationship between

its output and input is: C sð Þ ¼ �Zv sð Þ=Zb sð Þ; where Zv sð Þ is the feedback impe-

dance and Zb sð Þ is the input impedance. Figure 8.15 shows a realization of a pure

integrator, and of a PI circuit.

Different versions of the circuits can be given. For example an aspect can be the

realization of a circuit where changing the value of one element (generally a

resistance) sets only one regulator parameter, and has no effect on the others.

Approximate phase-lag, phase-lead and phase-lag-lead regulators can be built

from passive elements, the circuit does not contain operational amplifier.

Figure 8.16 shows the circuits of these regulators with resistors and capacitors.

A compact regulator is produced by firms that manufacture automatic elements.

In this regulator, the structure (P, PI, PD or PID) can be set by a switch, and the

parameters generally can be tuned by setting potentiometers.

Fig. 8.14 Realization of a regulator with an operational amplifier

Fig. 8.15 Realization of an I and a PI regulator
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The regulators realize a bumpless transfer when switching from manual mode to

automatic mode, and in the case of saturation, also handle integrator

windup. Figure 8.17 gives a block diagram of a PID regulator, also showing the

manual-automatic switch-over. The reference signal can be switched over between

two signal generators. The system can be switched over between manual and

automatic modes of operation. In the case of slow processes, when switching over

from automatic operation mode to manual mode, the operator sets the value of the

manipulated variable shown by the measuring instrument with the potentiometer to

create the manual manipulated variable, and then executes the switch-over.

Switching-over from manual mode to automatic mode is more critical, as during

manual operation the signal on the integrating channel of the regulator is likely to

“run away”. Figure 8.18 shows a possible solution for manual-automatic

switch-over in the case of a PI regulator, avoiding windup. During the manual

mode, the capacitor C is charged to the voltage of the manual manipulated signal,

and after the switch-over the integration starts from this initial value. In manual

mode the resistor R ensures the feedback of the operational amplifier, thus it will

not be saturated. Handling of saturation will be discussed in Sect. 8.4.

Nowadays, instead of analog techniques, it is more and more the programmable

logic controllers (PLC-s) or process control computers that realize the regulator.

The process is connected to the computer via an A/D converter. The PID control

algorithm is realized by a computer program. The regulator output is connected to

the process input through a D/A converter. The program has to handle saturation

(a) (b) (c)

Fig. 8.16 Realization of phase-lag, phase-lead and phase-lag-lead regulator with resistors and

capacitors

Fig. 8.17 Block-scheme of a PID regulator with manual-automatic switch-over
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effects and also ensure bumpless transfer between the manual and the automatic

operation modes. Digital PID regulators will be discussed in detail in Chap. 13.

8.2 Design of Residual Systems

For some typical cases, regulator design can also be executed analytically. In the

design of the usual regulators one can see that in the generally used simplest method,

the breakpoints corresponding to the integrating and differentiating time constants of

the PID regulator are fitted to the breakpoints belonging to the two largest time

constants of the process. Then the only free parameter of the regulator is the gain,

which has to be tuned appropriately. The gain is chosen to ensure a prescribed phase

margin, gain margin, or NYQUIST stability margin. If after cancellation of the two

dominant time constants the order of the so-called residual or reduced system is low,

then the design can be executed easily, several times providing an explicit analytical

result. If the residual system is a higher order, more complicated system, then only

numerical methods (MATLAB®) can be applied. In the sequel, the design of the loop

gain will be executed for some typical residual systems.

8.2.1 Simple Residual System with Dead-Time

and Integrator

As seen previously, a pure dead-time element with negative feedback is at the

borderline case of stability with unit loop gain. The control system can be stabilized

and also its static accuracy can be improved applying an integrator instead of a

proportional regulator. The considered residual system is shown in Fig. 8.19; its

loop transfer function is

Fig. 8.18 PI regulator with

manual-automatic switch-over
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L sð Þ ¼ Ke�sTd

s
¼ e�sTd

sTI
; L jxð Þ ¼ Ke�jxTd

jx
¼ a xð Þeju xð Þ: ð8:17Þ

The amplitude-frequency curve of the open-loop is a straight line of slope

−20 dB/decade, and the loop gain K ¼ 1=TI gives the cut-off frequency of the

open-loop. If ut is the prescribed phase margin, then both the phase condition

�p=2� xTd ¼ �pþut ð8:18Þ

and the absolute value condition

K

x
¼ 1 ð8:19Þ

have to be fulfilled. Solving for the two equations the loop gain yields

K ¼ p=2� ut

Td
¼ p� 2ut

2Td
¼ Kut

: ð8:20Þ

If the gain of the regulator is Ac and the gain of the process is Ap, then the gain of

the regulator is

Ac ¼
Kut

Ap

: ð8:21Þ

The resulting formula (8.20) can be used also for the design of a pure integrating

regulator if the process contains only a pure dead-time. Thus the integrating time

constant of an integrating regulator used for compensation of a pure dead-time

process is designed to be

TI ¼
1

KI

¼ 1

K
¼ 1

Kut

: ð8:22Þ

Relating it to the dead-time the following relationship is obtained:

TI

Td
¼ 1

p
2
� ut

¼ 2

p� 2ut

: ð8:23Þ

Fig. 8.19 Residual system

containing an integrator and

dead-time
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Some typical values: if ut ¼ 30� ¼ p=6; then TI=Td ¼ 3=p � 1; if ut ¼ 60� ¼
p=3; then TI=Td ¼ 6=p � 2: At the borderline of stability ut ¼ 0; and

TI=Td ¼ 2=p � 0:637:
Thus in the case of a minimum phase system which also contains dead-time it is

not sufficient to place the cut-off frequency on the straight line section of the BODE

amplitude diagram of slope −20 dB/decade: to ensure a phase margin of about

ut ¼ 60� it has to be located around one half of the reciprocal of the dead-time.

Let j be the prescribed gain margin (see Sect. 5.6). Now the phase condition is

given by

� p

2
� xTd ¼ �p; ð8:24Þ

whence the intersection frequency of the open-loop NYQUIST diagram with the

negative real axis is expressed as

xa ¼
p

2Td
ð8:25Þ

and the absolute value of the loop frequency function at this point is

a xað Þ ¼ K

x

�

�

�

�

x¼xa

¼ K

xa

¼ 1� j: ð8:26Þ

The loop gain is obtained from the solution of the last two equations:

K ¼ p 1� jð Þ
2Td

: ð8:27Þ

A typical value: if at ¼ 0:5; then TI=Td ¼ 4=p � 1:2: The borderline of stability
ðat ¼ 0Þ again is obtained at TI=Td ¼ 2=p � 0:637:

The tuning relationship of the integrating time constant of an I integrating

regulator used for compensating a pure dead-time process is given by

TI

Td
¼ 2

p 1� jð Þ : ð8:28Þ

The NYQUIST stability margin qm ¼ qmin is defined as the smallest distance of the

loop frequency function L jxð Þ from the point �1þ 0j: Generally it is not easy to

give this distance as an explicit algebraic expression, as it can be derived from the

solution of an extremum seeking problem. Therefore generally its graphical rep-

resentation is employed. In Fig. 8.20 qmin is plotted versus the ratio TI=Td.
As seen in Chap. 5, a control system built of a pure dead-time element with unity

negative feedback is stable only if its loop gain is less than 1. But then the static

error is very high. Therefore the above considerations are frequently used not only

when the pole cancellation regulator design technique is applied, but also in the

8.2 Design of Residual Systems 295



case of a pure I regulator. The BODE amplitude-frequency diagram of the open-loop

for the case of ut ¼ 60� ¼ p=3 is shown in Fig. 8.21. From (8.23) it can be seen,

that when compensating a dead-time system, the cut-off frequency has to be placed

at about on the half of the reciprocal of the dead-time on the long straight line

section of slope −20 dB/decade. At the borderline of stability ut ¼ 0 and then

KI ¼ p=2Td � 1:57=Td.
An aperiodic process can be quite well approximated by a first-order (or

second-order) lag element (see Sect. 8.3). To meet higher quality requirements,

instead of an I regulator, a PI regulator can be used. With the zero of the PI element,

the pole of the process can be cancelled, and instead an integrating effect is

introduced. With this PI compensation the open-loop is given as an integrating

element with dead-time:

L sð Þ ¼ AP

1þ sT1

s

KPe
�sTd

1þ sT1
¼ APKPe

�sTd

s
¼ Ke�sTd

s
: ð8:29Þ

The parameter K; which also gives the cut-off frequency of the open-loop, can be
designed to ensure 60� for the phase margin according to Sect. 6.2:
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Fig. 8.20 NYQUIST stability

margin qmin versus TI=Td

Fig. 8.21 BODE

amplitude-frequency diagram

of a compensated dead-time

system
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K ¼ xc � 1=2Td. The output signal and the control signal of the control system for

a unit step reference signal is shown in Fig. 8.22 in the case of Td ¼ 10 and TI ¼ 2:
The dead-time can not be eliminated from the system; the output signal starts to

change only after the dead-time.

(Note that in the case of a dead-time process with first order lag it makes no

sense to add a PD compensation as well. In case of a dead-time process with two

time lags, adding a PD effect will accelerate the system only if the time constants of

the lag elements are the dominant ones. If the dead-time is intermediate or the

largest time constant, then because of the significant phase shift of the dead-time,

the phase margin can not be increased significantly by the effect of the PD, thus it

makes no sense to apply it. As the increase of the cut-off frequency is limited by the

dead-time, the behavior of a control system containing dead-time will be slow.)

8.2.2 Simple Residual System with Integrator and Time Lag

The residual system is shown in Fig. 8.23. Its loop transfer function is

Fig. 8.22 Output and control signals of a dead-time system compensated by a PI regulator in the

case of a unit step reference signal

Fig. 8.23 Residual system

consisting of an integrator and

a first order lag

8.2 Design of Residual Systems 297



L sð Þ ¼ K

s 1þ sTð Þ ¼
1

sTI 1þ sTð Þ ; L jxð Þ ¼ K

jx 1þ jxTð Þ ¼ a xð Þeju xð Þ: ð8:30Þ

Using (8.30) the overall transfer function of the closed-loop system, that is the

supplementary sensitivity function, is

T sð Þ ¼ K

Kþ sþ Ts2
¼ 1

1þ 1
K
sþ T

K
s2

¼ 1

1þ 2 n s sþ s2s2
; ð8:31Þ

which is a second order oscillating element whose damping factor can be set

accurately by the loop gain. Comparing the coefficients the following relationships

are obtained:

K ¼ 1

4 n2T
;

TI

T
¼ 4 n2: ð8:32Þ

A damping factor, n ¼
ffiffiffi

2
p

=2 ffi 0:707; which provides a “nice” transient

response is obtained by a loop gain of K ¼ 0:5=T: In some applications, an ape-

riodic transient is required. The limiting case of aperiodic response is n� 1; which
corresponds to K� 0:25=T:

Let ut be the prescribed phase margin. Then based on the loop transfer function

the following relationship can be written for the phase condition:

� p

2
� arctg xTð Þ ¼ �pþut; ð8:33Þ

and for the absolute value condition,

K

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þx2T2
p ¼ 1: ð8:34Þ

From the solution of these two equations, the loop gain is obtained as

K ¼ 1

T
tg 90� utð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tg2 90� utð Þ
q

¼ 1

T

sin 90� utð Þ
cos2 90� utð Þ ; ð8:35Þ

where the trigonometric identity

tg xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tg2 xð Þ
q

¼ sin xð Þ
1� sin2 xð Þ

¼ sin xð Þ
cos2 xð Þ ð8:36Þ

was taken into account.

Some typical values: if ut ¼ 45� ¼ p=4; then KT ¼
ffiffiffi

2
p

ffi 1:414; if ut ¼ 60� ¼
p=3; then KT ¼ 2=3 ffi 0:667: Also, the ut corresponding to a given n can be
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calculated. If n ¼
ffiffiffi

2
p

=2 ffi 0:707 is required, then the corresponding phase margin

is obtained as ut ¼ 65:53�.
As the NYQUIST diagram of this residual system does not step across the third

quadrant of the complex plane, therefore now the gain margin can not be designed

ðjt 	 1:0Þ: This system is structurally stable.

Here qmin, the NYQUIST stability margin, can be obtained only graphically. Its

graph versus TI=T is seen in Fig. 8.24.

A residual system containing an integrator and a first order lag is obtained for

instance if a proportional second order lag element is compensated by a PI regulator

using the pole cancellation technique. The loop transfer function is

L sð Þ ¼ AP

1þ sT1

s

KP

1þ sT1ð Þ 1þ sT2ð Þ ¼
APKP

s 1þ sT2ð Þ ¼
K

s 1þ sTð Þ ¼
1

sTI 1þ sTð Þ ;

ð8:37Þ

which is of form (8.30), and the design formulae above can be applied. In the case

of a prescribed damping factor n, the gain of the regulator can be calculated. If

n ¼ 1; then K ¼ 1=4T2, and the system has two coinciding real poles. The unit step

response of the closed-loop just will not have any overshoot. If n ¼
ffiffiffi

2
p

=2 � 0:7;
then K ¼ 1=2T2, and the phase margin of the system will be ut ¼ 65:53�. The
overshoot of the unit step response of the closed-loop system will be about 5%. As

K ¼ APKP is the gain of the whole circuit, the gain of the regulator is obtained by

AP ¼ K=KP ¼ 1=2KPT2.
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Fig. 8.24 qmin, the NYQUIST

stability margin versus TI=T
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8.3 Empirical Regulator Tuning Methods

Besides the model-based regulator design methods, which provide an outline of the

foreseeable properties of the closed-loop control system, several experimental PID

regulator tuning methods have been suggested in industrial process control, mainly

for stable processes. These methods are often used during the installation of the

regulator. The recommendations, the “recipes” for regulator parameter tuning, are

based on some preliminary measurements executed on the process, or on simula-

tions and practical observations.

Note that these methods are appropriate for fast regulator tuning when putting

the control system in operation, but model based design methods provide a better

basis for and overview of the behavior of the control system, or for modifying the

tuning in case of changes. Usually, experimental methods are considered as the

initial settings before introducing theoretically elaborated more extensive methods.

8.3.1 Methods of ZIEGLER and NICHOLS

Frequency response method

It is supposed that the technology of the process allows operating the closed-loop

control system for a short time on the borderline of stability applying only a

proportional regulator. During this experiment the integrating and the differentiating

channels of the regulator are switched off (TI ¼ 1 and TD ¼ 0Þ, then by cautiously

increasing AP the borderline of stability is reached, when sinusoidal oscillations

appear. After each change of AP we have to wait for the new steady state to settle

down, which can take a long time. Let AP;cr denote the critical gain and Tcr the time

period of the constant sinusoidal oscillations. ZIEGLER and NICHOLS suggested the

following Table 8.2 regulator tuning rules of thumb.

These tuning rules correspond to a damping factor of about n ¼ 0:25 (which

corresponds to a quite high overshoot of about 40%, thus in practice they can be

used only for compensating slowly changing disturbances).

Tuning method based on the unit step response

The unit step response of several industrial processes shows an aperiodic charac-

teristic with dead-time (Fig. 8.25). The straight line fitted to the inflection point of

Table 8.2 Regulator tuning according to ZIEGLER-NICHOLS (I)

Regulator TI TD AP

P 0:5AP;cr

PI 0:85Tcr 0:45AP;cr

PID 0:5Tcr 0:125Tcr 0:6AP;cr
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the step response determines two quantities indicated in the figure, the so called

latent dead-time ðTLÞ and the latent slope ðML ¼ AL=TFÞ: Based on these quantities

ZIEGLER and NICHOLS suggested tuning rules summarized in the Table 8.3.

From the above tables it can be seen, that the tuning of the three parameters

AP; TI; TDf g in both cases is based on two observed values, then the D-channel is

set as TD ¼ TI=4: Of course this is a source of further design freedom.

8.3.2 Method of OPPELT

Several grapho-analytical methods can be used to fit an approximate first order lag

element with dead-time given by (8.38) to the measured unit step response of the

process.

P̂ sð Þ ¼ AL

1þ sTF
e�sTL ; AL ¼ y1 � yo

u1 � uo
; TL ¼ t1 � to and TF ¼ t2 � t1:

ð8:38Þ

t

v t

TL

AL

TF

ML AL TF

Fig. 8.25 Shape of the

measured unit step response

of the process

Table 8.3 Regulator tuning

according to ZIEGLER-NICHOLS

(II)

Regulator TI TD AP

P 1=TLML

PI 3TL 0:9=TLML

PID 2TL 0:5TL 1:2=TLML

Fig. 8.26 Approximation

of an aperiodic process by

a first order lag with

dead-time
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Let us set manually the nominal operating point, where for an input signal uo the

value of the output signal is yo. At time to let us apply a step input, when the input

signal u jumps from uo to u1. The output signal is seen in Fig. 8.26. (The definition

of the time constant TF in the two figures is different, as OPPELT does not suppose an

inflection point.)

The tuning parameters according to OPPELT were determined for a damping

factor of n ¼ 0:25 considering the parameters of the approximate model given by

(8.38). Therefore similarly to the ZIEGLER-NICHOLS method, in this case also a quite

high overshoot can be expected. The proposed tuning values are summarized in the

Table 8.4.

8.3.3 Method of CHIEN-HRONES-RESWICK

For the tuning of the regulator parameters, CHIEN, HRONES and RESWICK suggested

the values summarized in the Table 8.5.

8.3.4 Method of STREJC

STREJC approximated the process by the model given by the transfer function

Table 8.4 Regulator tuning

according to OPPELT

Regulator APMLTL TI=TL TD=TL

P 1

PD 1.2 0.25

PI 0.8 3

PID 1.2 2 0.42

Table 8.5 Regulator tuning according to CHIEN-HRONES-RESWICK

Regulator Fastest aperiodic transient Fastest oscillating transient with 20% overshoot

P AP ¼ 0:3TF=TL AP ¼ 0:7TF=TL

PI AP ¼ 0:35TF=TL
TI ¼ 1:2TF

AP ¼ 0:6TF=TL
TI ¼ 1:0TF

PID AP ¼ 0:6TF=TL
TI ¼ 1:0TF
TD ¼ 0:5TL

AP ¼ 0:95TF=TL
TI ¼ 1:35TF
TD ¼ 0:47TL

Table 8.6 Regulator tuning

according to STREJC
Regulator AP TI TD

P 1

AL n� 1ð Þ
PI nþ 2

4AL n� 1ð Þ
T nþ 2ð Þ

3

PID 7nþ 16

16AL n� 2ð Þ
T 7nþ 16ð Þ

15

T nþ 1ð Þ nþ 3ð Þ
7nþ 16
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P̂ sð Þ ¼ AL

1þ sTð Þn : ð8:39Þ

On the basis of the parameters of the approximate model, he gave tuning pro-

posals according to the Table 8.6 to set the parameters of the PID regulator family.

8.3.5 Relay Method of ÅSTRÖM

In the case of real industrial processes, it is rather difficult to set the critical loop

gain corresponding to the borderline of stability of the closed-loop control system.

Generally, approaching this range is not permitted because of safety requirements.

If we want to use regulator tuning rules based on the critical loop gain, then it is

expedient to determine its value with a different method. ÅSTRÖM suggested a

method which can well be applied in practice. In a closed-loop system, the PID

regulator has to be replaced by an amplifier realizing a relay characteristic with

hysteresis (see Fig. 8.27).

For the stability analysis of special closed-loop nonlinear systems, the so called

describing function method can be applied. The describing function N jx; að Þ is

obtained by harmonic linearization, when the static nonlinear element is excited by

a sinusoidal signal of amplitude a; and then the complex division of the basic

harmonic of the output signal and the input sinusoidal signal is executed. Generally

N jx; að Þ is a complex function with parameter a: In analyzing the stability, the role

of the point �1þ j0 is replaced by the function �1=N jx; að Þ: The system is at the

borderline of stability at the point xcr; acrð Þ where the NYQUIST diagram of the loop

frequency function L jxð Þ intersects the inverse negative describing function

�1=N jx; að Þ; that is,

L xcrð ÞN xcr; acrð Þ ¼ �1; i:e: � 1=L xcrð Þ ¼ N xcr; acrð Þ: ð8:40Þ

Here, acr is the approximate amplitude of the periodic oscillation in the bor-

derline case of stability. (It is not an entirely accurate value, as the harmonic

linearization considers only the first harmonic.) From the time period Tcr of the

Fig. 8.27 Tuning of a PID

regulator with the relay

method
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periodic signal, a good approximation of the angular frequency belonging to the

critical point can be calculated by xcr ¼ 2 p=Tcr.
Let the deadband of the hysteresis be zero, so the regulator is a two-position

relay. In this case the input of the process is a rectangular signal, and the process

output in steady state is a periodic signal. In the linear case for the critical gain the

characteristic equation is written as

1þ L xcrð Þ ¼ 1þAP;crP xcrð Þ ¼ 0; i:e: AP;cr ¼ �1=P xcrð Þ: ð8:41Þ

From (8.40) and (8.41), a simple relationship can be obtained to estimate the

critical gain:

AP;cr ¼ �1=P xcrð Þ ¼ N xcr; að Þ: ð8:42Þ

If steady oscillations of amplitudes 
 Du and 
Dy are measured at the process

input and at the process output, respectively, then the critical gain is

AP;cr ¼ N að Þ ¼ 4Du

pDy
; ð8:43Þ

where now N að Þ; the describing function of the relay, depends only on the

amplitude. The most important advantage of this method is that the oscillation of

the process output can be gradually set to a still allowed value, namely to Du ¼ h;
which is one half the height of the relay characteristic, and Dy ¼ a: If an integrator

is serially connected to the relay, then the loop gain belonging to the phase angle of

�270� can be determined with this method.

Based on the describing function belonging to the hysteresis characteristic

�1=N að Þ ¼ � p

4h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � g2
p

� j
pg

4h
¼ � p

4Du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dy2 � g2
p

� j
pg

4Du
; ð8:44Þ

which is a straight line parallel to the negative real axis. Here g is the half-width of

the hysteresis. Hence it can be easily checked that again the relationship

AP;cr ¼ N að Þj j ¼ 4Du

pDy
ð8:45Þ

is obtained. Nowadays, in advanced electronic compact regulators, tuning with the

relay method is already a built in possibility. (By changing the values h and g of the

relay characteristic, further points of the NYQUIST diagram also could be analyzed.)
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8.3.6 Method of ÅSTRÖM-HÄGGLUND

This method also uses the simple approximation of the process according to (8.38)

as a starting point, but as a design parameter it also uses the maximum value Mmax

of the complementary sensitivity function. The corresponding M curve character-

izes the distance measured from the point �1þ 0j; thus to some extent the

robustness of the regulator could be considered as well. The expression of the PID

regulator used in this method is given by

u tð Þ ¼ AP br tð Þ � y tð Þþ 1

TI

Z

t

0

e sð Þdsþ TD
de tð Þ
dt

2

4

3

5 ð8:46Þ

where in forming the error signal the reference signal r tð Þ and the output signal y tð Þ
are taken into account with different weights. (b is the weighting factor of the

reference signal.) On the basis of the approximate form (8.38), introduce the fol-

lowing relative parameters:

a ¼ AL

TL

TF
and c ¼ TL

TL þ TF
: ð8:47Þ

ÅSTRÖM and HÄGGLUND suggested setting the regulator parameters according to

the following function:

f cð Þ ¼ aoexp a1cþ a2c
2

� �

: ð8:48Þ

Table 8.7 Tuning of the parameters of the PI regulator

Mmax ¼ 1:4 Mmax ¼ 2

f cð Þ ao a1 a2 ao a1 a2

aAP 0.29 −2.7 3.7 0.78 −4.1 5.7

TI=TL 8.9 −6.6 3.0 8.9 −6.6 3.0

TI=TF 0.79 −1.4 2.4 0.79 −1.4 2.4

b 0.81 0.73 1.9 0.44 0.78 −0.45

Table 8.8 Tuning of the parameters of the PID regulator

Mmax ¼ 1:4 Mmax ¼ 2

f cð Þ ao a1 a2 ao a1 a2

aAP 3.8 −8.4 7.3 8.4 −9.6 9.8

TI=TL 5.2 −2.5 −1.4 3.2 −1.5 0.93

TI=TF 0.46 2.8 −2.1 0.28 3.8 −1.6

TD=TL 0.89 −0.37 −4.1 0.86 −1.9 −0.44

TD=TF 0.077 5.0 −4.8 0.076 3.4 −1.1

b 0.4 0.18 2.8 0.22 0.65 −0.051
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The Tables 8.7 and 8.8 give the coefficients ao, a1 and a2 of (8.48) which

determine the parameters of the PI and PID regulators, based on experimental

considerations.

Similar tables have been elaborated for integrating processes.

8.4 Handling Amplitude Constraints: “Anti-Reset

Windup”

Regulator design should take into account the limitations set for the control signal

u tð Þ: These limitations may originate from several sources. The limitation may be

the property of the actuator structure. Often the actuator is not able to provide an

output value higher than a given maximum. For example, a valve in its fully open

position provides a maximum flow rate. If it gets a command to transfer a higher

value than its maximum, it is not able to execute it, it will be “saturated”. The role

of a deliberately applied saturation at the process input is to prevent the process

from a harmful level of overexcitation which would cause failure in the process.

Whether the restriction occurs because of the properties of the process, or is

artificially introduced into the control loop, its effects have to be taken into account.

It is expedient to consider the restrictions already in the phase of regulator design,

and to design a regulator whose output signal will not reach the limit value. If this is

not possible, then the additional phenomena appearing when the restriction occurs

have to be handled.

Thus the linear range of the regulator or of the actuator operated by the regulator

is finite. The relation of this amplitude limitation with the design goals has already

been discussed in Sect. 7.4. During saturation, the closed-loop control system

behaves similarly to the open-loop, as the output of the saturation is constant and

thus the input of the process is also constant. The process output is settled according

to its dynamics. But in the case of regulators which contain an integrating element,

another problem may also occur: if the value of the error signal is high, the reg-

ulator output may reach the horizontal section of the saturation characteristic. If the

integrator works further on, then the input of the saturation characteristic contin-

uous to increase, and a long time has to pass till the sign of the error signal changes

and the input signal gets back to the linear section of the characteristic, if this

Fig. 8.28 Regulator and

actuator with saturation
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happens at all. Therefore the time of the transients will be increased unacceptably,

and also steady oscillations may occur which are harmful to the process.

The problem can be solved by the technique of Anti Reset Windup (ARW) or

“antiwindup”, for short. The main point of this technique is that it uses the model of

the static saturation characteristic and with an appropriate feedback it guides the

operating point to the crossing point of the linear and the saturated section. The

usual saturation characteristic can be described by

u tð Þ ¼
Umax; if uc tð Þ[Umax

u tð Þ; if uc tð Þj j\Umax

�Umax; if uc tð Þ\� Umax

8

<

:

; ð8:49Þ

which is a more detailed form of (7.39). A closed-loop control system with the

saturation is shown in Fig. 8.28.

The ARW effect can be reached by the simple feedback illustrated in Fig. 8.29.

The extra inner feedback works until the process input is on the horizontal satu-

ration section of the characteristic. This ensures that the regulator output is set to

u tð Þ ¼ uc tð Þ; belonging to the breakpoint of the characteristic.

In a continuous system this solution can be realized if the signal uc tð Þ is

available. If the regulator output and the manipulated variable are distinct, then both

uc tð Þ and u tð Þ are measurable, and the feedback can be easily realized through the

constant element c. If this is not the case, then a model of the saturated process has

to be built. (The realization of such algorithms is much easier in the case of sampled

data systems, see Chap. 13.) It has to be ensured an appropriate choice of c, that the

inner feedback acts faster than the dynamics of the process itself.

Another possibility is also available: to reset the integrator component of the

regulator when observing saturation. The disadvantage of resetting of the integrator

in the case of saturation is that when the regulator comes out of the saturation, there

is a mismatch between the state variables of the regulator and those of the process,

which results in a deterioration of the control behavior. This can be compensated by

a regulator structure where the input of the regulator and the input of the process are

similarly restricted, that is, the regulator is put into the feedback path of the satu-

ration. A typical example of this solution is the FOXBORO regulator (Fig. 8.30),

which corresponds to a saturated PI regulator.

Now, if there is no saturation, then the overall transfer function of a proportional

element fed back through a first order lag element with positive feedback results in

the transfer function of a PI regulator:

Fig. 8.29 Control system

with an extended regulator

ensuring the ARW effect
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C sð Þ ¼ AP

1

1� 1
1þ sTI

¼ AP

1þ sTI

sTI
: ð8:50Þ

In this structure, windup does not occur.

Most solutions set the integrator output to a given value after leaving the satu-

ration. Several methods have been elaborated (some of them are rather complex) to

calculate and set the “reset” value. There is no single procedure which ensures in all

cases the appropriate behavior, but the above simple procedures in most cases

provide satisfactory operation. Several other methods are known for taking the

effect of saturation into account, but these are not discussed here.

8.5 Control of Special Plants

In the sequel, two examples will be shown of the regulator design of special plants,

namely for a process containing two integrators, and for compensation of unstable

processes. It will also be presented how in some cases the design can be executed

analytically, approximating the plant by its dominant pole pair model.

8.5.1 Control of a Double Integrator

Let the transfer function of the process be P sð Þ ¼ K=s2. The process contains two

integrators, in a closed-loop control system with feedback unity and with a

Fig. 8.31 NYQUIST diagram

of a control system containing

two integrators

Fig. 8.30 The FOXBORO

regulator
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proportional regulator working at the borderline of stability. The characteristic

equation is 1þK=s2 ¼ 0; or s2 þK ¼ 0: Its roots s1;2 ¼ 
j
ffiffiffiffi

K
p

are located on the

imaginary axis. Instead of a good control system this system rather realizes a good

oscillator. The NYQUIST diagram of the open-loop is shown in Fig. 8.31. The

NYQUIST diagram crosses the point −1, thus the system is at the borderline of

stability. The BODE diagram is given in Fig. 8.32.

The quality specifications set for the control system are as follows: stability; the

phase margin should be about 60� to ensure an appropriate dynamic response; and

for step and ramp reference signals, the tracking error in steady state should be zero

(that is, the type number of the control system after the compensation has to remain

2).

These requirements can be fulfilled applying a compensation element which is

able to improve the phase conditions. The phase angle of the loop frequency

function with the regulator is expressed as

uL xð Þ ¼ uC xð ÞþuP xð Þ ¼ ut xð Þ � 180�. The regulator has to provide a positive

phase margin by ut xð Þ ¼ 180� þuL xcð Þ ¼ uC xcð Þ; because uP xð Þ ¼ �180�.
A phase-lead (approximate PD) regulator described by the transfer function

C sð Þ ¼ A
1þ ss

1þ sT
; s[ T

guarantees the addition of a positive phase angle (see also Sect. 2.4), as uC xð Þ ¼
arc tan xsð Þ � arc tan xTð Þ[ 0; if s[ T: The higher the ratio s=T ; the higher the

values that uC xð Þ can take. The phase lead element is also called an approximate

PD element, as from the form

Fig. 8.32 BODE diagram of a

control system containing two

integrators
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Fig. 8.33 BODE diagram of a

system with two integrators

compensated by a PD

regulator

Fig. 8.34 NYQUIST dia-

gram of a system with

two integrators compen-

sated by a PD regulator

C sð Þ ¼ A
1þ ss

1þ sT
¼ A

1þ sT þ ss� sT

1þ sT
¼ A 1þ s s� Tð Þ

1þ sT

� �

it can be seen, that C sð Þ can be obtained as the parallel connection of a proportional

and an approximate (that is realizable) differentiating channel. The transfer function

of the regulator is often given in the form

~CPD sð Þ ¼ ~APD

1þ sTD

1þ sT
; TD[ T; ð8:51Þ

where the notation s ¼ TD is introduced for the differentiating time constant, see

also (8.14). Instead of the correct denomination “approximate PD”, often the
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slightly simpler denomination “PD” is used. Nevertheless this sloppiness is rea-

sonable, since an accurate PD regulator without the pole is non-realizable (its high

frequency gain would be infinity).

Figure 8.33 shows that with the PD regulator a straight line section of −20 dB/

decade slope can be formed on the BODE amplitude-frequency curve. The cut-off

frequency is placed on this section. Thus the system will have a positive phase

margin; its performance will be fast, as xc is shifted toward the higher frequency

domain. The gain of the regulator may be chosen to maximize the phase margin.

The reachable maximum phase margin depends on the ratio TD=T : This ratio also

influences the maximum value of the control signal appearing at the input of the

process at the time instant when the unit step reference signal is switched on. The

maximum value of the control signal is umax ¼ APTD=T :
As seen from the BODE diagram, the control system is structurally stable: the

phase margin is positive for any value of the loop gain.

The NYQUIST diagram of the compensated system is shown in Fig. 8.34. (Note

that in the case of processes containing integrators, when there are poles at the

origin of the complex plane, it is not necessary to apply the generalized NYQUIST

criterion to evaluate the stability from the properties of the conformal mapping of

the closed curve shown in Fig. 5.18 surrounding the origin by a circle of

infinitesimal radius according to the loop frequency function. It is sufficient to plot

the NYQUIST diagram only for the positive frequencies and to check whether when

going through the curve from x ¼ 0 to x ¼ 1, the point �1þ 0j is to the left of

the curve or not. If it is to the left, then the control system is stable, and the phase

margin or the gain margin can be used to measure the distance from the borderline

of stability.)

Fig. 8.35 Root locus of a

system with two integrators

compensated by a PD

regulator
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Figure 8.35 gives the root locus of the system. The points of the root locus,

which are the roots of the characteristic equation, lie in the left half of the complex

plane for all gain values, indicating that the control system is structurally stable.

8.5.2 Control of an Unstable Plant

In state space, the state variables are attached to the poles of the transfer functions

of the process and the regulator. These state variables together form the state

variables of the open-loop. When an undesired pole of the process is cancelled by a

zero of the regulator, actually the corresponding state variable becomes inaccessible

from the output or from the input side, namely the system becomes unobservable or

uncontrollable (Sect. 3.4). But in spite of the fact that these variables do not appear

in the overall transfer function of the loop, they remain parts of the system. To

ensure the stability of the control system, not only do the poles of the transfer

function have to be at left half side of the complex plane, but so do the unob-

servable and the uncontrollable poles.

Unstable poles of an unstable process must not be cancelled by the zeros of the

regulator. This prohibition can be justified also by the fact that as seen in Chap. 4,

the behavior of a closed-loop control system is characterized not only by the overall

transfer function between the output and the reference signal, but also by the overall

transfer functions between the output signal and the input and the output distur-

bances, and the overall transfer function between the control and the reference

signal. The unstable pole does appear in the transfer function between the output

signal and the input disturbance, thus in spite of the compensation the instability of

the control system is maintained.

A further consideration is that in real systems, the values of the parameters are

not accurate: generally they are obtained by measurements and lie within a range of

their possible values. Therefore, an accurate cancellation of an unstable pole is not

possible, and the instability is maintained in the control system. This phenomenon

can be illustrated by the root locus. Let us consider as an example the control

system in Fig. 8.36b. The loop transfer function is given by a proportional system

with two lags, where one pole is unstable. From the root locus (Fig. 8.36a) it can be

(a) (b) (c)

Fig. 8.36 With imperfect zero-pole cancellation the root locus has a branch on the right half of the

complex plane
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seen that the closed-loop control system is unstable for all values of the gain. If the

unstable pole could be accurately cancelled by the zero of the regulator, the control

system would become structurally stable and the root locus would have a single

branch on the left half of the complex plane. But as practically perfect cancellation

can not be realized, there will remain a branch of the root locus on the right half of

the complex plane, and thus the closed-loop control system remains unstable

(Fig. 8.36c). (Note that in compensation, a zero by itself can not be realized, it

always appears together with a pole.)

When compensating unstable processes, the generalized NYQUIST stability cri-

terion has to be considered to ensure the stable behavior of the closed-loop control

system. PID-like regulators can be used as compensating elements in such cases as

well.

Example 8.1 Let us analyze whether the processes given by the transfer function

P1 sð Þ ¼ 1

sþ 1ð Þ s� 5ð Þ ¼ � 0:2

1þ sð Þ 1� 0:2sð Þ ð8:52Þ

and

P2 sð Þ ¼ 1

s� 1ð Þ sþ 5ð Þ ¼ � 0:2

1� sð Þ 1þ 0:2sð Þ ð8:53Þ

can be stabilized by the proportional regulator C sð Þ ¼ AP or not.

As there is an unstable pole in the open-loop, stable behavior can be ensured if

the NYQUIST diagram encircles the point �1þ j0 once anticlockwise.

For the first process, the NYQUIST diagram of the open-loop is shown in

Fig. 8.37a. As seen, the diagram can encircle the point �1þ 0j only clockwise, thus

this process can not be stabilized by a proportional regulator. This property is

demonstrated also with the root locus, which contains a pole in the right half-plane

at any gain value. (Here, the stabilization of the system can be tried with a PD-like

compensation, such as C sð Þ ¼ AP 1þ 0:2sð Þ= 1þ 0:02sð Þ:)
The second process can be stabilized by a proportional regulator, as the direction

of encircling by the NYQUIST diagram is counterclockwise, thus choosing an

(a) (b)

Nyquist diagram Root locus

Fig. 8.37 Control of an unstable process with a proportional regulator: the system can not be

stabilized!
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(a) (b) (c)

Fig. 8.39 BODE and NYQUIST diagram, and the root locus of the unstable process compensated by

a PI regulator

Fig. 8.40 Unit step response

of an unstable process

compensated by a PI regulator

(a) (b)

Nyquist diagram Root locus

Fig. 8.38 Control of an unstable process with a proportional regulator: the system can be

stabilized
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appropriate gain ðK[ 5Þ the NYQUIST diagram will encircle the point �1þ 0j once

(Fig. 8.38a). This is also demonstrated by the root locus shown in Fig. 8.38b. By

increasing the gain, the root locus will get into the left half of the complex plane.

The type-number of the control system is zero, thus it has a static error. The

static accuracy can be improved by a PI regulator which does not cancel the

unstable pole. The transfer function of the regulator is: C sð Þ ¼ AP 1þ sð Þ=s:
The loop transfer function is:

L sð Þ ¼ C sð ÞP2 sð Þ ¼ �AP

1þ s

s

0:2

1� sð Þ 1þ 0:2sð Þ : ð8:54Þ

The BODE diagram of the original and of the compensated system is shown in

Fig. 8.39a, the NYQUIST diagram of the compensated system (whose course can be

derived from the BODE diagram) is given in Fig. 8.39b, and the shape of the root

locus is provided in Fig. 8.39c. It can be seen that increasing the gain beyond a

defined value the closed-loop control system will be stable, the generalized NYQUIST

diagram encircles once the point �1þ 0j in the positive (counterclockwise)

direction. The parameter AP can be designed for maximum phase margin. (The

concept of phase margin can be used in this case as well.) Figure 8.40 shows the

unit step response of the control system. �

Example 8.2 The transfer function of an unstable process is:

P sð Þ ¼ 0:5

s� 0:1ð Þ sþ 1ð Þ sþ 5ð Þ ¼ � 1

1� 10sð Þ 1þ sð Þ 1þ 0:2sð Þ ð8:55Þ

Let us design a regulator which ensures stable behavior, tracking the unit step

reference signal without static error, and the initial value of the control signal does

not exceed the value of 50.

A qualitatively correct NYQUIST diagram of the open-loop with a proportional

regulator is shown in Fig. 8.41. As the loop transfer function has one pole in the

right half-plane, the closed-loop will be stable if �1þ 0j lies within the left side

curve in the figure. The condition for that is that the usually interpreted phase

margin indicated in the figure be positive.

The asymptotic BODE amplitude-frequency and the phase-frequency diagrams

are shown in Fig. 8.42. To reach a more favorable phase margin, PD compensation

is applied. Thus the section of slope −20 dB/decade is elongated, and the cut-off

frequency can be relocated to xc � 1: To remove the static error, a further PI

regulator is used. The transfer function of the entire PID compensator is

C sð Þ ¼ 10
1þ 10s

10s

1þ s

1þ 0:2s
: ð8:56Þ
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The loop transfer function is:

L sð Þ ¼ � 1þ 10s

s 1� 10sð Þ 1þ 0:2sð Þ2
: ð8:57Þ

In the BODE amplitude diagram at frequency x ¼ 0:1; the breakpoint disappears
because of the contradictory effects of the zero and the unstable pole, but it remains as

a corner-point, where the phase angle asymptotically changes from �270� to �90�.
The cut-off frequency and the phase margin of the open-loop are xc ¼ 0:964;

and ut ¼ 56:25: The initial value of the control signal in the case of a unit step

reference signal is just 50. The output and the control signals are shown in

Fig. 8.43. �

Fig. 8.41 NYQUIST diagram of an unstable process compensated by a proportional regulator

Fig. 8.42 BODE diagram of an unstable process compensated by a PID regulator
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8.6 Regulator Design Providing a 60° Phase Margin

by Pole Cancellation

A regulator is designed so that the process (or its model) meets the quality

requirements set for the control system. A common compensation technique is pole

cancellation, when the zeros of the transfer function of the regulator are chosen

equal to the poles of the process: the unfavorable poles of the process are “can-

celled”, and instead more favorable poles are introduced. As an example let us

consider a proportional process with three time lags. The transfer function of the

process is

P sð Þ ¼ 1

1þ sT1ð Þ 1þ sT2ð Þ 1þ sT3ð Þ ; T1[ T2[ T3: ð8:58Þ

(a) Suppose the prescription for the control system is stable behavior and an

overshoot less than 10%. This latter requirement can be fulfilled in the fre-

quency domain by ensuring a phase margin of about 60�.

The requirements can be met by applying a simple proportional regulator:

C sð Þ ¼ AP. The approximate BODE diagram of the open-loop is shown in Fig. 8.44.

To ensure stability the cut-off frequency xc has to be placed at a straight line section

of slope −20 dB/decade. To reach the required phase margin, xc is located at the

frequency where the phase angle is u ¼ �120�. First the loop frequency function is

analyzed supposing AP ¼ 1 (dotted line in the figure), then AP is set to the recip-

rocal of the amplitude belonging to the phase angle u ¼ �120�.

Fig. 8.43 Output and control signals of an unstable process compensated by a PID regulator in

the case of a unit step reference signal
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The given requirements can be fulfilled with a proportional regulator. The

control system will be slow, as xc has to be placed at the straight line section of

slope −20 dB/decade, which is in the low frequency domain. The control system is

of 0-type, so it tracks the unit step reference signal with a static error, whose value

depends on the loop gain.

(b) Suppose the prescription for the control system is stable behavior and an

overshoot less than 10%. Furthermore, that the static error be zero for step

reference signal.

These prescriptions can be fulfilled by a PI regulator.

CPI sð Þ ¼ AP

1þ sTI

sTI
ð8:59Þ

Let us choose the time constant TI equal to the largest time constant of the

process, TI ¼ T1 (we “cancel” the largest time constant of the process, and “in-

troduce” an integrating effect instead). According to Fig. 8.45 a long straight line

section of −20 dB/decade slope is formed in the low frequency domain of the BODE

amplitude diagram of the open-loop. Changing the gain AP of the regulator, the

BODE amplitude diagram is shifted parallel until the cut-off frequency is located to

ensure the required *60° phase margin.

With a PI regulator the type number will be 1, and besides meeting the pre-

scriptions for stability and dynamic response, the control system also fulfills the

static requirements. But as the cut-off frequency can be placed only in the low

frequency range, the control system will be slow.

(c) Let the prescription for the control system be stable behavior and an overshoot

less than 10%, as well as that the operation of the control system has to be

faster.

Fig. 8.44 Series compensation with proportional regulator
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These specifications can be fulfilled by using a PD regulator.

CPD sð Þ ¼ AP

1þ sTD

1þ sT
; TD[ T ð8:60Þ

Let us choose the time constant TD equal to the second largest time constant of

the process, TD ¼ T2 (that is, equal to that time constant for which the slope

changes from −20 dB/decade to −40 dB/decade at the corresponding breakpoint of

the BODE amplitude diagram). The ratio g ¼ TD=T is chosen according to the

practical limit of the control signal. (We “cancel” the unfavorable time constant of

the process and “introduce” a much smaller time constant instead.) Then changing

the gain AP of the regulator, the BODE amplitude diagram is shifted parallel until the

cut-off frequency is located to ensure the required *60° phase margin. The effect

of the compensation on the BODE diagram of the open-loop is shown in Fig. 8.46.

The control system will be stable, it has a small overshoot, it will be fast, but as it

remains of 0-type, it will have a static error, depending on the loop gain when

tracking a unit step reference signal. The acceleration results from the high initial

value u t ¼ 0ð Þ ¼ APg of the control signal.

(d) Let the prescription for the control system be stable behavior, an overshoot less

than 10%, fast operation and zero static error for tracking a step reference

signal.

These prescriptions can be fulfilled by a PID regulator, combining the possi-

bilities of the PI and the PD regulators.

Fig. 8.45 Series compensation with a PI regulator
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CPID sð Þ ¼ AP

1þ sTI

sTI

1þ sTD

1þ sT
ð8:61Þ

Two of the four free parameters are chosen considering the poles of the process.

The parameter TI is chosen equal to the largest time constant of the process, and the

parameter TD is set equal to the second largest time constant. With this choice

TI ¼ T1 and TD ¼ T2 the loop transfer function can be simplified, that is the “in-

troduced” zeros “cancel” poles of the process.

L sð Þ ¼ C sð ÞP sð Þ ¼ AP

1þ sT1

sT1

1þ sT2

1þ sT

1

1þ sT1ð Þ 1þ sT2ð Þ 1þ sT3ð Þ
¼ AP

sT1 1þ sTð Þ 1þ sT3ð Þ ð8:62Þ

It can be seen that the transfer function of the residual system became simpler,

thus the further steps of the design become easier.

The remaining two parameters are chosen considering the prescriptions set for

the acceleration and the overexcitation. The parameter T is chosen based on the

pole placement ratio. The phase margin (and the overshoot of the step response)

can be set with AP. It can be seen in the BODE amplitude diagram of the open-loop

that the section of slope −20 dB/decade will be longer because of the choice

T\TD. With the gain AP of the regulator, the BODE amplitude diagram is shifted

parallel until the cut-off frequency is located to ensure the required * 60° phase

margin. This is done by checking the frequency where the phase angle is about

−120°, and AP is then set to the reciprocal of the amplitude corresponding to this

Fig. 8.46 Series compensation with a PD regulator
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frequency. This frequency will be xc, which is located now in the higher frequency

domain, therefore the control system will be faster (Fig. 8.47).

But let us observe that the pole cancellation is just formal: in reality the poles do

not disappear. The process can not be changed, its poles do exist. Actually the zeros

and the poles do not cancel each other, only their effects compensate each other.

Figure 8.48 demonstrates that in the case of zero-pole cancellation the overall

transfer function of the serially connected regulator and process behaves as if a real

pole cancellation has happened, but the effect of the zero of the regulator does

appear in the signal u tð Þ: The overexcitation in the control signal depends on the

ratio of the zero and the pole of the regulator. The so called acceleration area in the

control signal decreases the so called decelerating area of the process which

characterizes the settling time of its unit step response, thus yielding a faster

response of the control system.

The main point of the pole cancellation method is that the unfavorable poles of

the process are cancelled, and the poles of the regulator ensure a more favorable

dynamics for the control system. As no real pole cancellation occurs, it is not

necessary to set the zeros of the regulator quite accurately. The tuning can also be

refined later, by moving the zeros a bit away from their pole cancellation location.

Fig. 8.47 Series compensation with PID regulator

Fig. 8.48 In compensation

pole cancellation is virtual
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(e) Let the prescription for the control system be its stable behavior, an overshoot

less than 10%, fast operation, and zero static error for tracking both a step and

also a ramp reference signal.

To meet the static requirements the control system has to be of 2-type containing

two integrating effects. The low frequency part of the BODE diagram has to be of

−40 dB/decade.

Fig. 8.49 Series PID compensation with additional PI regulator

Table 8.9 PID-like regulators designed for a proportional system with three lags and the

characteristic measures of the control systems

C sð Þ L sð Þ e1 umax xc

P 7:51 7:51

1þ 10sð Þ 1þ sð Þ 1þ 0:2sð Þ
0:1174 7:51 0:62

PI
5:04

1þ 10s

10s

5:04

10s 1þ sð Þ 1þ 0:2sð Þ
0 5:04 0:45

PD
16:55

1þ s

1þ 0:2s

16:55

1þ 10sð Þ 1þ 0:2sð Þ2
0:057 82:7 1:51

PID
14:27

1þ 10s

10s

1þ s

1þ 0:2s

14:27

10s 1þ 0:2sð Þ2
0 71:36 1:33

PI � PID
14:3

1þ 50s

50s

1þ 10s

10s

1þ s

1þ 0:2s

14:3 1þ 50sð Þ
500s2 1þ 0:2sð Þ2

0 71:5 1:34
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The previous regulator designed for pole cancellation is extended by a PI effect,

which forms the BODE diagram of Fig. 8.49. The transfer function of the regulator is

CPI�PID sð Þ ¼ AP

1þ sTI1

sTI1

1þ sTI2

sTI2

1þ sTD

1þ sT
; ð8:63Þ

where TI1[ TI2. This ratio is selected by the designer, its advisable value is

TI1 � 5TI2.

Fig. 8.50 Unit step responses of the compensated control systems

Fig. 8.51 Control signals of the compensated control systems
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This regulator, considering Fig. 6.3, ensures not only a better reference signal

tracking, but also a favorable disturbance rejection and less sensitivity to parameter

changes.

Example 8.3 Let the time constants of the above process be T1 ¼ 10; T2 ¼ 1;
T3 ¼ 0:2: The regulators designed for the above requirements and the character-

istics of the control system are given in Table 8.9.

Figure 8.50 shows the unit step responses of the control circuits, whereas

Fig. 8.51 presents the corresponding control signals. As can be seen, the static error

is zero only in the cases when there is an integrating effect in the regulator. The

control system with the P and the PI regulator is slow, whereas with the PD, PID

and the PI–PID regulators it is fast, at the cost of high overexcitation. �
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Chapter 9

Control Systems with State Feedback

In Chap. 3. the description of processes in state-space was investigated. In many

cases, this is the kind of description that is primarily available, and not the transfer

function of the controlled system. This is the explanation, in part, for why there is a

control design methodology directly based on the state-space description. For

illustrative purposes, let us consider the state-space representation of an (LTI)

process to be controlled,

dx

dt
¼ _x ¼ Axþ bu

y ¼ cTx

ð9:1Þ

which corresponds to (3.10) for the case of d ¼ 0. This, as was mentioned earlier,

does not impair generality, because it is a very rare case when the model contains

proportional channel directly affecting the output. The block scheme of (9.1) is

shown in Fig. 9.1.

Here u and y are the input and output signals of the process, respectively, and

x is the state vector. According to the equivalent transfer function (3.17) we get

PðsÞ ¼ cTðsI � AÞ�1
b ¼

BðsÞ

detðsI � AÞ
¼

BðsÞ

AðsÞ
¼

b1s
n�1 þ � � � þ bn�1sþ bn

sn þ a1sn�1 þ � � � þ an�1sþ an
:

ð9:2Þ

Figure 9.2 shows the so-called classical closed control system directly fitting the

state-equation description, where r denotes the reference signal. In the closed-loop,

the state vector is fed back with the linear proportional vector kT according to the

expression below

u ¼ krr � kTx ð9:3Þ
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Based on Fig. 9.2, the state-equation of the complete closed system can be easily

written as

dx

dt
¼ A� bkT

� �
xþ krbr

y ¼ cTx

ð9:4Þ

i.e. with the state feedback the dynamics represented by the original system matrix

is modified by the dyadic product bkT to A� bkT
� �

.

The transfer function of the closed control loop is

TryðsÞ ¼
YðsÞ

RðsÞ
¼ cT sI � Aþ bkT

� ��1
bkr ¼

cT sI � Að Þ�1
bkr

1þ kT sI � Að Þ�1
b

¼
kr

1þ kT sI � Að Þ�1
b
PðsÞ ¼

krBðsÞ

AðsÞþ kTWðsÞb

ð9:5Þ

which comes from the comparison of the equations valid for the LAPLACE transforms

XðsÞ ¼ sI � Að Þ�1
bUðsÞ [see (3.12)], UðsÞ ¼ krRðsÞ � kTXðsÞ [see (9.3)] and

Fig. 9.1 Block scheme of

the state-space equation of the

LTI system

Fig. 9.2 Linear controller with state feedback
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YðsÞ ¼ cTXðsÞ [see (9.1)] using the matrix inversion lemma (for details, see A.9.1

in Appendix A.5). Note that the state feedback leaves the zeros of the process

untouched and only the poles of the closed-loop system can be designed by kT.

The so-called calibration factor kr is introduced in order to make the gain of Try

equal to unity Tryð0Þ ¼ 1
� �

. The open-loop is obviously not of integrator type, it

cannot provide zero error and unit static transfer gain. It can be assured only if the

condition

kr ¼
�1

cT A� bkT
� ��1

b
¼

kTA�1b� 1

cTA�1b
ð9:6Þ

is fulfilled [see A.9.2 in Appendix A.5.]. The special control loop shown above is

called state-feedback.

9.1 Pole Placement by State Feedback

The most natural design method for state feedback is the so-called pole placement.

In this case the feedback vector kT has to be chosen to make the characteristic

equation of the closed-loop equal to the prescribed (or design) polynomial RðsÞ,
i.e.,

RðsÞ ¼ sn þ r1s
n�1 þ � � � þ rn�1sþ rn ¼

Yn

i¼1

s� sið Þ = det sI � Aþ bkT
� �

¼ AðsÞþ kTWðsÞb ð9:7Þ

A solution always exists if the process is controllable. (It is reasonable if the

order of R is equal to that of A.) In the exceptional case when the transfer function

of the controlled system is known, then the canonical state-equations can be written

directly. Based on the controllable canonical form (3.47) the system matrices are

Ac ¼

�a1 �a2 . . . �an�1 �an
1 0 . . . 0 0

0 1 0 0

..

. ..
. . .

. ..
. ..

.

0 0 0 1 0

2

66664

3

77775
; cTc ¼ ½b1; b2; . . .; bn�; and

bc ¼ [1,0, . . . 0]T

ð9:8Þ

Considering the special forms of Ac and bc, it can be seen that according to the

design equation
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Ac � bck
T
c ¼

�a1 �a2 . . . �an�1 �an
1 0 . . . 0 0

0 1 . . . 0 0

..

. ..
. . .

. ..
. ..

.

0 0 0 1 0

2

66664

3

77775
�

1

0

0

..

.

0

2

66664

3

77775
kTc

¼

�r1 �r2 . . . �rn�1 �rn
1 0 . . . 0 0

0 1 . . . 0 0

..

. ..
. . .

. ..
. ..

.

0 0 0 1 0

2

66664

3

77775
ð9:9Þ

the choice

kT ¼ kTc ¼ r1 � a1; r2 � a2; . . .; rn � an½ � ð9:10Þ

ensures the satisfaction of the characteristic equation (9.7), i.e., the prescribed poles.

The choice of the calibration factor can be determined by simple calculations

kr ¼
an þ rn � anð Þ

bn
¼

rn

bn
ð9:11Þ

Based on Eqs. (9.4) and (9.6) it can be seen that in the case of state feedback

pole placement, the transfer function turns out to be

TryðsÞ ¼
krBðsÞ

RðsÞ
ð9:12Þ

as was shown at (9.5).

Example 9.1 Consider an unstable process with transfer function

PðsÞ ¼
�8

ðsþ 2)(s� 4Þ
¼

1

1þ 0:5sð Þ 1� 0:25sð Þ
¼

�8

s2 � 2s� 8
¼

�8

AðsÞ

where AðsÞ ¼ ðsþ 2)(s� 4Þ ¼ s2 � 2s� 8 ¼ s2 þ a1sþ a2. To stabilize the pro-

cess we should mirror the right half-plane unstable pole pc2 ¼ 4 into the left plane,

i.e. pc2 ¼ �4 is to be obtained. This can be arranged by the choice of the polynomial

RðsÞ ¼ ðsþ 2)(sþ 4Þ ¼ s2 þ 6sþ 8 ¼ s2 þ r1sþ r2. So the necessary stabilizing

feedback vector is

kT ¼ r1 � a1 r2 � a2½ � ¼ 6� ð�2) 8� ð�8)½ � ¼ 8 16½ �

■

The most frequent case of state feedback is when rather than the transfer

function, the state-space form of the control system is given. In relation with
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Eq. (3.67) it has already been discussed that all controllable systems can be

described in controllable canonical form using the transformation matrix

Tc ¼ Mc
c Mcð Þ�1

. This linear transformation also refers to the feedback vector

kT ¼ kTcTc ¼ kTcM
c
cM

�1
c

kT ¼ bTcM
�1
c R Að Þ ¼ 0; 0; . . .; 1½ �M�1

c R Að Þ
ð9:13Þ

The design relating to the controllable canonical form (9.10), together with the

linear transformation relationship corresponding to the first row of the

non-controllable form (9.13) is called BASS-GURA algorithm. The algorithm in the

second row of (9.13) is called ACKERMANN method after its developer (see the

details in the A.9.3 of Appendix A.5).

In the BASS-GURA algorithm, the inverse of the controllability matrix Mc has to

be determined by the general system matrices A and b, on the one hand, and the

controllability matrix Mc
c of the controllable canonical form [see (3.61)], on the

other. Since this latter term depends only on the coefficients ai in the denominator

of the process transfer function, then the denominator has to be calculated:

AðsÞ ¼ det sI � Að Þ. Since 0; 0; . . .; 1½ �M�1
c is the last row of the inverse of the

controllability matrix, and besides this R Að Þ has to be also calculated, in the

ACKERMANN method it is not necessary to calculate AðsÞ.
It can be easily seen that state feedback formally corresponds to a serial com-

pensation Rs ¼ AðsÞ=RðsÞ (Fig. 9.3a). The real operation and effect of state

feedback can be easily understood by the equivalent block schemes using the

transfer functions shown in Fig. 9.3. The “controller” RfðsÞ of the closed-loop is in

the feedback line (Fig. 9.3b). The transfer function of the closed-loop (9.12) is

TryðsÞ ¼
krBðsÞ

RðsÞ
¼

krBðsÞ

AðsÞþBðsÞ
¼

krPðsÞ

1þKkðsÞPðsÞ
¼

krAðsÞ

RðsÞ

BðsÞ

AðsÞ
¼ krRsðsÞPðsÞ

ð9:14Þ

where

Rf ¼ KkðsÞ ¼
KðsÞ

BðsÞ
¼

RðsÞ � AðsÞ

BðsÞ
¼

kT sI � Að Þ�1
b

cT sI � Að Þ�1
b

ð9:15Þ

and the calibration factor is

kr ¼
kTA�1b� 1

cTA�1b
¼

1þKkð0ÞPð0Þ

Pð0Þ
: ð9:16Þ

Based on the block schemes of Fig. 9.3 it can be stated that the state-feedback

also stabilizes the unstable terms, since due to the effect of the polynomial

KðsÞ ¼ RðsÞ � AðsÞ, there is a pole allocation for any process, so by choosing a
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stable RðsÞ, the stabilization is achieved. The feedback polynomial KðsÞ corre-

sponds formally to kT. The fact that the numerator BðsÞ of the process is present in
the denominator of KkðsÞ requires special consideration. It is used to be said in these
cases that the controller can be applied only to minimum-phase (inverse stable)

processes, where the roots of BðsÞ are stable. As a consequence of the special

character of the state feedback, however, here BðsÞ is not replaced by its model

bBðsÞ, but the method itself realizes the exact 1=BðsÞ.
Further methods have been developed for the calculation of the pole placement

state feedback vector kT. From among these, the so-called MAYNE-MURDOCH

method is briefly shown here, on the basis of which useful statements can be made.

In the BASS-GURA and ACKERMANN methods the controllable canonical form has a

special role. A similarly important canonical form is the diagonal form. Let the

diagonal form Ad ¼ diag k1; . . .; kn½ � be built with the eigenvalues ki, i.e. the roots

of AðsÞ, and let the roots of the design polynomial RðsÞ be the prescribed values of

l1; . . .; lnf g. Assuming that the eigenvalues are single, the MAYNE-MURDOCH

method gives the following closed form expression for the product kdi b
d
i ,

(a)

(b)

(c)

Fig. 9.3 Equivalent schemes

of the state feedback design

by transfer functions and

polynomials
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kdi b
d
i ¼

P
n
j¼1 ki � lj

� �

P
n

j ¼ 1

i 6¼ j

ki � kj
� � i ¼ 1; . . .; n ð9:17Þ

from which kdi can be easily determined. Here the coefficient bdi is an element of the

parameter vector bd ¼ bd1; . . .; b
d
n

� �T
¼ b1; . . .; bn½ �T of the diagonal form [see also

(3.38)]. The most interesting consequence of (9.17) is that it clearly shows that the

absolute value of the feedback gain kdi required by the pole placement increases

directly proportionally to the “moving” distance between the poles of the open- and

closed-loop.

9.2 Observer Based State Feedback

The method of state-feedback shown in the previous section requires the direct

measurement of the state vector of the state-equation describing the process. Only

very rarely can this be fulfilled: generally only in the case of low order dynamics

(e.g., in mechanical systems measuring the values of the distance, velocity and

acceleration). Thus the usefulness of the method depends on the possible mea-

surement or estimation of the state vector. To determine the state vector the

so-called observer principle has been developed. This method requires the

knowledge of the system matrices A, b and cT, by means of which an exact model

of the process is realized and using the same excitation that is applied for the

original process, this model (observer) provides estimated values x̂ and ŷ of the

variables x and y. The state-feedback is realized by using x̂. The principle is shown

in Fig. 9.4.

More strictly the estimated values Â; b̂ and ĉT in the observer should have been

used instead of A, b and cT. The speciality of the observer, however, is that it

applies not only a parallel model, but it calculates an error e ¼ y� ŷ from the

deviation of the original and estimated output values of the process, and has a

feedback via a proportional feedback vector l to the input of the integrator of the

observer. This feedback is in operation until the error exists, i.e., until the output of

the process and the observer become equal. This operation can tolerate a rather

large error in the knowledge of the system matrices.

It can be seen in the figure that now the state-feedback is

u ¼ krr � kTx̂ ð9:18Þ
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thus simply x̂ is used instead of x. Through a long and very complex deduction,

whose details will not be discussed here, we get the overall closed-loop transfer

function in the form

TryðsÞ ¼
krPðsÞ

1þ kT sI � Að Þ�1
b
¼

krBðsÞ

RðsÞ
; ð9:19Þ

which, perhaps surprisingly, is exactly equal to (9.12), i.e., to the case of

state-feedback without an observer. (A detailed proof can be seen in A.9.5 of

Appendix A.5.) This means that the tracking property of the closed-loop does not

depend on the choice of the vector l. (The theoretical explanation for this phe-

nomenon is that the observer is the non-controllable part of the whole closed-loop.)

The feedback “controller” introduced in Fig. 9.3 can also be determined now as

Rf ¼ kT sI � Aþ bkT þ lcT
� ��1

l ¼
kT sI � Aþ bkT
� ��1

l

1þ cT sI � Aþ bkT
� ��1

l
ð9:20Þ

which has a more complex form than in (9.15).

Fig. 9.4 Observer based state-feedback

332 9 Control Systems with State Feedback



To investigate the operation of the observer, let us define a new state vector error

as

~x ¼ x� x̂ ð9:21Þ

which can also be written as

d~x

dt
¼ A� lcT

� �
~x ð9:22Þ

which is very similar to (9.4) without excitation. For the design of observers, a

method very similar to what was used in the case of the state-feedback, is applied,

where by the choice of l our goal is to ensure the dynamics of (9.21) by the second

characteristic polynomial

det sI � Aþ lcT
� �

¼ FðsÞ ¼ sn þ f1s
n�1 þ � � � þ fn�1sþ fn ð9:23Þ

A solution always exists if the process is observable. (It is reasonable to assume

that the order of F is equal to that of A.) It is an exceptional case when the transfer

function of the process to be controlled is known, by means of which the canonical

state-equations can be directly written. Based on the observable canonical form of

(3.53), the system matrices are

Ao ¼

�a1 1 0 . . . 0

�a2 0 1 . . . 0

..

. ..
. ..

. . .
. ..

.

�an�1 0 0 . . . 1

�an 0 0 . . . 0

2

666664

3

777775
; cTo ¼ 1; 0; . . .; 0½ �; bo ¼ b1; b2; . . .; bn½ �T

ð9:24Þ

Considering the special form of Ao and cTo it can be easily seen, that according to

the design equation

Ao � loc
T
o ¼

�a1 1 0 . . . 0

�a2 0 1 . . . 0

..

. ..
. ..

. . .
. ..

.

�an�1 0 0 . . . 1

�an 0 0 . . . 0

2

66666664

3

77777775

� lo 1; 0; . . .; 0½ � ¼

¼

�f1 1 0 . . . 0

�f2 0 1 . . . 0

..

. ..
. ..

. . .
. ..

.

�fn�1 0 0 . . . 1

�fn 0 0 . . . 0

2

66666664

3

77777775

; ð9:25Þ
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the choice

l ¼ lo ¼ f1 � a1; f2 � a2; . . .; fn � an½ �T ð9:26Þ

ensures the satisfaction of the characteristic equation of (9.23), i.e. the prescribed

poles.

The general case now is that the state-space form of the process to be controlled

is given instead of its transfer function. Referring to Eq. (3.79), it has been dis-

cussed that all observable systems can be written in observable canonical form by

using the transformation matrix To ¼ Mo
o

� ��1
Mo. This similarity transformation

has an effect also on the feedback vector

l ¼ Toð Þ�1
lo ¼ M�1

o Mo
olo ð9:27Þ

To calculate (9.27) the inverse of the observability matrix Mo is required using

the system matrices A and cT. Similarly the observability matrix Mo
o of the ob-

servable canonical form has to be formed [see (3.73)]. Since this latter one depends

only on the coefficients ai in the denominator of the transfer function of the process,

so the denominator has to be calculated: AðsÞ = det sI � Að Þ. This method of cal-

culating the observer vector is called the ACKERMANN method, after its developer.

There is an interesting similarity in the design methods of the dynamics of the

observer and the state-feedback, often called duality, i.e., they correspond to each

other under the conditions: A $ AT; b $ cT; k $ lT; Mc
c $ Mo

o

� �T
.

Based on the equations of the error (9.21) and the process (9.1), the joint

equations of the state-feedback and the observer are

d

dt

x

~x

� �
¼

A� bkT bkT

0 A� lcT

" #
x

~x

� �
þ

krb

0

� �
r

e ¼ y� ŷ ¼ cT~x

ð9:28Þ

Since the system matrix of the right hand side is block diagonal, the charac-

teristic equation of the closed-loop is

det sI � Aþ bkT
� �

det sI � Aþ lcT
� �

¼ RðsÞFðsÞ ð9:29Þ

Thus the polynomial is the product of two terms: the first term relates to the

state-feedback, the other one to the observer. It is important to note, that FðsÞ, in
spite of (9.29), does not appear in the transfer function TryðsÞ of the closed-loop of

(9.5). This interesting fact can be explained by the re-definition of the whole system

given in the block diagram of Fig. 9.4, applying appropriate transfer functions.

Equation (9.29) of the observer based state-feedback, according to which the

state-feedback and the characteristic equation of the observer are independent, is

called the separation principle.
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9.3 Observer Based State Feedback Using Equivalent

Transfer Functions

The block scheme containing transfer functions has already been applied in the

Fig. 9.3. A further generalized form of the approach used there can also be applied,

which is shown in Fig. 9.5.

It follows from Fig. 9.5 that the resulting equivalent serial compensator is now

again

Rs ¼
1

1þRfP
¼

1

1þKkP
¼

AðsÞ

AðsÞþKðsÞ
¼

AðsÞ

RðsÞ
ð9:30Þ

It must be stated that Rs is a fictitious term: it is used only for demonstrating the

final signal formation, i.e., krRsP ensures the same Try as (9.14). If the pole can-

cellation represented by Rs is intended to be performed by a serial compensator,

then it cannot be applied to unstable processes, since the unstable zeros and poles

cannot be eliminated by cancellation. The signal �x (which is not the same as x)

introduced in Fig. 9.4 represents that finally both the state-feedback and the ob-

server are SISO subsystems which can be performed by transfer functions, i.e., it is

always possible to find equivalent representations for the input and output.

Applying this approach and based on Fig. 9.4, the block scheme using transfer

functions can be drawn as shown in Fig. 9.6.

After a long transformation procedure and block manipulations the block scheme

of Fig. 9.6 can be traced back to the very simple, unit feedback closed-loop shown

(a)

(b)

Fig. 9.5 The further

equivalent schemes of the

state feedback with transfer

functions
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in Fig. 9.7. Here the relationship (9.15) defining Kk is also used, and Kl is intro-

duced in a similar way

KkðsÞ ¼
KðsÞ

BðsÞ
; KlðsÞ ¼

LðsÞ

BðsÞ
; ð9:31Þ

where the design polynomial equations

KðsÞ ¼ RðsÞ � AðsÞ and LðsÞ ¼ FðsÞ � AðsÞ ð9:32Þ

result from the conditions of the two kinds of pole placements.

It is easily seen that the resulting transfer function of the inner closed-loop

P2KkKl

1þP Kk þKlð ÞþP2KkKl

¼
PKk

1þPKk

PKl

1þPKl

¼
K

AþK

L

AþL
¼

K

R

L

F
ð9:33Þ

Fig. 9.6 State-feedback and

observer using transfer

functions

Fig. 9.7 The reduced block scheme of the state-feedback and observer
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has a special form, but its denominator completely corresponds to the characteristic

equation (9.29), i.e., represents two serially connected independent closed-loops

(see Fig. 9.8). This fact is called the separation principle of the state-feedback and

the observer. To ensure stability, both loops must be stable. This can be arranged by

proper pole placement design.

At the same time, the transfer function of the whole system is

TryðsÞ ¼ kr
1þPKk

PKlKk

PKl

1þPKl

PKk

1þPKk

¼
krP

1þPKl

¼
kr

B
A

1þ B
A

K
B

¼
krB

AþK
¼

krBðsÞ

RðsÞ
;

ð9:34Þ

which is completely the same as (9.19). As expected, the poles of the observer do

not appear in Try. The inner character of the whole system can be better seen from

the final block scheme shown in Fig. 9.9 for the tracking properties.

This simple structure is not valid for the disturbance rejection capabilities of the

closed-loop. This can be simply seen if the sensitivity function of the closed-loop is

constructed,

1

1þ
P2KkKl

1þP Kk þKlð Þ

¼
1þP Kk þKlð Þ

1þP Kk þKlð ÞþP2KkKl

¼ 1þ
L

R

� 	
1�

L

F

� 	
; ð9:35Þ

which shows that both R and F appear in the transfer function of the disturbance

rejection according to (9.29). Equation (9.35) has a special form, since formally it is

the product of the output noise rejection transfer functions of two serially connected

closed-loops, while it is known, that the tracking properties are indeed the result of

a product of the transfer functions, but this phenomenon is not valid for the

Fig. 9.8 Equivalent observer block schemes of the inner system

Fig. 9.9 The reduced block scheme of the state-feedback and the observer for the tracking

properties
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sensitivity functions. Note that the resulting noise rejection properties are not

independent of the tracking ones, therefore the joint application of the

state-feedback and the observer is not appropriate to realize an actual TDOF control

loop.

9.4 Two-Step Design Methods Using State Feedback

It has been already seen in the discussion of the state-feedback based control that

the most advantageous features of that method are:

– the applicability of the method does not depend on whether the process is stable

or not

– the tracking property does not depend on the applied observer, thus it can be

directly designed

– the method is not very sensitive to the exact knowledge of the parameter

matrices of the state-equation.

(This last feature is usually demonstrated by experimental and simulation

examples, but it can be proved that the error, using an observer, can be reduced by

the 1þKlðsÞPðsÞ½ � part of the original one, compared to the modeling error

obtained by the simple parallel model of the state-equation of the process, thus

being like that which would be obtained via a closed-loop 1= 1þKlðsÞPðsÞ½ �. So it

can be reduced by the feedback KlðsÞ of the observer in a specific frequency region.

If the model of the process is applied, which is quite conventional practice, then

both loops of the Fig. 9.8 must be robust stable.)

The unfavorable (unwanted) features are:

– the state feedback is basically a zero-type control, therefore the remaining error

can be eliminated by the calibration factor, which, in the case of using a process

model, never provides a precise result

– the state feedback can not change the zeros of the process

– the disturbance rejection property can not be designed directly.

Mostly because of these latter features, usually further steps are applied to the

state-feedback based control systems. The necessity of the calibration factor can be

eliminated in the simplest way by using a cascade integrating controller, as shown

in Fig. 9.10.

Instead of (9.4), the joint state-equation of the closed-loop can be written as

_x�ðtÞ ¼
_xðtÞ
_dðtÞ

� �
¼

A 0

cT 0

� �
xðtÞ

dðtÞ

� �
þ

b

0

� �
uðtÞþ

0

�1

� �
rðtÞ

¼ A� � b�kT�
� �

x�ðtÞþ v�rðtÞ

ð9:36Þ
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by introducing the new state variable dðtÞ, which is the integral of the error eðtÞ ¼
rðtÞ � yðtÞ in the outer loop. In this extended state-equation, the notation

A� ¼
A 0

cT 0

� �
; b� ¼

b

0

� �
; v� ¼

0

�1

� �
ð9:37Þ

and the new extended feedback equation

uðtÞ ¼ � kT kr
� � xðtÞ

dðtÞ

� �
¼ �kT�x

�ðtÞ ¼ kr

Z t

0

eðsÞ ds� kTxðtÞ ð9:38Þ

are employed. Equation (9.38) clearly shows the integrating effect. The term kTxðtÞ,
however, can be considered as a generalization of the differentiating effect.

Thus the closed control loop including an integrator can be formulated by a

state-equation of order greater by one, where besides the coefficient kT, now kr has

to be also determined. To design the extended system, the characteristic polynomial

R�ðsÞ of order ðnþ 1Þ has to be required, and then the design Eq. (9.10) of the

ACKERMANN method can be directly applied here too. If the process is not presented

in the transfer function form, then first the general state-equation has to be trans-

formed into the controllable canonical form, as was already shown in (9.13).

Note that the extended task can not be solved sequentially, i.e., in such a way

that first the kT relating to RðsÞ is determined, then kr based on R�ðsÞ ¼

RðsÞ s� snþ 1ð Þ is calculated. The task must be solved in one step for kT� by R�ðsÞ.
An integrating effect can also be included by the design of the state-feedback for

a modified process P�ðsÞ ¼ PðsÞ=s instead of the transfer function PðsÞ. Note that

the two state feedback vectors, obtained for the previous case and for this approach,

are not equal!

Obviously beside the I-controller, other—higher order—controllers can be also

applied, but the pole placement is not always automatically given by the

ACKERMANN method, and can result in complicated systems of non-linear equations.

Fig. 9.10 Joint state-feedback and integrating controller
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In the case of observer based state-feedback, at the feedback of the observer

error, not only zero-type, but one-type or higher-type controllers can also be applied

by the methods shown above.

The untouched zeros of the process can be modified by a serial compensator

KsðsÞ ¼ GsðsÞ
N ðsÞ

Bþ ðsÞ
ð9:39Þ

too, where the numerator of the process BðsÞ ¼ Bþ ðsÞB�ðsÞ is assumed according

to the method applied in the Chap. 7. Here Bþ is stable, B�, however, contains the

unstable zeros. For realizability, NðsÞ=Bþ ðsÞ must be proper, thus only as many

zeros can be placed in the transfer function of the closed-loop as many stable zeros

are in the process. Finally the resulting transfer function has the form

TryðsÞ ¼
N ðsÞ

RðsÞ
krGsðsÞB�ðsÞ ð9:40Þ

where the effect of the invariant B�ðsÞ can be optimally attenuated by the filter

GsðsÞ. In many cases, however, the simple, but not optimal, choice GsðsÞ ¼ 1 is

used.

An acceptable design of the disturbance rejection feature can be reached by the

application of the YOULA-parameterized controller in the outer cascade loop. It can

be done because by the state-feedback any process, even an unstable one, can be

stabilized. The qualitative control of the unstable processes has two steps in general.

In the first step the process is stabilized by the controller, then the required qual-

itative goals can be reached by a second outer control loop or even in TDOF

structures.

The state-feedback based stabilizing controller can only be applied to processes

without dead-time. If the process has considerable time-delay, then one possibility

is to approach the dead-time by rational fractions [see Sect. 2.5]. The other solution

is to use computer based sampled data control [see Chap. 15].

9.5 The LQ Controller

The method shown in the previous sections of this chapter could perform arbitrary

(stabilizing) pole placement by the so-called state feedback from the state vector of

the process. By this state feedback technique further optimization tasks can also be

solved. The goal of this task is to optimally control the LTI process (9.1) by the

minimization of a complex optimality criterion
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I ¼
1

2

Z1

0

xTðtÞWxxðtÞþWuu
2ðtÞ

� �
dt: ð9:41Þ

Here Wx is a real symmetrical positive semi-definite matrix weighting the state

vector, and Wu is a positive constant weighting the excitation. The solution mini-

mizing the criterion is a state-feedback

uðtÞ ¼ �kTLQxðtÞ ð9:42Þ

[see (9.3)], where the feedback vector kTLQ has the form

kTLQ ¼
1

Wu

bTP: ð9:43Þ

Here the symmetrical positive semi-definite matrix P comes from the solution of

the algebraic RICCATI matrix equation

PAþATP�
1

Wu

PbbTP ¼ �Wx: ð9:44Þ

Since this RICCATI equation is non-linear in P, it has no explicit algebraic

solution. The CAD systems frequently used in the control technique, however,

generally provide several numerical algorithms for the solution of this equation.

This controller is called Linear Quadratic (LQ) controller. This stands for: linear

regulator—quadratic criterion.

The state-equation of the LQ controller based closed-loop is

dx

dt
¼ A� bkTLQ


 �
x; A ¼ A� bkTLQ: ð9:45Þ

The details of the LQ based method are given in A.9.6 of Appendix A.5. (The

above controller is very simple, but its derivation is quite time consuming.)

If the transfer function of the process is known, then the controllable canonical

form can be easily given. For special Ac and bc, Eq. (9.10) gives the classical state

feedback design algorithm. In the LQ method the feedback vector kTLQ is obtained

from the design (from the solution of the RICCATI equation). So turning back the

derivation of (9.10) the characteristic polynomial RðsÞ of the resulting closed-loop

system can be given by its coefficients as

r1; r2; . . .; rn½ �T¼ kTLQ þ a1; a2; . . .; an½ �T: ð9:46Þ

It is also possible to employ an observer for constructing the state vector in LQ

control.
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In engineering practice it is simpler to solve the stabilizing task by pole allo-

cation state-feedback, since there the prescribed poles are directly known. It is

evident, however, that in this case the quality of the transient processes are less

known. The LQ controller, beside the stabilization, also makes it possible to design

even the quality of the transient processes, but it needs long term practice to

determine the proper weighting matrix Wx and weighting factor Wu, usually

through a trial-and-error method.

A simpler version of the LQ controller is when, instead of the states, only the

square of the output is weighted, similarly to the input, i.e., instead of (9.41) the

criterion

I ¼
1

2

Z1

0

Wyy
2ðtÞþWuu

2ðtÞ
� �

dt ð9:47Þ

is used. This task (in the case of d ¼ 0), after some identical manipulations, can be

traced back to the original LQ controller

Wyy
2 ¼ yWyy ¼ xTcWyc

Tx ¼ xT cWyc
T

� �
x ¼ xT Wycc

T
� �

x ð9:48Þ

by a special choice of the weighting matrix like

Wx ¼ Wycc
T: ð9:49Þ

Observe that the state-feedback kTLQ leaves the process zeros untouched.
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Chapter 10

General Polynomial Method

for Controller Design

It was shown in Sect. 7.1 that the YOULA-parameterization can well be used for the

design of optimal controllers in the case of stable processes. The only disadvantage

of the general method is that it cannot be applied to unstable processes, so different

kind of parameterization is required. Let us find the controller CðsÞ in the form of

rational function.

CðsÞ ¼
YðsÞ

XðsÞ
¼

Y

X
: ð10:1Þ

Let the prescribed stable characteristic polynomial of the closed-loop be denoted

by RðsÞ, i.e., the characteristic equation is given by RðsÞ ¼ 0. Similarly to state

feedback, here the design of the stability and performance is also carried out via

prescribed poles (pole-placement). Let the transfer characteristics of the delay free

process be

PðsÞ ¼
BðsÞ

AðsÞ
¼

B

A
: ð10:2Þ

The characteristic equation expressing the design goal is

AðsÞXðsÞþBðsÞYðsÞ ¼ AX þBY ¼ R ¼ RðsÞ ð10:3Þ

where A, B and R are known polynomials, the unknown parameters to be deter-

mined are in polynomials X and Y. Equation (10.3) is called a DIOPHANTINE

equation (DE). Since it is not assumed that the process is stable, the resulting

controller is therefore also called a stabilizing controller.

This DE has solution if, and only if, all common factors of A and B are also the

common factors of R. If A and B are relative prime (i.e., they have no polynomial

common factor), this DE always has a solution for any R, and the number of the

solutions is infinity. If a pair Xo, Yo fulfills the equation, then the pair
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X ¼ X o þDB; Y ¼ Yo �DA ð10:4Þ

is also a solution of this DE, where D is an arbitrary polynomial. If the process

polynomials are relative prime (if A 6¼ 0) then there is always a solution X o, Yo of

this DE such that either Yo ¼ 0 or deg Yof g\deg Af g. This latter solution Xo, Yo

is called the minimal one, because there is no other solution X , Y whose poly-

nomials have degree less than the degree of Yo.

Since there are an infinite number of solutions of this DE, there exists a special

one satisfying the assumption

deg Xf g\deg Bf g: ð10:5Þ

Similarly, there exists a solution for which

deg Yf g\deg Af g: ð10:6Þ

Both assumptions are fulfilled at the same time (simultaneously), if

deg Af gþ deg Bf g� deg Rf g: ð10:7Þ

In the case of (10.6), the DE has a special minimum order solution if

deg Xf g = deg Yf g: ð10:8Þ

If (10.6) is not valid, then there exists a solution when X or Y is minimal.

In practice, two basic cases can be distinguished:

(a) Let RðsÞ be an arbitrary polynomial of order deg Rf g ¼ 2deg Af g � 1. In this

case the solution of the DE can be sought by controller polynomials of order

deg Xf g ¼ deg Af g � 1 and deg Yf g ¼ deg Af g � 1. Consequently the con-

troller will be proper.

(b) Let RðsÞ be an arbitrary polynomial of order deg Rf g ¼ 2deg Af g. In this case

the solution of the DE can be sought by controller polynomials of order

deg Xf g ¼ deg Af g and deg Yf g ¼ deg Af g � 1. Consequently the controller

will be strictly proper.

Therefore for a process of degree n usually a stabilizing regulator of degree

ðn� 1Þ is searched, because in this case DE always has solution. It can be seen

from (10.4), that the order of Y can be less than the order of A. Theoretically X
could be of lower order than B, but in this case the obtained controller cannot be

realized. That is why the stabilizing controller is sought as a transfer function of

order ðn� 1Þ.
It seems to be a reasonable choice if the order of R is equal to the order of A. In

a fortunate case it is possible to find a stabilizing controller of corresponding order

and pole excess to a process having a pole excess bigger than one. This procedure,
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however, cannot be performed in a systematic way and according to (10.7) the

solution is not surely minimal.

Equation (10.4) is also valid for the rational function D ¼ G=D. In this case

besides R, D also appears in the denominator of the overall transfer function of

the closed-loop. The form (10.4) parameterizes all stabilizing controllers by

D. The parameter D is called the YOULA-KUČERA parameter.

It can be seen easily that the transfer function of the one-degree-of-freedom

(ODOF) stabilized closed-loop shown in Fig. 10.1 is

T ¼
BY

AX þBY
¼

Y

R
B ¼ R0

nB: ð10:9Þ

Equation (10.9) shows that stabilization is achieved, but the numerator of the

process and the polynomial Y resulting from the solution of the DE appears in the

numerator of the overall transfer function. Note that none of them can be directly

influenced, so the numerator of the transfer function of the closed-loop cannot be

designed. (See the similarities with the results obtained for state-feedback.)

In spite of the not completely preferable design possibilities, a TDOF control

loop can be constructed where the reference signal tracking, at least, can be

designed. This system is shown in Fig. 10.2a. An equivalent block scheme is

presented in Fig. 10.2b which can be directly compared to the generic TDOF

(GTDOF) control loop obtained by a YOULA parameterized controller for stable

processes according to Fig. 7.10a. The controller is obviously different now.

The transfer function of the control loop shown in Fig. 10.2 is

Tr ¼ RrB: ð10:10Þ

Here Y already does not appear, only the numerator of the process, and Rr is

independent of Rn, thus it is really a TDOF control. The noise-rejection behavior

can be computed from T

S ¼ 1� T ¼ 1� R0
nB ¼ 1�

Y

R
B: ð10:11Þ

It has been already seen in the discussion of the YOULA-parameterized controller,

that in the numerator of the transfer function of the process only the stable zeros can

Fig. 10.1 One-degree-of-freedom (ODOF) stabilized closed-loop controller
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be cancelled. This method can be extended to the stable poles of the denominator in

the design method using the DE. Assume that the transfer function of the process is

PðsÞ ¼ Pþ ðsÞP�ðsÞ or, for short, P ¼ PþP�; ð10:12Þ

where Pþ is stable, its inverse is also stable (SIS: Stable Inverse Stable). P� is

unstable, and its inverse is also unstable (UIU: Unstable Inverse Unstable). Thus a

practical factorization is

P ¼
B

A
¼

BþB�

AþA�
¼

Bþ

Aþ

� �

B�

A�

� �

¼ PþP�: ð10:13Þ

Here Aþ contains the stable poles of the process and A� does contains the

unstable ones. Similarly Bþ contains the stable zeros and B� the unstable zeros.

The DE has to be constructed to make possible the cancellation of the stable roots

Bþ and Aþ . In order to define the design procedure in a completely general way,

predefined polynomials Yd and X d are introduced in the numerator and denomi-

nator of the controller. The following design DE can be written for this most

general case:

AþA�ð Þ BþX dXð Þþ BþB�ð Þ AþYdYð Þ ¼ R ¼ AþBþR

A X þ B Y ¼ R 0 ð10:14Þ

(b)

(a)

Fig. 10.2 TDOF stabilized closed-loop
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A lower order DE can be obtained by simplifying with the reducing factors

A�Xdð ÞX 0 þ B�Ydð ÞY0 ¼ R
A0X 0 þB0Y0 ¼ R

ð10:15Þ

where A0 ¼ A�X d and B0 ¼ B�Yd are known, and the controller is obtained as

C ¼
Y

X
¼

AþYdY
0

BþX dX
0 : ð10:16Þ

It is evident, that the stabilizing controller cancelled only the stable zeros and

poles, and introduced the desired polynomials Yd and Xd into the numerator and

denominator. The YOULA regulator is an integrating one, if a unit gain concerning

the reference model is ensured: Rnðx ¼ 0Þ ¼ Rnðs ¼ 0Þ ¼ 1. This cannot be

automatically ensured for the stabilizing controller resulting from a DE. It can be

guaranteed only if X d brings a pole s ¼ 0 into the denominator.

Since now Yd can be considered as the numerator of the reference model, andR,

however, as the denominator, it follows that in the general case, the corrected

reference model is

R0
n ¼

Yd

R
; ð10:17Þ

which depends only on us, so it can completely be designed.

Equivalent block schemes of the general stabilized control loop are shown in

Fig. 10.3.

(a)

(b)

Fig. 10.3 TDOF general stabilized closed-loop
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It can be easily checked that the transfer function of the whole loop is

Tr ¼ PrGrB� ð10:18Þ

and the sensitivity function of the closed-loop is

S ¼ 1� P0
wY

0B�: ð10:19Þ

So the transfer characteristics of the whole closed-loop control is

y ¼ Tryr þ Syn ¼ RrGrB�yr þ 1� R0
nY

0B�

� �

yn: ð10:20Þ

It is evident that the filter Gr can be freely chosen, and can be optimized to

attenuate the effect of B�. Unfortunately, the same is not valid for the optimal

design concerning the disturbance rejection, because there, Y0 results from the

modified DE (10.15), so it cannot be freely chosen, therefore the attenuation of the

effect of Y0 cannot be easily solved, as has been seen in the YOULA-parameterization

for the tracking problem (10.20).

The form of the resulting stabilizing controller shown in (10.16) can be further

simplified:

C ¼
AþYdY

0

BþXdX
0 ¼

Yd

R

� �

Y0A

Bþ 1� Yd

R Y0B�

� � ¼
P0
wY

0

1� P0
wY

0B�

A

Bþ
; ð10:21Þ

which is very similar to the form of the optimal YOULA regulator (7.14). Observe

that though only the stable factors Aþ and Bþ are cancelled, formally the con-

troller cancels the whole denominator of the process.

If the feature obtained for the noise-rejection in (10.20) cannot be accepted, an

outer cascade control loop has to be applied, which can already be designed by the

YOULA-parameterization, since the system has already been stabilized by the inner

loop. This two-step method was discussed in detail in the chapter on the control

loops applying state-feedback [see Sect. 9.4].

The stabilizing controller obtained by the DE can be applied only to delay free

processes. If the process has significant dead-time, then there is the possibility of

approximating the delay by a rational function [see Sect. 2.5]. The other possibility

is to use sampled data control system [see Chap. 14].

Example 10.1 Let the controlled system be a first order ðn ¼ 1Þ unstable process

P ¼
B

A
¼

0:5

1� 0:5s
¼

�1

s� 2
; ð10:22Þ

whose pole p ¼ 2 is on the right half of the complex plane. Find the controller

C ¼ Y=X that stabilizes the process by prescribing the characteristic polynomial
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RðsÞ ¼ sþ 2 ¼ 0. The controller is sought in the form of order n� 1 ¼ 0, which

can be ensured by the structure

C ¼
Y

X
¼

K

1
¼ K; ð10:23Þ

i.e., by a proportional controller. Based on (10.3) one can write

AX þBY ¼ R

ðs� 2Þ � K ¼ sþ 2
ð10:24Þ

where C ¼ K ¼ �4 is obtained for the controller. It can be checked by simple

computation, that the transfer function of the closed-loop is

T ¼
4

sþ 2
¼

2

1þ 0:5s
; ð10:25Þ

thus the unstable pole can be mirrored about the imaginary axis, and by this means,

the system is stabilized. The static gain of the closed-loop system is not unity,

because the controller is proportional and not an integrating one. To reach better

quality in performance, it is reasonable to use a further outer cascade control loop,

as was seen with the state feedback controllers. Based on (10.4), the resulting

stabilizing controllers CðsÞ and TðsÞ are given for different parameters DðsÞ ¼ G=D
in Table 10.1. ■

The first row of the Table 10.1 contains the first solution obtained in (10.23) and

(10.25). It is well seen, that only the first controller can be realized, so the other

solutions have only theoretical importance. For higher order processes the

expressions are more complicated, but even for these cases it is reasonable to

summarize the different order solutions in tables and choose the lowest order

realizable controller. In the same way it is also reasonable to give the solutions

being lower order than the ðn� 1Þ order controller.

Example 10.2 Let the controlled system be a first order ðn ¼ 1Þ stable process

P ¼
B

A
¼

1

1þ 10s
¼

0:1

sþ 0:1
; ð10:26Þ

Table 10.1 . DðsÞ ¼ G=D CðsÞ TðsÞ

0 –4 4
sþ 2

1 s�6
2

� s�6
sþ 2

1þ s s2�s�6
sþ 2

� s2�s�6
sþ 2

sþ 2
sþ 1

s2�4s�8
2sþ 3

� s2�4s�8
ðsþ 1Þðsþ 2Þ
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which we would like to speed up. Assuming an ODOF system, the design goal is

expressed by the reference model

Rr ¼ Rn ¼
1

1þ 2s
¼

0:5

sþ 0:5
: ð10:27Þ

The YOULA-regulator

Copt ¼ Cid ¼
RnP

�1
þ

1� Rn

¼ 1�
1

1þ 2s

� ��1
1þ 10s

1þ 2s
¼

1þ 10s

2s
ð10:28Þ

is now an integrating one, so the transfer function of the closed-loop is

TðsÞ ¼
1

1þ 2s
: ð10:29Þ

For the DE design, based on (10.27), the characteristic equation is

RðsÞ ¼ sþ 0:5 ¼ 0. As in the previous example, the controller is again sought in a

form of n� 1 ¼ 0 degree, thus the proportional controller (10.23) is employed. The

Eq. (10.3) now becomes

AX þBY ¼ R
sþ 0:1ð Þþ 0:1K ¼ sþ 0:5

ð10:30Þ

where C ¼ K ¼ 4 is obtained for the regulator. It can be easily checked that the

transfer function of the closed system is

T ¼
0:4

sþ 0:5
¼

0:8

1þ 2s
: ð10:31Þ

The prescribed pole�0:5 is successfully placed, but the control loop has zero-type,
therefore for the gain of T the value 0.8 is obtained. The above two examples well

represent the practice of how theYOULA-parameterization can be reasonably applied to

stable processes, while for stabilizing unstable processes the application of DE or the

state-feedback discussed in Chap. 9 can provide a solution. ■
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Chapter 11

Sampled Data Control Systems

In practice, most of the results delivered by control theory are realized by digital

computers equipped with appropriate real-time facilities. Depending on how many

control loops are implemented for a given application, the digital controller can be

realized by various devices ranging from single-chip microcontrollers via single

board controllers to PLCs or industrial PCs. The reliable network technology

available today allows system developers to implement the controllers in a dis-

tributed topology, as well.

The digital realization of control algorithms also reflects the contemporary

available computing technology. The control devices applied in industry integrate a

number of open-loop and closed-loop control components as a single compact

digital unit.

A simple scheme of a sampled data control system is shown in Fig. 11.1. Most

of the processes control engineers deal with are continuous in nature. In this chapter

it will be assumed that the control signal applied to the process (control input), as

well as the process variable (output signal), are both continuous-time (CT) signals.

While the input and output signals of a process are assumed to be continuous

(called ‘analog’ in practice), the digital processing assumes the data is available in

discrete-time (DT) form as a sequence of numbers. Consequently, the analog world

represented by physical signals should be interfaced to the world of data used by

digital computations. These interfaces are the sampler transforming the analog

signals to discrete ones, and the holder transforming the discrete signals to analog

ones. In practice, these interfaces are typically implemented by analog to digital (A/D)

and digital to analog (D/A) converters, respectively. As far as Fig. 11.2 is concerned,

observe that a real-time clock governs the operation of the digital computer to control

the sampling and holding in a synchronized way. To distinguish the analog and discrete

versions of the signals involved in sampled data control systems, the following notation

will be used:
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Fig. 11.1 Schematic diagram of closed-loop sampled data control systems

Fig. 11.2 Detailed set-up of sampled data control systems
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– xðtÞ: CT signal

– x½k� ¼ x kTsð Þ: DT signal, where Ts denotes the sampling time and kTs with

k ¼ 0; 1; 2; . . . assigns the sampling instants.

Comparing the sampled data control system in Fig. 11.2 to a CT closed-loop

control system it can be seen that the control signal uðtÞ is produced by a CT

regulator CðsÞ, while the sequence of the control signal u½k� is produced by a digital

control algorithm running in a real-time digital environment. At each sampling

instant the digital regulator carries out the following actions:

– Receive the sampled process variable and transmit the digitized data to the

sampled data control algorithm.

– Receive the set value previously adjusted at a Man-Machine Interface (e.g.,

typed in) or delivered by a communication network (as a result of a calculation

performed at a higher hierarchy level).

– Realize the digital control algorithm to calculate the digital control input u½k�
and send this digital value to the D/A converter.

The progress of the digital technologies surrounding the digital controller

(intelligent sensors and actuators, advanced Man-Machine Interface devices, a wide

range of cheap, though powerful and reliable network technologies) indicate that

digital controllers will dominate the field over CT controllers in the future.

A comparison of the continuous and digital control technologies can be summarized

in favor of digital controllers as follows:

– The digital technology applied is more reliable and cheaper.

– Its flexibility is superior considering both the implementation and the variety of

the control algorithms.

– Possible modifications and/or extensions are far easier to accomplish.

– Accuracy is kept constant over a long period of time.

– There are easy ways to deliver the set point value for the controller, to overwrite

the controller’s parameters, as well as to monitor the controller’s operation.

There are, however, a few issues requiring special care:

– Between two samples the control system is left to operate in open-loop.

– The sampling rate should carefully be selected to be in harmony with the

dynamics of the process and to comply with the capabilities of the real-time

environment (performance and the number representation employed).

– The output of the digital controller (control signal) must be interpolated from a

digital sequence to a CT function, thus the waveform of the control signal is

restricted.

– Sampling introduces additional difficulties for the design (dead-time and

unwanted dynamics).
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11.1 Sampling

From the operation of a CT process information can be collected by observing the

CT input/output signals of the process. In case this information is elaborated by a

digital device, these CT signals will be represented by their samples. Assuming

equidistant sampling (constant sampling time), an important result of systems

theory helps us to decide whether a CT signal can be reconstructed from its samples

or not. Namely, for band limited CT signals, SHANNON’s sampling theorem requires

that at least two samples must be available from the highest frequency component

of the band-limited CT signal for a reconstruction. Concerning the importance of

SHANNON’s sampling theorem, we refer to the fact that this theorem constitutes the

basis for the usability of a flexible, programmable, digital environment in CT signal

processing (visualization, analysis in the frequency domain, etc.).

As was mentioned earlier, sampling is physically performed by A/D and D/A

converters governed by the real-time clock of the controller. The A/D converter is

driven by an analog signal xðtÞ and produces a sequence x½k� in a coded digital

form. The operation of an A/D converter is commonly symbolized by a periodically

closed switch (Fig. 11.3).

For various applications an A/D converter is selected according to several of the

parameters attached to the converters. The speed of the conversion is characterized

by the conversion time, which can be even less than 1ls. Further parameters are the

noise rejection and the resolution specifying the number of bits used for the digi-

tized code (typically a value from 8 to 16).

Using again the notation introduced earlier, a sampling according to f ½k� ¼
f kTsð Þ is also called mathematical sampling. The sequence f ½k� can be derived by

impulse modulation according to

f �ðtÞ ¼
X1

n¼�1

f nTsð Þd t � nTsð Þ; ð11:1Þ

where f �ðtÞ is a sequence of DIRAC-impulses, and f ½k� is a sequence of numbers

made out from the area of these DIRAC-impulses. Figure 11.4 shows the impulse

modulation supposing f nTsð Þ � 0, ðn\0Þ. Applying mathematical sampling, fun-

damental analysis can be carried out in the frequency domain. The analysis also

points out the necessity of appropriate sampling according to the sampling theorem.

x[k]x(t)

Open

Closed

Ts

} 

Fig. 11.3 Periodically

controlled switch symbolizing

the operation of the A/D

converter
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Consider a CT signal f ðtÞ with a frequency spectrum of FðjxÞ. The theorem of

signals and systems specifies the frequency spectrum of f �ðtÞ to be

F�ðjxÞ ¼
1

Ts

X1

k¼�1

F jxþ jkxsð Þ; ð11:2Þ

where xs ¼ 2p=Ts is the sampling radian frequency.

It is seen that the FOURIER transform of the sampled signal is a sum of the side

frequency components exhibited by F jxþ jkxsð Þ. The frequency folding phe-

nomenon is avoided if xs � 2xmax (or xs=2�xmax) holds, where xmax is the

maximum frequency of the band limited f ðtÞ CT signal. The frequency xs=2 is of

great importance for the spectrum of the sampled CT signal, and is also called the

NYQUIST frequency. The phenomenon is presented by the Figs. 11.5, 11.6 and 11.7,

where the spectrum of the CT signal, the spectrum of an appropriately sampled DT

signal, as well as the spectrum of the inappropriately sampled signal are shown,

respectively. Figure 11.8 explains how a non-existing (alias) signal may appear as a

consequence of a slow sampling rate. In this example the slow sampling rate

applied to the high frequency sinusoidal signal produces samples, which can be

interpreted as samples of a non-existing, low frequency sinusoidal component. In a

closed-loop control system, control actions to compensate this low frequency

component are unnecessary and would only induce an additional disturbance in the

closed-loop. To avoid aliasing, a low pass filter (also called an anti-aliasing filter)

must be placed between the measured output signal and the A/D converter. The

fundamental component of the spectrum of the DT signal is

F�ðjxÞ ¼
1

Ts
FðjxÞ: ð11:3Þ

×

Ts0 2Ts

Ts0 2Ts

t

t

t

Σ δ (t-nTs)

Fig. 11.4 Impulse modulation
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Fig. 11.5 Spectrum of a CT signal

Fig. 11.6 Spectrum of a DT signal assuming an appropriate sampling rate

Fig. 11.7 Spectrum of a DT signal assuming an inappropriately low sampling rate
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11.2 Holding

Signals in a sampled data control loop form a hybrid system simultaneously pre-

senting CT and DT signals. From a systems engineering point of view a, CT

process and the resulting DT signal processing in the controller should be interfaced

to each other. Sampling performs the continuous-discrete transformation. However,

a functional unit to perform the discrete-continuous transformation should inevi-

tably be inserted into the loop to ensure closed-loop operation. The holding unit is

also a controlled element to receive and decode a digital input signal, as well as to

produce a CT approximation between two samples. As far as the nature of the

approximation is concerned (constant, linear, quadratic, etc.), there is no general

requirement. However, the easy realization of the constant approximation

(zero-order holding) has become a practical standard. Applying a zero-order

holding (ZOH) unit results in a staircase waveform for the CT output (see

Fig. 11.9). Note that MATLAB® offers the application of the stairs function to

perform a ZOH discrete-continuous transformation.

Fig. 11.8 Appearance of the non-existing component according to the low sampling rate

Fig. 11.9 Application of a

ZOH unit
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As mentioned earlier, the signal dynamics between two sampling instants is not

limited to be a constant, but it could follow a first- or second-order course. In the

case of first-order holding, the output of the holding unit is determined by a straight

line defined by the last two sampled data (see Fig. 11.10). As in practice zero order

holding satisfies all the requirements, holding with higher-order approximations

will not be considered in the sequel.

The mathematical description of the ZOH unit should comply with the operation

shown by Fig. 11.11. Consider the impulse response of the ZOH unit:

1ðtÞ � 1 t � Tsð Þ. As the unit step response is produced by an integrator driven by a

DIRAC impulse and the delay by Ts can be taken into account by a transfer function

of e�sTs , Fig. 11.12 allows seeing that the transfer function of the ZOH unit is

WZOHðsÞ ¼
1

s
�
e�sTs

s
¼

1� e�sTs

s
ð11:4Þ

Once its transfer function is known, the frequency function of the ZOH unit can

easily be determined (see A.11.3 of Appendix A.11.1). Some fundamental

frequency domain properties of the ZOH unit, however, can be discovered using the

following TAYLOR series approximation in the low-frequency domain:

Fig. 11.10 Application of a first order holding unit

Fig. 11.11 Impulse response

of the ZOH unit
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WZOHðsÞ ¼
1� e�sTs

s
ffi

1� 1� sTs þ
s2T2

s

2
� � � �

� �

s
	 Ts 1�

sTs

2
þ � � �

� �

	 Tse
�sTs=2

ð11:5Þ

According to the discussion of the spectral properties of sampled data systems in

Sect. 11.1, the frequency function of a CT system built up as a series connection of

a ZOH unit and a CT process given by a transfer function HðsÞ can well be

approximated as

HdðjxÞ ¼
1

Ts
~HðjxÞ 	

1

Ts
Tse

�jxTs=2HðjxÞ ¼ e�jxTs=2HðjxÞ; ð11:6Þ

where ~H is the approximate transfer function of the joint ZOH unit and the given

CT system. The low-frequency approximation indicates that the ZOH unit inserts a

delay by Ts=2 into the loop. As pointed out earlier, the appearance of any delay in

the loop is an unwanted effect in the control loop both considering the stability of

the closed-loop system and the quality of its transient response. It is to be

emphasized, however, that the application of a holding unit is an absolutely

inevitable element in the control loop to interface the DT and CT signal domains.

Fig. 11.12 Impulse response components of the ZOH unit
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The physical arrangement in Fig. 11.13 verifies the validity of the above

approximation. Samples of a sinusoidal CT signal drive a ZOH unit. The output of

the ZOH unit is a staircase signal whose fundamental harmonic component has also

been drawn together with the original sinusoidal CT signal. The exact phase delay

between these two sinusoidal signals depends on the sampling time. However, the

approximation according to a delay of Ts=2 is rather convincing.

Selecting the sampling time is certainly a new aspect of DT design in com-

parison with simple CT systems. This issue will be discussed later on. However,

selecting a sampling frequency xs, a NYQUIST frequency of xN ¼ xs=2 is also

selected, which will suggest the application of a proper low-pass filter to avoid

frequency folding. That is, the low-pass filter should pass a highest frequency

component xmax to satisfy the xN �xmax condition. A detailed block diagram of a

closed-loop sampled data control system is drawn in Fig. 11.14. The time-domain

behavior of the signals involved are also shown.

Ts

ZOH

t t t

Fig. 11.13 Scheme to demonstrate the delay of the ZOH unit

Fig. 11.14 Detailed block diagram of a closed-loop sampled data control system
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11.3 Description of Discrete-Time Signals,

the z-Transformation and the Inverse

z-Transformation

The z-transformation is a widely used way to describe DT signals and systems.

Given a sequence f ½k� ðk ¼ 0; 1; 2; . . .Þ of data, its z-transform is defined by the

infinite series

Z f ½k�f g ¼
X1

k¼0

z�kf ½k� ¼ f ½0� þ z�1f ½1� þ z�2f ½2� þ � � � ; ð11:7Þ

where z is the complex valued operator of the transformation. Note that f ½k� is
assumed to be a positive-time-function, i.e., f ½k� � 0, ðk\0Þ. Though Z f ½k�f g is a

function of z�1, in practice the notation FðzÞ ¼ Z f ½k�f g is used for z-transforms.

The region of convergence (ROC) in the complex plane is given by a circle of

radius R1. The infinite series in (11.7) is assumed to be convergent outside of the

circle given by R1, i.e., FðzÞ ¼ f 0½ � þ z�1f 1½ � þ z�2f 2½ � þ � � � is convergent for

zj j[R1.

Discussing CT closed-loop control systems, the application of the LAPLACE

transformation turned out to be a very useful tool both for analysis and design,

provided that inverse LAPLACE transformation capabilities are also available. In a

similar way inverse z-transformation techniques are to be developed for DT system

analysis and design. An analytical expression for the inverse z-transformation is

given by the following integral:

f ½k� ¼ Z�1 FðzÞf g ¼
1

2pj

I

R2

FðzÞzk�1dz; ð11:8Þ

where the integration runs along the circle R2 around the origin in the complex

plane with a radius allowing all the poles of FðzÞzk�1 to be within the circle. The

inversion integral above is of theoretical importance. The proof of (11.8) is given in

A.11.2 of Appendix A.5.

11.3.1 Basic Properties of the z-Transformation

Consider a DT signal f ½k� k¼ 0; 1; 2;. . .ð Þ with the z-transform of FðzÞ ¼ Z f ½k�f g.

Multiplication by a constant coefficient

If c is a constant coefficient, then the z-transform of g½k� ¼ cf ½k� k¼ 0; 1; 2;. . .ð Þ is
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Z g½k�f g ¼
X1

k¼0

z�kg½k� ¼ cf 0½ � þ z�1cf 1½ � þ z�2cf 2½ � þ � � � ¼ c
X1

k¼0

z�kg 0½ �

¼ cFðzÞ:

ð11:9Þ

Linearity

If c1 and c2 are constant coefficients, we have

Z c1f1½k� þ c2f2½k�f g ¼
X1

k¼0

z�k c1f1½k� þ c2f2½k�ð Þ ¼ c1F1ðzÞþ c2F2ðzÞ; ð11:10Þ

which is considered as the linearity property for the z-transform: the z-transform of

the linear combination of two signals is equal to the linear combination of the z-

transforms of the signals involved.

Shift in the time-domain

Find the z-transform of f ½k � n�, where f ½k � n� is derived from a DT signal f ½k� by
a delay of n steps, assuming that n is a positive integer. For the delayed signal

Z f k � n½ �f g ¼ z�nFðzÞ ð11:11Þ

holds, as introducing m ¼ k � n and taking note of the fact that f ½m� � 0, ðm\0Þ,

Z f ½k � n�f g ¼
X1

k¼0

f ½k � n�z�k ¼ z�n
X1

k¼0

f ½k � n�z� k�nð Þ

¼ z�n
X1

m¼�n

f m½ �z�m ¼ z�n
X1

m¼0

f m½ �z�m ¼ z�nFðzÞ

follows. In a similar way, assuming n is a negative integer, a bit more involved

relation can be derived for advanced signals:

Z f ½kþ n�f g ¼
X1

k¼0

f ½kþ n�z�k ¼ zn
X1

k¼0

f ½kþ n�z� kþ nð Þ

¼ zn
X1

k¼0

f ½kþ n�z� kþ nð Þ þ
Xn�1

k¼0

f ½k�z�k �
Xn�1

k¼0

f ½k�z�k

( )

¼ zn
X1

k¼0

f ½k�z�k �
Xn�1

k¼0

f ½k�z�k

( )
¼ zn FðzÞ �

Xn�1

k¼0

f ½k�z�k

( )

¼ znFðzÞ � znf 0½ � � zn�1f 1½ � � � � � � zf n� 1½ �:
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Multiplication by ak

Given FðzÞ as the z-transform of f ½k� the z-transform of the DT signal akf ½k� is

Z akf ½k�
� �

¼
X1

k¼0

akf ½k�z�k ¼
X1

k¼0

f ½k� a�1z
� 	�k

¼ F a�1z
� 	

: ð11:12Þ

Observe that the above derivation even allows a to be complex. Also, intro-

ducing a ¼ e�b, the multiplication rule can be expressed in the following form:

Z e�bkf ½k�
� �

¼
X1

k¼0

e�bkf ½k�z�k ¼
X1

k¼0

f ½k� ebz
� 	�k

¼ F ebz
� 	

: ð11:13Þ

11.3.2 The z-Transformation of Elementary Time Series

In the sequel, the z-transforms of a few elementary DT signals will be derived.

Unit impulse: f ½k� � 1; k ¼ 0, otherwise f ½k� � 0

Z f ½k�f g ¼
X1

k¼0

z�kf ½k� ¼ 1þ
X1

k¼1

z�k0 ¼ 1: ð11:14Þ

Unit step: f ½k� � 1 ðk ¼ 0; 1; 2; . . .Þ and f ½k� � 0, ðk\0Þ
Apply the relation valid for the sum of a geometric series provided the

ROC zj j[ 1:

Z f ½k�f g ¼
X1

k¼0

z�kf ½k� ¼
X1

k¼0

z�k1 ¼
1

1� z�1
¼

z

z� 1
: ð11:15Þ

Unit ramp: f ½k� � kTs ðk ¼ 0; 1; 2; . . .Þ
Again, provided the ROC is zj j[ 1, we have

Z f ½k�f g ¼
X1

k¼0

z�kf ½k� ¼
X1

k¼0

z�kkTs ¼ Tsz
�1 1þ 2z�1 þ 3z�2 þ � � �
� 	

¼ Tsz
�1 1

1� z�1ð Þ2
¼

Tsz

z� 1ð Þ2

ð11:16Þ

Power function: f ½k� � ak ðk ¼ 0; 1; 2; . . .Þ where a is a complex constant.

Provided the ROC is zj j[ aj j, Z f ½k�f g turns out to be

Z f ½k�f g ¼
X1

k¼0

z�kf ½k� ¼
X1

k¼0

z�kak ¼
1

1� az�1
¼

z

z� a
: ð11:17Þ

Applying the rule developed earlier for the multiplication by ak, the above

relation can be derived in a straightforward way:
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Z ak
� �

¼ Z ak1½k�
� �

¼
z

z� 1






z:¼a�1z

¼
a�1z

a�1z� 1
¼

1

1� az�1
:

Exponential function: f ½k� � e�akTs ðk ¼ 0; 1; 2; . . .Þ
Using the relation derived for the power function, assuming the ROC is

zj j[ e�aTsj j,

Z f ½k�f g ¼
X1

k¼0

z�kf ½k� ¼
X1

k¼0

z�ke�akTs ¼
1

1� e�aTsz�1
¼

z

z� e�aTs
: ð11:18Þ

Sinusoidal function: f ½k� � sin xkTsð Þ ðk ¼ 0; 1; 2; . . .Þ
Applying the relation obtained earlier for the exponential function with

sin xkTsð Þ ¼
1

2j
ejxkTs � e�jxkTs
� 	

ð11:19Þ

and assuming the ROC is zj j[ 1, the following relation can be derived:

Z f ½k�f g ¼
X1

k¼0

z�ksin xkTsð Þ ¼
zsin xTsð Þ

z2 � 2z cos xTsð Þþ 1
: ð11:20Þ

The results derived so far, together with some extensions are summarized in

Table 11.1.

Table 11.1 LAPLACE and z-transforms of some functions

FðsÞ f ðtÞ f ½k� ¼ f kTsð Þ FðzÞ

1 dðtÞ d½k� 1

1
s

1ðtÞ 1½k� z

z� 1

1

sþ a

e�at
e�akTs z

z� e�aTs

1

s2
t kTs Tsz

ðz� 1Þ2

1

ðsþ aÞ2
te�at

kTse
�akTs Tse

�aTs z

z� e�aTsð Þ2

1

s3
t2 kTsð Þ2 T2

s zðzþ 1Þ

ðz� 1Þ3

b� a

ðsþ aÞðsþ bÞ
e�at � e�bt e�akTs � e�bkTs e�aTs � e�bTs

� 	
z

z� e�aTsð Þ z� e�bTsð Þ
x

s2 þx2

sinðxtÞ sin xkTsð Þ z sin xTsð Þ

z2 � 2z cos xTsð Þþ 1

s

s2 þx2
cosðxtÞ cos xkTsð Þ z2 � z cos xTsð Þ

z2 � 2z cos xTsð Þþ 1
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As far as the application of the this table is concerned an important comment

should be added here. Table 11.1 contains four columns. However, an unambiguous

mapping exists only for the pairs of f ðtÞ $ FðsÞ and f ½k� $ FðzÞ. More precisely,

given a CT signal f ðtÞ, the table always indicates a z-transformFðzÞ, however, given a
z-transform by FðzÞ, only a CT signal can be obtained, whose samples are only

defined at the sampling instants. In such a way a number of CT signals can be derived

with diverse intersampling behavior.

11.3.3 The Inverse z-Transformation

Assume that FðzÞ is the z-transform of the DT signal f ½k�. Here we ask the question of
how to find the DT signal f ½k� once FðzÞ is given. This task is called the inverse z-

transformation. In theory, the answer to our question has already been formulated by

f ½k� ¼ Z�1 FðzÞf g ¼
1

2pj

I

R2

FðzÞzk�1dz: ð11:21Þ

In practice one of the following three options are used:

Polynomial division

Assume FðzÞ ¼ 10z= z� 1ð Þ z� 0:2ð Þ½ � then divide the polynomial in the numerator

by the polynomial in the denominator and read the samples of f ½k� ðk ¼ 0; 1; 2; . . .Þ
as the coefficients obtained along the division:

ð10zÞ: z2 � 1:2zþ 0:2
� 	

¼f ½0� þ z�1f ½1� þ z�2f ½2� þ � � �

Thus for the first few samples f ½0� ¼ 0; f ½1� ¼ 10; f ½2� ¼ 12; f ½3� ¼ 12:4 are

obtained. The method is not quite efficient. In addition there are CAD tools leading

to numerical results in a far more efficient way.

Calculating the DT impulse response

Consider FðzÞ as an impulse response function (see later on the pulse transfer

function) between a DT input signal with a z-transform of UðzÞ and a response with

a z-transform of YðzÞ:

YðzÞ ¼ FðzÞUðzÞ: ð11:22Þ

Applying a unit impulse input with UðzÞ ¼ 1, then for the z-transform of the

response YðzÞ ¼ FðzÞ. The calculated samples obviously match the values obtained

by polynomial division.

Partial Fractional Expansion (PFE)

The key point here is to decompose FðzÞ to a sum of components existing in tables

of z-transform pairs. Observe the structure of FðzÞ in the rightmost column of

Table 11.1. To ensure the appearance of z in the numerator set up the PFE form as

follows:
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FðzÞ

z
¼

co

z
þ

c1

z� p1
þ

c2

z� p2
þ � � � þ

cn

z� pn
: ð11:23Þ

In this decomposition simple real poles have been assumed. As an example,

consider

FðzÞ

z
¼

12:5

z� 1
�

12:5

z� 0:2
or FðzÞ ¼

12:5z

z� 1
�

12:5z

z� 0:2
;

which lead to

f ½k� ¼ Z�1 FðzÞf g ¼ Z�1 12:5z

z� 1
�

12:5z

z� 0:2

� �
¼ 12:5 1� 0:2k

� 	
; k¼ 0; 1; 2;. . .

Observe that unlike the first two methods, the PFE delivers f ½k� in analytical

form, so its value can be easily computed for arbitrary k� 0.

Handling complex poles

Setting up the PFE form becomes more involved in the case of complex poles of

FðzÞ even for a simple complex pole pair.

Example 11.1 Consider

FðzÞ ¼
z3 þ 1

z3 � z2 � z� 2
:

Following the PFE procedure,

FðzÞ

z
¼ �

0:5

z
þ

0:643

z� 2
þ

c

z� p
�

�c

z� �p
;

is obtained, where c ¼ 0:429þ j0:0825 and p ¼ �0:5� j0:866, and �c and �p denote

their complex conjugate values, respectively. Evaluating the last two terms as one

second-order component, two sinusoidal components can be reconstructed based on

the last two rows in Table 11.1. Combining these two sinusoidal components into

one single sinusoidal form yields

f ½k� ¼ �0:5d½k� þ 0:643ð2Þk þ cðpÞk þ�cð�pÞk

¼ �0:5d½k� þ 0:643ð2Þk þ cos
4p

3
þ 10:89


� �
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by using the trigonometric identity

cðpÞk þ�c �pð Þk¼ 2Crkcos XkþHð Þ;

where c ¼ CejH and p ¼ rejX. �

Handling multiple poles

Example 11.2 The discussion concerning repeated poles will be reduced to a

numerical example. Consider

FðzÞ ¼
6z3 þ 2z2 � z

z3 � z2 � zþ 1
:

The structure of the PFE is governed by the poles of FðzÞ. In this case p1;2 ¼ 1

and p3 ¼ �1, i.e., p1;2 ¼ 1 is a double pole. Accordingly,

FðzÞ

z
¼

5:25

z� 1
þ

3:5

ðz� 1Þ2
þ

0:75

zþ 1
:

Observe that in the PFE form the repeated pole shows up in single and double

forms, as well. The inverse z-transformation then leads to

f ½k� ¼ 5:25ð1Þk þ 3:5kþ 0:75ð�1Þk; k ¼ 0; 1; 2; . . .: �

General method for single poles

If the LAPLACE-transform of a CT signal has the form FðsÞ ¼ F zðsÞ=F pðsÞ, where
F zðsÞ and F pðsÞ are the numerator and denominator of FðsÞ, respectively, then the

z-transform of the sampled signal is given by

FðzÞ ¼
Xn

i¼1

F z pið Þ

F 0
p pið Þ

z

z� epiTs
¼

Xn

i¼1

F z pið Þ

F 0
p pið Þ

1

1� epiTsz�1
: ð11:24Þ

For single poles the simple ‘cover up’ technique to determine the residues can be

used

1

F 0 pið Þ
¼ lim

s!pi
s� pið Þ

1

F pðsÞ
ð11:25Þ

to ease the evaluation of FðzÞ. The application of this method assumes that the

denominator is available in factored form. One component of the sum can be

calculated by covering up s� pi and substituting s ¼ pi in the rest.
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11.3.4 Initial and Final Value Theorems

Once FðzÞ is given, the initial and final value theorems provide tools to determine

f ½0� and lim
k!1

f ½k� in a direct way, without performing the inverse z-transformation.

Initial value theorem ðk ! 0Þ

Starting from the definition of the z-transform

Z f ½k�f g ¼
X1

k¼0

z�kf ½k� ¼ f ½0� þ z�1f ½1� þ z�2f ½2� þ � � �

it can be seen that f ½0� can be easily determined as z ! 1:

f ½0� ¼ lim
z!1

FðzÞ: ð11:26Þ

Final value theorem ðk ! 1Þ

The basic idea is to separate the ‘last’ element of the sequence f ½0� by subtracting

the original and the delayed sequences:

lim
k!1

f ½k� ¼ lim
z!1

FðzÞ � z�1FðzÞ
� �

¼ f ½0� þ f ½1� þ f ½2� þ � � �ð Þ � f �1½ � þ f ½0� þ f ½1� þ � � �ð Þ:

Assuming positive-time-functions ðf ½k� ¼ 0; k\0Þ results in

lim
k!1

f ½k� ¼ lim
z!1

1� z�1
� 	

FðzÞ
� �

: ð11:27Þ

The final value theorem can only be applied if the signal has a steady state value.

11.4 Description of Sampled Data Systems

in the Discrete-Time and in the Operator

and Frequency Domain

Discussing CT systems, the need for an abstract system description for closed-loop

analysis and design was seen. Considering sampled data systems, the value of the

control input and that of the samples of the output only change at the sampling

instants. It seems to be reasonable then to create a mathematical model to describe

the system behavior only at the sampling instants. The process of describing the

behavior of a sampled CT system will be referred to as discretization. As a starting
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point, the state-space description will be discussed, then the methods of the impulse

response function (pulse transfer function) and the difference equation will be

derived. This triple is in complete harmony with the triple used for CT systems

(state-space, transfer function, differential equation).

11.4.1 The State-Space Model

Assume the LTI state-space model of the CT system to be discretized along with a

sampling time of Ts (see 3.10):

_xðtÞ ¼ AxðtÞþ buðtÞ

yðtÞ ¼ cTxðtÞþ duðtÞ
ð11:28Þ

The solution of the state equation as discussed earlier for CT systems (3.2.1)

with the initial time to and the initial state vector x toð Þ is

xðtÞ ¼ eA t�toð Þx toð Þþ

Z t

to

eA t�sð ÞbuðsÞds ¼ eA t�toð Þx toð Þþ

Z t

to

eA t�sð ÞuðsÞds

2
4

3
5b:

ð11:29Þ

Assuming that the discretized model will contain a ZOH unit (in other words the

continuous control input will be a staircase function) perform the integration from

kTs to ðkþ 1ÞTs:

x kTs þ Tsð Þ ¼ eATsx kTsð Þþ

ZkTs þ Ts

kTs

eA kTs þTs�sð ÞbuðsÞds

¼ eATsx kTsð Þþ bu kTsð Þ

ZkTs þTs

kTs

eA kTs þ Ts�sð Þds

¼ eATsx kTsð Þþ u kTsð Þ

ZTs

0

eAkdk

2
4

3
5b

The above manipulations used the fact that uðsÞ ¼ constant within each sam-

pling period kTs � s\ kþ 1ð ÞTs½ �ð Þ, that is, uðsÞ ¼ u kTsð Þ. Furthermore, to simplify

the evaluation of the integral, k ¼ kTs þ Ts � s has been introduced. Using the

standard notations x kTs þ Tsð Þ ¼ x½kþ 1�, x kTsð Þ ¼ x½k� and u kTsð Þ ¼ u½k�, the

above equation can be rewritten as
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x½kþ 1� ¼ eATsx½k� þ

ZTs

0

eAkdk

2
4

3
5bu½k�: ð11:30Þ

Introducing the parameter matrices for the discretized model

F ¼ eATs and g ¼

ZTs

0

eAkdk b ð11:31Þ

the following discretized state-model is obtained: x½kþ 1� ¼ Fx½k� þ gu½k�. Note
that if A is invertible, then the integration in the expression for g can be carried out

and this leads to the closed-form formula g ¼ A�1 eATs � I
� 	

b. The output equation

of the CT state-model of yðtÞ ¼ cTxðtÞþ duðtÞ can simply be sampled by substi-

tuting t ¼ kTs:

y kTsð Þ ¼ cTx kTsð Þþ du kTsð Þ

or, to emphasize the DT nature of the model,

y½k� ¼ cTx½k� þ du½k�: ð11:32Þ

The DT state-model can be summarized as follows. The DT state difference

equation

x kþ 1½ � ¼ Fx½k� þ gu½k� ð11:33Þ

and the DT output equation according to (11.32) form the DT state-model for

k ¼ 0; 1; 2; . . .. Comparing the DT state-model with the CT state-model, (11.31)

shows how to derive the parameter matrices of the DT state difference equation

from the parameter matrices of the CT state-model, while the parameters of the

output equation (cT and d) are identical for the DT and CT state-models. The matrix

F will be called the state transition matrix, in particular assuming zero excitation, it

governs the transition between x½k� and x½kþ 1� according to

x½kþ 1� ¼ Fx½k�: ð11:34Þ

Example 11.3 To study the nature of the operations while discretizing a system and

the influence of the sampling time on these operations, consider a second order

example, namely a double integrator. Select the state variables as shown in

Fig. 11.15.

u(t) x2(t) y(t) =x1(t)
1

s

1

s

Fig. 11.15 CT double

integrator
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The CT state equations:

_x1ðtÞ ¼ x2ðtÞ

_x2ðtÞ ¼ uðtÞ

The CT state-model:

_xðtÞ ¼
_x1ðtÞ
_x2ðtÞ


 �
¼

0 1

0 0


 �
x1ðtÞ
x2ðtÞ


 �
þ

0

1


 �
uðtÞ ¼ AxðtÞþ buðtÞ;

hence

F ¼ eATs ¼ e

0 1

0 0


 �
Ts

:

To determine the above matrix exponential evaluate the infinite series (see 3.20

and 3.26)

eATs ¼ IþATs þ
1

2
A2T2

s þ � � �

note that Ak ¼ 0 ðk� 2Þ, thus

eATs ¼ IþATs þ
1

2
A2T2

s þ � � � ¼ IþATs ¼
1 0

0 1


 �
þ

0 Ts
0 0


 �
¼

1 Ts
0 1


 �

and

g ¼

ZTs

0

eAkdk b ¼

ZTs

0

1 k

0 1


 �
dk

0

1


 �
¼

ZTs

0

k

1


 �
dk ¼

T2
s =2
Ts


 �
:

In the case of higher order systems the application of CAD tools is advised. �

Given the initial state x½0�, the solution of the state difference equation is well

known from the theory of “Signals and Systems”:

x½k� ¼ Fkx½0� þ
Xk�1

m¼0

Fk�m�1gu m½ �; ð11:35Þ

where the first term depends on the initial value of the state vector, while the second

is a weighted sum of the input samples at 0; 1; . . .; k � 1ð Þ. It can be seen that in the

above solution the F state transition matrix plays a key role. It will be shown later

on that F has a fundamental role in determining other important system properties,

like stability, as well.
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11.4.2 Input-Output Models Based on the Shift Operator

The input-output models will be presented according to the operators used to

describe the relation between the input and output samples. First an expressive

modeling approach based on the application of the shift operator will be shown.

This approach directly supports the discussion using the concept of difference

equations. Just as the LAPLACE-transform played a fundamental role in the

description of CT systems, the application of z-transforms will be useful for DT

systems.

Discussing CT systems, it has been shown that an input-output model given by a

differential equation or by a transfer function can be transformed into an infinite

number of input-output equivalent state-models. On the contrary, input-output

equivalent state-models always exhibit one single input-output model. This prop-

erty is valid for DT systems, as well. To present this property, first introduce the

shift operator according to

qx½k� ¼ x½kþ 1� k ¼ . . .;�1; 0; 1; . . .ð Þ: ð11:36Þ

The function of the q operator is to advance a scalar- or vector-valued DT

sequence x½k� by one single step. The repeated application of the shift operator leads
to advancing the sequence by several steps. E.g., for m steps,

qmx½k� ¼ x kþm½ � k¼. . .;�1; 0; 1;. . .ð Þ ð11:37Þ

is to be applied. A delay can be realized by using the inverse of the operator q:

q�1x½k� ¼ x k � 1½ � k ¼ . . .;�1; 0; 1; . . .ð Þ ð11:38Þ

or

q�mx½k� ¼ x k � m½ � k¼. . .;�1; 0; 1;. . .ð Þ:

In the sequel, the operator q�1 will be referred to as the delay or shift operator.

Apply q to the DT state-model:

x½kþ 1� ¼ qx½k� ¼ Fx½k� þ gu½k�

y½k� ¼ cTx½k� þ du½k�
ð11:39Þ

Solving for x½k�

x½k� ¼ qI � Fð Þ�1
gu½k� ð11:40Þ

allows rewriting the output equation as

372 11 Sampled Data Control Systems



y½k� ¼ cT qI � Fð Þ�1
gu½k� þ du½k� ¼ cT qI � Fð Þ�1

gþ d
h i

u½k�: ð11:41Þ

The dependence of the output sequence on the input sequence can be expressed

by

y½k� ¼ GðqÞu½k� ¼ cT qI � Fð Þ�1
gþ d

h i
u½k�; ð11:42Þ

where GðqÞ, the transfer function operator, has been introduced. Analyzing GðqÞ, it
can be seen that it is a rational function

GðqÞ ¼ cT qI � Fð Þ�1
gþ d ¼ cT

adj qI � Fð Þ

det qI � Fð Þ
gþ d ¼

BðqÞ

AðqÞ
; ð11:43Þ

where det qI � Fð Þ and cTadj qI � Fð Þg are polynomials in the operator q with real

coefficients:

AðqÞ ¼ det qI � Fð Þ ¼ qn þ a1q
n�1 þ � � � þ an

BðqÞ ¼ boq
nB þ b1q

nB�1 þ � � � þ bnB
ð11:44Þ

As far as the degrees of the introduced polynomials AðqÞ and BðqÞ are con-

cerned, n is the number of the state variables, while nB is subject to the constraint

nB � n. For d ¼ 0, which holds for most systems, (11.43) is a strictly proper

rational function, so it is reasonable to rewrite (11.44) for nB ¼ n� 1 as

AðqÞ ¼ det qI � Fð Þ ¼ qn þ a1q
n�1 þ � � � þ an

¼ qn 1þ a1q
�1 þ � � � þ anq

�n
� 	

¼ qnA q�1
� 	

BðqÞ ¼ b1q
n�1 þ b2q

n�2 þ � � � þ bn

¼ qn b1q
�1 þ b2q

�2 þ � � � þ bnq
�n

� 	
¼ qnB q�1

� 	
ð11:45Þ

Similarly to the terminology introduced for CT systems, the roots of AðqÞ ¼ 0

will be called the DT poles and the roots of BðqÞ ¼ 0 will be called the DT zeros.

Based on the introduced polynomials and utilizing the time domain interpreta-

tion of the shift operator, another model of DT systems, namely the difference

equation model, can be derived. As discussed earlier,

y½k� ¼ GðqÞu½k� ¼
BðqÞ

AðqÞ
u½k�; ð11:46Þ
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which can be written as

AðqÞy½k� ¼ BðqÞu½k�: ð11:47Þ

Further substitution gives

qn þ a1q
n�1 þ � � � þ an

� 	
y½k� ¼ b1q

n�1 þ b2q
n�2 þ � � � þ bn

� 	
u½k� ð11:48Þ

and finally

y½kþ n� þ a1y kþ n� 1½ � þ � � � þ any½k� ¼ b1u kþ n�1½ � þ b1u kþ n� 2½ � þ � � � þ bnu½k�:

Divide both sides of (11.48) by qn:

1þ a1q
�1 þ � � � þ anq

�n
� 	

y½k� ¼ b1q
�1 þ b2q

�2 þ � � � þ bnq
�n

� 	
u½k� ð11:49Þ

and rearrange it

y½k� ¼ b1u k � 1½ � þ b2u k � 2½ � þ � � � þ bnu½k � n� � a1y k � 1½ � � � � � � any½k � n�

ð11:50Þ

which is the input-output difference equation. Another interpretation suggests

considering (11.50) as a recursive formula to calculate the output sample. It can be

seen that to derive the recursive formula, the polynomials of (11.50) have been used

in their form arranged by q�1. Thus the pulse transfer function operator can

equivalently be defined as follows:

G q�1
� 	

¼
B q�1ð Þ

A q�1ð Þ
¼

B q�1ð Þ

1þ eA q�1ð Þ
; ð11:51Þ

which is also called the filter form, for based on (11.51) the recursive formula by

(11.50) can always be derived:

y½k� ¼ B q�1
� 	

u½k� � ~A q�1
� 	

y½k�

¼ b1u k � 1½ � þ b1u k � 2½ � þ � � � þ bnu½k � n� � a1y k � 1½ � � � � � � any½k � n�

ð11:52Þ

which is linear-in-the-parameters ai; bif g and ready to be implemented in a com-

puting environment.

Example 11.4 Find the pulse transfer function operator GðqÞ for the double inte-

grator discussed earlier in Example 11.3. Apply Ts ¼ 1:
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GðqÞ ¼ cT qI � Fð Þ�1
gþ d ¼ 1 0½ �

q� 1 �1

0 q� 1


 ��1
0:5
1


 �
¼

0:5ðqþ 1Þ

ðq� 1Þ2

¼
0:5qþ 0:5

q2 � 2qþ 1
:

Both poles of the system are equal to pd1;2 ¼ 1, while the single zero is zd ¼ �1.

�

11.4.3 Modeling Based on the z-Transformation

The z-transform of a DT sequence f ½k�; ðk ¼ 0; 1; 2; . . .Þ is defined as follows:

Z f ½k�f g ¼
X1

k¼0

z�kf ½k� ¼ f ½0� þ z�1f ½1� þ z�2f ½2� þ � � � ; ð11:53Þ

It can be shown that the complex variable of the z-transform (z) is in a close

relationship with the complex variable of the LAPLACE-transform (s). As a guiding

principle, a discretization is looked for where the values attached to the sequence of

impulses are identical to those obtained from sampling. The theory of hybrid

systems calls this principle impulse invariance. Consider the mathematically

sampled form of a CT signal f ðtÞ:

f �ðtÞ ¼
X1

m¼0

f mTsð Þd t � mTsð Þ; ð11:54Þ

then find the LAPLACE-transform of f �ðtÞ:

L f �ðtÞf g ¼ L
X1

m¼0

f mTsð Þd t � mTsð Þ

( )
¼ f 0ð Þþ f Tsð Þe�sTs þ f 2Tsð Þe�2sTs þ � � �

Note that f �ðtÞ is a DT signal. To comply with the impulse invariance principle

L f �ðtÞf g ¼ Z f ½k�f g ð11:55Þ

is obtained, which leads to

f 0ð Þþ f Tsð Þe�sTs þ f 2Tsð Þe�2sTs þ � � � ¼ f ½0� þ z�1f ½1� þ z�2f ½2� þ � � � ;

implying that
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z ¼ esTs : ð11:56Þ

To emphasize the importance of the relation z ¼ esTs find the stability region for

DT systems. For CT systems, the left half-plane of the s ¼ rþ jx complex plane

turned out to be the stability region concerning the poles of the CT system. The

z ¼ esTs maps this left half-plane into the unit disc in the complex z-plane. To see

this, observe that z ¼ esTs maps the borderline of the stability of the s-plane s ¼
jx ð�1\x\1Þ to the unit circle. As the frequency increases the region of sta-

bility is to the left of the borderline in the s-plane, so will happen in the z plane.

More exactly, sampling will map the fundamental band �p=Ts\x\p=Ts in the

s half-plane into the unit disc (bands outside the fundamental band repeat them-

selves). The two lines parallel to the negative real axis in the s-plane at x ¼ �jp=Ts
will be transformed to one single line (the negative real axis of the z-plane). Poles

according to the limit of the SHANNON sampling law will be transformed to the

negative real axis of the z-plane.

The simple basic building blocks for DT models can be determined by

approximating the CT operators while acting on the sequence of sampled data. Start

with simple differentiation.

Backward difference:

Based on

dy

dt
	

y½k� � y k � 1½ �

Ts
¼

1� z�1

Ts
y½k� ð11:57Þ

the operator HDðsÞ ¼ s for differentiation has a DT equivalent by,

GDðzÞ ¼
z� 1

Tsz
¼

1� z�1

Ts
: ð11:58Þ

Forward difference:

dy

dt
	

y½kþ 1� � y½k�

Ts
¼

z� 1

Ts
y½k� ¼

1� z�1

Tsz�1
y½k�; ð11:59Þ

suggests using

GDðzÞ ¼
z� 1

Ts
¼

1� z�1

Tsz�1
: ð11:60Þ

as the DT equivalent of the CT differentiation.
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Consider now the simple integration by HIðsÞ ¼ 1=s:

Right hand rectangular rule:

yðtÞ ¼

Z t

0

uðsÞds 	
Xk

i¼0

u ið ÞTs ¼ Ts
Xk

i¼0

u ið Þ ¼ y½k� ¼ y k � 1½ � þ Tsu½k�; ð11:61Þ

allows setting up the following recursive formula:

y½k� � y k � 1½ � ¼ 1� z�1
� 	

y½k� ¼ Tsu½k�: ð11:62Þ

Consequently,

GIðzÞ ¼
Ts

1� z�1
¼

Tsz

z� 1
: ð11:63Þ

Left hand rectangular rule:

yðtÞ ¼

Z t

0

uðsÞds 	
Xk

i¼0

u ið ÞTs ¼ Ts
Xk

i¼0

u ið Þ ¼ y½k� ¼ y k � 1½ � þ Tsu k � 1½ �;

ð11:64Þ

leads to

y½kþ 1� � y½k� ¼ z� 1ð Þy½k� ¼ Tsu½k�: ð11:65Þ

Consequently,

GIðzÞ ¼
Ts

z� 1
¼

Tsz
�1

1� z�1
: ð11:66Þ

To recapture the methodology used for discussing CT systems, LAPLACE-trans-

forms were effectively used by introducing various transfer functions. For DT

systems the z-transforms may play a similarly important role once the notion of

pulse transfer function is introduced as the ratio of the z-transforms of two signals.

A natural requirement here is that both the input and the output signal should be DT

sequences. This means that the ZOH unit should also be taken into account.

Figure 11.16 shows the proper arrangement driven by the DT input u½k� and gen-

erating the DT output signal y½k�.
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The pulse transfer function of the discretized system (assuming zero initial

conditions) is

GðzÞ ¼
Z y½k�f g

Z u½k�f g
: ð11:67Þ

For an arbitrary input the sampled response can be calculated by

y½k� ¼ Z yðtÞjt¼kTs

n o
¼ Z L�1 YðsÞ½ �t¼kTs

n o
¼ Z L�1 UðsÞHðsÞ½ �t¼kTs

n o
: ð11:68Þ

It can be seen that the above expression is input-dependent, in other words

instead of a general DT model, only a DT model valid for a given class of inputs

can be formulated. Aim at setting up a Step Response Equivalent (SRE) DT model

valid for a unit step sequence of u½k� resulting in a CT step response uðtÞ input:

y½k� ¼ Z L�1 HðsÞ

s


 �

t¼kTs

( )
: ð11:69Þ

In this case the CT and DT models will exhibit identical outputs at the sampling

instants. Observe that the LAPLACE-transform yields the step response of the CT

system:

L�1 HðsÞ

s

� �
¼ vðtÞ; ð11:70Þ

whose samples determine the DT step response

v½k� ¼ L�1 HðsÞ

s


 �

t¼kTs

; ð11:71Þ

thus the DT model can be written as

GðzÞ ¼
Z v½k�f g

Z u½k�f g
¼

Z v½k�f g
z

z�1

¼
z� 1

z
Z v½k�f g ¼ 1� z�1

� 	
Z v½k�f g: ð11:72Þ

Note that the above relation can be found in some textbooks as

H s( )
u k[ ] y k[ ]u t( ) y t( )ZOH

A / D
D/A( )

Fig. 11.16 A CT block

extended by a ZOH and a

sampler
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GðzÞ ¼ 1� z�1
� 	

Z
HðsÞ

s

� �
: ð11:73Þ

The above form is rather expressive, however, it is not correct in the mathe-

matical sense, since a LAPLACE-transform obviously has no z-transform. The correct

procedure is to perform an inverse LAPLACE-transformation, then sampling the CT

signal, a DT signal is obtained by substituting t ¼ kTs. In principle, the SRE

transformation matches the case of using a ZOH unit, i.e., between the sampling

instants there are always step-like excitations.

In a similar way, Ramp Response Equivalent (RRE) DT models can also be

derived:

y½k� ¼ Z L�1 HðsÞ

s2


 �

t¼kTs

( )
: ð11:74Þ

In principle, the RRE transformation matches the case of using a first order

holding unit in the closed-loop. In this arrangement, there are always ramp-like

excitations between two samples.

Example 11.5 Apply the results obtained so far for setting up a DT model dis-

cretizing a double integrator. The unit step response of the double integrator is

vðtÞ ¼
t2

2
t� 0ð Þ; ð11:75Þ

or in a sampled form

v½k� ¼
kTsð Þ2

2
k� 0ð Þ; ð11:76Þ

z-transformation gives

Z v½k�f g ¼
T2
s

2
zðzþ 1Þ=ðz� 1Þ3; ð11:77Þ

and finally

GðzÞ ¼ 1� z�1
� 	

Z v½k�f g ¼
z� 1

z
Z v½k�f g ¼

z� 1

z

T2
s

2

z zþ 1ð Þ

z� 1ð Þ3
¼

T2
s

2

zþ 1ð Þ

z� 1ð Þ2
:

ð11:78Þ

Specifically, GðzÞ ¼ zþ 1ð Þ=2ðz� 1Þ2 ¼ 0:5zþ 0:5ð Þ= z2 � 2zþ 1ð Þ is obtained
for Ts ¼ 1. �
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Observe the formal coincidence of the forms derived by the pulse transfer

operator GðqÞ and by the z-transforms. For the relations of the z-transformation the

interpretation of multiplication by z is advancing a sequence by one sample and the

interpretation of multiplication by z�1 is delaying a sequence by one sample, in

general it can be stated that GðqÞ can be obtained by substituting z ¼ q in GðzÞ.
Despite the formal matching keep it in mind that the shift operator and the variable

of the z-transforms are different notions!

Repeating the derivation used for the shift operator it can be shown that

GðzÞ ¼
BðzÞ

AðzÞ
¼ cT

adj zI � Fð Þ

det zI � Fð Þ
gþ d. From this the characteristic equation is found

to be det zI � Fð Þ ¼ 0. For the stability of the DT model then zij j\1 ði ¼ 1; 2; ::; nÞ
applies.

Example 11.6 Derive an analytical relation to determine the SRE DT model of the

first order lag given by HðsÞ ¼ K= 1þ sTð Þ. Use the simplified expression of

GðzÞ ¼ 1� z�1ð ÞZ HðsÞ=sf g

GðzÞ ¼ 1� z�1
� 	

Z
HðsÞ

s

� �
¼ 1� z�1

� 	
Z

K

sð1þ sTÞ

� �
¼ 1� z�1

� 	
Z

K

s
�

KT

1þ sT

� �

¼ 1� z�1
� 	 Kz

z� 1
� 1� z�1

� 	 Kz

z� e�Ts=T
¼ K 1�

z� 1

z� e�Ts=T

� �
¼ K

1� e�Ts=T

z� e�Ts=T

¼
K 1� e�Ts=T
� 	

z�1

1� e�Ts=Tz�1
¼

b1z
�1

1þ a1z�1

ð11:79Þ

50

5

vd(t)

v(t)

Ts = 2 sec 
t

Fig. 11.17 CT and SRE DT step responses of a first order lag
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Figure 11.17 shows the step response for K ¼ 5 and T ¼ 10. Check the initial

and final value of the step response using the initial value and final theorems:

y½0� ¼ lim
z!1

YðzÞ ¼ lim
z!1

UðzÞGðzÞf g ¼ lim
z!1

z

z� 1

Kð1� e�Ts=TÞ

z� e�Ts=T

� �
¼ 0

and

lim
k!1

y½k� ¼ lim
z!1

1� z�1
� 	

YðzÞ
� �

¼ lim
z!1

1� z�1
� 	

UðzÞGðzÞ
� �

¼ lim
z!1

1� z�1
� 	 z

z� 1

K 1� e�Ts=T
� 	

z� e�Ts=T

( )
¼ K

It may be of interest to analyze the dependence of the coefficients b1 and a1 on

T and Ts, respectively. Introducing the relative sampling rate as x ¼ Ts=T we get

b1 ¼ K 1� e�xð Þ

a1 ¼ �e�x
ð11:80Þ

It is easy to check the steady-state gain: G z ¼ 1ð Þ ¼ K. The pole of GðzÞ turns

out to be pd1 ¼ �a1 ¼ e�x. �

Example 11.7 To derive the DT SRE model of a second order CT process is a far

more tiresome procedure, though this relationship is frequently needed. For a

process with a complex pole pair pc1;2 ¼ a� jb, the well-known expressions using

the damping factor of n and the natural frequency xo are a ¼ �nxo and

b ¼ xo

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
. The DT pair of complex conjugates takes the following form:

z� pd1
� 	

z� �pd1
� 	

¼ z2 � 2e2aTscos bTsð Þ
� �

zþ e2aTs ; ð11:81Þ

�

11.4.4 Analysis of DT Systems in the Frequency Domain

The analysis of systems driven by sinusoidal signals forms a fundamental method

of system analysis. Consider the response of a stable DT model by

GðzÞ ¼
b1z

n�1 þ b2z
n�2 þ � � � þ bn

zn þ a1zn�1 þ a2zn�2 þ � � � þ an
¼

BðzÞ

AðzÞ
ð11:82Þ

driven by a sequence of sinusoidal samples
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u½k� ¼ K cos xokð Þ

From Table 11.1,

UðzÞ ¼ Z u½k�f g ¼ K
z2 � z cos xoTsð Þ

z2 þ 2z cos xoTsð Þþ 1
;

and the z-transform of the output is

YðzÞ ¼ UðzÞGðzÞ ¼ K
z2 � z cos xoTsð Þ

z2 þ 2z cos xoTsð Þþ 1
GðzÞ ¼ K

z2 � z cos xoTsð Þ

z2 þ 2z cos xoTsð Þþ 1

BðzÞ

AðzÞ

Further manipulations give

YðzÞ

z
¼ K

z� cos xoTsð Þ

z� ejxoTsð Þ z� e�jxoTsð Þ

BðzÞ

AðzÞ

and the PFE turns out to be

YðzÞ

z
¼

VðzÞ

AðzÞ
þ

c

z� ejxoTs
þ

�c

z� e�jxoTs

where VðzÞ is a polynomial with degree less than n, while the coefficient c equals

c ¼ z� ejxoTs
� 	 YðzÞ

z


 �

z¼ejxo

¼ � � � ¼
K

2
G ejxoTs
� 	

:

As �c is the complex conjugate of c,

YðzÞ ¼
zVðzÞ

AðzÞ
þ

K

2

zG ejxoTsð Þ

z� ejxoTs
þ

z�G ejxoTsð Þ

z� ejxoTs


 �

is the sum of a transient ytr½k� and a steady-state component yss½k�:

y½k� ¼ ytr½k� þ yss½k�: ð11:83Þ

Stability requires lim
k!1

ytr½k� ¼ 0 and the steady-state component is

yss½k� ¼ K G ejxoTs
� 	

 

cos xoTskþHð Þ; ð11:84Þ
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where

G ejxoTs
� 	

¼ G ejxoTs
� 	

 

ejH: ð11:85Þ

The sinusoidal excitation causes the steady-state response of a stable DT system

to be sinusoidal with the same frequency but an amplitude of

GðzÞjz¼ejxoTs¼ G ejxoTs
� 	

¼ G ejxoTs
� 	

 

ejH: ð11:86Þ

The above result is in harmony with the result obtained earlier for CT systems.

The results are obviously different, however, the DT and CT systems share identical

properties.

Based on the discussion of DT systems so far, it is rather general that in the

expression of the GðzÞ pulse transfer function and that of the transfer function

operator GðqÞ involve the variables z�1 and q�1, rather than z and q, respectively.

To derive the filter forms G z�1ð Þ and G q�1ð Þ can be derived from GðzÞ and GðqÞ by
dividing both their numerator and the denominator by the highest power term.

These forms are

G z�1
� 	

¼
B z�1ð Þ

A z�1ð Þ
¼

b1z
�1 þ b2z

�2 þ � � � þ bnz
�n

1þ a1z�1 þ a2z�2 þ � � � þ anz�n

¼
b1 þ b2z

�1 þ � � � þ bnz
� n�1ð Þ

� 	
z�1

1þ a1z�1 þ a2z�2 þ � � � þ anz�n
ð11:87Þ

or

G q�1
� 	

¼
B q�1ð Þ

A q�1ð Þ
¼

b1q
�1 þ b2q

�2 þ � � � þ bnq
�n

1þ a1q�1 þ a2q�2 þ � � � þ anq�n

¼
b1 þ b2q

�1 þ � � � þ bnq
� n�1ð Þ

� 	
q�1

1þ a1q�1 þ a2q�2 þ � � � þ anq�n
ð11:88Þ

Note that if the transfer function of the CT system is strictly proper, than the SRE

transformation results in transfer functions GðzÞ and GðqÞ with pole excess one.

The CT time-delay e�sTd will be represented by

z�d ; q�d ð11:89Þ

where

d ¼ int
Td

Ts

� �
ð11:90Þ

with d ¼ int . . .f g meaning the separation of the integer part. z�d corresponds to the

general delay relationship by (11.11). The z�1 and q�1 terms in the expression of
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G z�1ð Þ and G q�1ð Þ, respectively, are not part of the z�d and q�d terms representing

the time-delay. Thus for a process containing an actual time-delay it is reasonable to

use the pulse transfer function

G z�1
� 	

¼
b1 þ b2z

�1 þ � � � þ bnz
�ðn�1Þ

1þ a1z�1 þ a2z�2 þ � � � þ anz�n
z�ðdþ 1Þ; ð11:91Þ

which is the SRE transform of the general CT system given by

HðsÞ ¼ k

Qm
i¼1 s� zci

� 	
Qn

i¼1 s� pcið Þ
e�sTd ; m\n: ð11:92Þ

In the CT state-model form the gain of the direct constant channel is zero

ðd ¼ 0Þ.

11.4.5 Transformation of Zeros

The allocation of poles and zeros of an nth order GðzÞ pulse transfer function is an

interesting issue. Assume the SRE transformation is used for the discretization.

Based on the example elaborated earlier for a first order lag, it can be seen that the

transformation of the poles follows pdi ¼ e�xi , where xi ¼ Ts=Ti and the pole of the

CT system is �1=Ti. (The relation is valid for complex conjugate poles as well,

however, it is reasonable to handle those poles as complex conjugate pairs.

Anyway, the transformation relationship will be far more involved.) The expo-

nential relationship will map stable CT poles to stable DT poles, for the complete

CT stability region (the left half-plane) is transformed into the stable DT region (the

unit disc). Also, unstable CT poles (in the right half-plane) will be transformed into

unstable DT poles (outside the unit disc). The transformation of the zeros, however,

does not follow this pattern. Note first that GðzÞ always has ðn� 1Þ zeros. Provided
that the CT system has only m stable zeros, then m out of the ðn� 1Þ DT zeros are

transformed approximately by zdi 	 e�xi (the exact relationship is far more

involved). The rest of the zeros—there are ðn� m� 1Þ of them—follow a different

law, as those zeros have no CT counterparts. Typically, these (unmatched) zeros are

located on the real axis. If the pole excess is larger than one, even for minimum

phase systems (having stable zeros), the unstable zeros (out of the unmatched zeros)

should be accounted for. In short, even minimum-phase CT systems may turn into

non-minimum phase DT systems after the SRE transformation.

Similarly, an important observation is that a fractional time-delay (a delay which

is not an integer multiple of the sampling time) may result in unstable zeros. As

unstable zeros play an important role in the DT controller design procedure, it

should be noted that nonminimum-phase CT systems represent a very special class.

However, DT nonminimum-phase systems are rather common.
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11.5 Structural Properties of State Equations

The state-space description of a sampled data system consists of the state difference

equation

x½kþ 1� ¼ Fx½k� þ gu½k� ð11:93Þ

and

y½k� ¼ cTx½k� þ du½k�: ð11:94Þ

Introducing a shift element the realization of the system is shown in Fig. 11.18.

The state difference equation describes the development of the states of the

system, whereas the output equation gives how the output depends on the state

variables and incidentally directly on the input. The pulse transfer function of the

system (supposing zero initial conditions) is given by

GðzÞ ¼
Z y½k�f g

Z u½k�f g
¼ cT z I � Fð Þ�1

gþ d: ð11:95Þ

Similarly to CT systems, an infinite number of state space representations can be

derived from a given pulse transfer function, which provide the same output signal

for a given input signal (therefore these representations are called input-output

equivalent descriptions). To verify this statement, in the sequel several different

input-output equivalent state space descriptions will be derived from a given pulse

transfer function.

Example 11.8 Consider the pulse transfer function

GðzÞ ¼
b0oz

3 þ b01z
2 þ b02zþ b03

z3 þ a1z2 þ a2zþ a3
¼

b1z
2 þ b2zþ b3

z3 þ a1z2 þ a2zþ a3
þ d; ð11:96Þ

Fig. 11.18 Block-diagram representing the state equation of a discrete system
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Transform it to the form

GðzÞ ¼
b1z

�1 þ b2z
�2 þ b3z

�3

1þ a1z�1 þ a2z�2 þ a3z�3
þ d: ð11:97Þ

Then

YðzÞ ¼
b1z

�1 þ b2z
�2 þ b3z

�3

1þ a1z�1 þ a2z�2 þ a3z�3
UðzÞþ dUðzÞ: ð11:98Þ

Observe that the value of d is non-zero only if the degrees of the numerator and

of the denominator of GðzÞ are identical (the degree of the numerator can be at most

the same as that of the denominator).

Let us realize first the relationship

YðzÞ ¼ b1z
�1 þ b2z

�2 þ b3z
�3

� 	
= 1þ a1z

�1 þ a2z
�2 þ a3z

�3
� 	� �

UðzÞ;

then the value of dUðzÞ has to be added to the output. By cross multiplication

YðzÞþ a1z
�1YðzÞþ a2z

�2YðzÞþ a3z
�3YðzÞ ¼ b1z

�1UðzÞþ b2z
�2UðzÞþ b3z

�3UðzÞ

ð11:99Þ

is obtained. Rearranging the equation YðzÞ can be expressed as

YðzÞ ¼ b1UðzÞ � a1YðzÞ½ �z�1 þ b2UðzÞ � a2YðzÞ½ �z�2 þ b3UðzÞ � a3YðzÞ½ �z�3:

ð11:100Þ

The realization will provide a block-scheme, which besides the constants and the

summation elements, contains shift blocks with pulse transfer function of z�1,

realizing a one step delay. As seen from the equation above, the signal

b1UðzÞ � a1YðzÞ½ � has to pass through one delay element, the signal

b2UðzÞ � a2YðzÞ½ � has to pass through two, whereas signal b3UðzÞ � a3YðzÞ½ � has
to go through three. Based on these considerations the block-diagram showing the

realization is drawn in Fig. 11.19. The state variables can be chosen at the outputs

of the shift elements. Thus the state equation can be written as

x1½kþ 1� ¼ �a3x3½k� þ b3u½k�

x2½kþ 1� ¼ x1½k� � a2x3½k� þ b2u½k�

x3½kþ 1� ¼ x2½k� � a1x3½k� þ b1u½k�

y½k� ¼ x3½k� þ du½k�

ð11:101Þ

In the figure the time domain and z domain notations appear at the same time,

thus the equations of the given realization can be directly “read”: if the output of a

shift element is xi½k�, then its input is xi½kþ 1�. It is easily seen in the figure that a

386 11 Sampled Data Control Systems



direct channel between u½k� and y½k� without dynamics exists only if d 6¼ 0. This

means that an abrupt change in the input signal causes an immediate change in the

output signal only if the degrees of the numerator and of the denominator of the

pulse transfer function are identical. If this condition does not hold, then a change in

the input signal affects the output signal only in later steps. Finally, arranging the

equations derived above according to the state space form yields

x½kþ 1� ¼

x1½kþ 1�

x2½kþ 1�

x3½kþ 1�

2
64

3
75 ¼

0 0 �a3

1 0 �a2

0 1 �a1

2
64

3
75x½k� þ

b3

b2

b1

2
64

3
75u½k� ¼ �Fox½k� þ �gou½k�

y½k� ¼ 0 0 1½ �

x1½k�

x2½k�

x3½k�

2
64

3
75þ du½k� ¼ �cTox½k� þ du½k�

ð11:102Þ

Note that the derived state space description gives the so called observable

canonical form (see the explanation of this phrase around the formula (3.55) in the

CT case).

Derive now another realization of the subsystem by

YðzÞ ¼ b1z
�1 þ b2z

�2 þ b3z
�3

� 	
= 1þ a1z

�1 þ a2z
�2 þ a3z

�3
� 	� �

UðzÞ

(the realization of the dynamic subsystem will be extended by the du½k� element

afterwards). The method is the following: after cross multiplication an intermediate

variable is defined; first this variable is created from the input signals, then the

output is built using the intermediate v½k� variable. Now the pulse transfer function

is arranged as

Fig. 11.19 Block-scheme of the observable canonical form
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YðzÞ

b1z�1 þ b2z�2 þ b3z�3
¼

UðzÞ

1þ a1z�1 þ a2z�2 þ a3z�3
¼ VðzÞ: ð11:103Þ

Let us consider first the equation

UðzÞ

1þ a1z�1 þ a2z�2 þ a3z�3
¼ VðzÞ; ð11:104Þ

which in the time domain provides the recursive relationship

v½k� ¼ u½k� � a1v k � 1½ � � a2v k � 2½ � � a3v k � 3½ �: ð11:105Þ

Regarding the realization let us start with three serially connected shift elements

driven by the input u½k� (Fig. 11.20). Coming back to the equation VðzÞ ¼

YðzÞ= b1z
�1 þ b2z

�2 þ b3z
�3ð Þ the difference equation in the time domain describing

the output signal can be written as y½k� ¼ b1v k � 1½ � þ b2v k � 2½ � þ b3v k � 3½ �, thus
the whole realization can be drawn as given in Fig. 11.21. Based on Fig. 11.21 the

following equations can be written:

x1½kþ 1� ¼ �a1x1½k� � a2x2½k� � a3x3½k� þ u½k�

x2½kþ 1� ¼ x1½k�

x3½kþ 1� ¼ x2½k�

y½k� ¼ b1x1½k� þ b2x2½k� þ b3x3½k� þ du½k�

ð11:106Þ

Fig. 11.20 Creating an intermediate variable
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Thus the state space model is

x½kþ 1� ¼

x1½kþ 1�

x2½kþ 1�

x3½kþ 1�

2
64

3
75 ¼

�a1 �a2 �a3

1 0 0

0 1 0

2
64

3
75x½k� þ

1

0

0

2
64

3
75u½k� ¼ Fcx½k� þ gcu½k�

y½k� ¼ b1 b2 b3½ �

x1½k�

x2½k�

x3½k�

2
64

3
75þ du½k� ¼ cTc x½k� þ du½k�

ð11:107Þ

This model is called the controllable canonical form (see the explanation of this

phrase for the formula (3.46) in the CT case). �

The solution of the DT state space system in the form x½k� ¼ qI � Fð Þ�1
gu½k�

directly shows that in the case of a diagonal state transition matrix F the matrix

inversion can be avoided; therefore transforming the pulse transfer function to a

form which results in a diagonal representation will lead to an advantageous

structure. Generally let GðzÞ be

GðzÞ ¼
b1z

�1 þ b2z
�2 þ � � � þ bn�1z

�ðn�1Þ

1þ a1z�1 þ a2z�2 þ � � � þ anz�n
þ d ¼

Xn

i¼1

biz
�1

1þ aiz�1
þ d; ð11:108Þ

then introducing the state variables by

xi½kþ 1� ¼ biu½k� � aixi½k� ð11:109Þ

Fig. 11.21 Realization of the controllable canonical form
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the state difference equation will be

x½kþ 1� ¼

x1½kþ 1�

x2½kþ 1�

..

.

xn½kþ 1�

2
66664

3
77775
¼

�a1 0 0 0

0 �a2 0 0

0 0 . .
.

0

0 0 0 �an

2
66664

3
77775

x1½k�

x2½k�

..

.

xn½k�

2
66664

3
77775
þ

b1

b2

..

.

bn

2
66664

3
77775
u½k�

¼ Fdx½k� þ gdu½k�

ð11:110Þ

and the output equation is given by

y½k� ¼ 1 1 . . . 1½ �x½k� þ du½k� ¼ cTdx½k� þ du½k�: ð11:111Þ

It was supposed that the poles of GðzÞ are single and real. The derived form is

also called parallel canonical form. The realization is shown in Fig. 11.22.

It can be easily seen that besides Fd ¼ diag �a1;�a2; . . .;�an½ � the state space
model with

x½kþ 1� ¼ Fdx½k� þ gdu½k�

y½k� ¼ cTdx½k� þ du½k�
ð11:112Þ

Fig. 11.22 Block-diagram of the parallel canonical form
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gives a parallel canonical form, where gici ¼ gi ¼ bi is fulfilled. (Comparing this

with the CT forms (3.38), (3.39) it can be seen that in the DT form, simply ci ¼ 1

was chosen.)

(In the state space forms—following the conventions—the gain of the direct

constant channel was denoted by d, whose value is the same both for the CT and the

DT case. As in the DT case its value generally is zero, it was not so disturbing, that

the same letter was used also for the discrete dead-time.)
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Chapter 12

Sampled Data Controller Design

for Stable Discrete-Time Processes

Comparing Chaps. 7 and 9 it is worth distinguishing stable and unstable processes

at the design step of a CT controller. For stable processes precise mathematical

methods—based on or derived from YOULA-parameterization—are available. Even

the conventional PID regulator—under the usual tuning—corresponds to a rough

approach of the YOULA-controller. The unstable processes require different methods,

where the most important task is to stabilize the process. For this task, in Chap. 9,

a general polynomial method based on state-feedback and observer was presented,

and in Chap. 10 another method based on DIOPHANTINE-equations (DE) was pre-

sented. For sampled data systems, a similar logic will be followed to design the

controllers. The main difference is that the establishment of the different

signal-forming items realizing the different methods for DT control loops in

computer based control systems is significantly simpler.

In this section the transfer function operators Gð. . .Þ are functions of z and z�1 or

q and q�1 depending on the character of the DT description. The design methods

presented here are practically polynomial (algebraic) methods, so they can be

applied to all models discussed for the sampled systems, only the chosen model

form has to be applied correspondingly.

12.1 The YOULA Controller for Sampled Data Systems

In Chap. 7 a general control parameterization method and a design method based

on that was shown. The so-called YOULA-parameterization method was suggested

for the design of one- or two degree of freedom (ODOF, TDOF) control loops. The

advantage of the method is that the design of the closed-loop is assigned to two

reference models, namely the reference signal tracking behavior may be assigned to

Rr, the disturbance rejection to Rn, and the design of the controller can be given in a
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relatively simple closed form. The disadvantage of the method is that it can be

applied only to stable processes.

The presentation of the YOULA-parameterization, its relationship to the IMC

principle, the optimality and the best reachable control, were discussed in a very

general way, so—in many cases—it is enough to replace the transfer functions with

the pulse transfer functions, and all the relations are valid here, too. Therefore the

general statements of Chap. 7 are not repeated here, instead the differences and

deviations are emphasized. Consider the DT process

G z�1
� �

¼ Gþ z�1
� �

�G� z�1
� �

¼ Gþ z�1
� �

G� z�1
� �

z�d or

G ¼ Gþ �G� ¼ GþG�z
�d ;

ð12:1Þ

where Gþ is stable, its inverse is also stable and realizable (ISR). The inverse of G�
is unstable (Inverse Unstable: IU) and non-realizable (IUNR). In general the inverse

of the delay z�d is unrealizable, because it would mean an ideal predictor.

The optimal controller obtained for the general case [see (7.14)] is

Copt ¼
RnKn

1� RnKnG
¼ Qopt

1� QoptG
¼ RnGnG

�1
þ

1� RnGnG�z�d
¼ RnGnC

0
opt; ð12:2Þ

where the optimal YOULA parameter is

Qopt ¼ RnGnG
�1
þ ¼ RnKn and Kn ¼ GnG

�1
þ ð12:3Þ

and

Qr ¼ RrGrG
�1
þ ¼ RrKr and Kr ¼ GrG

�1
þ : ð12:4Þ

For sampled systems the equivalent optimal control system corresponding to the

generalized IMC principle is completely the same as seen in Fig. 7.9, whose sim-

plified version is shown in Fig. 12.1.

yr yu

y

+

+ +

+
+

-

Copt

GGRrGrG+

1 RnGnG
+

1

1 RnGnG z
d

yn

Fig. 12.1 Optimal sampled-time control system based on the generalized IMC principle
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The most important signals of the TDOF closed-control loop are

uopt ¼ RrGrG
�1
þ yr � RnGnG

�1
þ yn

eopt ¼ 1� RrGrG�z
�d

� �

yr � 1� RnGnG�z
�d

� �

yn ¼ 1� Topt
r

� �

yr � Soptn yn

yopt ¼ RrGrG�z
�dyr þ 1� RnGnG�z

�d
� �

yn ¼ Topt
r yr þ 1� Topt

n

� �

yn ¼ Topt
r yr þ Soptn yn

ð12:5Þ

where the equalities Topt
r ¼ RrGrG�z�d and Topt

n ¼ RnGnG�z�d are valid. The

further equivalent forms of the best reachable optimal control systems are shown in

Fig. 12.2. (These figures are for illustration only, their realizability has to be

investigated in each case!).

As mentioned earlier, the theory of the optimality of Gr and Gn will not be

discussed here. The choice Gr ¼ Gn ¼ 1 employed in this simple case leaves the

invariant process factor G� unchanged, so it appears unchanged in the signals of the

system.

yr yu

+

+
+

-

RnGn

RrGr

yn

CONTROLLER

C opt

G
P

+

1

1 RnGnG z
d

 + 

 + 

RnGn

RrGr

RnGn

yn

yyr u + 

-

CONTROLLER

PROCESS

REALIZABLE

INVERSE

MODEL

G
+
G z

d

G z
d

G
+

1

(a)                          

(b)

Fig. 12.2 The equivalent forms of the best reachable optimal sampled data control loop
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u ¼ RrG
�1
þ yr � RnG

�1
þ yn

e ¼ 1� RrG�z
�d

� �

yr � 1� RnG�z
�d

� �

yn ¼ 1� Trð Þyr � Snyn

y ¼ RrG�z
�dyr þ 1� RnG�z

�d
� �

yn ¼ Tryr þ 1� Tnð Þyn ¼ Tryr þ Snyn

ð12:6Þ

so the realizability of the transfer functions RrG
�1
þ , RnG

�1
þ , and RnG� has to be

ensured, respectively. It can be clearly seen that the realizability can be simply

handled by the appropriate choice of the order and pole excess of the reference

models Rr and Rn. A realizable but not optimal control system is shown in

Fig. 12.3.

In the case of sampled data systems it is worth noting, that using the SRE

transformation it is always true for the delay-free part (GþG�) in the pulse transfer

function of the process—independently from the pole excess of the CT process—

that the pole excess is equal to one. So the realizability of the items RrG
�1
þ and

RnG
�1
þ is ensured even for first order reference models Rr and Rn.

Example 12.1 Let the controlled system be a first order process with delay

G ¼ 0:2z�1

1� 0:8z�1
z�3 ¼ 0:2z�4

1� 0:8z�1
i:e: Gþ ¼ 0:2z�1

1� 0:8z�1
and G� ¼ 1

ð12:7Þ

and the goal of the control is to make it faster. Let the tracking and disturbance

rejection reference models be

Rr ¼
0:8z�1

1� 0:2z�1
and Rn ¼

0:5z�1

1� 0:5z�1
: ð12:8Þ

Since G� ¼ 1 there is nothing to be compensated optimally, i.e., Gr ¼ 1 and

Gn ¼ 1 can be chosen. The optimal controller is

yr yu

y

+

+ +

+
+

- +

+

yn

Copt

G

G
G

G
+
G z

d

G
+
G z

d
RnG+

1
RrG+

1

Fig. 12.3 YOULA-parameterized realizable sampled control loop with the choice of Gr ¼ Gn ¼ 1
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Copt ¼
RnGnG

�1
þ

1� RnGnG�z�d
¼ 1

1� Rnz�d
RnG

�1
þ

¼ 1

1� 0:5z�1

1�0:5z�1 z�3

0:5z�1

1� 0:5z�1

1� 0:8z�1

0:2z�1
¼ 2:5 1� 0:8z�1ð Þ

1� 0:5z�1 � 0:5z�4

ð12:9Þ

and the serial compensation has the form

RrG
�1
þ ¼ 0:8z�1

1� 0:2z�1

1� 0:8z�1

0:2z�1
¼ 4 1� 0:8z�1ð Þ

1� 0:2z�1
ð12:10Þ

so the optimal TDOF control loop has the scheme shown in Fig. 12.4 (see

Fig. 12.2b). Note that Copt z ¼ 1ð Þ ¼ 1, i.e., the controller has an integrating

character, which comes from the condition Rn z ¼ 1ð Þ ¼ 1.

It can be easily checked that the output of the closed-loop is

yopt ¼ Rrz
�dyr þ 1� Rnz

�d
� �

yn ¼
0:8z�1

1� 0:2z�1
z�3yr þ 1� 0:5z�1

1� 0:5z�1
z�3

� �

yn

¼ 0:8z�4

1� 0:2z�1
yr þ 1� 0:5z�4

1� 0:5z�1

� �

yn

ð12:11Þ

which completely corresponds to the designed TDOF control system. �

12.2 The SMITH Controller for Sampled Data System

Let us consider a simple process with delay based on (12.1) in the sampled data

control system

G z�1
� �

¼ Gþ z�1
� �

�G� z�1
� �

¼ Gþ z�1
� �

G� z�1
� �

z�d or

G ¼ Gþ �G� ¼ GþG�z
�d ;

ð12:12Þ

yr
u

y

+

+ +

+
+

-

2.5 1 0.8z
1

1 0.5z 1 0.5z 4

4 1 0.8z
1

1 0.2z 1

0.2z
4

1 0.8z 1

0.2z
4

1 0.8z 1

yn

y

Copt
G G

Fig. 12.4 The optimal control loop of Example 12.1
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where Gþ is stable. For the DT process of (12.12) the SMITH-predictor principle

discussed in Chap. 7.1. is shown by the control system given in Fig. 12.5a. Since

this control loop is equivalent with the scheme given in Fig. 12.5b, the goal of the

control is clearly seen, to separate the original closed-loop containing the delay to a

delay-free closed-loop and the delay appears serially connected. So the controller

Cþ for the process Gþ can also be designed by a conventional method (not taking

the delay into account).

Figure 12.5a can be redrawn for the equivalent forms (a) and (b) of Fig. 12.6 by

simple block-manipulations.

The IMC structure of Fig. 12.6a clearly shows that the SMITH controller is a

YOULA-parameterized special controller with YOULA parameter

Qþ ¼ Cþ
1þCþGþ

¼ CþGþ
1þCþGþ

G�1
þ ¼ Lþ

1þ Lþ
G�1

þ ¼ RþG
�1
þ ; ð12:13Þ

if the controller Cþ stabilizes the delay-free part Gþ of the process. Here Lþ ¼
CþGþ is the loop transfer function of the closed-loop shown in Fig. 12.5b, fur-

thermore the complementary sensitivity function

Tþ ¼ Rþ ¼ Lþ
1þ Lþ

ð12:14Þ

will be the reference model Rþ .

-

SMITH  CONTROLLER

PROCESS

y

+

+

r
C

+

+

G
+
z

d

G
+

1 z
d

 + 

-

C
+

r y
z

dG
+

(a) (b)

Fig. 12.5 The scheme of the sampled data SMITH controller
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+

-

y
+

r
C

+
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-

+ G
+
z

d

G
+

1 z
d
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Fig. 12.6 Schemes of the equivalent sampled data SMITH controller
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Figure 12.6b shows the equivalent complete closed-loop, where the YP sampled

data serial controller is

Cs ¼
Qþ

1� QþGþ z�d
¼ Cþ

1þCþGþ 1� z�dð Þ ¼ CþKS ð12:15Þ

the form of which, at the same time, suggests the realization of the inner

closed-loop representing the mode of the realizability. Here KS represents the serial

transfer function by means of which the SMITH controller modifies the effect of the

original controller Cþ . Thus

KS ¼
1

1þCþGþ 1� z�dð Þ ¼
1

1þ Lþ 1� z�dð Þ : ð12:16Þ

Contrary to the CT systems, the realization of the sampled-time SMITH controller

does not involve any difficulty in practice, since CS can be easily realized in part or

completely by computer aided systems (see the statements in the previous section

about the linear DT filters).

12.3 The TRUXAL-GUILLEMIN Regulator for Sampled

Data Systems

The TRUXAL-GUILLEMIN method can be applied to the design of the controller of

ODOF sampled data control systems. According to this method, the prescribed

design goal has to be formulated for the transfer function of the closed system,

which is a process with delay

T ¼ CG

1þCG
¼ CGþ z�d

1þCGþ z�d
¼ Rnz

�d; ð12:17Þ

where it is assumed that in the formula (12.1) of the DT process G� ¼ 1. Now,

based on this condition the following simple algebraic equation is obtained for C

CGþ ¼ Rn þCGþ z
�dRn: ð12:18Þ

From this the controller can be chosen according to

C ¼ Rn

1� Rnz�d
Gþð Þ�1¼ CTG: ð12:19Þ

Observe that this form is equal to the basic case (Gn ¼ 1, G� ¼ 1) of the

sampled data YOULA controller (12.2). The controller can be realized according to
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Fig. 12.7, but there is no problem even with the complete realization of the formula

(12.19) in computer aided control systems.

Thus Rn corresponds to one of the reference models of the YOULA method. For

the ODOF case Rn ¼ Rr. Let the reference model and the process be given in the

forms Rn ¼ Bn=An and G ¼ B=A, respectively. In this case the polynomial form of

the controller is

CTG ¼ Bn

An � Bn

A
B : ð12:20Þ

The controller is realizable if the pole excess of Rn is greater than or equal to that

of the process. It was seen in Chap. 11 for the DT case that the pole excess of the

pulse transfer function of the process is one (in practice generally for zero order

hold, thus in the case of unit step equivalent (SRE) transformation). Thus the

controller (12.20) can be realized, in general, because Rn is usually chosen to ensure

the necessary pole excess. If Rn has unit gain (Rnð1Þ ¼ 1), then the controller is of

1-type.

12.4 Design of Regulators Providing Finite Settling Time

In the case of DT systems it is possible to design a controller which is able to track

exactly the unit step reference signal within finite steps, or make the error signal

zero in finite steps. This controller is called a Dead-Beat (DB) controller which

provides finite settling time. Let us assume that in an ODOF control system the

process is a relative prime G ¼ B=A, and CDB is the “deadbeat” controller to be

designed. Assuming a unit step reference signal, its z-transform is

R zð Þ ¼ z= z� 1ð Þ ¼ 1
�

1� z�1ð Þ. The dead-beat control requires that the z-trans-

form of the error must be a finite order polynomial Pe zð Þ, i.e.,

E zð Þ ¼ S zð ÞR zð Þ ¼ 1

1þCDBG
R zð Þ ¼ 1� CDBG

1þCDBG

� �

R zð Þ ¼ Pe zð Þ: ð12:21Þ

-

+

+

+
Rn

yr

z
d

CTG

G z
d1

G

Fig. 12.7 The realization of

the TRUXAL-GUILLEMIN

regulator
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It follows from this that both the sensitivity function and the complementary

sensitivity transfer functions must also be finite order polynomials, i.e., the

polynomials

S ¼ 1� z�1
� �

Pe z�1
� �

; T ¼ CDBG

1þCDBG
¼ 1� 1� z�1

� �

Pe zð Þ ¼ Py zð Þ

ð12:22Þ

have finite order. Similarly it has to be required that the complementary sensitivity

transfer function referring to the output of the controller must be a finite order

polynomial

CDB

1þCDBG
¼ Pu zð Þ: ð12:23Þ

This kind of transfer function is usually said to be a finite impulse response (FIR)

type, also known as a moving-average filter. Based on the above, we may write

T ¼ CDBG

1þCDBG
¼ Py zð Þ ¼ Pu zð Þ BA ; ð12:24Þ

whence the condition for the dead-beat control is

B zð Þ
A zð Þ ¼

Py zð Þ
Pu zð Þ ¼ G; ð12:25Þ

which—in the case of relative prime process polynomials—can be fulfilled if

Py zð Þ ¼ M zð ÞB zð Þ and Pu zð Þ ¼ M zð ÞA zð Þ: ð12:26Þ

Since in steady state the error is zero, the condition Py 1ð Þ ¼ 1 must be fulfilled.

As a consequence the gain of the design polynomial M zð Þ must be

M 1ð Þ ¼ 1

B 1ð Þ : ð12:27Þ

Finally, based on (12.23), (12.24) and (12.26), the controller has the form

CDB ¼ Pu

1� PuG
¼ MA

1�MB : ð12:28Þ

Thus the most important step of the design of a dead-beat control is the choice of

the design polynomialM zð Þ. The dead-beat behavior for the input and the output of
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the process is given by (12.26). It is worth investigating the forms of the signals on

the basis of (12.21) and (12.28):

Pe zð Þ ¼ z 1�MBð Þ
z� 1

¼ 1�MB
1� z�1

¼ N : ð12:29Þ

Here, (12.27) is taken into account, according to which the factor 1�MBð Þ has
always the root z ¼ 1, since 1�M 1ð ÞB 1ð Þ ¼ 0.

Equation (12.28) has also the forms

CDB ¼ MA
1�MB ¼ Pu

1� Py

¼ Py

1� Py

A
B ¼ Rn

1� Rn

A
B ; ð12:30Þ

where the substitution Rn ¼ Py is applied. Thus the same form is obtained as the

TRUXAL-GUILLEMIN regulator (12.19) or the basic case of the YOULA regulator (7.9).

The significant difference is that now Rn is a FIR filter, thus it is a polynomial and

(12.29) must also be fulfilled.

Let us summarize the applied restrictions concerning the design of a dead-beat

controller:

– it is assumed that the process to be controlled is stable

– the reference signal of the closed-loop is assumed to be unit step

– the dead-beat behavior is valid only at the sampling instants.

Note that if the above conditions are not fulfilled, the dead-beat controller design

can still be performed in certain cases (e.g., by polynomial or state-space tech-

niques), but it can not be made by the simple and clear design methods to be

presented next.

Example 12.2 The method is presented for a second order CT process with

dead-time. Let the transfer function of the CT process be

P sð Þ ¼ e�s

1þ 10sð Þ 1þ 5sð Þ : ð12:31Þ

The first step is to discretize the CT process by a zero-order hold term under the

sampling time Ts ¼ 1 s

G zð Þ ¼ B zð Þ
A zð Þ ¼

0:0091 zþ 0:9048ð Þ
z� 0:9048ð Þ z� 0:8187ð Þz ð12:32Þ

(SRE transformation). Notice that the factor z represents the delay supposing a

sampling time of Td ¼ 1 s, since Ts ¼ Td. The effect of the delay can be better seen

from the form
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G zð Þ ¼ 0:0091 zþ 0:9048ð Þ
z� 0:9048ð Þ z� 0:8187ð Þ z

�1: ð12:33Þ

Regarding the goal of the design, the following considerations can be made.

Without a delay, the effect of the input signal u 0½ � 6¼ 0, appearing at the sampling

time k ¼ 0 at the input of the zero order hold, will appear in the output—at the

earliest—at the sampling time k ¼ 1 due to the order of the process. Consequently,

if the delay is Td ¼ 1 s, then the effect of the input u 0½ � 6¼ 0 will appear—at the

earliest—at the sampling time k ¼ 2. As a consequence, the best tracking control

that can be constructed for the unit step reference signal yr k½ � ¼ 1 k½ � turns out to be,

in discrete form, y k½ � ¼ 1 k � 2½ �. Thinking in terms of the pulse transfer function, in

this example the condition

T ¼ C zð ÞG zð Þ
1þC zð ÞG zð Þ ¼ Py zð Þ ¼ z�2

is required for the transfer function of the closed system (12.24), from which the

controller is:

C zð Þ ¼ Py

1� Py

A
B ¼ z�2

1� z�2ð Þ
1

G zð Þ ¼
1

G zð Þ z2 � 1ð Þ ¼ CDB:

Expressing the controller in terms of the polynomials of the pulse transfer

function of the process:

C zð Þ ¼ 1

G zð Þ z2 � 1ð Þ ¼
A zð Þ

BðzÞðz2 � 1Þ ¼
109:9 z3 � 1:7236z2 þ 0:7408zð Þ
z3 þ 0:9048z2 � z� 0:9048

:

ð12:34Þ

It can be clearly seen that for a unit step reference signal, the steady-state output

can be expected to be error-free, since the loop transfer function L zð Þ ¼ C zð ÞG zð Þ
has a pole at z ¼ 1, or in other words the controller contains an integrator. The

Fig. 12.8 Dead-beat control (2 steps)
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behavior of the closed-loop is shown in Fig. 12.8. Considering the discrete-time

instants, the result is the same as is expected for the output, but in the case of

sampled-time systems the quality of the closed control loop is determined by the

continuous output signal, which, however, shows an unacceptable oscillation.

Furthermore the actuator signal does not have a dead-beat character: its changes

have extreme dynamics, because the condition (12.26) is not fulfilled.

Investigate the hidden oscillations between the sampling times, which is called

in the English language literature “intersampling ripples”. It can be seen in the time

diagrams that the oscillation of the CT output is caused by the oscillation of the

step-like inputs generated by the zero-order hold term. These values are produced

by the regulator due to the fact that it has a so-called slightly (or under) damped

pole p1 ¼ �0:9048. The relevance of this qualification can be explained in two

ways. Strictly investigating the effect of the specific pole, consider the pulse transfer

function

G1 zð Þ ¼ zþ 1

zþ 0:9048
ð12:35Þ

and its step response is shown in Fig. 12.9.

Based on the figure it can be asked, considering only the pulse transfer function

itself of the controller, where are those poles which will produce a stable, well

attenuated step response, i.e., they do not generate an oscillating output from a unit

step input. In the case of CT systems, the regions of the well- and under-damped

poles are separated by lines belonging to constant attenuations (damping factors) in

the complex frequency domain of s. These lines make a constant angle u (which

depends on the damping) with the negative real axis: cosðuÞ ¼ n. Now the mapping

of these lines have to be found in the z-plane. In the s-plane the points s ¼ rþ jx

are on the lines of constant damping with the condition x ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
p

.

n. For a

given damping, the mapping of z ¼ esTs to z ¼ e
rþ jr Ts

ffiffiffiffiffiffiffiffi

1�n2
p �

n can be calculated

Fig. 12.9 The unwanted

dynamics of the actuator

signal
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and drawn for different values of r. For example, the curve in the z-plane corre-

sponding to the constant line n ¼ 0:4 can be seen in Fig. 12.10. This well damped

(n[ 0:4) region shown in the figure is also called the “heart form curve” in the

literature. The formula n ¼ 1


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2
.

ln p1j jð Þ½ �2
r

is obtained after some long

calculations showing how n depends on a root p1 falling on the negative real axis.

Based on the previous investigations it can be stated that the oscillation is

generated by the controller itself, because it can be clearly seen from

C zð Þ ¼ A zð Þ
B zð Þ z2 � 1ð Þ ð12:36Þ

that C zð Þ has the roots of the polynomial B zð Þ as its poles (in this case B zð Þ is of
first order, i.e., it has only one root). The oscillating effect of the roots depends on

their position relative to the heart-shaped figure belonging to a given damping. In

the present case the root of B zð Þ is z ¼ �0:9048, which is outside of the well

damped region. In order to avoid oscillation the direct compensation of the slightly

damped roots of B zð Þ, i.e., simply saying their cancellation with the corresponding

poles of the controller, has to be avoided. Separate the roots of B zð Þ in such a way

that Bþ zð Þ contains the well damped roots of B zð Þ (they are inside of the

heart-shaped region) and B� zð Þ contains the slightly damped roots (outside of the

heart-shaped region)

Fig. 12.10 The region of the

well damped poles in the

z-plane
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B zð Þ ¼ Bþ zð ÞB� zð Þ ð12:37Þ

and the condition B� zð Þjz¼1¼ B� 1ð Þ ¼ 1 must be fulfilled. For the example

B zð Þ ¼ Bþ zð ÞB� zð Þ ¼ 0:01733 0:525zþ 0:475ð Þ; ð12:38Þ

where Bþ zð Þ ¼ 0:01733 (the polynomial Bþ zð Þ has no well damped pole) and

B� zð Þ ¼ 0:525zþ 0:475 (the polynomial B zð Þ has one slightly damped pole). Next

let mþ and m� be the degrees of the polynomials Bþ ðzÞ and B�ðzÞ, respectively.
During the design process, take the applied separation into account, and modify

our expectation for the pulse transfer function of the closed discrete-time system:

T ¼ C zð ÞG zð Þ
1þC zð ÞG zð Þ ¼ Py zð Þ ¼ B� zð Þz�2z�m� ¼ B� zð Þz�m��2; ð12:39Þ

so the assumption (12.26) is also fulfilled. From the above condition the controller

becomes:

C zð Þ ¼ A zð Þ
Bþ zð Þ z3 � B� zð Þ½ � ¼

57:7 z3 � 1:7236z2 þ 0:7408zð Þ
z3 � 0:525z� 0:475

: ð12:40Þ

From the above form it is easily seen why the condition B� zð Þjz¼1¼ B� 1ð Þ ¼ 1

has to be assumed during the separation of the polynomial B zð Þ. For in this case,

due to the fact that z3 � B� zð Þ½ �z¼1¼ 0, z ¼ 1 is still the pole of the loop transfer

function L zð Þ, i.e., it is of 1-type. The results obtained with the modified controller

are illustrated in Fig. 12.11. The closed system is slowed down, the settling time

increased from 2 to 3 s, in other words, from 2 steps to 3 steps, but, at the same

time, the moderate dynamics of the actuator signal can be observed. The oscillation

is completely eliminated, but the magnitude of the initial value of the actuator signal

can not be considered acceptable for any kind of application.

Fig. 12.11 Dead-beat controller (3 steps)
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The slowing down can be performed in many different ways, from which such a

solution is shown next, where the dead-beat character is kept, but the settling time is

further increased depending on the degree of the design polynomial. Let the

slowing design polynomial be

T zð Þ ¼ Py zð Þ ¼ 0:2z2 þ 0:3zþ 0:5; ð12:41Þ

of degree mT ¼ 2, and the condition T zð Þjz¼1¼ T 1ð Þ ¼ 1 is used in the specification

of the closed-loop pulse transfer function according to

C zð ÞG zð Þ
1þC zð ÞG zð Þ ¼ Py zð ÞB� zð Þz�2�m��mT ¼ Py zð ÞB� zð Þz�5: ð12:42Þ

The controller becomes

C zð Þ ¼ A zð ÞPy zð Þ
Bþ zð Þ z5 � B� zð ÞPy zð Þ

� �

¼ 11:54 z5 � 0:2235z4 þ 0:6555z3 � 3:198z2 þ 1:852z
� �

z5 � 0:105z3 � 0:2525z2 � 0:405z� 0:2375

The operation of the closed-loop in the time domain is seen in Fig. 12.12.

In connection with the controller of (12.30) it has already been mentioned that

the design equation of the dead-beat controller actually corresponds to the basic

case (7.9) of the YOULA regulator. For comparison with the general case (12.2),

consider the formula (12.1) of the DT process according to the above separation

(12.37),

G ¼ GþG�z
�d ¼ BþB�

A z�2; ð12:43Þ

Fig. 12.12 Dead-beat controller (5 steps)
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where

Bþ zð Þ ¼ 0:01733 and B� zð Þ ¼ 0:525zþ 0:475 ð12:44Þ

Here Bþ is the factor having acceptable inverse form, B� is the factor having

non-acceptable inverse form in the numerator of the pulse transfer function. Notice

that the inverse of B is not unstable now, but is underdamped, therefore it is also

considered an unwanted factor. The form of the optimal controller obtained for the

general case according to (12.2) with the choice Gr ¼ Gn ¼ 1 is

Copt ¼
RnG

�1
þ

1� RnG�z�d
¼ PyG

�1
þ

1� PyG�z�d
¼ PyA

Bþ 1� PyB�z�d
� �

¼ z�2A
Bþ 1� z�2B�z�1ð Þ ; ð12:45Þ

which is completely the same as the controller of (12.40),

C zð Þ ¼ A zð Þ
Bþ zð Þ z3 � B� zð Þ½ � ¼

57:7 z3 � 1:7236z2 þ 0:7408zð Þ
z3 � 0:525z� 0:475

: ð12:46Þ

It is confirmed again that the YOULA-controller is generally valid for stable

processes.

�

12.5 Predictive Controllers

Assume that the pulse transfer function of a control system in an ODOF loop is

G z�1
� �

¼ B z�1ð Þ
A z�1ð Þ z

�d ¼ Gþ z�1
� �

G� z�1
� �

; G� z�1
� �

¼ z�d; ð12:47Þ

which corresponds to a CT process with dead-time. A relationship is sought by

which the value of the output signal at the sampling time kþ d can be estimated

from the information available up to the sampling time k. To achieve this let us

introduce a special polynomial equations

1 ¼ AF þPz�d ð12:48Þ

whose solution is unambiguous, seeking F of degree (d � 1) and P of degree

(n� 1), if A has degree n. Equation (12.48) is a special form of the DE discussed in

Chap. 10. Using equivalent rewriting G z�1ð Þ can be decomposed as
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G ¼ B
F z�d ¼ BAF þBPz�d

A z�d ¼ BF þ BPz�d

A

� �

z�d

¼ BF z�d þP B
A z�d

� �

z�d ¼ BF z�d þPGz�d

ð12:49Þ

Apply both sides to the series of the input signal u k½ �

y k½ � ¼ BF z�du k½ � þPz�dGu k½ � ¼ BFu k � d½ � þPz�dy k½ �
¼ BFu k � d½ � þPy k � d½ � ¼ y kjk � d½ � ð12:50Þ

The equation can also be written for sampling time kþ d

y kþ d½ � ¼ BFu k½ � þPy k½ � ¼ y kþ djk½ �; ð12:51Þ

where y kþ djk½ � is the estimate or prediction of the series y k½ � for the sampling time

kþ d. Notice that the prediction is error-free and it uses only the information

available at the time instant k concerning both the input and output. Both poly-

nomials BF and, P are functions of z�1 and in (12.51) their coefficients weight only

the current and the previous values of the signals u and y. Based on the d-step

predictor a special, so-called predictive controller can be constructed. If the goal is

to track the output of a reference model Rr, then the equation of the controller is

Rryr k½ � ¼ y kþ djk½ � ¼ BFu k½ � þPy k½ � ð12:52Þ

(b)

(a)

Fig. 12.13 Forms of predictive controllers
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from which the input signal is

u k½ � ¼ Rryr k½ � � Py k½ �
BF ð12:53Þ

The direct mapping of (12.53) can be seen in Fig. 12.13a. The equivalent block

scheme of the Fig. 12.13b, however, shows the conventional closed-loop control.

Thus the predictive controller has the form

Cpr ¼
P

1� Pz�d

A
B ¼ P

BF ; ð12:54Þ

i.e. the reference model for the disturbance rejection is now

Rn ¼ P; ð12:55Þ

which does not depend on the designer, but comes from (12.48). The predictive

controller is formally equal to a YOULA regulator where G� ¼ z�d . The transfer

characteristic of the complete control loop is

y ¼ Rrz
�dyr þ 1� Rnz

�d
� �

yn ¼ Rrz
�dyr þ 1� Pz�d

� �

yn ð12:56Þ

by means of which the predictive controller completely solves the problem for

reference signal tracking, but Rn can not be designed. The d-step predictor of

(12.51) is linear in its parameters, therefore it is easy to apply in parameter esti-

mation (identification) techniques to determine the parameters of the controller.

From the above control design principle, a new, widely applied computer controlled

method has been developed, which is called Model Predictive Control (MPC).

For the noise rejection behavior of a closed system, a method is introduced

which penalizes the change or variance of the input. So the dynamics of the

closed-loop, though in a restricted way, can be acceptable by the proper choice of

the penalty weights.

Example 12.3 Let the controlled system be a first order process with delay d ¼ 2

G z�1
� �

¼ B z�1ð Þ
A z�1ð Þ ¼

0:7z�1 � 1:0z�2

1� 1:5z�1 þ 0:2z�2
z�1 ¼ 0:7� 1:0z�1

1� 1:5z�1 þ 0:2z�2
z�2 ð12:57Þ

Compute the d-step ahead predictor by solving the DIOPHANTINE equation

1 ¼ AF þP z�d ð12:58Þ
where n ¼ 2 and the polynomials F and P are of degrees d � 1 and n� 1

respectively. The equation is
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1 ¼ 1� 1:5z�1 þ 0:2z�2
� �

1þ f1z
�1

� �

þ po þ p1z
�1

� �

z�2 ð12:59Þ

The solution is: f1 ¼ 1:5, po ¼ 2:05 and p1 ¼ �0:3. So the predictive regulator

is given by

Cpr ¼
P

1� Pz�d

A
B ¼ P

BF ¼ po þ p1z
�1

0:7� 1:0z�1ð Þ 1þ f1z�1ð Þ ¼
2:05� 0:3z�1

0:7þ 0:05z�1 � 1:5z�2

ð12:60Þ

�

12.6 The Best Reachable Discrete-Time Control

12.6.1 General Theory

The decomposition of the control error discussed in Sect. 7.5 is completely valid for

DT systems, so all relationships can be applied in unchanged form.

It is worth noting that in the DT case the fastest reachable first order reference

model can be easily determined under the amplitude restriction of the output of the

controller

u tð Þj j ¼ Umax ð12:61Þ

if the YP controller is applied. Let the first order reference model with unit gain be

Rn ¼
1þ anð Þz�1

1þ anz�1
¼ 1þ anð Þ

zþ an
: ð12:62Þ

Let the first (so-called leading) coefficient in the numerator of the pulse transfer

function of the process be b1. Then the following restriction

1þ an

b1
�Umax ð12:63Þ

must be fulfilled by the first biggest jump of the step response series, from which

the maximum value of the coefficient an of the reference model is

an � b1 Umax � 1: ð12:64Þ
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12.6.2 Empirical Rules

It has already been seen in the recent discussion of the best reachable control, that

the basic restriction derives from the saturation of the actuator or from the process

dynamics itself. It can even be supplemented with the noise of the measurements.

This noise may derive from the physical operation of the sensor, but also from the

electronics, and in DT control from the A/D converter. The measurement noise

usually appears in high frequency regions, therefore the uncertainty caused by them

restricts the high frequency gain A1 of the controller. For simplicity, assume the

A/D and D/A converters are those generally used, with 12 bits, which corresponds

to 4096 levels. Thus a conversion error or measurement error of 1 bit, by being

increased 4096 times, reaches the whole signal region.

In practice measurement changes greater than 5% are not allowed. This means

that the high frequency gain of the controller must be smaller than 200, i.e.,

A1\ 200.
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Chapter 13

Design of Conventional Sampled

Data Regulators

It was seen in Chap. 12 that—similarly to the continuous-time case—there are exact

theoretical methods for the design of discrete controllers in the case of stable pro-

cesses. On the basis of these methods the structure of the optimal controller and the

optimal values of its parameters can be determined for the most varied cases. For

sampled data control systems it can not be stated that already long before the

elaboration of these theoretical methods a class of controllers had been evolved and

widespread in practice, which still have decisive importance in the control of

industrial processes, as these control algorithms have been developed simultane-

ously with the applications of computer control systems. Considering the develop-

ment it was more typical that at the beginning sampled data controllers just copied

the conventional continuous controllers. The probable reason for that was that the

continuous controllers in their history of several decades had gained high reliability

and recognition in practice. Whereas in the framework of computer control the

realization of the higher order complex controllers described in Chap. 12 is simple,

to date the discretized versions of the conventional controllers are still what is mainly

used in practical operating control systems. Therefore this controller family is

discussed here in a separate chapter. As the sampled data controllers are realized in

software, it is common to call them DT (discrete-time) algorithms.

Several methods are available for the design of sampled data control systems.

The great number of methods in practical use is explained by the fact that a

discrete-time control algorithm is realized by a program, and not by electronic

equipment containing operational amplifiers and passive elements. This provides

great flexibility for the designer. The hybrid nature of the design problem—let us

think of the necessity of the simultaneous consideration of continuous and discrete

signals—also provides the possibility for the application of various design concepts.

Besides the variety of methods it has to be emphasized that—whatever strategy

is chosen—the discrete-time controller can be interpreted as a signal processing unit

which determines u k½ �, the current value of the control signal (the input of the

process) based on the sampled current and previous filtered values of the output

signal
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y k½ �; y k � 1½ �; y k � 2½ �; . . . ð13:1Þ

and the previous values of the control signal

u k � 1½ �; u k � 2½ �; u k � 3½ �; . . . ð13:2Þ

calculated by the control algorithm. That is, the digital controller realizes the fol-

lowing mapping:

y k½ �; y k � 1½ �; y k � 2½ �; . . .; u k � 1½ �; u k � 2½ �; u k � 3½ �; . . . ) u k½ �f g ð13:3Þ

The simplest case of this mapping is when a serial controller is realized given by

its pulse transfer function C zð Þ: In the case of a serial controller the input of the

controller is the error signal

e k½ � ¼ r k½ � � y k½ � ð13:4Þ

where r k½ � is the reference signal. u k½ � is the output of the controller

C zð Þ ¼ U zð Þ
E zð Þ ; ð13:5Þ

which provides the input of the process.

To demonstrate how this mapping works, let us consider a second order

controller:

C zð Þ ¼ U zð Þ
E zð Þ ¼

qoz
2 þ q1zþ q2

z2 þ r1zþ r2
¼ qo þ q1z

�1 þ q2z
�2

1þ r1z�1 þ r2z�2
; ð13:6Þ

with the recursive expansion shown in Chap. 11

u k½ � ¼ qoe k½ � þ q1e k � 1½ � þ q2e k � 2½ � � r1u k � 1½ � � r2u k � 2½ �; ð13:7Þ

which gives the algorithm for the realization. In the above example the degree of

the numerator of the controller was deliberately chosen to be equal to the degree of

the denominator, because in this case the controller reacts immediately, without any

delay to eliminate the error, assuming that a steady state characterized by zero error

values e j½ � ¼ 0 j\kð Þ is followed by an error e k½ � 6¼ 0. It has to be emphasized that

the pulse transfer function is a common, but not the only representation of the

digital control algorithms.

Summarizing the steps of the realization of a digital controller, they are:

– Sampling

– Calculation of the input signal u k½ � with the knowledge of y k½ � (running the

control algorithm)
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– Supplying the holding element with the calculated input signal

– Shifting u k½ �, y k½ � and/or e k½ � to prepare the next step:

u k � 2½ � :¼ u k � 1½ � u k � 1½ � :¼ u k½ � e k � 2½ � :¼ e k � 1½ � e k � 1½ � :¼ e k½ �:

Depending on the complexity of the digital control algorithm, as well as on the

chosen form of representing the numbers and the computing capacity, typically the

time required for the execution of the operations above can be neglected compared

to the sampling time. But in the case of fast sampling it may occur that the cal-

culation time of the control algorithm is comparable to the sampling time Ts. In this

case, the mapping has to be modified, as the calculated input signal u k½ � can not be

considered as a sample belonging to the sampling instant k, as its value becomes

available only later. Then the steps of the digital control algorithm are modified

taking into account that after the sampling the algorithm can only be started to

calculate a single step:

– Sampling

– Starting the calculation of u k½ � with the knowledge of y k½ � (starting the run of the

control algorithm)

– Supplying the holding element with the most recent available calculated input

signal

– Preparing the next step.

As an example let us suppose that the calculation time of the algorithm is less

than the sampling time Ts, but is close to it. Then the mapping is

y k½ �; y½k � 1�; y½k � 2�; . . .; u k½ �; u½k � 1�; u½k � 2�; . . . ) u kþ 1½ �f g ð13:8Þ

Consequently the u k½ � belonging to the time instant k can be generated according

to the mapping

y k � 1½ �; y k � 2½ �; y k � 3½ �; . . .; u k � 1½ �; u k � 2½ �; u k � 3½ �; . . . ) u k½ �f g: ð13:9Þ

This also means that a digital controller designed for a dead-time process with

time-delay Td has to be redesigned for an increased time-delay of Td þ Ts so that the

delay of the calculations can be taken into account.
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13.1 Design Methods for the Discrete-Time PID

Regulator Family

Creating the sampled version of the ideal PID regulator according to expression

(8.1) let us approximate the integrating element with the right hand rectangle rule

and the differentiating effect by backward difference. Then the pulse transfer

function is

CPID zð Þ ¼ AP 1þ 1

TI

Tsz

z� 1
þ TD

z� 1

Tsz

� �

¼ AP þ
AP

TI

Tsz

z� 1
þAPTD

z� 1

Tsz
:

ð13:10Þ

Transforming the right hand side of the equation to get a common denominator,

the pulse transfer function is obtained in the form of a second order discrete-time

(DT) filter,

CPID zð Þ ¼ qo þ q1z
�1 þ q2z

�2

1� z�1
; ð13:11Þ

where

qo ¼ AP 1þ Ts

TI
þ TD

Ts

� �

; q1 ¼ �AP 1þ 2TD

Ts

� �

and q2 ¼ AP

TD

Ts
ð13:12Þ

In Sect. 8.4, when discussing the traditional continuous-time (CT) regulators, we

already dealt with the effect of the constraints and with the extension of the reg-

ulator structure with ARW. In the case of CT regulators, there is generally no

opportunity to introduce a signal into the inner structure of the regulator. Therefore

the feedback from the saturation is realized at the place where the error is measured,

as generally this point is accessible (see Fig. 8.29). But when realizing sampled data

regulators, also the details are in our hand, thus the feedback can be led directly to

the input of the integrator, as shown in Fig. 13.1.

+

+

+-

 SATURATION

AP

AP

TI

Ts

1 z
1

APTD

1- z
-1

Ts

u k[ ]e k[ ]

Fig. 13.1 Digital PID

regulator extended by the

ARW effect
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For the realization of the discrete-time version of the approximate PID regulator

given by (8.4) the following SRE form can be used:

C
_

PID zð Þ ¼ AP þ
APTs

TI

z�1

1� z�1
þ APTD

Ts

1� z�1

1� e�Ts=Tz�1
: ð13:13Þ

After some conversions, also this regulator shows the form of a second order DT

filter:

C
_

PID zð Þ ¼ qo þ q1z
�1 þ q2z

�2

1� z�1ð Þ 1� e�Ts=Tz�1ð Þ ¼
qo þ q1z

�1 þ q2z
�2

1þ r1z�1 þ r2z�2
ð13:14Þ

where

qo ¼ AP 1þ TD

T

� �

; q1 ¼ �AP 1þ e�Ts=T � Ts

TI
þ 2TD

T

� �

ð13:15Þ

q2 ¼ AP e�Ts=T 1� Ts

TI

� �

þ TD

T

� �

ð13:16Þ

r1 ¼ � 1þ e�Ts=T
� �

; r2 ¼ e�Ts=T ð13:17Þ

The ARW extension can be realized as shown in Fig. 13.1.

The discrete-time form of the continuous-time approximate PID regulator

according to (8.8) is given by the following DT pulse transfer function:

C
_

PID zð Þ ¼ KC

z� zcd1
� �

z� zcd2
� �

z� 1ð Þ z� e�Ts=Tð Þ ¼ KC

1� zcd1 z
�1

� �

1� zcd2 z
�1

� �

1� z�1ð Þ 1� e�Ts=Tz�1ð Þ ¼
~CPID z�1

� �

ð13:18Þ

(The superscript ‘cd’ refers to the discrete-time form of the regulator.)

13.1.1 Tuning of Sampled Data PI Regulators

From (13.18) the pulse transfer function of a digital PI regulator is given by

CPI zð Þ ¼ KC

z� zcd1
z� 1

¼ KC

1� zcd1 z
�1

1� z�1
¼ CPI z�1

� �

ð13:19Þ

The discrete-time PI regulator replaces the pole p
pd
1 (which generally is the

smallest, belonging to the largest time constant) of the DT pulse transfer function

corresponding to the CT process with the pole z ¼ 1 (placing it at frequency x ¼ 0).

The design of the PI regulator takes into consideration the pulse transfer function
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CPI zð Þ ¼ KC

z� e�Ts=T1

z� 1
¼ KC

1� e�Ts=T1z�1

1� z�1
¼ CPI z�1

� �

ð13:20Þ

with the choice of zcd1 ¼ p
pd
1 ¼ e�Ts=T1 , where T1 ¼ max Tif g. The gain KC of the

regulator has to be set on the basis of the frequency function of the sampled CT

process, where the approximate relationship between the frequency functions of the

discrete- and the continuous-time processes is Pd jxð Þ � e�jxTs=2P jxð Þ. This means

that the amplitude-frequency function remains unchanged: as jxð Þ � a jxð Þ, whereas
the phase-frequency function is changed unfavorably: us jxð Þ ¼ u jxð Þ � xTs=2.
This effect can be taken into account very simply by prescribing a value for the

phase margin stricter than the original uto required for the CT system, as

us
to ¼ uto þxTs=2.
The discrete-time and the continuous-time PI compensating control algorithms

have the same effect and their tuning procedures are also similar.

13.1.2 Tuning of Sampled Data PD Regulators

According to (13.18) the pulse transfer function of a digital PD regulator is

~CPD zð Þ ¼ KC

z� zcd1
z� pcd

¼ KC

1� zcd1 z
�1

1� pcdz�1
¼ ~CPD z�1

� �

; ð13:21Þ

which is the SRE counterpart of the continuous-time PD regulator of (8.14). The

digital PD regulator given by (13.21) replaces the pole p
pd
2 of the pulse transfer

function of the process by pcd, which belongs to a higher frequency, thus accel-

erating the control system.

The initial and the final values of the unit step response of the PD regulator

(13.21) are

t ¼ 0; lim
z!1

z

z� 1
KC

z� zcd1
z� pcd

¼ KC; and ð13:22Þ

t ¼ 1; lim
z!1

z� 1

z

� �

z

z� 1
KC

z� zcd1
z� pcd

¼ KC

1� zcd1
1� pcd

: ð13:23Þ

Thus the overexcitation applied for the acceleration is

g ¼ KC

KC
1�zcd

1

1�pcd

¼ 1� pcd

1� zcd1
: ð13:24Þ

When designing the regulator for the acceleration, first zcd1 ¼ p
pd
2 ¼ e�Ts=T2 is

chosen. Then the value of pcd is calculated from the allowed highest overexcitation

gmax:
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pcd � 1� 1� e�Ts=T2
� �

gmax: ð13:25Þ

In the case of stable processes, with an appropriately chosen sampling time,

0� pcd � 1 and 0� zcd1 ¼ p
pd
2 � 1. Thus the inequality

pcd �max 0; 1� 1� e�Ts=T2
� �

gmax

� 	

ð13:26Þ

has to be fulfilled. The time constant T which belongs to the borderline case

pcd ¼ e�Ts=T is given by

T ¼ �Ts

ln 1� 1� e�Ts=T2ð Þgmax½ � : ð13:27Þ

In the ideal case, pcd ¼ 0, and the ideal PD regulator is expressed by the pulse

transfer function

CPD zð Þ ¼ KC

z� zcd1
z

¼ KC 1� zcd1 z
�1

� �

¼ CPD z�1
� �

: ð13:28Þ

The overexcitation in the case of an ideal PD regulator is g ¼ 1



1� zcd1
� �

. The

equivalent continuous-time PD regulator corresponding to the ideal discrete-time

PD regulator in the low frequency domain, supposing zcd1 ¼ p
pd
2 ¼ e�Ts=T2 , is

obtained by

CPD sð Þ � KC 1� p
pd
2

� �

1þ sT2ð Þe�s Td2�Tsð Þ ¼ KC 1� e�Ts=T2
� �

1þ sT2ð Þe�sTd2 ;

ð13:29Þ

where, according to the experimental formula of TUSCHÁK,

Td2 ¼
Ts

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

e�Ts=T23
p : ð13:30Þ

If Ts � 3T2, then in (13.27)

1� e�Ts=T2 � Ts

T2
and Td2 �

Ts

T2
: ð13:31Þ

Finally the transfer function of the approximate continuous PD regulator which

is valid in the low frequency domain is

~~CPD sð Þ ¼ KC

Ts

T2
1þ sT2ð Þe�sTs=2: ð13:32Þ
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The effect of the discrete-time PD compensation in the considered frequency

domain is as if a CT compensating element had changed the time constant T2 of the

process to a dead-time of value Ts=2, and in the meantime it results in an overex-

citation of value T2=Ts [more accurately, according to (13.24)]. That is, each single

discrete-time PD element replaces one pole of the pulse transfer function of the

process by a dead-time of value Ts=2 with an overexcitation as if the corner frequency
of the pole had been placed to x ¼ 1=Ts. (This rule is called the TUSCHÁK effect.)

A discrete PD regulator provides more favorable overexcitation relations than a

continuous PD regulator. This is because the initial overexcitation is maintained

during the entire sampling interval. Thus even with a smaller amplitude, sufficient

energy can be transmitted to the process. That is, the overexcitation accelerates the

process via the excess energy provided by the regulator.

The design of the gain of the regulator is executed according to the classical

method prescribing a given phase margin. The value of the prescribed phase margin

uto formulated for the original CT system is now modified to a value of

us
to ¼ uto þxTs=2.

13.1.3 Tuning of Sampled Data PID Regulators

The most frequently used form of discrete-time PID regulator is given by (13.18).

Actually this is a combination of a discrete-time PI regulator described by (13.19)

and a discrete-time PD regulator described by (13.21) forming their serial connec-

tion. Thus the design process provided for the two previous cases has to be repeated

for their combination. The pulse transfer function of the regulator is given by

C
_

PID zð Þ ¼ KC

z� zcd1
� �

z� zcd2
� �

z� 1ð Þ z� e�Ts=Tð Þ ¼ KC

1� zcd1 z
�1

� �

1� zcd2 z
�1

� �

1� z�1ð Þ 1� e�Ts=Tz�1ð Þ ¼
~CPID z�1

� �

;

ð13:33Þ

where the parameters are tuned to be zcd1 ¼ p
pd
1 ¼ e�Ts=T1 and zcd2 ¼ p

pd
2 ¼ e�Ts=T2 .

The initial and final values of the unit step response of the PID regulator given by

(13.18) are

t ¼ 0; lim
z!1

z

z� 1
KC

z� zcd1
� �

z� zcd2
� �

z� 1ð Þ z� e�Ts=Tð Þ ¼ KC; ð13:34Þ

t ¼ 1;
1

P 0ð Þ : ð13:35Þ

Thus the value of the overexcitation ensuring the acceleration is

g ¼ KC

P 0ð Þ : ð13:36Þ
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It seems formally that KC is the gain of the discrete-time PID regulator, although

this is not the case. KC is a multiplier factor. If the gain of C
_

PID is normalized to one,

then in the formula

C
_

PID zð Þ ¼ kC
1� e�Ts=T
� �

1� zcd1
� �

1� zcd2
� �

z� zcd1
� �

z� zcd2
� �

z� 1ð Þ z� e�Ts=Tð Þ ; ð13:37Þ

the actual gain of the regulator is kC. Comparing the two formulas yields

KC ¼ kC
1� e�Ts=T
� �

1� zcd1
� �

1� zcd2
� � ; ð13:38Þ

and so

g ¼ kC

P 0ð Þ
1� e�Ts=T
� �

1� zcd1
� �

1� zcd2
� � ¼ kC

P 0ð Þ
1� e�Ts=T
� �

1� e�Ts=T1ð Þ 1� e�Ts=T2ð Þ : ð13:39Þ

Now pcd1 and T can be obtained from the allowed largest overexcitation value

gmax:

pcd1 � 1� gmaxP 0ð Þ
kC

1� e�Ts=T1
� �

1� e�Ts=T2
� �

: ð13:40Þ

Also in this case we have to take care with the considerations related to (13.26).

The time constant T corresponding to the borderline case pcd1 ¼ e�Ts=T is given by

T ¼ �Ts

ln 1� gmaxP 0ð Þ
kC

1� e�Ts=T1ð Þ 1� e�Ts=T2ð Þ
h i : ð13:41Þ

Also the discrete PID regulator produces better overexcitation relations than the

continuous regulator. This is a consequence of the fact that the initial overexcitation

value is maintained through the entire sampling interval. Thus even with a smaller

amplitude, sufficient energy can be transmitted to the process. That is, the

overexcitation accelerates the process via the energy excess provided by the

regulator.

In this case, as before, the design of the gain of the regulator is executed

according to the classical method prescribing a given phase margin. The value of

the prescribed phase margin uto formulated for the original CT system is now

modified to be us
to ¼ uto þxcTs=2.

If the formula (13.10) of the discrete PID regulator is used, then regulator tuning

means the selection of the four parameters Ts;A; TI; TDf g if all three channels are

used. If (13.13) is employed, then five parameters Ts;A; TI; TD;Tf g have to be

determined. If the realization is based on formula (13.18), then the parameters
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Ts;KC; z
cd
1 ; z

cd
2 ; T

� 	

have to be tuned. The parameters Ts;A; TI; TD; Tf g and

Ts;KC; z
cd
1 ; z

cd
2 ; T

� 	

can be transformed to each other. In man-machine relations

generally the parameters of the CT regulator are used, whereas for programming the

DT parameters are used.

As a practical rule of thumb for the choice of the sampling time, it is suggested

to take 7–10 samples during the CT step response of the process. Thus the actual

sampling time depends on the dynamics of the process. Typical values for the

sampling time are, for flow rate control: 1–3 s, level control: 5–10 s, pressure

control: 1–5 s, temperature control: 10–20 s.

13.2 Other Design Methods

In the sequel, mainly design questions will be dealt with, but if required also some

realization aspects will be considered.

Comparing DT systems with the structure of CT control systems, besides the

process and the regulator there are further conversion units which serve to inter-

connect the discrete and continuous parts of the system. It was seen that the

sampling provides the samples in a natural way for the control algorithm, which

runs in the discrete sampling instants and calculates the control signal; the holding

element supplements the CT process with a preceding dynamic CT element. In

Chap. 11 it was seen that in the case of a zero order holding element this dynamics

can be characterized on the one hand by the transfer function

WZOH ¼ 1� e�sTs

s

and on the other hand its effect corresponds approximately to a time-delay element

with dead-time of one half of the sampling time, which can be easily taken into

account in the frequency domain.

The following straightforward question may arise: why is the application of the

methods presented for the synthesis of CT systems not sufficient for the design of

DT systems? It will be seen that DT equivalents of the design concepts applied for

CT systems can be elaborated, but a mechanical copying can not be followed in this

case either. For demonstration, let us analyze the concept of structural stability well

known from the theory of CT control systems.

Example 13.1 The transfer function of a CT process is

P sð Þ ¼ 1

1þ 5sð Þ 1þ 10sð Þ : ð13:42Þ

The process is sampled with sampling time Ts ¼ 1 [s] and a DT control system is

realized using a serial proportional (P) regulator and a zero order holding element.

The SRE equivalent model of the CT process together with the holding element is
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Pd zð Þ ¼ 0:0091zþ 0:0082

z2 � 1:7236zþ 0:7408
¼ 0:0091 zþ 0:9048ð Þ

z� 0:9048ð Þ z� 0:8187ð Þ :

The process gain is 1, the gain of the proportional regulator is equal to the loop

gain, A ¼ K, and the characteristic equation of the closed-loop system is

1þKPd zð Þ ¼ 0; ð13:43Þ

or in polynomial form

z2 þ 0:0091K � 1:7236ð Þþ 0:0082K þ 0:7408 ¼ 0: ð13:44Þ

The root locus starts from the poles of the open-loop for K ¼ 0 also in the

discrete-time case, as for K ¼ 0 the poles of the closed-loop are the same as those

of the open-loop (p1 ¼ 0:9054, p2 ¼ 0:8182 in the z-plane). By increasing K the

poles of the closed-loop approach more and more the unit circle, finally at K ¼ 31:6
the absolute value of the closed-loop poles is 1, p1;2 ¼ 0:718� j0:696 and

p1;2
�

�

�

� ¼ 1. For the range of K[ 31:6 the closed-loop poles get to the outside of the

unit circle, thus the closed-loop control system becomes unstable. This result is

unexpected at first sight, as the corresponding CT control system with loop transfer

function

L sð Þ ¼ KP sð Þ ¼ K

1þ 5sð Þ 1þ 10sð Þ ð13:45Þ

is structurally stable. Thus the property of structural stability is not transferred from

the continuous system to the sampled data system. This can be explained by the fact

that the holding element introduces a “virtual” dead-time into the control system,

which excludes the possibility of structural stability. ■

All the methods discussed in Chap. 12. practically worked with rational func-

tions of the variable z, namely with their numerators and denominators (which are

polynomials). The discrete-time versions of the usual PID regulators were discussed

in Sect. 13.1. The general polynomial method and the state feedback regulator

shown for CT systems will be given in Chaps. 14 and 15 for the DT case. It is also

expedient to deal with design methods which extend the CT frequency domain

regulator design methods to the discrete case. In the sequel these further design

approaches will also be presented.

These design methods can be discussed in the following three possible ways:

(a) Design of an intermediate continuous-time regulator and its discretization

The design of the continuous regulator is executed on the basis of the transfer

function of the continuous process extended by the transfer function of the holding

element. The designed CT regulator is only an intermediate step of the design, as

finally a discrete-time algorithm described by the shift operator has to be obtained.

13.2 Other Design Methods 423



(b) Design of a discrete-time regulator based on the discrete-time process model

With thismethod thewhole design process is executed in the discrete-time domain.

The sampled CT model including the holding element is transformed to a discrete-

time process model and a discrete-time regulator is designed based on this model.

(c) Direct design of a discrete-time regulator based on the continuous-time process

model

The main point of the method is that based on the low frequency behavior of the

CT process and considering the quality specifications for the closed-loop control

system, the discrete-time regulator is formed by serial connection of discrete PI and

PD elements whose parameters are tuned suited to the breakpoints of the frequency

diagram of the continuous system.

13.2.1 Design of an Intermediate Continuous-Time

Regulator and its Discretization

Repeating the basic concept of the design, here a CT regulator is designed for the

CT process, then its discrete-time equivalent is determined. Based on the discrete

form of the regulator, a program is written which realizes the control algorithm. The

regulator is designed for the CT plant whose transfer function is obtained by serial

connection of the original plant with transfer function P sð Þ with the zero order

holding element whose transfer function is WZOH ¼ 1� e�sTsð Þ=s, thus obtaining

Pe sð Þ ¼ WZOHP sð Þ ¼ 1� e�sTs

s
P sð Þ: ð13:46Þ

As this resulting transfer function is transcendental, an approximation has to be

used. The one-step approximation considers the zero order holding element as an

element with pure dead-time whose dead-time value is one-half of the sampling

time. With this conversion the transfer function remains transcendental, but this

form can be handled with the methods of continuous regulator design. With the

two-step approximation, first the discrete form of the serially connected zero order

holding element with the process is determined by the SRE transformation, then this

form—which is already not transcendental—is transformed back to the CT domain,

thus yielding a CT transfer function. The method of the design of an intermediate

CT regulator is applied in practice when high frequency sampling is possible, and in

this case there is no significant difference in the accuracy of the different dis-

cretization methods. Summarizing the possible methods, the steps of the method

using one-step approximation for the discretization are

Pe sð Þ � e�sTs=2P sð Þ ) C sð Þ ) Cd zð Þ ) Cd qð Þ; ð13:47Þ

whereas the discretization in two-steps consists of the following steps:
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Pd zð Þ ¼ 1� z�1
� �

Z P sð Þ
s

� �

) Pd sð Þ ) C sð Þ ) Cd zð Þ ) Cd qð Þ: ð13:48Þ

In the conversion above, a complex variable w can be introduced which is

analogous to the complex variable s. With this notation, (13.48) can be rewritten in

the following form:

Pd zð Þ ¼ 1� z�1
� �

Z P sð Þ
s

� �

) Pd wð Þ ) C wð Þ ) Cd zð Þ ) Cd qð Þ: ð13:49Þ

Here the notation Pd wð Þ indicates that this CT transfer function, which includes

also the effect of the holding element, is different from the transfer function of the

CT process.

It can be seen that the discretization C sð Þ ) Cd zð Þ is an element of both

schemes, thus first this conversion will be discussed. Cd zð Þ ) Cd qð Þ means just a

formal substitution: Cd qð Þ ¼ Cd zð Þjz¼q.

Let us suppose that C sð Þ, the transfer function of the CT regulator which is the

basis of the discrete realization, has been designed. The discretization is executed

by searching for the equivalent discrete-time model, or by numerical integration.

Creation of the equivalent discrete-time model

In this case, an equivalent discrete-time realization of the transfer function C sð Þ is
sought. The viewpoint of this search has to be specified. The search for an

equivalent is in the sense that for a given input (for example a unit step, ramp or

sinusoidal signal) the output of the DT system should be the same as the output of

the CT system at the sampling instants. Possible criteria are: identical unit step

response, identical impulse response, identical frequency transfer, identical

poles-zeros, etc. It has to be emphasized that if the equivalence holds for one

criterion, it is not guaranteed to hold for the others. It can be thought that with

scarcer sampling the conditions are not improved. Here the problems of quanti-

zation and finite word length will not be discussed.

Unit step response equivalent (SRE) discretization:

The sampled values of the output of the continuous regulator are:

u kTs½ � ¼ u k½ � ¼ L�1 1

s
C sð Þ

� ��

�

�

�

t¼kTs

: ð13:50Þ

The z-transform of the sampled output signal of the regulator is:

U zð Þ ¼ 1

1� z�1
Cd zð Þ; ð13:51Þ
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and hence

Cd zð Þ ¼ 1� z�1
� �

Z L�1 1

s
C sð Þ

� �

t¼kTs

( )

; ð13:52Þ

as also obtained previously.

Pulse response equivalent discretization:

The aim is to ensure the condition u k½ � ¼ u tð Þjt¼kTs
. In this case, the following

relationship is obtained for the discretization of the regulator:

Cd zð Þ ¼ Z u k½ �f g ¼ Z L�1 C sð Þ½ �t¼kTs

n o

¼ C zð Þ ð13:53Þ

Discretization ensuring equivalent pole-zero mapping:

In this case each pole and each zero is transformed according to the mapping

z ¼ esTs , and the static gain is kept at the same value. In this case a specific problem

may arise: what to do if the system has no zero? It can be observed that the

frequency function of a dynamical CT system which has no zeros tends to zero

when the frequency tends to infinity. For DT systems the largest frequency is

xmax ¼ p=Ts, here the value of z is

z ¼ esTs
�

�

s¼jxmax
¼ ejp ¼ �1: ð13:54Þ

Therefore the nonexistent CT zero has to be mapped to the DT zero z ¼ �1, that

is in the numerator of the discretized model there will appear a factor zþ 1ð Þ.
Discretization by numerical integration

To derive the discretization algorithms let us review some basic relations of nu-

merical integration. Suppose the task is the integration of a continuous function

f tð Þ. Let us denote the result of the integration by i tð Þ (and let us use now the shift

operator q).

i tð Þ ¼
Z

t

s¼0

f sð Þds ð13:55Þ

On the basis of the samples f k½ � of the function f tð Þ available in the sampling

instants Ts, the value of the integral in the sampling points t ¼ kTs can be

approximated in different ways. With right side rectangles, it is

i k½ � ¼ i k � 1½ � þ Tsf k½ �;
1

s
) qTs

q� 1
: ð13:56Þ
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With left side rectangles:

i k½ � ¼ i k � 1½ � þ Tsf k � 1½ �; 1

s
) Ts

q� 1
: ð13:57Þ

With trapezoidal approximation:

i k½ � ¼ i k � 1½ � þ Ts
f k � 1½ � þ f k½ �

2
;

1

s
) Ts

2

qþ 1

q� 1
: ð13:58Þ

Bilinear transformation:

A bilinear transformation is applied if a continuous transfer function C sð Þ is

discretized using numerical integration based on the trapezoid rule, resulting in the

rational function of the shift operator; namely a formal substitution of the s variable

is applied. Let us examine what kind of difference the formal substitution according

to (13.58) yields in the frequency functions of the CT and the corresponding DT

model. At a given frequency x, the frequency function of the continuous model is

C jxð Þ ¼ C sð Þjs¼jx. Realizing the discretization by

s ¼ 2

Ts

q� 1

qþ 1
; ð13:59Þ

in the discretized model the frequency x is expressed by

2

Ts

z� 1

zþ 1

�

�

�

�

z¼ejxTs

¼ 2

Ts

ejxTs � 1

ejxTs þ 1
¼ 2

Ts

ejxTs=2 � e�jxTs=2

ejxTs=2 þ e�jxTs=2
¼ j

2

Ts
tg

xTs

2

� �

: ð13:60Þ

The meaning of this expression is that there is a difference between the fre-

quency functions of the continuous and the discretized systems. The difference

depends on the frequency, as the rational function evaluated at a given frequency by

substituting s ¼ jx and the evaluation of the same rational function by substituting

s ¼ j
2

Ts
tg

xTs

2

� �

ð13:61Þ

provide different results. The extent of the frequency distortion resulting from the

relationship 2
Ts
tg xTs

2

� �

in the low frequency domain is not significant because of the

approximation

2

Ts
tg

xTs

2

� �

� 2

Ts

xTs

2
¼ x: ð13:62Þ

But close and closer to the sampling frequency, the deviation increases. At the

same time it can be seen that introducing the “frequency scaling” of the dis-

cretization according to
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s ¼ x1

2
Ts
tg x1Ts

2

� �

2

Ts

q� 1

qþ 1
ð13:63Þ

makes the approximation errorless at a unique frequency x1 that can be arbitrarily

chosen by the designer.

Delta transformation:

The delta transformation is based on the application of the numerical integration

technique using left side rectangles. The differential operator resulting from (13.57)

expressed as

d ¼ q� 1

Ts
� s ð13:64Þ

is called the delta operator. Applying it to the DT signal series f kTs½ � the following
relationship is obtained:

df k½ � ¼ df kTs½ � ¼ f kTs þ Tsð Þ � f kTsð Þ
Ts

¼ f kþ 1½ � � f k½ �
Ts

: ð13:65Þ

The transfer function of a system expressed by the delta operator (referred to as

its delta transform) can be derived formally both from the CT and the DT forms.

This is obvious, as the both substitutions according to (13.64) and q ¼ dTs þ 1 can

be executed, but it has to be mentioned that while one substitution is approximate,

the other one leads to exact results.

Starting from the DT form and using the substitution q ¼ dTs þ 1 it can be seen

that the transfer function expressed with the delta operator is also a rational function:

G qð Þ ¼ B qð Þ
A qð Þ ¼

B dTs þ 1ð Þ
A dTs þ 1ð Þ ¼

�B dð Þ
�A dð Þ

¼ �G dð Þ: ð13:66Þ

The delta transform can be also derived from the CT transfer function H sð Þ, then
G dð Þ ¼ H sð Þjs¼d, thus this maintains the structure of H sð Þ (e.g. the pole excess is

the same).

The theoretical importance of the delta transformation is that it creates a direct

relationship between the CT and DT systems. More precisely, for a CT system

given by the transfer function H sð Þ, the following relationship holds:

lim
Ts!0

G dð Þ ¼ H sð Þ: ð13:67Þ

Recently the delta transformation has been frequently used in practical appli-

cations. The reason for this is related simple to Eq. (13.67), as with a small sam-

pling time, both the poles and the zeros of the delta transform and those of the

continuous transfer function are close to each other.
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As an example let us consider the continuous process given by the transfer

function

P sð Þ ¼ 1

1þ 5sð Þ 1þ 10sð Þ : ð13:68Þ

The SRE pulse transfer function for sampling time Ts ¼ 1 [s] is

Pd qð Þ ¼ 0:0091 qþ 0:9048ð Þ
q� 0:9048ð Þ q� 0:8187ð Þ : ð13:69Þ

The information related to the poles—because of mapping z ¼ esTs—appears in

a small deviation from 1, which is numerically unfavorable. The situation is even

worse for smaller sampling times, e.g., in the case of Ts ¼ 0:1 [s], the pulse transfer

function is

Pd qð Þ ¼ 9:9006 qþ 0:99ð Þ10�5

q� 0:99ð Þ q� 0:9802ð Þ : ð13:70Þ

Applying the relationship q ¼ dTs þ 1 to (13.69), after some mathematical

manipulations the following delta transform is obtained for the pulse transfer function:

G dð Þ ¼ 1:0043
1þ 0:525d

1þ 10:5042dð Þ 1þ 5:5157dð Þ :

It can be seen that the poles and the gain are close to the continuous poles and

gain. They are still closer for an even smaller sampling time. Therefore the delta

transform has better numerical properties than the original pulse transfer form.

The development of hardware platforms realizing digital regulators makes

possible the employment of smaller sampling times, therefore the use of the delta

transform in discretization has gained in importance. In the case of fast sampling the

accuracy provided by the delta transformation (13.64) is appropriate and it provides

a good method which can replace the application of the bilinear transformation

(where frequency distortion has to be handled).

Discretization of the continuous PID regulators

A PID regulator offers a good control solution for a wide range of processes, thus in

control engineering practice they are the most frequently used regulators. The term

PID refers to the fact that the regulator creates the control signal from the error

signal as the sum of the outputs of three parallel channels. Furthermore, both for the

continuous and the discrete cases, there are different variants of the PID regulators.

In Chap. 12, in the discussion of the design of the discrete-time PID regulator

family, only the SRE transformation was used. Considering the DT variants, there

are several discretized forms of a given continuous-time PID regulator, depending

on the discretization technique used for the CT-DT transformation. In the sequel,
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some discretization techniques will be presented as examples. Similarly, further

forms can be derived. Different analog and digital realizations of PID regulators

generate the control signal from the error signal according to the following

equation:

u tð Þ ¼ A e tð Þþ 1

TI

Z

t

s¼0

e sð Þdsþ TD
de tð Þ
dt

2

4

3

5: ð13:71Þ

where the error signal is the difference of the output signal from the reference

signal:

e tð Þ ¼ yr � y tð Þ: ð13:72Þ

Supposing a differentiation based on two points and an integration according to

the right side rectangle, the operation of the individual channels is directly

described as follows.

P-channel:

uP k½ � ¼ Ae k½ � ð13:73Þ

I-channel:

uI k½ � ¼ uI k � 1½ � þ ATs

TI
e k½ � ð13:74Þ

D-channel:

UD sð Þ ¼ AsTDE sð Þ ) uD k½ � ¼ ATD

Ts
e k½ � � e k � 1½ �ð Þ: ð13:75Þ

The control signal, which is the input of the process, is given by

u k½ � ¼ uP k½ � þ uI k½ � þ uD k½ � ¼ Aþ ATs

TI 1� q�1ð Þ þ
ATD

Ts
q� 1ð Þ

� �

e k½ �

¼ A 1þ Tsq

TI q� 1ð Þ þ
TD q� 1ð Þ

Tsq

� �

e k½ �
ð13:76Þ

Using another numerical integration method, first let us express the PID com-

pensation with the LAPLACE transforms:

U sð Þ ¼ A 1þ 1

sTI
þ sTD

� �

E sð Þ: ð13:77Þ
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Discretize the integrator according to the bilinear transformation:

u k½ � ¼ A 1þ Ts

2TI

1þ q�1

1� q�1
þ TD

Ts
1� q�1
� �

� �

e k½ �

¼ A 1þ Ts

2TI

� �

þ Ts

2TI

2q�1

1� q�1
þ TD

Ts
1� q�1
� �

� �

e k½ �

¼ KP þKI

q�1

1� q�1
þKD 1� q�1

� �

� �

e k½ �

ð13:78Þ

where

KP ¼ Aþ KI

2
; KI ¼

ATs

TI
and KD ¼ ATD

Ts
: ð13:79Þ

From the above relationships the discrete-time PID regulator using the shift

operator is given by

1� q�1
� �

u k½ � ¼ KP 1� q�1
� �

þKIq
�1 þKD 1� q�1

� �2
h i

e k½ �; ð13:80Þ

and after some rearrangement the following relationship is obtained:

u k½ � ¼ u k � 1½ � þ KP þKDð Þe k½ � � KP � KI þ 2KDð Þe k � 1½ � þKDe k � 2½ �:
ð13:81Þ

This form of the discrete PID regulator is called the position algorithm, whereas

expressing the control increment provides the so-called velocity algorithm:

u k½ � � u k � 1½ � ¼ KP þKDð Þe k½ � � KP � KI þ 2KDð Þe k � 1½ � þKD k � 2½ �:
ð13:82Þ

In a noisy measurement environment, the practical realization of the D-channel

certainly can not be done according to TDde tð Þ=dt appearing in the theoretical

equation, as differentiating a noisy output signal by means of this channel would

result in a control signal with causelessly high amplitude. Note that in the case of

sampled data systems the application of a low pass filter after the measurement of

the output signal would reduce the effect of the high frequency noise. The general

solution, already discussed in the previous chapters, is the filtering of the differ-

entiating effect by a first order lag element. In the LAPLACE domain

U sð Þ ¼ A 1þ 1

sTI
þ sTD

1þ sTD=N

� �

E sð Þ;

where the usual value of N is between 5 and 20. Higher values of N allow the

differentiating effect at higher frequency ranges. The discretized forms of the
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proportional (P), the integrating (I), and the differentiating (D) channels can also be

generated independently of each other, following simple considerations, without

using the formalism of numerical integration. Thus the following relationships can

be given:

P-channel:

uP k½ � ¼ Ae k½ � ð13:83Þ

I-channel:

uI k½ � ¼ uI k � 1½ � þ ATs

TI
e k½ � ð13:84Þ

D-channel:

UD sð Þ ¼ A
sTD

1þ sTD=N
E sð Þ ) UD sð Þþ sTD

N
UD sð Þ ¼ ATDsE sð Þ ð13:85Þ

The differentiation can be executed considering two consecutive samples by

df tð Þ
dt

) f k½ � � f k � 1½ �
Ts

: ð13:86Þ

Then,

uD k½ � þ TD

NTs
uD k½ � � uD k � 1½ �ð Þ ¼ ATD

Ts
e k½ � � e k � 1½ �ð Þ ð13:87Þ

and

uD k½ � ¼ TD

TD þNTs
uD k � 1½ � þ ATDN

TD þNTs
e k½ � � e k � 1½ �ð Þ: ð13:88Þ

The control signal is obtained as the sum of the outputs of the three parallel

channels:

u k½ � ¼ uP k½ � þ uI k½ � þ uD k½ �: ð13:89Þ

When applying a parallel PID realization, the operation of the individual

channels becomes transparent. A further advantage of this method is that special

considerations can be easily taken into account. For instance if we do not want to

include the effect of the changes appearing in the reference signal in the operation

of the differentiating channel, then this can be directly realized according to the

following relationship:
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uD k½ � ¼ TD

TD þNTs
uD k � 1½ � � ATDN

TD þNTs
y k½ � � y k � 1½ �ð Þ: ð13:90Þ

Similarly the handling of integrator windup can be realized by observing directly

the variable uI k½ � and limiting its value.

Of course the above relations can be also formulated using the shift operator.

Then for the I-channel and for the D-channel the following relationships are

obtained:

uI k½ � ¼ q�1uI k � 1½ � þ ATs

TI
e k½ � ) uI k½ � ¼

ATs

TI 1� q�1ð Þ e k½ �; ð13:91Þ

uD k½ � ¼ 1� q�1ð ÞATDN
1� q�1TD

TD þNTs

� �

TD þNTsð Þ
e k½ � ¼ 1� q�1ð ÞATDN

TD þNTs � q�1TD
e k½ � ð13:92Þ

By adding the three components, the resulting equation is

u k½ � ¼ uP k½ � þ uI k½ � þ uD k½ � ¼ A 1þ Ts

TI 1� q�1ð Þ þ
1� q�1ð ÞTDN

TD þNTs � q�1TD

� �

e k½ �

¼ A
TI 1� q�1
� �

TD þNTs � q�1TD
� �

þ Ts TD þNTs � q�1TD
� �

þ TDTIN 1� q�1
� �

TI 1� q�1ð Þ TD þNTs � q�1TDð Þ

( )

e k½ �

ð13:93Þ

Observe that after some rearrangements the general form of the discrete PID

regulator can be written as a function of the shift operator in the following form:

u k½ � ¼ bo þ b1q
�1 þ b2q

�2

1þ a1q�1 þ a2q�2
e k½ �: ð13:94Þ

Hence the recursive relationship (difference equation) providing the realization

algorithm is

u k½ � ¼ boe k½ � þ b1e k � 1½ � þ b2e k � 2½ � � a1u k � 1½ � � a2u k � 2½ �: ð13:95Þ

Let us summarize the above considerations. The regulator design methods based

on the presented discretization methods can be divided into three groups:
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Regulator design with the method of bilinear transformation (w-transformation)

The steps of the design are the following:

(1) Calculate the w-transform of the discrete process model Pd zð Þ ¼
1� z�1ð ÞZ P sð Þ=sf g:

P wð Þ ¼ Pd zð Þjz¼ 1þwTs=2ð Þ= 1�wTs=2ð Þ ð13:96Þ

(2) Design a continuous C wð Þ regulator for the continuous-time P wð Þ process with
one of the design methods. This design typically can be executed based on the

frequency function of the P wð Þ process, calculated as P jmð Þ ¼ P wð Þjw¼jm:

(3) Determine the discrete-time regulator using the inverse w-transformation:

C zð Þ ¼ C wð Þjw¼2 1�z�1ð Þ=Ts 1þ z�1ð Þ ð13:97Þ

(4) Checking the behavior of the control system is the essential final step of the

design. In this case it will also be seen whether the frequency distortion, giving

by m ¼ 2
Ts
tg xTs

2

� �

, causes significant deterioration of the designed behavior of

the closed-loop system or not. If so (this may occur with relatively low fre-

quency sampling), then in the w-transformation, a prewarping (rescaling) can

be applied, by w0 ¼ xc

tgðxcTs=2Þ
1�z�1

1þ z�1, to avoid the frequency distortion in the

surroundings of the cut-off frequency xc. Note that the step of the CT regulator

design in the w-transformation method, that is, the determination of C wð Þ, is a
non-conventional task, as P wð Þ is a non-minimum-phase transfer function.

Regulator design with the method of the delta ( d) transformation

In practice the discretization of a CT regulator using the delta transformation is

executed as follows: we sketch a block-diagram realization of the CT regulator built

of integrators, constants and summation elements, then the CT integrators are

replaced by the delta integrators 1
d
¼ Ts

q�1
: In the regulator realization in each step

the outputs of the integrators are calculated according to

i k½ � ¼ i k � 1½ � þ Tsf k � 1½ �: ð13:98Þ

Regulator design using the discretized PID regulators

With any of the presented methods the position or the velocity algorithm directly

provides the control algorithm.

As a summary it can be stated, that the method of the design of an intermediate

CT regulator is justified mainly in the case of small sampling time, when the

conditions for the application are numerically favorable. Another advantage is that

the regulator design methods used in the case of CT systems can be directly

applied. But this is also the disadvantage of the method: using it we do not go

beyond the limits of the CT design techniques.

434 13 Design of Conventional Sampled Data Regulators



13.2.2 Design of Discrete-Time Regulators Using

Discrete-Time Process Models

In this design the hybrid system (containing CT and DT parts) is transformed to a

discrete-time equivalent system and the regulator design is executed in the DT

domain. The first step is the conversion of the CT process together with the holding

element to a discrete-time process model. A zero order holding element is sup-

posed, then the SRE discrete model of the CT process is

Pd zð Þ ¼ 1� z�1
� �

Z P sð Þ
s

� �

: ð13:99Þ

The aim of the design is to determine the pulse transfer function C zð Þ of the

series regulator, which results in the overall pulse transfer of the closed-loop control

system

T zð Þ ¼ C zð ÞPd zð Þ
1þC zð ÞPd zð Þ or more generally; T zð Þ ¼ C zð ÞG zð Þ

1þC zð ÞG zð Þ ; ð13:100Þ

ensuring the prescribed design specifications. Chapters. 12, 14 and 15 deal with

these methods, therefore here we do not go into the details of these design methods.

13.2.3 Design of Discrete-Time Regulators Using

Continuous-Time Process Models

The basis of this method is the observation that in the low frequency domain,

sampled data systems can be well approximated by CT systems. As seen previously

in the frequency domain the typical steps of the regulator design of CT systems are

the following: to ensure the static accuracy PI elements are designed as serial parts

of the regulator; then to improve the servo and disturbance rejection properties of

the closed-loop system, approximate PD (in reality phase-lead) elements are added

to the regulator, which increases the cut-off frequency; finally the gain is tuned by

setting the phase margin to a prescribed value. In the case of processes which have

the characteristic of a low pass filter, the corner frequencies of the PI and the

approximate PD elements are placed in the low or the middle frequency domain.

The design of a discrete-time regulator uses a similar method. The serial PI and

PD elements here are also chosen according to the frequency function, practically

the approximate BODE diagram of the CT process, but after having chosen the

characteristic (PI or PD) and the breakpoint frequencies of these serial regulator

elements, not the CT, but the discrete-time serial regulator elements are determined

directly. The calculation of the gain is again the final step of regulator design,

setting it to ensure the prescribed phase margin.
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Summarizing the steps of the design:

(1) Introducing PI and PD regulators according to the frequency function of the

continuous process

(2) Giving the discrete-time forms of the PI and PD regulators introduced as serial

elements in the first step and calculating the loop transfer function

(3) Determining the gain of the regulator to ensure the prescribed phase margin

(4) Checking the value of the cut-off frequency

(5) Checking the performance of the closed-loop, analyzing the course of the

output and the control signal (static and dynamic response, intersampling

behavior).

Comparing this design procedure with that for a continuous regulator, the sec-

ond, third and fifth steps require special considerations.

Creating the discrete forms of PI and PD regulators

The discretized forms are generated according to pole/zero equivalence.

PI element:

The continuous-time transfer function is 1þ sTIð Þ=s. Further characteristics are
summarized in the table below.

Continuous-time Discrete-time

Transfer function 1þ sTI

s
k1

z� z1

z� p1

Zero zPI ¼ �1=TI z1 ¼ ezPITs ¼ e�Ts=TI

Pole pPI ¼ 0 p1 ¼ epPITs ¼ 1

The discrete-time equivalent of the PI element is z� e�Ts=TI
� �


z� 1ð Þ: The gain
is not indicated, as the overall loop gain is determined at the end of the design

procedure.

PD element:

The continuous-time transfer function is 1þ ssð Þ= 1þ sTð Þ. Further character-
istics are summarized in the table below.

Continuous-time Discrete-time

Transfer function 1þ ss

1þ sT
k2

z� z2

z� p2

Zero zPD ¼ �1=s z2 ¼ ezPDTs ¼ e�Ts=T

Pole pPD ¼ �1=T p2 ¼ epPDTs ¼ e�Ts=T

The discrete-time equivalent of the PD element is: z� e�Ts=s
� �


z� e�Ts=T
� �

. The

gain is not indicated, as the overall loop gain is determined at the end of the design

procedure. Now the value of T which in the continuous case used to be the fifth, tenth

or twentieth part of s, now can be arbitrarily small, as in the extreme case the

amplitude-frequency function of the element 1þ ss can not tend to infinity when the

frequency is increasing because of the finite sampling frequency. Therefore in

practice we can consider a value of T which fulfills the condition e�Ts=T � 0; the
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corresponding pulse transfer function of the discrete PD element is z� e�Ts=s
� �


z,

and here the only parameter is determined by the chosen breakpoint frequency.

The discrete-time regulator may contain serially connected PI and PD elements

resulting in the transfer function

C zð Þ ¼ ACPI zð ÞCPD zð Þ ¼ A
z� e�Ts=T
� �

z� e�Ts=s
� �

z� 1ð Þz ð13:101Þ

Its usual name is a PIPD regulator. Note that it is possible to use more PI and PD

elements.

The third step of the design procedure is the choice of the gain A of the regulator.

The structure of the loop is now fixed: the only free parameter is the loop gain

K ¼ APd 1ð Þ. The loop transfer function L zð Þ ¼ C zð ÞPd zð Þ is then investigated,

where K determines the value of the cut-off frequency xc and the phase margin. We

are looking for a value of K, that yields the prescribed value of the phase margin.

There are several ways to determine the value of K. With trial we can use an

iterative technique which may converge quite quickly if the steps are chosen

appropriately. Another method considers the frequency characteristic of the

dynamic components of the regulator C zð Þ. A CAD environment may replace these

methods, plotting the course of the frequency function of L zð Þ with unit gain, and

then calculating the factor which modifies the gain to reach the required value of the

phase margin. This critical step will be demonstrated in Example 13.2.

The last point of the design is checking the behavior of the closed-loop control

circuit. The course of the output signal has to be examined also between the

sampling points. This can be done by simulation.

Example 13.2 The transfer function of the continuous-time process is

P sð Þ ¼ e�s

1þ 10sð Þ 1þ 5sð Þ : ð13:102Þ

Let us design a PIPD regulator with sampling time Ts = 1 s. The required type

number is i ¼ 1 and the phase margin is approximately 60�. First the process is

discretized, its pulse transfer function is

Pd zð Þ ¼ z�1 1� z�1
� �

Z 1

1þ 10sð Þ 1þ 5sð Þs

� �

¼ 0:0091
zþ 0:9048ð Þ

z� e�Ts=10ð Þ z� e�Ts=5ð Þz ¼ 0:0091
zþ 0:9048ð Þ

z� 0:9048ð Þ z� 0:8187ð Þz
ð13:103Þ

Following the design concept given for CT design the breakpoint frequency of

the PI regulator is chosen to be x1 ¼ 1=10, and the breakpoint frequency of the PD

regulator is chosen to be x2 ¼ 1=5. Then
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CPI zð Þ ¼ z� e�1=10

z� 1
¼ z� 0:9048

z� 1
ð13:104Þ

and

CPD zð Þ ¼ z� e�1=5

z
¼ z� 0:8187

z
: ð13:105Þ

The serial connection gives the pulse transfer function of the PIPD regulator:

CPIPD zð Þ ¼ A
z� 0:9048

z� 1

z� 0:8187

z
: ð13:106Þ

The loop transfer function is

L zð Þ ¼ CPIPD zð ÞPd zð Þ ¼ A
z� 0:9048

z� 1

z� 0:8187

z

0:0091 zþ 0:9048ð Þ
z� 0:9048ð Þ z� 0:8187ð Þz

¼ A
0:0091 zþ 0:9048ð Þ

zðz� 1Þ
ð13:107Þ

Analyzing the loop frequency function L zð Þjz¼ejxTs¼ a xð Þeju xð Þ with A ¼ 1, the

phase function u xð Þ reaches the value u ¼ �120� when the amplitude is

a120 ¼ 0:0661. As by changing the gain A the phase angle is not modified (only the

amplitude function is changed by a factor of A), setting the gain, A ¼ 1=0:0661 ¼
15:3 the phase angle will be u ¼ �120� at a120 ¼ 1, which means that the phase

margin is ut ¼ 180� þu xð Þja¼1¼ 180� � 120� ¼ 60�. So the regulator is

CPIPD zð Þ ¼ 15:13
z� 0:9048

z� 1

z� 0:8187

z
:

The unit step responses u k½ � and y tð Þ of the closed-loop are shown in Fig. 13.2.■

Fig. 13.2 Unit step response and the output signal of a closed-loop DT system with PIPD

regulator
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13.3 Design of Discrete-Time Residual Systems

In the case of CT systems, after the regulator design, the loop transfer function often

becomes relatively simple. Then the so-called residual systems can be described in

analytical form. For sampled data systems—if a DT regulator is designed for the

z-transform of the CT process considered together with the zero order holding

element—similar simplified examination methods might have been expected. But

unfortunately this is not the case, as only the d-transformation provides the same

structure for the DT model as for the CT model. Note that the generally used SRE

transformation always produces one pole excess. When creating the discrete-time

model of a CT process of order n together with a zero order holding element using

the z-transformation, the pulse transfer function will contain n poles and generally

(n� 1) zeros, therefore the analysis of DT residual systems means the consideration

of more parameters than in the CT case. The sampling time is a further free

parameter. The following example demonstrates these effects.

13.3.1 Continuous-Time Second Order Process with Two

Time Lags and Dead-Time

Let us consider the following continuous process containing dead-time given by its

transfer function

P sð Þ ¼ e�sTd

1þ sT1ð Þ 1þ sT2ð Þ ; ð13:108Þ

It is supposed that the dead-time Td is an integer multiple of the sampling time

Ts. The discrete dead time is expressed as

Td ¼ dTs; d ¼ 0; 1; 2; . . .ð Þ ð13:109Þ

Then the DT model of the continuous process together with the zero order

holding element is

Pd zð Þ ¼ z�d KP z� z1ð Þ
z� p1ð Þ z� p2ð Þ ¼

KP z� z1ð Þ
zd z� p1ð Þ z� p2ð Þ : ð13:110Þ

Suppose the pulse transfer function of the discrete-time PID regulator designed

using the pole cancellation technique is

C zð Þ ¼ CPID zð Þ ¼ KC z� p1ð Þ z� p2ð Þ
z z� 1ð Þ : ð13:111Þ

Then the loop transfer function is

L zð Þ ¼ C zð ÞP zð Þ ¼ KCKP z� z1ð Þ
zdþ 1 z� 1ð Þ ¼ KL z� z1ð Þ

zdþ 1 z� 1ð Þ ¼
KI z� z1ð Þ
zdþ 1 z� 1ð Þ : ð13:112Þ

13.3 Design of Discrete-Time Residual Systems 439



and the frequency function of L zð Þ is

L	 jxð Þ ¼ L ejxTs
� �

¼ KI e
jxTs � z1ð Þ

ej dþ 1ð ÞxTs ejxTs � 1ð Þ ¼
KI e

jxTs � z1ð Þ
ej dþ 2ð ÞxTs � ej dþ 1ð ÞxTs

¼ KI cos xTsð Þþ jsin xTsð Þ � z1½ �
cos dþ 2ð ÞxTs½ � þ jsin dþ 2ð ÞxTs½ � � cos dþ 1ð ÞxTs½ � � jsin dþ 1ð ÞxTs½ � :

ð13:113Þ

The phase angle of L jxð Þ is given by

arc L	 jxð Þf g ¼ arctg
sin xTsð Þ

cos xTsð Þ � z1
� arctg

sin dþ 2ð ÞxTs½ � � sin dþ 1ð ÞxTs½ �
cos dþ 2ð ÞxTs½ � � cos dþ 1ð ÞxTs½ � :

ð13:114Þ

As in the low frequency domain the phase angle of 1
z dþ 1ð Þ z�1ð Þ can be well

approximated by

arc
1

ej dþ 1ð ÞxTs ejxTs � 1ð Þ

� �

ffi �90� � dþ 1ð ÞxTs
180�

p
; ð13:115Þ

we have that in this range

arc L	 jxð Þf g ffi arctg
sin xTsð Þ

cos xTsð Þ � z1
� 90� � dþ 1ð ÞxTs

180�

p
: ð13:116Þ

If the control system is designed for the phase margin ut ¼ 60�, then

arc L	 jxð Þf g ¼ �120� ð13:117Þ

has to be fulfilled. For this the cut-off frequency xc has to be solved from the

transcendental equation

dþ 1ð ÞxTs
180�

p
� 30� ffi arctg

sin xTsð Þ
cos xTsð Þ � z1

ð13:118Þ

at x ¼ xc. Then from

L	 jxð Þj jx¼xc
¼ KI e

jxTs � z1ð Þ
ejkxTs ejxTs � 1ð Þ

�

�

�

�

�

�

�

�

x¼xc

¼ KI e
jxTs � z1ð Þ

ejxTs � 1ð Þ

�

�

�

�

�

�

�

�

x¼xc

¼ KI

ejxcTs � z1ð Þ
ejxcTs � 1ð Þ

�

�

�

�

�

�

�

�

¼ 1

ð13:119Þ
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KI can be solved for

KI ¼
ejxcTs � 1j j
ejxcTs � z1j j ; ð13:120Þ

and finally the gain of the regulator is obtained

KC ¼ KI=KP: ð13:121Þ

It can be seen that especially because of the initial transcendental equation,

complicated calculations have to be executed. But with CAD facilities, expression

L zð Þ ¼ KI z� z1ð Þ
z dþ 1ð Þ z� 1ð Þ ¼

KI z� z1ð Þ
zk z� 1ð Þ ð13:122Þ

obtained for the loop transfer function can easily be handled. For example, the

frequency function belonging to the pulse transfer function L zð Þ can be determined,

and in the required frequency range with a given resolution coherent values of the

frequency, the amplitude and the phase can be calculated (just by calling a routine).

These values are important for further considerations in the vicinity of the fre-

quency where arc L jxð Þf g ffi �120�. The approximation can be made more accurate

with tapering and refining the resolution of the frequency range. The sampling time

Ts is also a parameter of the calculations (and of the program routine). Its value is

also needed in the formal substitution of z ¼ esTs js¼jx.

Note that in the case of a system with no dead-time (d ¼ 0) and k ¼ 1, the initial

transcendental equation is

xTs
180�

p
� 30� ffi arctg

sin xTsð Þ
cos xTsð Þ � z1

: ð13:123Þ

A further remark is that calculating the discrete model of a continuous second

order system with two time lags, containing also a zero and dead-time, given by the

transfer function

P sð Þ ¼ 1þ ssð Þe�sTd

1þ sT1ð Þ 1þ sT2ð Þ ; ð13:124Þ

the pulse transfer function can be obtained also in the form

Pd zð Þ ¼ z�d KP z� z1ð Þ
z� p1ð Þ z� p2ð Þ ¼

KP z� z1ð Þ
zd z� p1ð Þ z� p2ð Þ : ð13:125Þ

13.3.2 The TUSCHÁK Method

The discrete regulator design method of TUSCHÁK is based on the fact that also the

design methods of DT regulators use essentially pole/zero cancellation methods.
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Therefore in most cases good results are obtained if the regulator is designed based

on the CT process model, but taking into account the extra phase distortion coming

from the sampling. We have already discussed the simplest case of phase distortion,

namely the application of the zero order holding element which virtually places an

extra dead-time of value Ts=2 into the closed-loop, thus the phase characteristic

changes unfavorably according to us jxð Þ ¼ u jxð Þ � xTs=2.
DT models obtained by SRE transformation may introduce further undesired

distortions. Let us analyze first the SRE model of the first order lag element

P sð Þ ¼ 1= 1þ sTð Þ, where

Pd zð Þ ¼ b1z
�1

1þ a1z�1
¼ b1

zþ a1
¼ K 1� e�Ts=T

� �

z�1

1� e�Ts=Tz�1
¼ K 1� e�Ts=T

� �

z� e�Ts=T

�

�

�

�

�

K¼1

¼ 1� e�Ts=T

z� e�Ts=T
: ð13:126Þ

Approximating the exponential elements with their TAYLOR expansions,

Pd ejxTs
� �

� ~Pd jxð Þ

¼
1� 1� Ts=T þ Ts=Tð Þ2

.

2� � � �
h i

1þ jxTs þ jxTsð Þ2
.

2þ � � �
h i

� 1� Ts=T þ Ts=Tð Þ2
.

2� � � �
h i :

ð13:127Þ

Neglecting the elements whose degree is higher than two, the following rela-

tionship is obtained

~Pd jxð Þ � 1

1þ jxT

1� Ts=2T

1þ jxT � 1ð ÞTs=2T
� 1

1þ jxT
e�jxT�

h ; ð13:128Þ

where

T�
h ¼ Ts=2

1� Ts=2T

�

�

�

�

Ts�T

ffi Ts

2
: ð13:129Þ

Thus in the low frequency domain the additional dead-time is equal to the extra

dead-time of Ts=2 considered as a consequence of sampling, but for larger sampling

times this can be significantly larger, for instance in the case of Ts ¼ T , it takes

already the value of T�
h ¼ Ts.

In the pulse transfer function, not only do zeros appear correspond to the zeros of

the CT process, but also additional zeros appear because of the sampling. Let us

consider the DT model of unity gain given by the pulse transfer function

Pd zð Þ ¼ zþ cð Þ= 1þ cð Þ. The low frequency approximation of its frequency func-

tion is
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Pd ejxTs
� �

¼ ejxTs þ c

1þ c
� 1þ jxTs þ jxTsð Þ2=2þ � � � þ c

1þ c
: ð13:130Þ

Dividing the numerator and the denominator by 1þ cð Þ, then neglecting the

quadratic and higher degree elements, the approximating frequency function is

obtained as

~Pd jxð Þ � 1þ jx
Ts

1þ c
� ejxTh ; ð13:131Þ

where the additional negative dead-time (i.e., acceleration) is

T þ
h ¼ Ts

1þ c

�

�

�

�

c�0

¼ Ts: ð13:132Þ

If c is small, then T þ
h � Ts, if it is large, then the value of the additional

(positive) dead-time can be smaller than Ts=2.
Based on the above considerations, a rough estimate of the entire additional

dead-time is given by

~~Th ¼
P� Zð ÞTs

2
; ð13:133Þ

where P is the number of poles and Z is the number of zeros of the DT model. This

does not mean much more than the additional dead-time Ts=2 introduced by the

zero order holding element (as for SRE discretization P� Z ¼ 1). Nevertheless it is

expedient to calculate all the additional dead-times resulting from the poles and the

zeros according to (13.129) and (13.132) and summaring them, to get

~Th ¼
X

Z

i¼1

T þ
h;i �

X

P

i¼1

T�
h;i: ð13:134Þ

Example 13.3 Let the transfer function of the CT process be

P sð Þ ¼ 1

1þ sð Þ 1þ 5sð Þ 1þ 10sð Þ : ð13:135Þ

The sampling time is Ts ¼ 1. The pulse transfer function is

Pd zð Þ ¼ 0:0024
zþ 0:1903ð Þ zþ 2:7471ð Þ

z� 0:9048ð Þ z� 0:8187ð Þ z� 0:3679ð Þ : ð13:136Þ
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The approximating discrete frequency function in the low frequency domain

(x\1=Ts ¼ 1) is calculated as

~Pd jxð Þ ¼ 0:0024
1þ 0:1903ð Þ 1þ 2:7471ð Þe�jx 0:5

1�0:5þ 0:5
1�0:1þ 0:5

1�0:05�1=1:1903�1=3:7471ð Þ
1� 0:9048ð Þ 1� 0:8187ð Þ 1� 0:3679ð Þ 1þ 10jxð Þ 1þ 5jxð Þ 1þ jxð Þ

ð13:137Þ

or

~Pd jxð Þ ¼ e�jx 2:089�0:84�0:2669ð Þ

1þ 10jxð Þ 1þ 5jxð Þ 1þ jxð Þ ¼
e�jx0:875

1þ 10jxð Þ 1þ 5jxð Þ 1þ jxð Þ : ð13:138Þ

As seen here a bit higher value was obtained than 0.5, one-half of the sampling

time. ■

13.3.3 Discrete-Time Second Order Process with Time Lag

and Dead-Time

The SRE discrete-time model of the second order CT time process given by the

transfer function (13.108) is of DT form (13.110), which can be written also in the

usual form

P0
d z�1
� �

¼ b01z
�1 þ b02z

�2

1þ a01z
�1 þ a02z

�2
z�d ¼ b0o 1þ cz�1ð Þ

1þ a01z
�1 þ a02z

�2
z�d0 : ð13:139Þ

It is worthwhile to note that using the d-transformation according to (13.64) one

obtains

Pd q�1
� �

¼ b00oq
�2

1þ a001q
�1 þ a002q

�2
q�d ¼ b00o

1þ a001q
�1 þ a002

q�d00 : ð13:140Þ

where d00 ¼ dþ 2. So both formulas can be given by the general pulse transfer

function Pd ¼ Bz�k



A, only with differing values of B and k.

The design method using the usual pole cancellation method in the case of the

discrete-time PID regulator can be described in the simplest way by the following

pulse transfer function of the regulator:

C zð Þ ¼ qo þ q1z
�1 þ q2z

�2

1�z�1
GF zð Þ ¼ qoA zð Þ

1�z�1
GF zð Þ; ð13:141Þ

where GF zð Þ is a serial filter, which forms a part of the regulator. With this com-

pensation the resulting residual loop transfer function is

L zð Þ ¼ qoB
1�z�1

GF zð Þz�k ¼ qobo 1þ cz�1ð Þ
1�z�1

¼ KI 1þ cz�1ð Þ
1�z�1

: ð13:142Þ
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For phase margin ut ¼ 60� the transients of this simple residual closed-loop

system are very nice, the overshoot is less than 1–5%. Unfortunately, to calculate

the integrating loop gain KI, the following nonlinear equation has to be solved:

x ¼
1� 2arctg c sin x

1þ c cos x

2d � 1
¼ gðxÞ: ð13:143Þ

Using its solution,

KI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1� cos xð Þ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2c cos xþ c2
p : ð13:144Þ

From the last two equations the curves obtained as optimal solutions for setting

the parameter KI as a function of d and c are shown in Fig. 13.3. For positive values

of c, using the TAYLOR expansion approximations of the functions in the two

equations, one obtains

KI ¼
1

2k 1þ cð Þ � 1� cð Þ ; c[ 0ð Þ: ð13:145Þ

For c ¼ 0. which is common when using the d-transformation (the BÁNYÁSZ-

KEVICZKY method),

K0
I ¼ 1

2k � 1
¼ 1

2k � 1

�

�

�

�

k¼d00
¼ 1

2 dþ 2ð Þ � 1
¼ 1

2dþ 3
; c 
 0ð Þ: ð13:146Þ

It can be simply checked that

1

T0
I

¼ lim
Ts!0

K0
I

Ts
� lim

Ts!0

1

2Td þ 3Ts
¼ 1

2Td
; ð13:147Þ

which corresponds to the solution (8.23) obtained for the CT residual system.

d =1

d = 2

d =10

1 0.5 0 0.5 1
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K I
Fig. 13.3 The optimal KI as

a function of d and c
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Let us note that for the domain c\0, the following simple serial filter can be

used:

GF zð Þ ¼ 1

1þ cz�1
: ð13:148Þ

This case corresponds to formula (13.14) of the DT approximate PID regulator.

This is essentially a zero cancellation technique, which can well be used, if the zero

z1 ¼ �c is stable. If the zero is unstable, then with a pole of value p1 ¼ 1=z1 the

undesired “negative” overshoot in the unit step response of the closed-loop could

successfully be decreased. This pole can be placed by the choice of the serial filter

GF zð Þ ¼ 1þ c

c

1

1þ 1
c
z�1 � K0

I
1�c
c
z�d

ð13:149Þ

(the BÁNYÁSZ-KEVICZKY-HETTHÉSSY method).
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Chapter 14

State Feedback in Sampled

Data Systems

The design methods for controllers based on state feedback in the case of CT

processes were discussed in Chap. 9. Next this methodology will be summarized

for DT systems. For this purpose consider the state equation of a sampled data

linear LTI process to be controlled using the results of Sect. 11.4 for the case d ¼ 0:

x kþ 1½ � ¼ Fx k½ � þ gu k½ �

y k½ � ¼ cTx k½ �
ð14:1Þ

The block scheme represented by the above equations is seen in Fig. 14.1.

Here u k½ � and y k½ � are the process input and output, respectively, and x denotes

the state vector. The equivalent pulse transfer function is now

G zð Þ ¼ cT zI � Fð Þ�1
g ¼

B zð Þ

det zI � Fð Þ
¼

B zð Þ

A zð Þ
¼

b1z
n�1 þ � � � þ bn�1zþ bn

zn þ a1zn�1 þ � � � þ an�1zþ an
:

ð14:2Þ

A classical closed control loop directly applied to the state equation description

is shown in Fig. 14.2, where the reference signal is denoted by r k½ �. The

closed-loop is formed by the feedback from the state vector via the linear pro-

portional feedback vector kT in the form

u k½ � ¼ krr k½ � � kTx k½ � ð14:3Þ

Based on Fig. 14.2, the state equation of the complete closed-loop system can be

written as

x kþ 1½ � ¼ F� gkT
� �

x k½ � þ krgr k½ �

y k½ � ¼ cTx k½ �
ð14:4Þ
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i.e., the dynamics concerning the original system matrix F is modified by the dyadic

product gkT to F� gkT
� �

.

The transfer function of the closed control loop is

Try zð Þ ¼
Y zð Þ

R zð Þ
¼ cT zI � Fþ gkT

� ��1
gkr ¼

cT zI � Fð Þ�1
gkr

1þ kT zI � Fð Þ�1
g

¼
kr

1þ kT zI � Fð Þ�1
g
G zð Þ ¼

krB zð Þ

A zð Þþ kTW zð Þg

ð14:5Þ

which comes from the comparison of the Z-transforms X zð Þ ¼ zI � Fð Þ�1
gU zð Þ

[similarly to (3.12)], U zð Þ ¼ krR zð Þ � kTX zð Þ [see (9.3)] and Y zð Þ ¼ cTX zð Þ [see

(9.1)], using the matrix inversion lemma (the proof is given in detail in A.9.1 of

Appendix A.5 for CT systems). Notice that the state feedback leaves the zeros of the

process unchanged, and only the poles of the closed system can be designed by kT.

Introduce the so-called calibration factor kr, by means of which the gain of the

Try can be set to unity, i.e., Try 1ð Þ ¼ 1. Obviously the open-loop is not an inte-

grating one, so it can not yield zero error and static gain unity. In order to reach this

the process parameters have to be known and the condition

Fig. 14.1 Block scheme of the state equation of the linear time invariant discrete-time system

Fig. 14.2 Linear discrete-time control with state feedback
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kr ¼
�1

cT F� gkT
� ��1

g
¼

kTF�1g� 1

cTF�1g
ð14:6Þ

must be fulfilled [see A.9.2 of Appendix A.5]. The above special closed control

loop is called state feedback.

14.1 Discrete-Time Pole-Placement State Feedback

Regulator

The most natural design method regarding the state feedback is the so-called

pole-placement. In this method the feedback vector kT has to be chosen to provide a

prescribed polynomialR zð Þ for the characteristic equation of the closed system, e.g.

in DT case,

R zð Þ ¼ zn þ r1z
n�1 þ � � � þ rn�1zþ rn ¼

Y

n

i¼1

z� zið Þ = det z I � Fþ g kT
� �

¼ A zð Þþ kTW zð Þg

ð14:7Þ

The solution always exists if the process is controllable. If the transfer function of

the system to be controlled is known, then it is an exceptional case, because the

canonical state equations can be directly written. Based on the controllable control-

lable canonical forms (3.47) and (11.107) the system matrices can be obtained as

Fc ¼

�a1 �a2 . . . �an�1 �an

1 0 . . . 0 0

0 1 . . . 0 0

..

. ..
. . .

. ..
. ..

.

0 0 0 1 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

; cTc ¼ b1; b2; . . .; bn½ � ;

gc ¼ 1; 0; . . .; 0½ �T

ð14:8Þ

Taking the special forms of Fc and gc it can be easily seen that according to the

design equation
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Fc � gck
T
c ¼

�a1 �a2 . . . �an�1 �an
1 0 . . . 0 0

0 1 . . . 0 0

..

. ..
. . .

. ..
. ..

.

0 0 0 1 0

2

6

6

6

6

4

3

7

7

7

7

5

�

1

0

0

..

.

0

2

6

6

6

6

4

3

7

7

7

7

5

kTc

¼

�r1 �r2 . . . �rn�1 �rn
1 0 . . . 0 0

0 1 . . . 0 0

..

. ..
. . .

. ..
. ..

.

0 0 0 1 0

2

6

6

6

6

4

3

7

7

7

7

5

ð14:9Þ

the choice

kT ¼ kTc ¼ r1 � a1; r2 � a2; . . .; rn � an½ � ð14:10Þ

ensures the characteristic equation Eq. (14.7), i.e., the prescribed poles. The value

of the calibration factor can be given by a simple computation:

kr ¼
an þ rn � anð Þ

bn
¼

rn

bn
: ð14:11Þ

It can be easily seen from the Eqs. (14.4) and (14.6) that the overall transfer

function of the closed-loop system is

Try zð Þ ¼
krB zð Þ

R zð Þ
ð14:12Þ

in the case of state feedback pole placement, as was already mentioned in con-

nection with (14.5).

Example 14.1. Consider an unstable process with transfer function

G zð Þ ¼
�0:2z

z� 0:8ð Þ z� 2ð Þ
¼

�0:2z�1

1� 0:8z�1ð Þ 1� 2z�1ð Þ
¼

�0:2z

z2 � 2:8zþ 1:6
¼

�0:2z

A zð Þ
;

where A zð Þ ¼ z� 0:8ð Þ z� 2ð Þ ¼ z2 � 2:8zþ 1:6 ¼ z2 þ a1zþ a2. To stabilize the

process we should mirror the unstable pole outside the unit circle pd2 ¼ 2 inside the

circle, i.e., select pd2 ¼ 0:5. The design polynomial R zð Þ ¼ z� 0:8ð Þ z� 0:5ð Þ ¼

z2 � 1:3zþ 0:4 ¼ z2 þ r1zþ r2 ensures this goal. So the necessary stabilizing

feedback vector is

kT ¼ r1 � a1 r2 � a2½ � ¼ �1:3� �2:8ð Þ 0:4� 1:6ð Þ½ � ¼ 1:5 �1:2½ �:

■
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The most frequently appearing case of state feedback is when instead of the

transfer function, the state space form of the controlled system is given. In con-

nection with (3.67) it has already been discussed that all controllable systems can be

written in controllable canonical form by using the transformation matrix

Tc ¼ Mc
c Mcð Þ�1

. This similarity transformation has an effect on the feedback

vector, too:

kT ¼ kTcTc ¼ kTcM
c
cM

�1
c ¼ gTcM

�1
c R Fð Þ ¼ 0; 0; . . .; 1½ �M�1

c R Fð Þ ð14:13Þ

To compute (14.13), the inverse of the controllability matrix has to be con-

structed by the system matrices F and g, on the one hand. On the other hand, the

controllability matrixMc
c of the controllable canonical form has to be also generated

[see (3.61)]. Since this latter depends only on the coefficients ai in the denominator

of the process transfer function, the denominator has to be computed:

A zð Þ = det zI � Fð Þ. The same is true for the computation of R Fð Þ in the second

formula. The method of computing the pole placement state feedback vector shown

above is named—after its developer—the ACKERMANN method.

Observe that the transformation properties of the CT and DT state equations,

their canonical forms and the concepts of controllability and observability are

formally completely the same. Deriving from this fact, the state feedback tech-

niques for the control of discrete-time systems also have a great similarity with the

CT methods presented above.

14.2 Observer Based Discrete-Time Pole Placement State

Feedback Regulator

The method of the state feedback discussed previously requires measuring the state

space vector of the state equation describing the process. This is very rarely

available, generally only in the case of systems with low order dynamics (for

example, mechanical systems described by distance, velocity and acceleration

co-ordinates). The usability of the methods depends also on whether measurement

or estimation is available on the state vector. For the construction of the state vector,

the so-called observer principle has been developed. For this method, the knowl-

edge of the system matrices F, g and cT is necessary, by means of which an exact

model of the process is constructed, and applying the same excitation as for the

original process, this model (the observer) provides the estimated values x̂ k½ � and
ŷ k½ � of x k½ � and y k½ �, respectively. The state feedback is performed using x̂ k½ �. The
principle is shown in Fig. 14.3.

Strictly speaking, F̂, ĝ and ĉT have to be employed in the observer instead of F,

g and cT. But the particularity of the observer is that besides providing a parallel

model, it also constructs an error e k½ � ¼ y k½ � � ŷ k½ � from the deviation of the

original from the estimated output of the process, and feeds it back to the input of
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the observer delay via a proportional feedback vector l. This feedback operates until

the error exists, i.e., until the outputs of the process and the observer become the

same. With the knowledge of the system matrices this operating mode can com-

pensate relatively large errors. It is also seen in the figure that now the state

feedback has the form

u k½ � ¼ krr k½ � � kTx̂ k½ �; ð14:14Þ

thus x̂ k½ � appears instead of x k½ �. After a long and complex derivation, whose details

are not discussed here, the transfer function of the complete closed system can be

obtained as

Try zð Þ ¼
cT zI � Fð Þ�1

g
h i

1� kT zI � Fþ gkT þ lcT
� ��1

b
h i

kr

1þ lT zI � Fþ glTþ lcT
� ��1

g
h i

cT zI � Fð Þ�1
g

h i

¼ cT zI � Fþ gkT
� ��1

gkr ¼
cT zI � Fð Þ�1

gkr

1þ kT zI � Fð Þ�1
g
¼

krG zð Þ

1þ kT zI � Fð Þ�1
g
¼

krB zð Þ

R zð Þ

ð14:15Þ

Fig. 14.3 State feedback applying an observer
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which is, perhaps surprisingly, precisely equal to (14.2), i.e., to the case of state

feedback without observer. This means that the tracking behavior of the closed

system does not depend on the choice of the vector l. To examine the operation of

the observer, let us construct the vector of the state error

~x k½ � ¼ x k½ � � x̂ k½ � ð14:16Þ

and also

~x k½ � ¼ F� l cT
� �

~x k½ �; ð14:17Þ

which is very similar to (14.4) without excitation. Very similar methods can be used

for the design of observers as were used for state feedback, where the choice of the

goal is to ensure the system dynamics (14.17) by the characteristic polynomial

det zI � Fþ lcT
� �

¼ F zð Þ ¼ zn þ f1z
n�1 þ � � � þ fn�1zþ fn ð14:18Þ

A solution always exists if the process is observable (This is reasonable if the

order of F is equal to that of A). If the transfer function of the process to be

controlled is known, then it is an exceptional case, because then the canonical forms

can be directly written. In this case, when the system matrices are based on the

observable canonical forms (3.53),

Fo ¼

�a1 1 0 . . . 0

�a2 0 1 . . . 0

..

. ..
. ..

. . .
. ..

.

�an�1 0 0 . . . 1

�an 0 0 . . . 0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

; cTo ¼ 1; 0; . . .; 0½ � ; go ¼ b1; b2; . . .; bn½ �T

ð14:19Þ

Taking the special forms of Fo and cTo into account, it is easily seen that

according to the design equation

Fo � loc
T
o ¼

�a1 1 0 . . . 0

�a2 0 1 . . . 0

..

. ..
. ..

. . .
. ..

.

�an�1 0 0 . . . 1

�an 0 0 . . . 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

� lo 1; 0; . . .; 0½ � ¼

¼

�f1 1 0 . . . 0

�f2 0 1 . . . 0

..

. ..
. ..

. . .
. ..

.

�fn�1 0 0 . . . 1

�fn 0 0 . . . 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

ð14:20Þ
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the choice

l ¼ lo ¼ f1 � a1; f2 � a2; . . .; fn � an½ �T ð14:21Þ

ensures the characteristic equation (14.18), i.e., the prescribed poles.

The general case is now, when the state space equation of the process is given

instead of its transfer function. It has already been discussed concerning Eq. (3.79)

that all observable systems can be written in observable canonical form by the use

of the transformation matrix To ¼ Mo
o

� ��1
Mo. This similarity transformation has an

effect on the feedback vector, too:

l ¼ Toð Þ�1
lo ¼ M�1

o Mo
olo: ð14:22Þ

To compute (14.22), the inverse of the observability matrix Mo has to be con-

structed by the general system matrices F and cT. On the other hand, the observ-

ability matrix Mo
o of the observable canonical form must be also given (see (3.73).

Since this latter one depends only on the coefficients ai in the denominator of the

transfer function of the process, so to its determination the denominator has to be

computed: A zð Þ = det zI � Fð Þ. The computation method of the observer vector

shown above is named, after its developer, the ACKERMANN method.

There is an interesting similarity between the design methods of the dynamics of

the state feedback and of the observer, a so-called duality, i.e., they correspond to

each other under the associations F $ FT; g $ cT; k $ lT;Mc
c $ Mo

o

� �T
.

Based on the state error (14.16) and the equations of the process (14.1), the joint

equation of the state feedback and the observer is

x kþ 1½ �

~x kþ 1½ �

� �

¼
F� gkT gkT

0 F� lcT

" #

x k½ �

~x k½ �

� �

þ
krg

0

� �

r k½ �

e k½ � ¼ y k½ � � ŷ k½ � ¼ cT~x k½ �

ð14:23Þ

Since the right hand side system matrix is upper triangular, the characteristic

equation of the closed system is

det zI � Fþ gkT
� �

det zI � Fþ lcT
� �

¼ R zð ÞF zð Þ ð14:24Þ

Thus the polynomial is the product of two factors: one is connected to the state

feedback, the other is connected to the observer. It is important to remark that in

contrast to (14.24), F zð Þ does not appear in the transfer function Try zð Þ [see (14.12)
and (14.15)].

Equation (14.24) representing the observer based state feedback, according to

which the characteristic equations of the state feedback and observer are inde-

pendent, is called the separation principle.
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14.3 Two-Step Design Methods Using Discrete-Time State

Feedback

It has been shown in the discussion of the state feedback based control, that the

most advantageous (favorable) properties of the method are:

– the applicability of the method does not depend on whether the process is stable

or unstable

– the tracking behavior does not depend on the applied observer, thus it can be

directly designed

– the method is not very sensitive for the exact knowledge of the parameter

matrices of the state equation

There are unwanted, unfavorable properties:

– the state feedback is basically a control of 0-type, therefore the remaining error

can be eliminated by the calibration factor, which is never very precise using the

model of the process

– the state feedback can not change the zeros of the process

– the noise rejection behavior can not be designed directly.

Mainly due to these latter attributes, usually an extra step is included in the

design of control systems using state feedback. The necessity of the calibration

factor can be easily eliminated by the construction of a cascade integrating con-

troller according to Fig. 14.4.

The joint state equation of the closed system, which now replaces Eq. (14.4), can

be written as

_x� kþ 1½ � ¼
_x kþ 1½ �
_d kþ 1½ �

� �

¼
F 0

cT 0

� �

x k½ �

d k½ �

� �

þ
g

0

� �

u k½ � þ
0

�1

� �

r k½ �

¼ F� � g�kT�
� �

x� k½ � þ v�r k½ �

ð14:25Þ

Fig. 14.4 The joint use of the state feedback and the integrating controller
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by introducing a new state variable d k½ �, which is the integral of the error e k½ � ¼
r k½ � � y k½ � of the outer loop, where the notations

F� ¼
F 0

cT 0

� �

; g� ¼
g

0

� �

; v� ¼
0

�1

� �

ð14:26Þ

and the new extended feedback equation

u k½ � ¼ � kT kr
� � x k½ �

d k½ �

� �

¼ �kT�x
� k½ � ¼

kr

1� z�1
e k½ � � kTx k½ � ð14:27Þ

are taken into account.

Equation (14.27) clearly shows the integrating effect. The item kTx k½ �, however,
can be considered as a generalization of the derivative effect.

Thus the closed-loop control having also an integrator can be described by a

state equation which has its dimension higher by one than the earlier one, where

now kr has also to be determined besides kT. For the design of the extended system

the characteristic polynomial R� zð Þ having order greater by one has to be pre-

scribed, then the design Eq. (14.13) of the ACKERMANN method can be directly

applied here too. If the process is not given in the transfer function form, then the

general state equation has to be rewritten first into a controllable canonical form, as

was shown in (10.13).

Notice that the extended task can not be solved sequentially, i.e., by determining

first the kT belonging to R zð Þ, and then kr based on R� zð Þ ¼ R zð Þ z� znþ 1ð Þ. The

task has to be solved in one step for kT� on the basis of R� zð Þ.
An integrating effect can also be included by designing the state feedback for a

modified process G� zð Þ ¼ zG zð Þ= z� 1ð Þ instead of the transfer function G zð Þ. Note
that the feedback vectors obtained for the earlier case and for this latter approach are

not the same!

Obviously, besides the I-controller, a higher order regulator can also be applied.

The solution of the pole placement, however, can not be obtained automatically by

the ACKERMANN method, and may lead to a complicated system of non-linear

equations.

In the case of state feedback applying observer an I or higher order regulator,

instead of the regulator of 0-type, can also be applied in the error feedback of the

observer using the methods shown above.

The unchanged zeros of the process can be compensated by a serial compensator

Ks zð Þ ¼ Gs zð Þ
N zð Þ

Bþ zð Þ
ð14:28Þ

where it is assumed, according to the method applied in Chap. 7, that the numerator

of the process is B zð Þ ¼ Bþ zð ÞB� zð Þ. Here Bþ contains the stable zeros and B�

the unstable zeros. For realizability, N zð Þ=Bþ zð Þ has to be proper, thus only as
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many zeros can be placed in the transfer function of the closed system as there are

stable zeros in the process.

Finally the loop transfer function has the form

Try zð Þ ¼
N zð Þ

R zð Þ
krGs zð ÞB� zð Þ ð14:29Þ

where the effect of the invariant B� zð Þ can be attenuated optimally by the filter

Gs zð Þ. In many cases a simple, but not optimal Gs zð Þ ¼ 1 is chosen.

A favorable design of the disturbance rejection feature can be reached by

applying a YP controller in the outer cascade loop. This can be done since the state

feedback is capable of stabilizing any process, even an unstable one. In general, the

control of an unstable process has two steps. In the first step the process is stabi-

lized, then in the second step, via a second outer loop, the required quality goals can

be ensured even by a TDOF structure.

A stabilizing controller using state feedback can be applied only to delay-free

processes. If the process has a significant delay, then the only possibility is to

switch to a sampled-data control using the general polynomial method [see

Chap. 15].

14.4 Discrete-Time LQ State Feedback Regulator

With the method presented in the previous section, arbitrary (stabilizing) pole-

placement can be performed via the so-called state feedback from the state vector of

the process. A further optimality task can also be solved by the technique of state

feedback. The goal of this task to control optimally the DT LTI process (11.33–

11.34) by the minimization of a complicated optimality criterion

I ¼
1

2

X

1

k¼0

xT k½ �Wxx k½ � þWuu
2 k½ �

� 	

ð14:30Þ

Here Wx is a real symmetric positive semi-definite matrix, weighting the DT

state vector and Wu is a positive scalar, weighting the DT actuator signal. The

solution optimizing the criterion is a state feedback in the form

u k½ � ¼ �kTLQ x k½ � ð14:31Þ

[see (9.3)], where kTLQ is the feedback vector

kTLQ ¼
1

Wu

gTP ð14:32Þ
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Here the symmetric positive semi-definite matrix P is the solution of the alge-

braic RICCATI equation

PFþFTP�
1

Wu

PggTP ¼ �Wx ð14:33Þ

The (algebraic) RICCATI equation is nonlinear in P, therefore it does not have an

explicit algebraic solution. The CAD systems used in control engineering, however,

have several numerical algorithms for the solution of the above equation. This

controller is called an LQ (Linear Quadratic: Linear regulator—Quadratic crite-

rion) regulator.

The state equation of the closed system provided by the LQ regulator has the

form

x kþ 1½ � ¼ F� gkTLQ


 �

x k½ �; �F ¼ F� gkTLQ ð14:34Þ

(The derivation of the LQ regulator for CT systems can be found in A.9.6 of

Appendix A.5, the derivation of the DT controller can be done with a very similar

analogy).

If the transfer function of the process is known, then the controllable canonical

form can be easily written in analogy with the CT Eq. (9.10) for the special Fc and

gc formed by (14.8), according to the design algorithm (14.10) of the classical DT

state feedback. The feedback vector kTLQ comes from the LQ control design (from

the solution of the RICCATI equation). So by turning back the derivation of (14.10),

the coefficients of the characteristic polynomial R sð Þ of the closed-loop system are

given by

r1; r2; . . .; rn½ �T¼ kTLQ þ a1; a2; . . .; an½ �T ð14:35Þ

In the case of LQ control it is also possible to apply an observer for the deter-

mination of the state vector.

Notice that the state feedback vector kTLQ also leaves the zeros of the process

unchanged.
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Chapter 15

General Polynomial Method

for the Design of Discrete-Time

Controllers

Unfortunately the application of the DE to CT processes cannot handle a

time-delay, since the method can be used only for polynomials. Time-delay systems

can be stabilized only in the discrete-time case. Assume that the pulse transfer

function of the process is

G z�1
� �

¼ Gþ z�1
� �

�G� z�1
� �

¼ Gþ z�1
� �

G� z�1
� �

z�d; or G ¼ Gþ
�G� ¼

¼ GþG�z
�d ð15:1Þ

where Gþ is stable and its inverse is also stable (SIS: Stable Inverse Stable). G� is

unstable and its inverse is also unstable (UIU: Unstable Inverse Unstable). G� is

also UIU. Here, in general, the inverse of the time-delay part cannot be realized,

because it would be an ideal predictor. Thus a reasonable factorization of the

process is

G ¼
B

A
z�d ¼

BþB�

AþA�
z�d ¼

Bþ

Aþ

� �

B�

A�

� �

z�d ¼ GþG�z
�d ð15:2Þ

Here Aþ contains the stable poles, A� the unstable ones. Similarly, Bþ

includes the stable zeros, B� the unstable ones. The general design DE for discrete

systems is simply obtained from (10.14) by formally changing B� to B�z
�d . The

new form of (10.14) becomes

AþA�ð Þ BþX dX
0ð Þ þ BþB�z

�d
� �

AþYdY
0ð Þ ¼ R0 ¼ AþBþR

A X þ B Y ¼ R0

ð15:3Þ
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The modified DE is

A�X dð Þ X 0 þ B�z
�dYd

� �

Y0 ¼ R0

A0 X 0 þ B0 Y0 ¼ R0 ð15:4Þ

where A0 ¼ A�X d and B0 ¼ B�z
�dYd are known and the controller is obtained

again as

C ¼
Y

X
¼

AþYdY
0

BþX dX
0 ¼

Yd

R

� �

Y0A

Bþ 1� Yd

R Y 0B�z�d
� � ¼

P0
wY

0

1� P0
wY

0B�z�d

A

Bþ
ð15:5Þ

The YOULA-regulator is integrating if a unit gain is ensured for the reference

model: Rn x ¼ 0ð Þ ¼ Rn z ¼ 1ð Þ ¼ 1. This cannot be automatically guaranteed for

the stabilizing controller coming from the DE. This solution is guaranteed if X d

brings the pole z ¼ 1 into the denominator. To solve the DE Eq. (15.4), the

equation has to be formed in powers of z.

What was discussed in detail in the Chap. 10 relating to the DE will not be

repeated here. Note that the transfer characteristic of the whole control loop is

y ¼ Tryr þ Syn ¼ RrGrB�z
�dyr þ 1� R0

nY
0B�z

�d
� �

yn ð15:6Þ

It can be clearly seen that the filter Gr can be chosen arbitrarily and can be

optimized to attenuate the effect of B�. Unfortunately the same statement cannot be

made about the optimization of the disturbance rejection. Here Y0 comes from the

modified DE (15.4), so it cannot be chosen arbitrarily, therefore the attenuation of

the effect of B� cannot be solved as easily, as was seen with the YOULA-para-

meterization and tracking properties (15.6).

Example 15.1 Let the controlled system be a first order ðn ¼ 1Þ, unstable DT

process

G z�1
� �

¼
B z�1ð Þ

A z�1ð Þ
¼

�0:2z�1

1� 1:2z�1
¼

�0:2

z� 1:2
ð15:7Þ

whose pole p ¼ 1:2 is outside the unit circle. Determine the controller C ¼ Y=X
which stabilizes the process by prescribing the characteristic polynomial

R zð Þ ¼ z� 0:2 ¼ 0. The controller is sought in the form of n� 1 ¼ 0 order, which

can be reached by the structure

C ¼
Y

X
¼

K

1
¼ K ð15:8Þ
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i.e. by a proportional controller. Based on (15.4), we have

AX þBY ¼ R
z� 1:2ð Þ � 0:2K ¼ z� 0:2

ð15:9Þ

from which C ¼ K ¼ �5 is obtained for the controller. It can be checked by simple

computation that the pulse transfer function of the closed system is

T ¼
1

z� 0:2
¼

z�1

1� 0:2z�1
, ð15:10Þ

thus the unstable pole has been successfully allocated to the prescribed place inside

the unit circle, by means of which the system is stabilized. The static transfer of the

closed-loop is not unity, because the controller is proportional and not integrating.

To get better control, it is reasonable to apply a further outer cascade loop, as was

seen with state feedback control. �

Example 15.2 Let the controlled system be a first order ðn ¼ 1Þ, stable DT process

G z�1
� �

¼
B z�1ð Þ

A z�1ð Þ
¼

0:2z�1

1� 0:8z�1
¼

0:2

z� 0:8
ð15:11Þ

and the goal is to make it faster. Assuming an ODOF system, our design goal is

expressed by the reference model

Rr ¼ Rn ¼
0:8z�1

1� 0:2z�1
¼

0:8

z� 0:2
ð15:12Þ

Now the YOULA-regulator is of integrating type, i.e.,

Copt ¼ Cid ¼
RnG

�1
þ

1� Rn

¼
1

1� 0:8z�1

1�0:2z�1

0:8z�1

1� 0:2z�1

1� 0:8z�1

0:2z�1
¼ 4

1� 0:8z�1

1� z�1

ð15:13Þ

(because the zero of the denominator is z ¼ 1), and the transfer function of the

closed system is

T ¼
0:8z�1

1� 0:2z�1
¼

0:8

z� 0:2
ð15:14Þ

whose static transfer is unity corresponding to a control of 1-type.

Based on (15.12), the characteristic equation for the design by DE is

R zð Þ ¼ z� 0:2 ¼ 0. Now the controller is also sought in the form of order

n� 1 ¼ 0, thus according to (15.8), proportional controller is applied.

Equation (15.9) becomes
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AX þBY ¼ R
z� 0:8ð Þþ 0:2K ¼ z� 0:2

ð15:15Þ

from which the controller is C ¼ K ¼ 3. It can be checked by simple computation

that the overall transfer function of the closed-loop system is now

T ¼
0:6

z� 0:2
¼

0:6z�1

1� 0:2z�1
ð15:16Þ

The prescribed pole 0.2 is successfully allocated, but the loop is of 0-type,

therefore the gain of T is 0.75. The above two examples represent well the practice,

i.e., for stable systems the YOULA-parameterization has to be applied, while for

stabilizing unstable systems, the application of DE, or the state feedback discussed

in this chapter can provide the solution. �

Example 15.3 Let the controlled system be a first order ðn ¼ 1Þ, unstable,

time-delay DT process

P z�1
� �

¼
B z�1ð Þ

A z�1ð Þ
¼

�0:2z�1

1� 1:2z�1
z�1 ¼

�0:2z�2

1� 1:2z�1
¼

�0:2

z z� 1:2ð Þ
ð15:17Þ

whose pole p ¼ 1:2 is outside the unit circle. Observe that this formally corre-

sponds to a second order process because of the time-delay. Therefore the stabi-

lizing controller C ¼ Y=X is sought in a first order form with three parameters

C ¼
Y

X
¼

yozþ y1

zþ x1
¼

yo þ y1z
�1

1þ x1z�1
ð15:18Þ

Because of realizability conditions it is reasonable to select a stable third degree

characteristic polynomial R zð Þ ¼ z z� 0:2ð Þ2 ¼ z z2 � 0:4zþ 0:04ð Þ for the con-

troller design. The number of unknown parameters is three and the relevant DE is

AX þBY ¼ R
z2 � 1:2zð Þ zþ x1ð Þ � 0:2 yozþ y1ð Þ ¼ z z2 � 0:4zþ 0:04ð Þ

ð15:19Þ

and solving the equation for yo, y1 and x1 we get

C ¼
�5z

zþ 0:8
¼

�5

1þ 0:8z�1
ð15:20Þ

It can be checked easily that the overall transfer function of the closed-loop

system is
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T ¼
z

z z� 0:2ð Þ2
¼

z�1

1� 0:2z�1ð Þ2
z�1 ¼

z�1

1� 0:4z�1 þ 0:04�2
z�1 ð15:21Þ

The prescribed double poles at 0.2 have been successfully allocated, but the

control loop is of 0-type, thus the gain of T is 1.5625. Thus a controller having a

relatively simple structure could solve a difficult problem, i.e., it can stabilize an

unstable time-delay process. �
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Chapter 16

Outlook

The goal of this chapter is to illustrate some further subjects in control engineering.

In the previous sections single variable (SISO), linear systems with constant

parameters (LTI) were considered. The systems in practice, however, are usually

nonlinear, multivariable and have varying parameters. It is not surprising, that the

solution of these kinds of problems needs higher level control engineering theory.

Neither does this chapter deal with all these subjects, instead it gives a short sum-

mary of four areas, which belong to the modern theory of SISO systems. These are:

– Norms of control engineering signals and systems

– Methods of numerical optimization

– Introduction to system identification

– Iterative and adaptive control schemes.

16.1 Norms of Control Engineering Signals and Operators

A norm in a complex linear space is interpreted as a real number, called the norm of

x and denoted by xk k, which can be applied to any vector x of the space, and which

satisfies the relationships below

xk k[ 0 if x 6¼ 0, and 0k k ¼ 0.

axk k ¼ aj j xk k for an arbitrary complex number a

xþ yk k� xk kþ yk k, which is the so-called triangle inequality.

The same concept exists regarding the linear vector-spaces of dimension n, and

formally the same is valid for functions, too.

The quality of the control—as was seen in the previous sections—is connected

with the error signal, or to the sensitivity function. The error signal is a function of

time, but the sensitivity function is a complex frequency function, thus they are all

functions. Their magnitude somehow has to be defined, because their value at a

given frequency does not characterize the whole function, not speaking about their
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magnitude. A mathematical notion, the above norm, is used for characterizing the

magnitude of a function. Next, some basic norms will be presented, whose defi-

nitions will explain their meaning.

16.1.1 Norms of Signals

L1 norm: uðtÞk k1 ¼
Z

1

�1

uðtÞj jdt ð16:1Þ

L2 norm: uðtÞk k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z

1

�1

uðtÞj j2dt

v

u

u

u

t ð16:2Þ

L1 norm: uðtÞk k1 ¼ max
t

uðtÞj j ð16:3Þ

In the practice usually input functions (uðtÞ � 0, if t\0) are investigated, where

the lower limit of their integral is zero.

From the integrals of errors (integral criteria) discussed in Chap. 4, I3 ¼ IAE ¼
eðtÞk k1 is the L1 norm of eðtÞ, I2 ¼ eðtÞk k22 is the square of the L2 norm. The

relationships are quite obvious, nevertheless the integral criteria are considered

rather engineering quality measures, but the norms are strict mathematical

definitions.

For non-final-time signals there is the definition of power as

pow uðtÞ½ � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lim
T!1

1

2T

Z

T

�T

uðtÞj j2dt

v

u

u

u

t : ð16:4Þ

Note that final-time, constrained signals have only energy, their power is zero.

Thus if uðtÞk k2\1 then pow uðtÞ½ � ¼ 0.

The simplest inequalities regarding these norms are

pow uðtÞ½ � � uðtÞk k1; if uðtÞk k1\1 ð16:5Þ

uðtÞk k2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uðtÞk k1 uðtÞk k1
q

; if uðtÞk k1\1 and uðtÞk k1\1 ð16:6Þ

16.1.2 Operator Norms

Using the frequency function HðjxÞ of an LTI system having a stable transfer

function HðsÞ the following norms can be defined.
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H2 norm: HðjxÞk k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2p

Z

1

�1

HðjxÞj j2dx

v

u

u

u

t ð16:7Þ

H1 norm: HðjxÞk k1 ¼ max
x

HðjxÞj j ð16:8Þ

These operator norms are usually called system norms.

The computation of theH2 norm can be performed on the basis of the PARSEVAL-

theorem.

HðjxÞk k22 ¼
1

2p

Z

1

�1

HðjxÞj j2dx ¼ 1

2pj

I

Hð�sÞHðsÞds ¼
X

Res Hð�sÞHðsÞ½ �;

ð16:9Þ

where the residues of Hð�sÞHðsÞ½ � have to be taken into consideration on the left

half plane. The expression (16.9) can be used only (i.e., H2 is finite), if HðsÞ is

strictly proper and has no pole on the imaginary axis. It is worth noting that

HðjxÞk k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z

1

�1

wðtÞj j2dt

v

u

u

u

t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z

1

0

wðtÞj j2dt

v

u

u

u

t ; ð16:10Þ

where wðtÞ is the weighting function of the system having transfer function HðsÞ.
If the system HðsÞ is given in state-space form ðA; b; cTÞ, then the H2 norm can

be computed by the following expression

HðjxÞk k2 ¼
ffiffiffiffiffiffiffiffiffiffi

cTLc
p

; ð16:11Þ

where

L ¼
Z

1

0

eAtbbTeA
Ttdt: ð16:12Þ

Instead of the computation of the integral (16.12), L can be simply determined

by solving the system of linear equations for L:

ALþLAT ¼ �bbT ð16:13Þ

(see A.16.1 in Appendix A.5). Equation (16.13) can also be solved by the con-

ventional solution technique for systems of linear equations if the unknown column

vectors of L are collected into one column vector.
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The computation of the H1 norm is not easy, though its geometrical interpre-

tation is very simple: it is the farthest distance of the NYQUIST diagram of HðjxÞ
from the origin. Since HðsÞ and HðjxÞ are usually rational functions, the possible

places of the extrema of the absolute value (the necessary condition) are derived

from the zeros of the first order derivative. This equation, however, yields a high

order system of polynomial equations even for a low order process, whose solution

requires numerical techniques. That is why, instead of an analytical solution,

numerical methods are used directly to determine the maximum of HðjxÞj j. The
H1 norm is finite if HðsÞ is proper and has no pole on the imaginary axis or in the

right half plane.

(The computation of theH1 norm for error-function operators can be performed

by the NEVANLINNA-PICK approximation procedure, but its discussion goes beyond

the content of this textbook.)

The most important inequality regarding the H1 norm is

H1ðjxÞH2ðjxÞk k1 � H1ðjxÞk k1 H2ðjxÞk k1: ð16:14Þ

Keeping the former notations, let uðtÞ be the input and yðtÞ the output of the

system with transfer function HðsÞ. The most important relationships of the signals

and norms of the system are for stable processes:

yðtÞk k2 � HðjxÞk k1 uðtÞk k2; ð16:15Þ

therefore it can be stated that the H1 norm is the upper limit of the gain of the L2

norm. Based on the inequality

yðtÞk k1 � wðtÞk k1 uðtÞk k1 ð16:16Þ

it can be simply seen that the L1 norm of the weighting function is the upper limit

of the gain of the L1 norm. Thus the upper limit of the maximum of the unit step

response yðtÞ ¼ vðtÞ (if uðtÞ ¼ 1ðtÞ) is equal to the integral of the absolute value of

the weighting function. Similar relations are valid for the following inequality

yðtÞk k1 � HðjxÞk k2 uðtÞk k2: ð16:17Þ

It comes from the comparison of (16.16) and (16.17) that

yðtÞk k1 �min wðtÞk k1 uðtÞk k1; HðjxÞk k2 uðtÞk k2
� �

; ð16:18Þ

where a more strict condition is applied. Thus the H1, H2 and L1 norms, for

certain signals, can correspond to the upper limit of the gain.

Similar relationships can be formulated for the power of the input and output

signals:
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pow yðtÞ½ � � HðjxÞk k1pow uðtÞ½ �; ð16:19Þ

by means of which we obtain

pow yðtÞ½ � � HðjxÞk k1 uðtÞk k1: ð16:20Þ

From the comparison of these two latter inequalities, it follows that

pow yðtÞ½ � �min HðjxÞk k1pow uðtÞ½ �; HðjxÞk k1 uðtÞk k1
� �

¼ HðjxÞk k1min pow uðtÞ½ �; uðtÞk k1
� � ð16:21Þ

where the more strict condition is applied.

It was shown in Chap. 7 that the optimality of YP controllers applied for stable

processes can be reached via the optimal choice of the embedded filters Gxjx¼r;n

(transfer functions). Their optimality for the error transfer functions

Rx 1� GxP�e�sTdð Þjx¼r;n can be ensured by the minimization of the operator norms

H2 and H1.

16.2 Basic Methods of the Numerical Optimization

The optimization problems of control engineering can usually be formulated by

seeking the minimum of a scalar-vector function f ðxÞ. The function to be mini-

mized may be e.g., an integral criterion, a signal or operator norm, the vector

components of the vector space of the searching are the parameters of the controller.

Basically two main groups of extremum seeking methods can be distinguished

depending on whether only the value of the function can be computed, or also its

first and second order derivatives can be determined at a point x.

16.2.1 Direct Seeking Methods

In the case of direct seeking (DS) methods only the value of the function f ðxÞ can
be computed at a given point of seeking the minimum. The most effective DS

method is the so-called adaptive simplex method of NELDER and MEAD. In an n-

dimensional space, a simplex is a shape given by ðnþ 1Þ points. Thus in

two-dimensional space it is a triangle, in the three-dimensional case it is a tetra-

hedron. Find the minimum of f ðxÞ in a two dimensional space. First consider the

simplex ABC shown in Fig. 16.1. Compute the values of f ðxÞ at the three points of
the simplex. Based on the values f xAð Þ, f xBð Þ and f xCð Þ, let us arrange in order of

their magnitudes the corresponding coordinate vectors of the three points. Assume

that the biggest value is obtained at the point f xA ¼ xoð Þ. Mirror this point xo to the

center point of the opposite—less by one order—shape, i.e., now via the middle

point x1 of the line BC to the point x2. Then continue this procedure (stepping) in

the obtained direction until the values of f xið Þ increase. Assume that at point x4 the

value is f x4ð Þ[ f x3ð Þ, i.e., the minimum seeking algorithm does not give a better
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point. This means that the first point of the new simplex will be x3 and the simplex

will be given by the triangle BCD. Then the point xB belonging to the second

biggest function value f xBð Þ has to be mirrored on the middle point of line CD, then

the seeking steps have to be continued in this direction. If all the points of the

original simplex have already been mirrored, then we get into a completely new

simplex whose form follows the form of the function f ðxÞ to a certain extent. The

procedure is continued until mirroring all points of the simplex only a worse point

is found, i.e., a bigger value of f ðxÞ is obtained. This case is called the limiting (or

boundary) simplex. Then the sought minimum is inside this simplex.

The method is continued by formulating a new simplex with half size edges

based on the worst point, i.e., by shrinking the simplex. The algorithm is started

again from this shrunk simplex. The search method is stopped when the size of the

limit simplex in each coordinate direction is within a certain accuracy threshold (the

convergence limit).

The advantage of the simplex method is that it can easily handle both explicit

constraints

xmin � x� xmax ð16:22Þ

and so-called k implicit constraints, such as

gjðxÞ� 0 j ¼ 1; . . .; k: ð16:23Þ

To achieve this, the starting point xo has to fulfill the above conditions, then

during the stepping the above restrictions are handled as if a bigger f ðxÞ had been

obtained, thus the seeking in that direction has to be stopped.

The adaptive simplex method is able to find the minimum of a function of even a

very special form with acceptable efficiency. Of course, it can determine only the

minimum of a unimodal function, i.e., when f ðxÞ has only one extremum, or it can

seek for a local minimum in a given region.

If the task is such that several extrema can be expected, i.e., f ðxÞ is multimodal,

then the adaptive complex method can be applied. The “complex” is defined by a

shape (set) given by N[ nþ 1 points in an n-dimensional space. Usually N is much

xo

x1

x2

x3

x4

A

B

C

D

Fig. 16.1 Scheme of the

adaptive simplex method
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bigger than n, and the algorithm has to be started with an equally distributed point set

in the search space. The algorithm operates similarly to the adaptive simplex method,

but now the given point has to be mirrored via the geometrical center of all the other

N � 1 points, then the stepping has to be continued in this direction.

16.2.2 Gradient Based Methods

In the cases when the first and second derivates of the function f ðxÞ can be computed,

then algorithms faster than the DS methods can also be constructed. The general

canonical form of the methods using the gradient is the following iterative algorithm:

xiþ 1 ¼ xi � G xið Þ df xið Þ
dx

: ð16:24Þ

The gradient methods can be basically distinguished by how to choose the

weighting matrix G xið Þ (Note that each version of the algorithms approximates the

gradient df xið Þ=dx in a different way).

From the different ways of choosing the weighting matrix G xið Þ, the first is the

so-called gradient method:

G xið Þ ¼ G xið Þ ¼ df T xið Þ
dx

H xið Þ df xið Þ
dx

� ��1

; ð16:25Þ

where H xið Þ is the HESSIAN matrix (see (A.1.31)) of the function f ðxÞ at the point xi.
It is interesting that now G xið Þ is a scalar. This method uses a second order

approximation in the direction opposite to the gradient, and puts the next iteration

point at the minimum of the parabola taken in this direction. The significant dis-

advantage of this method is that in the case of “curving” valleys, it slows down

because it cannot follow precisely the deepness shape of the valley.

The next method is the NEWTON-RAPHSON method (sometimes it is also called the

GAUSS-NEWTON method), where

G xið Þ ¼ H xið Þ½ ��1: ð16:26Þ

This method fits a general quadratic surface (multidimensional ellipsoid) at an

iteration point and puts the next iteration point at the calculable extremum of this shape.

The above two methods using gradients have also very clear geometrical inter-

pretations, the other methods can be considered as different combinations of these.

The gradient methods are much more effective than the DS ones for so-called

“well behaved” functions, but for exceptional functions, e.g., having the form of a

banana, they slow down. Their further disadvantage is that they are not very

effective in the case of constraints, because they usually shrink to the trajectory
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point crossing the constraining surface. In this case, certain techniques use the

solution to push the iteration off this surface and the search starts again.

There are several procedures and software programs available for all the above

methods in the different program packages and in an object oriented CAD

environment.

It has been noted in Sect. 4.8 in connection with the square error area that its

minimization generally provides an optimal step response function having a rela-

tively high overshoot. Therefore it seems reasonable to construct the optimization

task which performs this minimization of the integral criterion I2 ¼ f ðxÞ under the
restriction for the overshoot r ¼ gðxÞ� 1:05. This task guarantees a “nice” step

response function with a small overshoot.

Example 16.1 The expression for the so-called “function of banana” frequently

used in optimization tasks is

f ðxÞ ¼ 100 x2 � x21
� �2 þ 1� x1ð Þ2: ð16:27Þ

The function in 3D is shown in Fig. 16.2, whose minimum is at the point

x ¼ 1; 1½ �.
The operation of the adaptive simplex method is illustrated in Fig. 16.3. The

procedure starts from the point x ¼ �1:9; 2½ � and after 210 iterations it finds the

minimum (i.e., it computes the function’s value at 210 points).

Figure 16.4 shows the operation of the gradient method, more exactly its

inability to find the minimum after computing the function’s value at 210 points,

and the gradients at 200 points, but it stopped at the beginning of the valley.

Fig. 16.2 The so-called “function of banana” applied quite often in optimization tasks
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Initial point

Minimum point

Fig. 16.3 Optimum seeking by simplex method
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Initial point

 Minimum point   

x2

x1

Stop

Fig. 16.4 The inability of the gradient method to find the minimum of (16.27)
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The effectiveness of the NEWTON-RAPHSON method is demonstrated in Fig. 16.5:

the method found the minimum after 21 iterations. �

16.3 Introduction to Process Identification

It has been seen in Sect. 2.4 that one of the basic tasks in control engineering is

process identification, when the model P̂ of the process P to be controlled is

determined from the measurements of the input and output signals. Process identi-

fication, starting with simple grapho-analytical methods, has today become an

independent (autonomous) discipline; its methods and results can be found in several

books. With the spread of modern computational techniques, almost standard tools

are available to solve the most important tasks. Here only some of the topmost

methods are discussed, just to illustrate the applied algorithms and techniques.

Process identification methods substantially differ from each other, depending on

the task to be solved, i.e., whether the static characteristics or the dynamic model of

the process has to be determined.

16.3.1 Identification of Static Processes

Assume that the static characteristic of the process is a line po þ p1u, which can be

measured with measurement error e

Initial point

 Minimum point   

Fig. 16.5 Illustration of the effectiveness of the NEWTON-RAPHSON method
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y ¼ po þ p1uþ e: ð16:28Þ

The input signal u is measured without error, or it is a known signal put into the

system (active experiment). The input and output signals are measured jointly at

N points. These values are approximated by the linear model

ŷ ¼ p̂o þ p̂1u ¼ f TðuÞp̂; fTðuÞ ¼ 1 u½ �; p̂ ¼ p̂o p̂1½ �T ð16:29Þ

as seen in Fig. 16.6. Here f ðuÞ is called the vector of function components.

If the additive measurement error has zero average, then the so-called Least

Squares (LS) method provides the unbiased estimation of the process parameters.

The LS method takes the sum of the squares of the differences between the mea-

sured value and the model output at each point and optimizes it according to the

criterion

V p̂;Nð Þ ¼ 1

2

X

N

j¼1

yj � fT uj
� �

p̂
	 
2 ¼ 1

2
y� Fup̂½ �T y� Fup̂½ �; ð16:30Þ

where

Fu ¼

1 u1
1 u2

..

. ..
.

1 uN

2

6

6

6

4

3

7

7

7

5

¼

f T u1ð Þ
f T u2ð Þ

..

.

f T uNð Þ

2

6

6

6

4

3

7

7

7

5

and y ¼

y1
y2

..

.

yN

2

6

6

6

4

3

7

7

7

5

: ð16:31Þ

The system of vector equations for the N samples is

y ¼ Fupþ e; ð16:32Þ

where e ¼ e1e1 . . . eN½ �T is the vector of the measurement errors. The parameter

estimation minimizing the sum of squares according to A.16.2 in Appendix A.5 is

y = f u( )

u

ŷ

Fig. 16.6 Identification of

linear static model
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p̂ ¼ FT
uFu

	 
�1
FT
uy: ð16:33Þ

This estimation is unbiased, i.e., E p̂f g ¼ p, thus the expected value of p̂ is the

unknown original parameter vector p. If e has a normal distribution, then the p̂

obtained by the LS estimation has minimum variance and is the best estimator of p.

In many cases the input signal u is not known in advance, just measured (passive

experiment). If u is a random signal, then in order to get an unbiased estimation by

the LS method, the independence of the signals e and u has to be assumed.

The computation of the solution (16.33) can be made easier by taking the

following relationships into account

FT
uFu ¼

X

N

j¼1

f uj
� �

fT uj
� �

and FT
uy ¼

X

N

j¼1

f uj
� �

yj: ð16:34Þ

Assume that the static characteristic of the process is a parabola po þ p1uþ p2u
2,

and the additive measurement error is e.

y ¼ po þ p1uþ p2u
2 þ e: ð16:35Þ

The input signal u is assumed to be measured without error. The input and

output signals are measured jointly at N points, and the following nonlinear

(quadratic) model is fitted to the measured values, as seen in Fig. 16.7. Now

introduce

ŷ ¼ p̂o þ p̂1uþ p̂2u
2 ¼ fTðuÞp̂; f TðuÞ ¼ 1 u u2

	 


; p̂ ¼ p̂o p̂1 p̂2½ �T:
ð16:36Þ

Observe that the model ŷ ¼ fTðuÞp̂ is still linear in the parameters. Thus the LS

method can be applied unchanged if the matrix Fu is formulated from the function

component vector f ðuÞ according to the quadratic model (16.36):

y = f (u)

y

u

Fig. 16.7 Identification of a

nonlinear (quadratic) static

model
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Fu ¼

1 u1 u21
1 u2 u22

..

. ..
. ..

.

1 uN u2N

2

6

6

6

4

3

7

7

7

5

¼

f T u1ð Þ
f T u2ð Þ

..

.

f T uNð Þ

2

6

6

6

4

3

7

7

7

5

ð16:37Þ

and p̂ is computed again by Eq. (16.33).

Observe that a relatively wide class of functions can be written in a form that is

linear in its parameters.

If the static characteristic is nonlinear, then an extremum seeking method is used

to minimize V p̂;Nð Þ, which, e.g., can be chosen from those discussed in Sect. 16.2.

16.3.2 Identification of Dynamic Processes

Nowadays the identification of dynamic processes exclusively means the deter-

mination of a discrete time (DT) model. It has been shown in Sect. 11.4 that a DT

system given by the so-called filter form

y½k� ¼ G z�1
� �

u½k� ¼ B z�1ð Þz�d

A z�1ð Þ u½k� ¼ B z�1ð Þz�d

1þ ~A z�1ð Þ
u½k� ð16:38Þ

can be written in a form linear in parameters as

y½k� ¼ B z�1
� �

z�du½k� � ~A z�1
� �

y½k� ¼ fT u; y; kð Þpba
¼ b1u k�d�1½ � þ b1u k�d�2½ � þ � � � þ bnu k�d�n½ � � a1y k�1½ � � � � � � any k�n½ �

ð16:39Þ
where

f Tðu; y; kÞ ¼½u½k � d � 1� u½k � d � 2� . . . u½k � d � n� � y½k � 1� . . . � y½k � n��
pba ¼½b1 b1 . . . bn a1 . . . an�

ð16:40Þ

This technique, by means of which the difference equation of the dynamic DT

systems is made “quasi-linear”, opens the possibility of formulating further process

identification algorithms similar to the LS method. The measurement noise prob-

lems of DT systems, however, should be discussed in a basically different way than

for static characteristics. The measuring situation is illustrated in Fig. 16.8.

Here the measurement of u½k� is assumed to be without error, but the noiseless

output signal v½k� of the system is assumed to be measured with an additive mea-

surement error yn½k�. This output noise yn½k� derives from an independent, zero

mean, so-called white noise via the noise model C z�1ð Þ=D z�1ð Þ.
This task essentially requires the identification of two models: the process model

and the noise model. The task can be drastically simplified by certain assumptions

made regarding the noise model. If the noise model has the form 1=Aðz�1Þ, i.e.,
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y½k� ¼ B z�1ð Þz�d

A z�1ð Þ u½k� þ 1

A z�1ð Þ e½k� ð16:41Þ

then the original process can be rewritten as

y½k� ¼ f T u; y; kð Þpba þ e½k�: ð16:42Þ

Observe that this form essentially corresponds to Eqs. (16.28) and (16.35) seen

in the identification of the static characteristics, thus the LS method can be directly

applied if the matrix FðuÞ is constructed from fT u; y; kð Þ instead of f ðuÞ, and p̂ba is

the parameter vector. Let us create first the vector

y ¼ y½1� y½2� . . . y½N�½ �T ð16:43Þ

and the matrix

Fuy ¼

f T u; y; 1ð Þ
f T u; y; 2ð Þ

..

.

f T u; y;Nð Þ

2

6

6

6

4

3

7

7

7

5

ð16:44Þ

The parameter estimation by the LS method has also the form of (16.33)

p̂ba ¼ FT
uyFuy

h i�1

FT
uyy: ð16:45Þ

This estimation is asymptotically unbiased, i.e., plimN!1 p̂f g ¼ p, thus the

probabilistic limit value of p̂ is the unknown original parameter vector p. The

independence of e½k� has to be assumed, because f T u; y; kð Þ has measured values

depending on e½k�. If e½k� has a normal distribution, then the p̂ resulting from the LS

estimation is the minimum variance (best) estimator of p.

Fig. 16.8 Measured signals

of a linear dynamic

discrete-time system
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Unfortunately the form of the noise model 1=Aðz�1Þ is very special, so it cannot

be used generally. The noise model Cðz�1Þ=Aðz�1Þ can be considered as a more

general form, when

y½k� ¼ B z�1ð Þz�d

A z�1ð Þ u½k� þ C z�1ð Þ
A z�1ð Þ e½k� ¼

B z�1ð Þz�d

1þ ~A z�1ð Þ
u½k� þ 1þ ~C z�1ð Þ

A z�1ð Þ e½k�: ð16:46Þ

This form preserves the generality of the noise model C z�1ð Þ=D z�1ð Þ, but it
contains a great number of redundant parameters because of bringing the fractions

to a common denominator. The quasi-linearization by (16.36) can be easily per-

formed here, too.

y½k� ¼ B z�1
� �

z�du½k� � ~A z�1
� �

y½k� þ ~C z�1
� �

e½k� þ e½k�
¼ b1u k�d�1½ � þ b2u k�d�2½ � þ � � � þ bnu k�d�n½ � � a1y k�1½ � � � � � � any k�n½ �
þ c1e k�1½ � þ � � � þ cne k�n½ � þ e½k� ¼ f T u; y; e; kð Þpbac þ e½k�

ð16:47Þ

Themost important disadvantage of this form of themodel is that the past values of

e½k� in the vector f u; y; e; kð Þ are not known. But if the estimation p̂bac of the pbac is

known then an estimation ê½k� of the source noise can always be computed in the form

ê½k� ¼ y½k� � f T u; y; ê; kð Þp̂bac; ð16:48Þ

where now the computed (estimated) value ê½k� is in f u; y; ê; kð Þ. Creating the

matrix

Fuyê ¼

f T u; y; ê; 1ð Þ
f T u; y; ê; 2ð Þ

..

.

f T u; y; ê;Nð Þ

2

6

6

6

4

3

7

7

7

5

ð16:49Þ

formally again an LS estimation is obtained based on (16.35) and (16.43) in the

form

p̂bac ¼ FT
uyêFuyê

h i�1

FT
uyêy: ð16:50Þ

Since the series ê½k�; ðk ¼ 1; . . .;NÞ, is always computed for a given p̂bac, here

only an iteration method can be realized, i.e., the series ê½k� has to be computed

after each estimation step. The iteration is continued until the difference between the

consecutively estimated parameter vectors becomes less than a given error. (This

iteration is called a relaxation-type one.) The solution (16.50) belonging to

Eq. (16.47) is called the Extended Least Squares (ELS) method. Several other

versions of this method are known, using different noise models, which has resulted

in a huge number of methods in the literature.
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Theoretically the most accurate method can be obtained by minimizing the loss

function

V p̂bac;Nð Þ ¼ 1

2

X

N

j¼1

y j½ � � f T u; y; ê; jð Þp̂bac
� �2 ¼ 1

2
y� Fuyêp̂bac
	 
T

y� Fuyêp̂bac
	 


ð16:51Þ

in the space of the parameter vector p̂bac, which means a general minimum seeking

problem. Even for different noise models, the first and second order derivates of

V p̂bac;Nð Þ with respect to the parameters can be relatively easily computed, so

effective minimum seeking algorithms can be constructed this way. The methods

directly minimizing (16.50) are called Maximum Likelihood (ML) methods. This

method requires zero average, normal, white noise for e½k�.
Those methods which use simultaneously available N data-pairs of the input and

output signals are called “off-line” or “batch” methods. All the above methods

belong to this category.

There are measurement situations when the model obtained formerly by an

estimation method is modified (renewed) after getting a new measured data-pair.

These methods are called “on-line” or “recursive” identification methods.

16.3.3 Discrete-Time to Continuous-Time Transformation

It has been seen during the discussion of the basic discrete-time process identification

methods that these methods—deriving from their character—provide the operators

of models Ĝ z�1ð Þ or Ĝ q�1ð Þ constructed by the estimated parameters p̂ba of the pulse

transfer function G z�1ð Þ or pulse transfer operator G q�1ð Þ of the process. (From the

process identification point of view there is no importance attached to these notations

and meanings.) Here Ĝ z�1ð Þ is used. In many cases, however, the model P̂ðsÞ of the
original CT system is required as a result of the identification. This conversion, i.e.,

the equivalence at the sampling points, can be solved only by assuming a holding

term of a given type. In connection with Eqs. (11.30) and (11.31) it has been already

shown that in the case of a zero order hold, thus applying an SRE transformation, the

parameter matrices of the DT state equations are

F ¼ eATs and g ¼ A�1 eATs � I
� �

b: ð16:52Þ

Formally, the parameter matrices of the SRE equivalent CT systems can be

obtained by the reverse of the equations

A ¼ 1

Ts
ln Fð Þ and b ¼ 1

Ts
ln Fð Þ F� Ið Þ�1

g: ð16:53Þ

Here lnðFÞ is the logarithm of the matrix F, which is defined and computed by

the definitions valid for matrix functions (see eA in Chap. 3). Based on the above

the algorithm of the discrete-continuous transformation is:
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1. Based on the estimated p̂ba, construct the state-space description of a DT model

by the controllable canonical form F̂c; ĝc; ĉc or an observable F̂o; ĝo; ĉo
canonical form.

2. Using the transformation Eq. (16.53), compute the state-space form Â; b̂; ĉ of

the CT model. This step results in parameter matrices of general form having

n2 þ 2n parameters.

3. Transform the CT state-space model Â; b̂; ĉ to a controllable or observable

canonical form by either the transformation matrix Tc ¼ Mc
c Mcð Þ�1

or To ¼
Mo

o

� ��1
Mo from which the parameters of the transfer function P̂ðsÞ of the CT

model sought can be easily determined from the non-redundant structure cor-

responding to the canonical form. Note that in the case of the canonical form, it

is not necessary to compute the whole matrix Âc or Âo, it is sufficient to compute

the first row or column.

The above transformation techniques are the most compact ones, but of course,

there are different ways to solve the problem. The same accurate result can be obtained

by decomposing Ĝ z�1ð Þ into partial fractions and then the discrete-continuous

transformation can be made term-by-term.

16.3.4 Recursive Parameter Estimation

First consider the recursive version of the LS method. Assume that N data-pairs are

processed and the LS estimate is available in the form

p̂½N� ¼ FT½N�F½N�
� ��1

FT½N�yN : ð16:54Þ

If we want to modify our estimate obtained by (16.54) using the new data-pairs

u½Nþ 1� and y½Nþ 1� measured in the ½Nþ 1�-th time instant, then it can be

computed by the following recursive relationships

p̂½N þ 1� ¼ p̂½N� þR Nþ 1½ �f ðN þ 1Þ y½N þ 1� � f TðNþ 1Þp̂½N�
� �

ð16:55Þ

and

R½N þ 1� ¼ R½N� � R½N�f ðNþ 1Þf TðNþ 1ÞR½N�
1þ f TðNþ 1ÞR½N�f ðN þ 1Þ

ð16:56Þ

(see A.16.3 in Appendix A.5). Here f ðN þ 1Þ means a general function indepen-

dently of whether the method is applied to a static or dynamic process model. The

so-called convergence matrix R½N� is
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R½N� ¼
X

N

j¼1

f ðjÞfTðjÞ
( )�1

¼ FT½N�F½N�
� ��1

: ð16:57Þ

The equation-pair (16.55) and (16.56) belong to the family of the so-called

learning, adaptive estimation algorithms, which are included in the canonical

equation of the general Stochastic Approximation (SA):

p̂ kþ 1½ � ¼ p̂½k� þR kþ 1½ � dV p̂; kð Þ
dp̂

: ð16:58Þ

These SA algorithms differ from each other in the choice of the convergence

matrix R½k� and the way to compute the gradient. Here only the best-known method

has been discussed.

If the parameters of the process are varying, then it might be necessary to forget

in a certain sense the validity of the former model and take into account the new

measurements with higher importance. To solve this so-called “forgetting” prob-

lem, assume that the past is forgotten by using the following matrix

F½Nþ 1� ¼ kF½N�
f TðNþ 1Þ

� �

instead of F½Nþ 1� ¼ F½N�
f TðN þ 1Þ

� �

where the forgetting factor is 0� k� 1. If k ¼ constant, then it is enough to use the

following convergence matrix

R½N þ 1� ¼ 1

k
2

R½N� � R½N�f ðN þ 1ÞfTðN þ 1ÞR½N�
k
2 þ f TðN þ 1ÞR½N�f ðNþ 1Þ

� �

ð16:59Þ

instead of (16.56).

A constant forgetting factor, however, may cause problems, if the new mea-

surements do not have significantly new information, since this algorithm forgets

exponentially the old information, and so R½N� may become singular. Therefore the

choice of the corresponding forgetting strategy is the most critical part of the

adaptive estimation method.

Note that Eqs. (16.55), (16.56) and (16.60) are usually called naive program-

ming formulas. By means of them the method can be simply presented but

numerically they behave badly. They are mostly used for purposes of demonstration

or, simulation. In practice the canonical, diagonal form of R½N� and its recursive

forms are used: this solution works best from the numerical point of view. This

method uses the so-called GIVENS transformation.

16.3.5 Model Validation

During process identification the determination of a model of acceptable correctness

(accuracy) can be made only by an iterative process. Its main steps are presented in

Fig. 16.9.
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The identification starts using certain preliminary information. First the so-called

“design of experiments” is performed. In this step the optimal allocation of the

measurement points is determined for static modeling. For dynamic modeling,

however, one assumes that optimal input signals representing the significant fre-

quency region are generated. This latter is called input design. The accuracy of the

final model depends significantly on this step, therefore several theories deal with

the optimal solution of this task [see, for example, Sect. 7.5].

The effect of the optimal measurement points or input signal for the process is

realized by active experiment designs, and the data are collected during the

experiments.

Based on the preliminary information, the class of the model and the identifi-

cation criterion are chosen, then the determination of an approximate model is

performed (parameter estimation).

Apriori information

Experiment

    design

Model
Model is bad

Model is good

verification

Data

collection

Model

class

selection

selection

Identification

Approximate model

computation

criterion

Fig. 16.9 The scheme of the whole process identification
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Then the model output and the measured output of the process obtained for the

same input are compared. From the deviations, qualitative, goodness of fit measures

can be constructed for checking the acceptability of the model (model validation).

If the accuracy of the model is not satisfactory then the iteration is continued

with a newer experiment design. The procedure is stopped when the accuracy of the

model is acceptable.

16.4 Iterative and Adaptive Control Schemes

In the previous sections some off-line and on-line methods of process identification

have been discussed. Not only can the process model be improved by repeated

experiments, but also the controller, if a controller is designed and realized based on

the model, applied in a closed-loop with the computed optimal parameters. This

joint task is required, on the one hand, at the initial tuning of the regulator, and on

the other hand, in the case of a process with slowly varying parameters, in the

continuous adaptation of the regulator (adaptive control).

In the case of modern, microprocessor based compact controllers, nowadays

there is embedded possibility for a certain kind of automatic tuning. The com-

mercial controllers usually apply the ÅSTRÖM-type relay-tuning (see Sect. 8.3).

The more demanding optimal controller is based on the iterative strategy of a

certain learning-adaptive version of joint identification-control (simultaneous

identification and control). This strategy assumes that the identification is per-

formed without opening the closed control loop, i.e., under normal operation

conditions. The identification is usually off-line, i.e., it is based on the simultaneous

processing of N data pairs. Based on the obtained model an optimal controller is

determined and this controller is used in the next off-line experiment. By this

technique the optimality of the controller can be gradually improved as the model

becomes more and more accurate, while the normal operation of the process is

hardly disturbed.

Certainly it is also possible to improve the parameter estimation of the process

applying a recursive parameter estimating technique in every sampling instant, and

the optimal controller output is applied to the process only delayed by the com-

putation time of the optimal controller. In the case of today’s fast operating com-

puting equipment, this solution, to a very good approximation, can be considered as

simultaneous processing in the case of significantly slower processes. This strategy

is called adaptive control. The determination of a reliable controller is not an easy

task. A recursive parameter estimation algorithm is required which does not forget

the learned model if the new measurements do not have significant new informa-

tion. If the quantity of the new information is considerable, then it is able to follow

the slowly varying parameters by due forgetting strategies.

In the case of certain, so-called predictive controllers, the process model is not

identified directly, but finally in the algorithms, the determination of the process

model is always present.
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Appendix

A.1 Mathematical Summary

A.1.1 Some Basic Theorems of Matrix Algebra

The following scheme is called a matrix

A ¼

a11 a12 . . . a1n
a21 a22 . . . a2n

..

. ..
. . .

. ..
.

am1 am2 . . . amn

2

6

6

6

4

3

7

7

7

5

; ðA:1:1Þ

where the values aij are the elements of the matrix. If its elements are real, then the

matrix is called a real matrix, if they are complex, then the matrix is called a

complex matrix. In general, a matrix has m rows and n columns. The dimension (the

size) of the matrix is m� n. A matrix of type m� n is rectangular; an n� n matrix

is called square (quadratic) matrix, an m� 1 matrix is a column matrix (column

vector), a 1� n matrix is a row matrix (row vector), a 1� 1 matrix is called a

scalar.

Matrices are usually denoted by bold (fat) capital letters, the column and row

vectors are denoted by bold lower case letters. The determinant of the square matrix

A is denoted by Aj j (or written as det Að Þ).
The transpose of the matrix A is denoted by AT, and it means the result of the

mirroring of its elements for the main diagonal.

AT ¼

a11 a21 . . . am1
a12 a22 . . . am1

..

. ..
. . .

. ..
.

a1n a2n . . . amn

2

6

6

6

4

3

7

7

7

5

: ðA:1:2Þ
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If A is an m� n matrix, then its transpose is an n� m matrix, and it is trivial that

AT
� �T¼ A. If AT ¼ A then it is called mirror matrix.

A vector is usually considered a column matrix, and a row matrix is denoted as

the transpose of a column matrix, e.g.,

x ¼
x1

..

.

xn

2

6

4

3

7

5
¼ ½x1; . . .; xn�T ¼ ½xT]T: ðA:1:3Þ

The elements of the zero matrix, or zero vector, are all zeros. The diagonal

matrix has elements different from zero only along the main diagonal, i.e.,

D ¼ diag a11; a22; . . .; ann½ �: ðA:1:4Þ

If in a diagonal matrix all the diagonal elements are unity, then the matrix is

called the unit matrix: I ¼ diag 1; 1; . . .; 1½ �.
Two matrices are equal if all the corresponding elements are equal. The sum of

two or more matrices of the same type is obtained by summing the corresponding

elements. The multiplication of a matrix by a scalar is obtained by multiplying each

element of the matrix by the scalar. The most characteristic case is the multipli-

cation of two matrices, e.g., when a matrix A of type m� l is multiplied by a matrix

B of type l� n,

C ¼ AB; ðA:1:5Þ

where

cij ¼
X

l

k¼1

aikbkj;
i ¼ 1; 2; . . .;m
j ¼ 1; 2; . . .; n

�

ðA:1:6Þ

i.e., the element in the i-th row and j-th column of the matrix C of type m� n is

obtained by multiplying the i-th row of A by the j-th column of B. (The number l of

columns of A must be equal to the number l of the rows of B.) Matrix multiplication

is associative and distributive, but, in general, is not commutative: AB 6¼ BA. If

AB ¼ BA, then in this case the matrices are interchangeable (commutative). Note

that the determinant of the square product matrix Cj j ¼ det Cð Þ is obtained by

multiplying the determinants Aj j and Bj j of the factor matrices, i.e., Cj j ¼ Aj j Bj j.
The scalar product of two vectors having the same dimension can be expressed

as the product of matrices, by

a � b ¼ aTb ¼ bTa ¼ b � a: ðA:1:7Þ
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If the scalar product of two different, non-zero vectors is zero, then the two

vectors are called orthogonal.

The following expression represents a very important rule

AB½ �T¼ BTAT: ðA:1:8Þ

The inverse of a square, regular (nonsingular, i.e., its determinant is non-zero)

matrix is a matrix, for which the following expression is valid.

A�1A ¼ AA�1 ¼ I: ðA:1:9Þ

The inverse of A is given by the rule

A�1 ¼ adj Að Þ
Aj j : ðA:1:10Þ

Here Aj j is the (non-zero) determinant of A, and the adjunct matrix adj Að Þ of A
is obtained by mirroring the matrix whose elements are sub-determinants of

appropriate sign belonging to each element of A. Since the rule ABj j ¼ Aj j Bj j is
valid, therefore, according to 1 ¼ Ij j ¼ A�1A

�

�

�

� ¼ A�1
�

�

�

� Aj j, A has an unambiguous

inverse only if Aj j 6¼ 0, i.e., the matrix A is non-singular. It is obvious that

A�1
� ��1¼ A and A�1

� �T¼ AT
� ��1

: ðA:1:11Þ

Furthermore if A and B are regular square matrices, then

AB½ ��1¼ B�1A�1: ðA:1:12Þ

The matrices sI � A, or A� sI, are called the characteristic matrices of the

square matrix A, and the equation A sð Þ ¼ sI � Aj j ¼ 0 is called the characteristic

equation. The roots kiði ¼ 1; 2; . . .; nÞ of the characteristic equation are the eigen-

values of the matrix A. Due to the main pivot theorem the eigenvectors

viði ¼ 1; 2; . . .nÞ of A fulfill the following vector equations:

Avi ¼ kivi ði ¼ 1; 2; . . .; nÞ: ðA:1:13Þ

This is the definition of the eigenvectors. If the vectors vj are linearly inde-

pendent, then the matrix A has a simple structure, if the vectors are not independent,

then the matrix is called deteriorated.

The CAYLEY-HAMILTON theorem has significant importance in the matrix theory:

any matrix A satisfies its own characteristic equation, i.e., A Að Þ ¼ 0. (Here in the

scalar polynomial equation A sð Þ ¼ 0, si is replaced by Ai (i ¼ 1; 2; . . .; n), while s0

is by A0 ¼ I, so finally a matrix polynomial equation is obtained.)
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In many cases it is necessary to express the inner structure of a matrix, therefore

so-called block-matrices are applied, e.g.,

M ¼ A B

C D

� 	

: ðA:1:14Þ

According to the matrix multiplication rules

A B

C D

� 	

E F

G H

� 	

¼ AEþBG AFþBH

CEþDG CFþDH

� 	

: ðA:1:15Þ

The determinant of a quasi-diagonal matrix is

A B

O D

�

�

�

�

�

�

�

�

¼ det
A B

O D

� 	

¼ detðAÞ detðDÞ ¼ Aj j Dj j: ðA:1:16Þ

The product abT is called the dyadic product. The inverse of the matrix

A extended by the addition of a dyadic product can be given very simply, if the

inverse of A is known:

Aþ abT
� ��1¼ A�1 � A�1a

� �

bTA�1
� �

1þ bTA�1a
ðA:1:17Þ

A.1.2 Some Basic Formulas of Vector Analysis

In vector analysis for EUCLIDEAN space there are scalar-scalar functions

f ¼ f xð Þ; ðA:1:18Þ

so-called scalar-vector functions

f ¼ f xð Þ; ðA:1:19Þ

and vector-vector functions

f ¼ f xð Þ: ðA:1:20Þ

(All these are the special cases of the most general but very rare matrix-matrix

functions F ¼ F Xð Þ.) In many cases multivariable scalar-scalar, scalar-vector or

vector-vector functions occur, e.g.,
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f ¼ f x; uð Þ; f ¼ f x; uð Þ; f ¼ f x; uð Þ ðA:1:21Þ

or functions containing independent variables (time or a parameter) also appear

f ¼ f x; u; tð Þ; f ¼ f x; u; tð Þ; f ¼ f x; u; tð Þ: ðA:1:22Þ

Certain rules for differentiation are very important. The derivative with respect to

a scalar is very simple, e.g.,

dx tð Þ
dt

¼ dx1

dt
;
dx2

dt
; . . .;

dxn

dt

� 	T

¼ _x1; _x2; . . .; _xn½ � ¼ _x ðA:1:23Þ

dA tð Þ
dt

¼

_a11 _a12 . . . _a1n
_a21 _a22 . . . _a2n

..

. ..
. . .

. ..
.

_am1 _am2 . . . _amn

2

6

6

6

4

3

7

7

7

5

¼ _A ðA:1:24Þ

The gradient of a scalar-vector function is a column vector

grad f xð Þ½ � ¼ df xð Þ
dx

¼ df xð Þ
dx1

df xð Þ
dx2

. . .
df xð Þ
dxn

� 	T

; ðA:1:25Þ

which means the application of a multivariable differential-operator

d

dx
¼ d

dx1

d

dx2
. . .

d

dxn

� 	T

ðA:1:26Þ

thus

grad f xð Þ½ � ¼ d

dx
f xð Þ ¼ df xð Þ

dx
: ðA:1:27Þ

The JACOBIAN matrix is

J ¼ J f ; xð Þ ¼

df1

dx1

df1

dx2
. . .

df1

dxn
df2

dx1

df2

dx2
. . .

df2

dxn

..

. ..
. . .

. ..
.

dfm

dx1

dfm

dx2
. . .

dfm

dxn

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

:
ðA:1:28Þ

Avoiding complicated notations, the JACOBIAN matrix is symbolically denoted by
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J f ; xð Þ ¼ df xð Þ
dxT

ðA:1:29Þ

and its transpose is

JT f ; xð Þ ¼ df T xð Þ
dx

: ðA:1:30Þ

Thus the transpose of the gradient vector is

gradT f xð Þ½ � ¼ df xð Þ
dx

� 	T

¼ df xð Þ
dxT

¼ J f ; xð Þ: ðA:1:31Þ

The second order derivatives of a scalar-vector function can be arranged into the

HESSIAN matrix

H ¼ H f ; xð Þ ¼

d2f

dx21

d2f

dx1dx2
. . .

d2f

dx1dxn
d2f

dx2

d2f

dx22
. . .

d2f

dx2dxn

..

. ..
. . .

. ..
.

d2f

dxn

d2f

dxndx2
. . .

d2f

dx2n

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

: ðA:1:32Þ

A.2 Signals and Systems

The general topics of signals and systems directly connected to control engineering

have been discussed in the main sections of this textbook. For completeness there

are, however, some special fields whose effect and availability has to be known, but

they cannot be connected directly to control engineering. From the subject of an

excitation with special periodic signals, only the standard sine excitation was dis-

cussed for the better understanding of the frequency functions.

Dynamics of linear processes with periodic excitation

Let u tð Þ be a function of time with a period Tp, i.e., u tþ Tp
� �

¼ u tð Þ. Introduce the
notation uA tð Þ for denoting the basic function (or truncated function) determining

the periodic signal, which in the time domain 0\t\Tp is equal to uðtÞ, but

otherwise is zero.

uAðtÞ ¼ 1ðtÞ � 1ðt � TpÞ
� �

uðtÞ ¼ uðtÞ; 0\t\Tp
0; t� 0; t[ Tp

�

: ðA:2:1Þ



The periodic function u tð Þ can be obviously constructed by repeated shifts and

sums of the basic function uA tð Þ, according to the definition

u tð Þ ¼
X

1

j¼0

uA t � jTp
� �

¼ 1A tð Þu tð Þ; ðA:2:2Þ

where 1A tð Þ is called the repetitive operator. Determine the LAPLACE transform of

the basic function uA tð Þ, i.e., the function UA sð Þ. Due to the shift theorem

L uA t � jTp
� �
 �

¼ e�jsTpUA sð Þ ðA:2:3Þ

and applying it to (A.2.2), the LAPLACE transform of the periodic signal u tð Þ is

U sð Þ ¼ L u tð Þf g ¼ L 1A tð Þu tð Þf g ¼
X

1

j¼0

e�jsTpUA sð Þ ¼ UA sð Þ
X

1

j¼0

e�jsTp : ðA:2:4Þ

Notice that here the summing equation for the geometric series can be applied

U sð Þ ¼ L 1A tð Þu tð Þf g ¼ UA sð Þ
1� e�sTp

: ðA:2:5Þ

If the LAPLACE transform U sð Þ of a signal can be written in the form of (A.2.5),

then using the basic function uA tð Þ ¼ L�1 UA sð Þf g, the time function of the peri-

odic signal can be easily determined. The condition uA tð Þ ¼ 0 for t[ Tp must be

fulfilled.

Next the system dynamics, i.e., the process response is investigated when a

periodic signal is put to as input of an LTI system. The response can be gotten by

the LAPLACE transform of the process output if the system is originally free of

energy. The LAPLACE transform of the output by using the conventional transfer

function notation H sð Þ ¼ B sð Þ=A sð Þ is

Y sð Þ ¼ U sð ÞH sð Þ ¼ UA sð Þ
1� e�sTp

B sð Þ
A sð Þ : ðA:2:6Þ

In general Y sð Þ is not the transform of a periodic signal, since the condition

L�1 YðsÞf g ¼ L�1 UAðsÞHðsÞf g ¼ 0 is not fulfilled for t[ Tp. H sð Þ is always

(except for the case of dead-time) a rational function, but this cannot be said about

UA sð Þ. Decompose the function Y sð Þ into the sum of a periodic and a non-periodic

function, i.e.,

Y sð Þ ¼ UA sð Þ
1� e�sTp

B sð Þ
A sð Þ ¼

YA sð Þ
1� e�sTp

þ C sð Þ
A sð Þ ; ðA:2:7Þ
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where yA tð Þ ¼ L�1 YA sð Þf g, yA t[ Tp
� �

¼ 0, and CðsÞ are unknown polynomials.

From this equation the basic function of the periodic output component can be

expressed as

YA sð Þ ¼ B sð ÞUA sð Þ � 1� e�sTpð ÞC sð Þ
A sð Þ ¼ H sð ÞUA sð Þ � 1� e�sTp

� � C sð Þ
A sð Þ :

ðA:2:8Þ

By transforming back YA sð Þ, zero has to be obtained for the time t[ Tp. Using

these conditions C sð Þ can be determined. Apply the expansion theorem and

assuming single poles we get

yA tð Þ ¼
X

n

i¼1

B pið ÞUA pið Þ � 1� e�piTpð ÞC pið Þ
A0

pið Þ epit ¼ 0; t[ Tp: ðA:2:9Þ

Since the factors epit cannot be zero, therefore the function yA tð Þ can be zero for

all time points t[ Tp only if the coefficients of all n factors are zero, i.e.,

C pið Þ ¼ B pið ÞUA pið Þ
1� e�piTp

¼ ai; i ¼ 1; . . .; n: ðA:2:10Þ

This condition, at the same time, gives the solution for the coefficients of the

unknown C sð Þ, since n independent linear equations can be formulated.

1þ c1pi þ c2p
2
i þ � � � þ cnp

n
i ¼ ai; i ¼ 1; . . .; n: ðA:2:11Þ

The coefficients come from the solution of these equations whose compact form

is

c1
c2

..

.

cn

2

6

6

6

4

3

7

7

7

5

¼

p1 p21 . . . pn1
p2 p22 . . . pn2

..

. ..
. . .

. ..
.

pn p2n . . . pnn

2

6

6

6

4

3

7

7

7

5

�1
a1 � 1

a2 � 1

..

.

an � 1

2

6

6

6

4

3

7

7

7

5

: ðA:2:12Þ

Based on (A.2.7) the complete time function of the process output is

y tð Þ ¼ 1A tð ÞyA tð Þþ ytr tð Þ; ðA:2:13Þ

where ytr tð Þ is the so-called non-periodic transient factor

ytr tð Þ ¼ L�1 C sð Þ
A sð Þ

� �

¼
X

n

i¼1

C pið Þ
A0 pið Þe

pit ¼
X

n

i¼1

B pið Þ
A0 pið Þ

UA pið Þ
1� e�piTp

epit: ðA:2:14Þ
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Since the expansion theorem requires only the substitution values of C pið Þ, it is
not necessary to solve the system of equations (A.2.12).

Based on (A.2.8) the basic function yA tð Þ of the output signal is

yA tð Þ ¼ L�1 H sð ÞUA sð Þf g � L�1 C sð Þ
A sð Þ

� �

; 0\t\Tp; ðA:2:15Þ

which is obtained by the inverse LAPLACE transform. (Here the effect of e�sTp in

(A.2.8) does not have to be taken into account, because the response is out of the

basic period.) Applying the expansion theorem yields

yA tð Þ ¼ L�1 B sð Þ
A sð ÞUA sð Þ

� �

�
X

n

i¼1

C pið Þ
A0

pið Þe
pit

¼ L�1 B sð Þ
A sð ÞUA sð Þ

� �

�
X

n

i¼1

B pið Þ
A0

pið Þ
UA pið Þ

1� e�piTp
epit; 0\t\Tp:

ðA:2:16Þ

Note that yA tð Þ 6¼ L�1 H sð ÞUA sð Þf g, thus YA sð Þ 6¼ H sð ÞUA sð Þ.
The process output of an LTI process excited by a periodic signal has two

factors: a periodic signal and a transient signal. After the transient is died out only

the periodic component remains. These two components appear even if the initial

energy content of the process is zero (the initial state vector in the state equation is

zero), i.e., the above two components must not be mistaken for the factors obtained

from the solution of the homogeneous (un-excited) and inhomogeneous (excited)

state equations. The above components of the response obtained for a periodic

excitation appear even if the initial condition is not a zero vector. Thus, in the

general case, the process response has three components.

A.3 Standard Control Engineering Signals

and Notations

A.3.1 Standard Notations in Control Engineering

The design, installation, operation and maintenance of process control systems require

the cooperation of the participants who are working on the solution of the task. In order

to achieve this, it is required to use common notation in the documentation of each

piece of equipment of the different process control functions. In the documentation, the

notation of the process control equipment refers to its technical character and how it is

connected to the process. Standard graphical and alphanumeric notation helps the

engineers and, technicians to interpret the design documentation.

The notation systems and standard protocols may differ in different branches of

the industry (chemical, energy, agriculture, etc.).
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The standard DIN (Deutsches Institut für Normung) 19227 contains several

graphical symbols for sensors, controllers, actuators, and control equipment.

Further recommendations can be found in standards DIN 1946, 2429, 2481, 19239

and 30600.

The instrumentation and control functions are usually represented by a circle or

oval curve containing letters and numbers. The letters refer to the character of the

physical quantity and the control function, the numbers give the place of the

equipment in the process (e.g., serial number of the valve, motor or sensor).

In the instrumentation designs [see Fig. A.3.1] the first letter of the text in the

circle refers to the character of the measured or controlled quantity, e.g., the

meaning of some of the first letters are: E—electrical signal, F—flowing quantity,

G—movement or position, L- level, P- pressure, Q- composition or other material

character (frequently it is denoted by A, too), S- speed, T- temperature, V- vis-

cosity. The second letter means the control function, e.g., T- sensing, C- control.

For example the text LC in the circle means level controller. Further letters can refer

to further functions, e.g., to alarm, security operation, computer connection,

transducers, etc. Figure A.3.1 illustrates the composition control of the liquid in the

mixer tank and the standard notations of the valve, composition sensor and

controller.

There is an other standard, KKS (Kraftwerk Kennzeichen System), which has

been developed in the German electrical industry and primarily used by European

firms. This notation fits the functional structure of the technology. The process

control functions and notations fit with the mechanical and electrical power

transmission functions and notations. The unified notations of the equipments make

it possible to identify the technological units in a decomposed part of a complex

technology. For example, the notation 03GCR31AA101 for a valve means that it is

Fig. A.3.1 Typical notations applied in the instrumentation designs
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in system 03, GCR means the subtechnology, 31 is the serial number of the pipeline.

AA means to which equipment this valve is connected, 101 is the serial number of the

valve. This detailed notation makes it possible to identify unambiguously the

equipments. Each technology has its own system identification notations.

A.3.2 The Names of the Most Important Signals

in Control Systems

Table A.3.1 contains certain names most generally used in control engineering.

The operation scheme of a control loop is shown in Fig. A.3.2. The dynamics of

the actuator and sensor are usually included in the dynamics of the controlled

system. The joint scheme is shown by Fig. A.3.3.

A.4 Computer-Aided Design (CAD) Systems

Nowadays the design of complex systems is inconceivable without computers. The

fast computers, the sophisticated developing environments and the well elaborated

design algorithms make it possible to design and simulate simple, precise and

Table A.3.1 Most generally used names in control engineering

Control Disturbance, noise

Open-loop control Manipulated variable

Closed-loop control, feedback control Output signal, controlled variable

Process, plant Reference signal, set-point

Sensor Error signal

Actuator Control signal

Controller, regulator, control algorithm Measured output, sensor output

Fig. A.3.2 Operational scheme of the control loop
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flexible control systems. The design consists of two phases: the design of the

controllers and the simulation of the system. The control parameters are determined

on the basis of the quality requirements. During the simulation the operation of the

system is investigated for given parameters on the basis of a criterion or visual

performance. A graphical presentation is more and more in the front, because this

technique makes possible a fast, precise and information rich presentation.

There are several program packages available for the design of control systems.

These can be classified in two groups. The first group contains the packages for

general mathematical computations which might be extended for the design of

controllers. The other group contains the industrial control systems whose main

goal is to perform the control or to solve special control tasks.

A.4.1 Mathematical Program Packages

The most well-known control design packages were primarily developed for gen-

eral mathematical computations, but later they were extended by special tools for

helping the design procedures. There are several program packages, however,

which originally were not designated for the design of controllers, but later, due to

their mathematical and graphical capabilities, were applied for design, too.

MATLAB®

The program package MATLAB® has been elaborated for scientific and engi-

neering computations, simulation and graphical presentation. It provides a strong

background to the solution of differential equations, handling matrix algebra and the

solution of other mathematical problems and to the presentation of the results in

good quality and also graphically. The extended application of MATLAB® derives

from the fact that its command set can be extended by toolboxes. A toolbox is

actually a function library developed for supporting different subject areas.

MATLAB® has very good graphical capabilities, and relatively complex design

tasks can be performed within an acceptable running time range. The programming

of MATLAB® is interactive, which means that it performs the commands row by

row without translation. Its speed is based on coding the critical program parts in a

Fig. A.3.3 The joint scheme of the control loop
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lower level language, generally in C or C++, and on direct access to the system

matrix structure.

The essence of the matrix programming is that the matrix operations are per-

formed automatically by the triggered functions for all elements of the matrix

instead of special embedded cycles. MATLAB® supports several mathematical

operations, procedures (e.g., handling of complex numbers, computation of inverse

and eigenvalues of a matrix, FOURIER transformation, convolution computation and

determination of the roots of equations). MATLAB® does not support directly

symbolic computations but makes that possible by the Symbolic Math Toolbox. The

Symbolic Toolbox is based on MAPLE® but it has an interface to MATLAB®.

MATLAB® is primarily used in the engineering environment. If a new algo-

rithm or theory appears then they are immediately developed in the form of tool-

boxes or function libraries in order to investigate and compare them with other

methods.

The Control System Toolbox contains functions for the design and simulation of

control systems. The controller can be given in transfer function or state space form.

It is able to investigate continuous and discrete systems in the time and frequency

domains. It can handle single and multi input-multi output, linear and nonlinear

systems. The toolboxes are open, they can be easily extended with other functions

and algorithms. The Control System Toolbox can be well used with other toolboxes,

e.g., with the Fuzzy Logic Toolbox, Model Predictive Control Toolbox, Nonlinear

Control Design Blockset, System Identification Toolbox and Robust Control

Toolbox.

SIMULINK®is a graphical program package for modeling and simulation of

dynamic systems. The simulation is interactive, therefore the effect of changing the

parameters can be well presented. In SIMULINK® the dynamic system is given by

a block-diagram, the different blocks can be copied from a library. SIMULINK® is

able to simulate linear and nonlinear systems in the continuous, discrete and hybrid

domains. SIMULINK® simulates the models by integrating ordinary differential

equations. It can use several integrating methods. The result of the simulation can

be further used by MATLAB® for data processing or graphical presentation. The

graphical abilities of SIMULINK® facilitate significantly the design and simulation

of the controllers.

MATHEMATICA®

MATHEMATICA
® is an interactive system for mathematical computations. It

supports numerical and symbolic computations and also includes a high level

programming language which makes it possible for the user to develop new pro-

cedures. MATHEMATICA® is one of the most effective systems for general

mathematical computations, which has roughly two million users all over the world.

Starting from the 60s there have been programs for special computations, but

MATHEMATICA® with its completely new approach made it possible to handle

uniformly the different fields of technical computation. Appearing in 1988 it

brought significant change in the usage of the computers in several fields. The

program was developed by the research group of Wolfram Research led by Stephen

Appendix 497



WOLFRAM. The key development was to develop a new symbolic computer lan-

guage which made first possible to handle a wide range of objects necessary for

technical computations by a few basic categories (primitives). Among the devel-

opers and users a high number of mathematicians and research engineers can be

found. It is very popular in education, nowadays several hundreds of textbooks are

based on it and it is a very important tool among students worldwide. It is very

useful in writing complex studies, reports, because it provides a uniform environ-

ment for computation, modeling, text editing and graphical presentation. One of its

disadvantages is that its learning curve is quite steep, the acquirement of its basic

operation is not easy. Its most important advantage is its openness, it can be easily

extended to new subject areas, as, e.g., to applied mathematics, informatics, control

engineering, economics, sociology, etc.

In MATHEMATICA® the basic arithmetic operations can be performed. It can

also handle complex numbers. Its most important data structure is the list, which

practically corresponds to a set. The lists can be defined as embedded, and different

operations can be accomplished on them, e.g., unification, cut, adding a term and

deleting a term, etc. The matrices are the special forms of the lists. The typical

matrix operations can also be performed, like inversion and eigenvalue

computations.

Due to its symbolic capabilities it can be well used for algebraic transformations.

Several such transformations can be made very easily which are difficult to compute

by hand, e.g., simplification of fractions, series expansions, decomposition into

partial fractions, solving equations, minimum seeking, differentiation, and

integration.

In MATHEMATICA® the functions are formal transformation rules. Any kind

of object can appear as the input or output of a function. The function may consist

of mathematical commands, program control commands (e.g., if, then, for) or it can

be written even in another programming language (e.g., FORTRAN, C).

Due to its graphical capabilities the data can be presented in one, two or three

dimensions.

MAPLE®

MAPLE® is a general computer algebraic system for solving mathematical prob-

lems and presenting technical figures with excellent quality. It is easy to learn and

anybody can perform complex mathematical computations after a very short time.

MAPLE
® contains also high level programming languages by means of which the

users can define their own procedures. Its main feature is providing symbolic

computations, algebraic transformations, series expansions, integration and differ-

ential computations. It can be used in several areas of mathematics, e.g., for solving

linear algebraic, statistical and group theoretical tasks. The commands can be

performed interactively or in a group (batch mode). It can be well used in education

and for development. Its capabilities can be extended by adding outer functions. It

contains more than 2500 functions for different subject areas. Several of them were

developed by external, independent companies, firms and research institutes. The

most frequently used function libraries, toolboxes are:
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– Global Optimization Toolbox

– Database Integration Toolbox

– Fuzzy Sets

– MAPLE
®
Professional Math Toolbox for LabVIEW®

– Analog Filter Design Toolbox

– ICP for MAPLE® (Intelligent Control and Parameterization: it makes possible

the design of automatic, intelligent and robust controllers)

Its mathematical capabilities and the ICP toolbox provides the opportunity to

solve control engineering tasks but in spite of this it is mainly used by statisticians

and mathematicians and less by control engineers.

SysQuake®

SysQuake® is a very similar system to MATLAB® concerning its commands. It

has been developed for solving design tasks interactively directly on the screen. By

its help, e.g., by directly changing the place of the poles and zeros, the breakpoint

frequencies, the controller or process parameters, several system attributes (BODE

diagram, NYQUIST diagram, root-locus, transfer functions of the closed-loop signals)

can be followed simultaneously in the design procedure. The software tools for

man-machine interaction can be easily realized in object-oriented structures.

A.4.2 Industrial Control Systems

Nowadays, industrial control systems have special CAD tools. Sometimes these do

not provide a wide range of design possibilities: they are usually restricted only to

those algorithms ensuring the operation of a given system. In many cases this

means only a simple PID controller whose parameters can be set in a simulation

environment. The industrial control systems are usually able to perform certain kind

of automatic design, e.g., in the case adaptive systems where the parameters of the

controller are automatically set based on the system’s behavior. Several significant

industrial companies have serious system and control design background. They can

be sorted according to their functions:

– Firms producing integrated control systems, Rockwell, Honeywell. They per-

form the control of the whole factories, like Rockwell Automation Ltd.

Rockwell Software: their program package enables the integrated control of the

whole factories including automation tasks.

– Robot manufacturing firms: Fanuk, Panasonic, ABB. Nowadays ready made

robots perform a certain part of the automated manufacturing.

– PLC producing firms: Siemens, Allen Bradly (Rockwell), Toshiba. The PLC

(Programmable Logic Controller) is one of the main elements of the industrial

process control systems.

– Firms producing data collecting and measurement systems, like: National

Instruments, Siemens, etc.
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Among the above firms several have also some additional activities. They

generally develop program systems which can be used only for their machines and

equipments. From the great number of industrial systems perhaps only the

LabVIEW
® program package developed by National Instruments is widely used

and has become an accepted developing environment by other firms as well.

LabVIEW®

LabVIEW® provides a graphical developing environment for data collection,

signal processing, and data presentation. It makes possible flexible, high level

programming without the complexity of programming languages. It has all the

programming tools (e.g., handling of data structures, cycles and events) which are

given in classical programming languages, but in a simpler environment.

LabVIEW® has also an embedded translator whose efficiency is comparable to a C

translator concerning the speed and memory requirements.

The effectiveness and popularity of LabVIEW® is due to the fact that it has

several (presently about 50) program libraries, toolkits available for developers.

These include different virtual tools, sample programs and documentation fitting

well with the developing environments and applications. These functions are

designed and optimized for such special demands which comprise a wide range of

fields, from signal processing, communication to the data structure. The main

toolkits are the following:

– Application Deployment & Targeting Modules

– Software Engineering & Optimization Tools

– Data Management and Visualization

– Real-Time and FPGA Deployment

– Embedded System Deployment

– Signal Processing and Analysis

– Automated Testing

– Image Acquisition and Machine Vision

– Control Design & Simulation

– Industrial Control

The Control Design Toolkit is able to design and analyze controllers in the

LabVIEW® environment. The main features of the Control Design Toolkit are:

– The LabVIEW®Control Design Toolkit can design and analyze the controllers

in the LabVIEW® environment. It provides interactive graphical design, e.g. by

the help of root-locus.

– The process and the controller can be given in transfer function and state-space

forms.

– These modules are integrated with the LabVIEW®Simulation Module.

– The behavior of the system can be investigated by several tools, e.g. step

response function, BODE diagram, allocation of zeros and poles, etc.
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LabVIEW® ensures an integrated environment for data collection, identifica-

tion, controller design and simulation. The system’s behavior can be graphically

investigated, while its parameters can be adjusted.

A.5 Proofs and Derivations (By Chapters)

A.2.1

It is very simple to determine the BODE diagram of

H sð Þ ¼ 1þ sT ; H jxð Þ ¼ 1þ jxT ¼ H jxð Þj jeju xð Þ: ðA:2:1Þ

The dependence of its absolute value and phase angle on the frequency is

H jxð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þx2T2
p

¼ 10lg 1þx2T2
� �� �

dB; u xð Þ ¼ arctgxT: ðA:2:2Þ

Investigating the asymptotic behavior of the functions we get

H jxð Þ � 1; H jxð Þj j � 0 dB; u xð Þ � 0; if x � x1 ¼ 1=T ðA:2:3Þ

and

H jxð Þ � jxT; H jxð Þj j � 20lgxþ 20lgTð ÞdB;
u xð Þ � 90

	
; if x 
 x1 ¼ 1=T

ðA:2:4Þ

If logarithmic scaling is applied for the frequency axis then both asymptotes of

the amplitude are straight lines. On the frequency axis there are two points at a

distance of a decade, for which x2 ¼ 10x1, i.e., lgx2 ¼ 1þ lgx1. Thus in loga-

rithmic scale the decade means constant distance. So in the region x 
 x1 the

asymptote of the curve is a line having slope of 20 dB/decade, which cuts the 0 dB

axis at x1 (the brake frequency). Here the actual value is

H jx1ð Þj j ¼ 20lg2ð Þ dB ¼ 3 dB and u x1ð Þ ¼ arctg1 ¼ 45	 ðA:2:5Þ

The tangents of the functions are

d H jxð Þj j
dlgx

¼ 10
dlg 1þx2T2ð Þ

dx

dx

dlgx
¼ 10

2xT2

1þx2T2
x dB=decade ðA:2:6Þ

du xð Þ
dlgx

¼ darctgxT

dx

dx

dlgx
¼ T

1þx2T2

x

lge

180	

p
degree=decade ðA:2:7Þ
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and their slopes at the break frequency

d H jxð Þj j
dlgx

�

�

�

�

x1

¼ 10 dB=decade ðA:2:8Þ

du xð Þ
dlgx

�

�

�

�

x1

¼ 66 degree=decade ðA:2:9Þ

A.3.1

The solution of the state equation can be given by (3.18). To prove it let us

differentiate the equation

dx tð Þ
dt

¼ d

dt
eAtx 0ð Þ
� �

þ d

dt

Z

t

0

eA t�sð Þbu sð Þds

2

4

3

5; ðA:3:1Þ

where

d

dt
eAtx 0ð Þ
� �

¼ AeAtx 0ð Þ ðA:3:2Þ

and

d

dt

Z

t

0

eA t�sð Þbu sð Þds

2

4

3

5 ¼
Z

t

0

d

dt
eA t�sð Þbu sð Þ
h i

dsþ dt

dt
eA t�sð Þbu sð Þ
h i

s¼t

� d0

dt
eA t�sð Þbu sð Þ
h i

s¼0
¼

Z

t

0

AeA t�sð Þbu sð Þdsþ bu sð Þ

ðA:3:3Þ

where the expressions dt=dt ¼ 1, d0=dt ¼ 0 and eA t�sð Þ�
�

s¼t
¼ 1 are taken into

consideration. Thus the derivative of (3.18) is

dx tð Þ
dt

¼ AeAtx 0ð Þþ
Z

t

0

AeA t�sð Þbu sð Þdsþ bu tð Þ ¼ Ax tð Þþ bu tð Þ: ðA:3:4Þ
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A.3.2

In the case of zero initial conditions (i.e. x 0ð Þ ¼ 0) and d ¼ 0, the impulse response

of a system to the excitation u tð Þ ¼ d tð Þ can be computed from (3.18)

x tð Þ ¼
Z

t

0

eA t�sð Þbd sð Þds ¼ eAt
Z

t

0

e�Asd sð Þds

2

4

3

5b ¼ eAt e�Asd sð Þ
� �t

0
b

¼ eAt �e�Atd tð Þþ e�A0d 0ð Þ
� �

b ¼ eAtb

w tð Þ ¼ y tð Þ ¼ cTx tð Þ ¼ cTeAtb

ðA:3:5Þ

which is equal to (3.25) which was obtained in the operator domain.

A.3.3

One of the most important theorems in matrix theory is the CAYLEY-HAMILTON

Theorem. A matrix fulfills its own characteristic equation, i.e., the equation

A Að Þ ¼ 0 ¼ det sI � Að Þ ¼ 0 which is formally the same as

A Að Þ ¼ 0 ðA:3:6Þ

[see Appendix A.1]. Equation (A.3.7) is satisfied also by the matrix polynomial

P Að Þ of matrix A, but also by any such matrix function F Að Þ whose associated

function f sð Þ is analytical (regular) in a certain region around the origin of the s-

plane. Let the basic matrix be F Að Þ ¼ eAs, then based on the above expressions we

get

eAs ¼ ao sð ÞIþ a1 sð ÞAþ � � � þ an�1 sð ÞAn�1: ðA:3:7Þ

A.5.1

The NYQUIST stability criterion can be derived from the CAUCHY argument principle

of the theory of complex functions.

The argument principle

Let C be a closed curve, not cutting itself, in the complex plane, which surrounds

the region D. Consider the function f zð Þ of the complex variable z. Suppose the

function f zð Þ has P poles and Z zeros in the domain D. All poles and zeros are taken

into account with their multiplicity. In all the other points of the domain the

function is analytic (thus at these points it is differentiable).

Due to the argument principle, going round the curve anti-clockwise, the angle

change DCarg f zð Þ of the function f zð Þ is 2 p Z � Pð Þ,
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1

2p
DC arg f zð Þ ¼ 1

2p j

Z

C

f 0 zð Þ
f zð Þ dz ¼ Z � P: ðA:5:1Þ

Proof Assume that f zð Þ has a zero of multiplicity m at the point z ¼ a. In the

vicinity of the zero the function f zð Þ can be written as: f zð Þ ¼ z� að Þmg zð Þ, where
g zð Þ is an analytic function. Constitute the expression f 0 zð Þ=f zð Þ:

f 0 zð Þ
f zð Þ ¼ m

z� a
þ g0 zð Þ

g zð Þ : ðA:5:2Þ

The second term on the right hand side of (A.5.2) is analytic at z ¼ a. The

numerator of the first term gives the residue.

In (A.5.1) the integral around the closed curve is the sum of the residues,

considering the zeros and poles it is Z � P. Otherwise, taking into account that

f 0 zð Þ
f zð Þ ¼

d

dz
ln f zð Þ ðA:5:3Þ

the following relationship can be derived:

Z

C

f 0 zð Þ
f zð Þ dz ¼

Z

C

d ln f zð Þð Þ ¼
Z

C

d ln f zð Þj j exp j arg f zð Þð Þf gð Þ

¼
Z

C

d ln f zð Þj j þ j

Z

C

d arg f zð Þð Þ ¼ jDC arg f zð Þ ¼ 2 p j Z � Pð Þ

ðA:5:4Þ

This proves the argument principle given by (A.5.1), thus

1

2 p
DC arg f zð Þ ¼ Z � P: ðA:5:5Þ

The NYQUIST stability criterion

Investigate the stability of a closed control loop havingnegative feedback. The

characteristic equation is

1þ L sð Þ ¼ 0 ðA:5:6Þ

where L sð Þ is the transfer function of the open loop.

Consider the closed curve on the complex plane shown in Fig. 5.17. If L sð Þ has
poles also on the imaginary axis, then pass around them at a small radius according

to Fig. 5.18. The characteristic polynomial can also be written in the form of (5.31)

as
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1þ L sð Þ ¼ 1þ N sð Þ
D sð Þ ¼ D sð ÞþN sð Þ

D sð Þ ¼ k
s� z1ð Þ s� z2ð Þ. . . s� znð Þ
s� p1ð Þ s� p2ð Þ. . . s� pnð Þ : ðA:5:7Þ

Let the characteristic polynomial be the function f zð Þ to be used for a mapping.

Mapping the curve of Fig. 5.17 by the characteristic polynomial, the argument

principle can be applied. Since the curve of Fig. 5.17 is passed around clockwise,

the number of times R the mapped curve encircles the origin is

1

2 p
DC arg f zð Þ ¼ R ¼ P� Z: ðA:5:8Þ

To ensure stability, the characteristic equation must not have roots in the right

half-plane, thus the condition for stability is

Z ¼ 0 ðA:5:9Þ

and from this,

R ¼ P: ðA:5:10Þ

This means that the control system is stable if the curve mapping the curve of

Fig. 5.17 by the characteristic polynomial encircles the origin anti-clockwise as

many times as there are the unstable, right half-plane poles of the open-loop.

Mapping the curve L sð Þ instead of the characteristic polynomial we get the

so-called complete NYQUIST curve. Investigating its windings around the point

�1þ 0j, the system is stable if the condition (A.5.10) is fulfilled.

A.9.1

Use the notation introduced in (3.13)

U sð Þ ¼ sI � Að Þ�1¼ adj sI � Að Þ
det sI � Að Þ ¼

adj sI � Að Þ
A sð Þ ¼ W sð Þ

A sð Þ ðA:9:1Þ

to simplify the complex form cT sI � Aþ bkT
� ��1

b and use the matrix inversion

lemma

sI � Aþ bkT
� ��1¼ U

�1 sð Þþ bkT
� ��1¼ U sð Þ �U sð Þb 1þ kTU sð Þb

� ��1
kTU sð Þ
ðA:9:2Þ

by means of which

cT sI � Aþ bkT
� ��1

b ¼ cTU sð Þb� cTU sð ÞbkTU sð Þb
1þ kTU sð Þb ¼ cTU sð Þb

1þ kTU sð Þb : ðA:9:3Þ
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So (9.5) can be further modified

Try sð Þ ¼ cTU sð Þbkr
1þ kTU sð Þb

: ðA:9:4Þ

Note that here

cTU sð Þb ¼ cT sI � Að Þ�1
b ¼ P sð Þ ¼ B sð Þ

A sð Þ ðA:9:5Þ

by means of which

Try sð Þ ¼ cTU sð Þbkr
1þ kTU sð Þb

¼ kr

1þ kT
W sð Þ
A sð Þ b

P sð Þ ¼ kr

1þ kT
W sð Þ
A sð Þ b

B sð Þ
A sð Þ

¼ krB sð Þ
A sð Þþ kTW sð Þb

ðA:9:6Þ

A.9.2

The static unit gain of the transfer functionTry sð Þ of the closed system can be

ensured by the scaling factor kr. From the condition

Try sð Þ
�

�

s¼0
¼ cT �Aþ bkT

� ��1
bkr ¼ 1 ðA:9:7Þ

it is obtained that

kr ¼ �1=cT A� bkT
� ��1

b: ðA:9:8Þ

Applying the matrix inversion lemma in the denominator,

A� bkT
� ��1¼ A�1 þA�1b 1� kTA�1b

� ��1
kTA�1; ðA:9:9Þ

we get that

cT A� bkT
� ��1

b ¼ cTA�1bþ cTA�1bkTA�1b

1� kTA�1b
¼ cTA�1b 1þ kTA�1b� kTA�1b

� �

1� kTA�1b

¼ cTA�1b

1� kTA�1b

ðA:9:10Þ

So the other form of (A.9.8) is
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kr ¼
�1

cT A� bkT
� ��1

b
¼ kTA�1b� 1

cTA�1b
: ðA:9:11Þ

A.9.3

As was seen in the derivation of (9.10), the pole allocating state feedback vector

kT ¼ kTc can easily be computed from the controllable canonical form. It was

discussed in connection with Eq. (3.67) that all controllable systems can be

rewritten into controllable canonical form by the transformation matrix

Tc ¼ Mc
c Mcð Þ�1

. From this we can get the similarity transformation (9.13) of the

feedback vector

kT ¼ kTcTc ¼ kTcM
c
cM

�1
c : ðA:9:12Þ

Instead of the relatively complicated transformation matrix Tc, another simpler

method is also available. Find the matrix T of the similarity transformation by the

following expressions

Ac ¼ TAT�1 and bc ¼ Tb ðA:9:13Þ

The similarity transformation of the matrix A can also be expressed in the form

AcT ¼ TA: ðA:9:14Þ

Introducing the notation tTi for the rows of the matrix T we can write that

AcT ¼

�a1 �a2 . . . �an�1 �an
1 0 . . . 0 0

0 1 . . . 0 0

..

. ..
. . .

. ..
. ..

.

0 0 0 1 0

2

6

6

6

6

4

3

7

7

7

7

5

tT1
tT2
tT3

..

.

tTn

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼ TA ¼

tT1
tT2
tT3

..

.

tTn

2

6

6

6

6

6

4

3

7

7

7

7

7

5

A ¼

tT1A

tT2A

tT3A

..

.

tTnA

2

6

6

6

6

6

4

3

7

7

7

7

7

5

:

ðA:9:15Þ

Executing the operations we get that

AcT ¼

�a1t
T
1 � a2t

T
2 � � � � an�1t

T
n�1 � ant

T
n

tT1
tT2

..

.

tTn�1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼

tT1A

tT2A

tT3A

..

.

tTnA

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼

tTnA
n�1

tTnA
n�2

tTnA
n�3

..

.

tTn

2

6

6

6

6

6

4

3

7

7

7

7

7

5

A ¼ TA:

ðA:9:16Þ
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As a consequence of the equality of the two sides the following recursive

relationship holds between the row vectors tTi , if t
T
n is known

tTi�1 ¼ tTi A; i ¼ n; n� 1; . . .; 2 ðA:9:17Þ

or in another form,

tTi�1 ¼ tTnA
n�iþ 1; i ¼ n; n� 1; . . .; 2: ðA:9:18Þ

Thus the transformation matrix is

Tc ¼ T ¼

tTnA
n�1

tTnA
n�2

tTnA
n�3

..

.

tTn

2

6

6

6

6

6

4

3

7

7

7

7

7

5

: ðA:9:19Þ

Similarly, based on (A.9.13) and (A.9.16) we get that

bc ¼ Tb ¼

tT1
tT2
tT3

..

.

tTn

2

6

6

6

6

6

4

3

7

7

7

7

7

5

b ¼

tTnA
n�1

tTnA
n�2

tTnA
n�3

..

.

tTn

2

6

6

6

6

6

4

3

7

7

7

7

7

5

b ¼

tTnA
n�1b

tTnA
n�2b

tTnA
n�3b

..

.

tTnb

2

6

6

6

6

6

4

3

7

7

7

7

7

5

; ðA:9:20Þ

whose transposed form is

bTc ¼ tTn b Ab . . . An�2b An�1b
� �

¼ tTnMc; ðA:9:21Þ

where Mc is the controllability matrix. From this,

tTn ¼ bTc Mcð Þ�1: ðA:9:22Þ

Thus tTn is the first row of the inverse of the controllability matrix, since

bTc ¼ 1; 0; . . .; 0½ �: ðA:9:23Þ

Consider the transpose of the feedback vector (A.9.12)
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kT ¼ kTcTc ¼ r1 � a1; r2 � a2; . . .; rn � an½ �

tTnA
n�1

tTnA
n�2

tTnA
n�3

..

.

tTn

2

6

6

6

6

6

4

3

7

7

7

7

7

5

: ðA:9:24Þ

Executing the operation we get the equation

kT ¼ tTn

X

n

i¼1

riA
n�i � tTn

X

n

i¼1

aiA
n�i ðA:9:25Þ

then adding An to both sums we get a very interesting form,

kT ¼ tTnR Að Þ � tTnA Að Þ: ðA:9:26Þ

Due to the CAYLEY-HAMILTON theorem all square matrices satisfy their charac-

teristic polynomial, therefore A Að Þ ¼ R Að Þ ¼ 0. The final form of (A.9.26) is

kT ¼ tTnR Að Þ: ðA:9:27Þ

This latter equation is called the ACKERMANN formula. The expression (A.9.12)

can be evaluated much easier by computational methods than by (A.9.27).

A.9.4

Based on the diagonal canonical form, from the basic relationship (9.7) of the pole

allocation we can get by equivalent rewriting that

R sð Þ � A sð Þ ¼ B sð Þ
cTd sI � Adð Þ�1

bd
kTd sI � Adð Þ�1

bd ¼ A sð ÞkTd sI � Adð Þ�1
bd;

ðA:9:28Þ

which yields

R sð Þ
A sð Þ ¼ 1þ kTd sI � Adð Þ�1

bd: ðA:9:29Þ

Decomposing the left side into partial fractions, and taking the diagonal char-

acter of the system into account, it can be seen that

R sð Þ
A sð Þ ¼ 1þ

X

n

i¼1

kdi b
d
i

s� ki
¼ 1þ

X

n

i¼1

kdi bi
s� ki

: ðA:9:30Þ
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Applying the expansion theory valid for the simple poles of the partial fractions,

thus multiplying both sides with s� kið Þ and substituting s ¼ ki, we get the

expression

kdi b
d
i ¼

Y

n

j¼1

ki � lj
� �

,

Y

n

j¼1
i6¼j

ki � kj
� �

ðA:9:31Þ

This procedure has to be performed for all the poles.

A.9.5

Taking the matrix inversion identity (A.1.17) in Appendix A.1 into account the

following steps of the rewriting can be easily followed:

Try sð Þ ¼
cT sI � Að Þ�1

b
h i

1� kT sI � Aþ bkT þ lcT
� ��1

b
h i

kr

1þ kT sI � Aþ bkT þ lcT
� ��1

b
h i

cT sI � Að Þ�1
b

h i

¼ cT sI � Aþ bkT
� ��1

bkr ¼
cT sI � Að Þ�1

bkr

1þ kT sI � Að Þ�1
b

¼ krP sð Þ
1þ kT sI � Að Þ�1

b
¼ krB sð Þ

R sð Þ

ðA:9:32Þ

A.9.6

The so-called LQ controller, discussed in 9.5, is a special case of a generally

formulated optimization problem. In the general case the task is to determine the

control signal u tð Þ of the system given by the state equation

_x tð Þ ¼ dx tð Þ
dt

¼ f x tð Þ; u tð Þ½ �; ðA:9:33Þ

which minimizes the general integral criterion

I ¼ 1

2

Z

Tf

0

F x tð Þ; u tð Þ½ �dt ¼ I u tð Þ½ �: ðA:9:34Þ

The solution is provided by the so-called minimum principle, by means of which

the so-called HAMILTON function
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H tð Þ ¼ F x tð Þ; u tð Þ½ � þ k tð ÞTf x tð Þ; u tð Þ½ � ðA:9:35Þ

has to be constructed, for which the following necessary conditions of the extre-

mum values

dH tð Þ
du tð Þ ¼ 0;

dH tð Þ
dx tð Þ ¼ � dk tð Þ

dt
¼ � _k tð Þ ðA:9:36Þ

must be fulfilled. (The sufficient condition of the minimum is that @2H=@u2[ 0.)

The HAMILTON function and the necessary condition for the minimum (A.9.36)

corresponds formally to the LAGRANGE method of the conditional optimum (thus k is

the co-vector of the method), since the minimum of I u tð Þ½ � has to be reached under

the condition (A.9.33). (Note that in the state space arbitrary motion is not allowed,

only those corresponding to (A.9.33).) For the solution it is usually assumed that

k tð Þ ¼ P tð Þx tð Þ, i.e., it can be derived from the state vector by a linear transfor-

mation, so

_k tð Þ ¼ _P tð Þx tð ÞþP _x tð Þ: ðA:9:37Þ

If the upper limit of the integral is infinity ðTf ¼ 1Þ then P tð Þ ¼ P is constant, so
_P ¼ 0, thus

k tð Þ ¼ Px tð Þ and _k tð Þ ¼ P _x tð Þ: ðA:9:38Þ

The LQ regulator of the LTI process has to solve the task

I ¼ 1

2

Z

1

0

xT tð ÞWxx tð ÞþWuu
2 tð Þ

� �

dt ¼ min
u tð Þ

ðA:9:39Þ

under the condition of linear system dynamics

_x tð Þ ¼ Ax tð Þþ bu tð Þ: ðA:9:40Þ

The HAMILTON function now is

H tð Þ ¼ 1

2
xT tð ÞWxx tð ÞþWuu

2 tð Þ
� �

þ k
T Ax tð Þþ bu tð Þ½ �; ðA:9:41Þ

whose second order derivate is @2H=@u2 ¼ Wu[ 0, so the necessary condition is,

at the same time sufficient, too. The necessary condition, on the one hand, is
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dH tð Þ
du tð Þ ¼ Wuu tð Þþ k

Tb ¼ Wuu tð Þþ bTk ¼ 0 ðA:9:42Þ

from which the optimal control is

u tð Þ ¼ � 1

Wu

bTk tð Þ ¼ � 1

Wu

bTPx tð Þ ¼ �kTLQx tð Þ ðA:9:43Þ

On the other, the matrix P in Eq. (A.9.43) has to be determined. For this,

consider the complete state equation of the closed system

_x ¼ Ax� bkTLQx ¼ A� bkTLQ

� �

x ¼ A� 1

Wu

bbTP

� �

x ¼ �Ax; ðA:9:44Þ

which has the same form as for the state feedback. Thus the LQ regulator is a state

feedback controller. Based on Eqs. (A.9.36) and (A.9.44) the co-vector is

_k ¼ P _x ¼ PA� 1

Wu

PbbTP

� �

x ¼ P�Ax; ðA:9:45Þ

which has to satisfy the equation

_k tð Þ ¼ � dH tð Þ
dx tð Þ ¼ �Wxx tð Þ � AT

k tð Þ ¼ �Wxx tð Þ � ATPx tð Þ
¼ � Wx þATP

� �

x tð Þ ðA:9:46Þ

coming from the necessary condition (A.9.36). Comparing the last two equations,

the following equality

PA� 1

Wu

PbbTP ¼ � Wx þATP
� �

ðA:9:47Þ

is obtained for symmetric P. By rewriting we get the so-called nonlinear algebraic

RICCATI matrix equation

PAþATP� 1

Wu

PbbTP ¼ Wx; ðA:9:48Þ

which has no explicit algebraic solution, but there are several fast numerical

methods available for its computation.
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The joint state equation of the state vector and co-vector of the closed system can

be easily written using Eqs. (A.9.44) and (A.9.46)

_x
_k

� 	

¼ A 1
Wu

bbTP

Wx �AT

� 	

x

k

� 	

: ðA:9:49Þ

Note that if the upper limit of the integral is finite ðTf\1Þ then P ¼ P tð Þ
depends on the time and the RICCATI matrix equation has to be solved in advance for

the domain 0� t� Tf .

Next it will be shown that the solution P of the RICCATI matrix equation has

exceptional meaning. Substitute Eq. (A.9.41) of the optimal control into the cri-

terion (A.9.37)

I ¼ 1

2

Z

1

0

xT tð ÞWxx tð ÞþWuu tð Þ
� �

dt ¼ 1

2

Z

1

0

xT tð ÞWxx tð ÞþWu �kTLQx tð Þ
h i2

� �

dt

¼ 1

2

Z

1

0

xT tð ÞWxx tð Þþ 1

Wu

xT tð ÞPTbbTPx tð Þ
� 	

dt ¼ 1

2

Z

1

0

xT tð Þ �Wxx tð Þ
� �

dt

ðA:9:50Þ

where

�Wx ¼ Wx þ
1

Wu

PTbbTP: ðA:9:51Þ

The solution for the closed system of (A.9.44) without excitation is

x tð Þ ¼ e
�Atx 0ð Þ ðA:9:52Þ

so the criterion (A.9.50) for the case without excitation is

I ¼ 1

2

Z

1

0

xT 0ð Þe�A
T
t �Wxe

�Atx 0ð Þ
h i

dt ¼ 1

2
xT 0ð ÞPx 0ð Þ; ðA:9:53Þ

where it is assumed that

P ¼
Z

1

0

e
�A
T
t �Wxe

�Atdt: ðA:9:54Þ
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To prove this, carry out the integration

P ¼
Z

1

0

e
�A
T
t �Wxe

�Atdt ¼ e
�A
T
t �Wx

�A
�1
e
�At

h i1

0
�
Z

1

0

�A
T
e
�A
T
t �Wx

�A
�1
e
�Atdt: ðA:9:55Þ

Furthermore, if �A is stable, then

P ¼ � �Wx
�A
�1 � �A

T

Z

1

0

e
�A
T
t �Wxe

�Atdt

0

@

1

A�A
�1 ¼ � �Wx

�A
�1 � �A

T
P�A

�1
: ðA:9:56Þ

Here, it has been used that �A
�1
e
�At ¼ e

�At�A
�1
. Finally the equation

P�Aþ �A
T
P ¼ � �Wx ðA:9:57Þ

is obtained, which is called the LYAPUNOV equation. The equation is only virtually

linear in P, since �Wx and �A also depend on P. Rewriting the equation we get again

the algebraic RICCATI matrix equation (A.9.48). By this, on the one hand, the

relationship (A.9.54) is proved for P, on the other hand the meaning of P is also

shown: namely that it is the quadratic cost function matrix associated with the

control ensuring the minimum of the criterion (A.9.37) for the case without

excitation.

It is also interesting to investigate how the HAMILTON function itself changes in

time. Determine the time derivates

dH

dt
¼ dH

dx

� 	T
dx

dt
þ dH

du

� 	T
du

dt
þ dH

dk

� 	T
dk

dt
ðA:9:58Þ

Since based on (A.9.33) and (A.9.35) it can be stated that

dH

dk
¼ dH

dx
¼ f ðA:9:59Þ

and taking Eq. (A.9.36) into account, we get

dH

dx

� 	T
dx

dt
þ dH

dk

� 	T
dk

dt
¼ 0: ðA:9:60Þ

Thus finally

dH

dt
¼ 0; ðA:9:61Þ
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i.e., the HAMILTON function is constant (assuming that neither the control, nor the

state vector have restrictions). Thus in the case without limitation, the HAMILTON

function is time invariant and it is invariant also for the input (see the necessary

condition (A.9.36) for the extremum).

A.11.1

Based on the transfer function of the zero order hold

WZOH sð Þ ¼ 1� e�sTs

s
ðA:11:1Þ

the frequency function of the holding element is

WZOH sð Þjs¼jx ¼ 1� e�jxTs

jx
¼ 2e�jxTs=2 ejxTs=2 � e�jxTs=2

� �

2jx

¼ Ts
sin xTs=2ð Þ
xTs=2

e�jxTs=2

ðA:11:2Þ

Based on the above the absolute value function of the zero order hold can be

written as

WZOH jxð Þj j ¼ Ts
sin xTs=2ð Þ
xTs=2

�

�

�

�

�

�

�

�

ðA:11:3Þ

and its phase function is

\ WZOHðjxÞf g ¼ \ sin xTs=2ð Þf g � xTs=2 ðA:11:4Þ

Both components of the frequency function are drawn for the choice Ts ¼ 1 s in

Figs. A.11.1 and A.11.2. It can be seen that the absolute value function becomes

-20 -15 -10 -5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2Fig. A.11.1 The absolute

value of the frequency func-

tion of the zero order hold

Appendix 515



zero at the sampling frequency xs ¼ 2 p=Ts ¼ 6:28 rad=s and at its integer multi-

ples, and the phase function has a linear character, its value corresponds to a delay

term of Th ¼ Ts=2, at the singular points the phase changes by �180	.
In Fig. A.11.1 the characteristic of the active linear filter in the region

x�xs=2 ¼ xmax is also shown. It can be seen, that the amplitude distortion can be

neglected only in the lowest frequency region.

A.11.2

Let us start from the expression

Z f k½ �f g ¼ F zð Þ ¼
X

1

k¼0

f k½ �z�k ¼ f 0½ � þ f 1½ �z�1 þ f 2½ �z�2 þ � � � þ f k½ �z�k þ � � �

ðA:11:1Þ

defining the z-transform of a discrete signal f k½ �ðk ¼ 0; 1; 2; . . .Þ as an infinite

geometric progression. Multiplying both sides by the factor zk�1

F zð Þzk�1 ¼ f 0½ �zk�1 þ f 1½ �zk�2 þ f 2½ �zk�3 þ � � � þ f k½ �z�1 þ � � � ðA:11:2Þ

is obtained, which is actually the LAURENT series of the expression zk�1F zð Þ at

z ¼ 0. Consider now a circle C around the origin of the complex plane, which

includes all the poles of zk�1F zð Þ. Since in the above expression the coefficient of

z�1 is f k½ �, and at the same time, this coefficient is the residue of zk�1F zð Þ, we obtain

f k½ � ¼ Z�1 F zð Þf g ¼ 1

2 p j

I

C

F zð Þzk�1dz: ðA:11:3Þ
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A.16.1

Due to the definition of H2 and the PARSEVAL theorem

H jxð Þk k2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z

1

0

w tð Þk k2dt

v

u

u

u

t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z

1

0

cTeAtbbTeA
Ttcdt

v

u

u

u

t : ðA:16:1Þ

Thus

H jxð Þk k22¼ cT
Z

1

0

eAtbbTeA
Ttdt

2

4

3

5c: ðA:16:2Þ

Introduce the notation

L ¼
Z

1

0

eAtbbTeA
Ttdt ðA:16:3Þ

so finally the H2 norm can be computed as

H jxð Þk k2¼
ffiffiffiffiffiffiffiffiffiffi

cTLc
p

: ðA:16:4Þ

Differentiate the integral in the A.16.3

d

dt
eAtbbTeA

Tt ¼ AeAtbbTeA
Tt þ eAtbbTeA

TtAT ðA:16:5Þ

then integrate both sides of the equation over the domain 0;1½ �:

eAtbbTeA
Tt

h i1

0
¼ A

Z

1

0

eAtbbTeA
Ttdt

2

4

3

5þ
Z

1

0

eAtbbTeA
Ttdt

2

4

3

5AT; ðA:16:6Þ

from which by simple computation and considering (A.16.3) we get the system of

linear equations

�bbT ¼ ALþLAT ðA:16:7Þ

for L.

Appendix 517



A.16.2

Rewriting the criterion (16.27) in detail the form

V p̂ð Þ ¼ 1

2
yTy� 2yTF uð Þp̂þ p̂TFT uð ÞF uð Þp̂
� �

ðA:16:8Þ

is obtained, and making its gradient equal to zero yields

dV p̂ð Þ
dp̂

¼ �FT uð ÞyþFT uð ÞF uð Þp̂ ¼ 0: ðA:16:9Þ

Solving the equation for p̂, the best parameter estimator is obtained in the form

p̂ ¼ FT uð ÞF uð Þ
� ��1

FT uð Þy: ðA:16:10Þ

A.16.3

Assume that processing N data pairs the off-line LS estimation of the parameters

is available as

p̂ N½ � ¼ FT N½ �F N½ �
� ��1

FT N½ �yN ; ðA:16:11Þ

then compute the LS estimation for the ðN þ 1Þ-th point

p̂ N þ 1½ � ¼ FT Nþ 1½ �F Nþ 1½ �
� ��1

FT Nþ 1½ �yNþ 1

¼ F N½ �
f T Nþ 1½ �

� 	T
F N½ �

f T Nþ 1½ �

� 	

( )�1
F N½ �

f T Nþ 1½ �

� 	T
yN

y Nþ 1½ �

� 	

¼ FT N½ �FT N½ � þ f Nþ 1½ �f T N þ 1½ �

 ��1

FT N½ �yN þ f Nþ 1½ �y N þ 1½ �

 �

ðA:16:12Þ

For the solution it is required to compute the inverse of the matrix extended by

the dyadic product

R N þ 1½ � ¼ FT Nþ 1½ �FT N þ 1½ �

 ��1¼ FT N½ �FT N½ � þ f N þ 1½ �f T Nþ 1½ �


 ��1
:

ðA:16:13Þ
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According to A.1.17 in Appendix A.1,

FT N þ 1½ �FT N þ 1½ �

 ��1 ¼ FT N½ �FT N½ �


 ��1

� FT N½ �FT N½ �

 ��1

f N þ 1½ �fT N þ 1½ � FT N½ �FT N½ �

 ��1

1þ fT N þ 1½ � FT N½ �FT N½ �

 ��1

f Nþ 1½ �
:

ðA:16:14Þ

Using the definition of R N½ � by (16.54) we get

R Nþ 1½ � ¼ R N½ � � R N½ �f Nþ 1ð Þf T Nþ 1ð ÞR N½ �
1þ f T Nþ 1ð ÞR N½ �f N þ 1ð Þ ðA:16:13Þ

Substituting the above recursive equation of the convergence matrix into

(A.16.12), the recursive equation of the parameter estimation is obtained as

p̂ Nþ 1½ � ¼ p̂ N½ � þR Nþ 1½ �f N þ 1ð Þ y N þ 1½ � � f T Nþ 1ð Þp̂ N½ �

 �

: ðA:16:14Þ

The term “recursive” comes from the fact that the renewal equations of both

R N½ � and p̂ N½ � can be computed from the previous values by adding a new term.
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