
Quick Start
Guide to VHDL

Brock J. LaMeres

QUICK START GUIDE TO VHDL

QUICK START GUIDE TO VHDL
1ST EDITION

Brock J. LaMeres

Brock J. LaMeres
Department of Electrical & Computer Engineering
Montana State University
Bozeman, MT, USA

ISBN 978-3-030-04515-9 ISBN 978-3-030-04516-6 (eBook)
https://doi.org/10.1007/978-3-030-04516-6

Library of Congress Control Number: 2018963722

Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed
to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty,
express or implied, with respect to the material contained herein or for any errors or omissions that may have been
made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Cover illustration:# Carloscastilla j Dreamstime.com - Binary Code Photo

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-04516-6

Preface
The classical digital design approach (i.e., manual synthesis and minimization of logic) quickly

becomes impractical as systems become more complex. This is the motivation for the modern digital

design flow, which uses hardware description languages (HDL) and computer-aided synthesis/minimi-

zation to create the final circuitry. The purpose of this book is to provide a quick start guide to the VHDL

language, which is one of the two most common languages used to describe logic in the modern digital

design flow. This book is intended for anyone that has already learned the classical digital design

approach and is ready to begin learning HDL-based design. This book is also suitable for practicing

engineers that already know VHDL and need quick reference for syntax and examples of common

circuits. This book assumes that the reader already understands digital logic (i.e., binary numbers,

combinational and sequential logic design, finite state machines, memory, and binary arithmetic basics).

Since this book is designed to accommodate a designer that is new to VHDL, the language is

presented in a manner that builds foundational knowledge first before moving into more complex topics.

As such, Chaps. 1–5 only present functionality built into the VHDL standard package. Only after a

comprehensive explanation of the most commonly used packages from the IEEE library is presented in

Chap. 7, are examples presented that use data types from the widely adopted STD_LOGIC_1164

package. For a reader that is using the book as a reference guide, it may be more practical to pull

examples from Chaps. 7–12 as they use the types std_logic and std_logic_vector. For a VHDL novice,

understanding the history and fundamentals of the VHDL base release will help form a comprehensive

understanding of the language; thus it is recommended that the early chapters are covered in the

sequence they are written.

Bozeman, MT, USA Brock J. LaMeres

v

Acknowledgments

For Alexis. The world is a better place because you are in it.

vii

Contents
1: THE MODERN DIGITAL DESIGN FLOW ... 1

1.1 HISTORY OF HARDWARE DESCRIPTION LANGUAGES ... 1

1.2 HDL ABSTRACTION .. 4

1.3 THE MODERN DIGITAL DESIGN FLOW .. 8

2: VHDL CONSTRUCTS .. 13

2.1 DATA TYPES .. 13

2.1.1 Enumerated Types .. 13

2.1.2 Range Types ... 14

2.1.3 Physical Types .. 14

2.1.4 Vector Types .. 14

2.1.5 User-Defined Enumerated Types .. 15

2.1.6 Array Type ... 15

2.1.7 Subtypes ... 15

2.2 VHDL MODEL CONSTRUCTION .. 16

2.2.1 Libraries and Packages .. 16

2.2.2 The Entity .. 17

2.2.3 The Architecture .. 17

3: MODELING CONCURRENT FUNCTIONALITY .. 21

3.1 VHDL OPERATORS .. 21

3.1.1 Assignment Operator .. 21

3.1.2 Logical Operators .. 22

3.1.3 Numerical Operators ... 23

3.1.4 Relational Operators ... 23

3.1.5 Shift Operators .. 23

3.1.6 Concatenation Operator .. 24

3.2 CONCURRENT SIGNAL ASSIGNMENTS WITH LOGICAL OPERATORS 24

3.2.1 Logical Operator Example: SOP Circuit ... 25

3.2.2 Logical Operator Example: One-Hot Decoder .. 26

3.2.3 Logical Operator Example: 7-Segment Display Decoder 27

3.2.4 Logical Operator Example: One-Hot Encoder .. 29

3.2.5 Logical Operator Example: Multiplexer ... 31

3.2.6 Logical Operator Example: Demultiplexer .. 32

3.3 CONDITIONAL SIGNAL ASSIGNMENTS .. 34

3.3.1 Conditional Signal Assignment Example: SOP Circuit 34

3.3.2 Conditional Signal Assignment Example: One-Hot Decoder 35

3.3.3 Conditional Signal Assignment Example: 7-Segment Display Decoder 36

3.3.4 Conditional Signal Assignment Example: One-Hot Encoder 37

3.3.5 Conditional Signal Assignment Example: Multiplexer 38

3.3.6 Conditional Signal Assignment Example: Demultiplexer 39

ix

3.4 SELECTED SIGNAL ASSIGNMENTS ... 41

3.4.1 Selected Signal Assignment Example: SOP Circuit 41

3.4.2 Selected Signal Assignment Example: One-Hot Decoder 42

3.4.3 Selected Signal Assignment Example: 7-Segment Display Decoder 43

3.4.4 Selected Signal Assignment Example: One-Hot Encoder 44

3.4.5 Selected Signal Assignment Example: Multiplexer 45

3.4.6 Selected Signal Assignment Example: Demultiplexer 46

3.5 DELAYED SIGNAL ASSIGNMENTS ... 48

3.5.1 Inertial Delay ... 48

3.5.2 Transport Delay ... 48

4: STRUCTURAL DESIGN AND HIERARCHY .. 53

4.1 COMPONENTS .. 53

4.1.1 Component Instantiation ... 53

4.1.2 Port Mapping ... 53

4.2 STRUCTURAL DESIGN EXAMPLES: RIPPLE CARRY ADDER ... 56

4.2.1 Half Adders .. 56

4.2.2 Full Adders .. 56

4.2.3 Ripple Carry Adder (RCA) .. 58

4.2.4 Structural Model of a Ripple Carry Adder in VHDL 59

5: MODELING SEQUENTIAL FUNCTIONALITY ... 65

5.1 THE PROCESS ... 65

5.1.1 Sensitivity Lists .. 65

5.1.2 Wait Statements .. 66

5.1.3 Sequential Signal Assignments .. 67

5.1.4 Variables .. 68

5.2 CONDITIONAL PROGRAMMING CONSTRUCTS .. 70

5.2.1 If/Then Statements .. 70

5.2.2 Case Statements ... 71

5.2.3 Infinite Loops ... 73

5.2.4 While Loops ... 75

5.2.5 For Loops .. 75

5.3 SIGNAL ATTRIBUTES .. 76

6: PACKAGES .. 81

6.1 STD_LOGIC_1164 ... 81

6.1.1 STD_LOGIC_1164 Resolution Function ... 82

6.1.2 STD_LOGIC_1164 Logical Operators .. 83

6.1.3 STD_LOGIC_1164 Edge Detection Functions ... 83

6.1.4 STD_LOGIC_1164 Type Converstion Functions .. 84

6.2 NUMERIC_STD ... 85

6.2.1 NUMERIC_STD Arithmetic Functions .. 85

6.2.2 NUMERIC_STD Logical Functions ... 87

6.2.3 NUMERIC_STD Comparison Functions ... 87

6.2.4 NUMERIC_STD Edge Detection Functions ... 87

x • Contents

6.2.5 NUMERIC_STD Conversion Functions .. 88

6.2.6 NUMERIC_STD Type Casting .. 88

6.3 TEXTIO AND STD_LOGIC_TEXTIO ... 89

6.4 OTHER COMMON PACKAGES .. 92

6.4.1 NUMERIC_STD_UNSIGNED ... 92

6.4.2 NUMERIC_BIT .. 92

6.4.3 NUMERIC_BIT_UNSIGNED .. 93

6.4.4 MATH_REAL ... 93

6.4.5 MATH_COMPLEX ... 95

6.4.6 Legacy Packages (STD_LOGIC_ARITH/UNSIGNED/SIGNED) 95

7: TEST BENCHES .. 99

7.1 TEST BENCH OVERVIEW .. 99

7.2 GENERATING STIMULUS VECTORS USING FOR LOOPS ... 101

7.3 AUTOMATED CHECKING USING REPORT AND ASSERT STATEMENTS 102

7.3.1 Report Statement .. 102

7.3.2 Assert Statement ... 103

7.4 USING EXTERNAL I/O IN TEST BENCHES ... 104

7.4.1 Writing to an External File from a Test Bench .. 104

7.4.2 Writing to STD_OUTPUT from a Test Bench ... 107

7.4.3 Reading from an External File in a Test Bench .. 109

7.4.4 Reading Space-Delimited Data from an External File in a Test Bench 111

8: MODELING SEQUENTIAL STORAGE AND REGISTERS 117

8.1 MODELING SCALAR STORAGE DEVICES ... 117

8.1.1 D-Latch .. 117

8.1.2 D-Flip-Flop ... 118

8.1.3 D-Flip-Flop with Asynchronous Resets .. 118

8.1.4 D-Flip-Flop with Asynchronous Reset and Preset 119

8.1.5 D-Flip-Flop with Synchronous Enable .. 120

8.2 MODELING REGISTERS .. 121

8.2.1 Registers with Enables ... 121

8.2.2 Shift Registers ... 122

8.2.3 Registers as Agents on a Data Bus .. 123

9: MODELING FINITE STATE MACHINES .. 127

9.1 THE FSM DESIGN PROCESS AND A PUSH-BUTTON WINDOW CONTROLLER EXAMPLE 127

9.1.1 Modeling the States with User-Defined, Enumerated Data Types 128

9.1.2 The State Memory Process .. 129

9.1.3 The Next State Logic Process .. 129

9.1.4 The Output Logic Process .. 130

9.1.5 Explicitly Defining State Codes with Subtypes ... 132

9.2 FSM DESIGN EXAMPLES .. 133

9.2.1 Serial Bit Sequence Detector in VHDL ... 133

9.2.2 Vending Machine Controller in VHDL ... 135

9.2.3 2-Bit, Binary Up/Down Counter in VHDL .. 137

Contents • xi

10: MODELING COUNTERS .. 143

10.1 MODELING COUNTERS WITH A SINGLE PROCESS ... 143

10.1.1 Counters in VHDL Using the Type UNSIGNED ... 143

10.1.2 Counters in VHDL Using the Type INTEGER .. 144

10.1.3 Counters in VHDL Using the Type STD_LOGIC_VECTOR 145

10.2 COUNTERS WITH ENABLES AND LOADS .. 148

10.2.1 Modeling Counters with Enables .. 148

10.2.2 Modeling Counters with Loads ... 149

11: MODELING MEMORY .. 153

11.1 MEMORY ARCHITECTURE AND TERMINOLOGY .. 153

11.1.1 Memory Map Model ... 153

11.1.2 Volatile vs. Nonvolatile Memory .. 154

11.1.3 Read-Only vs. Read/Write Memory .. 154

11.1.4 Random Access vs. Sequential Access ... 154

11.2 MODELING READ-ONLY MEMORY .. 155

11.3 MODELING READ/WRITE MEMORY .. 158

12: COMPUTER SYSTEM DESIGN ... 163

12.1 COMPUTER HARDWARE ... 163

12.1.1 Program Memory .. 164

12.1.2 Data Memory ... 164

12.1.3 Input/Output Ports ... 164

12.1.4 Central Processing Unit .. 164

12.1.5 A Memory-Mapped System .. 166

12.2 COMPUTER SOFTWARE .. 168

12.2.1 Opcodes and Operands .. 169

12.2.2 Addressing Modes .. 169

12.2.3 Classes of Instructions .. 170

12.3 COMPUTER IMPLEMENTATION: AN 8-BIT COMPUTER EXAMPLE 177

12.3.1 Top-Level Block Diagram .. 177

12.3.2 Instruction Set Design ... 178

12.3.3 Memory System Implementation .. 179

12.3.4 CPU Implementation ... 184

APPENDIX A: LIST OF WORKED EXAMPLES .. 207

INDEX ... 211

xii • Contents

Chapter 1: The Modern Digital

Design Flow
The purpose of a hardware description languages is to describe digital circuitry using a text-based

language. HDLs provide a means to describe large digital systems without the need for schematics,

which can become impractical in very large designs. HDLs have evolved to support logic simulation at

different levels of abstraction. This provides designers the ability to begin designing and verifying

functionality of large systems at a high level of abstraction and postpone the details of the circuit

implementation until later in the design cycle. This enables a top-down design approach that is scalable

across different logic families. HDLs have also evolved to support automated synthesis, which allows the

CAD tools to take a functional description of a system (e.g., a truth table) and automatically create the

gate-level circuitry to be implemented in real hardware. This allows designers to focus their attention on

designing the behavior of a system and not spend as much time performing the formal logic synthesis

steps as in the classical digital design approach. The goal of this chapter is to provide the background

and context of the modern digital design flow using an HDL-based approach.

There are two dominant hardware description languages in use today. They are VHDL and Verilog.

VHDL stands for very high speed integrated circuit hardware description language. Verilog is not an

acronym but rather a trade name. The use of these two HDLs is split nearly equally within the digital

design industry. Once one language is learned, it is simple to learn the other language, so the choice of

the HDL to learn first is somewhat arbitrary. In this text, we will use VHDL to learn the concepts of an

HDL. VHDL is stricter in its syntax and typecasting than Verilog, so it is a good platform for beginners as it

provides more of a scaffold for the description of circuits. This helps avoid some of the common pitfalls

that beginners typically encounter. The goal of this chapter is to provide the background and context of

the modern digital design flow using an HDL-based approach.

Learning Outcomes—After completing this chapter, you will be able to:

1.1 Describe the role of hardware description languages in modern digital design.
1.2 Describe the fundamentals of design abstraction in modern digital design.
1.3 Describe the modern digital design flow based on hardware description languages.

1.1 History of Hardware Description Languages

The invention of the integrated circuit is most commonly credited to two individuals who filed patents

on different variations of the same basic concept within 6 months of each other in 1959. Jack Kilby filed

the first patent on the integrated circuit in February of 1959 titled “Miniaturized Electronic Circuits” while

working for Texas Instruments. Robert Noyce was the second to file a patent on the integrated circuit in

July of 1959 titled “Semiconductor Device and Lead Structure” while at a company he cofounded called

Fairchild Semiconductor. Kilby went on to win the Nobel Prize in Physics in 2000 for his invention, while

Noyce went on to cofound Intel Corporation in 1968 with Gordon Moore. In 1971, Intel introduced the first

single-chip microprocessor using integrated circuit technology, the Intel 4004. This microprocessor IC

contained 2300 transistors. This series of inventions launched the semiconductor industry, which was

the driving force behind the growth of Silicon Valley, and led to 40 years of unprecedented advancement

in technology that has impacted every aspect of the modern world.

Gordon Moore, cofounder of Intel, predicted in 1965 that the number of transistors on an integrated

circuit would double every 2 years. This prediction, now known as Moore’s Law, has held true since the

Springer Nature Switzerland AG 2019

B. J. LaMeres, Quick Start Guide to VHDL, https://doi.org/10.1007/978-3-030-04516-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04516-6_1&domain=pdf

invention of the integrated circuit. As the number of transistors on an integrated circuit grew, so did the

size of the design and the functionality that could be implemented. Once the first microprocessor was

invented in 1971, the capability of CAD tools increased rapidly enabling larger designs to be accom-

plished. These larger designs, including newer microprocessors, enabled the CAD tools to become even

more sophisticated and, in turn, yield even larger designs. The rapid expansion of electronic systems

based on digital integrated circuits required that different manufacturers needed to produce designs that

were compatible with each other. The adoption of logic family standards helped manufacturers ensure

their parts would be compatible with other manufacturers at the physical layer (e.g., voltage and current);

however, one challenge that was encountered by the industry was a way to document the complex

behavior of larger systems. The use of schematics to document large digital designs became too

cumbersome and difficult to understand by anyone besides the designer. Word descriptions of the

behavior were easier to understand, but even this form of documentation became too voluminous to

be effective for the size of designs that were emerging.

In 1983, the US Department of Defense (DoD) sponsored a program to create a means to document

the behavior of digital systems that could be used across all of its suppliers. This program was motivated

by a lack of adequate documentation for the functionality of application specific integrated circuits

(ASICs) that were being supplied to the DoD. This lack of documentation was becoming a critical

issue as ASICs would come to the end of their life cycle and need to be replaced. With the lack of a

standardized documentation approach, suppliers had difficulty reproducing equivalent parts to those that

had become obsolete. The DoD contracted three companies (Texas Instruments, IBM, and Intermetrics)

to develop a standardized documentation tool that provided detailed information about both the interface

(i.e., inputs and outputs) and the behavior of digital systems. The new tool was to be implemented in a

format similar to a programming language. Due to the nature of this type of language-based tool, it was a

natural extension of the original project scope to include the ability to simulate the behavior of a digital

system. The simulation capability was desired to span multiple levels of abstraction to provide maximum

flexibility. In 1985, the first version of this tool, called VHDL, was released. In order to gain widespread

adoption and ensure consistency of use across the industry, VHDL was turned over to the Institute of

Electrical and Electronic Engineers (IEEE) for standardization. IEEE is a professional association that

defines a broad range of open technology standards. In 1987, IEEE released the first industry standard

version of VHDL. The release was titled IEEE 1076-1987. Feedback from the initial version resulted in a

major revision of the standard in 1993 titled IEEE 1076-1993. While many minor revisions have been

made to the 1993 release, the 1076-1993 standard contains the vast majority of VHDL functionality in

use today. The most recent VHDL standard is IEEE 1076-2008.

Also in 1983, the Verilog HDL was developed by Automated Integrated Design Systems as a logic

simulation language. The development of Verilog took place completely independent from the VHDL

project. Automated Integrated Design Systems (renamed Gateway Design Automation in 1985) was

acquired by CAD tool vendor Cadence Design Systems in 1990. In response to the rapid adoption of the

open VHDL standard, Cadence made the Verilog HDL open to the public in order to stay competitive.

IEEE once again developed the open standard for this HDL and in 1995 released the Verilog standard

titled IEEE 1364.

The development of CAD tools to accomplish automated logic synthesis can be dated back to the

1970s when IBM began developing a series of practical synthesis engines that were used in the design

of their mainframe computers; however, the main advancement in logic synthesis came with the founding

of a company called Synopsis in 1986. Synopsis was the first company to focus on logic synthesis

directly from HDLs. This was a major contribution because designers were already using HDLs to

describe and simulate their digital systems, and now logic synthesis became integrated in the same

design flow. Due to the complexity of synthesizing highly abstract functional descriptions, only lower

levels of abstraction that were thoroughly elaborated were initially able to be synthesized. As CAD tool

2 • Chapter 1: The Modern Digital Design Flow

capability evolved, synthesis of higher levels of abstraction became possible, but even today not all

functionality that can be described in an HDL can be synthesized.

The history of HDLs, their standardization, and the creation of the associated logic synthesis tools

are key to understanding the use and limitations of HDLs. HDLs were originally designed for documen-

tation and behavioral simulation. Logic synthesis tools were developed independently and modified later

to work with HDLs. This history provides some background into the most common pitfalls that beginning

digital designers encounter, that being that most any type of behavior can be described and simulated in

an HDL, but only a subset of well-described functionality can be synthesized. Beginning digital designers

are often plagued by issues related to designs that simulate perfectly but that will not synthesize

correctly. In this book, an effort is made to introduce VHDL at a level that provides a reasonable amount

of abstraction while preserving the ability to be synthesized. Figure 1.1 shows a timeline of some of the

major technology milestones that have occurred in the past 150 years in the field of digital logic and

HDLs.

Fig. 1.1
Major milestones in the advancement of digital logic and HDLs

1.1 History of Hardware Description Languages • 3

CONCEPT CHECK

CC1.1 Why does VHDL support modeling techniques that aren’t synthesizable?

(A) Since synthesis wasn’t within the original scope of the VHDL project, there
wasn’t sufficient time to make everything synthesizable.

(B) At the time VHDL was created, synthesis was deemed too difficult to
implement.

(C) To allow VHDL to be used as a generic programming language.

(D) VHDL needs to support all steps in the modern digital design flow, some of
which are unsynthesizable such as test pattern generation and timing
verification.

1.2 HDL Abstraction

HDLs were originally defined to be able to model behavior at multiple levels of abstraction.

Abstraction is an important concept in engineering design because it allows us to specify how systems

will operate without getting consumed prematurely with implementation details. Also, by removing the

details of the lower-level implementation, simulations can be conducted in reasonable amounts of time to

model the higher-level functionality. If a full computer system was simulated using detailed models for

every MOSFET, it would take an impracticable amount of time to complete. Figure 1.2 shows a graphical

depiction of the different layers of abstraction in digital system design.

Fig. 1.2
Levels of design abstraction

4 • Chapter 1: The Modern Digital Design Flow

The highest level of abstraction is the system level. At this level, behavior of a system is

described by stating a set of broad specifications. An example of a design at this level is a specifica-

tion such as “the computer system will perform 10 Tera Floating Point Operations per Second

(10 TFLOPS) on double precision data and consume no more than 100 W of power.” Notice that

these specifications do not dictate the lower-level details such as the type of logic family or the type of

computer architecture to use. One level down from the system level is the algorithmic level. At this

level, the specifications begin to be broken down into sub-systems, each with an associated behavior

that will accomplish a part of the primary task. At this level, the example computer specifications might

be broken down into sub-systems such as a central processing unit (CPU) to perform the computation

and random access memory (RAM) to hold the inputs and outputs of the computation. One level down

from the algorithmic level is the register-transfer level (RTL). At this level, the details of how data is

moved between and within sub-systems are described in addition to how the data is manipulated

based on system inputs. One level down from the RTL level is the gate level. At this level, the design

is described using basic gates and registers (or storage elements). The gate level is essentially a

schematic (either graphically or text-based) that contains the components and connections that will

implement the functionality from the above levels of abstraction. One level down from the gate level is

the circuit level. The circuit level describes the operation of the basic gates and registers using

transistors, wires, and other electrical components such as resistors and capacitors. Finally, the

lowest level of design abstraction is the material level. This level describes how different materials

are combined and shaped in order to implement the transistors, devices, and wires from the circuit

level.

HDLs are designed to model behavior at all of these levels with the exception of the material level.

While there is some capability to model circuit-level behavior such as MOSFETs as ideal switches and

pull-up/pull-down resistors, HDLs are not typically used at the circuit level. Another graphical depiction of

design abstraction is known as Gajski and Kuhn’s Y-chart. A Y-chart depicts abstraction across three

different design domains: behavioral, structural, and physical. Each of these design domains contains

levels of abstraction (i.e., system, algorithm, RTL, gate, and circuit). An example Y-chart is shown in

Fig. 1.3.

1.2 HDL Abstraction • 5

A Y-chart also depicts how the abstraction levels of different design domains are related to each

other. A top-down design flow can be visualized in a Y-chart by spiraling inward in a clockwise direction.

Moving from the behavioral domain to the structural domain is the process of synthesis. Whenever

synthesis is performed, the resulting system should be compared with the prior behavioral description.

This checking is called verification. The process of creating the physical circuitry corresponding to the

structural description is called implementation. The spiral continues down through the levels of abstrac-

tion until the design is implemented at a level that the geometries representing circuit elements

(transistors, wires, etc.) are ready to be fabricated in silicon. Figure 1.4 shows the top-down design

process depicted as an inward spiral on the Y-chart.

Fig. 1.3
Y-chart of design abstraction

6 • Chapter 1: The Modern Digital Design Flow

The Y-chart represents a formal approach for large digital systems. For large systems that are

designed by teams of engineers, it is critical that a formal, top-down design process is followed to eliminate

potentially costly design errors as the implementation is carried out at lower levels of abstraction.

CONCEPT CHECK

CC1.2 Why is abstraction an essential part of engineering design?

(A) Without abstraction all schematics would be drawn at the transistor-level.

(B) Abstraction allows computer programs to aid in the design process.

(C) Abstraction allows the details of the implementation to be hidden, while the
higher-level systems are designed. Without abstraction, the details of the
implementation would overwhelm the designer.

(D) Abstraction allows analog circuit designers to include digital blocks in their
systems.

Fig. 1.4
Y-chart illustrating top-down design approach

1.2 HDL Abstraction • 7

1.3 The Modern Digital Design Flow

When performing a smaller design or the design of fully contained sub-systems, the process can be

broken down into individual steps. These steps are shown in Fig. 1.5. This process is given generically

and applies to both classical andmodern digital design. The distinction between classical and modern is

that modern digital design uses HDLs and automated CAD tools for simulation, synthesis, place and

route, and verification.

This generic design process flow can be used across classical and modern digital design, although

modern digital design allows additional verification at each step using automated CAD tools. Figure 1.6

shows how this flow is used in the classical design approach of a combinational logic circuit.

Fig. 1.5
Generic digital design flow

8 • Chapter 1: The Modern Digital Design Flow

The modern design flow based on HDLs includes the ability to simulate functionality at each step

of the process. Functional simulations can be performed on the initial behavioral description of the

system. At each step of the design process, the functionality is described in more detail, ultimately

moving toward the fabrication step. At each level, the detailed information can be included in the

simulation to verify that the functionality is still correct and that the design is still meeting the original

specifications. Figure 1.7 shows the modern digital design flow with the inclusion of simulation

capability at each step.

Fig. 1.6
Classical digital design flow

1.3 The Modern Digital Design Flow • 9

CONCEPT CHECK

CC1.3 Why did digital designs move from schematic-entry to text-based HDLs?

(A) HDL models could be much larger by describing functionality in text similar to
traditional programming language.

(B) Schematics required sophisticated graphics hardware to display correctly.

(C) Schematics symbols became too small as designs became larger.

(D) Text was easier to understand by a broader range of engineers.

Fig. 1.7
Modern digital design flow

10 • Chapter 1: The Modern Digital Design Flow

Summary

v The modern digital design flow relies on
computer-aided engineering (CAE) and
computer-aided design (CAD) tools to man-
age the size and complexity of today’s digital
designs.

v Hardware description languages (HDLs)
allow the functionality of digital systems to
be entered using text. VHDL and Verilog are
the two most common HDLs in use today.

v VHDL was originally created to document the
behavior of large digital systems and support
functional simulations.

v The ability to automatically synthesize a logic
circuit from a VHDL behavioral description

became possible approximately 10 years
after the original definition of VHDL. As
such, only a subset of the behavioral
modeling techniques in VHDL can be auto-
matically synthesized.

v HDLs can model digital systems at different
levels of design abstraction. These include
the system, algorithmic, RTL, gate, and cir-
cuit levels. Designing at a higher level of
abstraction allows more complex systems to
be modeled without worrying about the
details of the implementation.

Exercise Problems

Section 1.1: History of HDLs

1.1.1 What was the original purpose of VHDL?

1.1.2 Can all of the functionality that can be
described in VHDL be simulated?

1.1.3 Can all of the functionality that can be
described in VHDL be synthesized?

Section 1.2: HDL Abstraction

1.2.1 Give the level of design abstraction that the
following statement relates to: if there is ever
an error in the system, it should return to the
reset state.

1.2.2 Give the level of design abstraction that the
following statement relates to: once the design
is implemented in a sum of products form,
DeMorgan’s Theorem will be used to convert
it to a NAND-gate only implementation.

1.2.3 Give the level of design abstraction that the
following statement relates to: the design will
be broken down into two sub-systems, one that
will handle data collection and the other that
will control data flow.

1.2.4 Give the level of design abstraction that the
following statement relates to: the interconnect
on the IC should be changed from aluminum to
copper to achieve the performance needed in
this design.

1.2.5 Give the level of design abstraction that the
following statement relates to: the MOSFETs
need to be able to drive at least eight other
loads in this design.

1.2.6 Give the level of design abstraction that the
following statement relates to: this system will
contain 1 host computer and support up to
1000 client computers.

1.2.7 Give the design domain that the following activ-
ity relates to: drawing the physical layout of the
CPU will require 6 months of engineering time.

1.2.8 Give the design domain that the following activ-
ity relates to: the CPU will be connected to four
banks of memory.

1.2.9 Give the design domain that the following activ-
ity relates to: the fan-in specifications for this
logic family require excessive logic circuitry to
be used.

1.2.10 Give the design domain that the following activ-
ity relates to: the performance specifications
for this system require 1 TFLOP at <5 W.

Section 1.3: The Modern Digital Design

Flow

1.3.1 Which step in the modern digital design flow
does the following statement relate to: a CAD
tool will convert the behavioral model into a
gate-level description of functionality.

1.3.2 Which step in the modern digital design flow
does the following statement relate to: after
realistic gate and wiring delays are determined,
one last simulation should be performed to
make sure the design meets the original timing
requirements.

1.3.3 Which step in the modern digital design
flow does the following statement relate to: if
the memory is distributed around the perimeter
of the CPU, the wiring density will be
minimized.

1.3.4 Which step in the modern digital design flow
does the following statement relate to: the
design meets all requirements so now I’m
building the hardware that will be shipped.

Exercise Problems • 11

1.3.5 Which step in the modern digital design flow
does the following statement relate to: the
system will be broken down into three
sub-systems with the following behaviors.

1.3.6 Which step in the modern digital design flow
does the following statement relate to: this
system needs to have 10 GB of memory.

1.3.7 Which step in the modern digital design flow
does the following statement relate to: to meet
the power requirements, the gates will be
implemented in the 74HC logic family.

12 • Chapter 1: The Modern Digital Design Flow

Chapter 2: VHDL Constructs
This chapter begins looking at the basic construction of a VHDL model. This chapter begins by

covering the built-in features of a VHDL model including the file structure, data types, operators, and

declarations. This chapter provides a foundation of VHDL that will lead to modeling examples provided in

Chap. 3. VHDL is not case sensitive. Each VHDL assignment, definition, or declaration is terminated with

a semicolon (;). As such, line wraps are allowed and do not signify the end of an assignment, definition, or

declaration. Line wraps can be used to make the VHDL more readable. Comments in VHDL are

preceded with two dashes (i.e., --) and continue until the end of the line. All user-defined names in

VHDL must start with an alphabetic letter, not a number. User-defined names are not allowed to be the

same as any VHDL keyword. This chapter contains many definitions of syntax in VHDL. The following

notations will be used throughout the chapter when introducing new constructs:

bold ¼ VHDL keyword, use as is

italics ¼ User-defined name

<> ¼ A required characteristic such as a data type, input/output, etc.

Learning Outcomes—After completing this chapter, you will be able to:

2.1 Describe the data types provided in the standard VHDL package.
2.2 Describe the basic construction of a VHDL model.

2.1 Data Types

In VHDL, every signal, constant, variable, and function must be assigned a data type. The IEEE

standard package provides a variety of pre-defined data types. Some data types are synthesizable,

while others are only for modeling abstract behavior. The following are the most commonly used data

types in the VHDL standard package.

2.1.1 Enumerated Types

An enumerated type is one in which the exact values that the type can take on are defined.

Type Values that the type can take on

bit {0, 1}

boolean {false, true}

character {“any of the 256 ASCII characters defined in ISO 8859-1”}

The type bit is synthesizable, while Boolean and character are not. The individual scalar values are

indicated by putting them inside single quotes (e.g., ‘0,’ ‘a,’ ‘true’).

Springer Nature Switzerland AG 2019

B. J. LaMeres, Quick Start Guide to VHDL, https://doi.org/10.1007/978-3-030-04516-6_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04516-6_2&domain=pdf

2.1.2 Range Types

A range type is one that can take on any value within a range.

Type Values that the type can take on

integer Whole numbers between �2,147,483,648 and +2,147,483,647

real Fractional numbers between �1.7e38 and +1.7e38

The integer type is a 32-bit, signed, two’s complement number and is synthesizable. If the full range

of integer values is not desired, this type can be bounded by including range <min> to <max>. The real

type is a 32-bit, floating point value and is not directly synthesizable unless an additional package is

included that defines the floating point format. The values of these types are indicated by simply using

the number without quotes (e.g., 33, 3.14).

2.1.3 Physical Types

A physical type is one that contains both a value and units. In VHDL, time is the primary supported

physical type.

Type Values that the type can take on

time Whole numbers between �2,147,483,648

and +2,147,483,647

(unit relationships) fs (femtosecond, 10�15),

base unit

ps ¼ 1000 fs (picosecond, 10�12)

ns ¼ 1000 ps (nanosecond, 10�9)

μs ¼ 1000 ns (microsecond, 10�6)

ms ¼ 1000 μs (millisecond, 10�3)

s ¼ 1000 ms (second)

min ¼ 60 s (minute)

h ¼ 60 min (hour)

The base unit for time is fs, meaning that, if no units are provided, the value is assumed to be in

femtoseconds. The value of time is held as a 32-bit, signed number and is not synthesizable.

2.1.4 Vector Types

A vector type is one that consists of a linear array of scalar types.

Type Construction

bit_vector A linear array of type bit

string A linear array of type character

The size of a vector type is defined by including the maximum index, the keyword downto, and the

minimum index. For example, if a signal called BUS_A was given the type bit_vector(7 downto 0), it

would create a vector of 8 scalars, each of type bit. The leftmost scalar would have an index of 7 and the

rightmost scalar would have an index of 0. Each of the individual scalars within the vector can be

accessed by providing the index number in parentheses. For example, BUS_A(0) would access the

14 • Chapter 2: VHDL Constructs

scalar in the rightmost position. The indices do not always need to have a minimum value of 0, but this is

the most common indexing approach in logic design. The type bit_vector is synthesizable, while string is

not. The values of these types are indicated by enclosing them inside double quotes (e.g., “0011,” “abcd”).

2.1.5 User-Defined Enumerated Types

A user-defined enumerated type is one in which the name of the type is specified by the user in

addition to all of the possible values that the type can assume. The creation of a user-defined

enumerated type is shown below.

type name is (value1, value2, . . .);

Example:

type traffic_light is (red, yellow, green);

In this example, a new type is created called traffic_light. If we declared a new signal called Sig1 and

assigned it the type traffic_light, the signal could only take on values of red, yellow, and green. User-

defined enumerated types are synthesizable in specific applications.

2.1.6 Array Type

An array contains multiple elements of the same type. Elements within an array can be scalar or

vectors. In order to use an array, a new type must be declared that defines the configuration of the array.

Once the new type is created, signals may be declared of that type. The range of the array must be

defined in the array-type declaration. The range is specified with integers (min and max) and either the

keywords downto or to. The creation of an array type is shown below.

type name is array (<range>) of <element_type>;

Example:

type block_8x16 is array (0 to 7) bit_vector(15 downto 0);

signal my_array : block_8x16;

In this example, the new array type is declared with eight elements. The beginning index of the array

is 0 and the ending index is 7. Each element in the array is a 16-bit vector of type bit_vector.

2.1.7 Subtypes

A subtype is a constrained version or subset of another type. Subtypes are user-defined, although a

few commonly used subtypes are pre-defined in the standard package. The following is the syntax for

declaring a subtype and two examples of commonly used subtypes (NATURAL and POSTIVE) that are

defined in the standard package.

subtype name is <type> range <min> to <max>;

Example:

subtype NATURAL is integer range 0 to 255;

subtype POSTIVE is integer range 1 to 256;

2.1 Data Types • 15

CONCEPT CHECK

CC2.1 What is the difference between types Boolean {TRUE, FALSE} and bit
{0, 1}?

(A) They are the same.

(B) Boolean is used for decision-making constructs (when, else), while
bit is used to model real digital signals.

(C) Logical operators work with type Boolean but not for type bit.

(D) Only type bit is synthesizable.

2.2 VHDL Model Construction

AVHDL design describes a single system in a single file. The file has the suffix *.vhd. Within the file,

there are two parts that describe the system: the entity and the architecture. The entity describes the

interface to the system (i.e., the inputs and outputs) and the architecture describes the behavior. The

functionality of VHDL (e.g., operators, signal types, functions, etc.) is defined in the package. Packages

are grouped within a library. IEEE defines the base set of functionality for VHDL in the standard

package. This package is contained within a library called IEEE. The library and package inclusion is

stated at the beginning of a VHDL file before the entity and architecture. Additional functionality can be

added to VHDL by including other packages, but all packages are based on the core functionality defined

in the standard package. As a result, it is not necessary to explicitly state that a design is using the IEEE

standard package because it is inherent in the use of VHDL. All functionality described in this chapter is

for the IEEE standard package, while other common packages are covered in subsequent chapters.

Figure 2.1 shows a graphical depiction of a VHDL file.

2.2.1 Libraries and Packages

As mentioned earlier, the IEEE standard package is implied when using VHDL; however, we can

use it as an example of how to include packages in VHDL. The keyword library is used to signify that

packages are going to be added to the VHDL design from the specified library. The name of the library

Fig. 2.1
The anatomy of a VHDL file

16 • Chapter 2: VHDL Constructs

follows this keyword. To include a specific package from the library, a new line is used with the keyword

use followed by the package details. The package syntax has three fields separated with a period. The

first field is the library name. The second field is the package name. The third field is the specific

functionality of the package to be included. If all functionality of a package is to be used, then the

keyword all is used in the third field. Examples of how to include some of the commonly used packages

from the IEEE library are shown below.

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

use IEEE.std_logic_textio.all;

2.2.2 The Entity

The entity in VHDL describes the inputs and outputs of the system. These are called ports. Each

port needs to have its name, mode, and type specified. The name is user-defined. The mode describes

the direction data is transferred through the port and can take on values of in, out, inout, and buffer. The

type is one of the legal data types described above. Port names with the same mode and type can be

listed on the same line separated by commas. The definition of an entity is given below.

entity entity_name is

port (port_name : <mode> <type>;

port_name : <mode> <type>);

end entity;

Example 2.1 shows multiple approaches for defining an entity.

2.2.3 The Architecture

The architecture in VHDL describes the behavior of a system. There are numerous techniques to

describe behavior in VHDL that span multiple levels of abstraction. The architecture is where the majority

of the design work is conducted. The form of a generic architecture is given below.

Example 2.1
Defining VHDL entities

2.2 VHDL Model Construction • 17

architecture architecture_name of <entity associated with> is

-- user-defined enumerated type declarations (optional)

-- signal declarations (optional)

-- constant declarations (optional)

-- component declarations (optional)

begin

-- behavioral description of the system goes here

end architecture;

2.2.3.1 Signal Declarations

A signal that is used for internal connections within a system is declared in the architecture. Each

signal must be declared with a type. The signal can only be used to make connections of like types. A

signal is declared with the keyword signal followed by a user-defined name, colon, and the type. Signals

of like type can be declared on the same line separated with a comma. All of the legal data types

described above can be used for signals. Signals represent wires within the system so they do not have

a direction or mode. Signals cannot have the same name as a port in the system in which they reside.

The syntax for a signal declaration is as follows:

signal name : <type>;

Example:

signal node1 : bit;

signal a1, b1 : integer;

signal Bus3 : bit_vector (15 downto 0);

signal C_int : integer range 0 to 255;

VHDL supports a hierarchical design approach. Signal names can be the same within a sub-system

as those at a higher level without conflict. Figure 2.2 shows an example of legal signal naming in a

hierarchical design.

Fig. 2.2
VHDL signals and systems

18 • Chapter 2: VHDL Constructs

2.2.3.2 Constant Declarations

A constant is useful for representing a quantity that will be used multiple times in the architecture.

The syntax for declaring a constant is as follows:

constant constant_name : <type> :¼ <value>;

Example:

constant BUS_WIDTH : integer :¼ 32;

Once declared, the constant name can now be used throughout the architecture. The following

example illustrates how we can use a constant to define the size of a vector. Notice that since we defined

the constant to be the actual width of the vector (i.e., 32-bits), we need to subtract one from its value

when defining the indices (i.e., 31 down to 0).

Example:

signal BUS_A : bit_vector (BUS_WIDTH-1 downto 0);

2.2.3.3 Component Declarations

A component is the term used for a VHDL sub-system that is instantiated within a higher-level

system. If a component is going to be used within a system, it must be declared in the architecture before

the begin statement. The syntax for a component declaration is as follows:

component component_name

port (port_name : <mode> <type>;

port_name : <mode> <type>);

end component;

The port definitions of the component must match the port definitions of the sub-system’s entity

exactly. As such, these lines are typically copied directly from the lower-level systems VHDL entity

description. Once declared, a component can be instantiated after the begin statement in the architec-

ture as many times as needed.

CONCEPT CHECK

CC2.2 Why don’t we need to explicitly include the STANDARD package when creating a VHDL
design?

(A) It defines the base functionality of VHDL so its use is implied.

(B) The simulator will automatically add it to the .vhd file upon compile.

(C) It isn’t recognized by synthesizers so it shouldn’t be included.

(D) It is a historical artifact that that isn’t used anymore.

2.2 VHDL Model Construction • 19

Summary

v Every signal and port in VHDL needs to be
associated with a data type.

v A data type defines the values that can be
taken on by a signal or port.

v In a VHDL source file, there are three main
sections. These are the package, the entity,
and the architecture. Including a package
allows additional functionality to be included
in VHDL. The entity is where the inputs and
outputs of the system are declared. The
architecture is where the behavior of the sys-
tem is described.

v A port is an input or output to a system that is
declared in the entity. A signal is an internal
connection within the system that is declared
in the architecture. A signal is not visible
outside of the system.

v A component is how a VHDL system uses
another sub-system. A component is first
declared, which defines the name and entity
of the sub-system to be used. The compo-
nent can then be instantiated one or more
times.

Exercise Problems

Section 2.1: Data Types

2.1.1 What are all the possible values that the type
bit can take on in VHDL?

2.1.2 What are all the possible values that the type
Boolean can take on in VHDL?

2.1.3 What is the range of decimal numbers that can
be represented using the type integer in
VHDL?

2.1.4 What is the width of the vector defined using
the type bit_vector(63 downto 0)?

2.1.5 What is the syntax for indexing the most signif-
icant bit in the type bit_vector(31 downto 0)?
Assume the vector is named example.

2.1.6 What is the syntax for indexing the least signif-
icant bit in the type bit_vector(31 downto 0)?
Assume the vector is named example.

2.1.7 What is the difference between an enumerated
type and a range type?

2.1.8 What scalar type does a bit_vector consist.

Section 2.2: VHDL Model Construction

2.2.1 In which construct of VHDL are the inputs and
outputs of the system defined?

2.2.2 In which construct of VHDL is the behavior of
the system described?

2.2.3 Which construct is used to add additional func-
tionality such as data types to VHDL?

20 • Chapter 2: VHDL Constructs

Chapter 3: Modeling Concurrent

Functionality
This chapter presents a set of built-in operators that will allow logic to be modeled within the VHDL

architecture. This chapter then presents a series of combinational logic model examples.

Learning Outcomes—After completing this chapter, you will be able to:

3.1 Describe the various built-in operators within VHDL.
3.2 Design a VHDL model for a combinational logic circuit using concurrent signal

assignments and logical operators.
3.3 Design a VHDL model for a combinational logic circuit using conditional signal

assignments.
3.4 Design a VHDL model for a combinational logic circuit using selected signal assignments.
3.5 Design a VHDL model for a combinational logic circuit that contains delay.

3.1 VHDL Operators

There are a variety of pre-defined operators in the IEEE standard package. It is important to note

that operators are defined to work on specific data types and that not all operators are synthesizable. It is

also important to remember that VHDL is a hardware description language, not a programming lan-

guage. In a programming language, the lines of code are executed sequentially as they appear in the

source file. In VHDL, the lines of code represent the behavior of real hardware. As a result, all signal

assignments are by default executed concurrently unless specifically noted otherwise. All operations in

VHDL must be on like types, and the result must be assigned to the same type as the operation inputs.

3.1.1 Assignment Operator

VHDL uses <¼ for all signal assignments and :¼ for all variable and initialization assignments.

These assignment operators work on all data types. The target of the assignment goes on the left of

these operators and the input arguments go on the right.

Example:

F1 <¼ A; -- F1 and A must be the same size and type
F2 <¼ ‘0’; -- F2 is type bit in this example
F3 <¼ “0000”; -- F3 is type bit_vector(3 downto 0) in this example
F4 <¼ “hello”; -- F4 is type string in this example
F5 <¼ 3.14; -- F5 is type real in this example
F6 <¼ x”1A”; -- F6 is type bit_vector(7 downto 0), x”1A” is in HEX

Springer Nature Switzerland AG 2019

B. J. LaMeres, Quick Start Guide to VHDL, https://doi.org/10.1007/978-3-030-04516-6_3

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04516-6_3&domain=pdf

3.1.2 Logical Operators

VHDL contains the following logical operators:

Operator Operation

not Logical negation

and Logical AND

nand Logical NAND

or Logical OR

nor Logical NOR

xor Logical Exclusive-OR

xnor Logical Exclusive-NOR

These operators work on types bit, bit_vector, and boolean. For operations on the type bit_vector,

the input vectors must be the same size and will take place in a bit-wise fashion. For example, if two 8-bit

buses called BusA and BusB were AND’d together, BusA(0) would be individually AND’d with BusB(0),

BusA(1) would be individually AND’d with BusB(1), etc. The not operator is a unary operation (i.e., it

operates on a single input), and the keyword is put before the signal being operated on. All other

operators have two or more inputs and are placed in-between the input names.

Example:

F1 <¼ not A;
F2 <¼ B and C;

The order of precedence in VHDL is different from in Boolean algebra. The NOToperator is a higher

priority than all other operators. All other logical operators have the same priority and have no inherent

precedence. This means that in VHDL, the AND operator will not precede the OR operation as it does in

Boolean algebra. Parentheses are used to explicitly describe precedence. If operators are used that

have the same priority and parentheses are not provided, then the operations will take place on the

signals listed first moving left to right in the signal assignment. The following are examples on how to use

these operators:

Example:

F3 <¼ not D nand E; -- D will be complemented first, the result
-- will then be NAND’d with E, then the
-- result will be assigned to F3

F4 <¼ not (F or G); -- the parentheses take precedence so
-- F will be OR’d with G first, then
-- complemented, and then assigned to F4.

F5 <¼ H nor I nor J; -- logic operations can have any number of
-- inputs.

F6 <¼ K xor L xnor M; -- XOR and XNOR have the same priority so with
-- no parentheses given, the logic operations
-- will take place on the signals from
-- left to right. K will be XOR’d with L first,
-- then the result will be XNOR’d with M.

22 • Chapter 3: Modeling Concurrent Functionality

3.1.3 Numerical Operators

VHDL contains the following numerical operators:

Operator Operation

+ Addition

- Subtraction

* Multiplication

/ Division

mod Modulus

rem Remainder

abs Absolute value

** Exponential

These operators work on types integer and real. Note that the default VHDL standard does not

support numerical operators on types bit and bit_vector.

3.1.4 Relational Operators

VHDL contains the following relational operators. These operators compare two inputs of the same

type and return the type Boolean (i.e., true or false).

Operator Returns true if the comparison is:

¼ Equal

/¼ Not equal

< Less than

<¼ Less than or equal

> Greater than

>¼ Greater than or equal

3.1.5 Shift Operators

VHDL contains the following shift operators. These operators work on vector types bit_vector and

string.

Operator Operation

sll Shift left logical

srl Shift right logical

sla Shift left arithmetic

sra Shift right arithmetic

rol Rotate left

ror Rotate right

The syntax for using a shift operation is to provide the name of the vector followed by the desired

shift operator, followed by an integer indicating how many shift operations to perform. The target of the

assignment must be the same type and size as the input.

Example:

A <¼ B srl 3; -- A is assigned the result of a logical shift
-- right 3 times on B.

3.1 VHDL Operators • 23

3.1.6 Concatenation Operator

In VHDL the& is used to concatenate multiple signals. The target of this operation must be the same

size of the sum of the sizes of the input arguments.

Example:

Bus1 <¼ “11” & “00”; -- Bus1 must be 4-bits and will be assigned
-- the value “1100”

Bus2 <¼ BusA & BusB; -- If BusA and BusB are 4-bits, then Bus2
-- must be 8-bits.

Bus3 <¼ ‘0’ & BusA; -- This attaches a leading ‘0’ to BusA. Bus3
-- must be 5-bits

CONCEPT CHECK

CC3.1 Do all of the operators provided in the standard package work for all data types provided
in the same package?

(A) Yes. Since both the operators and data types are in the same package, they
all work together.

(B) No. Each operator only works on specific data types. It is up to the designer to
know what types the operator work with.

3.2 Concurrent Signal Assignments with Logical Operators

Concurrent signal assignments are accomplished by simply using the <¼ operator after the begin

statement in the architecture. Each individual assignment will be executed concurrently and synthesized

as separate logic circuits. Consider the following example:

Example:

X <¼ A;
Y <¼ B;
Z <¼ C;

When simulated, these three lines of VHDL will make three separate signal assignments at the

exact same time. This is different from a programming language that will first assign A to X, then B to Y,

and finally C to Z. In VHDL this functionality is identical to three separate wires. This description will be

directly synthesized into three separate wires.

Below is another example of how concurrent signal assignments in VHDL differ from a sequentially

executed programming language:

Example:

A <¼ B;
B <¼ C;

In a VHDL simulation, the signal assignments of C to B and B to A will take place at the same time;

however, during synthesis, the signal B will be eliminated from the design since this functionality

24 • Chapter 3: Modeling Concurrent Functionality

describes two wires in series. Automated synthesis tools will eliminate this unnecessary signal name.

This is not the same functionality that would result if this example was implemented as a sequentially

executed computer program. A computer program would execute the assignment of B to A first and then

assign the value of C to B second. In this way, B represents a storage element that is passed to A before

it is updated with C.

Each of the logical operators described in Sect. 3.1.2 can be used in conjunction with concurrent

signal assignments to create individual combinational logic circuits.

3.2.1 Logical Operator Example: SOP Circuit

Example 3.1 shows how to design a VHDLmodel of a standard sum of products’ combinational logic

circuit using concurrent signal assignments with logical operators.

Example 3.1
SOP logic circuit: VHDL modeling using logical operators

3.2 Concurrent Signal Assignments with Logical Operators • 25

3.2.2 Logical Operator Example: One-Hot Decoder

A one-hot decoder is a circuit that has n inputs and 2n outputs. Each output will assert for one and

only one input code. Since there are 2n outputs, there will always be one and only one output asserted at

any given time. Example 3.2 shows how to model a 3-to-8 one-hot decoder in VHDL with concurrent

signal assignments and logic operators.

Example 3.2
3-to-8 One-hot decoder: VHDL modeling using logical operators

26 • Chapter 3: Modeling Concurrent Functionality

3.2.3 Logical Operator Example: 7-Segment Display Decoder

A 7-segment display decoder is a circuit used to drive character displays that are commonly found in

applications such as digital clocks and household appliances. A character display is made up of seven

individual LEDs, typically labeled a–g. The input to the decoder is the binary equivalent of the decimal or

Hex character that is to be displayed. The output of the decoder is the arrangement of LEDs that will form

the character. Decoders with 2-inputs can drive characters “0” to “3.” Decoders with 3-inputs can drive

characters “0” to “7.” Decoders with 4-inputs can drive characters “0” to “F” with the case of the Hex

characters being “A, b, c or C, d, E, and F.”

Let’s look at an example of how to design a 3-input, 7-segment decoder by hand. The first step in the

process is to create the truth table for the outputs that will drive the LEDs in the display. We’ll call these

outputs Fa, Fb, . . ., Fg. Example 3.3 shows how to construct the truth table for the 7-segment display

decoder. In this table, a logic 1 corresponds to the LED being ON.

If we wish to design this decoder by hand, we need to create seven separate combinational logic

circuits. Each of the outputs (Fa–Fg) can be put into a 3-input K-map to find the minimized logic

expression. Example 3.4 shows the design of the decoder from the truth table in Example 3.3 by hand.

Example 3.3
7-Segment display decoder: truth table

3.2 Concurrent Signal Assignments with Logical Operators • 27

This same functionality can be modeled in VHDL using concurrent signal assignments with logical

operators. Example 3.5 shows how to model the 7-segment decoder in VHDL using concurrent signal

assignments with logic operators. It should be noted that this example is somewhat artificial because a

design would typically not be minimized before modeling in VHDL. Instead, model would be entered at

the behavioral level, and then the CAD tool would be allowed to synthesize and minimize the final logic.

Example 3.4
7-Segment display decoder: logic synthesis by hand

28 • Chapter 3: Modeling Concurrent Functionality

3.2.4 Logical Operator Example: One-Hot Encoder

A one-hot binary encoder has n outputs and 2n inputs. The output will be an n-bit, binary code which

corresponds to an assertion on one and only one of the inputs. Example 3.6 shows the process of

designing a 4-to-2 binary encoder by hand (i.e., using the classical digital design approach).

Example 3.5
7-Segment display decoder: VHDL modeling using logical operators

3.2 Concurrent Signal Assignments with Logical Operators • 29

In VHDL this can be implemented directly using logical operators. Example 3.7 shows how to model

the encoder in VHDL using concurrent signal assignments with logical operators.

Example 3.6
4-to-2 Binary encoder: logic synthesis by hand

30 • Chapter 3: Modeling Concurrent Functionality

3.2.5 Logical Operator Example: Multiplexer

A multiplexer is a circuit that passes one of its multiple inputs to a single output based on a select

input. This can be thought of as a digital routing switch. The multiplexer has n select lines, 2n inputs, and

one output. Example 3.8 shows the process of designing a 4-to-1 multiplexer using concurrent signal

assignments and logical operators.

Example 3.7
4-to-2 Binary encoder: VHDL modeling using logical operators

3.2 Concurrent Signal Assignments with Logical Operators • 31

3.2.6 Logical Operator Example: Demultiplexer

A demultiplexer works in a complementary fashion to a multiplexer. A demultiplexer has one input

that is routed to one of its multiple outputs. The output that is active is dictated by a select input. A demux

has n select lines that choose to route the input to one of its 2n outputs. When an output is not selected, it

outputs a logic 0. Example 3.9 shows the process of designing a 1-to-4 demultiplexer using concurrent

signal assignments and logical operators.

Example 3.8
4-to-1 Multiplexer: VHDL modeling using logical operators

32 • Chapter 3: Modeling Concurrent Functionality

CONCEPT CHECK

CC3.2 Why does modeling combinational logic in its canonical form with concurrent signal
assignments with logical operators defeat the purpose of themodern digital design flow?

(A) It requires the designer to first create the circuit using the classical digital
design approach and then enter it into the HDL in a form that is essentially a
text-based netlist. This doesn’t take advantage of the abstraction capabilities
and automated synthesis in the modern flow.

(B) It cannot be synthesized because the order of precedence of the logical
operators in VHDL doesn’t match the precedence defined in Boolean algebra.

(C) The circuit is in its simplest form so there is no work for the synthesizer to do.

(D) It doesn’t allow an else clause to cover the outputs for any remaining input
codes not explicitly listed.

Example 3.9
1-to-4 Demultiplexer: VHDL modeling using logical operators

3.2 Concurrent Signal Assignments with Logical Operators • 33

3.3 Conditional Signal Assignments

Logical operators are good for describing the behavior of small circuits; however, in the prior

example, we still needed to create the canonical or minimal sum of products logic expression by hand

before describing the functionality in VHDL. The true power of an HDL is when the behavior of the system

can be described fully without requiring any hand design. A conditional signal assignment allows us to

describe a concurrent signal assignment using Boolean conditions that effect the values of the result. In a

conditional signal assignment, the keyword when is used to describe the signal assignment for a

particular Boolean condition. The keyword else is used to describe the signal assignments for any

other conditions. Multiple Boolean conditions can be used to fully describe the output of the circuit under

all input conditions. Logical operators can also be used in the Boolean conditions to create more

sophisticated conditions. The Boolean conditions can be encompassed within parentheses for readabil-

ity. The syntax for a conditional signal assignment is shown below.

signal_name <¼ expression_1 when condition_1 else

expression_2 when condition_2 else

:
expression_n;

Example:

F1 <¼ ‘0’ when A¼‘0’ else ‘1’;
F2 <¼ ‘1’ when (A¼’0’ and B¼’1’) else ‘0’;
F3 <¼ A when (C ¼ D) else B;

An important consideration of conditional signal assignments is that they are still executed concur-

rently. Each assignment represents a separate, combinational logic circuit. In the above example, F1,

F2, and F3 will be implemented as three separate, parallel circuits.

3.3.1 Conditional Signal Assignment Example: SOP Circuit

Example 3.10 shows how to design a VHDL model of a combinational logic circuit using conditional

signal assignments. Note that this example uses the same truth table as in Example 3.1 to illustrate a

comparison between approaches. This approach provides a model that can be created directly from the

truth table without needing to do any synthesis or minimization by hand.

34 • Chapter 3: Modeling Concurrent Functionality

3.3.2 Conditional Signal Assignment Example: One-Hot Decoder

Example 3.11 shows how to model a 3-to-8 one-hot decoder in VHDL with conditional signal

assignments. Again, this approach allows the logic to be modeled directly from its functional description

rather than having to perform any synthesis by hand.

Example 3.10
SOP logic circuit: VHDL modeling using conditional signal assignments

3.3 Conditional Signal Assignments • 35

3.3.3 Conditional Signal Assignment Example: 7-Segment Display Decoder

Back in Example 3.3 the truth table for a 7-segment display decoder was given along with the

subsequent steps to create its logic using the classical digital design approach and model it in VHDL

using logical operators. With a conditional signal assignment, this decoder can be modeled directly from

the truth table without needing to do any design by hand. Example 3.12 shows how to model the logic for

a 7-segment display decoder using a conditional signal assignment.

Example 3.11
3-to-8 One-hot decoder: VHDL modeling using conditional signal assignments

36 • Chapter 3: Modeling Concurrent Functionality

3.3.4 Conditional Signal Assignment Example: One-Hot Encoder

Example 3.13 shows how to model a one-hot encoder in VHDL with conditional signal assignments.

Again, this approach allows the logic to be modeled directly from its functional description rather than

having to perform any synthesis by hand.

Example 3.12
7-Segment display decoder: VHDL modeling using conditional signal assignments

3.3 Conditional Signal Assignments • 37

3.3.5 Conditional Signal Assignment Example: Multiplexer

Example 3.14 shows the process of designing a 4-to-1 multiplexer using conditional signal

assignments.

Example 3.13
4-to-2 Binary encoder: VHDL modeling using conditional signal assignments

38 • Chapter 3: Modeling Concurrent Functionality

3.3.6 Conditional Signal Assignment Example: Demultiplexer

Example 3.15 shows the process of designing a 1-to-4 demultiplexer using conditional signal

assignments.

Example 3.14
4-to-1 Multiplexer: VHDL modeling using conditional signal assignments

3.3 Conditional Signal Assignments • 39

CONCEPT CHECK

CC3.3 Why does a conditional signal assignment better reflect the modern digital design flow
compared to a concurrent signal assignment with logical operators?

(A) A conditional signal assignment allows the logic to be modeled directly from
its functional description as opposed to a logical operator approach where the
logic expressions must be determined prior to HDL modeling. This allows the
conditional signal assignment approach to take advantage of automated
synthesis and avoids any hand design.

(B) A conditional signal assignment uses an “else” keyword, which makes it more
like a programming language operator.

(C) The conditional signal assignment can model the entire logic circuit in one
assignment while the logical operator approach often takes multiple separate
assignments.

(D) The else clause allows coverage for outputs for any remaining input codes not
explicitly listed.

Example 3.15
1-to-4 Demultiplexer: VHDL modeling using conditional signal assignments

40 • Chapter 3: Modeling Concurrent Functionality

3.4 Selected Signal Assignments

A selected signal assignment provides another technique to implement concurrent signal

assignments. In this approach, the signal assignment is based on a specific value on the input signal.

The keyword with is used to begin the selected signal assignment. It is then followed by the name of the

input that will be used to dictate the value of the output. Only a single variable name can be listed as the

input. This means that if the assignment is going to be based on multiple variables, they must first be

concatenated into a single vector name before starting the selected signal assignment. After the input is

listed, the keyword select signifies the beginning of the signal assignments. An assignment is made to a

signal based on a list of possible input values that follow the keyword when. Multiple values of the input

codes can be used and are separated by commas. The keyword others is used to cover any input values

that are not explicitly stated. The syntax for a selected signal assignment is as follows:

with input_name select
signal_name <¼ expression_1 when condition_1,

expression_2 when condition_2,
:

expression_n when others;

Example:

with A select
F1 <¼ ‘1’ when ‘0’, -- F1 will be assigned ‘1’ when A¼’0’

‘0’ when ‘1’; -- F1 will be assigned ‘0’ when A¼’1’

AB <¼ A&B; -- concatenate A and B so that they can be used as a vector
with AB select
F2 <¼ ‘0’ when “00”, -- F2 will be assigned ‘0’ when AB¼”00”

‘1’ when “01”,
‘1’ when “10”,
‘0’ when “11”;

with AB select
F3 <¼ ‘1’ when “01”,

‘1’ when “10”,
‘0’ when others;

One feature of selected signal assignments that makes its form even more compact than other

techniques is that multiple input codes that correspond to the same output assignment can be listed on

the same line pipe (|)-delimited. The example for F3 can be equivalently described as:

with AB select
F3 <¼ ‘1’ when “01” | “10”,

‘0’ when others;

3.4.1 Selected Signal Assignment Example: SOP Circuit

Example 3.16 shows how to design a VHDL model of a combinational logic circuit using selected

signal assignments. Note that this example uses the same truth table as in Example 3.1 to illustrate a

comparison between approaches. This approach provides a model that can be created directly from the

truth table without needing to do any synthesis or minimization by hand.

3.4 Selected Signal Assignments • 41

3.4.2 Selected Signal Assignment Example: One-Hot Decoder

Example 3.17 shows how to model a 3-to-8 one-hot decoder in VHDL with selected signal

assignments. Again, this approach allows the logic to be modeled directly from its functional description

rather than having to perform any synthesis by hand.

Example 3.16
SOP Logic circuit: VHDL modeling using selected signal assignments

42 • Chapter 3: Modeling Concurrent Functionality

3.4.3 Selected Signal Assignment Example: 7-Segment Display Decoder

Back in Example 3.3 the truth table for a 7-segment display decoder was given along with the

subsequent steps to create its logic using the classical digital design approach and model it in VHDL

using logical operators. With a selected signal assignment, this decoder can be modeled directly from

the truth table without needing to do any design by hand. Example 3.18 shows how to model the logic for

a 7-segment display decoder using a selected signal assignment.

Example 3.17
3-to-8 One-hot decoder: VHDL modeling using selected signal assignments

3.4 Selected Signal Assignments • 43

3.4.4 Selected Signal Assignment Example: One-Hot Encoder

Example 3.19 shows how to model a one-hot encoder in VHDL with selected signal assignments.

Again, this approach allows the logic to be modeled directly from its functional description rather than

having to perform any synthesis by hand.

Example 3.18
7-Segment display decoder: VHDL modeling using selected signal assignments

44 • Chapter 3: Modeling Concurrent Functionality

3.4.5 Selected Signal Assignment Example: Multiplexer

Example 3.20 shows the process of designing a 4-to-1 multiplexer using selected signal

assignments.

Example 3.19
4-to-2 Binary encoder: VHDL modeling using selected signal assignments

3.4 Selected Signal Assignments • 45

3.4.6 Selected Signal Assignment Example: Demultiplexer

Example 3.21 shows the process of designing a 1-to-4 demultiplexer using selected signal

assignments.

Example 3.20
4-to-1 Multiplexer: VHDL modeling using selected signal assignments

46 • Chapter 3: Modeling Concurrent Functionality

CONCEPT CHECK

CC3.4 Why does a selected signal assignment often require a separate concatenation
operation?

(A) Concatenating the inputs makes the assignment easier to read.

(B) A selected signal assignment only support a single signal name for its input. If
it is desired to look at multiple signal names, they must first be concatenated
together to form a new signal name for use in the selected signal assignment.

(C) Since there is not an else clause, the selected signal assignment needs a way
to handle the outputs for input codes not explicitly listed.

(D) To avoid having to use multiple parentheses in the input signal list.

Example 3.21
1-to-4 Demultiplexer: VHDL modeling using selected signal assignments

3.4 Selected Signal Assignments • 47

3.5 Delayed Signal Assignments

3.5.1 Inertial Delay

VHDL provides the ability to delay a concurrent signal assignment in order to more accurately model

the behavior of real gates. The keyword after is used to delay an assignment by a certain amount of time.

The magnitude of the delay is provided as type time. The syntax for delaying an assignment is as follows:

signal_name <¼ <expression> after <time>;

Example:

A <¼ B after 3us;
C <¼ D and E after 10ns;

If an input pulse is shorter in duration than the amount of the delay, the input pulse is ignored. This is

called the inertial delay model. Example 3.22 shows how to design a VHDL model with a delayed signal

assignment using the inertial delay model.

3.5.2 Transport Delay

Ignoring brief input pulses on the input accurately models the behavior of on-chip gates. When the

input pulse is faster than the delay of the gate, the output of the gate does not have time to respond. As a

result, there will not be a logic change on the output. If it is desired to have all pulses on the inputs show

up on the outputs when modeling the behavior of other types of digital logic, the keyword transport is

used in conjunction with the after statement. This is called the transport delay model.

signal_name <¼ transport <expression> after <time>;

Example 3.23 shows how to perform a delayed signal assignment using the transport delay model.

Example 3.22
Modeling logic using delayed signal assignments (inertial delay model)

48 • Chapter 3: Modeling Concurrent Functionality

CONCEPT CHECK

CC3.5 Can a delayed signal assignment impact multiple concurrent signal assignments?

(A) Yes. If a signal assignment with delay is made to a signal that is also used as
an input in a separate concurrent signal assignment, then the delay will
propagate through both assignments.

(B) No. Only the assignment in which the delay is used will experience the delay.

Summary

v VHDL operators are defined to work on spe-
cific data types. Not all operators work on all
types within a package.

v Concurrency is the term that describes
operations being performed in parallel. This
allows real-world system behavior to be
modeled.

v VHDL contains three direct techniques to
model concurrent logic behavior. These are
concurrent signal assignments with logical

operators, conditional signal assignments,
and selected signal assignments.

v Delay can be modeled in VHDL using either
the inertial or transport model. Inertial delay
will ignore pulses that are shorter than the
delay amount, while transport delay will pass
all transitions.

Exercise Problems

Section 3.1: VHDL Operators

3.1.1 What data types do the logical operators in the
standard package work on?

3.1.2 Which logical operator has the highest priority
when evaluating the order of precedence of
operations?

3.1.3 If parentheses are not used in a signal assign-
ment with logical operators, how is the order of
precedence determined?

3.1.4 What data types do the numerical operators in
the standard package work on?

3.1.5 What is the return type of a relational operator?

Example 3.23
Modeling logic using delayed signal assignments (transport delay model)

Exercise Problems • 49

Section 3.2: Concurrent Signal

Assignments with Logical Operators

3.2.1 Design a VHDLmodel to implement the behav-
ior described by the 3-input minterm list shown
in Fig. 3.1. Use concurrent signal assignments
and logical operators. Declare your entity to
match the block diagram provided. Use the
type bit for your ports.

Fig. 3.1
System E functionality

3.2.2 Design a VHDLmodel to implement the behav-
ior described by the 3-input maxterm list shown
in Fig. 3.2. Use concurrent signal assignments
and logical operators. Declare your entity to
match the block diagram provided. Use the
type bit for your ports.

Fig. 3.2
System F functionality

3.2.3 Design a VHDLmodel to implement the behav-
ior described by the 3-input truth table shown in
Fig. 3.3. Use concurrent signal assignments
and logical operators. Declare your entity to
match the block diagram provided. Use the
type bit for your ports.

Fig. 3.3
System G functionality

3.2.4 Design a VHDLmodel to implement the behav-
ior described by the 4-input minterm list shown
in Fig. 3.4. Use concurrent signal assignments
and logical operators. Declare your entity to

match the block diagram provided. Use the
type bit for your ports.

Fig. 3.4
System I functionality

3.2.5 Design a VHDLmodel to implement the behav-
ior described by the 4-input maxterm list shown
in Fig. 3.5. Use concurrent signal assignments
and logical operators. Declare your entity to
match the block diagram provided. Use the
type bit for your ports.

Fig. 3.5
System J functionality

3.2.6 Design a VHDLmodel to implement the behav-
ior described by the 4-input truth table shown in
Fig. 3.6. Use concurrent signal assignments
and logical operators. Declare your entity to
match the block diagram provided. Use the
type bit for your ports.

Fig. 3.6
System K functionality

50 • Chapter 3: Modeling Concurrent Functionality

Section 3.3: Conditional Signal

Assignments

3.3.1 Design a VHDLmodel to implement the behav-
ior described by the 3-input minterm list shown
in Fig. 3.1. Use conditional signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

3.3.2 Design a VHDLmodel to implement the behav-
ior described by the 3-input maxterm list shown
in Fig. 3.2. Use conditional signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

3.3.3 Design a VHDLmodel to implement the behav-
ior described by the 3-input truth table shown in
Fig. 3.3. Use conditional signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

3.3.4 Design a VHDLmodel to implement the behav-
ior described by the 4-input minterm list shown
in Fig. 3.4. Use conditional signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

3.3.5 Design a VHDLmodel to implement the behav-
ior described by the 4-input maxterm list shown
in Fig. 3.5. Use conditional signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

3.3.6 Design a VHDLmodel to implement the behav-
ior described by the 4-input truth table shown in
Fig. 3.6. Use conditional signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

Section 3.4: Selected Signal

Assignments

3.4.1 Design a VHDLmodel to implement the behav-
ior described by the 3-input minterm list shown
in Fig. 3.1. Use selected signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

3.4.2 Design a VHDLmodel to implement the behav-
ior described by the 3-input maxterm list shown
in Fig. 3.2. Use selected signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

3.4.3 Design a VHDLmodel to implement the behav-
ior described by the 3-input truth table shown in
Fig. 3.3. Use selected signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

3.4.4 Design a VHDLmodel to implement the behav-
ior described by the 4-input minterm list shown
in Fig. 3.4. Use selected signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

3.4.5 Design a VHDLmodel to implement the behav-
ior described by the 4-input maxterm list shown
in Fig. 3.5. Use selected signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

3.4.6 Design a VHDLmodel to implement the behav-
ior described by the 4-input truth table shown in
Fig. 3.6. Use selected signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

Section 3.5: Delayed Signal Assignments

3.5.1 Design a VHDLmodel to implement the behav-
ior described by the 3-input minterm list shown
in Fig. 3.1. Use concurrent signal assignments
and logical operators. Create the model so that
every logic operation has 1 ns of inertial delay.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

3.5.2 Design a VHDLmodel to implement the behav-
ior described by the 3-input maxterm list shown
in Fig. 3.2. Use concurrent signal assignments
and logical operators. Create the model so that
every logic operation has 1 ns of inertial delay.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

3.5.3 Design a VHDLmodel to implement the behav-
ior described by the 3-input truth table shown in
Fig. 3.3. Use concurrent signal assignments
and logical operators. Create the model so
that every logic operation has 1 ns of inertial
delay. Declare your entity to match the block
diagram provided. Use the type bit for your
ports.

3.5.4 Design a VHDLmodel to implement the behav-
ior described by the 4-input minterm list shown
in Fig. 3.4. Use concurrent signal assignments
and logical operators. Create the model so that
every logic operation has 1 ns of transport
delay. Declare your entity to match the block
diagram provided. Use the type bit for your
ports.

3.5.5 Design a VHDLmodel to implement the behav-
ior described by the 4-input maxterm list shown
in Fig. 3.5. Use concurrent signal assignments
and logical operators. Create the model so that
every logic operation has 1 ns of transport
delay. Declare your entity to match the block
diagram provided. Use the type bit for your
ports.

3.5.6 Design a VHDL model to implement the behav-
ior described by the 4-input truth table shown in
Fig. 3.6. Use concurrent signal assignments and
logical operators.Create themodel so that every
logic operation has 1 ns of transport delay.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

Exercise Problems • 51

Chapter 4: Structural Design

and Hierarchy
This chapter describes how to accomplish hierarchy within VHDL using lower-level sub-systems.

Structural design in VHDL refers to including lower-level sub-systems within a higher-level system in

order to produce the desired functionality. A purely structural VHDL design would not contain any

behavioral modeling in the architecture such as signal assignments but instead just contain the instanti-

ation and interconnections of other sub-systems.

Learning Outcomes—After completing this chapter, you will be able to:

4.1 Instantiate and map the ports of a lower-level component in VHDL.
4.2 Design a VHDL model for a system that uses hierarchy.

4.1 Components

4.1.1 Component Instantiation

A sub-system is called a component in VHDL. For any component that is going to be used in an

architecture, it must be declared before the begin statement. Refer to Sect. 2.2.3.3 for the syntax of

declaring a component. A specific component only needs to be declared once. After the begin statement,

it can be used as many times as necessary. Each component is executed concurrently.

The term instantiation refers to the use or inclusion of the component in the VHDL system. When a

component is instantiated, it needs to be given a unique identifying name. This is called the instance

name. To instantiate a component, the instance name is given first, followed by a colon and then the

component name. The last part of instantiating a component is connecting signals to its ports. The way in

which signals are connected to the ports of the component is called the port map. The syntax for

instantiating a component is as follows:

instance_name : <component name>

port map (<port connections>);

4.1.2 Port Mapping

There are two techniques to connect signals to the ports of the component, explicit port mapping

and positional port mapping.

4.1.2.1 Explicit Port Mapping

In explicit port mapping, the name of each port of the component is given, followed by the connection

indicator ¼>, followed by the signal it is connected to. The port connections can be listed in any order

since the details of the connection (i.e., port name to signal name) are explicit. Each connection name is

separated by a comma. The syntax for explicit port mapping is as follows:

instance_name : <component name>

port map (port1 ¼> signal1, port2 ¼> signal2, ...);

Springer Nature Switzerland AG 2019

B. J. LaMeres, Quick Start Guide to VHDL, https://doi.org/10.1007/978-3-030-04516-6_4

53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04516-6_4&domain=pdf

Example 4.1 shows how to design a VHDL model of a combinational logic circuit using structural

VHDL and explicit port mapping. Note that this example again uses the same truth table as in Examples

3.1, 3.10, and 3.16 to illustrate a comparison between approaches.

Example 4.1
Modeling logic using structural VHDL (explicit port mapping)

54 • Chapter 4: Structural Design and Hierarchy

4.1.2.2 Positional Port Mapping

In positional port mapping, the names of the ports of the component are not explicitly listed. Instead,

the signals are listed in the same order that the ports of the component were defined. Each signal name

is separated by a comma. This approach requires less text to describe but can also lead to

misconnections due to mismatches in the order of the signals being connected. The syntax for positional

port mapping is as follows:

instance_name : <component name>

port map (signal1, signal2, ...);

Example 4.2 shows how to create the same structural VHDL model as in Example 4.1, but using

positional port mapping instead.

CONCEPT CHECK

CC4.1 Does the use of components model concurrent functionality? Why?

(A) No. Since the lower-level behavior of the component being instantiated may
contain non-concurrent behavior, it is not known what functionality will be
modeled.

(B) Yes. The components are treated like independent sub-systems whose
behavior runs in parallel just as if separate parts were placed in a design.

Example 4.2
Modeling logic using structural VHDL (positional port mapping)

4.1 Components • 55

4.2 Structural Design Examples: Ripple Carry Adder

This section gives an example of a structural design that implements a simple binary adder.

4.2.1 Half Adders

When creating a binary adder, it is desirable to design incremental sub-systems that can be reused.

This reduces design effort and minimizes troubleshooting complexity. The most basic component in the

adder is called a half adder. This circuit computes the sum and carry out on two input arguments. The

reason it is called a half adder instead of a full adder is because it does not accommodate a carry in

during the computation; thus it does not provide all the necessary functionality required for the positional

adder. Example 4.3 shows the design of a half adder. Notice that two combinational logic circuits are

required in order to produce the sum (the XOR gate) and the carry out (the AND gate). These two gates

are in parallel to each other; thus the delay through the half adder is due to only one level of logic.

4.2.2 Full Adders

A full adder is a circuit that still produces a sum and carry out but considers three inputs in the

computations (A, B, and Cin). Example 4.4 shows the design of a full adder using the classical design

approach. This step is shown to illustrate why it is possible to reuse half adders to create the full adder. In

order to do this, it is necessary to have the minimal sum of products logic expression.

Example 4.3
Design of a half adder

56 • Chapter 4: Structural Design and Hierarchy

As mentioned before, it is desirable to reuse design components as we construct more complex

systems. One such design reuse approach is to create a full adder using two half adders. This is

straightforward for the sum output since the logic is simply two cascaded XOR gates (Sum¼ A�B�Cin).

The carry out is not as straightforward. Notice that the expression for Cout derived in Example 4.4

contains the term (A + B). If this term could be manipulated to use an XOR gate instead, it would allow the

full adder to take advantage of existing circuitry in the system. Figure 4.1 shows a derivation of an

equivalency that allows (A + B) to be replaced with (A�B) in the Cout logic expression.

Example 4.4
Design of a full adder

Fig. 4.1
A useful logic equivalency that can be exploited in arithmetic circuits

4.2 Structural Design Examples: Ripple Carry Adder • 57

The ability to implement the carry out logic using the expression Cout ¼ A�B + (A�B)�Cin allows us to

implement a full adder with two half adders and the addition of a single OR gate. Example 4.5 shows this

approach. In this new configuration, the sum is produced in two levels of logic, while the carry out is

produced in three levels of logic.

4.2.3 Ripple Carry Adder (RCA)

The full adder can now be used in the creation of multi-bit adders. The simplest architecture

exploiting the full adder is called a ripple carry adder (RCA). In this approach, full adders are used to

create the sum and carry out of each bit position. The carry out of each full adder is used as the carry in

for the next higher position. Since each subsequent full adder needs to wait for the carry to be produced

by the preceding stage, the carry is said to ripple through the circuit, thus giving this approach its name.

Example 4.6 shows how to design a 4-bit ripple carry adder using a chain of full adders. Notice that the

carry in for the full adder in position 0 is tied to a logic 0. The 0 input has no impact on the result of the sum

but enables a full adder to be used in the 0th position.

Example 4.5
Design of a full adder out of half adders

58 • Chapter 4: Structural Design and Hierarchy

4.2.4 Structural Model of a Ripple Carry Adder in VHDL

Now that the hierarchical design of the RCA is complete, we can now model it in VHDL as a system

of lower-level components. Example 4.7 shows the structural model for a full adder in VHDL consisting of

two half adders. The full adder is created by instantiating two versions of the half adder as components.

In this example, all gates are modeled with a delay of 1 ns.

Example 4.6
Design of a 4-bit ripple carry adder (RCA)

4.2 Structural Design Examples: Ripple Carry Adder • 59

Example 4.8 shows the structural model of a 4-bit ripple carry adder in VHDL. The RCA is created by

instantiating four full adders. Notice that a logic 0 can be directly inserted into the port map of the first full

adder to model the behavior of C0 ¼ 0.

Example 4.7
Structural model of a full adder in VHDL using two half adders

60 • Chapter 4: Structural Design and Hierarchy

CONCEPT CHECK

CC4.2 Why is the use of hierarchy considered a good design practice?

(A) Hierarchy allows the design to be broken into smaller pieces, each with
simpler functionality that can be verified independently prior to being used in a
higher-level system.

(B) Hierarchy allows a large system to be broken into smaller sub-systems that
can be designed by multiple engineers, thus decreasing the overall
development time.

(C) Hierarchy allows a large system to be broken down into smaller sub-systems
that can be more easily understood so that debugging is more manageable.

(D) All of the above.

Summary

v A component is how a VHDL system uses
another VHDL file as a sub-system.

v VHDL components are treated as concurrent
sub-systems.

v To use a component, it must first be declared,
which defines the name and entity of the
sub-system to be used. This occurs before
the begin statement in the architecture.

Example 4.8
Structural model of a 4-bit ripple carry adder in VHDL

4.2 Structural Design Examples: Ripple Carry Adder • 61

v A component can be instantiated one or
more times, which includes one or more cop-
ies of the sub-system in the higher-level sys-
tem. This occurs after the begin statement in
the architecture.

v The ports of the component can be
connected using either explicit or positional
port mapping.

v Explicit port mapping involves listing both the
names of the lower-level component’s ports
along with the higher-level signals that form
the connection. The connections in explicit
port mapping can be listed in any order.
Explicit port mapping is less prone to mis-
taken connections.

v Positional port mapping involves listing only
the names of the higher-level signals during
instantiation. The order in which the signals
are listed will be connected to the ports of the
lower-level sub-system in the order that the
ports were declared. Positional port mapping
provides a more compact approach to port
mapping. Positional port mapping is more
prone to mistaken connections due to poten-
tially listing the signals in the wrong order
during mapping.

Exercise Problems

Section 4.1: Components

4.1.1 Howmany times does a component need to be
declared within an architecture?

4.1.2 How many times can a component be
instantiated?

4.1.3 Does declaring a component occur before or
after the begin statement in the architecture?

4.1.4 Does instantiating a component occur before
or after the begin statement in the
architecture?

4.1.5 Which port mapping technique is more com-
pact, explicit or positional?

4.1.6 Which port mapping technique is less prone to
connection errors because the names of the
lower-level ports are listed within the mapping?

Section 4.2: Structural Design Examples

4.2.1 Design a VHDLmodel to implement the behav-
ior described by the 3-input minterm list shown
in Fig. 3.1. Use a structural design approach
and basic gates. You will need to create what-
ever basic gates are needed for your design
(e.g., INV1, AND2, OR4, etc.) and then instan-
tiate them in your upper-level architecture to
create the desired functionality. The lower-
level gates can be implemented with concur-
rent signal assignments and logical operators
(e.g., F <¼ not A). Declare your entity to match
the block diagram provided. Use the type bit for
your ports.

4.2.2 Design a VHDLmodel to implement the behav-
ior described by the 3-input maxterm list shown
in Fig. 3.2. Use a structural design approach
and basic gates. You will need to create what-
ever basic gates are needed for your design
(e.g., INV1, AND2, OR4, etc.) and then instan-
tiate them in your upper-level architecture to
create the desired functionality. The lower-
level gates can be implemented with concur-
rent signal assignments and logical operators

(e.g., F <¼ not A). Declare your entity to match
the block diagram provided. Use the type bit for
your ports.

4.2.3 Design a VHDLmodel to implement the behav-
ior described by the 3-input truth table shown in
Fig. 3.3. Use a structural design approach and
basic gates. You will need to create whatever
basic gates are needed for your design (e.g.,
INV1, AND2, OR4, etc.) and then instantiate
them in your upper-level architecture to create
the desired functionality. The lower-level gates
can be implemented with concurrent signal
assignments and logical operators (e.g.,
F <¼ not A). Declare your entity to match the
block diagram provided. Use the type bit for
your ports.

4.2.4 Design a VHDLmodel to implement the behav-
ior described by the 4-input minterm list shown
in Fig. 3.4. Use a structural design approach
and basic gates. You will need to create what-
ever basic gates are needed for your design
(e.g., INV1, AND2, OR4, etc.) and then instan-
tiate them in your upper-level architecture to
create the desired functionality. The lower-
level gates can be implemented with concur-
rent signal assignments and logical operators
(e.g., F <¼ not A). Declare your entity to match
the block diagram provided. Use the type bit for
your ports.

4.2.5 Design a VHDLmodel to implement the behav-
ior described by the 4-input maxterm list shown
in Fig. 3.5. Use a structural design approach
and basic gates. You will need to create what-
ever basic gates are needed for your design
(e.g., INV1, AND2, OR4, etc.) and then instan-
tiate them in your upper-level architecture to
create the desired functionality. The lower-
level gates can be implemented with concur-
rent signal assignments and logical operators
(e.g., F <¼ not A). Declare your entity to match
the block diagram provided. Use the type bit for
your ports.

62 • Chapter 4: Structural Design and Hierarchy

4.2.6 Design a VHDLmodel to implement the behav-
ior described by the 4-input truth table shown in
Fig. 3.6. Use a structural design approach and
basic gates. You will need to create whatever
basic gates are needed for your design (e.g.,
INV1, AND2, OR4, etc.) and then instantiate
them in your upper-level architecture to create

the desired functionality. The lower-level gates
can be implemented with concurrent signal
assignments and logical operators (e.g.,
F <¼ not A). Declare your entity to match the
block diagram provided. Use the type bit for
your ports.

Exercise Problems • 63

Chapter 5: Modeling Sequential

Functionality
In Chap. 3 techniques were presented to describe the behavior of concurrent systems. The

modeling techniques presented were appropriate for combinational logic because these types of circuits

have outputs dependent only on the current values of their inputs. This means a model that continuously

performs signal assignments provides an accurate model of this circuit behavior. When we start looking

at sequential circuits (i.e., D-flip-flops, registers, finite state machine, and counters), these devices only

update their outputs based upon an event, most often the edge of a clock signal. The modeling

techniques presented in Chap. 3 are unable to accurately describe this type of behavior. In this chapter

we describe the VHDL constructs to model signal assignments that are triggered by an event to

accurately model sequential logic. We can then use these techniques to describe more complex

sequential logic circuits such as finite state machines and register transfer level systems.

Learning Outcomes—After completing this chapter, you will be able to:

5.1 Describe the behavior of a VHDL process and how it is used to model sequential logic
circuits.

5.2 Model combinational logic circuits using a process and conditional programming
constructs.

5.3 Describe how and why signal attributes are used in VHDL models.

5.1 The Process

VHDL uses a process to model signal assignments that are based on an event. A process is a

technique to model behavior of a system; thus, a process is placed in the VHDL architecture after the

begin statement. The signal assignments within a process have unique characteristics that allow

them to accurately model sequential logic. First, the signal assignments do not take place until the

process ends or is suspended. Second, the signal assignments will be made only once each time the

process is triggered. Finally, the signal assignments will be executed in the order that they appear

within the process. This assignment behavior is called a sequential signal assignment. Sequential

signal assignments allow a process to model register transfer level behavior where a signal can be

used as both the operand of an assignment and the destination of a different assignment within the

same process. VHDL provides two techniques to trigger a process, the sensitivity list and the wait

statement.

5.1.1 Sensitivity Lists

A sensitivity list is a mechanism to control when a process is triggered (or started). A sensitivity list

contains a list of signals that the process is sensitive to. If there is a transition on any of the signals in the

list, the process will be triggered, and the signal assignments in the process will be made. The following

is the syntax for a process that uses a sensitivity list.

Springer Nature Switzerland AG 2019

B. J. LaMeres, Quick Start Guide to VHDL, https://doi.org/10.1007/978-3-030-04516-6_5

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04516-6_5&domain=pdf

process_name : process (<signal_name1>, <signal_name2>, ...)

-- variable declarations

begin

sequential_signal_assignment_1
sequential_signal_assignment_2

:
end process;

Let’s look at a simple model for a flip-flop.

Example:

FlipFlop : process (Clock)
begin

Q <¼ D;
end process;

In this example, a transition on the signal Clock (LOW to HIGH or HIGH to LOW) will trigger the

process. The signal assignment of D to Q will be executed once the process ends. When the signal Clock

is not transitioning, the process will not trigger, and no assignments will be made to Q, thus modeling the

behavior of Q holding its last value. This behavior is close to modeling the behavior of a real D-flip-flop,

but more constructs are needed to model behavior that is sensitive to only a particular type of transition

(i.e., rising or falling edge). These constructs will be covered later.

5.1.2 Wait Statements

Await statement is a mechanism to suspend (or stop) a process and allow signal assignments to be

executed without the need for the process to end. When using a wait statement, a sensitivity list is not

used. Without a sensitivity list, the process will immediately trigger. Within the process, the wait

statement is used to stop and start the process. There are three ways in which wait statements can be

used. The first is an indefinite wait. In the following example, the process does not contain a sensitivity

list, so it will trigger immediately. The keyword wait is used to suspend the process. Once this statement

is reached, the signal assignments to Y1 and Y2 will be executed, and the process will suspend

indefinitely.

Example:

Proc_Ex1 : process
begin

Y1 <¼ ’0’;
Y2 <¼ ’1’;
wait;

end process;

The second technique to use a wait statement to suspend a process is to use it in conjunction with

the keyword for and a time expression. In the following example, the process will trigger immediately

since it does not contain a sensitivity list. Once the process reaches the wait statement, it will suspend

and execute the first signal assignment to CLK (CLK <¼ ‘0’). After 5 ns, the process will start again. Once

it reaches the second wait statement, it will suspend and execute the second signal assignment to CLK

(CLK <¼ ‘1’). After another 5 ns, the process will start again and immediately end due to the end process

statement. After the process ends, it will immediately trigger again due to the lack of a sensitivity list and

repeat the behavior just described. This behavior will continue indefinitely. This example creates a

square wave called CLK with a period of 10 ns.

66 • Chapter 5: Modeling Sequential Functionality

Example:

Proc_Ex2 : process
begin

CLK <¼ ’0’; wait for 5 ns;
CLK <¼ ’1’; wait for 5 ns;

end process;

The third technique to use a wait statement to suspend a process is to use it in conjunction with the

keyword until and a Boolean condition. In the following example, the process will again trigger immedi-

ately because there is not a sensitivity list present. The process will then immediately suspend and only

resume once a Boolean condition becomes true (i.e., Counter > 15). Once this condition is true, the

process will start again. Once it reaches the second wait statement, it will execute the first signal

assignment to RollOver (RollOver <¼ ‘1’). After 1 ns, the process will resume. Once the process ends,

it will execute the second signal assignment to RollOver (RollOver <¼ ‘0’).

Example:

Proc_Ex3 : process
begin

wait until (Counter > 15); -- first wait statement
RollOver <¼ ’1’; wait for 1 ns; -- second wait statement
RollOver <¼ ’0’;

end process;

Wait statements are typically not synthesizable and are most often used for creating stimulus

patterns in test benches.

5.1.3 Sequential Signal Assignments

One of the more confusing concepts of a process is how sequential signal assignments behave. The

rules of signal assignments within a process are as follows:

• Signals cannot be declared within a process.

• Signal assignments do not take place until the process ends or suspends.

• Signal assignments are executed in the sequence they appear in the process (once the
process ends or process suspends).

Let’s look at an example of how signals behave in a process. Example 5.1 shows the behavior of

sequential signal assignments when executed within a process. Intuitively, we would assume that F will

be the complement of A; however, due to the way that sequential signal assignments are performed

within a process, this is not the case. In order to understand this behavior, let’s look at the situation where

A transitions from a 0 to a 1 with B ¼ 0 and F ¼ 0 initially. This transition triggers the process since A is

listed in the sensitivity list. When the process triggers, A¼ 1 since this is where the input resides after the

triggering transition. The first signal assignment (B <¼ A) will cause B ¼ 1, but this assignment occurs

only after the process ends. This means that when the second signal assignment is evaluated (F <¼ not

B), it uses the initial value of B from when the process triggered (B¼ 0) since B is not updated to a 1 until

the process ends. The second assignment yields F¼ 1. When the process ends, A¼ 1, B¼ 1, and F¼ 1.

The behavior of this process will always result in A ¼ B ¼ F. This is counterintuitive because the

statement F <¼ not B leads us to believe that F will always be the complement of A and B; however,

this is not the case due to the way that signal assignments are only updated in a process upon

suspension or when the process ends.

5.1 The Process • 67

Now let’s consider how these assignments behave when executed as concurrent signal

assignments. Example 5.2 shows the behavior of the same signal assignments as in Example 5.1, but

this time outside of a process. In this model, the statements are executed concurrently and produce the

expected behavior of F being the complement of A.

While the behavior of the sequential signal assignments initially seems counterintuitive, it is

necessary to model the behavior of sequential storage devices and will become clear once more

VHDL constructs have been introduced.

5.1.4 Variables

There are situations inside of processes in which it is desired for assignments to be made instanta-

neously instead of when the process suspends. For these situations, VHDL provides the concept of a

variable. A variable has the following characteristics:

Example 5.1
Behavior of sequential signal assignments within a process

Example 5.2
Behavior of concurrent signal assignments outside a process

68 • Chapter 5: Modeling Sequential Functionality

• Variables only exist within a process.

• Variables are defined in a process before the begin statement.

• Once the process ends, variables are removed from the system. This means that assignments
to variables cannot be made by systems outside of the process.

• Assignments to variables are made using the “:¼” operator.

• Assignments to variables are made instantaneously.

A variable is declared before the begin statement in a process. The syntax for declaring a variable is

as follows:

variable variable_name : <type> :¼ <initial_value>;

Let’s reconsider the example in Example 5.1, but this time we’ll use a variable in order to accomplish

instantaneous signal assignments within the process. Example 5.3 shows this approach to model the

behavior where F is the complement of A.

CONCEPT CHECK

CC5.1 If a model of a combinational logic circuit excludes one of its inputs from the sensitivity
list, what is the implied behavior?

(A) A storage element because the output will be held at its last value when the
unlisted input transitions.

(B) An infinite loop.

(C) A don’t care will be used to form the minimal logic expression.

(D) Not applicable because this syntax will not compile.

Example 5.3
Variable assignment behavior

5.1 The Process • 69

5.2 Conditional Programming Constructs

One of the more powerful features that processes provide in VHDL is the ability to use conditional

programming constructs such as if/then clauses, case statements, and loops. These constructs are only

available within a process, but their use is not limited to modeling sequential logic. As we’ll see, the

characteristics of a process also support modeling of combinational logic circuits, so these conditional

constructs are a very useful tool in VHDL. This provides the ability to model both combinational and

sequential logic using the more familiar programming language constructs.

5.2.1 If/Then Statements

An if/then statement provides a way to make conditional signal assignments based on Boolean

conditions. The if portion of statement is followed by a Boolean condition that if evaluated TRUE will

cause the signal assignment after the then statement to be performed. If the Boolean condition is

evaluated FALSE, no assignment is made. VHDL provides multiple variants of the if/then statement.

An if/then/else statement provides a final signal assignment that will be made if the Boolean condition is

evaluated false. An if/then/elsif statement allows multiple Boolean conditions to be used. The syntax for

the various forms of the VHDL if/then statement are as follows:

if boolean_condition then sequential_statement
end if;

if boolean_condition then sequential_statement_1
else sequential_statement_2
end if;

if boolean_condition_1 then sequential_statement_1
elsif boolean_condition_2 then sequential_statement_2
:
:

elsif boolean_condition_n then sequential_statement_n
end if;

if boolean_condition_1 then sequential_statement_1
elsif boolean_condition_2 then sequential_statement_2
:
:

elsif boolean_condition_n then sequential_statement_n
else sequential_statement_n+1
end if;

Let’s take a look at using an if/then statement to describe the behavior of a combinational logic

circuit. Recall that a combinational logic circuit is one in which the output depends on the instantaneous

values of the inputs. This behavior can be modeled by placing all of the inputs to the circuit in the

sensitivity list of a process. A change on any of the inputs in the sensitivity list will trigger the process and

cause the output to be updated. Example 5.4 shows how to model a 3-input combinational logic circuit

using if/then statements within a process.

70 • Chapter 5: Modeling Sequential Functionality

5.2.2 Case Statements

A case statement is another technique to model signal assignments based on Boolean conditions.

As with the if/then statement, a case statement can only be used inside of a process. The statement

begins with the keyword case followed by the input signal name that assignments will be based off

of. The input signal name can be optionally enclosed in parentheses for readability. The keywordwhen is

used to specify a particular value (or choice) of the input signal that will result in associated sequential

signal assignments. The assignments are listed after the ¼> symbol. The following is the syntax for a

case statement.

Example 5.4
Using if/then statements to model combinational logic

5.2 Conditional Programming Constructs • 71

case (input_name) is

when choice_1 ¼> sequential_statement(s);
when choice_2 ¼> sequential_statement(s);

:
:

when choice_n ¼> sequential_statement(s);
end case;

When not all the possible input conditions (or choices) are specified, a when others clause is used

to provide signal assignments for all other input conditions. The following is the syntax for a case

statement that uses a when others clause.

case (input_name) is

when choice_1 ¼> sequential_statement(s);
when choice_2 ¼> sequential_statement(s);

:
:

when others ¼> sequential_statement(s);
end case;

Multiple choices that correspond to the same signal assignments can be pipe-delimited in the case

statement. The following is the syntax for a case statement with pipe-delimited choices.

case (input_name) is

when choice_1 | choice_2 ¼> sequential_statement(s);
when others ¼> sequential_statement(s);

end case;

The input signal for a case statement must be a single signal name. If multiple scalars are to be used

as the input expression for a case statement, they should be concatenated either outside of the process

resulting in a new signal vector or within the process resulting in a new variable vector. Example 5.5

shows how to model a 3-input combinational logic circuit using case statements within a process.

72 • Chapter 5: Modeling Sequential Functionality

If/then statements can be embedded within a case statement, and, conversely, case statements can

be embedded within an if/then statement.

5.2.3 Infinite Loops

A loopwithin VHDL provides a mechanism to perform repetitive assignments infinitely. This is useful

in test benches for creating stimulus such as clocks or other periodic waveforms. A loop can only be used

within a process. The keyword loop is used to signify the beginning of the loop. Sequential signal

assignments are then inserted. The end of the loop is signified with the keywords end loop. Within the

loop, the wait for, wait until, and after statements are all legal. Signal assignments within a loop will be

Example 5.5
Using case statements to model combinational logic

5.2 Conditional Programming Constructs • 73

executed repeatedly forever unless an exit or next statement is encountered. The exit clause provides a

Boolean condition that will force the loop to end if the condition is evaluated true. When using the exit

statement, an additional signal assignment is typically placed after the loop to provide the desired

behavior when the loop is not active. Using flow control statements such as wait for and wait after

provide a means to avoid having the loop immediately executed again after exiting. The next clause

provides a way to skip the remaining signal assignments and begin the next iteration of the loop. The

following is the syntax for an infinite loop in VHDL.

loop

exit when boolean_condition; -- optional exit statement
next when boolean_condition; -- optional next statement
sequential_statement(s);

end loop;

Consider the following example of an infinite loop that generates a clock signal (CLK) with a period

of 100 ns. In this example, the process does not contain a sensitivity list, so a wait statement must be

used to control the signal assignments. This process in this example will trigger immediately and then

enter the infinite loop and never exit.

Example:

Clock_Proc1 : process
begin
loop

CLK <¼ not CLK;
wait for 50 ns;

end loop;
end process;

Now consider the following loop example that will generate a clock signal with a period of 100 ns with

an enable (EN) line. This loop will produce a periodic clock signal as long as EN ¼ 1. When EN ¼ 0, the

clock output will remain at CLK ¼ 0. An exit condition is placed at the beginning of the loop to check if

EN ¼ 0. If this condition is true, the loop will exit, and the clock signal will be assigned a 0. The process

will then wait until EN ¼ 1. Once EN ¼ 1, the process will end and then immediately trigger again and

reenter the loop. When EN¼ 1, the clock signal will be toggled (CLK <¼ not CLK) and then wait for 50 ns.

This toggling behavior will repeat as long as EN ¼ 1.

Example:

Clock_Proc2 : process
begin
loop

exit when EN¼’0’;
CLK <¼ not CLK;
wait for 50 ns;

end loop;

CLK <¼ ’0’;
wait until EN¼’1’;

end process;

It is important to keep in mind that infinite loops that continuously make signal assignments without

the use of sensitivity lists or wait statements will cause logic simulators to hang.

74 • Chapter 5: Modeling Sequential Functionality

5.2.4 While Loops

A while loop provides a looping structure with a Boolean condition that controls its execution. The

loop will only execute as long as its condition is evaluated true. The following is the syntax for a VHDL

while loop.

while boolean_condition loop

sequential_statement(s);
end loop;

Let’s implement the previous example of a loop that generates a clock signal (CLK) with a period of

100 ns as long as EN¼ 1. The Boolean condition for the while loop is EN¼ 1. When EN¼ 1, the loop will

be executed indefinitely. When EN ¼ 0, the while loop will be skipped. In this case, an additional signal

assignment is necessary to model the desired behavior when the loop is not used (i.e., CLK ¼ 0).

Example:

Clock_Proc3 : process
begin
while (EN¼’1’) loop
CLK <¼ not CLK;
wait for 50 ns;

end loop;

CLK <¼ ’0’;
wait until EN¼’1’;

end process;

5.2.5 For Loops

A for loop provides the ability to create a loop that will execute a pre-defined number of times. The

range of the loop is specified with integers (min, max) at the beginning of the for loop. A loop variable is

implicitly declared in the loop that will increment (or decrement) from min to max of the range. The loop

variable is of type integer. If it is desired to have the loop variable increment frommin to max, the keyword

to is used when specifying the range of the loop. If it is desired to have the loop variable decrement max

to min, the keyword downto is used when specifying the range of the loop. The loop variable can be

used within the loop as an index for vectors; thus the for loop is useful for automatically accessing and

assigning multiple signals within a single loop structure. The following is the syntax for a VHDL for loop in

which the loop variable will increment from min to max of the range:

for loop_variable in min to max loop

sequential_statement(s);
end loop;

The following is the syntax of a for loop in which the loop variable will decrement from max to min of

the range:

for loop_variable in max downto min loop

sequential_statement(s);
end loop;

For loops are useful for test benches in which a range of patterns are to be created. For loops are

also synthesizable as long as the complete behavior of the desired system is described by the loop. The

following is an example of creating a simple counter using the loop variable. The signal Count_Out in this

example is of type integer. This allows the loop variable i to be assigned to Count_Out each time through

the loop since the loop variable is also of type integer. This counter will count from 0 to 15 and then

repeat. The count will increment every 50 ns.

5.2 Conditional Programming Constructs • 75

Example:

Counter_Proc : process
begin

for i in 0 to 15 loop
Count_Out <¼ i;
wait for 50 ns;

end loop;
end process;

CONCEPT CHECK

CC5.2 When using an if/then statement to model a combinational logic circuit, is
using the else clause the same as using don’t cares when minimizing a
logic expression with a K-map?

(A) Yes. The else clause allows the synthesizer to assign whatever
output values are necessary in order to create the most minimal
circuit.

(B) No. The else clause explicitly states the output values for all input
codes not listed in the if/elsif portion of the if/then construct. This is
the same as filling in the truth table with specific values for all input
codes covered by the else clause and the synthesizer will create the
logic expression accordingly.

5.3 Signal Attributes

There are situations where we want to describe behavior that is based on more than just the current

value of a signal. For example, a real D-flip-flop will only update its outputs on a particular type of

transition (i.e., rising or falling). In order to model this behavior, we need to specify more information

about the signal. This is accomplished by using attributes. Attributes provide additional information about

a signal other than just its present value. An attribute can provide information such as past values,

whether an assignment was made to a signal or when the last time an assignment resulted in a value

change. A signal attribute is implemented by placing an apostrophe (‘) after the signal name and then

listing the VHDL attribute keyword. Different attributes will result in different output types. Attributes that

yield Boolean output types can be used as inputs to Boolean decision conditions for other VHDL

constructs. Other attributes can be used to define the range of new vectors by referencing the size of

existing vectors or automatically defining the number of iterations in a loop. Finally, some attributes can

be used to create self-checking test benches that monitor the impact of circuit delays on the functionality

of a system. The following is a list of the commonly used, pre-defined VHDL signal attributes. The

example signal name A is used to illustrate how scalar attributes operate. The example signal B is used

to illustrate how vector attributes operate with type bit_vector (7 downto 0).

Attribute Information returned Type returned

A‘event True when signal A changes, false otherwise boolean

A‘active True when an assignment is made to A, false otherwise boolean

A‘last_event Time when signal A last changed time

A‘last_active Time when signal A was last assigned to time

A‘last_value The previous value of A same type as A

76 • Chapter 5: Modeling Sequential Functionality

Attribute Information returned Type returned

B‘length Size of the vector (e.g., 8) integer

B‘left Left bound of the vector (e.g., 7) integer

B‘right Right bound of the vector (e.g., 0) integer

B‘range Range of the vector “(7 downto 0)” string

Signal attributes can be used to model edge sensitive behavior. Let’s look at the model for a simple

D-flip-flop. A process is used to model the synchronous behavior of the D-flip-flop. The sensitivity list

contains only the Clock input. The D input is not included in the sensitivity list because a change on D

should not trigger the process. Attributes and logical operators are not allowed in the sensitivity list of a

process. As a result, the process will trigger on every edge of the clock signal. Within the process, an

if/then statement is used with the Boolean condition (Clock‘event and Clock ¼ ‘1’) in order to make

signal assignments only on a rising edge of the clock. The syntax for this Boolean condition is

understood and is synthesizable by all CAD tools. An else clause is not included in the if/then statement.

This implies that when there is not a rising edge, no assignments will be made to the outputs and they will

simply hold their last value. Example 5.6 shows how to model a simple D-flip-flop using attributes. Note

that this example does not model the reset behavior of a real D-flip-flop.

CONCEPT CHECK

CC5.3 If the D input to a D-flip-flop is tied to a 0, which of the following conditions will return true
on every triggering edge of the clock?

(A) Q‘event and Q ¼ ‘0’

(B) Q‘active and Q ¼ ‘0’

(C) Q‘last_event ¼ ‘0’ and Q ¼ ‘0’

(D) Q‘last_active ¼ ‘0’ and Q ¼ ‘0’

Example 5.6
Behavioral modeling of a rising edge-triggered D-flip-flop using attributes

5.3 Signal Attributes • 77

Summary

v To model sequential logic, an HDL needs to
be able to trigger signal assignments based
on a triggering event. This is accomplished in
VHDL using a process.

v A sensitivity list is a way to control when a
VHDL process is triggered. A sensitivity list
contains a list of signals. If any of the signals
in the sensitivity list transition, it will cause the
process to trigger. If a sensitivity list is omit-
ted, the process will trigger immediately.

v Signal assignments are made when a pro-
cess suspends. There are two techniques to
suspend a process. The first is using the wait
statement. The second is simply ending the
process.

v Sensitivity lists and wait statements are never
used at the same time. Sensitivity lists are
used to model synthesizable logic, while wait
statements are used for test benches.

v When signal assignments are made in a pro-
cess, they are made in the order they are
listed in the process. If assignments are
made to the same signal within a process,
only the last assignment will take place when
the process suspends.

v If assignments are needed to occur prior to
the process suspending, a variable is used.
In VHDL, variables only exist within a pro-
cess. Variables are defined when a process
triggers and deleted when the process ends.

v Processes also allow more advanced
modeling constructs in VHDL. These include
if/then statements, case statements, infinite
loops, while loops, and for loops.

v Signal attributes allow additional information
to be observed about a signal other than its
value.

Exercise Problems

Section 5.1: The Process

5.1.1 When using a sensitivity list in a process, what
will cause the process to trigger?

5.1.2 When using a sensitivity list in a process, what
will cause the process to suspend?

5.1.3 When a sensitivity list is not used in a process,
when will the process trigger?

5.1.4 Can a sensitivity list and a wait statement be
used in the same process at the same time?

5.1.5 Does a wait statement trigger or suspend a
process?

5.1.6 When are signal assignments officially made in
a process?

5.1.7 Why are assignments in a process called
sequential signal assignments?

5.1.8 Can signals be declared in a process?

5.1.9 Are variables declared within a process visible
to the rest of the VHDL model (e.g., are they
visible outside of the process)?

5.1.10 What happens to a variable when a process
ends?

5.1.11 What is the assignment operator for variables?

Section 5.2: Conditional Programming

Constructs

5.2.1 Design a VHDLmodel to implement the behav-
ior described by the 4-input truth table in
Fig. 5.1. Use a process and an if/then state-
ment. Use std_logic and std_logic_vector
types for your signals. Declare the entity to
match the block diagram provided. Hint: Notice

that there are far more input codes producing
F¼ 0 than producing F¼ 1. Can you use this to
your advantage to make your VHDL model
simpler?

Fig. 5.1
System I functionality

5.2.2 Design a VHDLmodel to implement the behav-
ior described by the 4-input truth table in
Fig. 5.1. Use a process and a case statement.
Use std_logic and std_logic_vector types for
your signals. Declare the entity to match the
block diagram provided.

78 • Chapter 5: Modeling Sequential Functionality

5.2.3 Design a VHDLmodel to implement the behav-
ior described by the 4-input minterm list in
Fig. 5.2. Use a process and an if/then state-
ment. Use std_logic and std_logic_vector
types for your signals. Declare the entity to
match the block diagram provided.

Fig. 5.2
System J functionality

5.2.4 Design a VHDLmodel to implement the behav-
ior described by the 4-input minterm list in
Fig. 5.2. Use a process and a case statement.
Use std_logic and std_logic_vector types for
your signals. Declare the entity to match the
block diagram provided.

5.2.5 Design a VHDLmodel to implement the behav-
ior described by the 4-input maxterm list in
Fig. 5.3. Use a process and an if/then state-
ment. Use std_logic and std_logic_vector
types for your signals. Declare the entity to
match the block diagram provided.

Fig. 5.3
System K functionality

5.2.6 Design a VHDLmodel to implement the behav-
ior described by the 4-input maxterm list in
Fig. 5.3. Use a process and a case statement.
Use std_logic and std_logic_vector types for
your signals. Declare the entity to match the
block diagram provided.

5.2.7 Design a VHDLmodel to implement the behav-
ior described by the 4-input truth table in
Fig. 5.4. Use a process and an if/then state-
ment. Use std_logic and std_logic_vector
types for your signals. Declare the entity to

match the block diagram provided. Hint: Notice
that there are far more input codes producing
F¼ 1 than producing F¼ 0. Can you use this to
your advantage to make your VHDL model
simpler?

Fig. 5.4
System L functionality

5.2.8 Design a VHDLmodel to implement the behav-
ior described by the 4-input truth table in
Fig. 5.4. Use a process and a case statement.
Use std_logic and std_logic_vector types for
your signals. Declare the entity to match the
block diagram provided.

Section 5.3: Signal Attributes

5.3.1 What is the purpose of a signal attribute?

5.3.2 What is the data type returned when using the
signal attribute ‘event?

5.3.3 What is the data type returned when using the
signal attribute ‘last_event?

5.3.4 What is the data type returned when using the
signal attribute ‘length?

Exercise Problems • 79

Chapter 6: Packages
One of the drawbacks of the VHDL standard package is that it provides limited functionality in its

synthesizable data types. The bit and bit_vector, while synthesizable, lack the ability to accurately model

many of the topologies implemented in modern digital systems. Of primary interest are topologies that

involve multiple drivers connected to a single wire. The standard package will not permit this type of

connection; however, this type of topology is a common way to interface multiple nodes on a shared

interconnection. Furthermore, the standard package does not provide many useful features for these

types, such as don’t cares, arithmetic using the + and � operators, type conversion functions, or the

ability to read/write external files. To increase the functionality of VHDL, packages are included in the

design. This chapter introduces the most common packages used in modern VHDL models.

Learning Outcomes—After completing this chapter, you will be able to:

6.1 Describe the capabilities of the STD_LOGIC_1164 package that allow more accurate
models of modern digital systems to be described.

6.2 Describe the capabilities of the NUMERIC_STD package that allow behavioral models of
arithmetic circuits to be described including operations using data types from the
STD_LOGIC_1164 package.

6.3 Describe how text reporting using external I/O can is handled by the TEXTIO and
STD_LOGIC_TEXTIO packages.

6.4 Describe the capabilities of someof the other common packages provided in the IEEE library.

6.1 STD_LOGIC_1164

In the late 1980s, the IEEE 1164 standard was released that added functionality to VHDL to allow a

multivalued logic system (i.e., a signal can take on more values than just 0 and 1). This standard also

provided a mechanism for multiple drivers to be connected to the same signal. An updated release in

1993 called IEEE 1164-1993 was the most significant update to this standard and contains the majority

of functionality used in VHDL today. Nearly all systems described in VHDL include the 1164 standard as

a package. This package is included by adding the following syntax at the beginning of the VHDL file.

library IEEE;

use IEEE.std_logic_1164.all;

This package defines four new data types: std_ulogic, std_ulogic_vector, std_logic, and

std_logic_vector. The std_ulogic and std_logic are enumerated, scalar types that can provide a

multivalued logic system. The types std_ulogic_vector and std_logic_vector are vector types containing

a linear array of scalar types std_ulogic and std_logic, respectively. The scalar types can take on nine

different values as described below.

Value Description Notes

U Uninitialized Default initial value

X Forcing unknown

0 Forcing 0

1 Forcing 1

Z High impedance

W Weak unknown

L Weak 0 Pull-down

H Weak 1 Pull-up

- Don’t care Used for synthesis only

Springer Nature Switzerland AG 2019

B. J. LaMeres, Quick Start Guide to VHDL, https://doi.org/10.1007/978-3-030-04516-6_6

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04516-6_6&domain=pdf

These values can be assigned to signals by enclosing them in single quotes (scalars) or double

quotes (vectors).

Example:

A <¼ ’X’; -- assignment to a scalar (std_ulogic or std_logic)

V <¼ "01ZH"; -- assignment to a 4-bit vector (std_ulogic_vector

or std_logic_vector)

The type std_ulogic is unresolved (note: the “u” standard for “unresolved”). This means that if a

signal is being driven by two circuits with type std_ulogic, the VHDL simulator will not be able to resolve

the conflict and it will result in a compiler error. The type std_logic is resolved. This means that if a signal

is being driven by two circuits with type std_logic, the VHDL simulator will be able to resolve the conflict

and will allow the simulation to continue. Figure 6.1 shows an example of a shared signal topology and

how conflicts are handled when using various data types.

6.1.1 STD_LOGIC_1164 Resolution Function

The std_logic_1164 will resolve signal conflict of type std_logic using a resolution function. The

nine allowed values each have a relative drive strength that allows a resolution to be made in the event of

conflict. Whenever there is a conflict, the simulator will consult the resolution function to determine the

value of the signal. Figure 6.2 shows the relative drive strengths of the nine possible signal values

provided by the std_logic_1164 package and the resolution function table.

Fig. 6.1
STD_LOGIC_1164 unresolved vs. resolved conflict handling

82 • Chapter 6: Packages

6.1.2 STD_LOGIC_1164 Logical Operators

The std_logic_1164 also contains new definitions for all of the logical operators (and, nand, or, nor,

xor, xnor, not) for types std_ulogic and std_logic. These are required since these data types can take

on more logic values than just a 0 or 1; thus the logical operator definitions from the standard package

are not sufficient.

6.1.3 STD_LOGIC_1164 Edge Detection Functions

The std_logic_1164 also provides functions for the detection of rising or falling transitions on

a signal. The functions rising_edge() and falling_edge() provide a more readable form of this function-

ality compared to the (Clock‘event and Clock ¼ ‘1’) approach. Example 6.1 shows the use of the

rising_edge() function to model the behavior of a rising edge-triggered D-flip-flop.

Fig. 6.2
STD_LOGIC_1164 resolution function

6.1 STD_LOGIC_1164 • 83

6.1.4 STD_LOGIC_1164 Type Converstion Functions

The std_logic_1164 package also provides functions to convert between data types. Functions exist

to convert between bit, std_ulogic, and std_logic. Functions also exist to convert between these types’

vector forms (bit_vector, std_ulogic_vector, and std_logic_vector). The functions are listed below.

Name Input type Return type

To_bit() std_ulogic bit

To_bitvector() std_ulogic_vector bit_vector

To_bitvector() std_logic_vector bit_vector

To_StdULogic() bit std_ulogic

To_StdULogicVector() bit_vector std_ulogic_vector

To_StdULogicVector() std_logic_vector std_ulogic_vector

To_StdLogicVector() bit_vector std_logic_vector

To_StdLogicVector() std_ulogic_vector std_logic_vector

When using these functions, the function name and input signal are placed to the right of the

assignment operator, and the target signal is placed on the left.

Example:

A <¼ To_bit(B); -- B is type std_ulogic, A is type bit

V <¼ To_StdLogicVector(C); -- C is type bit_vector, V is std_logic_vector

Example 6.1
Behavioral modeling of a D-flip-flop using the rising_edge() function

84 • Chapter 6: Packages

When identical function names exist that can have different input data types, the VHDL compiler will

automatically decide which function to use based on the input argument type. For example, the function

“To_bitvector” exists for an input of std_ulogic_vector and std_logic_vector. When using this function, the

compiler will automatically detect which input type is being used and select the corresponding function

variant. No additional syntax is required by the designer in this situation.

CONCEPT CHECK

CC6.1 What is the primary contribution of the STD_LOGIC_1164 package?

(A) Arithmetic operators for the types bit and bit_vector.

(B) Functions that allow all operators in the standard package to be used on all
data types from the same package.

(C) The ability to read and write from external files.

(D) New data types that can take on more values beyond 0’s and 1’s in order
to more accurately model modern digital systems.

6.2 NUMERIC_STD

The numeric_std package provides numerical computation for types std_logic and std_logic_vector.

When performing binary arithmetic, the results of arithmetic operations and comparisons vary greatly

depending on whether the binary number is unsigned or signed. As a result, the numeric_std package

defines two new data types, unsigned and signed. An unsigned type is defined to have its MSB in the

leftmost position of the vector and the LSB in the rightmost position of the vector. A signed number uses

two’s complement representation with the leftmost bit of the vector being the sign bit. When declaring a

signal to be one of these types, it is implied that these represent the encoding of an underlying native type

of std_logic/std_logic_vector. The use of unsigned/signed types provides the interpretation of how

arithmetic, logical, and comparison operators will perform. This also implies that the numeric_std

package requires the std_logic_1164 to always be included. While the numeric_std package includes

an inclusion call of the std_logic_1164 package, it is common to explicitly include both the

std_logic_1164 and the numeric_std packages in the main VHDL file. The VHDL compiler will ignore

redundant package statements. The syntax for including these packages is as follows:

library IEEE;

use IEEE.std_logic_1164.all; -- defines types std_ulogic and std_logic

use IEEE.numeric_std.all; -- defines types unsigned and signed

6.2.1 NUMERIC_STD Arithmetic Functions

The numeric_std package provides support for a variety of arithmetic functions for the types

unsigned and signed. These include +,�, *, /,mod, rem, and abs functions. These arithmetic operations

behave differently for the unsigned versus signed types, but the VHDL compiler will automatically use the

correct operation based on the types of the input arguments.

Most synthesis tools support the addition, subtraction, and multiplication operators in this package.

This provides a higher level of abstraction when modeling arithmetic circuitry. Recall that the VHDL

standard package does not support addition, subtraction, and multiplication of types bit/bit_vector using

the +, �, and * operators. Using the numeric_std package gives the ability to model these arithmetic

6.2 NUMERIC_STD • 85

operations with a synthesizable data type using the more familiar mathematical operators. The division,

modulo, remainder, and absolute value functions are not synthesizable directly from this package.

Example:

F <¼ A + B; -- A, B, F are type unsigned(3 downto 0)

F <¼ A - B;

The numeric_std package gives the ability to model arithmetic at a higher level of abstraction. Let’s

look at an example of implementing an adder circuit using the “+” operator. While this operator is

supported for the type integer in the std_logic_1164 package, modeling adders using integers can be

onerous due to the multiple levels of casting, range checking, and manual handling of carry out. A

simpler approach to modeling adder behavior is to use the types unsigned/signed and the “+” operator

provided in the numeric_std package. Temporary signals or variables of these types are required to

model the adder behavior with the “+” sign. Also, type casting is still required when assigning the values

back to the output ports. One advantage of this approach is that range checking is eliminated because

rollover is automatically handled with these types.

Example 6.2 shows a behavioral model for a 4-bit adder in VHDL. In this model, a 5-bit unsigned

vector is created (Sum_uns). The two inputs, A and B, are concatenated with a leading zero in order to

facilitate assigning the sum to this 5-bit vector. The advantage of this approach is that the carry out of the

adder is automatically included in the sum as the highest position bit. Since A and B are of type

std_logic_vector, they must be converted to unsigned before the addition with the “+” operator can

take place. The concatenation, type conversion, and addition can all take place in a single assignment.

Example:

Sum_uns <¼ unsigned((’0’ & A)) + unsigned((’0’ & B));

The 5-bit vector Sum_uns now contains the 4-bit sum and carry out. The final step is to assign the

separate components of this vector to the output ports of the system. The 4-bit sum portion requires a

type conversion back to std_logic_vector before it can be assigned to the output port Sum. Since the

Cout port is a scalar, an unsigned signal can be assigned to it directly without the need for a conversion.

Example:

Sum <¼ std_logic_vector(Sum_uns(3 downto 0));

Cout <¼ Sum_uns(4);

86 • Chapter 6: Packages

6.2.2 NUMERIC_STD Logical Functions

The numeric_std package provides support for all of the logical operators (and, nand, or, nor, xor,

xnor, not) for types unsigned and signed. It also provides two new shift functions shift_left() and

shift_right(). These shift functions will fill the vacant position in the vector after the shift with a 0; thus

these are logical shifts. This package also provides two new rotate functions rotate_left() and

rotate_right().

6.2.3 NUMERIC_STD Comparison Functions

The numeric_std package provides support for all of the comparison functions for types unsigned

and signed. These include >, <, <¼, >¼, ¼, and /¼. These comparisons return type Boolean.

Example: (A ¼ “0000”, B ¼ “1111”).

if (A < B) then -- This condition is TRUE if A and B are UNSIGNED

:

if (A < B) then -- This condition is FALSE if A and B are SIGNED

6.2.4 NUMERIC_STD Edge Detection Functions

The numeric_std also provides the functions rising_edge() and falling_edge() for the detection of

rising or falling edge transition detection for types unsigned and signed.

Example 6.2
Behavioral model of a 4-bit adder in VHDL

6.2 NUMERIC_STD • 87

6.2.5 NUMERIC_STD Conversion Functions

The numeric_std package contains a variety of useful conversion functions. Of particular usefulness

are functions between the type integer and to/from unsigned/signed. This allows behavioral models for

counters, adders, and subtractors to be implemented using the more readable type integer. After the

functionality has been described, a conversion can be used to turn the result into types unsigned or

signed to provide a synthesizable output. When converting an integer to a vector, a size argument is

included. The size argument is of type integer and provides the number of bits in the vector that the

integer will be converted to.

Name Input type Return type

To_integer() unsigned integer

To_integer() signed integer

To_unsigned() integer, <size> unsigned (size-1 downto 0)

To_signed() integer, <size> signed (size-1 downto 0)

6.2.6 NUMERIC_STD Type Casting

VHDL contains a set of built-in type casting operations that are commonly used with the numeric_std

package to convert between std_logic_vector and unsigned/signed. Since the types unsigned and

signed are based on the underlying type std_logic_vector, the conversion is simply known as casting.

The following are the built-in type casting capabilities in VHDL.

Name Input type Return type

std_logic_vector() unsigned std_logic_vector

std_logic_vector() signed std_logic_vector

unsigned() std_logic_vector unsigned

signed() std_logic_vector signed

When using these type casts, they are placed on the right-hand side of the assignment exactly as a

conversion function.

Example:

A <¼ std_logic_vector(B); -- B is unsigned, A is std_logic_vector

C <¼ unsigned(D); -- D is std_logic_vector, C is unsigned

Type casts and conversion functions can be compounded in order to perform multiple conversions

in one assignment. This is useful when converting between types that do not have a direct cast or

conversion function. Let’s look at the example of converting an integer to an 8-bit std_logic_vector where

the number being represented is unsigned. The first step is to convert the integer to an unsigned type.

This can be accomplished with the to_unsigned function defined in the numeric_std package. This can

be embedded in a second cast from unsigned to std_logic_vector. In the following example, E is the

target of the operation and is of type std_logic vector. F is the argument of assignment and is of type

integer. Recall that the to_unsigned conversions require both the input integer name and the size of the

unsigned vector being converted to.

Example:

E <¼ std_logic_vector(to_unsigned(F, 8));

88 • Chapter 6: Packages

CONCEPT CHECK

CC6.2 Does the NUMERIC_STD package provide arithmetic operators that work directly on
signals of type std_logic_vector?

(A) Yes. The entire purpose of this package is to provide math operators for
signals of type std_logic_vector.

(B) No. This package does not provide operators directly for std_logic_vector. It
instead provides arithmetic operators for two new types (UNSIGNED and
SIGNED) and then conversion functions to cast these types to and from
std_logic_vector.

6.3 TEXTIO and STD_LOGIC_TEXTIO

The textio package provides the ability to read and write to/from external input/output (I/O). External

I/O refers to items such as files or the standard input/output of a computer. This package contains

functions that allow the values of signals and variables to be read and written in addition to strings. This

allowsmore sophisticated output messages to be created compared to the report statement alone, which

can only output strings. The ability to read in values from a file allows sophisticated test patterns to be

created outside of VHDL and then read in during simulation for testing a system. It is important to keep in

mind that the term “I/O” refers to external files or the transcript window, not the inputs and outputs of a

system model. The textio package is not synthesizable and is only used in test benches. The textio

package is within the STD library and is included in a VHDL design using the following syntax.

library STD;

use STD.textio.all;

This package by itself only supports reading and writing types bit, bit_vector, integer, character, and

string. Since the majority of synthesizable designs use types std_logic and std_logic_vector, an addi-

tional package was created that added support for these types. The package is called std_logic_textio

and is located within the IEEE library. The syntax for including this package is below.

library IEEE;

use IEEE.std_logic_textio.all;

The textio package defines two new types for interfacing with external I/O. These types are file and

line. The type file is used to identify or create a file for reading/writing within the VHDL design. The syntax

for declaring a file is as follows:

file file_handle : <file_type> open <file_mode> is <"filename">;

Declaring a file will automatically open the file and keep it open until the end of the process that is

using it. The file_handle is a unique identifier for the file that is used in subsequent procedures. The file

handle name is user-defined. A file handle eliminates the need to specify the entire file name each time a

file access procedure is called. The file_type describes the information within the file. There are two

supported file types, TEXT and INTF. A TEXT file is one that contains strings of characters. This is the

most common type of file used as there are functions that can convert between types string,

bit/bit_vector, and std_logic/std_logic_vector. This allows all of the information in the file to be stored

as characters, which makes the file readable by other programs. An INTF file type contains only integer

values and the information is stored as a 32-bit, signed binary number. The file_mode describes whether

6.3 TEXTIO and STD_LOGIC_TEXTIO • 89

the file will be read from or written to. There are two supported modes, WRITE_MODE and

READ_MODE. The filename is given within double quotes and is user-defined. It is common to enter

an extension on the file so that it can be opened by other programs (e.g., output.txt). Declaring a file

always takes place within a process before the process begin statement. The following are examples of

how to declare files.

file Fout: TEXT open WRITE_MODE is "output_file.txt";

file Fin: TEXT open READ_MODE is "input_file.txt";

The information within a file is accessed (either read or written) using the concept of a line. In the

textio package, a file is interpreted as a sequence of lines, each containing either a string of characters or

an integer value. The type line is used as a temporary buffer when accessing a line within the file. When

accessing a file, a variable is created of type line. This variable is then used to either hold information that

is read from a line in the file or to hold the information that is to be written to a line in the file. A variable is

necessary for this behavior since assignments to/from the file must be made immediately. As such, a line

variable is always declared within a process before the process begin statement. The syntax for

declaring a variable of type line is as follows:

variable <line_variable_name> : line;

There are two procedures that allow information to be transferred between a line variable in VHDL

and a line in a file. These procedures are readline() and writeline(). Their syntax is as follows:

readline(<file_handle>, <line_variable_name>);

writeline(<file_handle>, <line_variable_name>);

The transfer of information between a line variable and a line in a file using these procedures is

accomplished on the entire line. There is no mechanism to read or write only a portion of the line in a file.

Once a file is opened/created using a file declaration, the lines are accessed in the order they appear in

the file. The first procedure called (either readline() or writeline()) will access the first line of the file. The

next time a procedure is called, it will access the second line of the file. This will continue until all of the

lines have been accessed. The textio package provides a function to indicate when the end of the file has

been reached when performing a readline(). This function is called endfile() and returns type Boolean.

This function will return true once the end of the file has been reached. Figure 6.3 shows a graphical

representation of how the textio package handles external file access.

90 • Chapter 6: Packages

Two additional procedures are provided to add or retrieve information to/from the line variable within

the VHDL test bench. These procedures are read() and write(). The syntax for these procedures is as

follows:

read(<line_variable_name>, <destination_variable>);

write(<line_variable_name>, <source_variable>);

When using the read() procedure, the information in the line variable is treated as space-delimited.

This means that each read() procedure will retrieve the information from the line variable until it reaches a

white space. This allows multiple read() procedures to be used in order to parse the information into

separate destination_variable names. The destination_variable must be of the appropriate type and size

of the information being read from the file. For example, if the field in the line being read is a 4-character

string (“wxyz”), then a destination variable must be defined of type string(1 to 4). If the field being read is a

2-bit std_logic_vector, then a destination variable must be defined of type std_logic_vector(1 downto 0).

The read() procedure will ignore the delimiting white space character.

When using the write() procedure, the source_destination is assumed to be of type bit, bit_vector,

integer, std_logic, or std_logic_vector. If it is desired to enter a text string directly, then the function string

is used with the format string’ <“characters. . .”>. Multiple write() procedures can be used to insert

information into the line variable. Each subsequent write procedure appends the information to the

end of the string. This allows different types of information to be interleaved (e.g., text, signal value, text,

etc.).

Fig. 6.3
IEEE.textio package interpretation of files

6.3 TEXTIO and STD_LOGIC_TEXTIO • 91

CONCEPT CHECK

CC6.3 What is the primary functionality that is provided when using the TEXTIO and
STD_LOGIC_TEXTIO packages?

(A) Arithmetic operators for the types bit and bit_vector.

(B) Functions that allow all operators in the standard package to be used on all
data types from the same package.

(C) The ability to read and write from external files.

(D) New data types that can take on more values beyond 0’s and 1’s in order to
more accurately model modern digital systems.

6.4 Other Common Packages

6.4.1 NUMERIC_STD_UNSIGNED

When using the numeric_std package, the data types unsigned and signed must be used in order to

get access to the numeric operators. While this provides ultimate control over the behavior of the signal

operations and comparisons, many designs may only use unsigned types. In order to provide a

mechanism to treat all vectors as unsigned while leaving their type as std_logic_vector, the numeric_st-

d_unsigned package was created. When this package is used, it will treat all std_logic_vectors in the

design as unsigned. This package requires the std_logic_1164 and numeric_std packages to be

previously included. When used, all signals and ports can be declared as std_logic/std_logic_vector,

and they will be treated as unsigned when performing arithmetic operations and comparisons. The

following is an example of how to include this package.

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

use IEEE.numeric_std_unsigned.all;

The numeric_std_unsigned package contains a fewmore type conversions beyond the numeric_std

package. These additional conversions are as follows:

Name Input type Return type

To_Integer std_logic_vector integer

To_StdLogicVector unsigned std_logic_vector

6.4.2 NUMERIC_BIT

The numeric_bit package provides numerical computation for types bit and bit_vector. Since the

vast majority of VHDL designs today use types std_logic and std_logic_vector instead of bit/bit_vector,

this package is rarely used. This package is included by adding the following syntax at the beginning of

the VHDL file in the design.

library IEEE;

use IEEE.numeric_bit.all; -- defines types unsigned and signed

92 • Chapter 6: Packages

The numeric_bit package is nearly identical to numeric_std. It defines data types unsigned and

signed, which provide information on the encoding style of the underlying data types bit and bit_vector.

All of the arithmetic, logical, and comparison functions defined in numeric_std are supported in

numeric_bit (+, �, *, /, mod, rem, abs, and, nand, or, nor, xor, xnor, not, >, <, <¼, >¼, ¼, /¼) for

types unsigned and signed. This package also provides the same edge detection (rising_edge(),

falling_edge()), shift (shift_left(), shift_right()), and rotate (rotate_left(), rotate_right()) functions for

types unsigned and signed.

The primary difference between numeric_bit and numeric_std is that numeric_bit also provides

support for the shift/rotate operators from the standard package (sll, srl, rol, ror). Also, the conversion

functions are defined only for conversions between integer, unsigned, and signed.

Name Input type Return type

To_integer unsigned integer

To_integer signed integer

To_unsigned integer, <size> unsigned (size-1 downto 0)

To_signed integer, <size> signed (size-1 downto 0)

6.4.3 NUMERIC_BIT_UNSIGNED

The numeric_bit_unsigned package provides a way to treat all bit/bit_vectors in a design as

unsigned numbers. The syntax for including the numeric_bit_unsigned package is shown below. In

this example, all bit/bit_vectors will be treated as unsigned numbers for all arithmetic operations and

comparisons.

library IEEE;

use IEEE.numeric_bit.all;

use IEEE.numeric_bit_unsigned.all;

The numeric_bit_unsigned package contains a few more type conversions beyond the numeric_bit

package. These additional conversions are as follows:

Name Input type Return type

To_integer std_logic_vector integer

To_BitVector unsigned bit_vector

6.4.4 MATH_REAL

Themath_real package provides numerical computation for the type real. The type real is the VHDL

type used to describe a 32-bit floating point number. None of the operators provided in the math_real

package are synthesizable. This package is primarily used for test benches. This package is included by

adding the following syntax at the beginning of the VHDL file in the design.

library IEEE;

use IEEE.math_real.all;

6.4 Other Common Packages • 93

The math_real package defines a set of commonly used constants, which are shown below.

Constant name Type Value Description

MATH_E real 2.718 Value of e

MATH_1_E real 0.367 Value of 1/e

MATH_PI real 3.141 Value of pi

MATH_1_PI real 0.318 Value of 1/pi

MATH_LOG_OF_2 real 0.693 Natural log of 2

MATH_LOG_OF_10 real 2.302 Natural log of10

MATH_LOG2_OF_E real 1.442 Log base 2 of e

MATH_LOG10_OF_E real 0.434 Log base 10 of e

MATH_SQRT2 real 1.414 Sqrt of 2

MATH_SQRT1_2 real 0.707 Sqrt of 1/2

MATH_SQRT_PI real 1.772 Sqrt of pi

MATH_DEG_TO_RAD real 0.017 Conversion factor from degree to radian

MATH_RAD_TO_DEG real 57.295 Conversion factor from radian to degree

Only three digits of accuracy are shown in this table; however, the constants defined in the

math_real package have full 32-bit accuracy. The math_real package provides a set of commonly

used floating point operators for the type real.

Function name Return type Description

SIGN real Returns sign of input

CEIL real Returns smallest integer value

FLOOR real Returns largest integer value

ROUND real Rounds input up/down to whole number

FMAX real Returns largest of two inputs

FMIN real Returns smallest of two inputs

SQRT real Returns square root of input

CBRT real Returns cube root of input

** real Raise to power of (X**Y)

EXP real eX

LOG real log(X)

SIN real sin(X)

COS real cos(X)

TAN real tan(X)

ASIN real asin(X)

ACOS real acos(X)

ATAN real atan(X)

ATAN2 real atan(X/Y)

SINH real sinh(X)

COSH real cosh(X)

TANH real tanh(X)

ASINH real asinh(X)

ACOSH real acosh(X)

ATANH real atanh(X)

94 • Chapter 6: Packages

6.4.5 MATH_COMPLEX

The math_complex package provides numerical computation for complex numbers. Again, nothing

in this package is synthesizable and is typically used only for test benches. This package is included by

adding the following syntax at the beginning of the VHDL file in the design.

library IEEE;

use IEEE.math_complex.all;

This package defines three new data types, complex, complex_vector, and complex_polar. The

type complex is defined with two fields, real and imaginary. The type complex_vector is a linear array of

type complex. The type complex_polar is defined with two fields, magnitude and angle. This package

provides a set of common operations for use with complex numbers. This package also supports the

arithmetic operators +, �, *, and / for the type complex.

Function name Return type Description

CABS real Absolute value of complex number

CARG real (radians) Returns angle of complex number

CMPLX complex Returns complex number form of input

CONJ complex or

complex_polar

Returns complex conjugate

CSQRT real Returns square root

CEXP real Returns eZ of complex input

COMPLEX_TO_POLAR complex_polar Convert complex to complex_polar

POLAR_TO_COMPLEX complex Convert complex_polar to complex

6.4.6 Legacy Packages (STD_LOGIC_ARITH/UNSIGNED/SIGNED)

Prior to the release of the numeric_std package by IEEE, Synopsis, Inc. created a set of packages to

provide computational operations for types std_logic and std_logic_vector. Since these arithmetic

packages were defined very early in the life of VHDL, they were widely adopted. Unfortunately, due to

these packages not being standardized through a governing body such as IEEE, vendors began

modifying the packages to meet proprietary needs. This led to a variety of incompatibility issues that

have plagued these packages. As a result, all new designs requiring computational operations should be

based on the IEEE numeric_std package. While the IEEE standard is the recommended numerical

package for VHDL, the original Synopsis packages are still commonly found in designs and in design

examples, so providing an overview of their functionality is necessary.

Synopsis, Inc. created the std_logic_arith package to provide computational operations for types

std_logic and std_logic_vector. Just as with the numeric_std package, this package defines two new

types, unsigned and signed. Arithmetic, comparison, and shift operators are provided for these types

that include +,�, *, abs, >, <, <¼, >¼,¼, /¼, shl, and shr. This package also provides a set of conversion

functions between types unsigned, signed, std_logic_vector, and integer. The syntax for these

conversions is as follows:

Name Input type Return type

CONV_INTEGER unsigned integer

CONV_INTEGER signed integer

CONV_UNSIGNED integer, <size> unsigned

CONV_UNSIGNED signed unsigned

CONV_SIGNED integer, <size> signed

CONV_SIGNED unsigned signed

6.4 Other Common Packages • 95

Name Input type Return type

CONV_STD_LOGIC_VECTOR integer, <size> std_logic_vector(size-1 downto 0)

CONV_STD_LOGIC_VECTOR unsigned, <size> std_logic_vector(size-1 downto 0)

CONV_STD_LOGIC_VECTOR signed, <size> std_logic_vector(size-1 downto 0)

The Synopsis packages have the ability to treat all std_logic_vectors in a design as either unsigned

or signed by including an additional package. The std_logic_unsigned package, when included in

conjunction with the std_logic_arith package, will treat all std_logic_vectors in the design as unsigned

numbers. The syntax for using the Synopsis arithmetic packages on unsigned numbers is as follows.

The std_logic_1164 package is required to define types std_logic and std_logic_vector. The

std_logic_arith package provides the computational operators for types std_logic and std_logic_vector.

Finally, the std_logic_unsigned package treats all std_logic and std_logic_vector types as unsigned

numbers when performing arithmetic operations.

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

The std_logic_signed package works in a similar manner with the exception that it treats all

std_logic and std_logic_vector types as signed numbers when performing arithmetic operations. The

std_logic_unsigned and std_logic_signed packages are never used together since they will conflict with

each other.

The syntax for using the std_logic_signed package is as follows:

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_signed.all;

One of the more confusing aspects of the Synopsis packages is that they are included in the IEEE

library. This means that both the numeric_std package (IEEE standard) and the std_logic_arith package

(Synopsis, nonstandard) are part of the same library, but one is recommended, while the other is not.

This is due to the fact that the Synopsis packages were developed first and putting them into the IEEE

library was the most natural location since this library was provided as part of the VHDL standard. When

the numeric_std package was standardized by IEEE, it also was naturally inserted into the IEEE library.

As a result, today’s IEEE library contains both styles of packages.

CONCEPT CHECK

CC6.4 Why doesn’t the VHDL standard package simply include all of the functionality that has
been created in all of the packages that were developed later?

(A) Therewas not sufficient funding to keep the VHDL standard package updated.

(B) If every package was included, compilation would take an excessive amount
of time.

(C) Explicitly defining packages helps remind the designer the proper way to
create a VHDL model.

(D) Because not all designs require all of the functionality in every package. Plus,
some packages defined duplicate information. For example, both the
numeric_bit and numeric_std have data types called unsigned.

96 • Chapter 6: Packages

Summary

v The IEEE STD_LOGIC_1164 package
providesmore realistic data types formodeling
modern digital systems. This package
provides the std_ulogic and std_logic data
types. These data types can take on nine dif-
ferent values (U, X, 0, 1, Z, W, L, H, and -).

v The std_logic data type provides a resolution
function that allows multiple outputs to be
connected to the same signal. The resolution
function will determine the value of the signal
based on a pre-defined priority given in the
function.

v The IEEE STD_LOGIC_1164 package
provides logical operators and edge detec-
tion functions for the types std_ulogic and
std_logic. It also provides conversion
functions to and from the type bit.

v The IEEE NUMERIC_STD package
provides the data types unsigned and
signed. These types use the underlying
data type std_logic. These types provide the
ability to treat vectors as either unsigned or
two’s complement codes.

v The IEEE NUMERIC_STD package
provides arithmetic operations for the types
unsigned and signed. This package also
provides conversions functions and type
casts to and from the types integer and
std_logic_vector.

v The TEXTIO and STD_LOGIC_TEXTIO
packages provide the functionality to read
and write to external files.

Exercise Problems

Section 6.1: STD_LOGIC_1164

6.1.1 What are all the possible values that a signal of
type std_logic can take on?

6.1.2 What is the difference between the types
std_ulogic and std_logic?

6.1.3 If a signal of type std_logic is assigned both a
0 and Z at the same time, what will the final
signal value be?

6.1.4 If a signal of type std_logic is assigned both a
1 and X at the same time, what will the final
signal value be?

6.1.5 If a signal of type std_logic is assigned both a
0 and L at the same time, what will the final
signal value be?

6.1.6 Are any arithmetic operations provided for the
type std_logic_vector in the
STD_LOGIC_1164 package?

Section 6.2: NUMERIC_STD

6.2.1 If you declare a signal of type unsigned from
the NUMERIC_STD package, what are all the
possible values that the signal can take on?

6.2.2 If you declare a signal of type signed from the
NUMERIC_STD package, what are all the pos-
sible values that the signal can take on?

6.2.3 If two signals (A and B) are declared of type
signed from the NUMERIC_STD package and
hold the values A <¼ “1111” and B <¼ “0000”,
which signal has a greater value?

6.2.4 If two signals (A and B) are declared of type
unsigned from the NUMERIC_STD package

and hold the values A <¼ “1111” and
B <¼ “0000”, which signal has a greater value?

6.2.5 If you are using the NUMERIC_STD package,
what is the syntax to convert a signal of type
unsigned into std_logic_vector?

6.2.6 If you are using the NUMERIC_STD package,
what is the syntax to convert a signal of type
integer into std_logic_vector?

Section 6.3: TEXTIO and STD_LOGIC_

TEXTIO

6.3.1 What does the keyword file accomplish?

6.3.2 What is the difference between the commands
write and writeline?

6.3.3 Can two different types of information be writ-
ten to a line variable in one command?

6.3.4 What is the name of the special file handle
reserved for the standard output of a
computer?

Section 6.4: Other Common Packages

6.4.1 What is the impact of including the
NUMERIC_STD_UNSIGNED package?

6.4.2 Does the NUMERIC-BIT package support
resolved data types?

6.4.3 Are the functions in the MATH_REAL and
MATH_COMPLEX package synthesizable?

6.4.4 Can the NUMERIC_STD and
STD_LOGIC_ARITH packages be used at
the same time? Explain why or why not?

Exercise Problems • 97

Chapter 7: Test Benches
The functional verification of VHDL designs is accomplished through simulation using a test bench.

A test bench is a VHDL system that instantiates the system to be tested as a component and then

generates the input patterns and observes the outputs. VHDL provides a variety of capability to design

test benches that can automate stimulus generation and provide automated output checking. These

capabilities can be expanded by including packages that take advantage of reading/writing to external

I/O. This chapter provides the details of VHDL’s built-in capabilities that allow test benches to be created

and some examples of automated stimulus generation and using external files.

Learning Outcomes—After completing this chapter, you will be able to:

7.1 Design a VHDL test bench that manually creates each stimulus pattern using a series of
signal assignments and wait statements within a process.

7.2 Design a VHDL test bench that uses for loops to automatically generate an exhaustive set
of stimulus patterns.

7.3 Design a VHDL test bench that automatically checks the outputs of the system being
tested using report and assert statements.

7.4 Design a VHDL test bench that uses external I/O as part of the testing procedures
including reading stimulus patterns from, and writing the results to, external files.

7.1 Test Bench Overview

Creating the testing strategy for a design is a critical piece of the digital design process. In

HDL-based testing, the system being tested is often called a device under test (DUT) or unit under

test (UUT). Test benches are only used for simulation so we can use abstract modeling techniques that

are unsynthesizable to generate the stimulus patterns. VHDL also contains specific functionality to report

on the status of a test and also automatically check that the outputs are correct. Example 7.1 shows how

to create a simple test bench to verify the operation of SystemX. The test bench does not have any inputs

or outputs; thus there are no ports declared in the entity. SystemX is declared as a component in the test

bench and then instantiated (DUT1). Internal signals are declared to connect to the component under

test (A_TB, B_TB, C_TB, F_TB). A process is then used to drive the inputs of SystemX. Within the

process, wait statements are used to control the execution of the signal assignments; thus the process

does not have a sensitivity list. Each possible input code is generated within the process. The output

(F_TB) is observed using a simulation tool in either the form of a waveform or a table listing.

Springer Nature Switzerland AG 2019

B. J. LaMeres, Quick Start Guide to VHDL, https://doi.org/10.1007/978-3-030-04516-6_7

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04516-6_7&domain=pdf

CONCEPT CHECK

CC7.1 How can the output of a DUT be verified when it is connected to a signal that does not go
anywhere?

(A) It can’t. The output must be routed to an output port on the test bench.

(B) The values of any dangling signal are automatically written to a text file.

(C) It is viewed in the logic simulator as either a waveform or text listing.

(D) It can’t. A signal that does not go anywhere will cause an error when the
VHDL file is compiled.

Example 7.1
Creating a VHDL test bench

100 • Chapter 7: Test Benches

7.2 Generating Stimulus Vectors Using For Loops

Typically, testing a DUT under all possible input conditions is necessary to verify functionality.

Testing under each and every input condition can require a large number of input conditions. As a

case study, consider an n-bit adder. To test an n-bit adder under each and every numeric input condition

will take (2n)2 test vectors. For a simple 4-bit adder, this equates to 256 input patterns. Even for a small

circuit such as this, the large number of input patterns precludes the use of manual signal assignments in

the test bench to stimulate the circuit. One approach to automatically generating an exhaustive set of

input test patterns is to use nested for loops. Example 7.2 shows a test bench that uses two nested for

loops to generate the 256 unique input conditions for the 4-bit ripple carry adder designed back in

Example 4.8. Note that the loop variables i and j are automatically created when the loops are declared.

Since the loop variables are defined as integers, type conversions are required prior to driving the values

into the RCA. The simulation waveform illustrates how the ripple carry adder has a noticeable delay

before the output sum is produced. During the time the carry is rippling through the adder chain, glitches

can appear on each of the sum bits in addition to the carry out signal. The values in this waveform are

displayed as unsigned decimal symbols to make the results easier to interpret.

Example 7.2
VHDL test bench for a 4-bit ripple carry adder using nested for loops

7.2 Generating Stimulus Vectors Using For Loops • 101

CONCEPT CHECK

CC7.2 If you used two nested for loops to generate an exhaustive set of patterns for the inputs
of an 8-bit adder, how many patterns would be generated? There is no carry-in bit.

(A) 16

(B) 256

(C) 512

(D) 65,536

7.3 Automated Checking Using Report and Assert Statements

7.3.1 Report Statement

The keyword report can be used within a test bench in order to provide the status of the current test.

A report statement will print a string to the transcript window of the simulation tool. The report output also

contains an optional severity level. There are four levels of severity (ERROR, WARNING, NOTE, and

FAILURE). The severity level FAILURE will halt a simulation, while the levels ERROR, WARNING, and

NOTE will allow the simulation to continue. If the severity level is omitted, the report is assumed to be a

severity level of NOTE. The syntax for using a report statement is as follows:

report "string to be printed" severity <level>;

Let’s look at how we could use the report function within the example test bench to print the current

value of the input pattern to the transcript window of the simulator. Example 7.3 shows the new process

and resulting transcript output of the simulator when using report statements.

102 • Chapter 7: Test Benches

7.3.2 Assert Statement

The assert statement provides a mechanism to check a Boolean condition before using the report

statement. This allows report outputs to be selectively printed based on the values of signals in the

system under test. This can be used to either print the successful operation or the failure of a system. If

the Boolean condition associated with the assert statement is evaluated true, it will not execute the

subsequent report statement. If the Boolean condition is evaluated false, it will execute the subsequent

report statement. The assert statement is always used in conjunction with the report statement. The

following is the syntax for the assert statement.

assert boolean_condition report "string" severity <level>;

Let’s look at how we could use the assert function within the example test bench to check whether

the output (F_TB) is correct. In the example in Example 7.4, the system passes the first pattern but fails

the second.

Example 7.3
Using report statements in a VHDL test bench

7.3 Automated Checking Using Report and Assert Statements • 103

CONCEPT CHECK

CC7.3 What is the main limitation of the built-in report and assert statements when using them
for test benches?

(A) They cannot print the value of a signal.

(B) They can halt a simulation when an error is discovered.

(C) They allow severity levels to be associated along with the report statement.

(D) They automatically report the time at each report statement.

7.4 Using External I/O in Test Benches

7.4.1 Writing to an External File from a Test Bench

When it is desired to report larger amounts of data, writing to the transcript becomes impractical and

an external file is needed. In order to write to an external file from a test bench, the textio and

std_logic_textio packages are needed. To illustrate how to do this, let’s look at an example of a test

bench that writes information about the tests being conducted to an external file. Example 7.5 shows the

model for the system to be tested (SystemX) and an overview of the test bench approach (SystemX_TB).

Note that the DUT does not need to include the textio and std_logic_textio packages as the file writing

functionality exists within the test bench file.

Example 7.4
Using assert statements in a VHDL test bench

104 • Chapter 7: Test Benches

Example 7.6 shows the details of the test bench model. In this test bench, a file is declared in order

to create “output_file.txt.” This file is given the handle Fout. A line variable is also declared called

current_line to act as a temporary buffer to hold information that will be written to the file. The procedure

write() is used to add information to the line variable. The first write() procedure is used to create a text

message (“Beginning Test. . .”). Notice that since the information to be written to the line variable is of

type string, a conversion function must be used within the write() procedure (e.g., string (“Beginning

Test. . .”). This message is written as the first line in the file using the writeline() procedure. After an input

vector has been applied to the DUT, a new line is constructed containing both descriptive text, the input

vector value and the output value from the DUT. This message is repeated for each input code in the test

bench.

Example 7.5
Writing to an external file from a test bench (Part 1)

7.4 Using External I/O in Test Benches • 105

Example 7.6
Writing to an external file from a test bench (Part 2)

106 • Chapter 7: Test Benches

Example 7.7 shows the resulting file that is created from this test bench.

7.4.2 Writing to STD_OUTPUT from a Test Bench

The textio package also provides the ability to write to the standard output of the computer instead of

to an external file. The standard output of the computer is typically routed to the transcript window of the

simulator. This output mode is identical to how the report statement works but using the textio package

allows more functionality in the output text. The standard output of a computer is given a reserved file

handle called OUTPUT. When using this file handle, a new file does not need to be declared in the test

bench since it is already defined as part of the textio package. The reserved file handle name OUTPUT

can be used directly in the writeline() procedure.

Let’s look at an example of a test bench that outputs information about the test being conducted to

STD_OUT. Example 7.8 shows this test bench approach. The test bench is identical as the one used in

Example 7.6 with the exception that the writeline() procedure outputs are directed to the STD_OUTPUT

of the computer using the reserved file handle name OUTPUT instead of to an external file.

Example 7.7
Writing to an external file from a test bench (Part 3)

7.4 Using External I/O in Test Benches • 107

Example 7.9 shows the output from the test bench. This output is displayed in the transcript window

of the simulation tool.

Example 7.8
Writing to STD_OUT from a test bench (Part 1)

108 • Chapter 7: Test Benches

7.4.3 Reading from an External File in a Test Bench

Let’s now look at an example of reading test vectors from an external file using the textio package.

Example 7.10 shows the test bench setup. In this example, the SystemX design from the prior example

will be tested using vectors provided by an external file (input_file.txt). The test bench will read in each

line of the file individually and sequentially. After reading a line, the test bench will drive the DUTwith the

input vector. In order to verify correct operation, the results will be written to the STD_OUTPUT of the

computer.

Example 7.9
Writing to STD_OUT from a test bench (Part 2)

Example 7.10
Reading from an external file in a test bench (Part 1)

7.4 Using External I/O in Test Benches • 109

In order to read the external vectors, a file is declared in READ_MODE. This opens the external file

and allows the VHDL test bench to access its lines. A variable is declared to hold the line that is read

using the readline() procedure. In this example, the line variable for reading is called

“current_read_line.” A variable is also declared that will ultimately hold the vector that is extracted

from current_read_line. This variable (called current_read_field) is declared to be of type

std_logic_vector(2 downto 0) because the vectors in the file are 3-bit values. Once the line is read

from the file using the readline() procedure, the vector can be read from the line variable using the read

() procedure. Once the value resides in the current_read_field variable, it can be assigned to the DUT

input signal vector ABC_TB. A set of messages are then written to the STD_OUTPUTof the computer

using the reserved file handle OUTPUT. The messages contain descriptive text in addition to the

values of the input vector and output value of the DUT. Example 7.11 shows the process to implement

this behavior in the test bench.

Example 7.11
Reading from an external file in a test bench (Part 2)

110 • Chapter 7: Test Benches

Example 7.12 shows the results of this test bench, which are written to STD_OUTPUT.

7.4.4 Reading Space-Delimited Data from an External File in a Test Bench

As mentioned earlier, information in a line variable is treated as white space-delimited by the read()

procedure. This allows more information than just a single vector to be read from a file. When a read()

procedure is performed on a line variable, it will extract information until it reaches either a white space or

the end-of-line character. If a white space is encountered, the read() procedure will end. Let’s look at an

example of how to read information from a file when it contains both strings and vectors. Example 7.13

shows the test bench setup where an external file is to be read that contains both a text heading and test

vector on each line. Since the header and the vector are separated with a white space character, two

read() procedures need to be used to independently extract these distinct fields from the line variable.

Example 7.12
Reading from an external file in a test bench (Part 3)

Example 7.13
Reading space-delimited data from an external file in a test bench (Part 1)

7.4 Using External I/O in Test Benches • 111

The test bench will transfer a line from the file into a line variable using the readline() procedure just

as in the previous example; however, this time two different variables will need to be defined in order to

read the two separate fields in the line. Each variable must be declared to be the proper type and size for

the information in the field. For example, the first field in the file is a string of seven characters. As a result,

the first variable declared (current_read_field1) will be of type string(1 to 7). Recall that strings are

typically indexed incrementally from left to right starting with the index 1. The second field in the file is a

3-bit vector, so the second variable declared (current_read_field2) will be of type std_logic_vector

(2 downto 0). Each time a line is retrieved from the file using the readline() procedure, two subsequent

read() procedures can be performed to extract the two fields from the line variable. The second field (i.e.,

the vector) can be used to drive the input of the DUT. In this example, both fields are written to

STD_OUTPUT in addition to the output of the DUT to verify proper functionality. Example 7.14 shows

the test bench process which models this behavior.

Example 7.14
Reading space-delimited data from an external file in a test bench (Part 2)

112 • Chapter 7: Test Benches

Example 7.15 shows the results of this test bench, which are written to STD_OUTPUT.

CONCEPT CHECK

CC7.4 Can the TEXT_IO and STD_LOGIC_TEXTIO packages accomplish the same function-
ality as a report statement? If so, how?

(A) Yes. If the line variable is simply written to the standard output of the com-
puter, it will show up in the transcript window of the simulator just like the
report statement does.

(B) No. These packages only operate on external files.

Summary

v A simulation test bench is a VHDL file that
drives stimulus into a device under test
(DUT). Test benches do not have inputs or
outputs and are not synthesizable.

v Stimulus patterns can be driven into a DUT
within a process using a series of signal
assignments with wait statements.

v Stimulus patterns can also be automatically
generated using looping structures.

v The VHDL standard package supports the
use of report and asserts statement to

provide a text-based output for tracking the
status of a simulation.

v The TEXTIO and STD_LOGIC_TEXTIO
allow the use of external files in test benches.
This is useful for reading in more sophisti-
cated input stimulus patterns and storing
large output sets to files.

Exercise Problems

Section 7.1: Test Bench Overview

7.1.1 What is the purpose of a test bench?

7.1.2 Does a test bench have input and output ports?

7.1.3 Can a test bench be simulated?

7.1.4 Can a test bench be synthesized?

Example 7.15
Reading space-delimited data from an external file in a test bench (Part 3)

Exercise Problems • 113

7.1.5 Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.1. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should use a pro-
cess and individual signal assignments for
each pattern. Your test bench should change
the input pattern every 10 ns using the wait for
statement within your stimulus process.

Fig. 7.1
System I functionality

7.1.6 Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.2. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should use a pro-
cess and individual signal assignments for
each pattern. Your test bench should change
the input pattern every 10 ns using the wait for
statement within your stimulus process.

Fig. 7.2
System J functionality

7.1.7 Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.3. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should use a pro-
cess and individual signal assignments for
each pattern. Your test bench should change
the input pattern every 10 ns using the wait for
statement within your stimulus process.

Fig. 7.3
System K functionality

7.1.8 Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.4. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should use a pro-
cess and individual signal assignments for
each pattern. Your test bench should change
the input pattern every 10 ns using the wait for
statement within your stimulus process.

Fig. 7.4
System L functionality

Section 7.2: Generating Stimulus Vectors

Using For Loops

7.2.1 Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.1. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should use a sin-
gle for loop within a process to generate all of
the stimulus patterns automatically. Your test
bench should change the input pattern every
10 ns using a wait statement.

7.2.2 Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.2. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should use a sin-
gle for loop within a process to generate all of
the stimulus patterns automatically. Your test

114 • Chapter 7: Test Benches

bench should change the input pattern every
10 ns using a wait statement.

7.2.3 Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.3. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should use a sin-
gle for loop within a process to generate all of
the stimulus patterns automatically. Your test
bench should change the input pattern every
10 ns using a wait statement.

7.2.4 Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.4. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should use a sin-
gle for loop within a process to generate all of
the stimulus patterns automatically. Your test
bench should change the input pattern every
10 ns using a wait statement.

7.2.5 Design a VHDL model for an 8-bit Ripple Carry
Adder (RCA) using a structural design
approach. This involves creating a half adder
(half_adder.vhd), full adder (full_adder.vhd),
and then finally a top level adder (rca.vhd) by
instantiating eight full adder components.
Model the ripple delay by inserting 1 ns of
gate delay for the XOR, AND, and OR
operators using a delayed signal assignment.
The general topology and entity definition for
the design are shown in Example 4.6. Design a
VHDL test bench to exhaustively verify this
design under all input conditions. Your test
bench should use two nested for loops within
a process to generate all of the stimulus
patterns automatically. Your test bench should
change the input pattern every 30 ns using a
wait statement in order to give sufficient time
for the signals to ripple through the adder.

Section 7.3: Automated Checking Using

Report and Assert Statements

7.3.1 Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.1. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should change
the input pattern every 10 ns using a wait
statement. Use the report and assert
statements to output a message on the status
of each test to the simulation transcript window.
For each input vector, create a message that
indicates the current input vector being tested,
the resulting output of your DUT, and whether
the DUToutput is correct.

7.3.2 Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.2. Your
test bench should drive in each input code for
the vector ABCD in the order they would

appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should change
the input pattern every 10 ns using a wait
statement. Use the report and assert
statements to output a message on the status
of each test to the simulation transcript window.
For each input vector, create a message that
indicates the current input vector being tested,
the resulting output of your DUT, and whether
the DUToutput is correct.

7.3.3 Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.3. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should change
the input pattern every 10 ns using a wait
statement. Use the report and assert
statements to output a message on the status
of each test to the simulation transcript window.
For each input vector, create a message that
indicates the current input vector being tested,
the resulting output of your DUT, and whether
the DUToutput is correct.

7.3.4 Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.4. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should change
the input pattern every 10 ns using a wait
statement. Use the report and assert
statements to output a message on the status
of each test to the simulation transcript window.
For each input vector, create a message that
indicates the current input vector being tested,
the resulting output of your DUT, and whether
the DUToutput is correct.

Section 7.4: Using External I/O in Test

Benches

7.4.1 Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.1. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should use a pro-
cess and individual signal assignments for
each pattern. Your test bench should change
the input pattern every 10 ns using the wait for
statement within your stimulus process. Write
the output results to an external file called
“output_vectors.txt” using the TEXTIO and
STD_LOGIC_TEXTIO packages.

7.4.2 Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.2. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should use a pro-
cess and individual signal assignments for
each pattern. Your test bench should change

Exercise Problems • 115

the input pattern every 10 ns using the wait for
statement within your stimulus process. Write
the output results to the STD_OUTPUT of the
simulator using the TEXTIO and
STD_LOGIC_TEXTIO packages.

7.4.3 Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.3. Cre-
ate an input text file called “input_vectors.txt”
that contains each input code for the vector
ABCD in the order they would appear in a
truth table (i.e., “0000,” “0001,” “0010,” . . .) on
a separate line. Use the TEXTIO and
STD_LOGIC_TEXTIO packages to read in
each line of the file individually and use the
corresponding input vector to drive the DUT.

Write the output results to an external file
called “output_vectors.txt.”

7.4.4 Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.4. Cre-
ate an input text file called “input_vectors.txt”
that contains each input code for the vector
ABCD in the order they would appear in a
truth table (i.e., “0000,” “0001,” “0010,” . . .) on
a separate line. Use the TEXTIO and
STD_LOGIC_TEXTIO packages to read in
each line of the file individually and use the
corresponding input vector to drive the DUT.
Write the output results to the STD_OUTPUT
of the simulator.

116 • Chapter 7: Test Benches

Chapter 8: Modeling Sequential

Storage and Registers
In this chapter, we will look at modeling sequential storage devices. We begin by looking at modeling

scalar storage devices such as D-latches and D-flip-flops and then move into multiple-bit storage models

known as registers.

Learning Outcomes—After completing this chapter, you will be able to:

8.1 Design a VHDL model for a single-bit sequential logic storage device.
8.2 Design a VHDL model for a register.

8.1 Modeling Scalar Storage Devices

8.1.1 D-Latch

Let’s begin with the model of a simple D-latch. Since the outputs of this sequential storage device

are not updated continuously, its behavior is modeled using a process. Since we want to create a

synthesizable model, we use a sensitivity list to trigger the process instead of wait statements. In the

sensitivity list, we need to include the C input since it controls when the D-latch is in track or store mode.

We also need to include the D input in the sensitivity list because during the track mode, the output Q will

be continuously assigned the value of D so any change on D needs to trigger the process. The use of an

if/then statement is used to model the behavior during track mode (C ¼ 1). Since the behavior is not

explicitly stated for when C ¼ 0, the outputs will hold their last value, which allows us to simply end the

if/then statement to complete the model. Example 8.1 shows the behavioral model for a D-latch.

Example 8.1
Behavioral model of a D-latch in VHDL

Springer Nature Switzerland AG 2019

B. J. LaMeres, Quick Start Guide to VHDL, https://doi.org/10.1007/978-3-030-04516-6_8

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04516-6_8&domain=pdf

8.1.2 D-Flip-Flop

The rising edge behavior of a D-flip-flop is modeled using a (Clock‘event and Clock ¼ ‘1’) Boolean

condition within a process. The (rising_edge(Clock)) function can also be used for type std_logic.

Example 8.2 shows the behavioral model for a rising edge triggered D-flip-flop with both Q and Qn

outputs.

8.1.3 D-Flip-Flop with Asynchronous Resets

D-flip-flops typically have a reset line in order to initialize their outputs to a known state (e.g., Q ¼ 0,

Qn ¼ 1). Resets are asynchronous, meaning that whenever they are asserted, assignments to the

outputs take place immediately. If a reset was synchronous, the output assignments would only take

place on the next rising edge of the clock. This behavior is undesirable because if there is a system

failure, there is no guarantee that a clock edge will ever occur. Thus, the reset may never take place.

Asynchronous resets are more desirable not only to put the D-flip-flops into a known state at startup but

also to recover from a system failure that may have impacted the clock signal. In order to model this

asynchronous behavior, the reset signal is placed in the sensitivity list. This allows both the clock and the

reset inputs to trigger the process. Within the process, an if/then/elsif statement is used to determine

whether the reset has been asserted or a rising edge of the clock has occurred. The if/then/elsif

statement first checks whether the reset input has been asserted. If it has, it makes the appropriate

assignments to the outputs (Q ¼ 0, Qn ¼ 1). If the reset has not been asserted, the elsif clause checks

whether a rising edge of the clock has occurred using the (Clock‘event and Clock ¼ ‘1’) Boolean

condition. If it has, the outputs are updated accordingly (Q <¼ D, Qn <¼ not D). A final else statement

is not included so that assignments to the outputs are not made under any other condition. This models

the store behavior of the D-flip-flop. Example 8.3 shows the behavioral model for a rising edge triggered

D-flip-flop with an asynchronous, active LOW reset.

Example 8.2
Behavioral model of a D-flip-flop in VHDL

118 • Chapter 8: Modeling Sequential Storage and Registers

8.1.4 D-Flip-Flop with Asynchronous Reset and Preset

A D-flip-flop with both an asynchronous reset and asynchronous preset is handled in a similar

manner as the D-flip-flop in the prior section. The preset input is included in the sensitivity list in order to

trigger the process whenever a transition occurs on either the clock, reset, or preset inputs. An if/then/

elsif statement is used to first check whether a reset has occurred, then whether a preset has occurred

and, finally, whether a rising edge of the clock has occurred. Example 8.4 shows the model for a rising

edge triggered D-flip-flop with asynchronous, active LOW reset and preset.

Example 8.3
Behavioral model of a D-flip-flop with asynchronous reset in VHDL

8.1 Modeling Scalar Storage Devices • 119

8.1.5 D-Flip-Flop with Synchronous Enable

An enable input is also a common feature of modern D-flip-flops. Enable inputs are synchronous,

meaning that when they are asserted, action is only taken on the rising edge of the clock. This means

that the enable input is not included in the sensitivity list of the process. Since action is only taken when

there is a rising edge of the clock, a nested if/then statement is included beneath the elsif (Clock‘event

and Clock ¼ ‘1’) clause. Example 8.5 shows the model for a D-flip-flop with a synchronous enable

(EN) input. When EN¼ 1, the D-flip-flop is enabled, and assignments are made to the outputs only on the

rising edge of the clock. When EN¼ 0, the D-flip-flop is disabled, and assignments to the outputs are not

made. When disabled, the D-flip-flop effectively ignores rising edges on the clock, and the outputs

remain at their last values.

Example 8.4
Behavioral model of a D-flip-flop with asynchronous reset and preset in VHDL

120 • Chapter 8: Modeling Sequential Storage and Registers

CONCEPT CHECK

CC8.1 Why is the D input not listed in the sensitivity list of a D-flip-flop?

(A) To simplify the behavioral model

(B) To avoid a setup time violation if D transitions too closely to the clock

(C) Because a rising edge of clock is needed to make the assignment

(D) Because the outputs of the D-flip-flop are not updated when D changes

8.2 Modeling Registers

8.2.1 Registers with Enables

The term register describes a circuit that operates in a similar manner as a D-flip-flop with the

exception that the input and output data are vectors. This circuit is implemented with a set of D-flip-flops

all connected to the same clock, reset, and enable inputs. A register is a higher level of abstraction that

Example 8.5
Behavioral model of a D-flip-flop with synchronous enable in VHDL

8.2 Modeling Registers • 121

allows vector data to be stored without getting into the details of the lower-level implementation of the

D-flip-flop components. Register transfer level (RTL) modeling refers to a level of design abstraction in

which vector data is moved and operated on in a synchronous manner. This design methodology is

widely used in data path modeling and computer system design. Example 8.6 shows an RTL model of

an 8-bit, synchronous register. This circuit has an active low, asynchronous reset that will cause the 8-bit

output Reg_Out to go to 0 when it is asserted. When the reset is not asserted, the output will be updated

with the 8-bit input Reg_In if the system is enabled (EN ¼ 1), and there is a rising edge on the clock. If

the register is disabled (EN ¼ 0), the input clock is ignored. At all other times, the output holds its last

value.

8.2.2 Shift Registers

A shift register is a circuit which consists of multiple registers connected in series. Data is shifted

from one register to another on the rising edge of the clock. This type of circuit is often used in serial-to-

parallel data converters. Example 8.7 shows an RTL model for a 4-stage, 8-bit shift register. In the

simulation waveform, the data is shown in hexadecimal format.

Example 8.6
RTL model of an 8-bit register in VHDL

122 • Chapter 8: Modeling Sequential Storage and Registers

8.2.3 Registers as Agents on a Data Bus

One of the powerful topologies that registers can easily model is a multi-drop bus. In this topology,

multiple registers are connected to a data bus as receivers or agents. Each agent has an enable line that

controls when it latches information from the data bus into its storage elements. This topology is

synchronous, meaning that each agent and the driver of the data bus are connected to the same clock

signal. Each agent has a dedicated, synchronous enable line that is provided by a system controller

elsewhere in the design. Example 8.8 shows this multi-drop bus topology. In this example system, three

registers (A, B, and C) are connected to a data bus as receivers. Each register is connected to the same

clock and reset signals. Each register has its own dedicated enable line (A_EN, B_EN, and C_EN).

Example 8.7
RTL model of a 4-stage, 8-bit shift register in VHDL

8.2 Modeling Registers • 123

This topology can be modeled using RTL abstraction by treating each register as a separate

process. Example 8.9 shows how to describe this topology with an RTL model in VHDL. Notice that

the three processes modeling the A, B, and C registers are nearly identical to each other with the

exception of the signal names they use.

Example 8.8
Registers as agents on a data bus: system topology

Example 8.9
Registers as agents on a data bus: RTL model in VHDL

124 • Chapter 8: Modeling Sequential Storage and Registers

Example 8.10 shows the resulting simulation waveform for this system. Each register is updated

with the value on the data bus whenever its dedicated enable line is asserted.

CONCEPT CHECK

CC8.2 Does RTL modeling synthesize as combinational logic, sequential logic, or both? Why?

(A) Combinational logic. Since only one process is used for each register, it will be
synthesized using basic gates.

(B) Sequential logic. Since the sensitivity list contains clock and reset, it will
synthesize into only D-flip-flops.

(C) Both. The model has a sensitivity list containing clock and reset and uses an
if/then statement indicative of a D-flip-flop. This will synthesize a D-flip-flop to
hold the value for each bit in the register. In addition, the ability to manipulate
the inputs into the register (using either logical operators, arithmetic
operators, or choosing different signals to latch) will synthesize into combi-
national logic in front of the D input to each D-flip-flop.

Summary

v A synchronous system is modeled with a
process and a sensitivity list. The clock and
reset signals are always listed by themselves
in the sensitivity list. Within the process is an
if/then statement. The first clause of the
if/then statement handles the asynchronous
reset condition, while the second elsif clause
handles the synchronous signal
assignments.

v Edge sensitivity is modeled within a process
using either the (clock‘event and clock ¼ “1”)
syntax or an edge detection function

provided by the STD_LOGIC_1164 package
(i.e., rising_edge()).

v Most D-flip-flops and registers contain a syn-
chronous enable line. This is modeled using
a nested if/then statement within the main
process if/then statement. The nested if/then
goes beneath the clause for the synchronous
signal assignments.

v Registers are modeled in VHDL in a similar
manner to a D-flip-flop with a synchronous
enable. The only difference is that the inputs
and outputs are n-bit vectors.

Example 8.10
Registers as agents on a data bus: simulation waveform

Summary • 125

Exercise Problems

Section 8.1: Modeling Scalar Storage

Devices

8.1.1 How does a VHDL model for a D-flip-flop han-
dle treating reset as the highest priority input?

8.1.2 For a VHDL model of a D-flip-flop with a syn-
chronous enable (EN), why isn’t EN listed in
the sensitivity list?

8.1.3 For a VHDL model of a D-flip-flop with a syn-
chronous enable (EN), what is the impact of
listing EN in the sensitivity list?

8.1.4 For a VHDL model of a D-flip-flop with a syn-
chronous enable (EN), why is the behavior of
the enable modeled using a nested if/then
statement under the clock edge clause rather
than an additional elsif clause in the primary
if/then statement?

Section 8.2: Modeling Registers

8.2.1 In register transfer level modeling, how does
the width of the register relate to the number of
D-flip-flops that will be synthesized?

8.2.2 In register transfer level modeling, how is the
synchronous data movement managed if all
registers are using the same clock?

8.2.3 Design a VHDL RTL model of a 32-bit, syn-
chronous register. The block diagram for the
entity definition is shown in Fig. 8.1. The regis-
ter has a synchronous enable. The register
should be modeled using a single process.

Fig. 8.1
32-Bit Register block diagram

8.2.4 Design a VHDL RTL model of an 8-stage,
16-bit shift register. The block diagram for the
entity definition is shown in Fig. 8.2. Each
stage of the shift register will be provided as
an output of the system (A, B, C, D, E, F, G, and
H). Use std_logic or std_logic_vector for all
ports.

Fig. 8.2
16-Bit shift register block diagram

8.2.5 Design a VHDL RTL model of the multi-drop
bus topology in Fig. 8.3. Each of the 16-bit
registers (RegA, RegB, RegC, and RegD) will
latch the contents of the 16-bit data bus if their
enable line is asserted. Each register should
be modeled using an individual process.

Fig. 8.3
Agents on a bus block diagram

126 • Chapter 8: Modeling Sequential Storage and Registers

Chapter 9: Modeling Finite State

Machines
In this chapter, we will look at modeling finite state machines (FSMs). An FSM is one of the most

powerful circuits in a digital system because it can make decisions about the next output based on both

the current and past inputs. Finite state machines are modeled using the constructs already covered in

this book. In this chapter, we will look at the widely accepted three-process model for designing a FSM.

Learning Outcomes—After completing this chapter, you will be able to:

9.1 Describe the three-process modeling approach for FSM design.
9.2 Design a VHDL model for a FSM from a state diagram.

9.1 The FSM Design Process and a Push-Button Window

Controller Example

The most common modeling practice for FSMs is to create a new user-defined type that can take

on the descriptive state names from the state diagram. Two signals are then created of this type,

current_state and next_state. Once these signals are created, all of the functional blocks in the state

machine can use the descriptive state names in their conditional signal assignments. The synthesizer

will automatically assign the state codes based on the most effective use of the target technology (e.g.,

binary, gray code, one-hot). Within the VHDL state machine model, three processes are used to describe

each of the functional blocks, state memory, next state logic, and output logic. In order to examine how to

model a finite state machine using this approach, let’s use a push-button window controller example.

Example 9.1 gives the overview of the design objectives for this example and the state diagram

describing the behavior to be modeled in VHDL.

Springer Nature Switzerland AG 2019

B. J. LaMeres, Quick Start Guide to VHDL, https://doi.org/10.1007/978-3-030-04516-6_9

127

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04516-6_9&domain=pdf

Let’s begin by defining the entity. The system has an input called Press and two outputs called

Open_CW and Close_CCW. The system also has clock and reset inputs. We will design the system to

update on the rising edge of the clock and have an asynchronous, active LOW, reset. Example 9.2

shows the VHDL entity definition for this example.

9.1.1 Modeling the States with User-Defined, Enumerated Data Types

Nowwe begin designing the finite state machine in VHDL using behavioral modeling constructs. The

first step is to create a new user-defined, enumerated data type that can take on values that match the

descriptive state names we’ve chosen in the state diagram (i.e., w_closed and w_open). This is accom-

plished by declaring a new type before the begin statement in the architecture with the keyword type. For

this example, we will create a new type called State_Type and explicitly enumerate the values that it can

take on. This type can now be used in future signal declarations. We then create two new signals called

current_state and next_state of type State_Type. These two signals will be used throughout the VHDL

Example 9.2
Push-button window controller in VHDL: entity definition

Example 9.1
Push-button window controller in VHDL: design description

128 • Chapter 9: Modeling Finite State Machines

model in order to provide a high-level, readable description of the FSM behavior. The following syntax

shows how to declare the new type and declare the current_state and next_state signals.

type State_Type is (w_closed, w_open);

signal current_state, next_state : State_Type;

9.1.2 The State Memory Process

Now we model the state memory of the FSM using a process. This process models the behavior of

the D-flip-flops in the FSM that are holding the current state on their Q outputs. Each time there is a rising

edge of the clock, the current state is updated with the next state value present on the D inputs of the

D-flip-flops. This process must also model the reset condition. For this example, we will have the state

machine go to the w_closed state when Reset is asserted. At all other times, the process will simply

update current_state with next_state on every rising edge of the clock. The process model is very similar

to the model of a D-flip-flop. This is as expected since this process will synthesize into one or more D-flip-

flops to hold the current state. The sensitivity list contains only Clock and Reset, and assignments are

only made to the signal current_state. The following syntax shows how to model the state memory of this

FSM example:

STATE_MEMORY : process (Clock, Reset)

begin

if (Reset ¼ ’0’) then

current_state <¼ w_closed;

elsif (Clock’event and Clock¼’1’) then

current_state <¼ next_state;

end if;

end process;

9.1.3 The Next State Logic Process

Now we model the next state logic of the FSM using a second process. Recall that the next state

logic is combinational logic, thus we need to include all of the input signals that the circuit considers in the

next state calculation in the sensitivity list. The current_state signal will always be included in the

sensitivity list of the next state logic process in addition to any inputs to the system. For this example,

the system has one other input called Press. This process makes assignments to the next_state signal. It

is common to use a case statement to separate out the assignments that occur at each state. At each

state within the case statement, an if/then statement is used to model the assignments for different input

conditions on Press. The following syntax shows how to model the next state logic of this FSM example.

Notice that we include awhen others clause to ensure that the state machine has a path back to the reset

state in the case of an unexpected fault.

NEXT_STATE_LOGIC : process (current_state, Press)

begin

case (current_state) is

when w_closed ¼> if (Press ¼ ’1’) then

next_state <¼ w_open;

else

next_state <¼ w_closed;

end if;

when w_open ¼> if (Press ¼ ’1’) then

next_state <¼ w_closed;

else

next_state <¼ w_open;

end if;

when others ¼> next_state <¼ w_closed;

end case;

end process;

9.1 The FSM Design Process and a Push-Button Window Controller Example • 129

9.1.4 The Output Logic Process

Now we model the output logic of the FSM using a third process. Recall that output logic is

combinational logic, thus we need to include all of the input signals that this circuit considers in the

output assignments. The current_state will always be included in the sensitivity list. If the FSM is a Mealy

machine, then the system inputs will also be included in the sensitivity list. If the machine is a Moore

machine, then only the current_state will be present in the sensitivity list. For this example, the FSM is a

Mealy machine, so the input Press needs to be included in the sensitivity list. Note that this process only

makes assignments to the outputs of the machine (Open_CW and Close_CCW). The following syntax

shows how to model the output logic of this FSM example. Again, we include a when others clause to

ensure that the state machine has explicit output behavior in the case of a fault.

OUTPUT_LOGIC : process (current_state, Press)

begin

case (current_state) is

when w_closed ¼> if (Press ¼ ’1’) then

Open_CW <¼ ’1’; Close_CCW <¼ ’0’;

else

Open_CW <¼ ’0’; Close_CCW <¼ ’0’;

end if;

when w_open ¼> if (Press ¼ ’1’) then

Open_CW <¼ ’0’; Close_CCW <¼ ’1’;

else

Open_CW <¼ ’0’; Close_CCW <¼ ’0’;

end if;

when others ¼> Open_CW <¼ ’0’; Close_CCW <¼ ’0’;

end case;

end process;

Putting this all together in the VHDL architecture yields a functional model for the FSM that can be

simulated and synthesized. Once again, it is important to keep in mind that since we did not explicitly

assign the state codes, the synthesizer will automatically assign the codes based on the most efficient

use of the target technology. Example 9.3 shows the entire architecture for this example.

130 • Chapter 9: Modeling Finite State Machines

Example 9.4 shows the simulation waveform for this state machine. This functional simulation was

performed using ModelSim-Altera Starter Edition 10.1d.

Example 9.3
Push-button window controller in VHDL: architecture

Example 9.4
Push-button window controller in VHDL: simulation waveform

9.1 The FSM Design Process and a Push-Button Window Controller Example • 131

9.1.5 Explicitly Defining State Codes with Subtypes

In the prior example, we did not have control over the state variable encoding. While the previous

example is the most common way to model FSMs, there are situations where we would like to assign the

state variable codes manually. This is accomplished using a subtype and constants. A subtype is simply

a constrained type, meaning that it defines a subset of values that an existing type can take on. For

example, we could create a subtype to constrain the std_logic data type to only allow values of 0 and

1 and not the values of U, X, Z, W, L, H, and -. This would not be considered a new type since it is simply a

constraint put upon the existing std_logic type. A subtype defines the constraint and has a unique name

that can be used to declare other signals. To use this approach for manually encoding the states of a

FSM, we first declare a new subtype called State_Type that is simply a version of the existing type

std_logic. We then create constants to represent the descriptive state names in the state diagram. These

constants are given the type State_Type and a specific value. The value given is the state code we wish

to assign to the particular state name. Finally, the current_state and next_state signals are declared of

type State_Type. In this way, we can use the same VHDL processes as in the previous example that use

the descriptive state names from the state diagram. The following is the VHDL syntax for manually

assigning the state codes using subtypes. This syntax would replace the State_Type declaration in the

previous example. Example 9.5 shows the resulting simulation waveforms.

subtype State_Type is std_logic;

constant w_open : State_Type :¼ ‘0’;

constant w_closed : State_Type :¼ ‘1’;

signal current_state, next_state : State_Type;

CONCEPT CHECK

CC9.1 Why is it always a good design approach to model a generic finite state machine using
three processes?

(A) For readability

(B) So that it is easy to identify whether the machine is a Mealy or Moore

(C) So that the state memory process can be re-used in other FSMs

(D) Because each of the three sub-systems of a FSM has unique inputs and
outputs that should be handled using dedicated processes

Example 9.5
Push-button window controller in VHDL: explicit state codes

132 • Chapter 9: Modeling Finite State Machines

9.2 FSM Design Examples

9.2.1 Serial Bit Sequence Detector in VHDL

Let’s look at the design of the serial bit sequence detector finite state machine from Chap. 7 using

the behavioral modeling constructs of VHDL. Example 9.6 shows the design description and entity

definition for this state machine.

Example 9.7 shows the architecture for the serial bit sequence detector. In this example, a user-

defined type is created to model the descriptive state names in the state diagram.

Example 9.6
Serial bit sequence detector in VHDL: design description and entity definition

9.2 FSM Design Examples • 133

Example 9.8 shows the functional simulation waveform for this design.

Example 9.7
Serial bit sequence detector in VHDL: architecture

Example 9.8
Serial bit sequence detector in VHDL: simulation waveform

134 • Chapter 9: Modeling Finite State Machines

9.2.2 Vending Machine Controller in VHDL

Let’s now look at the design of the vending machine controller from Chap. 7 using the behavioral

modeling constructs of VHDL. Example 9.9 shows the design description and entity definition.

Example 9.10 shows the VHDL architecture for the vending machine controller. In this model, the

descriptive state names Wait, 25¢, and 50¢ cannot be used directly. This is because Wait is a VHDL

keyword and user-defined names cannot begin with a number. Instead, the letter “s” is placed in front of

the state names in order to make them legal VHDL names (i.e., sWait, s25, s50).

Example 9.9
Vending machine controller in VHDL: design description and entity definition

9.2 FSM Design Examples • 135

Example 9.10
Vending machine controller in VHDL: architecture

136 • Chapter 9: Modeling Finite State Machines

Example 9.11 shows the resulting simulation waveform for this design.

9.2.3 2-Bit, Binary Up/Down Counter in VHDL

Let’s now look at how a simple counter can be implemented using the three-process behavioral

modeling approach in VHDL. Example 9.12 shows the design description and entity definition for the

2-bit, binary up/down counter FSM from Chap. 7.

Example 9.13 shows the architecture for the 2-bit up/down counter using the three-process

modeling approach. Since a counter’s outputs only depend on the current state, counters are Moore

machines. This simplifies the output logic process since it only needs to contain the current state in its

sensitivity list.

Example 9.11
Vending machine controller in VHDL: simulation waveform

Example 9.12
2-Bit binary up/down counter in VHDL: design description and entity definition

9.2 FSM Design Examples • 137

Example 9.13
2-Bit binary up/down counter in VHDL: architecture (three process model)

138 • Chapter 9: Modeling Finite State Machines

Example 9.14 shows the resulting simulation waveform for this counter finite state machine.

CONCEPT CHECK

CC9.2 The state memory process is nearly identical for all finite state machines with one
exception. What is it?

(A) The sensitivity list may need to include a preset signal.

(B) Sometimes it is modeled using an SR latch storage approach instead of with
D-flip-flop behavior.

(C) The name of the reset state will be different.

(D) The current_state and next_state signals are often swapped.

Summary

v Generic finite state machines are modeled
using three separate processes that describe
the behavior of the next state logic, the state
memory, and the output logic. Separate pro-
cesses are used because each of the three
functions in a FSM are dependent on differ-
ent input signals.

v In VHDL, descriptive state names can be
created for a FSM with a user-defined,
enumerated data type. The new type is first
declared, and each of the descriptive state
names is provided that the new data type can

take on. Two signals are then created called
current_state and next_state using the new
data type. These two signals can then be
assigned the descriptive state names of the
FSM directly. This approach allows the syn-
thesizer to assign the state codes arbitrarily.

v A subtype can be used when defining the
state names if it is desired to explicitly define
the state codes.

Exercise Problems

Section 9.1: The FSM Design Process

9.1.1 What is the advantage of using user-defined,
enumerated data types for the states when
modeling a finite state machine?

9.1.2 What is the advantage of using subtypes for
the states when modeling a finite state
machine?

9.1.3 When using the three-process behavioral
modeling approach for finite state machines,
does the next state logic process model com-
binational or sequential logic?

9.1.4 When using the three-process behavioral
modeling approach for finite state machines,
does the state memory process model combi-
national or sequential logic?

Example 9.14
2-Bit binary up/down counter in VHDL: simulation waveform

Exercise Problems • 139

9.1.5 When using the three-process behavioral
modeling approach for finite state machines,
does the output logic process model combina-
tional or sequential logic?

9.1.6 When using the three-process behavioral
modeling approach for finite state machines,
what inputs are listed in the sensitivity list of
the next state logic process?

9.1.7 When using the three-process behavioral
modeling approach for finite state machines,
what inputs are listed in the sensitivity list of
the state memory process?

9.1.8 When using the three-process behavioral
modeling approach for finite state machines,
what inputs are listed in the sensitivity list of
the output logic process?

9.1.9 When using the three-process behavioral
modeling approach for finite state machines,
how can the signals listed in the sensitivity list of
the output logic process immediately tell whether
the FSM is a Mealy or a Moore machine?

9.1.10 Why is it not a good design approach to com-
bine the next state logic and output logic
behavior into a single process?

Section 9.2: FSM Design Examples

9.2.1 Design a VHDL behavioral model to implement
the finite state machine described by the state
diagram in Fig. 9.1. Use the entity definition
provided in this figure for your design. Use
the three-process approach to modeling
FSMs described in this chapter for your design.
Model the states in this machine with a user-
defined enumerated type.

Fig. 9.1
FSM 1 state diagram and entity

9.2.2 Design a VHDL behavioral model to implement
the finite state machine described by the state
diagram in Fig. 9.1. Use the entity definition
provided in this figure for your design. Use

the three-process approach to modeling
FSMs described in this chapter for your design.
Explicitly assign binary state codes using
VHDL subtypes. Use the following state
codes: Start ¼ “00,” Midway ¼ “01,” and
Done ¼ “10.”,

9.2.3 Design a VHDL behavioral model to implement
the finite state machine described by the state
diagram in Fig. 9.2. Use the entity definition
provided in this figure for your design. Use
the three-process approach to modeling
FSMs described in this chapter for your design.
Model the states in this machine with a user-
defined enumerated type.

Fig. 9.2
FSM 2 state diagram and entity

9.2.4 Design a VHDL behavioral model to implement
the finite state machine described by the state
diagram in Fig. 9.2. Use the entity definition
provided in this figure for your design. Use
the three-process approach to modeling
FSMs described in this chapter for your design.
Assign one-hot state codes using VHDL
subtypes. Use the following state codes:
S0 ¼ “0001,” S1 ¼ “0010,” S2 ¼ “0100,” and
S3 ¼ “1000.”

9.2.5 Design a VHDL behavioral model for a 4-bit
serial bit sequence detector similar to Example
9.6. Use the entity definition provided in
Fig. 9.3. Use the three-process approach to
modeling FSMs described in this chapter for
your design. The input to your sequence detec-
tor is called DIN, and the output is called
FOUND. Your detector will assert FOUND any-
time there is a 4-bit sequence of “0101.” For all
other input sequences, the output is not
asserted. Model the states in your machine
with a user-defined enumerated type.

140 • Chapter 9: Modeling Finite State Machines

Fig. 9.3
Sequence detector entity

9.2.6 Design a VHDL behavioral model for a 20-cent
vending machine controller similar to Example
9.9. Use the entity definition provided in
Fig. 9.4. Use the three-process approach to
modeling FSMs described in this chapter for
your design. Your controller will take in nickels
and dimes and dispense a product anytime the
customer has entered 20 cents. Your FSM has
two inputs, Nin and Din. Nin is asserted when-
ever the customer enters a nickel, while Din is
asserted anytime the customer enters a dime.
Your FSM has two outputs, Dispense and
Change. Dispense is asserted anytime the
customer has entered at least 20 cents and
Change is asserted anytime the customer has
entered more than 20 cents and needs a nickel
in change. Model the states in this machine
with a user-defined enumerated type.

Fig. 9.4
Vending machine entity

9.2.7 Design a VHDL behavioral model for a finite
state machine for a traffic light controller at the
intersection of a busy highway and a seldom
used side road. Use the entity definition
provided in Fig. 9.5. You will be designing the
control signals for just the red, yellow, and
green lights facing the highway. Under normal
conditions, the highway has a green light. The
side road has car detector that indicates when
car pulls up by asserting a signal called CAR.
When CAR is asserted, you will change the
highway traffic light from green to yellow and
then from yellow to red. Once in the red posi-
tion, a built-in timer will begin a countdown and
provide your controller a signal called
TIMEOUT when 15 s has passed. Once
TIMEOUT is asserted, you will change the
highway traffic light back to green. Your system
will have three outputs GRN, YLW, and RED,
which control when the highway facing traffic
lights are on (1 ¼ ON, 0 ¼ OFF). Model the
states in this machine with a user-defined
enumerated type.

Fig. 9.5
Traffic light controller entity

Exercise Problems • 141

Chapter 10: Modeling Counters
Counters are a special case of finite state machines because they move linearly through their

discrete states (either forward or backward) and typically are implemented with state-encoded outputs.

Due to this simplified structure and widespread use in digital systems, VHDL allows counters to be

modeled using a single process and with arithmetic operators (i.e., + and �). This enables a more

compact model and allows much wider counters to be implemented. This chapter will cover some of the

most common techniques for modeling counters.

Learning Outcomes—After completing this chapter, you will be able to:

10.1 Design a behavioral model for a counter using a single process.
10.2 Design a behavioral model for a counter with enable and load capability.

10.1 Modeling Counters with a Single Process

10.1.1 Counters in VHDL Using the Type UNSIGNED

Let’s look at how we can model a 4-bit, binary up counter with an output called CNT. First, we want

to model this counter using the “+” operator. Recall that the “+” operator is not defined in the

std_logic_1164 package. We need to include the numeric_std package in order to add this capability.

Within the numeric_std package, the “+” operator is only defined for types signed and unsigned (and not

for std_logic_vector), so the output CNT will be declared as type unsigned. Next, we want to implement

the counter using a signal assignment in the form CNT <¼ CNT + 1; however, since CNT is an output

port, it cannot be used as an argument (right hand side) in an operation. We will need to create an internal

signal to implement the counter functionality (i.e., CNT_tmp). Since a signal does not contain direction-

ality, it can be used as both the target and an argument of an operation. Outside of the counter process, a

concurrent signal assignment is used to continuously assign CNT_tmp to CNT in order to drive the output

of the system. This means that we need to create the internal signal CNT_tmp of type unsigned also to

support this assignment. Example 10.1 shows the VHDL model and simulation waveform for this

counter. When the counter reaches its maximum value of “1111,” it rolls over to “0000” and continues

counting because it is defined to only contain 4 bits.

Springer Nature Switzerland AG 2019

B. J. LaMeres, Quick Start Guide to VHDL, https://doi.org/10.1007/978-3-030-04516-6_10

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04516-6_10&domain=pdf

10.1.2 Counters in VHDL Using the Type INTEGER

Another common technique to model counters with a single process is to use the type integer. The

numeric_std package supports the “+” operator for type integer. It also contains a conversion between

the types integer and unsigned/signed. This means a process can be created to model the counter

functionality with integers and then the result can be converted and assigned to the output of the system

of type unsigned. One thing that must be considered when using integers is that they are defined as

32-bit, two’s complement numbers. This means that if a counter is defined to use integers and the

maximum range of the counter is not explicitly controlled, the counter will increment through the entire

range of 32-bit values it can take on. There are a variety of ways to explicitly bound the size of an integer

counter. The first is to use an if/then clause within the process to check for the upper limit desired in the

counter. For example, if we wish to create a 4-bit binary counter, we will check if the integer counter has

reached 15 each time through the process. If it has, we will reset it to zero. Synthesizers will recognize

that the integer counter is never allowed to exceed 15 (or “1111” for an unsigned counter) and remove

the unused bits of the integer type during implementation (i.e., the remaining 28-bits). Example 10.2

shows the VHDL model and simulation waveform for this implementation of the 4-bit counter using

integers.

Example 10.1
4-Bit binary up counter in VHDL using the type UNSIGNED

144 • Chapter 10: Modeling Counters

10.1.3 Counters in VHDL Using the Type STD_LOGIC_VECTOR

It is often desired to have the ports of a system be defined of type std_logic/std_logic_vector for

compatibility with other systems. One technique to accomplish this and also model the counter behavior

internally using std_logic_vector is through inclusion of the numeric_std_unsigned package. This pack-

age allows the use of std_logic_vector when declaring the ports and signals within the design and treats

them as unsigned when performing arithmetic and comparison functions. Example 10.3 shows the

VHDL model and simulation waveform for this alternative implementation of the 4-bit counter.

Example 10.2
4-Bit binary up counter in VHDL using the type INTEGER

10.1 Modeling Counters with a Single Process • 145

If it is designed to have an output type of std_logic_vector and use an integer in modeling the

behavior of the counter, then a double conversion can be used. In the following example, the counter

behavior is modeled using an integer type with range checking. A concurrent signal assignment is used

at the end of the architecture in order to convert the integer to type std_logic_vector. This is accom-

plished by first converting the type integer to unsigned and then converting the type unsigned to

std_logic_vector. Example 10.4 shows the VHDL model and simulation waveform for this alternative

implementation of the 4-bit counter.

Example 10.3
4-Bit binary up counter in VHDL using the type STD_LOGIC_VECTOR (1)

146 • Chapter 10: Modeling Counters

CONCEPT CHECK

CC10.1 If a counter is modeled using only one process in VHDL, is it still a finite state machine?
Why or why not?

(A) Yes. It is just a special case of a FSM that can easily be modeled using one
process. Synthesizers will recognize the single process model as a FSM.

(B) No. Using only one process will synthesize into combinational logic. Without
the ability to store a state, it is not a finite state machine.

Example 10.4
4-Bit binary up counter in VHDL using the type STD_LOGIC_VECTOR (2)

10.1 Modeling Counters with a Single Process • 147

10.2 Counters with Enables and Loads

10.2.1 Modeling Counters with Enables

Including an enable in a counter is a common technique to prevent the counter from running

continuously. When the enable is asserted, the counter will increment on the rising edge of the clock

as usual. When the enable is de-asserted, the counter will simply hold its last value. Enable lines are

synchronous, meaning that they are only evaluated on the rising edge of the clock. As such, they are

modeled using a nested if/then statement within the if/then statement checking for a rising edge of the

clock. Example 10.5 shows an example model for a 4-bit counter with enable.

Example 10.5
4-Bit binary up counter with enable in VHDL

148 • Chapter 10: Modeling Counters

10.2.2 Modeling Counters with Loads

A counter with a load has the ability to set the counter to a specified value. The specified value is

provided on an input port (i.e., CNT_in) with the same width as the counter output (CNT). A synchronous

load input signal (i.e., Load) is used to indicate when the counter should set its value to the value present

on CNT_in. Example 10.6 shows an example model for a 4-bit counter with load capability.

Example 10.6
4-Bit binary up counter with load in VHDL

10.2 Counters with Enables and Loads • 149

CONCEPT CHECK

CC10.2 If the counter has other inputs such as loads and enables, shouldn’t they be listed in the
sensitivity list along with clock and reset?

(A) Yes. All inputs should go in the sensitivity list.

(B) No. Only signals that trigger an assignment are listed in the sensitivity list.
The only two signals that have this behavior are clock and reset.

Summary

v A counter is a special type of finite state
machine in which the states are traversed
linearly. The linear progression of states
allows the next state logic to be simplified.
The complexity of the output logic in a counter
can also be reduced by encoding the states
with the desired counter output for that state.
This technique, known as state-encoded

outputs, allows the system outputs to simply
be the current state of the FSM.

v Counters are a special type of finite state
machine that can be modeled using a single

process in VHDL. Only the clock and reset
signals are listed in the sensitivity list of the
counter process because they are the only
signals that trigger signal assignments.

v Within the process of a counter, arithmetic
operators (i.e., + or �) can be used to modify
the counter value. Since these operators
aren’t defined for the type std_logic_vector,
type casting is usually required.

Exercise Problems

Section 10.1: Modeling Counters with a

Single Process

10.1.1 Design a VHDL behavioral model for a 16-bit,
binary up counter using a single process. The
block diagram for the entity definition is shown
in Fig. 10.1. In your model, declare Count_Out
to be of type unsigned, and implement the
internal counter functionality with a signal of
type unsigned.

Fig. 10.1
16-Bit binary up counter block diagram

10.1.2 Design a VHDL behavioral model for a 16-bit,
binary up counter using a single process. The
block diagram for the entity definition is shown
in Fig. 10.1. In your model, declare Count_Out
to be of type unsigned and implement the inter-
nal counter functionality with a signal of type
integer.

10.1.3 Design a VHDL behavioral model for a 16-bit,
binary up counter using a single process. The

block diagram for the entity definition is shown
in Fig. 10.1. In your model, declare Count_Out
to be of type std_logic_vector and implement
the internal counter functionality with a signal
of type integer.

Section 10.2: Counters with Enables

and Loads

10.2.1 Design a VHDL behavioral model for a 16-bit,
binary up counter with enable using a single
process. The block diagram for the entity defi-
nition is shown in Fig. 10.2. In your model,
declare Count_Out to be of type unsigned
and implement the internal counter functional-
ity with a signal of type unsigned.

Fig. 10.2
16-Bit binary up counter with enable block
diagram

150 • Chapter 10: Modeling Counters

10.2.2 Design a VHDL behavioral model for a 16-bit,
binary up counter with enable using a single
process. The block diagram for the entity defi-
nition is shown in Fig. 10.2. In your model,
declare Count_Out to be of type unsigned,
and implement the internal counter functional-
ity with a signal of type integer.

10.2.3 Design a VHDL behavioral model for a 16-bit,
binary up counter with enable using a single
process. The block diagram for the entity defi-
nition is shown in Fig. 10.2. In your model,
declare Count_Out to be of type
std_logic_vector, and implement the internal
counter functionality with a signal of type
integer.

10.2.4 Design a VHDL behavioral model for a 16-bit,
binary up counter with enable and load using a
single process. The block diagram for the entity
definition is shown in Fig. 10.3. In your model,
declare Count_Out to be of type unsigned, and
implement the internal counter functionality
with a signal of type unsigned.

Fig. 10.3
16-Bit binary up counter with load block diagram

10.2.5 Design a VHDL behavioral model for a 16-bit,
binary up counter with enable and load using a
single process. The block diagram for the entity
definition is shown in Fig. 10.3. In your model,
declare Count_Out to be of type unsigned, and
implement the internal counter functionality
with a signal of type integer.

10.2.6 Design a VHDL behavioral model for a 16-bit,
binary up counter with enable and load using a
single process. The block diagram for the entity

definition is shown in Fig. 10.3. In your model,
declare Count_Out to be of type
std_logic_vector, and implement the internal
counter functionality with a signal of type
integer.

10.2.7 Design a VHDL behavioral model for a 16-bit,
binary up/down counter using a single process.
The block diagram for the entity definition is
shown in Fig. 10.4. When Up ¼ 1, the counter
will increment. When Up ¼ 0, the counter will
decrement. In your model, declare Count_Out
to be of type unsigned, and implement the
internal counter functionality with a signal of
type unsigned.

Fig. 10.4
16-Bit binary up/down counter block diagram

10.2.8 Design a VHDL behavioral model for a 16-bit,
binary up/down counter using a single process.
The block diagram for the entity definition is
shown in Fig. 10.4. When Up ¼ 1, the counter
will increment. When Up ¼ 0, the counter will
decrement. In your model, declare Count_Out
to be of type unsigned and implement the inter-
nal counter functionality with a signal of type
integer.

10.2.9 Design a VHDL behavioral model for a 16-bit,
binary up/down counter using a single process.
The block diagram for the entity definition is
shown in Fig. 10.4. When Up ¼ 1, the counter
will increment. When Up ¼ 0, the counter will
decrement. In your model, declare Count_Out
to be of type std_logic_vector, and implement
the internal counter functionality with a signal
of type integer.

Exercise Problems • 151

Chapter 11: Modeling Memory
This chapter covers how to model memory arrays in VHDL. These models are technology indepen-

dent, meaning that they can be ultimately synthesized into a wide range of semiconductor memory

devices.

Learning Outcomes—After completing this chapter, you will be able to:

11.1 Describe the basic architecture and terminology for semiconductor-based memory
systems.

11.2 Design a VHDL model for a read-only memory array.
11.3 Design a VHDL model for a read/write memory array.

11.1 Memory Architecture and Terminology

The termmemory is used to describe a system with the ability to store digital information. The term

semiconductor memory refers to systems that are implemented using integrated circuit technology.

These types of systems store the digital information using transistors, fuses, and/or capacitors on a

single semiconductor substrate. Memory can also be implemented using technology other than

semiconductors. Disk drives store information by altering the polarity of magnetic fields on a circular

substrate. The two magnetic polarities (north and south) are used to represent different logic values (i.e.,

0 or 1). Optical disks use lasers to burn pits into reflective substrates. The binary information is

represented by light either being reflected (no pit) or not reflected (pit present). Semiconductor memory

does not have any moving parts, so it is called solid state memory and can hold more information per unit

area than disk memory. Regardless of the technology used to store the binary data, all memory has

common attributes and terminology that are discussed in this chapter.

11.1.1 Memory Map Model

The information stored in memory is called the data. When information is placed into memory, it is

called a write. When information is retrieved from memory, it is called a read. In order to access data in

memory, an address is used. While data can be accessed as individual bits, in order to reduce the

number of address locations needed, data is typically grouped into N-bit words. If a memory system has

N ¼ 8, this means that 8-bits of data are stored at each address. The number of address locations is

described using the variableM. The overall size of the memory is typically stated by saying “M � N.” For

example, if we had a 16 � 8 memory system, that means that there are 16 address locations, each

capable of storing a byte of data. This memory would have a capacity of 16 � 8 ¼ 128 bits. Since the

address is implemented as a binary code, the number of lines in the address bus (n) will dictate the

number of address locations that the memory system will have (M ¼ 2n). Figure 11.1 shows a graphical

depiction of how data resides in memory. This type of graphic is called a memory map model.

Springer Nature Switzerland AG 2019

B. J. LaMeres, Quick Start Guide to VHDL, https://doi.org/10.1007/978-3-030-04516-6_11

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04516-6_11&domain=pdf

11.1.2 Volatile vs. Nonvolatile Memory

Memory is classified into two categories depending on whether it can store information when power

is removed or not. The term nonvolatile is used to describe memory that holds information when the

power is removed, while the term volatile is used to describe memory that loses its information when

power is removed. Historically, volatile memory is able to run at faster speeds compared to nonvolatile

memory, so it is used as the primary storage mechanism, while a digital system is running. Nonvolatile

memory is necessary in order to hold critical operation information for a digital system such as start-up

instructions, operations systems, and applications.

11.1.3 Read-Only vs. Read/Write Memory

Memory can also be classified into two categories with respect to how data is accessed. Read-only

memory (ROM) is a device that cannot be written to during normal operation. This type of memory is

useful for holding critical system information or programs that should not be altered, while the system is

running. Read/write memory refers to memory that can be read and written to during normal operation

and is used to hold temporary data and variables.

11.1.4 Random Access vs. Sequential Access

Random access memory (RAM) describes memory in which any location in the system can be

accessed at any time. The opposite of this is sequential access memory, in which not all address

locations are immediately available. An example of a sequential access memory system is a tape drive.

In order to access the desired address in this system, the tape spool must be spun until the address is in

a position that can be observed. Most semiconductor memory in modern systems is random access. The

terms RAM and ROM have been adopted, somewhat inaccurately, to also describe groups of memory

with particular behavior. While the term ROM technically describes a system that cannot be written to, it

has taken on the additional association of being the term to describe nonvolatile memory. While the term

RAM technically describes how data is accessed, it has taken on the additional association of being the

term to describe volatile memory. When describing modern memory systems, the terms RAM and ROM

are used most commonly to describe the characteristics of the memory being used; however, modern

memory systems can be both read/write and nonvolatile, and the majority of memory is random access.

CONCEPT CHECK

CC11.1 An 8-bit wide memory has eight address lines. What is its capacity in bits?

(A) 64 (B) 256 (C) 1024 (D) 2048

Fig. 11.1
Memory map model

154 • Chapter 11: Modeling Memory

11.2 Modeling Read-Only Memory

Modeling of memory in VHDL is accomplished using the array data type. Recall the syntax for

declaring a new array type below:

type name is array (<range>) of <element_type>;

To create the ROM memory array, a new type is declared (e.g., ROM_type) that is an array.

The range represents the addressing of the memory array and is provided as an integer. The

element_type of the array specifies the data type to be stored at each address and represents the

data in the memory array. The type of the element should be std_logic_vector with a width of N. To define

a 4 � 4 array of memory, we would use the following syntax.

Example:

type ROM_type is array (0 to 3) of std_logic_vector(3 downto 0);

Notice that the address is provided as an integer (0 to 3). This will require two address bits. Also

notice that this defines 4-bit data words. Next, we define a new constant of type ROM_type. When

defining a constant, we provide the contents at each address.

Example:

constant ROM : ROM_type :¼ (0 ¼> “1110”,

1 ¼> “0010”,

2 ¼> “1111”,

3 ¼> “0100”);

At this point, the ROM array is declared and initialized. In order to model the read behavior, a

concurrent signal assignment is used. The assignment will be made to the output data_out based on the

incoming address. The assignment to data_out will be the contents of the constant ROM at a particular

address. Since the index of a VHDL array needs to be provided as an integer (e.g., 0, 1, 2, 3) and the

address of the memory system is provided as a std_logic_vector, a type conversion is required. Since

there is not a direct conversion from type std_logic_vector to integer, two conversions are required. The

first step is to convert the address from std_logic_vector to unsigned using the unsigned type conversion.

This conversion exists within the numeric_std package. The second step is to convert the address from

unsigned to integer using the to_integer conversion. The final assignment is as follows:

Example:

data_out <¼ ROM(to_integer(unsigned(address)));

Example 11.1 shows the entire VHDL model for this memory system and the simulation waveform.

In the simulation, each possible address is provided (i.e., “00,” “01,” “10,” and “11”). For each address, the

corresponding information appears on the data_out port. Since this is an asynchronous memory system,

the data appears immediately upon receiving a new address.

11.2 Modeling Read-Only Memory • 155

Latency can be modeled in memory systems by using delayed signal assignments. In the above

example, if the memory system had a latency of 5 ns, this could be modeled using the following

approach:

Example:

data_out <¼ ROM(to_integer(unsigned(address))) after 5 ns;

A synchronous ROM can be created in a similar manner. In this approach, a clock edge is used to

trigger when the data_out port is updated. A sensitivity list is used that contains only the signal clock to

trigger the assignment. A rising edge condition is then used in an if/then statement to make the

assignment only on a rising edge. Example 11.2 shows the VHDL model and simulation waveform for

this system. Notice that prior to the first clock edge, the simulator does not know what to assign to

data_out, so it lists the value as uninitialized.

Example 11.1
Behavioral model of a 4 � 4 asynchronous read-only memory in VHDL

156 • Chapter 11: Modeling Memory

CONCEPT CHECK

CC11.2 Explain the advantage of modeling memory in VHDL without going into the details of
the storage cell operation.

(A) It allows the details of the storage cell to be abstracted from the functional
operation of the memory system.

(B) It is too difficult to model the analog behavior of the storage cell.

(C) There are too many cells to model so the simulation would take too long.

(D) It lets both ROM and R/W memory to be modeled in a similar manner.

Example 11.2
Behavioral model of a 4 � 4 synchronous read-only memory in VHDL

11.2 Modeling Read-Only Memory • 157

11.3 Modeling Read/Write Memory

In a read/write memory model, a new type is created using a VHDL array (e.g., RW_type) that

defines the size of the storage system. To create the memory, a new signal is declared with the

array type.

Example:

type RW_type is array (0 to 3) std_logic_vector(3 downto 0);

signal RW : RW_type;

Note that a signal is used in a read/write system as opposed to a constant as in the read-only

memory system. This is because a read/write system is uninitialized until it is written to. A process is then

used to model the behavior of the memory system. Since this is an asynchronous system, all inputs are

listed in the sensitivity list (i.e., address, WE, and data_in). The process first checks whether the write

enable line is asserted (WE¼ 1), which indicates a write cycle is being performed. If it is, then it makes an

assignment to the RW signal at the location provided by the address input with the data provided by the

data_in input. Since the RWarray is indexed using integers, type conversions are required to convert the

address from std_logic_vector to integer. When WE is not asserted (WE ¼ 0), a read cycle is being

performed. In this case, the process makes an assignment to data_out with the contents stored at the

provided address. This assignment also requires type conversions to change the address from

std_logic_vector to integer. The following syntax implements this behavior:

Example:

MEMORY: process (address, WE, data_in)

begin

if (WE ¼ ’1’) then

RW(to_integer(unsigned(address))) <¼ data_in;

else

data_out <¼ RW(to_integer(unsigned(address)));

end if;

end process;

A read/write memory does not contain information until its storage locations are written to. As a

result, if the memory is read from before it has been written to, the simulation will return uninitialized.

Example 11.3 shows the entire VHDL model for an asynchronous read/write memory and the simulation

waveform showing read/write cycles.

158 • Chapter 11: Modeling Memory

A synchronous read/write memory is made in a similar manner with the exception that a clock is

used to trigger the signal assignments in the sensitivity list. The WE signal acts as a synchronous control

signal indicating whether assignments are read from or written to the RWarray. Example 11.4 shows the

entire VHDL model for a synchronous read/write memory and the simulation waveform showing both

read and write cycles.

Example 11.3
Behavioral model of a 4 � 4 asynchronous read/write memory in VHDL

11.3 Modeling Read/Write Memory • 159

CONCEPT CHECK

CC11.3 Does modeling the R/W memory as an uninitialized array accurately describe the
behavior of real R/W memory technology?

(A) Yes. Read/write memory is not initialized upon power up.

(B) No. Read/write memory should be initialized to all zeros to model the reset
behavior found in memory.

Example 11.4
Behavioral model of a 4 � 4 synchronous read/write memory in VHDL

160 • Chapter 11: Modeling Memory

Summary

v The term memory refers to large arrays of
digital storage. The technology used in mem-
ory is typically optimized for storage density
at the expense of control capability. This is
different from a D-flip-flop, which is optimized
for complete control at the bit level.

v A memory device always contains an
address bus input. The number of bits in the
address bus dictates how many storage
locations can be accessed. An n-bit address
bus can access 2n (or M) storage locations.

v The width of each storage location (N) allows
the density of the memory array to be
increased by reading and writing vectors of
data instead of individual bits.

v A memory map is a graphical depiction of a
memory array. A memory map is useful to
give an overview of the capacity of the array
and how different address ranges of the array
are used.

v A read is an operation in which data is
retrieved from memory. A write is an opera-
tion in which data is stored to memory.

v An asynchronous memory array responds
immediately to its control inputs. A

synchronous memory array only responds
on the triggering edge of clock.

v Volatile memory will lose its data when the
power is removed. Nonvolatile memory will
retain its data when the power is removed.

v Read-only memory (ROM) is a memory type
that cannot be written to during normal oper-
ation. Read/write (R/W) memory is a memory
type that can be written to during normal
operation. Both ROM and R/W memory can
be read from during normal operation.

v Random access memory (RAM) is a memory
type in which any location in memory can be
accessed at any time. In sequential access
memory, the data can only be retrieved in a
linear sequence. This means that in sequen-
tial memory the data cannot be accessed
arbitrarily.

v Memory can be modeled in VHDL using the
array data type.

v Read-only memory in VHDL is implemented
as an array of constants.

v Read/write memory in VHDL is implemented
an as array of signal vectors.

Exercise Problems

Section 11.1: Memory Architecture

and Terminology

11.1.1 For a 512k � 32 memory system, how many
unique address locations are there? Give the
exact number.

11.1.2 For a 512k � 32 memory system, what is the
data width at each address location?

11.1.3 For a 512k � 32 memory system, what is the
capacity in bits?

11.1.4 For a 512k � 32-bit memory system, what is
the capacity in bytes?

11.1.5 For a 512k � 32 memory system, how wide
does the incoming address bus need to be in
order to access every unique address
location?

Section 11.2: Modeling Read-Only

Memory

11.2.1 Design a VHDL model for the 16 � 8, asyn-
chronous, read-only memory system shown in
Fig. 11.2. The system should contain the infor-
mation provided in the memory map. Create a
test bench to simulate your model by reading
from each of the 16 unique addresses and
observing Data_Out to verify it contains the
information in the memory map.

Fig. 11.2
16 � 8 asynchronous ROM block diagram

11.2.2 Design a VHDL model for the 16 � 8, synchro-
nous, read-only memory system shown in
Fig. 11.3. The system should contain the infor-
mation provided in the memory map. Create a
test bench to simulate your model by reading
from each of the 16 unique addresses and

Exercise Problems • 161

observing Data_Out to verify it contains the
information in the memory map.

Fig. 11.3
16 � 8 synchronous ROM block diagram

Section 11.3: Modeling Read/Write

Memory

11.3.1 Design a VHDL model for the 16 � 8, asyn-
chronous, read/write memory system shown in
Fig. 11.4. Create a test bench to simulate your
model. Your test bench should first read from
all of the address locations to verify they are
uninitialized. Next, your test bench should write
unique information to each of the address
locations. Finally, your test bench should read
from each address location to verify that the

information that was written was stored and
can be successfully retrieved.

Fig. 11.4
16 � 8 asynchronous R/W block diagram

11.3.2 Design a VHDL model for the 16 � 8, synchro-
nous, read/write memory system shown in
Fig. 11.5. Create a test bench to simulate
your model. Your test bench should first read
from all of the address locations to verify they
are uninitialized. Next, your test bench should
write unique information to each of the address
locations. Finally, your test bench should read
from each address location to verify that the
information that was written was stored and
can be successfully retrieved.

Fig. 11.5
16 � 8 synchronous R/W block diagram

162 • Chapter 11: Modeling Memory

Chapter 12: Computer System Design
This chapter presents the design of a simple computer system that will illustrate the use of many of

the VHDLmodeling techniques covered in this book. The goal of this chapter is not to provide an in-depth

coverage of modern computer architecture but rather to present a simple operational computer that can

be implemented in VHDL to show how to use many of the modeling techniques covered thus far. This

chapter begins with some architectural definitions so that consistent terminology can be used throughout

the computer design example.

Learning Outcomes—After completing this chapter, you will be able to:

12.1 Describe the basic components and operation of computer hardware.
12.2 Describe the basic components and operation of computer software.
12.3 Design a fully operational computer system using VHDL.

12.1 Computer Hardware

A computer accomplishes tasks through an architecture that uses both hardware and software.

The hardware in a computer consists of many of the elements that we have covered so far. These include

registers, arithmetic and logic circuits, finite state machines, and memory. What makes a computer so

useful is that the hardware is designed to accomplish a predetermined set of instructions. These

instructions are relatively simple, such as moving data between memory and a register or performing

arithmetic on two numbers. The instructions are comprised of binary codes that are stored in a memory

device and represent the sequence of operations that the hardware will perform to accomplish a task.

This sequence of instructions is called a computer program. What makes this architecture so useful is

that the preexisting hardware can be programmed to perform an almost unlimited number of tasks by

simply defining the sequence of instructions to be executed. The process of designing the sequence of

instructions, or program, is called software development or software engineering.

The idea of a general-purpose computing machine dates back to the nineteenth century. The first

computing machines were implemented with mechanical systems and were typically analog in nature.

As technology advanced, computer hardware evolved from electromechanical switches to vacuum

tubes and ultimately to integrated circuits. These newer technologies enabled switching circuits and

provided the capability to build binary computers. Today’s computers are built exclusively with semicon-

ductor materials and integrated circuit technology. The term microcomputer is used to describe a

computer that has its processing hardware implemented with integrated circuitry. Nearly all modern

computers are binary. Binary computers are designed to operate on a fixed set of bits. For example, an

8-bit computer would perform operations on 8-bits at a time. This means it moves data between registers

and memory and performs arithmetic and logic operations in groups of 8-bits.

Computer hardware refers to all of the physical components within the system. This hardware

includes all circuit components in a computer such as the memory devices, registers, and finite state

machines. Figure 12.1 shows a block diagram of the basic hardware components in a computer.

Springer Nature Switzerland AG 2019

B. J. LaMeres, Quick Start Guide to VHDL, https://doi.org/10.1007/978-3-030-04516-6_12

163

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04516-6_12&domain=pdf

12.1.1 Program Memory

The instructions that are executed by a computer are held in program memory. Program memory is

treated as read-only during execution in order to prevent the instructions from being overwritten by the

computer. Programs are typically held in nonvolatile memory so that the computer system does not lose

its program when power is removed. Modern computers will often copy a program from nonvolatile

memory (e.g., a hard disk drive) to volatile memory (i.e., SRAM or DRAM) after start-up in order to speed

up instruction execution as volatile memory is often a faster technology.

12.1.2 Data Memory

Computers also require data memory, which can be written to and read from during normal

operation. This memory is used to hold temporary variables that are created by the software program.

This memory expands the capability of the computer system by allowing large amounts of information to

be created and stored by the program. Additionally, computations can be performed that are larger than

the width of the computer system by holding interim portions of the calculation (e.g., performing a 128-bit

addition on a 32-bit computer). Data memory is typically implemented with volatile memory as it is often

faster than read-only memory technology.

12.1.3 Input/Output Ports

The term port is used to describe the mechanism to get information from the output world into or out

of the computer. Ports can be input, output, or bidirectional. I/O ports can be designed to pass information

in a serial or parallel format.

12.1.4 Central Processing Unit

The central processing unit (CPU) is considered the brains of the computer. The CPU handles

reading instructions from memory, decoding them to understand which instruction is being performed,

and executing the necessary steps to complete the instruction. The CPU also contains a set of registers

Fig. 12.1
Hardware components of a computer system

164 • Chapter 12: Computer System Design

that are used for general-purpose data storage, operational information, and system status. Finally, the

CPU contains circuitry to perform arithmetic and logic operations on data.

12.1.4.1 Control Unit

The control unit is a finite state machine that controls the operation of the computer. This FSM has

states that perform fetching the instruction (i.e., reading it from program memory), decoding the instruc-

tion, and executing the appropriate steps to accomplish the instruction. This process is known as fetch,

decode, and execute and is repeated each time an instruction is performed by the CPU. As the control

unit state machine traverses through its states, it asserts control signals that move and manipulate data

in order to achieve the desired functionality of the instruction.

12.1.4.2 Data Path: Registers

The CPU groups its registers and ALU into a sub-system called the data path. The data path refers

to the fast storage and data manipulations within the CPU. All of these operations are initiated and

managed by the control unit state machine. The CPU contains a variety of registers that are necessary to

execute instructions and hold status information about the system. Basic computers have the following

registers in their CPU:

• Instruction Register (IR)—The instruction register holds the current binary code of the
instruction being executed. This code is read from program memory as the first part of
instruction execution. The IR is used by the control unit to decide which states in its FSM to
traverse in order to execute the instruction.

• Memory Address Register (MAR)—The memory address register is used to hold the current
address being used to access memory. The MAR can be loaded with addresses in order to
fetch instructions from program memory or with addresses to access data memory and/or I/O
ports.

• Program Counter (PC)—The program counter holds the address of the current instruction
being executed in program memory. The program counter will increment sequentially through
the program memory reading instructions until a dedicated instruction is used to set it to a new
location.

• General-Purpose Registers—These registers are available for temporary storage by the
program. Instructions exist to move information from memory into these registers and to move
information from these registers into memory. Instructions also exist to perform arithmetic and
logic operations on the information held in these registers.

• Condition Code Register (CCR)—The condition code register holds status flags that provide
information about the arithmetic and logic operations performed in the CPU. The most common
flags are negative (N), zero (Z), two’s complement overflow (V), and carry (C). This register can
also contain flags that indicate the status of the computer, such as if an interrupt has occurred
or if the computer has been put into a low-power mode.

12.1.4.3 Data Path: Arithmetic Logic Unit (ALU)

The arithmetic logic unit is the system that performs all mathematical (i.e., addition, subtraction,

multiplication, and division) and logic operations (i.e., and, or, not, shifts, etc.). This system operates on

data being held in CPU registers. The ALU has a unique symbol associated with it to distinguish it from

other functional units in the CPU.

Figure 12.2 shows the typical organization of a CPU. The registers and ALU are grouped into the

data path. In this example, the computer system has two general-purpose registers called A and B. This

CPU organization will be used throughout this chapter to illustrate the detailed execution of instructions.

12.1 Computer Hardware • 165

12.1.5 A Memory-Mapped System

A common way to simplify moving data in or out of the CPU is to assign a unique address to all

hardware components in the memory system. Each input/output port and each location in both program

and data memory are assigned a unique address. This allows the CPU to access everything in the

memory system with a dedicated address. This reduces the number of lines that must pass into the CPU.

A bus system facilitates transferring information within the computer system. An address bus is driven by

the CPU to identify which location in the memory system is being accessed. A data bus is used to

transfer information to/from the CPU and the memory system. Finally, a control bus is used to provide

other required information about the transactions such as read or write lines. Figure 12.3 shows the

computer hardware in a memory-mapped architecture.

Fig. 12.2
Typical CPU organization

166 • Chapter 12: Computer System Design

To help visualize how the memory addresses are assigned, a memory map is used. This is a

graphical depiction of the memory system. In the memory map, the ranges of addresses are provided for

each of the main subsections of memory. This gives the programmer a quick overview of the available

resources in the computer system. Example 12.1 shows a representative memory map for a computer

system with an address bus with a width of 8-bits. This address bus can provide 256 unique locations.

For this example, the memory system is also 8-bits wide; thus the entire memory system is 256 � 8 in

size. In this example 128 bytes are allocated for program memory; 96 bytes are allocated for data

memory; 16 bytes are allocated for output ports; and 16 bytes are allocated for input ports.

Fig. 12.3
Computer hardware in a memory-mapped configuration

12.1 Computer Hardware • 167

CONCEPT CHECK

CC12.1 Is the hardware of a computer programmed in a similar way to a programmable logic
device?

(A) Yes. The control unit is reconfigured to produce the correct logic for each
unique instruction just like a logic element in an FPGA is reconfigured to
produce the desired logic expression.

(B) No. The instruction code from program memory simply tells the state
machine in the control unit which path to traverse in order to accomplish the
desired task.

12.2 Computer Software

Computer software refers to the instructions that the computer can execute and how they are

designed to accomplish various tasks. The specific group of instructions that a computer can execute

is known as its instruction set. The instruction set of a computer needs to be defined first before the

computer hardware can be implemented. Some computer systems have a very small number of

instructions in order to reduce the physical size of the circuitry needed in the CPU. This allows the

CPU to execute the instructions very quickly but requires a large number of operations to accomplish a

given task. This architectural approach is called a reduced instruction set computer (RISC). The

alternative to this approach is to make an instruction set with a large number of dedicated instructions

that can accomplish a given task in fewer CPU operations. The drawback of this approach is that the

Example 12.1
Memory map for a 256 � 8 memory system

168 • Chapter 12: Computer System Design

physical size of the CPU must be larger in order to accommodate the various instructions. This

architectural approach is called a complex instruction set computer (CISC). The computer example

in this chapter will use a RISC architecture.

12.2.1 Opcodes and Operands

A computer instruction consists of two fields, an opcode and an operand. The opcode is a unique

binary code given to each instruction in the set. The CPU decodes the opcode in order to know which

instruction is being executed and then takes the appropriate steps to complete the instruction. Each

opcode is assigned a mnemonic, which is a descriptive name for the opcode that can be used when

discussing the instruction functionally. An operand is additional information for the instruction that may be

required. An instruction may have any number of operands including zero. Figure 12.4 shows an

example of how the instruction opcodes and operands are placed into program memory.

12.2.2 Addressing Modes

An addressing mode describes the way in which the operand of an instruction is used. While modern

computer systems may contain numerous addressing modes with varying complexities, we will focus on

just a subset of basic addressing modes that are needed to get a simple computer running. These modes

are immediate, direct, and inherent.

12.2.2.1 Immediate Addressing (IMM)

Immediate addressing is when the operand of an instruction is the information to be used by the

instruction. For example, if an instruction existed to put a constant into a register within the CPU using

immediate addressing, the operand would be the constant. When the CPU reads the operand, it simply

inserts the contents into the CPU register, and the instruction is complete.

Fig. 12.4
Anatomy of a computer instruction

12.2 Computer Software • 169

12.2.2.2 Direct Addressing (DIR)

Direct addressing is when the operand of an instruction contains the address of where the informa-

tion to be used is located. For example, if an instruction existed to put a constant into a register within the

CPU using direct addressing, the operand would contain the address of where the constant was located

in memory. When the CPU reads the operand, it puts this value out on the address bus and performs an

additional read to retrieve the contents located at that address. The value read is then put into the CPU

register and the instruction is complete.

12.2.2.3 Inherent Addressing (INH)

Inherent addressing refers to an instruction that does not require an operand because the opcode

itself contains all of the necessary information for the instruction to complete. This type of addressing is

used on instructions that performmanipulations on data held in CPU registers without the need to access

the memory system. For example, if an instruction existed to increment the contents of a register (A), and

then once the opcode is read by the CPU, it knows everything it needs to know in order to accomplish the

task. The CPU simply asserts a series of control signals in order to increment the contents of A, and then

the instruction is complete. Notice that no operand is needed for this task. Instead, the location of the

register to be manipulated (i.e., A) is inherent within the opcode.

12.2.3 Classes of Instructions

There are three general classes of instructions: (1) loads and stores, (2) data manipulations, and

(3) branches. To illustrate how these instructions are executed, examples will be given based on the

computer architecture shown in Fig. 12.3.

12.2.3.1 Loads and Stores

This class of instructions accomplishes moving information between the CPU and memory. A load

is an instruction that moves information from memory into a CPU register. When a load instruction uses

immediate addressing, the operand of the instruction is the data to be loaded into the CPU register. As an

example, let’s look at an instruction to load the general-purpose register A using immediate addressing.

Let’s say that the opcode of the instruction is x“86”, has a mnemonic LDA_IMM, and is inserted into

program memory starting at x“00”. Example 12.2 shows the steps involved in executing the LDA_IMM

instruction.

170 • Chapter 12: Computer System Design

Now let’s look at a load instruction using direct addressing. In direct addressing, the operand of the

instruction is the address of where the data to be loaded resides. As an example, let’s look at an

instruction to load the general-purpose register A. Let’s say that the opcode of the instruction is x“87”,

has a mnemonic LDA_DIR, and is inserted into program memory starting at x“08”. The value to be

loaded into A resides at address x“80”, which has already been initialized with x“AA” before this

instruction. Example 12.3 shows the steps involved in executing the LDA_DIR instruction.

Example 12.2
Execution of an instruction to “load register A using immediate addressing”

12.2 Computer Software • 171

A store is an instruction that moves information from a CPU register intomemory. The operand of a

store instruction indicates the address of where the contents of the CPU register will be written. As an

example, let’s look at an instruction to store the general-purpose register A into memory address x“E0”.

Let’s say that the opcode of the instruction is x“96”, has a mnemonic STA_DIR, and is inserted into

program memory starting at x“04”. The initial value of A is x“CC” before the instruction is executed.

Example 12.4 shows the steps involved in executing the STA_DIR instruction.

Example 12.3
Execution of an instruction to “load register A using direct addressing”

172 • Chapter 12: Computer System Design

12.2.3.2 Data Manipulations

This class of instructions refers to ALU operations. These operations act on data that resides in the

CPU registers. These instructions include arithmetic, logic operators, shifts and rotates, and tests and

compares. Data manipulation instructions typically use inherent addressing because the operations are

conducted on the contents of CPU registers and don’t require additional memory access. As an example,

let’s look at an instruction to perform addition on registers A and B. The sum will be placed back in

A. Let’s say that the opcode of the instruction is x“42”, has a mnemonic ADD_AB, and is inserted into

program memory starting at x“04”. Example 12.5 shows the steps involved in executing the ADD_AB

instruction.

Example 12.4
Execution of an instruction to “store register A using direct addressing”

12.2 Computer Software • 173

12.2.3.3 Branches

In the previous examples, the program counter was always incremented to point to the address of

the next instruction in programmemory. This behavior only supports a linear execution of instructions. To

provide the ability to specifically set the value of the program counter, instructions called branches are

used. There are two types of branches: unconditional and conditional. In an unconditional branch, the

program counter is always loaded with the value provided in the operand. As an example, let’s look at an

instruction to branch always to a specific address. This allows the program to perform loops. Let’s say

that the opcode of the instruction is x“20”, has a mnemonic BRA, and is inserted into program memory

starting at x“06”. Example 12.6 shows the steps involved in executing the BRA instruction.

Example 12.5
Execution of an instruction to “add registers A and B”

174 • Chapter 12: Computer System Design

In a conditional branch, the program counter is only updated if a particular condition is true. The

conditions come from the status flags in the condition code register (NZVC). This allows a program to

selectively execute instructions based on the result of a prior operation. Let’s look at an example

instruction that will branch only if the Z flag is asserted. This instruction is called a branch if equal to

zero. Let’s say that the opcode of the instruction is x“23”, has a mnemonic BEQ, and is inserted into

program memory starting at x“05”. Example 12.7 shows the steps involved in executing the BEQ

instruction.

Example 12.6
Execution of an instruction to “branch always”

12.2 Computer Software • 175

Conditional branches allow computer programs to make decisions about which instructions to

execute based on the results of previous instructions. This gives computers the ability to react to input

signals or act based on the results of arithmetic or logic operations. Computer instruction sets typically

contain conditional branches based on the NZVC flags in the condition code registers. The following

instructions are a set of possible branches that could be created using the values of the NZVC flags.

• BMI—Branch if minus (N ¼ 1)

• BPL—Branch if plus (N ¼ 0)

• BEQ—Branch if equal to Zero (Z ¼ 1)

• BNE—Branch if not equal to Zero (Z ¼ 0)

Example 12.7
Execution of an instruction to “branch if equal to zero”

176 • Chapter 12: Computer System Design

• BVS—Branch if two’s complement overflow occurred, or V is set (V ¼ 1)

• BVC—Branch if two’s complement overflow did not occur, or V is clear (V ¼ 0)

• BCS—Branch if a carry occurred, or C is set (C ¼ 1)

• BCC—Branch if a carry did not occur, or C is clear (C ¼ 0)

Combinations of these flags can be used to create more conditional branches.

• BHI—Branch if higher (C ¼ 1 and Z ¼ 0)

• BLS—Branch if lower or the same (C ¼ 0 and Z ¼ 1)

• BGE—Branch if greater than or equal ((N ¼ 0 and V ¼ 0) or (N ¼ 1 and V ¼ 1)), only valid for
signed numbers

• BLT—Branch if less than ((N ¼ 1 and V ¼ 0) or (N ¼ 0 and V ¼ 1)), only valid for signed
numbers

• BGT—Branch if greater than ((N¼ 0 and V¼ 0 and Z¼ 0) or (N¼ 1 and V¼ 1 and Z¼ 0)), only
valid for signed numbers

• BLE—Branch if less than or equal ((N¼ 1 and V¼ 0) or (N¼ 0 and V¼ 1) or (Z¼ 1)), only valid
for signed numbers

CONCEPT CHECK

CC12.2 Software development consists of choosing which instructions, and in what order, will
be executed to accomplish a certain task. The group of instructions is called the
program and is inserted into program memory. Which of the following might a software
developer care about?

(A) Minimizing the number of instructions that need to be executed to accom-
plish the task in order to increase the computation rate.

(B) Minimizing the number of registers used in the CPU to save power.

(C) Minimizing the overall size of the program to reduce the amount of program
memory needed.

(D) Both A and C.

12.3 Computer Implementation: An 8-Bit Computer Example

12.3.1 Top-Level Block Diagram

Let’s now look at the detailed implementation and instruction execution of a computer system in

VHDL. In order to illustrate the detailed operation, we will use a simple 8-bit computer system design.

Example 12.8 shows the block diagram for the 8-bit computer system. This block diagram also contains

the VHDL file and entity names, which will be used when the behavioral model is implemented.

12.3 Computer Implementation: An 8-Bit Computer Example • 177

We will use the memory map shown in Example 12.1 for our example computer system. This

mapping provides 128 bytes of program memory, 96 bytes of data memory, 16x output ports, and 16x

input ports. To simplify the operation of this example computer, the address bus is limited to 8-bits. This

only provides 256 locations of memory access but allows an entire address to be loaded into the CPU as

a single operand of an instruction.

12.3.2 Instruction Set Design

Example 12.9 shows a basic instruction set for our example computer system. This set provides a

variety of loads and stores, data manipulations, and branch instructions that will allow the computer to be

programmed to perform more complex tasks through software development. These instructions are

sufficient to provide a baseline of functionality in order to get the computer system operational. Additional

instructions can be added as desired to increase the complexity of the system.

Example 12.8
Top-level block diagram for the 8-bit computer system

178 • Chapter 12: Computer System Design

12.3.3 Memory System Implementation

Let’s now look at the memory system details. The memory system contains program memory, data

memory, and input/output ports. Example 12.10 shows the block diagram of the memory system. The

program and data memory will be implemented using lower-level components (rom_128x8_sync.vhd

and rw_96x8_sync.vhd), while the input and output ports can be modeled using a combination of RTL

processes and combinational logic. The program and data memory components contain dedicated

circuitry to handle their addressing ranges. Each output port also contains dedicated circuitry to handle

its unique address. A multiplexer is used to handle the signal routing back to the CPU based on the

address provided.

Example 12.9
Instruction set for the 8-bit computer system

12.3 Computer Implementation: An 8-Bit Computer Example • 179

12.3.3.1 Program Memory Implementation in VHDL

The program memory can be implemented in VHDL using the modeling techniques presented in

Chap. 11. To make the VHDL more readable, the instruction mnemonics can be declared as constants.

This allows the mnemonic to be used when populating the program memory array. The following VHDL

shows how the mnemonics for our basic instruction set can be defined as constants.

constant LDA_IMM : std_logic_vector (7 downto 0) :¼ x"86";

constant LDA_DIR : std_logic_vector (7 downto 0) :¼ x"87";

constant LDB_IMM : std_logic_vector (7 downto 0) :¼ x"88";

constant LDB_DIR : std_logic_vector (7 downto 0) :¼ x"89";

constant STA_DIR : std_logic_vector (7 downto 0) :¼ x"96";

constant STB_DIR : std_logic_vector (7 downto 0) :¼ x"97";

constant ADD_AB : std_logic_vector (7 downto 0) :¼ x"42";

constant BRA : std_logic_vector (7 downto 0) :¼ x"20";

constant BEQ : std_logic_vector (7 downto 0) :¼ x"23";

Now the program memory can be declared as an array type with initial values to define the program.

The following VHDL shows how to declare the program memory and an example program to perform a

load, store, and a branch always. This program will continually write x“AA” to port_out_00.

Example 12.10
Memory system block diagram for the 8-bit computer system

180 • Chapter 12: Computer System Design

type rom_type is array (0 to 127) of std_logic_vector(7 downto 0);

constant ROM : rom_type :¼ (0 ¼> LDA_IMM,

1 ¼> x"AA",

2 ¼> STA_DIR,

3 ¼> x"E0",

4 ¼> BRA,

5 ¼> x"00",

others ¼> x"00");

The address mapping for the program memory is handled in two ways. First, notice that the array

type defined above uses indices from 0 to 127. This provides the appropriate addresses for each location

in the memory. The second step is to create an internal enable line that will only allow assignments from

ROM to data_out when a valid address is entered. Consider the following VHDL to create an internal

enable (EN) that will only be asserted when the address falls within the valid program memory range of

0 to 127.

enable : process (address)

begin

if ((to_integer(unsigned(address)) >¼ 0) and

(to_integer(unsigned(address)) <¼ 127)) then

EN <¼ ’1’;

else

EN <¼ ’0’;

end if;

end process;

If this enable signal is not created, the simulation and synthesis will fail because data_out

assignments will be attempted for addresses outside of the defined range of the ROM array. This enable

line can now be used in the behavioral model for the ROM process as follows:

memory : process (clock)

begin

if (clock’event and clock¼’1’) then

if (EN¼’1’) then

data_out <¼ ROM(to_integer(unsigned(address)));

end if;

end if;

end process;

12.3.3.2 Data Memory Implementation in VHDL

The data memory is created using a similar strategy as the program memory. An array signal is

declared with an address range corresponding to the memory map for the computer system (i.e., 128 to

223). An internal enable is again created that will prevent data_out assignments for addresses outside of

this valid range. The following is the VHDL to declare the R/W memory array:

type rw_type is array (128 to 223) of std_logic_vector(7 downto 0);

signal RW : rw_type;

12.3 Computer Implementation: An 8-Bit Computer Example • 181

The following is the VHDL to model the local enable and signal assignments for the R/W memory:

enable : process (address)

begin

if ((to_integer(unsigned(address)) >¼ 128) and

(to_integer(unsigned(address)) <¼ 223)) then

EN <¼ ’1’;

else

EN <¼ ’0’;

end if;

end process;

memory : process (clock)

begin

if (clock’event and clock¼’1’) then

if (EN¼’1’ and write¼’1’) then

RW(to_integer(unsigned(address))) <¼ data_in;

elsif (EN¼’1’ and write¼’0’) then

data_out <¼ RW(to_integer(unsigned(address)));

end if;

end if;

end process;

12.3.3.3 Implementation of Output Ports in VHDL

Each output port in the computer system is assigned a unique address. Each output port also

contains storage capability. This allows the CPU to update an output port by writing to its specific

address. Once the CPU is done storing to the output port address and moves to the next instruction in

the program, the output port holds its information until it is written to again. This behavior can be modeled

using an RTL process that uses the address bus and the write signal to create a synchronous enable

condition. Each port is modeled with its own process. The following VHDL shows how the output ports at

x“E0” and x“E1” are modeled using address specific processes.

-- port_out_00 description : ADDRESS x"E0"

U3 : process (clock, reset)

begin

if (reset ¼ ’0’) then

port_out_00 <¼ x"00";

elsif (clock’event and clock¼’1’) then

if (address ¼ x"E0" and write ¼ ’1’) then

port_out_00 <¼ data_in;

end if;

end if;

end process;

-- port_out_01 description : ADDRESS x"E1"

U4 : process (clock, reset)

begin

if (reset ¼ ’0’) then

port_out_01 <¼ x"00";

elsif (clock’event and clock¼’1’) then

if (address ¼ x"E1" and write ¼ ’1’) then

port_out_01 <¼ data_in;

end if;

end if;

end process;

:

“the rest of the output port models go here. . .”

:

182 • Chapter 12: Computer System Design

12.3.3.4 Implementation of Input Ports in VHDL

The input ports do not contain storage but do require a mechanism to selectively route their

information to the data_out port of the memory system. This is accomplished using the multiplexer

shown in Example 12.10. The only functionality that is required for the input ports is connecting their

ports to the multiplexer.

12.3.3.5 Memory data_out Bus Implementation in VHDL

Now that all of the memory functionality has been designed, the final step is to implement the

multiplexer that handles routing the appropriate information to the CPU on the data_out bus based on the

incoming address. The following VHDL provides a model for this behavior. Recall that a multiplexer is

combinational logic, so if the behavior is to be modeled using a process, all inputs must be listed in the

sensitivity list. These inputs include the outputs from the program and data memory in addition to all of

the input ports. The sensitivity list must also include the address bus as it acts as the select input to the

multiplexer. Within the process, an if/then statement is used to determine which sub-system drives

data_out. Program memory will drive data_out when the incoming address is in the range of 0 to

127 (x“00” to x“7F”). Data memory will drive data_out when the address is in the range of 128 to

223 (x“80” to x“DF”). An input port will drive data_out when the address is in the range of 240 to

255 (x“F0” to x“FF”). Each input port has a unique address, so the specific addresses are listed as

elsif clauses.

MUX1 : process (address, rom_data_out, rw_data_out,

port_in_00, port_in_01, port_in_02, port_in_03,

port_in_04, port_in_05, port_in_06, port_in_07,

port_in_08, port_in_09, port_in_10, port_in_11,

port_in_12, port_in_13, port_in_14, port_in_15)

begin

if ((to_integer(unsigned(address)) >¼ 0) and

(to_integer(unsigned(address)) <¼ 127)) then

data_out <¼ rom_data_out;

elsif ((to_integer(unsigned(address)) >¼ 128) and

(to_integer(unsigned(address)) <¼ 223)) then

data_out <¼ rw_data_out;

elsif (address ¼ x"F0") then data_out <¼ port_in_00;

elsif (address ¼ x"F1") then data_out <¼ port_in_01;

elsif (address ¼ x"F2") then data_out <¼ port_in_02;

elsif (address ¼ x"F3") then data_out <¼ port_in_03;

elsif (address ¼ x"F4") then data_out <¼ port_in_04;

elsif (address ¼ x"F5") then data_out <¼ port_in_05;

elsif (address ¼ x"F6") then data_out <¼ port_in_06;

elsif (address ¼ x"F7") then data_out <¼ port_in_07;

elsif (address ¼ x"F8") then data_out <¼ port_in_08;

elsif (address ¼ x"F9") then data_out <¼ port_in_09;

elsif (address ¼ x"FA") then data_out <¼ port_in_10;

elsif (address ¼ x"FB") then data_out <¼ port_in_11;

elsif (address ¼ x"FC") then data_out <¼ port_in_12;

elsif (address ¼ x"FD") then data_out <¼ port_in_13;

elsif (address ¼ x"FE") then data_out <¼ port_in_14;

elsif (address ¼ x"FF") then data_out <¼ port_in_15;

else data_out <¼ x"00";

end if;

end process;

12.3 Computer Implementation: An 8-Bit Computer Example • 183

12.3.4 CPU Implementation

Let’s now look at the central processing unit details. The CPU contains two components, the control

unit (control_unit.vhd) and the data path (data_path.vhd). The data path contains all of the registers and

the ALU. The ALU is implemented as a sub-component within the data path (alu.vhd). The data path also

contains a bus system in order to facilitate data movement between the registers and memory. The bus

system is implemented with two multiplexers that are controlled by the control unit. The control unit

contains the finite state machine that generates all control signals for the data path as it performs the

fetch-decode-execute steps of each instruction. Example 12.11 shows the block diagram of the CPU in

our 8-bit microcomputer example.

Example 12.11
CPU block diagram for the 8-bit computer system

184 • Chapter 12: Computer System Design

12.3.4.1 Data Path Implementation in VHDL

Let’s first look at the data path bus system that handles internal signal routing. The system consists

of two 8-bit busses (Bus1 and Bus2) and two multiplexers. Bus1 is used as the destination of the PC, A,

and B register outputs, while Bus2 is used as the input to the IR, MAR, PC, A, and B registers. Bus1 is

connected directly to the to_memory port of the CPU to allow registers to write data to the memory

system. Bus2 can be driven by the from_memory port of the CPU to allow the memory system to provide

data for the CPU registers. The two multiplexers handle all signal routing and have their select lines

(Bus1_Sel and Bus2_Sel) driven by the control unit. The following VHDL shows how the multiplexers are

implemented. Again, a multiplexer is combinational logic, so all inputs must be listed in the sensitivity list

of its process. Two concurrent signal assignments are also required to connect the MAR to the address

port and to connect Bus1 to the to_memory port.

MUX_BUS1 : process (Bus1_Sel, PC, A, B)

begin

case (Bus1_Sel) is

when "00" ¼> Bus1 <¼ PC;

when "01" ¼> Bus1 <¼ A;

when "10" ¼> Bus1 <¼ B;

when others ¼> Bus1 <¼ x"00";

end case;

end process;

MUX_BUS2 : process (Bus2_Sel, ALU_Result, Bus1, from_memory)

begin

case (Bus2_Sel) is

when "00" ¼> Bus2 <¼ ALU_Result;

when "01" ¼> Bus2 <¼ Bus1;

when "10" ¼> Bus2 <¼ from_memory;

when others ¼> Bus2 <¼ x"00";

end case;

end process;

address <¼ MAR;

to_memory <¼ Bus1;

Next, let’s look at implementing the registers in the data path. Each register is implemented using a

dedicated process that is sensitive to clock and reset. This models the behavior of synchronous latches

or registers. Each register has a synchronous enable line that dictates when the register is updated. The

register output is only updated when the enable line is asserted and a rising edge of the clock is detected.

The following VHDL shows how to model the instruction register (IR). Notice that the signal IR is only

updated if IR_Load is asserted and there is a rising edge of the clock. In this case, IR is loaded with the

value that resides on Bus2.

INSTRUCTION_REGISTER : process (Clock, Reset)

begin

if (Reset ¼ ’0’) then

IR <¼ x"00";

elsif (Clock’event and Clock ¼ ’1’) then

if (IR_Load ¼ ’1’) then

IR <¼ Bus2;

end if;

end if;

end process;

A nearly identical process is used to model the memory address register. A unique signal is declared

called MAR in order to make the VHDL more readable. MAR is always assigned to address in this

system.

12.3 Computer Implementation: An 8-Bit Computer Example • 185

MEMORY_ADDRESS_REGISTER : process (Clock, Reset)

begin

if (Reset ¼ ’0’) then

MAR <¼ x"00";

elsif (Clock’event and Clock ¼ ’1’) then

if (MAR_Load ¼ ’1’) then

MAR <¼ Bus2;

end if;

end if;

end process;

Now let’s look at the program counter process. This register contains additional functionality beyond

simply latching in the value of Bus2. The program counter also has an increment feature. In order to use

the “+” operator, we can declare a temporary unsigned vector called PC_uns. The PC process can model

the appropriate behavior using PC_uns and then type cast it back to the original PC signal.

PROGRAM_COUNTER : process (Clock, Reset)

begin

if (Reset ¼ ’0’) then

PC_uns <¼ x"00";

elsif (Clock’event and Clock ¼ ’1’) then

if (PC_Load ¼ ’1’) then

PC_uns <¼ unsigned(Bus2);

elsif (PC_Inc ¼ ’1’) then

PC_uns <¼ PC_uns + 1;

end if;

end if;

end process;

PC <¼ std_logic_vector(PC_uns);

The two general-purpose registers A and B are modeled using individual processes as follows:

A_REGISTER : process (Clock, Reset)

begin

if (Reset ¼ ’0’) then

A <¼ x"00";

elsif (Clock’event and Clock ¼ ’1’) then

if (A_Load ¼ ’1’) then

A <¼ Bus2;

end if;

end if;

end process;

B_REGISTER : process (Clock, Reset)

begin

if (Reset ¼ ’0’) then

B <¼ x"00";

elsif (Clock’event and Clock ¼ ’1’) then

if (B_Load ¼ ’1’) then

B <¼ Bus2;

end if;

end if;

end process;

The condition code register latches in the status flags from the ALU (NZVC) when the CCR_Load

line is asserted. This behavior is modeled using a similar approach as follows:

CONDITION_CODE_REGISTER : process (Clock, Reset)

begin

if (Reset ¼ ’0’) then

CCR_Result <¼ x"0";

elsif (Clock’event and Clock ¼ ’1’) then

if (CCR_Load ¼ ’1’) then

186 • Chapter 12: Computer System Design

CCR_Result <¼ NZVC;

end if;

end if;

end process;

12.3.4.2 ALU Implementation in VHDL

The ALU is a set of combinational logic circuitry that performs arithmetic and logic operations. The

output of the ALU operation is called Result. The ALU also outputs 4 status flags as a 4-bit bus called

NZVC. The ALU behavior can be modeled using if/then/elsif statements that decide which operation to

perform based on the input control signal ALU_Sel. The following VHDL shows an example of how to

implement the ALU addition functionality. In order to be able to use numerical operators (i.e., +, �, etc.),

the numeric_std package is included. Variables can be used within the process to facilitate using the

numerical operators. Recall that variables are updated instantaneously so an assignment can be made

to the variable and its result is available immediately. Note that in the following VHDL, each operation

also updates the NZVC flags. Each of these flags is updated individually. The N flag can be simply driven

with position 7 of the ALU result since this bit is the sign bit for signed numbers. The Z flag can be driven

using an if/then condition that checks whether the result was x“00”. The V flag is updated based on the

type of the operation. For the addition operation, the V flag will be asserted if a POS + POS ¼ NEG or a

NEG + NEG ¼ POS. These conditions can be checked by looking at the sign bits of the inputs and the

sign bit of the result. Finally, the C flag can be directly driven with position 8 of the Sum_uns variable.

ALU_PROCESS : process (A, B, ALU_Sel)

variable Sum_uns : unsigned(8 downto 0);

begin

if (ALU_Sel ¼ "000") then – ADDITION

--- Sum Calculation ---------------------------------–

Sum_uns :¼ unsigned(’0’ & A) + unsigned(’0’ & B);

Result <¼ std_logic_vector(Sum_uns(7 downto 0));

--- Negative Flag (N) -------------------------------

NZVC(3) <¼ Sum_uns(7);

--- Zero Flag (Z) ---------------------------------–

if (Sum_uns(7 downto 0) ¼ x"00") then

NZVC(2) <¼ ’1’;

else

NZVC(2) <¼ ’0’;

end if;

--- Overflow Flag (V) -------------------------------

if ((A(7)¼’0’ and B(7)¼’0’ and Sum_uns(7)¼’1’) or

(A(7)¼’1’ and B(7)¼’1’ and Sum_uns(7)¼’0’)) then

NZVC(1) <¼ ’1’;

else

NZVC(1) <¼ ’0’;

end if;

--- Carry Flag (C) ------------------------------------

NZVC(0) <¼ Sum_uns(8);

elsif (ALU_Sel ¼ . . .

: “other ALU functionality goes here”

end if;

end process;

12.3 Computer Implementation: An 8-Bit Computer Example • 187

12.3.4.3 Control Unit Implementation in VHDL

Let’s now look at how to implement the control unit state machine. We’ll first look at the formation of

the VHDL to model the FSM and then turn to the detailed state transitions in order to accomplish a variety

of the most common instructions. The control unit sends signals to the data path in order to move data in

and out of registers and into the ALU to perform data manipulations. The finite state machine is

implemented with the behavioral modeling techniques presented in Chap. 9. The model contains three

processes in order to implement the state memory, next state logic, and output logic of the FSM. User-

defined types are created for each of the states defined in the state diagram of the FSM. The states

associated with fetching (S_FETCH_0, S_FETCH_1, S_FETCH_2) and decoding the opcode

(S_DECODE_3) are performed each time an instruction is executed. A unique path is then added

after the decode state to perform the steps associated with executing each individual instruction. The

FSM can be created one instruction at a time by adding additional state paths after the decode state. The

following VHDL code shows how the user-defined state names are created for six basic instructions

(LDA_IMM, LDA_DIR, STA_DIR, ADD_AB, BRA, and BEQ).

type state_type is

(S_FETCH_0, S_FETCH_1, S_FETCH_2,

S_DECODE_3,

S_LDA_IMM_4, S_LDA_IMM_5, S_LDA_IMM_6,

S_LDA_DIR_4, S_LDA_DIR_5, S_LDA_DIR_6, S_LDA_DIR_7, S_LDA_DIR_8,

S_LDB_IMM_4, S_LDB_IMM_5, S_LDB_IMM_6,

S_LDB_DIR_4, S_LDB_DIR_5, S_LDB_DIR_6, S_LDB_DIR_7, S_LDB_DIR_8,

S_STA_DIR_4, S_STA_DIR_5, S_STA_DIR_6, S_STA_DIR_7,

S_STB_DIR_4, S_STB_DIR_5, S_STB_DIR_6, S_STB_DIR_7,

S_ADD_AB_4,

S_BRA_4, S_BRA_5, S_BRA_6,

S_BEQ_4, S_BEQ_5, S_BEQ_6, S_BEQ_7);

signal current_state, next_state : state_type;

Within the architecture of the control unit model, the state memory is implemented as a separate

process that will update the current state with the next state on each rising edge of the clock. The reset

state will be the first fetch state in the FSM (i.e., S_FETCH_0). The following VHDL shows how the state

memory in the control unit can be modeled.

STATE_MEMORY : process (Clock, Reset)

begin

if (Reset ¼ ’0’) then

current_state <¼ S_FETCH_0;

elsif (clock’event and clock ¼ ’1’) then

current_state <¼ next_state;

end if;

end process;

The next state logic is also implemented as a separate process. The next state logic depends on

the current state, instruction register (IR), and the condition code register (CCR_Result). The

following VHDL gives a portion of the next state logic process showing how the state transitions can

be modeled.

188 • Chapter 12: Computer System Design

NEXT_STATE_LOGIC : process (current_state, IR, CCR_Result)

begin

if (current_state ¼ S_FETCH_0) then

next_state <¼ S_FETCH_1;

elsif (current_state ¼ S_FETCH_1) then

next_state <¼ S_FETCH_2;

elsif (current_state ¼ S_FETCH_2) then

next_state <¼ S_DECODE_3;

elsif (current_state ¼ S_DECODE_3) then

-- select execution path

if (IR ¼ LDA_IMM) then -- Load A Immediate

next_state <¼ S_LDA_IMM_4;

elsif (IR ¼ LDA_DIR) then -- Load A Direct

next_state <¼ S_LDA_DIR_4;

elsif (IR ¼ STA_DIR) then -- Store A Direct

next_state <¼ S_STA_DIR_4;

elsif (IR ¼ ADD_AB) then -- Add A and B

next_state <¼ S_ADD_AB_4;

elsif (IR ¼ BRA) then -- Branch Always

next_state <¼ S_BRA_4;

elsif (IR¼BEQ and CCR_Result(2)¼’1’) then -- BEQ and Z¼1

next_state <¼ S_BEQ_4;

elsif (IR¼BEQ and CCR_Result(2)¼’0’) then -- BEQ and Z¼0

next_state <¼ S_BEQ_7;

else

next_state <¼ S_FETCH_0;

end if;

elsif. . .

:

“paths for each instruction go here. . .”

:

end if;

end process;

Finally, the output logic is modeled as a third, separate process. It is useful to explicitly state the

outputs of the control unit for each state in the machine to allow easy debugging and avoid synthesizing

latches. Our example computer system has Moore-type outputs, so the process only depends on the

current state. The following VHDL shows a portion of the output logic process.

OUTPUT_LOGIC : process (current_state)

begin

case(current_state) is

when S_FETCH_0 ¼> -- Put PC onto MAR to read Opcode

IR_Load <¼ ’0’;

MAR_Load <¼ ’1’;

PC_Load <¼ ’0’;

PC_Inc <¼ ’0’;

A_Load <¼ ’0’;

B_Load <¼ ’0’;

ALU_Sel <¼ "000";

CCR_Load <¼ ’0’;

Bus1_Sel <¼ "00"; -- "00"¼PC, "01"¼A, "10"¼B

Bus2_Sel <¼ "01"; -- "00"¼ALU_Result, "01"¼Bus1, "10"¼from_memory

write <¼ ’0’;

when S_FETCH_1 ¼> -- Increment PC

IR_Load <¼ ’0’;

MAR_Load <¼ ’0’;

PC_Load <¼ ’0’;

PC_Inc <¼ ’1’;

A_Load <¼ ’0’;

B_Load <¼ ’0’;

12.3 Computer Implementation: An 8-Bit Computer Example • 189

ALU_Sel <¼ "000";

CCR_Load <¼ ’0’;

Bus1_Sel <¼ "00"; -- "00"¼PC, "01"¼A, "10"¼B

Bus2_Sel <¼ "00"; -- "00"¼ALU, "01"¼Bus1, "10"¼from_memory

write <¼ ’0’;

:

“output assignments for all other states go here. . .”

:

end case;

end process;

Detailed Execution of LDA_IMM

Now let’s look at the details of the state transitions and output signals in the control unit FSM when

executing a few of the most common instructions. Let’s begin with the instruction to load register A using

immediate addressing (LDA_IMM). Example 12.12 shows the state diagram for this instruction. The first

three states (S_FETCH_0, S_FETCH_1, S_FETCH_2) handle fetching the opcode. The purpose of

these states is to read the opcode from the address being held by the program counter and put it into the

instruction register. Multiple states are needed to handle putting PC into MAR to provide the address of

the opcode, waiting for the memory system to provide the opcode, latching the opcode into IR, and

incrementing PC to the next location in program memory. Another state is used to decode the opcode

(S_DECODE_3) in order to decide which path to take in the state diagram based on the instruction being

executed. After the decode state, a series of three more states are needed (S_LDA_IMM_4,

S_LDA_IMM_5, S_LDA_IMM_6) to execute the instruction. The purpose of these states is to read the

operand from the address being held by the program counter and put it into A. Multiple states are needed

to handle putting PC into MAR to provide the address of the operand, waiting for the memory system to

provide the operand, latching the operand into A, and incrementing PC to the next location in program

memory. When the instruction completes, the value of the operand resides in A and PC is pointing to the

next location in program memory, which is the opcode of the next instruction to be executed.

190 • Chapter 12: Computer System Design

Example 12.13 shows the simulation waveform for executing LDA_IMM. In this example, register A

is loaded with the operand of the instruction, which holds the value x“AA”.

Example 12.12
State diagram for LDA_IMM

12.3 Computer Implementation: An 8-Bit Computer Example • 191

Detailed Execution of LDA_DIR

Now let’s look at the details of the instruction to load register A using direct addressing (LDA_DIR).

Example 12.14 shows the state diagram for this instruction. The first four states to fetch and decode the

opcode are the same states as in the previous instruction and are performed each time a new instruction

is executed. Once the opcode is decoded, the state machine traverses five new states to execute the

instruction (S_LDA_DIR_4, S_LDA_DIR_5, S_LDA_DIR_6, S_LDA_DIR_7, S_LDA_DIR_8). The pur-

pose of these states is to read the operand and then use it as the address of where to read the contents to

put into A.

Example 12.13
Simulation waveform for LDA_IMM

192 • Chapter 12: Computer System Design

Example 12.15 shows the simulation waveform for executing LDA_DIR. In this example, register A

is loaded with the contents located at address x“80”, which has already been initialized to x“AA”.

Example 12.14
State diagram for LDA_DIR

12.3 Computer Implementation: An 8-Bit Computer Example • 193

Detailed Execution of STA_DIR

Now let’s look at the details of the instruction to store register A to memory using direct addressing

(STA_DIR). Example 12.16 shows the state diagram for this instruction. The first four states are again the

same as prior instructions in order to fetch and decode the opcode. Once the opcode is decoded, the

state machine traverses four new states to execute the instruction (S_STA_DIR_4, S_STA_DIR_5,

S_STA_DIR_6, S_STA_DIR_7). The purpose of these states is to read the operand and then use it as

the address of where to write the contents of A to.

Example 12.15
Simulation waveform for LDA_DIR

194 • Chapter 12: Computer System Design

Example 12.17 shows the simulation waveform for executing STA_DIR. In this example, register A

already contains the value x“CC” and will be stored to address x“E0”. The address x“E0” is an output port

(port_out_00) in our example computer system.

Example 12.16
State diagram for STA_DIR

12.3 Computer Implementation: An 8-Bit Computer Example • 195

Detailed Execution of ADD_AB

Now let’s look at the details of the instruction to add A to B and store the sum back in A (ADD_AB).

Example 12.18 shows the state diagram for this instruction. The first four states are again the same as

prior instructions in order to fetch and decode the opcode. Once the opcode is decoded, the state

machine only requires one more state to complete the operation (S_ADD_AB_4). The ALU is combina-

tional logic, so it will begin to compute the sum immediately as soon as the inputs are updated. The inputs

to the ALU are Bus1 and register B. Since B is directly connected to the ALU, all that is required to start

the addition is to put A onto Bus1. The output of the ALU is put on Bus2 so that it can be latched into A on

the next clock edge. The ALU also outputs the status flags NZVC, which are directly connected to the

condition code register. A_Load and CCR_Load are asserted in this state. A and CCR_Result will be

updated in the next state (i.e., S_FETCH_0).

Example 12.17
Simulation waveform for STA_DIR

196 • Chapter 12: Computer System Design

Example 12.19 shows the simulation waveform for executing ADD_AB. In this example, two load

immediate instructions were used to initialize the general-purpose registers to A ¼ x“FF” and B ¼ x“01”

prior to the addition. The addition of these values will result in a sum of x“00” and assert the carry (C) and

zero (Z) flags in the condition code register.

Example 12.18
State diagram for ADD_AB

12.3 Computer Implementation: An 8-Bit Computer Example • 197

Detailed Execution of BRA

Now let’s look at the details of the instruction to branch always (BRA). Example 12.20 shows the

state diagram for this instruction. The first four states are again the same as prior instructions in order to

fetch and decode the opcode. Once the opcode is decoded, the state machine traverses four new states

to execute the instruction (S_BRA_4, S_BRA_5, S_BRA_6). The purpose of these states is to read the

operand and put its value into PC to set the new location in program memory to execute instructions.

Example 12.19
Simulation waveform for ADD_AB

198 • Chapter 12: Computer System Design

Example 12.21 shows the simulation waveform for executing BRA. In this example, PC is set back

to address x“00”.

Example 12.20
State diagram for BRA

12.3 Computer Implementation: An 8-Bit Computer Example • 199

Detailed Execution of BEQ

Now let’s look at the branch if equal to zero (BEQ) instruction. Example 12.22 shows the state

diagram for this instruction. Notice that in this conditional branch, the path that is taken through the FSM

depends on both IR and CCR. In the case that Z ¼ 1, the branch is taken, meaning that the operand is

loaded into PC. In the case that Z¼ 0, the branch is not taken, meaning that PC is simply incremented to

bypass the operand and point to the beginning of the next instruction in program memory.

Example 12.21
Simulation waveform for BRA

200 • Chapter 12: Computer System Design

Example 12.23 shows the simulation waveform for executing BEQwhen the branch is taken. Prior to

this instruction, an addition was performed on x“FF” and x“01”. This resulted in a sum of x“00”, which

asserted the Z and C flags in the condition code register. Since Z¼ 1 when BEQ is executed, the branch

is taken.

Example 12.22
State diagram for BEQ

12.3 Computer Implementation: An 8-Bit Computer Example • 201

Example 12.24 shows the simulation waveform for executing BEQ when the branch is not taken.

Prior to this instruction, an addition was performed on x“FE” and x“01”. This resulted in a sum of x“FF”,

which did not assert the Z flag. Since Z ¼ 0 when BEQ is executed, the branch is not taken. When not

taking the branch, PC must be incremented again in order to bypass the operand and point to the next

location in program memory.

Example 12.23
Simulation waveform for BEQ when taking the branch (Z ¼ 1)

202 • Chapter 12: Computer System Design

Example 12.24
Simulation waveform for BEQ when the branch is not taken (Z ¼ 0)

12.3 Computer Implementation: An 8-Bit Computer Example • 203

CONCEPT CHECK

CC12.3 The 8-bit microcomputer example presented in this section is a very simple architec-
ture used to illustrate the basic concepts of a computer. If we wanted to keep this
computer an 8-bit system but increase the depth of the memory, it would require
adding more address lines to the address bus. What changes to the computer system
would need to be made to accommodate the wider address bus?

(A) The width of the program counter would need to be increased to support the
wider address bus.

(B) The size of the memory address register would need to be increased to
support the wider address bus.

(C) Instructions that use direct addressing would need additional bytes of
operand to pass the wider address into the CPU 8-bits at a time.

(D) All of the above.

Summary

v A computer is a collection of hardware
components that are constructed to perform
a specific set of instructions to process and
store data. The main hardware components
of a computer are the central processing unit
(CPU), program memory, data memory, and
input/output ports.

v TheCPUconsists of registers for fast storage,
an arithmetic logic unit (ALU) for data manip-
ulation, and a control state machine that
directs all activity to execute an instruction.

v A CPU is typically organized into a data path
and a control unit. The data path contains
circuitry used to store and process informa-
tion. The data path includes registers and the
ALU. The control unit is a large state machine
that sends control signals to the data path in
order to facilitate instruction execution.

v The control unit performs a fetch-decode-
execute cycle in order to complete
instructions.

v The instructions that a computer is designed
to execute is called its instruction set.

v Instructions are inserted into program mem-
ory in a sequence that when executed will
accomplish a particular task. This sequence
of instructions is called a computer program.

v An instruction consists of an opcode and a
potential operand. The opcode is the unique
binary code that tells the control state
machine which instruction is being executed.
An operand is additional information that may
be needed for the instruction.

v An addressing mode refers to the way that
the operand is treated. In immediate
addressing the operand is the actual data to
be used. In direct addressing the operand is
the address of where the data is to be
retrieved or stored. In inherent addressing
all of the information needed to complete
the instruction is contained within the opcode
so no operand is needed.

v A computer also contains data memory to
hold temporary variables during run time.

v A computer also contains input and output
ports to interface with the outside world.

v A memory-mapped system is one in which
the program memory, data memory, and I/O
ports are all assigned a unique address. This
allows the CPU to simply process information
as data and addresses and allows the pro-
gram to handle where the information is
being sent to. A memory map is a graphical
representation of what address ranges vari-
ous components are mapped to.

v There are three primary classes of
instructions. These are loads and stores,
data manipulations, and branches.

v Load instructions move information from
memory into a CPU register. A load instruc-
tion takes multiple read cycles.

v Store instructions move information from a
CPU register into memory. A store instruction
takes multiple read cycles and at least one
write cycle.

204 • Chapter 12: Computer System Design

v Data manipulation instructions operate on
information being held in CPU registers.
Data manipulation instructions often use
inherent addressing.

v Branch instructions alter the flow of instruc-
tion execution. Unconditional branches
always change the location in memory of
where the CPU is executing instructions.
Conditional branches only change the

location of instruction execution if a status
flag is asserted.

v Status flags are held in the condition code reg-
ister and are updated by certain instructions.
The most commonly used flags are the nega-
tive flag (N), zero flag (Z), two’s complement
overflow flag (V), and carry flag (C).

Exercise Problems

Section 12.1: Computer Hardware

12.1.1 What computer hardware sub-system holds
the temporary variables used by the program?

12.1.2 What computer hardware sub-system contains
fast storage for holding and/or manipulating
data and addresses?

12.1.3 What computer hardware sub-system allows
the computer to interface to the outside world?

12.1.4 What computer hardware sub-system contains
the state machine that orchestrates the fetch-
decode-execute process?

12.1.5 What computer hardware sub-system contains
the circuitry that performs mathematical and
logic operations?

12.1.6 What computer hardware sub-system holds
the instructions being executed?

Section 12.2: Computer Software

12.2.1 In computer software, what are the names of
the most basic operations that a computer can
perform?

12.2.2 Which element of computer software is the
binary code that tells the CPUwhich instruction
is being executed?

12.2.3 Which element of computer software is a col-
lection of instructions that perform a desired
task?

12.2.4 Which element of computer software is the
supplementary information required by an
instruction such as constants or which
registers to use?

12.2.5 Which class of instructions handles moving
information between memory and CPU
registers?

12.2.6 Which class of instructions alters the flow of
program execution?

12.2.7 Which class of instructions alters data using
either arithmetic or logical operations?

Section 12.3: Computer Implementa-

tion—An 8-Bit Computer Example

12.3.1 Design the example 8-bit computer system
presented in this chapter in VHDL with the
ability to execute the three instructions
LDA_IMM, STA_DIR, and BRA. Simulate your
computer system using the following program
that will continually write the patterns x“AA”
and x“BB” to output ports port_out_00 and
port_out_01:

constant ROM : rom_type :¼ (

0 ¼> LDA_IMM,

1 ¼> x"AA",

2 ¼> STA_DIR,

3 ¼> x"E0",

4 ¼> STA_DIR,

5 ¼> x"E1",

6 ¼> LDA_IMM,

7 ¼> x"BB",

8 ¼> STA_DIR,

9 ¼> x"E0",

10 ¼> STA_DIR,

11 ¼> x"E1",

12 ¼> BRA,

13 ¼> x"00",

others ¼> x"00");

12.3.2 Add the functionality to the computer model
from 12.3.1 the ability to perform the LDA_DIR
instruction. Simulate your computer system
using the following program that will continually
read from port_in_00 and write its contents to
port_out_00:

constant ROM : rom_type :¼ (

0 ¼> LDA_DIR,

1 ¼> x"F0",

2 ¼> STA_DIR,

3 ¼> x"E0",

4 ¼> BRA,

5 ¼> x"00",

others ¼> x"00");

Exercise Problems • 205

12.3.3 Add the functionality to the computer model
from 12.3.2 the ability to perform the
instructions LDB_IMM, LDB_DIR, and
STB_DIR. Modify the example programs
given in exercise 12.3.1 and 12.3.2 to use
register B in order to simulate your
implementation.

12.3.4 Add the functionality to the computer model
from 12.3.3 the ability to perform the addition
instruction ADD_AB. Test your addition instruc-
tion by simulating the following program. The
first addition instruction will perform
x“FE” + x“01” ¼ x“FF” and assert the negative
(N) flag. The second addition instruction will
perform x“FF” + x“01” ¼ x“00” and assert the
carry (C) and zero (Z) flags. The third addition
instruction will perform x“7F” + x“7F” ¼ x“FE”
and assert the two’s complement overflow (V)
and negative (N) flags.

constant ROM : rom_type :¼ (

0 ¼> LDA_IMM, -- A¼x”FE”

1 ¼> x"FE",

2 ¼> LDB_IMM, -- B¼x”01”

3 ¼> x"01",

4 ¼> ADD_AB, -- A¼A+B

5 ¼> LDA_IMM, -- A¼x”FF”

6 ¼> x"FF",

7 ¼> LDB_IMM, -- B¼x”01”

8 ¼> x"01",

9 ¼> ADD_AB, -- A¼A+B

10 ¼> LDA_IMM, -- A¼x”7F”

11 ¼> x"7F",

12 ¼> LDB_IMM, -- B¼x”7F”

13 ¼> x"7F",

14 ¼> ADD_AB, -- A¼A+B

15 ¼> BRA,

16 ¼> x"00",

others ¼> x"00");

12.3.5 Add the functionality to the computer model
from 12.3.4 the ability to perform the branch if
equal to zero instruction BEQ. Simulate your
implementation using the following program.
The first addition in this program will perform
x“FE” + x“01” ¼ x“FF” (Z ¼ 0). The subsequent
BEQ instruction should NOT take the branch.
The second addition in this program will per-
form x“FF” + x“01” ¼ x“00” (Z ¼ 1) and
SHOULD take the branch. The final instruction
in this program is a BRA that is inserted for
safety. In the event that the BEQ is not
operating properly, the BRA will set the pro-
gram counter back to x“00” and prevent the
program from running away.

constant ROM : rom_type :¼ (

0 ¼> LDA_IMM,

1 ¼> x"FE",

2 ¼> LDB_IMM,

3 ¼> x"01",

4 ¼> ADD_AB,

5 ¼> BEQ,

6 ¼> x”00”, -- should not

-- branch

7 ¼> LDA_IMM,

8 ¼> x"FF",

9 ¼> LDB_IMM,

10 ¼> x"01",

11 ¼> ADD_AB,

12 ¼> BEQ,

13 ¼> x”00”, -- should

-- branch

14 ¼> BRA,

15 ¼> x"00",

others ¼> x"00");

206 • Chapter 12: Computer System Design

Appendix A: List of Worked Examples

EXAMPLE 2.1 DEFINING VHDL ENTITIES .. 17

EXAMPLE 3.1 SOP LOGIC CIRCUIT: VHDL MODELING USING LOGICAL OPERATORS ... 25

EXAMPLE 3.2 3-TO-8 ONE-HOT DECODER: VHDL MODELING USING LOGICAL OPERATORS ... 26

EXAMPLE 3.3 7-SEGMENT DISPLAY DECODER: TRUTH TABLE .. 27

EXAMPLE 3.4 7-SEGMENT DISPLAY DECODER: LOGIC SYNTHESIS BY HAND .. 28

EXAMPLE 3.5 7-SEGMENT DISPLAY DECODER: VHDL MODELING USING LOGICAL OPERATORS .. 29

EXAMPLE 3.6 4-TO-2 BINARY ENCODER: LOGIC SYNTHESIS BY HAND ... 30

EXAMPLE 3.7 4-TO-2 BINARY ENCODER: VHDL MODELING USING LOGICAL OPERATORS .. 31

EXAMPLE 3.8 4-TO-1 MULTIPLEXER: VHDL MODELING USING LOGICAL OPERATORS .. 32

EXAMPLE 3.9 1-TO-4 DEMULTIPLEXER: VHDL MODELING USING LOGICAL OPERATORS ... 33

EXAMPLE 3.10 SOP LOGIC CIRCUIT: VHDL MODELING USING CONDITIONAL SIGNAL ASSIGNMENTS .. 35

EXAMPLE 3.11 3-TO-8 ONE-HOT DECODER: VHDL MODELING USING CONDITIONAL SIGNAL ASSIGNMENTS 36

EXAMPLE 3.12 7-SEGMENT DISPLAY DECODER: VHDL MODELING USING CONDITIONAL SIGNAL ASSIGNMENTS 37

EXAMPLE 3.13 4-TO-2 BINARY ENCODER: VHDL MODELING USING CONDITIONAL SIGNAL ASSIGNMENTS 38

EXAMPLE 3.14 4-TO-1 MULTIPLEXER: VHDL MODELING USING CONDITIONAL SIGNAL ASSIGNMENTS .. 39

EXAMPLE 3.15 1-TO-4 DEMULTIPLEXER: VHDL MODELING USING CONDITIONAL SIGNAL ASSIGNMENTS 40

EXAMPLE 3.16 SOP LOGIC CIRCUIT: VHDL MODELING USING SELECTED SIGNAL ASSIGNMENTS .. 42

EXAMPLE 3.17 3-TO-8 ONE-HOT DECODER: VHDL MODELING USING SELECTED SIGNAL ASSIGNMENTS 43

EXAMPLE 3.18 7-SEGMENT DISPLAY DECODER: VHDL MODELING USING SELECTED SIGNAL ASSIGNMENTS 44

EXAMPLE 3.19 4-TO-2 BINARY ENCODER: VHDL MODELING USING SELECTED SIGNAL ASSIGNMENTS .. 45

EXAMPLE 3.20 4-TO-1 MULTIPLEXER: VHDL MODELING USING SELECTED SIGNAL ASSIGNMENTS .. 46

EXAMPLE 3.21 1-TO-4 DEMULTIPLEXER: VHDL MODELING USING SELECTED SIGNAL ASSIGNMENTS ... 47

EXAMPLE 3.22 MODELING LOGIC USING DELAYED SIGNAL ASSIGNMENTS (INERTIAL DELAY MODEL) .. 48

EXAMPLE 3.23 MODELING LOGIC USING DELAYED SIGNAL ASSIGNMENTS (TRANSPORT DELAY MODEL) ... 49

EXAMPLE 4.1 MODELING LOGIC USING STRUCTURAL VHDL (EXPLICIT PORT MAPPING) ... 54

EXAMPLE 4.2 MODELING LOGIC USING STRUCTURAL VHDL (POSITIONAL PORT MAPPING) ... 55

EXAMPLE 4.3 DESIGN OF A HALF ADDER ... 56

EXAMPLE 4.4 DESIGN OF A FULL ADDER .. 57

EXAMPLE 4.5 DESIGN OF A FULL ADDER OUT OF HALF ADDERS ... 58

EXAMPLE 4.6 DESIGN OF A 4-BIT RIPPLE CARRY ADDER (RCA) .. 59

EXAMPLE 4.7 STRUCTURAL MODEL OF A FULL ADDER IN VHDL USING TWO HALF ADDERS ... 60

EXAMPLE 4.8 STRUCTURAL MODEL OF A 4-BIT RIPPLE CARRY ADDER IN VHDL .. 61

EXAMPLE 5.1 BEHAVIOR OF SEQUENTIAL SIGNAL ASSIGNMENTS WITHIN A PROCESS .. 68

EXAMPLE 5.2 BEHAVIOR OF CONCURRENT SIGNAL ASSIGNMENTS OUTSIDE A PROCESS ... 68

EXAMPLE 5.3 VARIABLE ASSIGNMENT BEHAVIOR .. 69

EXAMPLE 5.4 USING IF/THEN STATEMENTS TO MODEL COMBINATIONAL LOGIC .. 71

EXAMPLE 5.5 USING CASE STATEMENTS TO MODEL COMBINATIONAL LOGIC .. 73

EXAMPLE 5.6 BEHAVIORAL MODELING OF A RISING EDGE TRIGGERED D-FLIP-FLOP USING ATTRIBUTES .. 77

EXAMPLE 6.1 BEHAVIORAL MODELING OF A D-FLIP-FLOP USING THE RISING_EDGE() FUNCTION .. 84

EXAMPLE 6.2 BEHAVIORAL MODEL OF A 4-BIT ADDER IN VHDL ... 87

EXAMPLE 7.1 CREATING A VHDL TEST BENCH ... 100

EXAMPLE 7.2 VHDL TEST BENCH FOR A 4-BIT RIPPLE CARRY ADDER USING NESTED FOR LOOPS ... 101

EXAMPLE 7.3 USING REPORT STATEMENTS IN A VHDL TEST BENCH ... 103

EXAMPLE 7.4 USING ASSERT STATEMENTS IN A VHDL TEST BENCH .. 104

EXAMPLE 7.5 WRITING TO AN EXTERNAL FILE FROM A TEST BENCH (PART 1) ... 105

EXAMPLE 7.6 WRITING TO AN EXTERNAL FILE FROM A TEST BENCH (PART 2) ... 106

EXAMPLE 7.7 WRITING TO AN EXTERNAL FILE FROM A TEST BENCH (PART 3) ... 107

EXAMPLE 7.8 WRITING TO STD_OUT FROM A TEST BENCH (PART 1) ... 108

EXAMPLE 7.9 WRITING TO STD_OUT FROM A TEST BENCH (PART 2) ... 109

EXAMPLE 7.10 READING FROM AN EXTERNAL FILE IN A TEST BENCH (PART 1) .. 109

EXAMPLE 7.11 READING FROM AN EXTERNAL FILE IN A TEST BENCH (PART 2) .. 110

Springer Nature Switzerland AG 2019

B. J. LaMeres, Quick Start Guide to VHDL, https://doi.org/10.1007/978-3-030-04516-6

207

https://doi.org/10.1007/978-3-030-04516-6

EXAMPLE 7.12 READING FROM AN EXTERNAL FILE IN A TEST BENCH (PART 3) ..111

EXAMPLE 7.13 READING SPACE-DELIMITED DATA FROM AN EXTERNAL FILE IN A TEST BENCH (PART 1)111

EXAMPLE 7.14 READING SPACE-DELIMITED DATA FROM AN EXTERNAL FILE IN A TEST BENCH (PART 2) 112

EXAMPLE 7.15 READING SPACE-DELIMITED DATA FROM AN EXTERNAL FILE IN A TEST BENCH (PART 3) 113

EXAMPLE 8.1 BEHAVIORAL MODEL OF A D-LATCH IN VHDL .. 117

EXAMPLE 8.2 BEHAVIORAL MODEL OF A D-FLIP-FLOP IN VHDL .. 118

EXAMPLE 8.3 BEHAVIORAL MODEL OF A D-FLIP-FLOP WITH ASYNCHRONOUS RESET IN VHDL ... 119

EXAMPLE 8.4 BEHAVIORAL MODEL OF A D-FLIP-FLOP WITH ASYNCHRONOUS RESET AND PRESET IN VHDL 120

EXAMPLE 8.5 BEHAVIORAL MODEL OF A D-FLIP-FLOP WITH SYNCHRONOUS ENABLE IN VHDL ... 121

EXAMPLE 8.6 RTL MODEL OF AN 8-BIT REGISTER IN VHDL ... 122

EXAMPLE 8.7 RTL MODEL OF A 4-STAGE, 8-BIT SHIFT REGISTER IN VHDL ... 123

EXAMPLE 8.8 REGISTERS AS AGENTS ON A DATA BUS: SYSTEM TOPOLOGY ... 124

EXAMPLE 8.9 REGISTERS AS AGENTS ON A DATA BUS: RTL MODEL IN VHDL .. 124

EXAMPLE 8.10 REGISTERS AS AGENTS ON A DATA BUS: SIMULATION WAVEFORM ... 125

EXAMPLE 9.1 PUSH-BUTTON WINDOW CONTROLLER IN VHDL: DESIGN DESCRIPTION .. 128

EXAMPLE 9.2 PUSH-BUTTON WINDOW CONTROLLER IN VHDL: ENTITY DEFINITION ... 128

EXAMPLE 9.3 PUSH-BUTTON WINDOW CONTROLLER IN VHDL: ARCHITECTURE ... 131

EXAMPLE 9.4 PUSH-BUTTON WINDOW CONTROLLER IN VHDL: SIMULATION WAVEFORM .. 131

EXAMPLE 9.5 PUSH-BUTTON WINDOW CONTROLLER IN VHDL: EXPLICIT STATE CODES ... 132

EXAMPLE 9.6 SERIAL BIT SEQUENCE DETECTOR IN VHDL: DESIGN DESCRIPTION AND ENTITY DEFINITION 133

EXAMPLE 9.7 SERIAL BIT SEQUENCE DETECTOR IN VHDL: ARCHITECTURE ... 134

EXAMPLE 9.8 SERIAL BIT SEQUENCE DETECTOR IN VHDL: SIMULATION WAVEFORM .. 134

EXAMPLE 9.9 VENDING MACHINE CONTROLLER IN VHDL: DESIGN DESCRIPTION AND ENTITY DEFINITION 135

EXAMPLE 9.10 VENDING MACHINE CONTROLLER IN VHDL: ARCHITECTURE .. 136

EXAMPLE 9.11 VENDING MACHINE CONTROLLER IN VHDL: SIMULATION WAVEFORM .. 137

EXAMPLE 9.12 2-BIT BINARY UP/DOWN COUNTER IN VHDL: DESIGN DESCRIPTION AND ENTITY DEFINITION 137

EXAMPLE 9.13 2-BIT BINARY UP/DOWN COUNTER IN VHDL: ARCHITECTURE (THREE PROCESS MODEL) 138

EXAMPLE 9.14 2-BIT BINARY UP/DOWN COUNTER IN VHDL: SIMULATION WAVEFORM ... 139

EXAMPLE 10.1 4-BIT BINARY UP COUNTER IN VHDL USING THE TYPE UNSIGNED .. 144

EXAMPLE 10.2 4-BIT BINARY UP COUNTER IN VHDL USING THE TYPE INTEGER .. 145

EXAMPLE 10.3 4-BIT BINARY UP COUNTER IN VHDL USING THE TYPE STD_LOGIC_VECTOR (1) 146

EXAMPLE 10.4 4-BIT BINARY UP COUNTER IN VHDL USING THE TYPE STD_LOGIC_VECTOR (2) 147

EXAMPLE 10.5 4-BIT BINARY UP COUNTER WITH ENABLE IN VHDL .. 148

EXAMPLE 10.6 4-BIT BINARY UP COUNTER WITH LOAD IN VHDL ... 149

EXAMPLE 11.1 BEHAVIORAL MODEL OF A 4 � 4 ASYNCHRONOUS READ ONLY MEMORY IN VHDL .. 156

EXAMPLE 11.2 BEHAVIORAL MODEL OF A 4 � 4 SYNCHRONOUS READ ONLY MEMORY IN VHDL ... 157

EXAMPLE 11.3 BEHAVIORAL MODEL OF A 4 � 4 ASYNCHRONOUS READ/WRITE MEMORY IN VHDL .. 159

EXAMPLE 11.4 BEHAVIORAL MODEL OF A 4 � 4 SYNCHRONOUS READ/WRITE MEMORY IN VHDL ... 160

EXAMPLE 12.1 MEMORY MAP FOR A 256 � 8 MEMORY SYSTEM ... 168

EXAMPLE 12.2 EXECUTION OF AN INSTRUCTION TO “LOAD REGISTER A USING IMMEDIATE ADDRESSING” 171

EXAMPLE 12.3 EXECUTION OF AN INSTRUCTION TO “LOAD REGISTER A USING DIRECT ADDRESSING” .. 172

EXAMPLE 12.4 EXECUTION OF AN INSTRUCTION TO “STORE REGISTER A USING DIRECT ADDRESSING” 173

EXAMPLE 12.5 EXECUTION OF AN INSTRUCTION TO “ADD REGISTERS A AND B” .. 174

EXAMPLE 12.6 EXECUTION OF AN INSTRUCTION TO “BRANCH ALWAYS” .. 175

EXAMPLE 12.7 EXECUTION OF AN INSTRUCTION TO “BRANCH IF EQUAL TO ZERO” .. 176

EXAMPLE 12.8 TOP-LEVEL BLOCK DIAGRAM FOR THE 8-BIT COMPUTER SYSTEM .. 178

EXAMPLE 12.9 INSTRUCTION SET FOR THE 8-BIT COMPUTER SYSTEM ... 179

EXAMPLE 12.10 MEMORY SYSTEM BLOCK DIAGRAM FOR THE 8-BIT COMPUTER SYSTEM .. 180

EXAMPLE 12.11 CPU BLOCK DIAGRAM FOR THE 8-BIT COMPUTER SYSTEM .. 184

EXAMPLE 12.12 STATE DIAGRAM FOR LDA_IMM .. 191

EXAMPLE 12.13 SIMULATION WAVEFORM FOR LDA_IMM .. 192

EXAMPLE 12.14 STATE DIAGRAM FOR LDA_DIR ... 193

EXAMPLE 12.15 SIMULATION WAVEFORM FOR LDA_DIR .. 194

EXAMPLE 12.16 STATE DIAGRAM FOR STA_DIR ... 195

EXAMPLE 12.17 SIMULATION WAVEFORM FOR STA_DIR .. 196

EXAMPLE 12.18 STATE DIAGRAM FOR ADD_AB .. 197

EXAMPLE 12.19 SIMULATION WAVEFORM FOR ADD_AB ... 198

208 • Appendix A: List of Worked Examples

EXAMPLE 12.20 STATE DIAGRAM FOR BRA ... 199

EXAMPLE 12.21 SIMULATION WAVEFORM FOR BRA .. 200

EXAMPLE 12.22 STATE DIAGRAM FOR BEQ .. 201

EXAMPLE 12.23 SIMULATION WAVEFORM FOR BEQ WHEN TAKING THE BRANCH (Z ¼ 1) .. 202

EXAMPLE 12.24 SIMULATION WAVEFORM FOR BEQ WHEN THE BRANCH IS NOT TAKEN (Z ¼ 0) .. 203

Appendix A: List of Worked Examples • 209

Index

A

Abstraction, 4

Adders

in VHDL, 59

C

Capacity, 153

Classical digital design flow, 8

Computer system design, 163

addressing modes, 169

arithmetic logic unit (ALU), 165

central processing unit, 165

condition code register, 165

control unit, 165

data memory, 164

data path, 165

direct addressing, 170

example 8-bit system, 177

control unit, 188

CPU, 184

data path, 185
detailed instruction execution, 190

instruction set, 178

memory system, 179

general purpose registers, 165

hardware, 163

immediate addressing, 169

inherent addressing, 170

input output ports, 164

instruction register, 165

instructions, 163

branches, 174

data manipulations, 173

loads and stores, 170

memory address register, 165

memory mapped system, 166

memory map, 167

opcodes, 169

operands, 169

program, 163

program counter, 165

program memory, 164

registers, 165

software, 163, 169

Counters, 143

modeling in VHDL, 143

D

Demultiplexer design by hand, 32, 39, 46

Demultiplexer, 32, 39, 46

Design abstraction, 4

Design domains, 5

behavioral domain, 5

physical domain, 5

structural domain, 5

Design levels, 5

algorithmic level, 5

circuit level, 5

gate level, 5

register transfer level, 5

system level, 5

Digital design flow, 8

F

Finite state machines (FSM)

behavioral modeling in VHDL, 127

Full adders, 56

G

Gajski and Kuhn’s Y-chart, 5

H

Half adders, 56

History of HDLs, 1

M

Memory map model, 153

Modern digital design flow, 8

Multiplexer design by hand, 31, 38, 45

Multiplexers, 31, 38, 45

N

Nonvolatile memory, 154

O

One-hot binary encoder design by hand, 29

One-hot binary encoder modeling in VHDL, 29

One-hot decoder modeling in VHDL, 26, 35, 42

P

Place and route, 8

R

Random access memory (RAM), 155

Read cycle, 153

Read only memory (ROM), 154

Read/write (RW) memory, 154

Ripple carry adders (RCA), 58

Springer Nature Switzerland AG 2019

B. J. LaMeres, Quick Start Guide to VHDL, https://doi.org/10.1007/978-3-030-04516-6

211

https://doi.org/10.1007/978-3-030-04516-6

S

Semiconductor memory, 153

Sequential access memory, 155

7-Segment decoder design by hand, 27

7-Segment decoder modeling in VHDL, 28

T

Technology mapping, 8

V

Verification, 6

Verilog HDL, 2

VHDL behavioral modeling techniques

adders, 59

counters, 143

using type INTEGER, 144

using type STD_LOGIC_VECTOR, 145

using type UNSIGNED, 143
with enables, 148

with loads, 149

D-flip-flops, 118

D-latches, 117

finite state machines, 127

explicit state encoding using subtypes, 132
three process model, 129

user-enumerated state encoding, 129

modeling agents on a bus, 123

modeling memory, 155

modeling registers, 122

modeling shift registers, 122

VHDL constructs, 16

architecture, 16, 17

assignment operator (<¼), 21

attributes, 76

case statements, 71

component declaration, 19

concatenation operator, 24

concurrent signal assignments, 24

concurrent signal assignments with logical operators, 25

conditional signal assignments, 34

constant declaration, 19

data types, 13

delayed signal assignments, 48

inertial, 48

transport, 48

entity, 16

entity definition, 17

for loops, 75

if/then statements, 70

libraries and packages, 17

logical operators, 22

loop statements, 74

numerical operators, 23

operators, 21

packages, 16

process, 65

sensitivity list, 65
wait statement, 66

relational operators, 23

selected signal assignments, 41

sequential signal assignments, 67

shift operators, 23

signal declaration, 18

structural design, 53

component declaration, 19

component instantiation, 53

explicit port mapping, 53

port mapping, 53
positional port mapping, 55

test benches, 99

assert statements, 103
reading/writing external files, 89

report statements, 102

variables, 68

while loops, 75

VHDL data types

array, 15

bit, 13

bit_vector, 14

boolean, 13

character, 13

integer, 14

natural, 15

real, 14

std_logic, 81

std_logic_vector, 81

std_ulogic, 81

std_ulogic_vector, 81

string, 14

time, 14

user-defined enumerated, 15

VHDL packages, 81

MATH_COMPLEX, 95

MATH_REAL, 93

NUMERIC_BIT, 92

NUMERIC_BIT_UNSIGNED, 93

NUMERIC_STD, 85

conversion functions, 88

type casting, 88

NUMERIC_STD_UNSIGNED, 92

standard, 16

STD_LOGIC_1164, 81

resolution function, 82

type conversions, 84

STD_LOGIC_ARITH, 95

STD_LOGIC_SIGNED, 96

STD_LOGIC_TEXTIO, 89

STD_LOGIC_UNSIGNED, 96

TEXTIO, 89

Volatile memory, 154

W

Write cycle, 153

Y

Y-chart, 5

212 • Index

	Preface
	Acknowledgments
	Contents
	1: The Modern Digital Design Flow
	1.1 History of Hardware Description Languages
	Concept Check

	1.2 HDL Abstraction
	Concept Check

	1.3 The Modern Digital Design Flow
	Concept Check

	2: VHDL Constructs
	2.1 Data Types
	2.1.1 Enumerated Types
	2.1.2 Range Types
	2.1.3 Physical Types
	2.1.4 Vector Types
	2.1.5 User-Defined Enumerated Types
	2.1.6 Array Type
	2.1.7 Subtypes
	Concept Check

	2.2 VHDL Model Construction
	2.2.1 Libraries and Packages
	2.2.2 The Entity
	2.2.3 The Architecture
	2.2.3.1 Signal Declarations
	2.2.3.2 Constant Declarations
	2.2.3.3 Component Declarations
	Concept Check

	3: Modeling Concurrent Functionality
	3.1 VHDL Operators
	3.1.1 Assignment Operator
	3.1.2 Logical Operators
	3.1.3 Numerical Operators
	3.1.4 Relational Operators
	3.1.5 Shift Operators
	3.1.6 Concatenation Operator
	Concept Check

	3.2 Concurrent Signal Assignments with Logical Operators
	3.2.1 Logical Operator Example: SOP Circuit
	3.2.2 Logical Operator Example: One-Hot Decoder
	3.2.3 Logical Operator Example: 7-Segment Display Decoder
	3.2.4 Logical Operator Example: One-Hot Encoder
	3.2.5 Logical Operator Example: Multiplexer
	3.2.6 Logical Operator Example: Demultiplexer
	Concept Check

	3.3 Conditional Signal Assignments
	3.3.1 Conditional Signal Assignment Example: SOP Circuit
	3.3.2 Conditional Signal Assignment Example: One-Hot Decoder
	3.3.3 Conditional Signal Assignment Example: 7-Segment Display Decoder
	3.3.4 Conditional Signal Assignment Example: One-Hot Encoder
	3.3.5 Conditional Signal Assignment Example: Multiplexer
	3.3.6 Conditional Signal Assignment Example: Demultiplexer
	Concept Check

	3.4 Selected Signal Assignments
	3.4.1 Selected Signal Assignment Example: SOP Circuit
	3.4.2 Selected Signal Assignment Example: One-Hot Decoder
	3.4.3 Selected Signal Assignment Example: 7-Segment Display Decoder
	3.4.4 Selected Signal Assignment Example: One-Hot Encoder
	3.4.5 Selected Signal Assignment Example: Multiplexer
	3.4.6 Selected Signal Assignment Example: Demultiplexer
	Concept Check

	3.5 Delayed Signal Assignments
	3.5.1 Inertial Delay
	3.5.2 Transport Delay
	Concept Check

	4: Structural Design and Hierarchy
	4.1 Components
	4.1.1 Component Instantiation
	4.1.2 Port Mapping
	4.1.2.1 Explicit Port Mapping
	4.1.2.2 Positional Port Mapping
	Concept Check

	4.2 Structural Design Examples: Ripple Carry Adder
	4.2.1 Half Adders
	4.2.2 Full Adders
	4.2.3 Ripple Carry Adder (RCA)
	4.2.4 Structural Model of a Ripple Carry Adder in VHDL
	Concept Check

	5: Modeling Sequential Functionality
	5.1 The Process
	5.1.1 Sensitivity Lists
	5.1.2 Wait Statements
	5.1.3 Sequential Signal Assignments
	5.1.4 Variables
	Concept Check

	5.2 Conditional Programming Constructs
	5.2.1 If/Then Statements
	5.2.2 Case Statements
	5.2.3 Infinite Loops
	5.2.4 While Loops
	5.2.5 For Loops
	Concept Check

	5.3 Signal Attributes
	Concept Check

	6: Packages
	6.1 STD_LOGIC_1164
	6.1.1 STD_LOGIC_1164 Resolution Function
	6.1.2 STD_LOGIC_1164 Logical Operators
	6.1.3 STD_LOGIC_1164 Edge Detection Functions
	6.1.4 STD_LOGIC_1164 Type Converstion Functions
	Concept Check

	6.2 NUMERIC_STD
	6.2.1 NUMERIC_STD Arithmetic Functions
	6.2.2 NUMERIC_STD Logical Functions
	6.2.3 NUMERIC_STD Comparison Functions
	6.2.4 NUMERIC_STD Edge Detection Functions
	6.2.5 NUMERIC_STD Conversion Functions
	6.2.6 NUMERIC_STD Type Casting
	Concept Check

	6.3 TEXTIO and STD_LOGIC_TEXTIO
	Concept Check

	6.4 Other Common Packages
	6.4.1 NUMERIC_STD_UNSIGNED
	6.4.2 NUMERIC_BIT
	6.4.3 NUMERIC_BIT_UNSIGNED
	6.4.4 MATH_REAL
	6.4.5 MATH_COMPLEX
	6.4.6 Legacy Packages (STD_LOGIC_ARITH/UNSIGNED/SIGNED)
	Concept Check

	7: Test Benches
	7.1 Test Bench Overview
	Concept Check

	7.2 Generating Stimulus Vectors Using For Loops
	Concept Check

	7.3 Automated Checking Using Report and Assert Statements
	7.3.1 Report Statement
	7.3.2 Assert Statement
	Concept Check

	7.4 Using External I/O in Test Benches
	7.4.1 Writing to an External File from a Test Bench
	7.4.2 Writing to STD_OUTPUT from a Test Bench
	7.4.3 Reading from an External File in a Test Bench
	7.4.4 Reading Space-Delimited Data from an External File in a Test Bench
	Concept Check

	8: Modeling Sequential Storage and Registers
	8.1 Modeling Scalar Storage Devices
	8.1.1 D-Latch
	8.1.2 D-Flip-Flop
	8.1.3 D-Flip-Flop with Asynchronous Resets
	8.1.4 D-Flip-Flop with Asynchronous Reset and Preset
	8.1.5 D-Flip-Flop with Synchronous Enable
	Concept Check

	8.2 Modeling Registers
	8.2.1 Registers with Enables
	8.2.2 Shift Registers
	8.2.3 Registers as Agents on a Data Bus
	Concept Check

	9: Modeling Finite State Machines
	9.1 The FSM Design Process and a Push-Button Window Controller Example
	9.1.1 Modeling the States with User-Defined, Enumerated Data Types
	9.1.2 The State Memory Process
	9.1.3 The Next State Logic Process
	9.1.4 The Output Logic Process
	9.1.5 Explicitly Defining State Codes with Subtypes
	Concept Check

	9.2 FSM Design Examples
	9.2.1 Serial Bit Sequence Detector in VHDL
	9.2.2 Vending Machine Controller in VHDL
	9.2.3 2-Bit, Binary Up/Down Counter in VHDL
	Concept Check

	10: Modeling Counters
	10.1 Modeling Counters with a Single Process
	10.1.1 Counters in VHDL Using the Type UNSIGNED
	10.1.2 Counters in VHDL Using the Type INTEGER
	10.1.3 Counters in VHDL Using the Type STD_LOGIC_VECTOR
	Concept Check

	10.2 Counters with Enables and Loads
	10.2.1 Modeling Counters with Enables
	10.2.2 Modeling Counters with Loads
	Concept Check

	11: Modeling Memory
	11.1 Memory Architecture and Terminology
	11.1.1 Memory Map Model
	11.1.2 Volatile vs. Nonvolatile Memory
	11.1.3 Read-Only vs. Read/Write Memory
	11.1.4 Random Access vs. Sequential Access
	Concept Check

	11.2 Modeling Read-Only Memory
	Concept Check

	11.3 Modeling Read/Write Memory
	Concept Check

	12: Computer System Design
	12.1 Computer Hardware
	12.1.1 Program Memory
	12.1.2 Data Memory
	12.1.3 Input/Output Ports
	12.1.4 Central Processing Unit
	12.1.4.1 Control Unit
	12.1.4.2 Data Path: Registers
	12.1.4.3 Data Path: Arithmetic Logic Unit (ALU)

	12.1.5 A Memory-Mapped System
	Concept Check

	12.2 Computer Software
	12.2.1 Opcodes and Operands
	12.2.2 Addressing Modes
	12.2.2.1 Immediate Addressing (IMM)
	12.2.2.2 Direct Addressing (DIR)
	12.2.2.3 Inherent Addressing (INH)

	12.2.3 Classes of Instructions
	12.2.3.1 Loads and Stores
	12.2.3.2 Data Manipulations
	12.2.3.3 Branches
	Concept Check

	12.3 Computer Implementation: An 8-Bit Computer Example
	12.3.1 Top-Level Block Diagram
	12.3.2 Instruction Set Design
	12.3.3 Memory System Implementation
	12.3.3.1 Program Memory Implementation in VHDL
	12.3.3.2 Data Memory Implementation in VHDL
	12.3.3.3 Implementation of Output Ports in VHDL
	12.3.3.4 Implementation of Input Ports in VHDL
	12.3.3.5 Memory data_out Bus Implementation in VHDL

	12.3.4 CPU Implementation
	12.3.4.1 Data Path Implementation in VHDL
	12.3.4.2 ALU Implementation in VHDL
	12.3.4.3 Control Unit Implementation in VHDL
	Detailed Execution of LDA_IMM
	Detailed Execution of LDA_DIR
	Detailed Execution of STA_DIR
	Detailed Execution of ADD_AB
	Detailed Execution of BRA
	Detailed Execution of BEQ
	Concept Check

	Appendix A: List of Worked Examples
	Index

