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Preface

The classical digital design approach (i.e., manual synthesis and minimization of logic) quickly
becomes impractical as systems become more complex. This is the motivation for the modern digital
design flow, which uses hardware description languages (HDL) and computer-aided synthesis/minimi-
zation to create the final circuitry. The purpose of this book is to provide a quick start guide to the VHDL
language, which is one of the two most common languages used to describe logic in the modern digital
design flow. This book is intended for anyone that has already learned the classical digital design
approach and is ready to begin learning HDL-based design. This book is also suitable for practicing
engineers that already know VHDL and need quick reference for syntax and examples of common
circuits. This book assumes that the reader already understands digital logic (i.e., binary numbers,
combinational and sequential logic design, finite state machines, memory, and binary arithmetic basics).

Since this book is designed to accommodate a designer that is new to VHDL, the language is
presented in a manner that builds foundational knowledge first before moving into more complex topics.
As such, Chaps. 1-5 only present functionality built into the VHDL standard package. Only after a
comprehensive explanation of the most commonly used packages from the IEEE library is presented in
Chap. 7, are examples presented that use data types from the widely adopted STD_LOGIC_1164
package. For a reader that is using the book as a reference guide, it may be more practical to pull
examples from Chaps. 7-12 as they use the types std_logic and std_logic_vector. For a VHDL novice,
understanding the history and fundamentals of the VHDL base release will help form a comprehensive
understanding of the language; thus it is recommended that the early chapters are covered in the
sequence they are written.

Bozeman, MT, USA Brock J. LaMeres
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Chapter 1: The Modern Digital
Design Flow

The purpose of a hardware description languages is to describe digital circuitry using a text-based
language. HDLs provide a means to describe large digital systems without the need for schematics,
which can become impractical in very large designs. HDLs have evolved to support logic simulation at
different levels of abstraction. This provides designers the ability to begin designing and verifying
functionality of large systems at a high level of abstraction and postpone the details of the circuit
implementation until later in the design cycle. This enables a top-down design approach that is scalable
across different logic families. HDLs have also evolved to support automated synthesis, which allows the
CAD tools to take a functional description of a system (e.g., a truth table) and automatically create the
gate-level circuitry to be implemented in real hardware. This allows designers to focus their attention on
designing the behavior of a system and not spend as much time performing the formal logic synthesis
steps as in the classical digital design approach. The goal of this chapter is to provide the background
and context of the modern digital design flow using an HDL-based approach.

There are two dominant hardware description languages in use today. They are VHDL and Verilog.
VHDL stands for very high speed integrated circuit hardware description language. Verilog is not an
acronym but rather a trade name. The use of these two HDLs is split nearly equally within the digital
design industry. Once one language is learned, it is simple to learn the other language, so the choice of
the HDL to learn first is somewhat arbitrary. In this text, we will use VHDL to learn the concepts of an
HDL. VHDL is stricter in its syntax and typecasting than Verilog, so it is a good platform for beginners as it
provides more of a scaffold for the description of circuits. This helps avoid some of the common pitfalls
that beginners typically encounter. The goal of this chapter is to provide the background and context of
the modern digital design flow using an HDL-based approach.

Learning Outcomes—After completing this chapter, you will be able to:

1.1 Describe the role of hardware description languages in modern digital design.
1.2 Describe the fundamentals of design abstraction in modern digital design.
1.3 Describe the modern digital design flow based on hardware description languages.

1.1 History of Hardware Description Languages

The invention of the integrated circuit is most commonly credited to two individuals who filed patents
on different variations of the same basic concept within 6 months of each other in 1959. Jack Kilby filed
the first patent on the integrated circuit in February of 1959 titled “Miniaturized Electronic Circuits” while
working for Texas Instruments. Robert Noyce was the second to file a patent on the integrated circuit in
July of 1959 titled “Semiconductor Device and Lead Structure” while at a company he cofounded called
Fairchild Semiconductor. Kilby went on to win the Nobel Prize in Physics in 2000 for his invention, while
Noyce went on to cofound Intel Corporation in 1968 with Gordon Moore. In 1971, Intel introduced the first
single-chip microprocessor using integrated circuit technology, the Intel 4004. This microprocessor IC
contained 2300 transistors. This series of inventions launched the semiconductor industry, which was
the driving force behind the growth of Silicon Valley, and led to 40 years of unprecedented advancement
in technology that has impacted every aspect of the modern world.

Gordon Moore, cofounder of Intel, predicted in 1965 that the number of transistors on an integrated
circuit would double every 2 years. This prediction, now known as Moore’s Law, has held true since the

© Springer Nature Switzerland AG 2019 1
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invention of the integrated circuit. As the number of transistors on an integrated circuit grew, so did the
size of the design and the functionality that could be implemented. Once the first microprocessor was
invented in 1971, the capability of CAD tools increased rapidly enabling larger designs to be accom-
plished. These larger designs, including newer microprocessors, enabled the CAD tools to become even
more sophisticated and, in turn, yield even larger designs. The rapid expansion of electronic systems
based on digital integrated circuits required that different manufacturers needed to produce designs that
were compatible with each other. The adoption of logic family standards helped manufacturers ensure
their parts would be compatible with other manufacturers at the physical layer (e.g., voltage and current);
however, one challenge that was encountered by the industry was a way to document the complex
behavior of larger systems. The use of schematics to document large digital designs became too
cumbersome and difficult to understand by anyone besides the designer. Word descriptions of the
behavior were easier to understand, but even this form of documentation became too voluminous to
be effective for the size of designs that were emerging.

In 1983, the US Department of Defense (DoD) sponsored a program to create a means to document
the behavior of digital systems that could be used across all of its suppliers. This program was motivated
by a lack of adequate documentation for the functionality of application specific integrated circuits
(ASICs) that were being supplied to the DoD. This lack of documentation was becoming a critical
issue as ASICs would come to the end of their life cycle and need to be replaced. With the lack of a
standardized documentation approach, suppliers had difficulty reproducing equivalent parts to those that
had become obsolete. The DoD contracted three companies (Texas Instruments, IBM, and Intermetrics)
to develop a standardized documentation tool that provided detailed information about both the interface
(i.e., inputs and outputs) and the behavior of digital systems. The new tool was to be implemented in a
format similar to a programming language. Due to the nature of this type of language-based tool, it was a
natural extension of the original project scope to include the ability to simulate the behavior of a digital
system. The simulation capability was desired to span multiple levels of abstraction to provide maximum
flexibility. In 1985, the first version of this tool, called VHDL, was released. In order to gain widespread
adoption and ensure consistency of use across the industry, VHDL was turned over to the Institute of
Electrical and Electronic Engineers (IEEE) for standardization. IEEE is a professional association that
defines a broad range of open technology standards. In 1987, IEEE released the first industry standard
version of VHDL. The release was titled IEEE 1076-1987. Feedback from the initial version resulted in a
major revision of the standard in 1993 titled IEEE 1076-1993. While many minor revisions have been
made to the 1993 release, the 1076-1993 standard contains the vast majority of VHDL functionality in
use today. The most recent VHDL standard is IEEE 1076-2008.

Also in 1983, the Verilog HDL was developed by Automated Integrated Design Systems as a logic
simulation language. The development of Verilog took place completely independent from the VHDL
project. Automated Integrated Design Systems (renamed Gateway Design Automation in 1985) was
acquired by CAD tool vendor Cadence Design Systems in 1990. In response to the rapid adoption of the
open VHDL standard, Cadence made the Verilog HDL open to the public in order to stay competitive.
IEEE once again developed the open standard for this HDL and in 1995 released the Verilog standard
titted IEEE 1364.

The development of CAD tools to accomplish automated logic synthesis can be dated back to the
1970s when IBM began developing a series of practical synthesis engines that were used in the design
of their mainframe computers; however, the main advancement in logic synthesis came with the founding
of a company called Synopsis in 1986. Synopsis was the first company to focus on logic synthesis
directly from HDLs. This was a major contribution because designers were already using HDLs to
describe and simulate their digital systems, and now logic synthesis became integrated in the same
design flow. Due to the complexity of synthesizing highly abstract functional descriptions, only lower
levels of abstraction that were thoroughly elaborated were initially able to be synthesized. As CAD tool
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capability evolved, synthesis of higher levels of abstraction became possible, but even today not all
functionality that can be described in an HDL can be synthesized.

The history of HDLs, their standardization, and the creation of the associated logic synthesis tools
are key to understanding the use and limitations of HDLs. HDLs were originally designed for documen-
tation and behavioral simulation. Logic synthesis tools were developed independently and modified later
to work with HDLs. This history provides some background into the most common pitfalls that beginning
digital designers encounter, that being that most any type of behavior can be described and simulated in
an HDL, but only a subset of well-described functionality can be synthesized. Beginning digital designers
are often plagued by issues related to designs that simulate perfectly but that will not synthesize
correctly. In this book, an effort is made to introduce VHDL at a level that provides a reasonable amount
of abstraction while preserving the ability to be synthesized. Figure 1.1 shows a timeline of some of the
major technology milestones that have occurred in the past 150 years in the field of digital logic and

HDLs.

Major Milestones in the Advancement of Digital Logic and HDLs

1995: IEEE releases first open Verilog standard “IEEE 1364" @
1987: |IEEE releases first open VHDL standard “IEEE 1076-1987" @
1986: Synopsis Co. founded and targets logic synthesis from HDLs '@

1983: Verilog HDL Development begins ®

CAD Tools

1983: DoD funds VHDL Project '®

1978: IBM creates logic synthesis algorithm to design mainframes "®

2012: Intel releases the 10-core Xeon Westmere EX °
microprocessor containing 2.5 billion transistors

1971: The first single-chip microprocessor is ®
released (Intel 4004) containing 2300 transistors

1968: RCA releases the first CMOS Logic °
Family (CD400) based on MOSFET transistors

1964: Texas Instruments releases the first TTL
Logic Family (7400) based on bipolar transistors

Technology

1959: Jack Kilby and Robert Noyce file patents for ®
the integrated circuit within six months of each other

1947: William Shockley, et. al., file a patent for °
the first transistor while working for Bell Labs

1954: Maurice Karnaugh creates the K-map °
as a graphical way to minimize logic circuits

e 1930: Claude Shannon applies Boolean Algebra to
the design of electrical switching circuits

& 1859: Augustus DeMorgan adds two
powerful “Laws" to Boole's framework

Theory

o 1854: George Boole creates a
" two-valued a[gebrai? framework

I |
1850 1900 1950 2000

Fig. 1.1
Major milestones in the advancement of digital logic and HDLs
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CC1.1  Why does VHDL support modeling techniques that aren’t synthesizable?

(A) Since synthesis wasn’t within the original scope of the VHDL project, there
wasn'’t sufficient time to make everything synthesizable.

(B) Atthe time VHDL was created, synthesis was deemed too difficult to
implement.

(C) To allow VHDL to be used as a generic programming language.

(D) VHDL needs to support all steps in the modern digital design flow, some of
which are unsynthesizable such as test pattern generation and timing
verification.

1.2 HDL Abstraction

HDLs were originally defined to be able to model behavior at multiple levels of abstraction.
Abstraction is an important concept in engineering design because it allows us to specify how systems
will operate without getting consumed prematurely with implementation details. Also, by removing the
details of the lower-level implementation, simulations can be conducted in reasonable amounts of time to
model the higher-level functionality. If a full computer system was simulated using detailed models for
every MOSFET, it would take an impracticable amount of time to complete. Figure 1.2 shows a graphical
depiction of the different layers of abstraction in digital system design.

Levels of Design Abstraction
System @ Q
|i RAM
A Algorithm ‘ cPU | ["ROM
|
! | | o
c v SO | o
S Register L Q
8 Transfer (s2) Hs1) e
B & 2
2 ]
2 :
Gate ﬁ, 3
\J
Circuit _|
=+
Material B A

Fig. 1.2
Levels of design abstraction
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The highest level of abstraction is the system level. At this level, behavior of a system is
described by stating a set of broad specifications. An example of a design at this level is a specifica-
tion such as “the computer system will perform 10 Tera Floating Point Operations per Second
(10 TFLOPS) on double precision data and consume no more than 100 W of power.” Notice that
these specifications do not dictate the lower-level details such as the type of logic family or the type of
computer architecture to use. One level down from the system level is the algorithmic level. At this
level, the specifications begin to be broken down into sub-systems, each with an associated behavior
that will accomplish a part of the primary task. At this level, the example computer specifications might
be broken down into sub-systems such as a central processing unit (CPU) to perform the computation
and random access memory (RAM) to hold the inputs and outputs of the computation. One level down
from the algorithmic level is the register-transfer level (RTL). At this level, the details of how data is
moved between and within sub-systems are described in addition to how the data is manipulated
based on system inputs. One level down from the RTL level is the gate level. At this level, the design
is described using basic gates and registers (or storage elements). The gate level is essentially a
schematic (either graphically or text-based) that contains the components and connections that will
implement the functionality from the above levels of abstraction. One level down from the gate level is
the circuit level. The circuit level describes the operation of the basic gates and registers using
transistors, wires, and other electrical components such as resistors and capacitors. Finally, the
lowest level of design abstraction is the material level. This level describes how different materials
are combined and shaped in order to implement the transistors, devices, and wires from the circuit
level.

HDLs are designed to model behavior at all of these levels with the exception of the material level.
While there is some capability to model circuit-level behavior such as MOSFETSs as ideal switches and
pull-up/pull-down resistors, HDLs are not typically used at the circuit level. Another graphical depiction of
design abstraction is known as Gajski and Kuhn’s Y-chart. A Y-chart depicts abstraction across three
different design domains: behavioral, structural, and physical. Each of these design domains contains
levels of abstraction (i.e., system, algorithm, RTL, gate, and circuit). An example Y-chart is shown in
Fig. 1.3.
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Y-Chart of Design Abstraction
Design Levels

“System Level"

. “Algorithmic Level”
Behavioral Structural

Domain Domain

“Register Transfer Level”

Specification
Algorithms

' CPU, Memory
~ Processor, Sub- System
=’ State Machines, ALUs
' Gates

“Gate Level”

Register Transfer &
Boolean Algebra &
Differential Equations, KVL, KCL

“Circuit Level”

~ Transistor

' Laying out geometries for device fabrication
- Laying out gate-level cells

~ Laying out macro-level blocks

' Module Floorplanning

- Chip/Board Floorplanning

Physical Domain

Fig. 1.3
Y-chart of design abstraction

A Y-chart also depicts how the abstraction levels of different design domains are related to each
other. A top-down design flow can be visualized in a Y-chart by spiraling inward in a clockwise direction.
Moving from the behavioral domain to the structural domain is the process of synthesis. Whenever
synthesis is performed, the resulting system should be compared with the prior behavioral description.
This checking is called verification. The process of creating the physical circuitry corresponding to the
structural description is called implementation. The spiral continues down through the levels of abstrac-
tion until the design is implemented at a level that the geometries representing circuit elements
(transistors, wires, etc.) are ready to be fabricated in silicon. Figure 1.4 shows the top-down design
process depicted as an inward spiral on the Y-chart.
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Y-Chart lllustrating Top-Down Design Approach

Synthesis
Verification
Behavioral
Domain
Specification
Algorithms

Down One Level

Physical
Domain

CPU, Memory

Implementation

Chip/Board Floorplanning

Structural
Domain

Fig. 1.4
Y-chart illustrating top-down design approach

The Y-chart represents a formal approach for large digital systems. For large systems that are
designed by teams of engineers, it is critical that a formal, top-down design process is followed to eliminate
potentially costly design errors as the implementation is carried out at lower levels of abstraction.

implementation would overwhelm the designer.

systems.

CC1.2 Why is abstraction an essential part of engineering design?

(A) Without abstraction all schematics would be drawn at the transistor-level.
(B) Abstraction allows computer programs to aid in the design process.

(C) Abstraction allows the details of the implementation to be hidden, while the
higher-level systems are designed. Without abstraction, the details of the

(D) Abstraction allows analog circuit designers to include digital blocks in their




8 + Chapter 1: The Modern Digital Design Flow

1.3 The Modern Digital Design Flow

When performing a smaller design or the design of fully contained sub-systems, the process can be
broken down into individual steps. These steps are shown in Fig. 1.5. This process is given generically
and applies to both classical and modern digital design. The distinction between classical and modern is
that modern digital design uses HDLs and automated CAD tools for simulation, synthesis, place and

route, and verification.

Fig. 1.5

Digital Design Flow

Steps

Specifications

Functional
Design

,

Synthesis

Technology
Mapping

Place and
Route

,

Verification

,

Fabrication

Description of Tasks at Each Step

- State the desired behavior of the design using broad, high-
level specifications.

- Describe the high-level architecture of the design (e.g.,
block diagrams for inputs/outputs, sub-systems) and generic
behavior (truth tables, state diagrams and/or algorithms).

- Create the gate-level connection (schematic or netlist) of
the design using logic synthesis processes (e.g., K-maps or
automated CAD tools).

- Select the logic technology that will achieve the
specifications (e.g., 74HC family, 32nm CMOS ASIC).
Manipulate the gate-level netlist/schematic into a form that is
suitable for this technology (e.g., DeMorgan’s NAND/NOR).

- Arrange the components to minimize the area needed (on a
board or chip) and wire all connections to minimize
interconnect length and crossings.

- Once a technology is chosen and the routing is complete,
the gate and wiring delays can be used to estimate whether
the final design meets the timing and power consumption
requirements of the criginal specifications.

- Once the design is verified it can be implemented.
(ASIC, programmable device, board-level, discrete parts)

Generic digital design flow

This generic design process flow can be used across classical and modern digital design, although
modern digital design allows additional verification at each step using automated CAD tools. Figure 1.6
shows how this flow is used in the classical design approach of a combinational logic circuit.
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Classical Digital Design Flow
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- It is decided that a 74HC logic
family will be the most cost-
effective technology for this design.
To minimize the number of parts,
the logic will be implemented with
only NAND-gates.

- The circuit to be
implemented is placed in a
floor plan and an estimate of
the connections are made.
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- The verified circuit is
implemented in hardware.

to+buiresly + taie+tp = tagiay = 150Ns

Fig. 1.6
Classical digital design flow

The modern design flow based on HDLs includes the ability to simulate functionality at each step
of the process. Functional simulations can be performed on the initial behavioral description of the
system. At each step of the design process, the functionality is described in more detail, ultimately
moving toward the fabrication step. At each level, the detailed information can be included in the
simulation to verify that the functionality is still correct and that the design is still meeting the original
specifications. Figure 1.7 shows the modern digital design flow with the inclusion of simulation

capability at each step.
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Modern Digital Design Flow
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Y - After synthesis, the design is described at
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Synthesis  |—| Simulation |  verify that the functionality of the gate-level
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synthesis behavioral description.

- After technology mapping, an estimate of

Technology Simulation]  the gate delays can be used in the
Mapping simulation to make sure the timing
Correct requirements of the design are met.

Y ‘ - After place and route, an estimate of the

wiring delays can be included in the

Place and . , 4 ! i)
Route —=| Simulation |  simulation to make sure the timing
- requirements of the design are met.

Y

- The final design is analyzed to see if it

Verification meets the original design specifications.
Eabiicaton - Fabrication is typically in the form of an

ASIC or a programmable device.

Fig. 1.7
Modern digital design flow

CC1.3 Why did digital designs move from schematic-entry to text-based HDLs?

(A) HDL models could be much larger by describing functionality in text similar to
traditional programming language.

(B) Schematics required sophisticated graphics hardware to display correctly.
(C) Schematics symbols became too small as designs became larger.

(D) Text was easier to understand by a broader range of engineers.
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Summary

The modern digital design flow relies on
computer-aided engineering (CAE) and
computer-aided design (CAD) tools to man-
age the size and complexity of today’s digital
designs.

Hardware description languages (HDLs)
allow the functionality of digital systems to
be entered using text. VHDL and Verilog are
the two most common HDLs in use today.
VHDL was originally created to document the
behavior of large digital systems and support
functional simulations.

The ability to automatically synthesize a logic
circuit from a VHDL behavioral description

Exercise Problems
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1.21

1.2.2

1.23

1.2.4

1.2.5

1.2.6

tion 1.1: History of HDLs
What was the original purpose of VHDL?

Can all of the functionality that can be
described in VHDL be simulated?

Can all of the functionality that can be
described in VHDL be synthesized?

tion 1.2: HDL Abstraction

Give the level of design abstraction that the
following statement relates to: if there is ever
an error in the system, it should return to the
reset state.

Give the level of design abstraction that the
following statement relates to: once the design
is implemented in a sum of products form,
DeMorgan’s Theorem will be used to convert
it to a NAND-gate only implementation.

Give the level of design abstraction that the
following statement relates to: the design will
be broken down into two sub-systems, one that
will handle data collection and the other that
will control data flow.

Give the level of design abstraction that the
following statement relates to: the interconnect
on the IC should be changed from aluminum to
copper to achieve the performance needed in
this design.

Give the level of design abstraction that the
following statement relates to: the MOSFETs
need to be able to drive at least eight other
loads in this design.

Give the level of design abstraction that the
following statement relates to: this system will
contain 1 host computer and support up to
1000 client computers.

1.2.7

1.2.8

1.29

1.21

Sec

became possible approximately 10 years
after the original definition of VHDL. As
such, only a subset of the behavioral
modeling techniques in VHDL can be auto-
matically synthesized.

HDLs can model digital systems at different
levels of design abstraction. These include
the system, algorithmic, RTL, gate, and cir-
cuit levels. Designing at a higher level of
abstraction allows more complex systems to
be modeled without worrying about the
details of the implementation.

Give the design domain that the following activ-
ity relates to: drawing the physical layout of the
CPU will require 6 months of engineering time.

Give the design domain that the following activ-
ity relates to: the CPU will be connected to four
banks of memory.

Give the design domain that the following activ-
ity relates to: the fan-in specifications for this
logic family require excessive logic circuitry to
be used.

0 Give the design domain that the following activ-
ity relates to: the performance specifications
for this system require 1 TFLOP at <5 W.

tion 1.3: The Modern Digital Design

Flow

1.31

1.3.2

1.3.3

134

Which step in the modern digital design flow
does the following statement relate to: a CAD
tool will convert the behavioral model into a
gate-level description of functionality.

Which step in the modern digital design flow
does the following statement relate to: after
realistic gate and wiring delays are determined,
one last simulation should be performed to
make sure the design meets the original timing
requirements.

Which step in the modern digital design
flow does the following statement relate to: if
the memory is distributed around the perimeter
of the CPU, the wiring density will be
minimized.

Which step in the modern digital design flow
does the following statement relate to: the
design meets all requirements so now I'm
building the hardware that will be shipped.
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1.3.5  Which step in the modern digital design flow 1.3.7  Which step in the modern digital design flow

does the following statement relate to: the does the following statement relate to: to meet
system will be broken down into three the power requirements, the gates will be
sub-systems with the following behaviors. implemented in the 74HC logic family.

1.3.6  Which step in the modern digital design flow
does the following statement relate to: this
system needs to have 10 GB of memory.
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Chapter 2: VHDL Constructs

This chapter begins looking at the basic construction of a VHDL model. This chapter begins by
covering the built-in features of a VHDL model including the file structure, data types, operators, and
declarations. This chapter provides a foundation of VHDL that will lead to modeling examples provided in
Chap. 3. VHDL is not case sensitive. Each VHDL assignment, definition, or declaration is terminated with
a semicolon (;). As such, line wraps are allowed and do not signify the end of an assignment, definition, or
declaration. Line wraps can be used to make the VHDL more readable. Comments in VHDL are
preceded with two dashes (i.e., --) and continue until the end of the line. All user-defined names in
VHDL must start with an alphabetic letter, not a number. User-defined names are not allowed to be the
same as any VHDL keyword. This chapter contains many definitions of syntax in VHDL. The following
notations will be used throughout the chapter when introducing new constructs:

bold = VHDL keyword, use as is
italics = User-defined name
<> = A required characteristic such as a data type, input/output, etc.

Learning Outcomes—After completing this chapter, you will be able to:

2.1 Describe the data types provided in the standard VHDL package.
2.2 Describe the basic construction of a VHDL model.

2.1 Data Types

In VHDL, every signal, constant, variable, and function must be assigned a data type. The IEEE
standard package provides a variety of pre-defined data types. Some data types are synthesizable,
while others are only for modeling abstract behavior. The following are the most commonly used data
types in the VHDL standard package.

2.1.1 Enumerated Types

An enumerated type is one in which the exact values that the type can take on are defined.

Type Values that the type can take on

bit {0, 1}

boolean {false, true}

character {“any of the 256 ASCII characters defined in ISO 8859-1"}

The type bit is synthesizable, while Boolean and character are not. The individual scalar values are
indicated by putting them inside single quotes (e.g., ‘0, ‘a,’ ‘true’).
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B. J. LaMeres, Quick Start Guide to VHDL, https://doi.org/10.1007/978-3-030-04516-6_2


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04516-6_2&domain=pdf

14 + Chapter 2: VHDL Constructs

2.1.2 Range Types

A range type is one that can take on any value within a range.

Type Values that the type can take on

integer Whole numbers between —2,147,483,648 and +2,147,483,647
real Fractional numbers between —1.7e® and +1.7e38

The integer type is a 32-bit, signed, two’s complement number and is synthesizable. If the full range
of integer values is not desired, this type can be bounded by including range <min> to <max>. The real
type is a 32-bit, floating point value and is not directly synthesizable unless an additional package is
included that defines the floating point format. The values of these types are indicated by simply using
the number without quotes (e.g., 33, 3.14).

2.1.3 Physical Types

A physical type is one that contains both a value and units. In VHDL, time is the primary supported
physical type.

Type Values that the type can take on

time Whole numbers between —2,147,483,648
and +2,147,483,647

(unit relationships) fs (femtosecond, 10~ %),

base unit

ps = 1000 fs (picosecond, 10~'2)
ns = 1000 ps (nanosecond, 10~°)
us = 1000 ns (microsecond, 10°)
ms = 1000 ps (millisecond, 1073)
s = 1000 ms (second)
min =60 s (minute)
h = 60 min (hour)

The base unit for time is fs, meaning that, if no units are provided, the value is assumed to be in
femtoseconds. The value of time is held as a 32-bit, signed number and is not synthesizable.

2.1.4 Vector Types

A vector type is one that consists of a linear array of scalar types.

Type Construction
bit_vector A linear array of type bit
string A linear array of type character

The size of a vector type is defined by including the maximum index, the keyword downto, and the
minimum index. For example, if a signal called BUS_A was given the type bit_vector(7 downto 0), it
would create a vector of 8 scalars, each of type bit. The leftmost scalar would have an index of 7 and the
rightmost scalar would have an index of 0. Each of the individual scalars within the vector can be
accessed by providing the index number in parentheses. For example, BUS_A(0) would access the
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scalar in the rightmost position. The indices do not always need to have a minimum value of 0, but this is
the most common indexing approach in logic design. The type bit_vector is synthesizable, while string is
not. The values of these types are indicated by enclosing them inside double quotes (e.g., “0011,” “abcd”).

2.1.5 User-Defined Enumerated Types

A user-defined enumerated type is one in which the name of the type is specified by the user in
addition to all of the possible values that the type can assume. The creation of a user-defined
enumerated type is shown below.

type name is (valuel, value2, ...);

Example:
type traffic_light is (red, yellow, green) ;

In this example, a new type is created called traffic_light. If we declared a new signal called Sig1 and
assigned it the type traffic_light, the signal could only take on values of red, yellow, and green. User-
defined enumerated types are synthesizable in specific applications.

2.1.6 Array Type

An array contains multiple elements of the same type. Elements within an array can be scalar or
vectors. In order to use an array, a new type must be declared that defines the configuration of the array.
Once the new type is created, signals may be declared of that type. The range of the array must be
defined in the array-type declaration. The range is specified with integers (min and max) and either the
keywords downto or to. The creation of an array type is shown below.

type name is array (<range>) of <element_type>;
Example:

type block_8x16 is array (0 to 7) bit_vector (15 downto 0) ;
signal my_array : block_8x16;

In this example, the new array type is declared with eight elements. The beginning index of the array
is 0 and the ending index is 7. Each element in the array is a 16-bit vector of type bit_vector.

2.1.7 Subtypes

A subtype is a constrained version or subset of another type. Subtypes are user-defined, although a
few commonly used subtypes are pre-defined in the standard package. The following is the syntax for
declaring a subtype and two examples of commonly used subtypes (NATURAL and POSTIVE) that are
defined in the standard package.

subtype name is <type> range <min> to <max>;

Example:

subtype NATURAL is integer range 0 to 255;
subtype POSTIVE is integer range 1 to 256;
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CC2.1 What is the difference between types Boolean {TRUE, FALSE} and bit
{0, 1}?

(A) They are the same.

(B) Boolean is used for decision-making constructs (when, else), while
bit is used to model real digital signals.

(C) Logical operators work with type Boolean but not for type bit.

(D) Only type bit is synthesizable.

2.2 VHDL Model Construction

AVHDL design describes a single system in a single file. The file has the suffix *.vhd. Within the file,
there are two parts that describe the system: the entity and the architecture. The entity describes the
interface to the system (i.e., the inputs and outputs) and the architecture describes the behavior. The
functionality of VHDL (e.g., operators, signal types, functions, etc.) is defined in the package. Packages
are grouped within a library. |IEEE defines the base set of functionality for VHDL in the standard
package. This package is contained within a library called /EEE. The library and package inclusion is
stated at the beginning of a VHDL file before the entity and architecture. Additional functionality can be
added to VHDL by including other packages, but all packages are based on the core functionality defined
in the standard package. As a result, it is not necessary to explicitly state that a design is using the IEEE
standard package because it is inherent in the use of VHDL. All functionality described in this chapter is
for the IEEE standard package, while other common packages are covered in subsequent chapters.
Figure 2.1 shows a graphical depiction of a VHDL file.

The Anatomy of a VHDL File
Example.vhd

Package
(IEEE standard package is inherent,
additional packages are optional)

Entity

(description of inputs/outputs of the system)

Architecture
(description of the behavior of the system)

Fig. 2.1
The anatomy of a VHDL file

2.2.1 Libraries and Packages

As mentioned earlier, the IEEE standard package is implied when using VHDL; however, we can
use it as an example of how to include packages in VHDL. The keyword library is used to signify that
packages are going to be added to the VHDL design from the specified library. The name of the library
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follows this keyword. To include a specific package from the library, a new line is used with the keyword
use followed by the package details. The package syntax has three fields separated with a period. The
first field is the library name. The second field is the package name. The third field is the specific
functionality of the package to be included. If all functionality of a package is to be used, then the
keyword all is used in the third field. Examples of how to include some of the commonly used packages
from the IEEE library are shown below.

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;
use IEEE.std_logic_textio.all;

2.2.2 The Entity

The entity in VHDL describes the inputs and outputs of the system. These are called ports. Each
port needs to have its name, mode, and type specified. The name is user-defined. The mode describes
the direction data is transferred through the port and can take on values of in, out, inout, and buffer. The
type is one of the legal data types described above. Port names with the same mode and type can be
listed on the same line separated by commas. The definition of an entity is given below.

entity entity name is
port (port_name : <mode> <type>;
port_name : <mode> <type>) ;
end entity;

Example 2.1 shows multiple approaches for defining an entity.

Example: Defining VHDL Entities

entity Systeml is Notice at the g_nd of
System1 port (X . in bit; the port definition the
Y : in  bit; semicolon is after the
—_ X 2 ¢ in bit; L~ closing parenthesis.
F : out bit); | wE
—Y FI— ., |end entity;
z Since X, Y and Z are
: entity Systeml is |. the same mode and
All ports are type bit port (X, ¥, Z : in bit;¥"| type, they can be listed
F out bit) ;| jthe same line
end entity;
separated by commas.

System?2

32 32 entity System2 is

port (Bus_In : in bit wector (31 downto 0);
7~|Bus_In  Bus_Outf> Bus Out : out bit vector (31 downto 0));
end entity;

All ports are type bit_vector

Example 2.1
Defining VHDL entities

2.2.3 The Architecture

The architecture in VHDL describes the behavior of a system. There are numerous techniques to
describe behavior in VHDL that span multiple levels of abstraction. The architecture is where the majority
of the design work is conducted. The form of a generic architecture is given below.
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architecture architecture_name of <entity associatedwith> is

-- user-defined enumerated type declarations
-- signal declarations

-- constant declarations

-- component declarations

begin

-- behavioral description of the system goes here

end architecture;

2.2.3.1 Signal Declarations

(optional)
(optional)
(optional)
(optional)

A signal that is used for internal connections within a system is declared in the architecture. Each
signal must be declared with a type. The signal can only be used to make connections of like types. A
signal is declared with the keyword signal followed by a user-defined name, colon, and the type. Signals
of like type can be declared on the same line separated with a comma. All of the legal data types
described above can be used for signals. Signals represent wires within the system so they do not have
a direction or mode. Signals cannot have the same name as a port in the system in which they reside.
The syntax for a signal declaration is as follows:

signal name : <type>;

Example:

signal nodel : bit;

signal al, bl : integer;
signal Bus3 : bit_vector (15 downto 0);
signal C_int : integer range 0 to 255;

VHDL supports a hierarchical design approach. Signal names can be the same within a sub-system
as those at a higher level without conflict. Figure 2.2 shows an example of legal signal haming in a

hierarchical design.

VHDL Signals and Systems
System3

Signals n1 and n2 are declared
within the System3 architecture.

X

Sub1 ./ Sub2
A F1| n1 |A w

Y

B F2| n2

i

A new signal is not needed
for these connections. The
port names can be used to
signify the connections
instead.

/
The port names A and B are used in
two sub-systems. This is legal
since they are named within the
lower-level sub-systems. They are

not connected to each other
implicitly and there is no conflict.

Using the signal name n1 is
legal here. The signal does
not “see” the duplicate signal
name “n1" within the System3
entity because they are at
different levels of hierarchy.

Fig. 2.2
VHDL signals and systems
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2.2.3.2 Constant Declarations

A constant is useful for representing a quantity that will be used multiple times in the architecture.
The syntax for declaring a constant is as follows:

constant constant_name : <type> := <value>;
Example:
constant BUS_WIDTH : integer := 32;

Once declared, the constant name can now be used throughout the architecture. The following
example illustrates how we can use a constant to define the size of a vector. Notice that since we defined
the constant to be the actual width of the vector (i.e., 32-bits), we need to subtract one from its value
when defining the indices (i.e., 31 down to 0).

Example:

signal BUS_A : bit_vector (BUS_WIDTH-1 downto 0) ;

2.2.3.3 Component Declarations

A component is the term used for a VHDL sub-system that is instantiated within a higher-level
system. If a component is going to be used within a system, it must be declared in the architecture before
the begin statement. The syntax for a component declaration is as follows:

component component_name
port (port_name : <mode> <type>;
port_name : <mode> <type>) ;
end component;

The port definitions of the component must match the port definitions of the sub-system’s entity
exactly. As such, these lines are typically copied directly from the lower-level systems VHDL entity
description. Once declared, a component can be instantiated after the begin statement in the architec-
ture as many times as needed.

CC2.2 Why don’'t we need to explicitly include the STANDARD package when creating a VHDL
design?

(A) It defines the base functionality of VHDL so its use is implied.
(B) The simulator will automatically add it to the .vhd file upon compile.
(C) Itisn’t recognized by synthesizers so it shouldn’t be included.

(D) ltis a historical artifact that that isn’t used anymore.
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Summary

Every signal and port in VHDL needs to be
associated with a data type.

A data type defines the values that can be
taken on by a signal or port.

In a VHDL source file, there are three main
sections. These are the package, the entity,
and the architecture. Including a package
allows additional functionality to be included
in VHDL. The entity is where the inputs and
outputs of the system are declared. The
architecture is where the behavior of the sys-
tem is described.

Exercise Problems

Sec
2.1.1

21.2

213

tion 2.1: Data Types

What are all the possible values that the type
bit can take on in VHDL?

What are all the possible values that the type
Boolean can take on in VHDL?

What is the range of decimal numbers that can
be represented using the type integer in
VHDL?

What is the width of the vector defined using
the type bit_vector(63 downto 0)?

What is the syntax for indexing the most signif-
icant bit in the type bit_vector(31 downto 0)?
Assume the vector is named example.

« Aportis an input or output to a system that is
declared in the entity. A signal is an internal
connection within the system that is declared
in the architecture. A signal is not visible
outside of the system.

“ A component is how a VHDL system uses
another sub-system. A component is first
declared, which defines the name and entity
of the sub-system to be used. The compo-
nent can then be instantiated one or more
times.

2.1.6  Whatis the syntax for indexing the least signif-
icant bit in the type bit_vector(31 downto 0)?
Assume the vector is named example.

21.7 What is the difference between an enumerated
type and a range type?

2.1.8  What scalar type does a bit_vector consist.

Section 2.2: VHDL Model Construction

221 In which construct of VHDL are the inputs and
outputs of the system defined?

2.2.2 In which construct of VHDL is the behavior of
the system described?

223 Which construct is used to add additional func-
tionality such as data types to VHDL?
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Chapter 3: Modeling Concurrent
Functionality

This chapter presents a set of built-in operators that will allow logic to be modeled within the VHDL
architecture. This chapter then presents a series of combinational logic model examples.

Learning Outcomes—After completing this chapter, you will be able to:

3.1 Describe the various built-in operators within VHDL.

3.2 Design a VHDL model for a combinational logic circuit using concurrent signal
assignments and logical operators.

3.3 Design a VHDL model for a combinational logic circuit using conditional signal
assignments.

34 Design a VHDL model for a combinational logic circuit using selected signal assignments.

3.5 Design a VHDL model for a combinational logic circuit that contains delay.

3.1 VHDL Operators

There are a variety of pre-defined operators in the IEEE standard package. It is important to note
that operators are defined to work on specific data types and that not all operators are synthesizable. Itis
also important to remember that VHDL is a hardware description language, not a programming lan-
guage. In a programming language, the lines of code are executed sequentially as they appear in the
source file. In VHDL, the lines of code represent the behavior of real hardware. As a result, all signal
assignments are by default executed concurrently unless specifically noted otherwise. All operations in
VHDL must be on like types, and the result must be assigned to the same type as the operation inputs.

3.1.1 Assignment Operator

VHDL uses <= for all signal assignments and := for all variable and initialization assignments.
These assignment operators work on all data types. The target of the assignment goes on the left of
these operators and the input arguments go on the right.

Example:

Fl<=A4; -- Fl and Amust be the same size and type
F2<='0"; --F2 is typebit in this example
F3 <="0000"; --F3is typebit_vector (3 downto 0) in this example
F4 <= *hello”; --F4is type string in this example
F5<=3.14; -- F5 is type real in this example
F6 <=x"1A"; --F6 is type bit_vector (7 downto 0), x”1A” is in HEX
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3.1.2 Logical Operators

VHDL contains the following logical operators:

Operator Operation

not Logical negation

and Logical AND

nand Logical NAND

or Logical OR

nor Logical NOR

xor Logical Exclusive-OR
xnor Logical Exclusive-NOR

These operators work on types bit, bit_vector, and boolean. For operations on the type bit_vector,
the input vectors must be the same size and will take place in a bit-wise fashion. For example, if two 8-bit
buses called BusA and BusB were AND’d together, BusA(0) would be individually AND’d with BusB(0),
BusA(1) would be individually AND’d with BusB(1), etc. The not operator is a unary operation (i.e., it
operates on a single input), and the keyword is put before the signal being operated on. All other
operators have two or more inputs and are placed in-between the input names.

Example:

Fl <=not A;
F2 <=BandC(C;

The order of precedence in VHDL is different from in Boolean algebra. The NOT operator is a higher
priority than all other operators. All other logical operators have the same priority and have no inherent
precedence. This means that in VHDL, the AND operator will not precede the OR operation as it does in
Boolean algebra. Parentheses are used to explicitly describe precedence. If operators are used that
have the same priority and parentheses are not provided, then the operations will take place on the
signals listed first moving left to right in the signal assignment. The following are examples on how to use
these operators:

Example:

F3 <=not Dnand E; --Dwill be complemented first, the result
--will then be NAND’dwith E, then the
--result will be assigned to F3

F4 <=not (ForG); -- the parentheses take precedence so
--Fwill be OR’dwith G first, then
-- complemented, and then assigned to F4.

F5 <=Hnor I nor J; -- logic operations can have any number of
-- inputs.
F6 <= K xor L xnor M; -- XOR and XNOR have the same priority sowith

-- no parentheses given, the logic operations
--will take place on the signals from

-- left toright. Kwill be XOR’'dwith L first,
-- then the result will be XNOR'dwith M.
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3.1.3 Numerical Operators

VHDL contains the following numerical operators:

Operator Operation

+ Addition

- Subtraction

* Multiplication

/ Division

mod Modulus

rem Remainder
abs Absolute value
** Exponential

These operators work on types integer and real. Note that the default VHDL standard does not
support numerical operators on types bit and bit_vector.

3.1.4 Relational Operators

VHDL contains the following relational operators. These operators compare two inputs of the same
type and return the type Boolean (i.e., true or false).

Operator Returns true if the comparison is:
= Equal

I= Not equal

< Less than

<= Less than or equal

> Greater than

>— Greater than or equal

3.1.5 Shift Operators

VHDL contains the following shift operators. These operators work on vector types bit_vector and
string.

Operator Operation

sll Shift left logical

srl Shift right logical
sla Shift left arithmetic
sra Shift right arithmetic
rol Rotate left

ror Rotate right

The syntax for using a shift operation is to provide the name of the vector followed by the desired
shift operator, followed by an integer indicating how many shift operations to perform. The target of the
assignment must be the same type and size as the input.

Example:

A<=Bsrl 3; -- Ais assigned the result of a logical shift
-- right 3 times on B.
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3.1.6 Concatenation Operator

In VHDL the & is used to concatenate multiple signals. The target of this operation must be the same
size of the sum of the sizes of the input arguments.

Example:
Busl <= 11" & “00"; -- Busl must be 4-bits andwill be assigned
-- thevalue *1100”
Bus2 <= BusA & BusB; -- If BusA and BusB are 4-bits, then Bus2
--must be 8-bits.
Bus3 <= ‘0’ & BusA; -- This attaches a leading ‘0’ to BusA. Bus3

--must be 5-bits

CC3.1 Do all of the operators provided in the standard package work for all data types provided
in the same package?

(A) Yes. Since both the operators and data types are in the same package, they
all work together.

(B) No. Each operator only works on specific data types. Itis up to the designer to
know what types the operator work with.

3.2 Concurrent Signal Assignments with Logical Operators

Concurrent signal assignments are accomplished by simply using the <= operator after the begin
statement in the architecture. Each individual assignment will be executed concurrently and synthesized
as separate logic circuits. Consider the following example:

Example:

X <=A;
Y <= B;
Z<=C;

When simulated, these three lines of VHDL will make three separate signal assignments at the
exact same time. This is different from a programming language that will first assign A to X, then B to Y,
and finally C to Z. In VHDL this functionality is identical to three separate wires. This description will be
directly synthesized into three separate wires.

Below is another example of how concurrent signal assignments in VHDL differ from a sequentially
executed programming language:

Example:

A <= B;
B<=C;

In a VHDL simulation, the signal assignments of C to B and B to A will take place at the same time;
however, during synthesis, the signal B will be eliminated from the design since this functionality
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describes two wires in series. Automated synthesis tools will eliminate this unnecessary signal name.
This is not the same functionality that would result if this example was implemented as a sequentially
executed computer program. A computer program would execute the assignment of B to A first and then
assign the value of C to B second. In this way, B represents a storage element that is passed to A before
it is updated with C.

Each of the logical operators described in Sect. 3.1.2 can be used in conjunction with concurrent
signal assignments to create individual combinational logic circuits.

3.2.1 Logical Operator Example: SOP Circuit

Example 3.1 shows how to design a VHDL model of a standard sum of products’ combinational logic
circuit using concurrent signal assignments with logical operators.

Example: Modeling Logic using Concurrent Signal Assignments and Logical Operators

Implement the following truth table using concurrent signal ABC|F
assignments with logical operators. 000|1
001]0
First, let's design the entity. Let's call the entity SystemX. 010][1
The entity will have three inputs (A, B, C) and one output (F). 01 1]0
We'll use the type bit for all inputs/outputs so that this will 100]0
synthesize directly into real circuitry. 10 1|0
1 10]1
11 1]0
SystemX
— A entity SystemX is
—s pl— = || O G RE [ W om
—C end entity;

Now we design the architecture. We can create a canonical sum of products logic
expression for this truth table using minterms.

F = 2apc(0,26) = A“B"C' + AB-C' + AB-C’
Drawing out the logic diagram will help us understand which internal signals need to be
declared for the interim connections. Since there is a need for the complement of each of
the inputs, the first set of logic will be three inverters. We'll need to create three signals to
hold the inverted versions of the inputs. Let's call them An, Bn and Cn. We'll also need
three signal to hold the outputs of the AND gates. Let's call them m0, m2 and m6. Using
these internal signals, the port names from the entity, and logical operators, we can describe
the behavior of the logic expression above.

architecture SystemX arch of SystemX is
An—| m0 & i
Bn=— signal An, Bn, Cn : bit;
Cn— / signal m0, m2, mé6 : bit;
A An
B Bn Asn_ i F begin
Cn  Cn™ An <= not A; -- NOT's
c e Bn <= not B;
A Cn <= not C;
B —] mé
cn— m) <= An and Bn and Cn; -- AND's
m2 <= An and B and Cn;
mé <= A and B and Cn;
F <= m0 or m2 or mé6; -= OR
end architecture;
Example 3.1

SOP logic circuit: VHDL modeling using logical operators
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3.2.2 Logical Operator Example: One-Hot Decoder

A one-hot decoder is a circuit that has n inputs and 2" outputs. Each output will assert for one and
only one input code. Since there are 2" outputs, there will always be one and only one output asserted at
any given time. Example 3.2 shows how to model a 3-to-8 one-hot decoder in VHDL with concurrent
signal assignments and logic operators.

Example: 3-to-8 One-Hot Decoder — VHDL Modeling using Logical Operators
The block diagram and truth table for this system are as follows:
decoder_1hot_3to8

el—: A B C|F7 F6 F5 F4 F3 F2 F1 FO

F1b— 000|/0 O 0 0O O O 1
001/0 0 0 0 0 O 1 O

—A F21— 010/00 00010 0
—s F3— 011/0 0 0 0 1 0 0 0
—lc s 100[0 00100 00
101(0 0 1 0 0 0 0 O

F6 — 110/0 1 0 0 0 0 0 0

F7 f— 1111 0 0 0 0 0 0 O

To implement this in VHDL using logical operators, we must first determine the logic that will
be used in the concurrent signal assignments. Again, since each logic function only has one
input code corresponding to an output of ‘1", the minterm can be used to implement the logic.

FO = Zagpc(0) = A-B-C’ F4 = Zapc4) = AB-C
F1 = Zagce(1) = AB-C F5 = Zagc(5) = AB-C
F2 = 2ppc(2) = A'BC F6 = 2apc(6) = ABC
F3 = Zasc(3) = A'B-C F7 = Zascl7) = ABC

In VHDL, each of the outputs requires a separate signal assignment.

entity decoder_ lhot 3toB is

port (A,B,C : in bit;
F0,Fl1,F2,F3,F4,F5,F6,F7 : out bit);
end entity;

architecture decoder_ lhot 3toB_arch of decoder_ lhot 3to8 is
begin

F0 <= (not A) and (not B) and (not C);
Fl <= (not A) and (not B) and (C);

F2 <= (not A) and (B) and (not C);
F3 <= (not A) and (B) and (C);
F4 <= (A) and (not B) and (not C);
F5 <= () and (not B) and (C);
F6 <= (A) and (B) and (not C);
F7 <= (&) and (B) and (C);

end architecture;

Example 3.2
3-to-8 One-hot decoder: VHDL modeling using logical operators
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3.2.3 Logical Operator Example: 7-Segment Display Decoder

A 7-segment display decoder is a circuit used to drive character displays that are commonly found in
applications such as digital clocks and household appliances. A character display is made up of seven
individual LEDs, typically labeled a—g. The input to the decoder is the binary equivalent of the decimal or
Hex character that is to be displayed. The output of the decoder is the arrangement of LEDs that will form
the character. Decoders with 2-inputs can drive characters “0” to “3.” Decoders with 3-inputs can drive
characters “0” to “7.” Decoders with 4-inputs can drive characters “0” to “F” with the case of the Hex
characters being “A, b, cor C, d, E, and F.”

Let’s look at an example of how to design a 3-input, 7-segment decoder by hand. The first step in the
process is to create the truth table for the outputs that will drive the LEDs in the display. We'll call these
outputs F,, Fy, ..., Fg. Example 3.3 shows how to construct the truth table for the 7-segment display
decoder. In this table, a logic 1 corresponds to the LED being ON.

Example: 7-Segment Display Decoder - Truth Table

A B C FanFchFeFqu
0 00 rf1)1f1]1[1]1]0

LED Labels 001::::01 1/0|/0(0]0

a 01 0[="11[1]0[1]|1[0]1

f|g|'°01111'°1111001

edc1oono11oo11
— |10 1|<|1]0|1]|1]0]1]1
11 0| |1[o|1[1]|1[1]1

11 1| -"1[1|1|o]|0f0]0

Example 3.3
7-Segment display decoder: truth table

If we wish to design this decoder by hand, we need to create seven separate combinational logic
circuits. Each of the outputs (F;—Fg) can be put into a 3-input K-map to find the minimized logic
expression. Example 3.4 shows the design of the decoder from the truth table in Example 3.3 by hand.
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Example: 7-Segment Display Decoder — Logic Synthesis by Hand

The block diagram and truth table for this system are as follows:

n
=

C\00 01 11 10

L> Q> QW

: % 5 Ff=B'C'+AC +AB
olol)™

AB
C\, 00 01 11 10

Fg —»

— Fg=A"B+AC' +AB

decoder_7seg A B C|Fa Fb Fc Fd Fe Ff Fg
Fa— ocooof1 1 1 1 1 1 0
Fb b— 001f0 1 1 00 0 0
—A Fo — 010f1 1 01 1 0 1
—IB Fd — o111 1 1 1 0 0 1
—C Fe — 100[0 1 1 0 0 1 1
Ffl— 1011 0 1 1 0 1 1
Fol— 1T10[1 0 1 1 1 1 1
9 11111 1 1 00 0 0
Each output of the decoder needs its own logic expression. decoder_7seg
AB A
C\ 00 01_11 10 c "
Fa—» o] Ol 5 Fa=AC+B+AC A aiii
g8
AB :
C\ 00 01 11 10 _ ﬁ' Fbl
0 0 |1 B
Fb —p - : 0H1—-»Fb=B'-C'+A'+B-C (&
1\ D0 A =
=P
AB c
C\00 01 11 10 é‘
= =
Fc —» y .0 r‘] m-—b Fc=A+B' +C A
1 VKN L A, B Fd|
—15- 8
AB —1&"
&00 01 11 10 o
0|(1 0 B
Fd— b > Fd=AC'+A"B+B.C' + ABC c
1[0 [(fo [ A
AB Fel
C\[ 00 01 11 10 g
Fe —» o[ 10 — Fe=A"C'+B-C
1fo[ofo[o 3] )))]_‘
% F

o Q> ok

o0 |MAIMA
1[0

Example 3.4
7-Segment display decoder: logic synthesis by hand

This same functionality can be modeled in VHDL using concurrent signal assignments with logical
operators. Example 3.5 shows how to model the 7-segment decoder in VHDL using concurrent signal
assignments with logic operators. It should be noted that this example is somewhat artificial because a
design would typically not be minimized before modeling in VHDL. Instead, model would be entered at
the behavioral level, and then the CAD tool would be allowed to synthesize and minimize the final logic.
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Example: 7-Segment Display Decoder — VHDL Modeling using Logical Operators
The block diagram and truth table for this system are as follows:

decoder_Tseg A B C|FaFb Fc Fd Fe Ff Fg
Fa|— oo0o0|1 1 11110

Fb [— 001/0 1 1 00 0 O

—A Fe |— o101 1 0110 1
—e Fd b— 011|111 100 1
—1¢ Fe [— 1o00fo 1t 1 00 1 1
Ff — 1011 01 1 0 1 1

Fa b— 1101 01 1 1 1 1

g 11111 1 1 00 0 0

entity decoder T7seg is
port (A,B,C : in bit;
Fa,Fb,Fc,Fd,Fe,Ff,Fg : out bit);
end entity;

architecture decoder 7seg_arch of decoder Tseg is
begin

Fa <= ({not A) and (not C)) or B or (A and C);

Fb <= ((not B) and (not C)) or (mot A) or (B and C);

Fc <= A or (not B) or C;

Fd <= ((not A) and (not C)) or ((not A) and B) or (B and (not C))
or (A and (not B) and C);

Fe <= ((not A) and (not C)) or (B and (not C));

Pf <= ((not B) and (not C)) or (A and (not C)) or (A and (not B));

Fg <= ((not A) and B) or (A and (not C)) or (A and (not B));

end architecture;

Example 3.5
7-Segment display decoder: VHDL modeling using logical operators

3.2.4 Logical Operator Example: One-Hot Encoder

A one-hot binary encoder has n outputs and 2" inputs. The output will be an n-bit, binary code which
corresponds to an assertion on one and only one of the inputs. Example 3.6 shows the process of
designing a 4-to-2 binary encoder by hand (i.e., using the classical digital design approach).
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Example: 4-to-2 Binary Encoder — Logic Synthesis by Hand
The block diagram and truth table for this system are as follows:
encoder 1hot 4to2

A B ¢ DIV E .
—a el 000 1|00 D= 0o
—B 00 d 0181 s
— C Z— 01 0010 B=>"10
— D 1 9 0 0] =1 A=>"11"

When designing this circuit, each output needs to have its own separate combinational
logic circuit. When constructing the K-maps for Y and Z, each will have 4-inputs (A, B, C,
D). The output values for many of the input codes are not specified in the above truth
table. As such, we can use Don't Cares (X) to simplify the logic.

ag T as %
CD\ 00 01 11 10 €D\ 00 01 11 10
0of X : 0o[ X |“0 E 1
01| _ 01/0 "X
1F X - ¥Y=A+B 11i’XXX' = Z=A+C
1000 [X[X] X/ 1001 X X[
decoder_1hot_2to4 y Timing Waveform
. 5 o [ |
A Y S -
C 1
D A C lo [ |
\ : = oL
A - w | w |uam® | = " °
Notice that D is not used. Y&z - L | gl I - I 1 [_
Example 3.6

4-to-2 Binary encoder: logic synthesis by hand

In VHDL this can be implemented directly using logical operators. Example 3.7 shows how to model
the encoder in VHDL using concurrent signal assignments with logical operators.
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Example: 4-to-2 Binary Encoder — VHDL Modeling using Logical Operators
The block diagram and truth table for this system are as follows:

ABCD | YZ

\ encoder_1hot_4to2 ; “0001" | “00"
“0010"] 01"

-— ABCD YZ [~ “0100" | “10"
.|1 000» u11rr

The following is the entity for this design that uses bit_vectors for the inputs and outputs.

entity encoder_ lhot 4to2 is
port (ABCD : in bit wvector(3 downte 0);
YZ : out bit vector(l downto 0));
end entity;

The following is an implementation of the encoder using concurrent signal assignments
with logical operators.

architecture encoder_lhot 4to2_arch of encoder_lhot 4to2 is
begin

¥YZ (1) <= ABCD(3) or ABCD(2);
¥Z (0) <= ABCD(3) or ABCD(1);

end architecture;

Example 3.7
4-to-2 Binary encoder: VHDL modeling using logical operators

3.2.5 Logical Operator Example: Multiplexer

A multiplexer is a circuit that passes one of its multiple inputs to a single output based on a select
input. This can be thought of as a digital routing switch. The multiplexer has n select lines, 2" inputs, and
one output. Example 3.8 shows the process of designing a 4-to-1 multiplexer using concurrent signal
assignments and logical operators.
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Example: 4-to-1 Multiplexer — VHDL Modeling using Logical Operators
The symbol and truth table for a 4-to-1 multiplexer are shown below. This can be

implemented using a simple sum of products form based on the identity theorem and the
appropriate inversions of the select line.

TR
—O)
-0
mux_4to1
- B £
g
A Sel | F i
B ‘00" | A
¢ F 01"| B C —es
D “40"] C o
Se “«1"| D
2
D £ )
ra
Sel(1) Sel(0)

The following is the entity for this design that uses type bit_vector for the select input.

entity mux 4tel is
port (A,B,C,D : in bit;
Sel : in bit wvector(l downto 0);
F : out bit);
end entity;

The following shows how to model the behavior of the mux using concurrent signal
assignments with logical operators.

architecture mux_4teol_arch of mux 4tol is

begin

F <= (A and not Sel(0) and not Sel(l)) or
(B and not Sel(0) and Sel(l)) or
(C and Sel(0) and not Sel(l)) or
(D and Sel(0) and Sel(l));

end architecture;

Example 3.8
4-to-1 Multiplexer: VHDL modeling using logical operators

3.2.6 Logical Operator Example: Demultiplexer

A demultiplexer works in a complementary fashion to a multiplexer. A demultiplexer has one input
that is routed to one of its multiple outputs. The output that is active is dictated by a select input. A demux
has n select lines that choose to route the input to one of its 2 outputs. When an output is not selected, it
outputs a logic 0. Example 3.9 shows the process of designing a 1-to-4 demultiplexer using concurrent
signal assignments and logical operators.
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Example: 1-to-4 Demultiplexer — VHDL Modeling using Logical Operators

The symbol and truth table for the 1-to-4 demultiplexer are shown below. This can be
implemented using set of simple product terms based on the identity theorem and the

appropriate inversions of the select line. ﬁ
= T
demux_1to4
Sel |W X Y Z :-i-c N\ X
‘00"l A O O O — J
‘01" 0 A 0 O A —H
“0"[ 0 0 A O L
“41"1 0 0 0 A ‘-i; } Y
2
5 \ z
Sel(1) Sel(0)

The following is the entity for this design that uses type bit_vector for the select input.

entity demux 1to4 is

port (A : in  bit;
Sel : in bit wvector(l downto 0);
W,X,Y,2 : out bit];
end entity;

The following shows the behavior of the demux using concurrent signal assignments with
logical operators.

architecture demux lto4_arch of demux lto4 is

begin

W <= A and not Sel(0) and not Sel(l);
X <= A and not Sel(0) and Sel(l);
¥ <= A and Sel (0) and not Sel(l);
Z <= A and Sel (0) and Sel(l);

end architecture;

Example 3.9
1-to-4 Demultiplexer: VHDL modeling using logical operators

CC3.2 Why does modeling combinational logic in its canonical form with concurrent signal
assignments with logical operators defeat the purpose of the modern digital design flow?

(A) It requires the designer to first create the circuit using the classical digital
design approach and then enter it into the HDL in a form that is essentially a
text-based netlist. This doesn’t take advantage of the abstraction capabilities
and automated synthesis in the modern flow.

(B) It cannot be synthesized because the order of precedence of the logical
operators in VHDL doesn’t match the precedence defined in Boolean algebra.

(C) The circuit is in its simplest form so there is no work for the synthesizer to do.

(D) It doesn'’t allow an else clause to cover the outputs for any remaining input
codes not explicitly listed.
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3.3 Conditional Signal Assignments

Logical operators are good for describing the behavior of small circuits; however, in the prior
example, we still needed to create the canonical or minimal sum of products logic expression by hand
before describing the functionality in VHDL. The true power of an HDL is when the behavior of the system
can be described fully without requiring any hand design. A conditional signal assignment allows us to
describe a concurrent signal assignment using Boolean conditions that effect the values of the result. Ina
conditional signal assignment, the keyword when is used to describe the signal assignment for a
particular Boolean condition. The keyword else is used to describe the signal assignments for any
other conditions. Multiple Boolean conditions can be used to fully describe the output of the circuit under
all input conditions. Logical operators can also be used in the Boolean conditions to create more
sophisticated conditions. The Boolean conditions can be encompassed within parentheses for readabil-
ity. The syntax for a conditional signal assignment is shown below.

signal_name <= expression_1 when condition_1 else
expression_2 when condition_2 else

expression_n;

Example:

Fl<="'0’ whenA='0' else ‘1’;
F2<="'1’ when (A="0" andB='1") else ‘0" ;
F3 <=Awhen (C=D) elseB;

An important consideration of conditional signal assignments is that they are still executed concur-
rently. Each assignment represents a separate, combinational logic circuit. In the above example, F1,
F2, and F3 will be implemented as three separate, parallel circuits.

3.3.1 Conditional Signal Assignment Example: SOP Circuit

Example 3.10 shows how to design a VHDL model of a combinational logic circuit using conditional
signal assignments. Note that this example uses the same truth table as in Example 3.1 to illustrate a
comparison between approaches. This approach provides a model that can be created directly from the
truth table without needing to do any synthesis or minimization by hand.
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Example: Modeling Logic using Conditional Signal Assignments
Implement the following truth table using a conditional signal assignment.

ABCI|F

0 0O0f1

001f0 entity SystemX is

g 1 ? a port (A, B, C : in bit;
F out bit);

100 T end entity; :

101]|0

11 0(1

11 1|0

We can implement the entire truth table in its current form using a conditional signal
assignment. While this is a verbose approach, it is sometimes more readable.

architecture SystemX arch of SystemX is

begin
F <= 'l' when (A='0' and B='0' and C='0") else
'0' when (A='0' and B='0' and C='1"') else
'l' when (A='0' and B='1l' and C='0') else
'0' when (A='0' and B='1l' and C='1') else
'0' when (A='l' and B='0' and C='0') else
'0' when (A='l' and B='0' and C='l') else
'l' when (A='l' and B='l' and C='0') else

'0' when (A='l' and B='l' and C='1");

end architecture;

We can also reduce this into a more compressed form by only stating the input
conditions that correspond to an output of ‘1" and using the “else” statement to
produce an output of ‘0’ for all other input codes.

architecture SystemX arch of SystemX is
begin

F <= 'l' when (A='0' and B='0' and C='0') else
'l' when (A='0' and B='1l' and C='0') else
'l' when (A='1l' and B='l' and C='0"') else
'0',’

end architecture;

Example 3.10
SOP logic circuit: VHDL modeling using conditional signal assignments

3.3.2 Conditional Signal Assignment Example: One-Hot Decoder

Example 3.11 shows how to model a 3-to-8 one-hot decoder in VHDL with conditional signal
assignments. Again, this approach allows the logic to be modeled directly from its functional description
rather than having to perform any synthesis by hand.
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Example: 3-to-8 One-Hot Decoder — VHDL Modeling — Conditional Signal Assignments
The block diagram and truth table for this system are as follows. Notice that the input and
output ports now use type bit_vector in order to create a more compact description.

ABC | F(7) F(8) F(5) F(4) F(3) F(2) F(1) F(0)
“000") 0 0O 0 O 0 O O 1
decoder_1hot_3to8 001"l 0 0 0 0 0O O 1

3 8 “010"| 0 0 0 0 O 1 0 O
- ABC F e ‘011" 0 0 0 0 1 0 0 O
“00"f0 0 0 1 0 0O 0 O

“01"l 0 0 1 0 0 0 0 O

“10"f0 1 0 0 0 O 0 O

“11"11 0 0 0 0O 0 0 O

The following is the entity for this design that uses bit_vectors for the inputs and outputs.

entity decoder lhot 3to8 is
port (ABC ~: in  bit vector (2 downto 0);
F : out bit_vector(7 downto 0));
end entity;

The following is an implementation of the decoder using a conditional signal assignment.
In this technique, the signal assignment can be made to the entire F vector instead of to
the individual scalar outputs. This creates a compact VHDL model that will synthesis into
eight separate combinational logic circuits.

architecture decoder lhot 3to8_arch of decoder_ lhot 3to8 is

begin

F <= "00000001" when (ABC = "000") else
"00000010" when (ABC = "001") else
"00000100" when (ABC = "010") else
"00001000" when (ABC = "011") else
"00010000" when (ABC = "100") else
"00100000" when (ABC = "101") else
"01000000" when (ABC = "110") else
"10000000" when (ABC = "111");

end architecture;

Example 3.11
3-to-8 One-hot decoder: VHDL modeling using conditional signal assignments

3.3.3 Conditional Signal Assignment Example: 7-Segment Display Decoder

Back in Example 3.3 the truth table for a 7-segment display decoder was given along with the
subsequent steps to create its logic using the classical digital design approach and model it in VHDL
using logical operators. With a conditional signal assignment, this decoder can be modeled directly from
the truth table without needing to do any design by hand. Example 3.12 shows how to model the logic for
a 7-segment display decoder using a conditional signal assignment.
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decoder_7seg

3
- ABC

7
F =

Example: 7-Segment Decoder — VHDL Modeling — Conditional Signal Assignments
The block diagram and truth table for this system are as follows:

a b ¢ d e g
ABC | F(B) F(5) F(4) F(3) F(2) F(1) F(0)
“0o00"l1 1 1 1 1 1 0
“001"l0 1 1 0 0 0 O
“010"11 1 0 1 1 0 1
011" 11 1 1 1 0 0 1
“00"]0 1 1 0 0 1 A1
“101"11 0 1 1 0 1 A1
““Mo"11 0o 1 1 1 1 1
“11"11 1 1 0 0 0 O

end entity;

entity decoder Tseg is
pexrt (ABC
F

i in  bit_vector(2 downto 0);
: out bit_vectcr{ﬁ downto 0));

begin
F <=

"iiiiiio"
"Qg110000"
"iio11o01"
"iiiioo1i"
"gii0011"
"io1i1011"
"ioi11il"
"1110000"

end architecture;

when
when
when
when
when
when
when
when

(ABC
(ABC
(ABC
(ABC
(ABC
(ABC
(ABC
(ABC

o

“000“)
Iloclllj
"010")
“Dll"]
“100“)
“101")
"110")
lllllll] ;

else
else
else
else
else
else
else

architecture decoder 7seg_arch of decoder_7seg is

The following is the entity for this design that uses bit_vectors for the inputs and outputs.

The following shows a way to implement the behavior of the 7-segment display decoder using
a conditional signal assignment.

Example 3.12

7-Segment display decoder: VHDL modeling using conditional signal assignments

3.3.4 Conditional Signal Assignment Example: One-Hot Encoder

Example 3.13 shows how to model a one-hot encoder in VHDL with conditional signal assignments.
Again, this approach allows the logic to be modeled directly from its functional description rather than
having to perform any synthesis by hand.
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Example: 4-to-2 Binary Encoder — VHDL Modeling using Conditional Signal Assignments
The block diagram and truth table for this system are as follows:
ABCD

\ encoder_1hot_4to2 ’ “0001" | ‘00"
“0010"| 01"

+— ABCD YZ |~ “0100" | “10"
“qqn

“1 000"

The following is the entity for this design that uses bit_vectors for the inputs and outputs.

entity encoder lhot 4te2 is
port (ABCD : in bit vector(3 downto 0);
YZ : out bit wector(l downto 0));
end entity;

The following is an implementation of the encoder using a conditional signal assignment.

architecture encoder lhot 4to2_arch of encoder lhot_4te2 is

begin

YZ <= "00" when (ABCD = "0001") else
"01" when (ABCD = "0010") else
"10" when (ABCD = "0100") else
"11" when (ABCD = "1000") else

woor;

end architecture;

Example 3.13
4-to-2 Binary encoder: VHDL modeling using conditional signal assignments

3.3.5 Conditional Signal Assignment Example: Multiplexer

Example 3.14 shows the process of designing a 4-to-1 multiplexer using conditional signal
assignments.



3.3 Conditional Signal Assignments + 39

Example: 4-to-1 Multiplexer — VHDL Modeling using Conditional Signal Assignments
The symbol and truth table for a 4-to-1 multiplexer are shown below. This behavior can be
implemented directly with a conditional signal assignment.

mux_4to1

Sel

00"
01"
“10°
“11

OO mxe|m

The following is the entity for this design that uses type bit_vector for the select input.

entity mux_ 4tol is
port (A,B,C,D : in bit;
Sel : in bit vector(l downto 0);
F ¢ out bit);
end entity;

The following shows how to model the behavior of the mux using a conditional signal

assignment.
architecture mux_4tol_arch of mux 4tol is
begin
F <= A when (Sel = "00") else

B when (Sel = "01") else
C when (Sel = "10") else
D when (Sel = "11");

end architecture;

Example 3.14

4-to-1 Multiplexer: VHDL modeling using conditional signal assignments

3.3.6 Conditional Signal Assignment Example: Demultiplexer

Example 3.15 shows the process of designing a 1-to-4 demultiplexer using conditional signal
assignments.
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Example: 1-to-4 Demultiplexer — VHDL Modeling using Conditional Signal Assignments
The symbol and truth table for the 1-to-4 demultiplexer are shown below. This behavior can
be implemented directly with conditional signal assignments.

demux_1to4

2
The following is the entity for this design that uses type bit_vector for the select input.

entity demux lto4 is

port (A : in bit;
Sel : in bit_wvector(l downto 0);
W,X,¥,Z : out bit);
end entity;

The following shows the behavior of the demux using conditional signal assignments.

architecture demux_lto4_arch of demux lto4 is

begin

W <= A when (Sel
X <= A when (Sel
Y <= A when (Sel
Z <= A when (Sel

"00") else ‘07;
"0l1l") else ‘0;
"10") else ‘0’ ;
"11l") else ‘0';

end architecture;

Example 3.15
1-to-4 Demultiplexer: VHDL modeling using conditional signal assignments

CC3.3 Why does a conditional signal assignment better reflect the modern digital design flow
compared to a concurrent signal assignment with logical operators?

(A) A conditional signal assignment allows the logic to be modeled directly from
its functional description as opposed to a logical operator approach where the
logic expressions must be determined prior to HDL modeling. This allows the
conditional signal assignment approach to take advantage of automated
synthesis and avoids any hand design.

(B) A conditional signal assignment uses an “else” keyword, which makes it more
like a programming language operator.

(C) The conditional signal assignment can model the entire logic circuit in one
assignment while the logical operator approach often takes multiple separate
assignments.

(D) The else clause allows coverage for outputs for any remaining input codes not
explicitly listed.




3.4 Selected Signal Assignments ¢ 41

3.4 Selected Signal Assignments

A selected signal assignment provides another technique to implement concurrent signal
assignments. In this approach, the signal assignment is based on a specific value on the input signal.
The keyword with is used to begin the selected signal assignment. It is then followed by the name of the
input that will be used to dictate the value of the output. Only a single variable name can be listed as the
input. This means that if the assignment is going to be based on multiple variables, they must first be
concatenated into a single vector name before starting the selected signal assignment. After the input is
listed, the keyword select signifies the beginning of the signal assignments. An assignment is made to a
signal based on a list of possible input values that follow the keyword when. Multiple values of the input
codes can be used and are separated by commas. The keyword others is used to cover any input values
that are not explicitly stated. The syntax for a selected signal assignment is as follows:

with input_name select
signal_name <= expression_J1l when condition 1,
expression_2 when condition_2,

expression_n when others;

Example:
with A select
Fl<="'1" when ‘0"’, --Flwill be assigned ‘1’ whenA='0"
‘0’ when ‘1’ ; --Flwill be assigned ‘0’ whenA="1"
AB <= A&B; -- concatenate A and B so that they can be used as a vector
with AB select
F2 <= '0’ when 00", --F2will be assigned ‘0’ when AB="00"
‘1’ when “01”,
‘1’ when “10",
‘0’ when “11”;

with AB select
F3 <="'1’ when 01",
‘1’ when “10”,
‘0’ when others;

One feature of selected signal assignments that makes its form even more compact than other
techniques is that multiple input codes that correspond to the same output assignment can be listed on
the same line pipe (|)-delimited. The example for F3 can be equivalently described as:

with AB select
F3 <= ‘1’ when “01” | “10",
‘0’ when others;

3.4.1 Selected Signal Assignment Example: SOP Circuit

Example 3.16 shows how to design a VHDL model of a combinational logic circuit using selected
signal assignments. Note that this example uses the same truth table as in Example 3.1 to illustrate a
comparison between approaches. This approach provides a model that can be created directly from the
truth table without needing to do any synthesis or minimization by hand.
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Example: Modeling Logic using Selected Signal Assignments
Implement the following truth table using a selected signal assignment.

&L entity SystemX is

0001 port (A, B, C : in bit;

o0 1|0 / F : out bit);
0101 end entity;

011 _g_

1 g 0 g architecture SystemX_arch of SystemX is
1 1

11 0|1 signal ABC : bit_vector (2 downto 0);
1110 ////F begin

ABC <= A & B & C;
We can implement the entire truth table in

its current form using a selected signal with (ABC) select

: Si b F <= '1' when "000",
assignment. Since we are basing our '0' when "001",
output values on three separate scalar '1' when "010",
inputs, we need to concatenate them into :g: :‘1::: :%(1]:»
a vector so that the new vector name can '0' when "101",
be used as the input in the selected signal '1' when "110",
assignment. We'll first declare a new '0' when "111";
signal called “ABC" of type end architecture;

bit_vector(2 downto 0). After the begin
statement, we'll assign the concatenation
of A, B and C to this vector. The new
vector name can now be used as an signal ABC : bit_vector(2 downto 0);

input. Begis
/ ABC <= A & B & C;

We can re_duce the size of t_hg selech_ad with (ABC) select

signal assignment by only listing the input F <= '1' when "000",
codes corresponding to an output of ‘1’ ‘1! when "010",
and use the “others” keyword to handle all 1: when “110%,

i 4 '0' when others;
input codes corresponding to an output of
0. end architecture;

architecture SystemX arch of SystemX is

architecture SystemX arch of SystemX is

signal ABC : bit_vector(2 downto 0);

/ begin

We can further reduce the size of the ABC <= A & B & C;
selected signal assignment by pipe B "
ey P : wi select
delimiting the u}p_ut codes corresponding F <= '1' when "000"|“010”[*110",
to an output of ‘1" '0' when others;

end architecture;

Example 3.16
SOP Logic circuit: VHDL modeling using selected signal assignments

3.4.2 Selected Signal Assignment Example: One-Hot Decoder

Example 3.17 shows how to model a 3-to-8 one-hot decoder in VHDL with selected signal
assignments. Again, this approach allows the logic to be modeled directly from its functional description
rather than having to perform any synthesis by hand.
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decoder_1hot 3to8

3 8
—+{ABC F <

Example: 3-to-8 One-Hot Decoder — VHDL Modeling — Selected Signal Assignments
The block diagram and truth table for this system are as follows. Notice that the input and
output ports now use type bit_vector in order to create a more compact description.

ABC | F(7) F(6) F(5) F(4) F(3) F(2) F(1) F(0)

“000"
“001"
“010"
“011"

“100"
“101"
“110"
411

000 |loooo
o—=oo|loocoo
co—=-0O|loOoOCO
COoO0O=|000O0O
CoOoCO|—=000
oocoo|lo—=00
ooOo0OoO|loO0o=0

end entity;

bit wvector (2 downte 0);

separate combinational logic circuits.

o000 |oocOo =

The following is the entity for this design that uses bit_vectors for the inputs and outputs.

entity decoder_lhot 3to8 is
port (ABC : in 1
F ¢ out bit_wvector (7 downto 0));

The following is an implementation of the decoder using a selected signal assignment. In
this technigue, the signal assignment can be made to the entire F vector instead of to the
individual scalar outputs. This creates a compact VHDL model that will synthesis into eight

begin

with (ABC) select
F <= "00000001" when
"00000010" when
"00000100" when
"00001000" when
"00010000" when
"00100000" when
"01000000" when
"10000000" when

end architecture;

architecture decoder lhot 3to8 arch of decoder lhot 3to8 is

“000“ "
n 001" ’
“010" '
" 011" ¥
11100" ’
"101" =
n 110" ¥
niiie;

Example 3.17

3-to-8 One-hot decoder: VHDL modeling using selected signal assignments

3.4.3 Selected Signal Assignment Example: 7-Segment Display Decoder

Back in Example 3.3 the truth table for a 7-segment display decoder was given along with the
subsequent steps to create its logic using the classical digital design approach and model it in VHDL
using logical operators. With a selected signal assignment, this decoder can be modeled directly from
the truth table without needing to do any design by hand. Example 3.18 shows how to model the logic for
a 7-segment display decoder using a selected signal assignment.
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Example: 7-Segment Decoder — VHDL Modeling — Selected Signal Assighments
The block diagram and truth table for this system are as follows:

a b ¢ d e f g
ABC | F(6) F(5) F(4) F(3) F(2) F(1) F(0)

decoder TS,eg “00 0" 1 1 1 1 1 1 0

001"l 0 1 1 0 0 0 O

3 7 “10"l1 1 0 1 1 0 1
- ABC F =~ “©011"[1 1 1 1 0 0 1
“00"l0 1 1 0 0 1 1

“01"|1 0 1 1 0 1 1

“10"|11 0 1 1 1 1 1

“11"]1 1 1 0 0 0 O

The following is the entity for this design that uses bit_vectors for the inputs and outputs.

entity decoder 7seg is
port (ABC : in bit_vector(2 downto 0);
F : out bit wector (6 downto 0));
end entity;

The following shows a way to implement the behavior of the 7-segment display decoder using
a selected signal assignment.

architecture decoder 7seg arch of decoder 7seg is
begin & - =
with (ABC) select
F <= "1111110" when "000",
"0110000" when "O0O1",
"1101101" when "010",
"1111001" when "011",
"0110011" when "100",
"1011011" when "101",
"1011111" when "110",
"1110000" when "111";
end architecture;

Example 3.18
7-Segment display decoder: VHDL modeling using selected signal assignments

3.4.4 Selected Signal Assignment Example: One-Hot Encoder

Example 3.19 shows how to model a one-hot encoder in VHDL with selected signal assignments.
Again, this approach allows the logic to be modeled directly from its functional description rather than
having to perform any synthesis by hand.
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Example: 4-to-2 Binary Encoder — VHDL Modeling using Selected Signal Assignments
The block diagram and truth table for this system are as follows:

encoder_1hot_4to2

4 5 “‘0001"| 00"
“0010"|"01"

- ABCD YZ [~ 100" |“10"
K»T 00 0“ 01 1ll

The following is the entity for this design that uses bit_vectors for the inputs and outputs.

entity encoder lhot 4to2 is
port (ABCD : in bit_vector(3 downto 0);
YZ : out bit_yecter{l downto 0));

end entity;

The following is an implementation of the encoder using a selected signal assignment.

architecture encoder lhot 4to2 arch of encoder lhot 4to2 is
begin

with (ABCD) select
YZ <= "00" when "0001",
"01" when "0010",
"10" when "0100",
"11" when "1000",
“00” when others;

end architecture;

Example 3.19
4-to-2 Binary encoder: VHDL modeling using selected signal assignments

3.4.5 Selected Signal Assignment Example: Multiplexer

Example 3.20 shows the process of designing a 4-to-1 multiplexer using selected signal
assignments.
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Example: 4-to-1 Multiplexer — VHDL Modeling using Selected Signal Assignments

The symbol and truth table for a 4-to-1 multiplexer are shown below. This behavior can be
implemented directly with a selected signal assignment.

mux_4to1

Sel | F
00" [ A
‘01" | B
10| C
“11"| D

The following is the entity for this design that uses type bit_vector for the select input.

entity mux 4tol is
port (A,B,C,D : in bit;
Sel : in bit wector(l downto 0);
F : out bit);
end entity;

The following shows how to model the behavior of the mux using a selected signal
assignment.

architecture mux 4tol_arch of mux 4tol is
begin

with (Sel) select
F <= A when "00",
B when "01",
C when "10",
D when "11";

end architecture;

Example 3.20
4-to-1 Multiplexer: VHDL modeling using selected signal assignments

3.4.6 Selected Signal Assignment Example: Demultiplexer

Example 3.21 shows the process of designing a 1-to-4 demultiplexer using selected signal
assignments.
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2

Example: 1-to-4 Demultiplexer — VHDL Modeling using Selected Signal Assignments

The symbol and truth table for the 1-to-4 demultiplexer are shown below. This behavior can
be implemented directly with selected signal assignments.

demux_1to4

The following is the entity for this design that uses type bit_vector for the select input.

entity demux ltod4 is

port (A : in  bit;
Sel : in bit vector(l downteo 0);
W,X,Y¥,Z : out bit};
end entity;

The following sh

ows the behavior of the demux using selected signal assignments.

architecture demux_ 1lto4 arch of demux 1lto4 is
begin

with (Sel) select
W <= A when "00", ‘0’ when others;

with (Sel) select
X <= A when "01",'0’ when others;

with (Sel) select
Y <= A when "10", '0’ when others;

with (Sel) select
Z <= A when "11",'0’ when others;

end architecture;

Example 3.21

1-to-4 Demultiplexer: VHDL modeling using selected signal assignments

operation?

(A) Concatenating the inputs makes the assignment easier to read.

(D) To avoid having to use multiple parentheses in the input signal list.

CC3.4 Why does a selected signal assignment often require a separate concatenation

(B) A selected signal assignment only support a single signal name for its input. If
it is desired to look at multiple signal names, they must first be concatenated
together to form a new signal name for use in the selected signal assignment.

(C) Since there is not an else clause, the selected signal assignment needs a way
to handle the outputs for input codes not explicitly listed.
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3.5 Delayed Signal Assignments

3.5.1 Inertial Delay

VHDL provides the ability to delay a concurrent signal assignment in order to more accurately model
the behavior of real gates. The keyword after is used to delay an assignment by a certain amount of time.
The magnitude of the delay is provided as type time. The syntax for delaying an assignment is as follows:

signal_name <= <expression> after <time>;

Example:

A <=Bafter 3us;
C<=DandEafter 10ns;

If an input pulse is shorter in duration than the amount of the delay, the input pulse is ignored. This is
called the inertial delay model. Example 3.22 shows how to design a VHDL model with a delayed signal
assignment using the inertial delay model.

Example: Modeling Logic using Delayed Signal Assignments (Inertial Delay Model)

entity INVL is
port (A : in bit;
F : out bit);

end entity;
A—D—F * | architecture INV1 arch of INV1 is

begin
F <= not A after 1lns;

end architecture;

|_J Pulses on the input that
S50 are less than the delay

. P
F . | amount are ignored.

There is 1ns of delay before
the output changes.

| | | | | | |
T I I T T 1 T

Y

time

Example 3.22
Modeling logic using delayed signal assignments (inertial delay model)

3.5.2 Transport Delay

Ignoring brief input pulses on the input accurately models the behavior of on-chip gates. When the
input pulse is faster than the delay of the gate, the output of the gate does not have time to respond. As a
result, there will not be a logic change on the output. If it is desired to have all pulses on the inputs show
up on the outputs when modeling the behavior of other types of digital logic, the keyword transport is
used in conjunction with the after statement. This is called the transport delay model.

signal_name <= transport <expression> after <time>;

Example 3.23 shows how to perform a delayed signal assignment using the transport delay model.
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Example: Modeling Logic using Delayed Signal Assignments (Transport Delay Model)

begin

entity INV2 is

port (A :
F :
end entity;

architecture INV2Z_arch of INV2Z is

F <= transport not A after lns;

end architecture;

in bit;
out bit);

The keyword “transport™ will
pass all pulses to the output
regardless of their duration.

There is 1ns of delay before
the output changes.

time

| 1 ! 1
T T T T

Y

Example 3.23
Modeling logic using delayed signal assignments (transport delay model)

(A)

(B)

CC3.5 Can a delayed signal assignment impact multiple concurrent signal assignments?

Yes. If a signal assignment with delay is made to a signal that is also used as
an input in a separate concurrent signal assignment, then the delay will
propagate through both assignments.

No. Only the assignment in which the delay is used will experience the delay.

Summary

VHDL operators are defined to work on spe-
cific data types. Not all operators work on all
types within a package.

Concurrency is the term that describes
operations being performed in parallel. This
allows real-world system behavior to be
modeled.

VHDL contains three direct techniques to
model concurrent logic behavior. These are
concurrent signal assignments with logical

Exercise Problems

Sec
3.1.1

3.1.2

tion 3.1: VHDL Operators
What data types do the logical operators in the
standard package work on?

Which logical operator has the highest priority
when evaluating the order of precedence of
operations?

operators, conditional signal assignments,
and selected signal assignments.

Delay can be modeled in VHDL using either
the inertial or transport model. Inertial delay
will ignore pulses that are shorter than the
delay amount, while transport delay will pass
all transitions.

If parentheses are not used in a signal assign-
ment with logical operators, how is the order of
precedence determined?

What data types do the numerical operators in
the standard package work on?

What is the return type of a relational operator?
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Section 3.2: Concurrent Signal
Assignments with Logical Operators

3.21 Design a VHDL model to implement the behav-
ior described by the 3-input minterm list shown
in Fig. 3.1. Use concurrent signal assignments
and logical operators. Declare your entity to
match the block diagram provided. Use the
type bit for your ports.

SystemE.vhd
—A
F=2asc(1,346) —IB Fl=
—

Fig. 3.1
System E functionality

3.2.2  Designa VHDL model to implement the behav-
ior described by the 3-input maxterm list shown
in Fig. 3.2. Use concurrent signal assignments
and logical operators. Declare your entity to
match the block diagram provided. Use the
type bit for your ports.

SystemF.vhd
—{A
F=Ilasc(01357) —{B Fi—
—c

Fig. 3.2
System F functionality

3.2.3  Design a VHDL model to implement the behav-
ior described by the 3-input truth table shown in
Fig. 3.3. Use concurrent signal assignments
and logical operators. Declare your entity to
match the block diagram provided. Use the
type bit for your ports.

ABCI|F

0 001

00 1|1 SystemG.vhd
010]0 —A
011]0 —{B Fl=—
10 01 —C

10 1|0

1 10]|0

111]|0

Fig. 3.3
System G functionality

3.2.4  Designa VHDL model to implement the behav-
ior described by the 4-input minterm list shown
in Fig. 3.4. Use concurrent signal assignments
and logical operators. Declare your entity to

match the block diagram provided. Use the
type bit for your ports.

Systeml.vhd
—A
F=2ascn(139,11) —B £ -

—C
—D

Fig. 3.4

System | functionality

3.2.5  Designa VHDL model to implement the behav-

ior described by the 4-input maxterm list shown
in Fig. 3.5. Use concurrent signal assignments
and logical operators. Declare your entity to
match the block diagram provided. Use the
type bit for your ports.

SystemdJ.vhd
—a
F=I1asco(0.1,2,3,6,89,10,11,14) :g Fl-
—D
Fig. 3.5
System J functionality

3.2.6

maacalaaaaqa | o0oco|locoo|X>

Fig. 3.6
System

Design a VHDL model to implement the behav-
ior described by the 4-input truth table shown in
Fig. 3.6. Use concurrent signal assignments
and logical operators. Declare your entity to
match the block diagram provided. Use the
type bit for your ports.

BCDI|F

0 001

0011

010]1

011]0

100/|1 SystemK.vhd
10 11 —A

11 0[1 —B

11 1]0 —lc 2 =
0 0 0f1 —|D
0011

01 0f1

0110

10 0]1

1011

11 0]1

11 1|0

K functionality
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Section 3.3:

Conditional Signal

Assignments

3.341

3.3.2

3.3.3

3.3.4

3.3.5

3.3.6

Section 3.4:

Design a VHDL model to implement the behav-
ior described by the 3-input minterm list shown
in Fig. 3.1. Use conditional signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

Design a VHDL model to implement the behav-
ior described by the 3-input maxterm list shown
in Fig. 3.2. Use conditional signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

Design a VHDL model to implement the behav-
ior described by the 3-input truth table shown in
Fig. 3.3. Use conditional signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

Design a VHDL model to implement the behav-
ior described by the 4-input minterm list shown
in Fig. 3.4. Use conditional signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

Design a VHDL model to implement the behav-
ior described by the 4-input maxterm list shown
in Fig. 3.5. Use conditional signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

Design a VHDL model to implement the behav-
ior described by the 4-input truth table shown in
Fig. 3.6. Use conditional signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

Selected Signal

Assignments

3.41

3.4.2

3.4.3

3.44

Design a VHDL model to implement the behav-
ior described by the 3-input minterm list shown
in Fig. 3.1. Use selected signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

Design a VHDL model to implement the behav-
ior described by the 3-input maxterm list shown
in Fig. 3.2. Use selected signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

Design a VHDL model to implement the behav-
ior described by the 3-input truth table shown in
Fig. 3.3. Use selected signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

Design a VHDL model to implement the behav-
ior described by the 4-input minterm list shown
in Fig. 3.4. Use selected signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

3.4.5

3.4.6

Design a VHDL model to implement the behav-
ior described by the 4-input maxterm list shown
in Fig. 3.5. Use selected signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

Design a VHDL model to implement the behav-
ior described by the 4-input truth table shown in
Fig. 3.6. Use selected signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

Section 3.5: Delayed Signal Assignments

3.5.1

3.5.2

3.5.3

3.54

3.5.5

3.5.6

Design a VHDL model to implement the behav-
ior described by the 3-input minterm list shown
in Fig. 3.1. Use concurrent signal assignments
and logical operators. Create the model so that
every logic operation has 1 ns of inertial delay.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

Design a VHDL model to implement the behav-
ior described by the 3-input maxterm list shown
in Fig. 3.2. Use concurrent signal assignments
and logical operators. Create the model so that
every logic operation has 1 ns of inertial delay.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

Design a VHDL model to implement the behav-
ior described by the 3-input truth table shown in
Fig. 3.3. Use concurrent signal assignments
and logical operators. Create the model so
that every logic operation has 1 ns of inertial
delay. Declare your entity to match the block
diagram provided. Use the type bit for your
ports.

Design a VHDL model to implement the behav-
ior described by the 4-input minterm list shown
in Fig. 3.4. Use concurrent signal assignments
and logical operators. Create the model so that
every logic operation has 1 ns of transport
delay. Declare your entity to match the block
diagram provided. Use the type bit for your
ports.

Design a VHDL model to implement the behav-
ior described by the 4-input maxterm list shown
in Fig. 3.5. Use concurrent signal assignments
and logical operators. Create the model so that
every logic operation has 1 ns of transport
delay. Declare your entity to match the block
diagram provided. Use the type bit for your
ports.

Design a VHDL model to implement the behav-
ior described by the 4-input truth table shown in
Fig. 3.6. Use concurrent signal assignments and
logical operators. Create the model so that every
logic operation has 1 ns of transport delay.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.
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Chapter 4: Structural Design
and Hierarchy

This chapter describes how to accomplish hierarchy within VHDL using lower-level sub-systems.
Structural design in VHDL refers to including lower-level sub-systems within a higher-level system in
order to produce the desired functionality. A purely structural VHDL design would not contain any
behavioral modeling in the architecture such as signal assignments but instead just contain the instanti-
ation and interconnections of other sub-systems.

Learning Outcomes—After completing this chapter, you will be able to:

4.1 Instantiate and map the ports of a lower-level component in VHDL.
4.2 Design a VHDL model for a system that uses hierarchy.

4.1 Components

4.1.1 Component Instantiation

A sub-system is called a component in VHDL. For any component that is going to be used in an
architecture, it must be declared before the begin statement. Refer to Sect. 2.2.3.3 for the syntax of
declaring a component. A specific component only needs to be declared once. After the begin statement,
it can be used as many times as necessary. Each component is executed concurrently.

The term instantiation refers to the use or inclusion of the component in the VHDL system. When a
component is instantiated, it needs to be given a unique identifying name. This is called the instance
name. To instantiate a component, the instance name is given first, followed by a colon and then the
component name. The last part of instantiating a component is connecting signals to its ports. The way in
which signals are connected to the ports of the component is called the port map. The syntax for
instantiating a component is as follows:

instance_name : <component name>
port map (<port connections>);
4.1.2 Port Mapping
There are two techniques to connect signals to the ports of the component, explicit port mapping
and positional port mapping.
4.1.2.1 Explicit Port Mapping

In explicit port mapping, the name of each port of the component is given, followed by the connection
indicator =>, followed by the signal it is connected to. The port connections can be listed in any order
since the details of the connection (i.e., port name to signal name) are explicit. Each connection name is
separated by a comma. The syntax for explicit port mapping is as follows:

instance_name : <component name>
port map (portl => signall, port2 => signal2, ...):
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Example 4.1 shows how to design a VHDL model of a combinational logic circuit using structural
VHDL and explicit port mapping. Note that this example again uses the same truth table as in Examples
3.1, 3.10, and 3.16 to illustrate a comparison between approaches.

Example: Modeling Logic using Structural VHDL (Explicit Port Mapping)
Implement the following truth table with structural VHDL using lower level sub-systems for the
basic gates. We will assume that VHDL designs have been completed for the inverter, AND
gate, and OR gate. The entities for these designs are provided.

ABCIF An—] - entity INVL is
0 0 0|1 Bn— port (A : in bit;
001|o Cn— F : out bit);
An end entity;
01 0|1 A --
011]0 By A m2 E
— B == B entity AND3 is
1 00f0 Docp- Cn port (A,B,C : in bit;
1 01]|0 F : out bit);
11 0]1 A= m6 end entity;
11 1]0 cn—
entity OR3 is
The basic gate designs can be declared as components in port (A,B,C : int lgv}t;
N Y f - F : ou 1 H
our system and then instantiated in order to describe the i AR

surn of products logic diagram above.

entity System¥ is ) +—1 The entity is named
pert (A, B, € : in bit; SystemX

F out bit); )

end entity;

architecture System¥ arch of SystemX is
; 5 o itk daci : 1s &1 Internal signals are needed
signa An, Bn, Cn : bit; -- clare signals 2

siginl. o0, G2, wk ¢ Bite to connect the sub-systems.

component INV1 -- declare INV1l | The three lower level sub-
port (A : in bit; systems are declared as
F : out bit); /7 components in SystemX,
end component;
component AND3 -- declare AND3
port (A,B,C : in bit;
F : out bit);

end component;

component OR3
port (A,B,C : in bit; -- declare OR3 The components are
F : out bit); instantiated and connected

end component; ' - using explicit port mapping in
begi / order to describe the behavior
giLn of the logic diagram.

Ul : INV1 port map (A=>A, F=>An);
U2 : INV1 port map (A=>B, F=>Bn); ¢———1— NOT's
U3 : INV1 port map (A=>C, F=>Cn);

U4 : AND3 port map (A=>An, B=>Bn, C=>Cn, F=>m0);
U5 : AND3 port map (A=>An, B=>B, C=>Cn, F=>m2);J __ AND's
U6 : AND3 port map (A=>A, B=>B, C=>Cn, F=>mé);
U7 : OR3 port map (A=>m0, B=>m2, C=>m6, F=>F); #— OR

end architecture;

Example 4.1
Modeling logic using structural VHDL (explicit port mapping)
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4.1.2.2 Positional Port Mapping

In positional port mapping, the names of the ports of the component are not explicitly listed. Instead,
the signals are listed in the same order that the ports of the component were defined. Each signal name
is separated by a comma. This approach requires less text to describe but can also lead to
misconnections due to mismatches in the order of the signals being connected. The syntax for positional
port mapping is as follows:

instance_name : <component name>
port map (signall, signal2, ...);

Example 4.2 shows how to create the same structural VHDL model as in Example 4.1, but using
positional port mapping instead.

Example: Modeling Logic using Structural VHDL (Positional Port Mapping)
In positional port mapping the port names are not listed in the component instantiation.
Instead, the signals are simply listed in the same order as the ports were defined. The signal
listed first will be connected to the port defined first. The signal listed second will be
connected to the port defined second, etc.

begin
Ul : INV1 port map (A=>A, F=>An);
Explicit Port U2 : INV1 port map (A=>B, F=>Bn);
Mapping U3 : INV1 port map (A=>C, F=>Cn);
U4 : AND3 port map (A=>An, B=>Bn, C=>Cn, F=>m0);
U5 : AND3 port map (A=>An, B=>B, =>Cn, F=>m2);
U6 : AND3 port map (A=>A, B=>B, C=>Cn, F=>m6);
U7 : OR3 port map (A=>m0, B=>m2, C=>mé, F=>F);
begin
Ul : INV1 port map (A, An);
a U2 : INV1 port map (B, Bn);
POSI.llonal Port U3 : INV1 port map (C, Cn);
Mapping of Same
System U4 : AND3 port map (An, Bn, Cn, m0);
U5 : AND3 port map (An, B, Cn, m2);
U6 : AND3 port map (A, B, Cn, mé);
U7 : OR3 port map (m0, m2, mé, F);

Example 4.2
Modeling logic using structural VHDL (positional port mapping)

CC4.1 Does the use of components model concurrent functionality? Why?

(A) No. Since the lower-level behavior of the component being instantiated may
contain non-concurrent behavior, it is not known what functionality will be
modeled.

(B) Yes. The components are treated like independent sub-systems whose
behavior runs in parallel just as if separate parts were placed in a design.
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4.2 Structural Design Examples: Ripple Carry Adder

This section gives an example of a structural design that implements a simple binary adder.

4.2.1 Half Adders

When creating a binary adder, it is desirable to design incremental sub-systems that can be reused.
This reduces design effort and minimizes troubleshooting complexity. The most basic component in the
adder is called a half adder. This circuit computes the sum and carry out on two input arguments. The
reason it is called a half adder instead of a full adder is because it does not accommodate a carry in
during the computation; thus it does not provide all the necessary functionality required for the positional
adder. Example 4.3 shows the design of a half adder. Notice that two combinational logic circuits are
required in order to produce the sum (the XOR gate) and the carry out (the AND gate). These two gates
are in parallel to each other; thus the delay through the half adder is due to only one level of logic.

Example: Design of a Half Adder
Recall in binary addition, the output consists of a sum and a carry bit.

0 0 1 1
+ 0 5 " + 0 a1
0 <— sum 1 1 carry—1 0
We can build a simple circuit callled a “Half Adder” to compute these outputs.
Half Adder
A B | Cou Sum AT \D7— Sum
ooflo o Sum=A®B B 7
01]0 1 — ——
1010 1 Cou=AB
1111 0 }—Cw

Example 4.3
Design of a half adder

4.2.2 Full Adders

A full adder is a circuit that still produces a sum and carry out but considers three inputs in the
computations (A, B, and C;,). Example 4.4 shows the design of a full adder using the classical design
approach. This step is shown to illustrate why it is possible to reuse half adders to create the full adder. In
order to do this, it is necessary to have the minimal sum of products logic expression.
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Example: Design of a Full Adder
In order to create multi-bit adders, a circuit is needed that also includes a “Carry In" bit.

The sum of position 1 needs to include the “Carry Out” _— 1
from the sum of position 0. The sum of position 1 must 0‘ 1
include this carry, which is reffered to as the “"Carry In” bit.
+ 01
This circuit is called a “Full Adder”. Giien 10
Cin A
B\ 00 01 11 10
Cin A B | Cou Sum ploj1jo01}1
ooolo o —= Sum=A®B@®C,
o0 9lo 1 111]0(1(0
01010 1
01 1|1 0 CanA Cou
To00]o0 1 —* B\\00 01 11 10
1011 0
110 1 0 0 ofo n 0 ey CgutzA'Cin+A'B+B‘Cin
11111 1 o @@y v =AB + (A+B)-Cp,
Example 4.4

Design of a full adder

As mentioned before, it is desirable to reuse design components as we construct more complex
systems. One such design reuse approach is to create a full adder using two half adders. This is
straightforward for the sum output since the logic is simply two cascaded XOR gates (Sum = A®B&Cin).
The carry out is not as straightforward. Notice that the expression for Cout derived in Example 4.4
contains the term (A + B). If this term could be manipulated to use an XOR gate instead, it would allow the
full adder to take advantage of existing circuitry in the system. Figure 4.1 shows a derivation of an
equivalency that allows (A + B) to be replaced with (A®B) in the Cout logic expression.

A Useful Logic Equivalency that can be Exploited in Arithmetic Circuits
The logic expression for the carry out of a full adder was given as: Co = A‘B + (A + B)-Cip..
It turns out that the exact same output is produced by the expression A-B + (A @ B)-Ci,.
Let's examine how this is possible by breaking down the expressions into their individual
parts and solving at each step.

FA Desired
[nputs Outpul Ce’”‘ =AB+ (A 5 B)'Clr\ C{.'u‘. =AB+ (A @ B}'Clll

Cn A B| Coa |ABi(A+B)CyiAB +(A+B)Cy|ABi(A®B)CyniAB + (A®B)Cy

0 00| O 0 0 0 0 0 i 0

00 1| 0 0 0 0 0 0 0

01 0| o0 0 0 0 0 0 0

o1 1] 1 1 0 1 11 0 1

100| O 0 0 0 0: 0 0

10 1| 1 0 1 1 0 1 1

1 48| 9 0 1 1 0 1 1

11 1| 1 1 1 1 1 0 1
Cou=AB + (A +B)-Cin = AB + (A ® B)-Cin t }

Equivalent !

Fig. 4.1
A useful logic equivalency that can be exploited in arithmetic circuits
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The ability to implement the carry out logic using the expression Coyt = A-B + (A®B)-C;, allows us to
implement a full adder with two half adders and the addition of a single OR gate. Example 4.5 shows this
approach. In this new configuration, the sum is produced in two levels of logic, while the carry out is
produced in three levels of logic.

Example — Design of a Full Adder Out of Two Half Adders
It is often desirable to create a full adder out of two half adders in order to re-use existing
design components. The “Sum” of the full adder can be created by using two cascaded
XOR gates provided by the half adders.

Half Adder 1 Half Adder 2
A®B

A
R\
) ;D__ Sum=A®B®C,
Cin

The expression for the “Carry Out" of the full adder is:
out = AB + (A + B)'cm
or

Cou=AB+ (A®B)C,
Notice that the carry out of Half Adder 1 produces the A-B term in this expression. Also
notice that the carry out of Half Adder 2 produces the (A @ B)-C,term. The only remaining
logic needed to create the carry out of the full adder is an OR gate. The final logic diagram
for the full adder is as follows:

A
B

Full Adder
Half Adder 1 Half Adder 2
A T ADB T
)) N TN = .
B Y z?z}_/ Sum=A®@B®C,
A'B ]__D— (A®B) Ci,
Cin — Con=AB+ (A®B)Cy,

Example 4.5
Design of a full adder out of half adders

4.2.3 Ripple Carry Adder (RCA)

The full adder can now be used in the creation of multi-bit adders. The simplest architecture
exploiting the full adder is called a ripple carry adder (RCA). In this approach, full adders are used to
create the sum and carry out of each bit position. The carry out of each full adder is used as the carry in
for the next higher position. Since each subsequent full adder needs to wait for the carry to be produced
by the preceding stage, the carry is said to ripple through the circuit, thus giving this approach its name.
Example 4.6 shows how to design a 4-bit ripple carry adder using a chain of full adders. Notice that the
carry in for the full adder in position O is tied to a logic 0. The 0 input has no impact on the result of the sum
but enables a full adder to be used in the Oth position.
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Example: Design of a 4-Bit Ripple Carry Adder (RCA)
Full adders can be cascaded together to form a multi-bit adder. The symbols are typically
drawn in the following fashion to mirror a positional number system.

A3 B3 Az Bz Ay By AD Bo
! | | | l | | |
A B A B A B A B
CW“_ Cuut Cin ¢ s Cou! Cinle¢ Ca Cout Cin ¢ & Cout Cin ‘&:O
Sum Sum Sum Sum
] p3 l p=2 l p=1 1 pe0
53 Sz 51 SD

The sum of position 1 cannot complete until it receives the carry in (C4) from the sum in
position 0. The position 2 sum cannot complete until it receives the carry in (Cz) from the
sum in position 1, etc. In this way, the carry “ripples” through the circuit from right to left.
This configuration is known as a Ripple Carry Adder (RCA).

Example 4.6
Design of a 4-bit ripple carry adder (RCA)

4.2.4 Structural Model of a Ripple Carry Adder in VHDL

Now that the hierarchical design of the RCA is complete, we can now model it in VHDL as a system
of lower-level components. Example 4.7 shows the structural model for a full adder in VHDL consisting of
two half adders. The full adder is created by instantiating two versions of the half adder as components.
In this example, all gates are modeled with a delay of 1 ns.
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Example: Structural Model of a Full Adder in VHDL Using Two Half Adders
full_adder.vhd

half_addef.\fhd half adder.vhd
A ¥ HA1_Sum =
£ ) > ) > sum=A®B®C,
HA1_Cout HA2_Cout
ins Tns
Cin L Cou=AB+(A®B)Cp
1ns

entity half adder is

port (A, B : in bit;
Sum, Cout : out bit);
end entity;

architecture half adder arch of half adder is
begin

Sum <= A xor B after 1 ns;
Cout <= A and B after 1 ns;

end architecture;

entity full_ adder is
port (A, B, Cin : in bit;
Sum, Cout : out bit);
end entity;

architecture full adder arch of full_adder is
component half adder
port (A, B : in bit;
Sum, Cout : out bit);
end component;
signal HAl Sum, HAl Cout, HA2 Cout : std logic;
begin

HAl : half adder port map (A, B, HAl Sum, HAl Cout);
HAZ : half adder port map (HAl Sum, Cin, Sum, HA2 Cout);

Cout <= IiAl_Cout or HJLZ_Cout after 1 ns;

end architecture;

Example 4.7
Structural model of a full adder in VHDL using two half adders

Example 4.8 shows the structural model of a 4-bit ripple carry adder in VHDL. The RCA is created by
instantiating four full adders. Notice that a logic 0 can be directly inserted into the port map of the first full
adder to model the behavior of Co = 0.
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Example: Structural Model of a 4-Bit Ripple Carry Adder in VHDL
A(3) B(3) A(2) B(2) A(1) B(1) A(0) B(0)
A B A B A B A B
C C C 0
Coute— Cout Cinfe = Cout Cinle -~ Cout Cinle . Cout Cinj¢—
Sum Sum Sum Sum
1 p=3 l p=2 l p=1 l p=0
S(3) S(2) S(1) S(0)
entity rca 4bit is
port (A,”B : in bit wvector(3 downto 0);
Sum : out bit wector (3 downto 0);
Cout : out bit}];
end entity;
architecture rca 4bit_arch of rca 4bit is
component full adder
port (A, B, Cin : in bit;
Sum, Cout : out bit);
end component;
signal €1, C2, C3 : std_logic;
begin
A0 : full adder port map (A(0), B(0), '0', Sum(0), C1);
Al : full adder port map (A(l), B(1), €1, Sum(l), C2);
A2 : full:adder port map (A(2), B(2), €2, sSum(2), C3);
A3 : full_ adder port map (A(3), B(3), €3, 5Sum(3), Cout);
end architecture;

Example 4.8

Structural model of a 4-bit ripple carry adder in VHDL

(A)
higher-level system.
(B)
development time.

(©)

(D) Al of the above.

CC4.2 Why is the use of hierarchy considered a good design practice?

Hierarchy allows the design to be broken into smaller pieces, each with
simpler functionality that can be verified independently prior to being used in a

Hierarchy allows a large system to be broken into smaller sub-systems that
can be designed by multiple engineers, thus decreasing the overall

Hierarchy allows a large system to be broken down into smaller sub-systems
that can be more easily understood so that debugging is more manageable.

Summary

°,
o

A component is how a VHDL system uses
another VHDL file as a sub-system.
VHDL components are treated as concurrent

sub-systems.

°,
"

To use a component, it must first be declared,
which defines the name and entity of the
sub-system to be used. This occurs before
the begin statement in the architecture.
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A component can be instantiated one or
more times, which includes one or more cop-
ies of the sub-system in the higher-level sys-
tem. This occurs after the begin statement in
the architecture.

The ports of the component can be
connected using either explicit or positional
port mapping.

Explicit port mapping involves listing both the
names of the lower-level component’s ports
along with the higher-level signals that form
the connection. The connections in explicit
port mapping can be listed in any order.
Explicit port mapping is less prone to mis-
taken connections.

Exercise Problems

Sec
411

Sec
421

4.2.2

tion 4.1: Components

How many times does a component need to be
declared within an architecture?

How many times can a component be
instantiated?

Does declaring a component occur before or
after the begin statement in the architecture?

Does instantiating a component occur before
or after the begin statement in the
architecture?

Which port mapping technique is more com-
pact, explicit or positional?

Which port mapping technique is less prone to
connection errors because the names of the
lower-level ports are listed within the mapping?

tion 4.2: Structural Design Examples

Design a VHDL model to implement the behav-
ior described by the 3-input minterm list shown
in Fig. 3.1. Use a structural design approach
and basic gates. You will need to create what-
ever basic gates are needed for your design
(e.g., INV1, AND2, OR4, etc.) and then instan-
tiate them in your upper-level architecture to
create the desired functionality. The lower-
level gates can be implemented with concur-
rent signal assignments and logical operators
(e.g., F <=not A). Declare your entity to match
the block diagram provided. Use the type bit for
your ports.

Design a VHDL model to implement the behav-
ior described by the 3-input maxterm list shown
in Fig. 3.2. Use a structural design approach
and basic gates. You will need to create what-
ever basic gates are needed for your design
(e.g., INV1, AND2, OR4, etc.) and then instan-
tiate them in your upper-level architecture to
create the desired functionality. The lower-
level gates can be implemented with concur-
rent signal assignments and logical operators

4.2.3

4.2.4

4.2.5

Positional port mapping involves listing only
the names of the higher-level signals during
instantiation. The order in which the signals
are listed will be connected to the ports of the
lower-level sub-system in the order that the
ports were declared. Positional port mapping
provides a more compact approach to port
mapping. Positional port mapping is more
prone to mistaken connections due to poten-
tially listing the signals in the wrong order
during mapping.

(e.g., F <=not A). Declare your entity to match
the block diagram provided. Use the type bit for
your ports.

Design a VHDL model to implement the behav-
ior described by the 3-input truth table shown in
Fig. 3.3. Use a structural design approach and
basic gates. You will need to create whatever
basic gates are needed for your design (e.g.,
INV1, AND2, OR4, etc.) and then instantiate
them in your upper-level architecture to create
the desired functionality. The lower-level gates
can be implemented with concurrent signal
assignments and logical operators (e.g.,
F <= not A). Declare your entity to match the
block diagram provided. Use the type bit for
your ports.

Design a VHDL model to implement the behav-
ior described by the 4-input minterm list shown
in Fig. 3.4. Use a structural design approach
and basic gates. You will need to create what-
ever basic gates are needed for your design
(e.g., INV1, AND2, OR4, etc.) and then instan-
tiate them in your upper-level architecture to
create the desired functionality. The lower-
level gates can be implemented with concur-
rent signal assignments and logical operators
(e.g., F <=not A). Declare your entity to match
the block diagram provided. Use the type bit for
your ports.

Design a VHDL model to implement the behav-
ior described by the 4-input maxterm list shown
in Fig. 3.5. Use a structural design approach
and basic gates. You will need to create what-
ever basic gates are needed for your design
(e.g., INV1, AND2, OR4, etc.) and then instan-
tiate them in your upper-level architecture to
create the desired functionality. The lower-
level gates can be implemented with concur-
rent signal assignments and logical operators
(e.g., F <=not A). Declare your entity to match
the block diagram provided. Use the type bit for
your ports.
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4.2.6

Design a VHDL model to implement the behav-
ior described by the 4-input truth table shown in
Fig. 3.6. Use a structural design approach and
basic gates. You will need to create whatever
basic gates are needed for your design (e.g.,
INV1, AND2, OR4, etc.) and then instantiate
them in your upper-level architecture to create

the desired functionality. The lower-level gates
can be implemented with concurrent signal
assignments and logical operators (e.g.,
F <= not A). Declare your entity to match the
block diagram provided. Use the type bit for
your ports.
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Chapter 5: Modeling Sequential
Functionality

In Chap. 3 techniques were presented to describe the behavior of concurrent systems. The
modeling techniques presented were appropriate for combinational logic because these types of circuits
have outputs dependent only on the current values of their inputs. This means a model that continuously
performs signal assignments provides an accurate model of this circuit behavior. When we start looking
at sequential circuits (i.e., D-flip-flops, registers, finite state machine, and counters), these devices only
update their outputs based upon an event, most often the edge of a clock signal. The modeling
techniques presented in Chap. 3 are unable to accurately describe this type of behavior. In this chapter
we describe the VHDL constructs to model signal assignments that are triggered by an event to
accurately model sequential logic. We can then use these techniques to describe more complex
sequential logic circuits such as finite state machines and register transfer level systems.

Learning Outcomes—After completing this chapter, you will be able to:

5.1 Describe the behavior of a VHDL process and how it is used to model sequential logic
circuits.

5.2 Model combinational logic circuits using a process and conditional programming
constructs.

5.3 Describe how and why signal attributes are used in VHDL models.

5.1 The Process

VHDL uses a process to model signal assignments that are based on an event. A process is a
technique to model behavior of a system; thus, a process is placed in the VHDL architecture after the
begin statement. The signal assignments within a process have unique characteristics that allow
them to accurately model sequential logic. First, the signal assignments do not take place until the
process ends or is suspended. Second, the signal assignments will be made only once each time the
process is triggered. Finally, the signal assignments will be executed in the order that they appear
within the process. This assignment behavior is called a sequential signal assignment. Sequential
signal assignments allow a process to model register transfer level behavior where a signal can be
used as both the operand of an assignment and the destination of a different assignment within the
same process. VHDL provides two techniques to trigger a process, the sensitivity list and the wait
statement.

5.1.1 Sensitivity Lists

A sensitivity list is a mechanism to control when a process is triggered (or started). A sensitivity list
contains a list of signals that the process is sensitive to. If there is a transition on any of the signals in the
list, the process will be triggered, and the signal assignments in the process will be made. The following
is the syntax for a process that uses a sensitivity list.
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process_name : process (<signal_namel>, <signal_name2>, ...)
--variable declarations
begin

sequential_signal_assignment_1
sequential_signal_assignment_2

end process;

Let’s look at a simple model for a flip-flop.

Example:
FlipFlop : process (Clock)
begin
Q<=D;

end process;

In this example, a transition on the signal Clock (LOW to HIGH or HIGH to LOW) will trigger the
process. The signal assignment of D to Q will be executed once the process ends. When the signal Clock
is not transitioning, the process will not trigger, and no assignments will be made to Q, thus modeling the
behavior of Q holding its last value. This behavior is close to modeling the behavior of a real D-flip-flop,
but more constructs are needed to model behavior that is sensitive to only a particular type of transition
(i.e., rising or falling edge). These constructs will be covered later.

5.1.2 Wait Statements

A wait statement is a mechanism to suspend (or stop) a process and allow signal assignments to be
executed without the need for the process to end. When using a wait statement, a sensitivity list is not
used. Without a sensitivity list, the process will immediately trigger. Within the process, the wait
statement is used to stop and start the process. There are three ways in which wait statements can be
used. The first is an indefinite wait. In the following example, the process does not contain a sensitivity
list, so it will trigger immediately. The keyword wait is used to suspend the process. Once this statement
is reached, the signal assignments to Y1 and Y2 will be executed, and the process will suspend
indefinitely.

Example:
Proc_Ex1 : process
begin
Yl<="'0";
Y2<="'1";
wait;

end process;

The second technique to use a wait statement to suspend a process is to use it in conjunction with
the keyword for and a time expression. In the following example, the process will trigger immediately
since it does not contain a sensitivity list. Once the process reaches the wait statement, it will suspend
and execute the first signal assignment to CLK (CLK <= ‘0’). After 5 ns, the process will start again. Once
it reaches the second wait statement, it will suspend and execute the second signal assignment to CLK
(CLK <= '1"). After another 5 ns, the process will start again and immediately end due to the end process
statement. After the process ends, it will immediately trigger again due to the lack of a sensitivity list and
repeat the behavior just described. This behavior will continue indefinitely. This example creates a
square wave called CLK with a period of 10 ns.
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Example:

Proc_Ex2 : process
begin
CLK<="'0’; wait for 5ns;
CLK<='1"; wait for 5ns;
end process;

The third technique to use a wait statement to suspend a process is to use it in conjunction with the
keyword until and a Boolean condition. In the following example, the process will again trigger immedi-
ately because there is not a sensitivity list present. The process will then immediately suspend and only
resume once a Boolean condition becomes true (i.e., Counter > 15). Once this condition is true, the
process will start again. Once it reaches the second wait statement, it will execute the first signal
assignment to RollOver (RollOver <= ‘1’). After 1 ns, the process will resume. Once the process ends,
it will execute the second signal assignment to RollOver (RollOver <= ‘0’).

Example:

Proc_Ex3 : process

begin
wait until (Counter > 15); -- first wait statement
RollOver <= '1’; wait for 1 ns; -- secondwait statement

RollOver <= '0";
end process;

Wait statements are typically not synthesizable and are most often used for creating stimulus
patterns in test benches.

5.1.3 Sequential Signal Assignments

One of the more confusing concepts of a process is how sequential signal assignments behave. The
rules of signal assignments within a process are as follows:

»  Signals cannot be declared within a process.
»  Signal assignments do not take place until the process ends or suspends.

»  Signal assignments are executed in the sequence they appear in the process (once the
process ends or process suspends).

Let’s look at an example of how signals behave in a process. Example 5.1 shows the behavior of
sequential signal assignments when executed within a process. Intuitively, we would assume that F will
be the complement of A; however, due to the way that sequential signal assignments are performed
within a process, this is not the case. In order to understand this behavior, let’s look at the situation where
A transitions from a 0 to a 1 with B = 0 and F = 0O initially. This transition triggers the process since A is
listed in the sensitivity list. When the process triggers, A = 1 since this is where the input resides after the
triggering transition. The first signal assignment (B <= A) will cause B = 1, but this assignment occurs
only after the process ends. This means that when the second signal assignment is evaluated (F <= not
B), it uses the initial value of B from when the process triggered (B = 0) since B is not updated to a 1 until
the process ends. The second assignment yields F = 1. When the processends, A=1,B=1,andF =1.
The behavior of this process will always result in A = B = F. This is counterintuitive because the
statement F <= not B leads us to believe that F will always be the complement of A and B; however,
this is not the case due to the way that signal assignments are only updated in a process upon
suspension or when the process ends.
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Example: Behavior of Sequential Signal Assignments within a Process

For the following system:

entity Ex is

A F port (A : in bit;
F : out bit);
end entity;
The output F will match the input A when modeled with the following process:
architecture Ex_arch of Ex is
signal B : bit; Al _"_\_]_\_‘—l_‘—
begin 0
Proc_Ex : process (A) B " _J'_\_,_‘_I'_\_‘_
begin ]
B <= A;
F <= not B; ET | | | | | |
end process; o
end architecture;

Example 5.1
Behavior of sequential signal assignments within a process

Now let's consider how these assignments behave when executed as concurrent signal
assignments. Example 5.2 shows the behavior of the same signal assignments as in Example 5.1, but
this time outside of a process. In this model, the statements are executed concurrently and produce the
expected behavior of F being the complement of A.

Example: Behavior of Concurrent Signal Assignments outside a Process
For the following system:

entity Ex is

port (A : in bit;
A F F : out bit);
end entity;

The output F will be the complement of input A when the assignments are executed

concurrently. B
A —>—|>o— F
= ! i i
A; 0 ___J L__J L__J L__J
not B; ; : '
7 I I I I I
o h i H

architecture Ex_arch of Ex is
signal B : bit; A
begin

B <=
F <=

end architecture;

Example 5.2
Behavior of concurrent signal assignments outside a process

While the behavior of the sequential signal assignments initially seems counterintuitive, it is
necessary to model the behavior of sequential storage devices and will become clear once more
VHDL constructs have been introduced.

5.1.4 Variables

There are situations inside of processes in which it is desired for assignments to be made instanta-
neously instead of when the process suspends. For these situations, VHDL provides the concept of a
variable. A variable has the following characteristics:
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*  Variables only exist within a process.
»  Variables are defined in a process before the begin statement.

*  Once the process ends, variables are removed from the system. This means that assignments
to variables cannot be made by systems outside of the process.

*  Assignments to variables are made using the “:=" operator.
*  Assignments to variables are made instantaneously.

A variable is declared before the begin statement in a process. The syntax for declaring a variable is
as follows:

variable variable_name : <type> :=<initial_value>;

Let’s reconsider the example in Example 5.1, but this time we’ll use a variable in order to accomplish
instantaneous signal assignments within the process. Example 5.3 shows this approach to model the
behavior where F is the complement of A.

Example: Behavior of Variable Assignments within a Process

For the following system: entity Ex is
F : out bit);

end entity;

architecture Ex arch of Ex is
The output F will match the input A when

stouel B nble modeled with the following process:

begin
Proc._Ex : process (A)

variable temp : bit := '0'; A 1 _I_l_l_l_]_l_l_
0 1 ' H

begin

temp := A; sl ¢ : :

B <= temp; I | | | ’ | I

F <= not temp; 0 H [ :

, : ; :

end process; F | | | | l | |
0 : ! '

end architecture;

Example 5.3
Variable assignment behavior

CC5.1 If a model of a combinational logic circuit excludes one of its inputs from the sensitivity
list, what is the implied behavior?

(A) A storage element because the output will be held at its last value when the
unlisted input transitions.

(B) An infinite loop.
(C) A don’t care will be used to form the minimal logic expression.

(D) Not applicable because this syntax will not compile.
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5.2 Conditional Programming Constructs

One of the more powerful features that processes provide in VHDL is the ability to use conditional
programming constructs such as if/then clauses, case statements, and loops. These constructs are only
available within a process, but their use is not limited to modeling sequential logic. As we’ll see, the
characteristics of a process also support modeling of combinational logic circuits, so these conditional
constructs are a very useful tool in VHDL. This provides the ability to model both combinational and
sequential logic using the more familiar programming language constructs.

5.2.1 If/Then Statements

An iffthen statement provides a way to make conditional signal assignments based on Boolean
conditions. The if portion of statement is followed by a Boolean condition that if evaluated TRUE will
cause the signal assignment after the then statement to be performed. If the Boolean condition is
evaluated FALSE, no assignment is made. VHDL provides multiple variants of the if/then statement.
An if/then/else statement provides a final signal assignment that will be made if the Boolean condition is
evaluated false. An if/then/elsif statement allows multiple Boolean conditions to be used. The syntax for
the various forms of the VHDL if/then statement are as follows:

if boolean_condition then sequential_statement
end if;

if boolean_condition then sequential_statement_1
else sequential_statement_2
end if;

if boolean_condition_1 then sequential_statement_1
elsif boolean_condition_2 then sequential_statement_2

elsif boolean_condition_n then sequential_statement_n
end if;

if boolean_condition_1 then sequential_statement_1
elsif boolean_condition_2 then sequential_statement_2

elsif boolean_condition_n then sequential_statement_n
else sequential_statement_n+1
end if;

Let’s take a look at using an if/then statement to describe the behavior of a combinational logic
circuit. Recall that a combinational logic circuit is one in which the output depends on the instantaneous
values of the inputs. This behavior can be modeled by placing all of the inputs to the circuit in the
sensitivity list of a process. A change on any of the inputs in the sensitivity list will trigger the process and
cause the output to be updated. Example 5.4 shows how to model a 3-input combinational logic circuit
using if/then statements within a process.
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Example: Using IffThen Statements to Model Combinational Logic
Implement the following truth table using an jf/then statement within a process.

ABC|F_

0001

g 0 a 0 entity SystemX is

5 1 ; é port (A, B, C : in git);
F out bit);

100 T end entity;

1010

11 0|1

1 1 4]0

Recall that an if/then statement is only legal within a process. In order to create a
process that models combinational logic, we need to list each of the inputs to the circuit in
the sensitivity list. This will cause the process to trigger and make an assignment to the
output whenever there is a change on any of the inputs.

architecture SystemX arch of SystemX is
begin

SystemX Proc : process (A, B, C)
begin

if (A="0' and B='0"' and C='0") then F <= '1"';
elsif (A='0"' and B='0' and C='1') then F <= '0';
elsif (A='0' and B='l' and C='0') then F <= '1';
elsif (A='0' and B='l' and C='1') then F <= '0';
elsif (A='l' and B='0' and C='0') then F <= '0';
elsif (A='l' and B='0' and C='1") then F <= '0';
elsif (A='l' and B='l' and C='0') then F <= '1';
elsif (A='l' and B='l' and C='1') then F <= '0';

end if;
end process;

end architecture;

A more compact version of this behavior can be created by taking advantage of the else
clause. In this model, only Boolean conditions are listed for outputs corresponding to 1's.

architecture SystemX arch of SystemX is
begin

SystemX Proc : process (A, B, C)
begin_

if (A="0' and B='0"' and C='0') then F <= '1';
elsif (A='0' and B='l' and C='0') then F <= '1';
elsif (A='l' and B='l' and C='0') then F <= '1';
else F <= '0';
end if;

end process;

end architecture;

Example 5.4
Using if/then statements to model combinational logic

5.2.2 Case Statements

A case statement is another technique to model signal assignments based on Boolean conditions.
As with the if/then statement, a case statement can only be used inside of a process. The statement
begins with the keyword case followed by the input signal name that assignments will be based off
of. The input signal name can be optionally enclosed in parentheses for readability. The keyword when is
used to specify a particular value (or choice) of the input signal that will result in associated sequential
signal assignments. The assignments are listed after the => symbol. The following is the syntax for a
case statement.
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case (input_name) is
when choice_1 => sequential_statement (s) ;
when choice_2 => sequential_statement (s) ;

when choice_n => sequential_statement (s) ;
end case;

When not all the possible input conditions (or choices) are specified, a when others clause is used
to provide signal assignments for all other input conditions. The following is the syntax for a case
statement that uses a when others clause.

case (input_name) is
when choice_1 => sequential_statement (s) ;
when choice_2 => sequential_statement (s) ;

when others => sequential_statement (s);
end case;

Multiple choices that correspond to the same signal assignments can be pipe-delimited in the case
statement. The following is the syntax for a case statement with pipe-delimited choices.

case (input_name) is
when choice_1 | choice_2 => sequential_statement (s) ;
when others => sequential_statement (s) ;
end case;

The input signal for a case statement must be a single signal name. If multiple scalars are to be used
as the input expression for a case statement, they should be concatenated either outside of the process
resulting in a new signal vector or within the process resulting in a new variable vector. Example 5.5
shows how to model a 3-input combinational logic circuit using case statements within a process.
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Example: Using Case Statements to Model Combinational Logic
Implement the following truth table using a case statement within a process.

ABC|F_

0 0O0(1

001]0 entity SystemX is

g 1 ? a port (A, B, C : in bit;

F out bit);

100 T end entity;

10 1]0

11 0f1

11 1[0

A case statement is only legal within a process. In the following example, the three input
scalars (A,B,C) are concatenated into a new variable for use as the input signal to the
case statement.

architecture SystemX arch of SystemX is
begin
SystemX Proc : process (A, B, C)
variable ABC : bit vector (2 downto 0) := "000";
begin
BABC := A & B & C;

case (ABC) is

when "000" => F <= '1";
when "001" => F <= '0"';
when "010" => F <= 'l';
when "011" => F <= '0';
when "100" => F <= '0"';
when "101" => F <= '0';
when "110" => F <= '1";
when "111" => F <= '0';

end case;
end process;

end architecture;

More compact forms of the case statement can be created using the when others clause
and pipe delimited inputs.

case (ABC) is case (ABC) is
when "000" => F <= 'l'; when "000" | “010"” | “110" => F <= 'l1'
when "010" => F <= 'l'; when others => F <= '0'
when "110" => F <= 'l'; end case;
when others => F <= '0';
end case;
Example 5.5

Using case statements to model combinational logic

If/then statements can be embedded within a case statement, and, conversely, case statements can
be embedded within an if/then statement.

5.2.3 Infinite Loops

A loop within VHDL provides a mechanism to perform repetitive assignments infinitely. This is useful
in test benches for creating stimulus such as clocks or other periodic waveforms. A loop can only be used
within a process. The keyword loop is used to signify the beginning of the loop. Sequential signal
assignments are then inserted. The end of the loop is signified with the keywords end loop. Within the
loop, the wait for, wait until, and after statements are all legal. Signal assignments within a loop will be
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executed repeatedly forever unless an exit or next statement is encountered. The exit clause provides a
Boolean condition that will force the loop to end if the condition is evaluated true. When using the exit
statement, an additional signal assignment is typically placed after the loop to provide the desired
behavior when the loop is not active. Using flow control statements such as wait for and wait after
provide a means to avoid having the loop immediately executed again after exiting. The next clause
provides a way to skip the remaining signal assignments and begin the next iteration of the loop. The
following is the syntax for an infinite loop in VHDL.

loop
exit when boolean_condition; -- optional exit statement
next when boolean_condition; -- optional next statement
sequential_statement (s) ;

end loop;

Consider the following example of an infinite loop that generates a clock signal (CLK) with a period
of 100 ns. In this example, the process does not contain a sensitivity list, so a wait statement must be
used to control the signal assignments. This process in this example will trigger immediately and then
enter the infinite loop and never exit.

Example:

Clock_Procl : process
begin
loop
CLK <=not CLK;
wait for 50 ns;
end loop;
end process;

Now consider the following loop example that will generate a clock signal with a period of 100 ns with
an enable (EN) line. This loop will produce a periodic clock signal as long as EN = 1. When EN = 0, the
clock output will remain at CLK = 0. An exit condition is placed at the beginning of the loop to check if
EN = 0. If this condition is true, the loop will exit, and the clock signal will be assigned a 0. The process
will then wait until EN = 1. Once EN = 1, the process will end and then immediately trigger again and
reenter the loop. When EN = 1, the clock signal will be toggled (CLK <= not CLK) and then wait for 50 ns.
This toggling behavior will repeat as long as EN = 1.

Example:

Clock_Proc2 : process
begin
loop
exit when EN='0";
CLK <= not CLK;
wait for 50 ns;
end loop;

CLK<="'0";
wait until EN='1";

end process;

It is important to keep in mind that infinite loops that continuously make signal assignments without
the use of sensitivity lists or wait statements will cause logic simulators to hang.
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5.2.4 While Loops

A while loop provides a looping structure with a Boolean condition that controls its execution. The
loop will only execute as long as its condition is evaluated true. The following is the syntax for a VHDL
while loop.

while boolean_condition loop
sequential_statement (s) ;
end loop;

Let's implement the previous example of a loop that generates a clock signal (CLK) with a period of
100 ns as long as EN = 1. The Boolean condition for the while loop is EN = 1. When EN = 1, the loop will
be executed indefinitely. When EN = 0, the while loop will be skipped. In this case, an additional signal
assignment is necessary to model the desired behavior when the loop is not used (i.e., CLK = 0).

Example:

Clock_Proc3 : process
begin
while (EN='1"’) loop
CLK <=not CLK;
wait for 50 ns;
end loop;

CLK <= "'0";
wait until EN='1";

end process;

5.2.5 For Loops

A for loop provides the ability to create a loop that will execute a pre-defined number of times. The
range of the loop is specified with integers (min, max) at the beginning of the for loop. A loop variable is
implicitly declared in the loop that will increment (or decrement) from min to max of the range. The loop
variable is of type integer. If it is desired to have the loop variable increment from min to max, the keyword
to is used when specifying the range of the loop. If it is desired to have the loop variable decrement max
to min, the keyword downto is used when specifying the range of the loop. The loop variable can be
used within the loop as an index for vectors; thus the for loop is useful for automatically accessing and
assigning multiple signals within a single loop structure. The following is the syntax for a VHDL for loop in
which the loop variable will increment from min to max of the range:

for loop_variable inmin to max loop
sequential_statement (s) ;
end loop;

The following is the syntax of a for loop in which the loop variable will decrement from max to min of
the range:

for loop_variable in max downto min loop
sequential_statement (s) ;
end loop;

For loops are useful for test benches in which a range of patterns are to be created. For loops are
also synthesizable as long as the complete behavior of the desired system is described by the loop. The
following is an example of creating a simple counter using the loop variable. The signal Count_Out in this
example is of type integer. This allows the loop variable i to be assigned to Count_Out each time through
the loop since the loop variable is also of type integer. This counter will count from 0 to 15 and then
repeat. The count will increment every 50 ns.
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Example:

Counter_Proc : process
begin
foriin 0 to 15 loop
Count_Out <=1i;
wait for 50 ns;
end loop;
end process;

CC5.2 When using an if/then statement to model a combinational logic circuit, is
using the else clause the same as using don’t cares when minimizing a
logic expression with a K-map?

(A) Yes. The else clause allows the synthesizer to assign whatever
output values are necessary in order to create the most minimal
circuit.

(B) No. The else clause explicitly states the output values for all input
codes not listed in the if/elsif portion of the if/then construct. This is
the same as filling in the truth table with specific values for all input
codes covered by the else clause and the synthesizer will create the
logic expression accordingly.

5.3 Signal Attributes

There are situations where we want to describe behavior that is based on more than just the current
value of a signal. For example, a real D-flip-flop will only update its outputs on a particular type of
transition (i.e., rising or falling). In order to model this behavior, we need to specify more information
about the signal. This is accomplished by using aftributes. Attributes provide additional information about
a signal other than just its present value. An attribute can provide information such as past values,
whether an assignment was made to a signal or when the last time an assignment resulted in a value
change. A signal attribute is implemented by placing an apostrophe (‘) after the signal name and then
listing the VHDL attribute keyword. Different attributes will result in different output types. Attributes that
yield Boolean output types can be used as inputs to Boolean decision conditions for other VHDL
constructs. Other attributes can be used to define the range of new vectors by referencing the size of
existing vectors or automatically defining the number of iterations in a loop. Finally, some attributes can
be used to create self-checking test benches that monitor the impact of circuit delays on the functionality
of a system. The following is a list of the commonly used, pre-defined VHDL signal attributes. The
example signal name A is used to illustrate how scalar attributes operate. The example signal B is used
to illustrate how vector attributes operate with type bit_vector (7 downto 0).

Attribute Information returned Type returned
A‘event True when signal A changes, false otherwise boolean
A‘active True when an assignment is made to A, false otherwise boolean
A'last_event Time when signal A last changed time
A'last_active Time when signal A was last assigned to time

A'last_value The previous value of A same type as A
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Attribute Information returned Type returned
Blength Size of the vector (e.g., 8) integer

Bleft Left bound of the vector (e.g., 7) integer
B‘right Right bound of the vector (e.g., 0) integer
B‘range Range of the vector “(7 downto 0)” string

Signal attributes can be used to model edge sensitive behavior. Let’s look at the model for a simple
D-flip-flop. A process is used to model the synchronous behavior of the D-flip-flop. The sensitivity list
contains only the Clock input. The D input is not included in the sensitivity list because a change on D
should not trigger the process. Attributes and logical operators are not allowed in the sensitivity list of a
process. As a result, the process will trigger on every edge of the clock signal. Within the process, an
iffthen statement is used with the Boolean condition (Clock‘event and Clock = ‘1°) in order to make
signal assignments only on a rising edge of the clock. The syntax for this Boolean condition is
understood and is synthesizable by all CAD tools. An else clause is not included in the if/then statement.
This implies that when there is not a rising edge, no assignments will be made to the outputs and they will
simply hold their last value. Example 5.6 shows how to model a simple D-flip-flop using attributes. Note
that this example does not model the reset behavior of a real D-flip-flop.

Example: Behavioral Modeling of a Rising Edge Triggered D-Flip-Flop Using Attributes

—D Ql—
Store
Store
_> f0 0 Update
1 1 Update
entity Dflipflop is
port (Clock i in bit;
D : in bit;
: out bit);

end entity;

architecture Dflipflop_arch of Dflipflop is

begin
D_FLIP_FLOF : process (Clock)
“begin
if (Cleck'event and Clock='l') then

Q <= D;
end if;
end process;

end architecture;

Example 5.6
Behavioral modeling of a rising edge-triggered D-flip-flop using attributes

CC5.3 Ifthe Dinput to a D-flip-flop is tied to a 0, which of the following conditions will return true
on every triggering edge of the clock?

(A) Q'eventand Q ="'0’
(B) Q'active and Q =0’
(C) Qlast_event=‘0and Q=0
(D) Q'last_active =‘0'and Q =0’
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* Chapter 5: Modeling Sequential Functionality

Summary

To model sequential logic, an HDL needs to
be able to trigger signal assignments based
on a triggering event. This is accomplished in
VHDL using a process.

A sensitivity list is a way to control when a
VHDL process is triggered. A sensitivity list
contains a list of signals. If any of the signals
in the sensitivity list transition, it will cause the
process to trigger. If a sensitivity list is omit-
ted, the process will trigger immediately.
Signal assignments are made when a pro-
cess suspends. There are two techniques to
suspend a process. The first is using the wait
statement. The second is simply ending the
process.

Sensitivity lists and wait statements are never
used at the same time. Sensitivity lists are
used to model synthesizable logic, while wait
statements are used for test benches.

Exercise Problems

Section 5.1: The Process

5.1.1 When using a sensitivity list in a process, what
will cause the process to trigger?

5.1.2  When using a sensitivity list in a process, what
will cause the process to suspend?

5.1.3  When a sensitivity list is not used in a process,
when will the process trigger?

5.1.4  Can a sensitivity list and a wait statement be
used in the same process at the same time?

515 Does a wait statement trigger or suspend a
process?

5.1.6  When are signal assignments officially made in
a process?

51.7 Why are assignments in a process called
sequential signal assignments?

5.1.8  Can signals be declared in a process?

5.1.9  Are variables declared within a process visible
to the rest of the VHDL model (e.g., are they
visible outside of the process)?

5.1.10 What happens to a variable when a process
ends?

5.1.11 What is the assignment operator for variables?

Section 5.2: Conditional Programming
Constructs

5.21

Design a VHDL model to implement the behav-
ior described by the 4-input truth table in
Fig. 5.1. Use a process and an if/then state-
ment. Use std_logic and std_logic_vector
types for your signals. Declare the entity to
match the block diagram provided. Hint: Notice

o
*

When signal assignments are made in a pro-
cess, they are made in the order they are
listed in the process. If assignments are
made to the same signal within a process,
only the last assignment will take place when
the process suspends.

If assignments are needed to occur prior to
the process suspending, a variable is used.
In VHDL, variables only exist within a pro-
cess. Variables are defined when a process
triggers and deleted when the process ends.
Processes also allow more advanced
modeling constructs in VHDL. These include
if/then statements, case statements, infinite
loops, while loops, and for loops.

Signal attributes allow additional information
to be observed about a signal other than its
value.

that there are far more input codes producing
F = 0 than producing F = 1. Can you use this to
your advantage to make your VHDL model

simpler?
A BC THE Capital “"
00 O0O0]O0
00011
00 10]0
001 1(1 Systeml.vhd
0100]0 4 |
01010 +{ABCD F
01 10|0
011110
170 00]0
?1 8 ? g} (".I] Note that the input to
101 1|1 the VHDL model is
declared as a 4-bit

110010 vector.
1710 1|0
171 10|0
1711110

Fig. 5.1

System | functionality

5.2.2

Design a VHDL model to implement the behav-
ior described by the 4-input truth table in
Fig. 5.1. Use a process and a case statement.
Use std_logic and std_logic_vector types for
your signals. Declare the entity to match the
block diagram provided.
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5.2.3

F=2asco(457,12,13,15) <] ABCD

Fig. 5.2
System

5.24

5.2.5

F=l

Fig. 5.3
System

5.2.6

5.2.7

Design a VHDL model to implement the behav-
ior described by the 4-input minterm list in
Fig. 5.2. Use a process and an if/then state-
ment. Use std_logic and std_logic_vector
types for your signals. Declare the entity to
match the block diagram provided.

SystemJ.vhd

4
Ff—

J functionality

Design a VHDL model to implement the behav-
ior described by the 4-input minterm list in
Fig. 5.2. Use a process and a case statement.
Use std_logic and std_logic_vector types for
your signals. Declare the entity to match the
block diagram provided.

Design a VHDL model to implement the behav-
ior described by the 4-input maxterm list in
Fig. 5.3. Use a process and an if/then state-
ment. Use std_logic and std_logic_vector
types for your signals. Declare the entity to
match the block diagram provided.

SystemK.vhd

Lieco(37.11.15) -+{ABCD

F_

K functionality

Design a VHDL model to implement the behav-
ior described by the 4-input maxterm list in
Fig. 5.3. Use a process and a case statement.
Use std_logic and std_logic_vector types for
your signals. Declare the entity to match the
block diagram provided.

Design a VHDL model to implement the behav-
ior described by the 4-input truth table in
Fig. 5.4. Use a process and an if/then state-
ment. Use std_logic and std_logic_vector
types for your signals. Declare the entity to

match the block diagram provided. Hint: Notice
that there are far more input codes producing
F =1 than producing F = 0. Can you use this to
your advantage to make your VHDL model
simpler?

ABCDI|F
00 O0O0]1
00O0“1]0
00101
001 1|1 SystemL.vhd
01 00(1 4
01 101
05 1 119
170 0 01
100 1]0
1701 011
1011|0
110 0|1
110 1|0
111 0|1
T 1 44114

Fig. 5.4

System L functionality

5.2.8

Design a VHDL model to implement the behav-
ior described by the 4-input truth table in
Fig. 5.4. Use a process and a case statement.
Use std_logic and std_logic_vector types for
your signals. Declare the entity to match the
block diagram provided.

Section 5.3: Signal Attributes

5.3.1
5.3.2

5.3.3

5.3.4

What is the purpose of a signal attribute?

What is the data type returned when using the
signal attribute ‘event?

What is the data type returned when using the
signal attribute ‘1ast_event?

What is the data type returned when using the
signal attribute ‘length?
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Chapter 6: Packages

One of the drawbacks of the VHDL standard package is that it provides limited functionality in its
synthesizable data types. The bit and bit_vector, while synthesizable, lack the ability to accurately model
many of the topologies implemented in modern digital systems. Of primary interest are topologies that
involve multiple drivers connected to a single wire. The standard package will not permit this type of
connection; however, this type of topology is a common way to interface multiple nodes on a shared
interconnection. Furthermore, the standard package does not provide many useful features for these
types, such as don'’t cares, arithmetic using the + and — operators, type conversion functions, or the
ability to read/write external files. To increase the functionality of VHDL, packages are included in the
design. This chapter introduces the most common packages used in modern VHDL models.

Learning Outcomes—After completing this chapter, you will be able to:

6.1 Describe the capabilities of the STD_LOGIC_1164 package that allow more accurate
models of modern digital systems to be described.

6.2 Describe the capabilities of the NUMERIC_STD package that allow behavioral models of
arithmetic circuits to be described including operations using data types from the
STD_LOGIC_1164 package.

6.3 Describe how text reporting using external /O can is handled by the TEXTIO and
STD_LOGIC_TEXTIO packages.
6.4 Describe the capabilities of some of the other common packages provided in the IEEE library.

6.1 STD_LOGIC_1164

In the late 1980s, the IEEE 1164 standard was released that added functionality to VHDL to allow a
multivalued logic system (i.e., a signal can take on more values than just 0 and 1). This standard also
provided a mechanism for multiple drivers to be connected to the same signal. An updated release in
1993 called IEEE 1164-1993 was the most significant update to this standard and contains the majority
of functionality used in VHDL today. Nearly all systems described in VHDL include the 1164 standard as
a package. This package is included by adding the following syntax at the beginning of the VHDL file.

library IEEE;
use IEEE.std_logic_1164.all;

This package defines four new data types: std_ulogic, std_ulogic_vector, std_logic, and
std_logic_vector. The std_ulogic and std_logic are enumerated, scalar types that can provide a
multivalued logic system. The types std_ulogic_vector and std_logic_vector are vector types containing
a linear array of scalar types std_ulogic and std_logic, respectively. The scalar types can take on nine
different values as described below.

Value Description Notes

U Uninitialized Default initial value

X Forcing unknown

0 Forcing O

1 Forcing 1

V4 High impedance

w Weak unknown

L Weak 0 Pull-down

H Weak 1 Pull-up

- Don’t care Used for synthesis only
© Springer Nature Switzerland AG 2019 81
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These values can be assigned to signals by enclosing them in single quotes (scalars) or double
quotes (vectors).

Example:
A<="'X"; -- assignment to a scalar (std_ulogic or std_logic)
V<="01ZH"; -- assignment toa d-bit vector (std_ulogic_vector

or std_logic_vector)

“ on

The type std_ulogic is unresolved (note: the “u” standard for “unresolved”). This means that if a
signal is being driven by two circuits with type std_ulogic, the VHDL simulator will not be able to resolve
the conflict and it will result in a compiler error. The type std_logic is resolved. This means that if a signal
is being driven by two circuits with type std_logic, the VHDL simulator will be able to resolve the conflict
and will allow the simulation to continue. Figure 6.1 shows an example of a shared signal topology and
how conflicts are handled when using various data types.

STD_LOGIC_1164 Unresolved vs. Resolved Conflict Handling
The std_logic_1164 package has data types that support this type of topology.

Ex.vhd
architecture Ex_arch of Ex is
A begin
F <= A;
—:iF F <= B;
end architecture;
B
entity Ex is NOT ALLOWED. This will
standard Package port (A,B : in bit; ; :
: : 3 i result in compiler error
with types bit F  : out bit); i "
end entity; unresolved data type”.

library IEEE;
std_logic_1164 s - Ll NOT ALLOWED. This wil
package with types | entity Ex is result in compiler error

H port (A,B : in std ulegic; u "
std_ulogic ¥ i out std ulogicis unresolved data type”.

end entity;

library IEEE;
use IEEE.std_logic_1164.all;

std_logic_1164 ALLOWED. The output F

package with types entity Tx is — will be determined using a
: port (A,B : in std logic; ; :
std_logic i stdlogic) ; resolution function.

end entity;

Fig. 6.1
STD_LOGIC_1164 unresolved vs. resolved conflict handling

6.1.1 STD_LOGIC_1164 Resolution Function

The std_logic_1164 will resolve signal conflict of type std_logic using a resolution function. The
nine allowed values each have a relative drive strength that allows a resolution to be made in the event of
conflict. Whenever there is a conflict, the simulator will consult the resolution function to determine the
value of the signal. Figure 6.2 shows the relative drive strengths of the nine possible signal values
provided by the std_logic_1164 package and the resolution function table.
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STD_LOGIC_1164 Resolution Function

Relative Drive Strengths

Drive Strength

Std logic Resolution Function

The std_logic_1164 package resolves multiple driver conflict using a resolution function.

Driver 1

Driver 2

S Bl
ﬁgo‘—gf g
212121215z |2l=]2
clc|olole|m]|m]|®]| e
HRNEREEEEE
UIX|0|1|1Z[W]LIH]| -
Uninitialized|U (U (U |U|U|U U U |U|U
Forcing Unknown| X [U | X | X | X [X | X | X | X |X
Forcing0|0|U|X|0|X|0|0|0|0|X
Forcing 1|1 |U X[ X|1|1]|1]1[1]|X
High Impedance| Z|U | X |0 |1 |ZW|L|H|X
Weak Unknown|W]U | X |0 |1 |w|w|w|w|x
Weak OJ|L|JU|X |0 |1|L|W|L|W|X
Weak 1|H|U | X |0 |1 |H|W/W|H|X
Don't Care| - JU[X|X|X|X|X|X]|X]|X

Fig. 6.2
STD_LOGIC_1164 resolution function

6.1.2 STD_LOGIC_1164 Logical Operators

The std_logic_1164 also contains new definitions for all of the logical operators (and, nand, or, nor,
xor, xnor, not) for types std_ulogic and std_logic. These are required since these data types can take
on more logic values than just a 0 or 1; thus the logical operator definitions from the standard package

are not sufficient.

6.1.3 STD_LOGIC_1164 Edge Detection Functions

The std_logic_1164 also provides functions for the detection of rising or falling transitions on
a signal. The functions rising_edge() and falling_edge() provide a more readable form of this function-
ality compared to the (Clock‘event and Clock = ‘1’) approach. Example 6.1 shows the use of the
rising_edge() function to model the behavior of a rising edge-triggered D-flip-flop.
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Example: Behavioral Modeling of a D-Flip-Flop using the rising_edge() Function

library IEEE;
use IEEE.std logic_1164.all;

entity Dflipflop is
port (Clock : in std_logic;
D : in  std_logic;
: out std_logic);
end entity;

architecture Dflipflop arch of Dflipflop is
begin

D_FLIP FLOP : process (Clock)
“begin
if (Clock'event and Clock='l') then
Q <= D;
end if;
end process;

end architecture;

architecture Dflipflop arch of Dflipflop is

begin
D_FLIP FLOP : process (Clock)
begin
if (rising_edge (Clock)) then
Q <= D;
end if;

end process;

end architecture;

Example 6.1

Behavioral modeling of a D-flip-flop using the rising_edge() function

6.1.4 STD_LOGIC_1164 Type Converstion Functions

The std_logic_1164 package also provides functions to convert between data types. Functions exist
to convert between bit, std_ulogic, and std_logic. Functions also exist to convert between these types’
vector forms (bit_vector, std_ulogic_vector, and std_logic_vector). The functions are listed below.

Name

To_bit()

To_bitvector()
To_bitvector()
To_StdULogic()
To_StdULogicVector()
To_StdULogicVector()
To_StdLogicVector()
To_StdLogicVector()

Input type Return type
std_ulogic bit
std_ulogic_vector bit_vector
std_logic_vector bit_vector

bit std_ulogic
bit_vector std_ulogic_vector
std_logic_vector std_ulogic_vector
bit_vector std_logic_vector
std_ulogic_vector std_logic_vector

When using these functions, the function name and input signal are placed to the right of the
assignment operator, and the target signal is placed on the left.

Example:

A <=To_bit (B);

--Bis type std_ulogic, Ais typebit

V <= To_StdLogicVector (C) ; --Cis typebit_vector, Vis std_logic_vector
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When identical function names exist that can have different input data types, the VHDL compiler will
automatically decide which function to use based on the input argument type. For example, the function
“To_bitvector” exists for an input of std_ulogic_vector and std_logic_vector. When using this function, the
compiler will automatically detect which input type is being used and select the corresponding function
variant. No additional syntax is required by the designer in this situation.

CC6.1 What is the primary contribution of the STD_LOGIC_1164 package?
(A) Arithmetic operators for the types bit and bit_vector.

(B) Functions that allow all operators in the standard package to be used on all
data types from the same package.

(C) The ability to read and write from external files.

(D) New data types that can take on more values beyond O’s and 1’s in order
to more accurately model modern digital systems.

6.2 NUMERIC_STD

The numeric_std package provides numerical computation for types std_logic and std_logic_vector.
When performing binary arithmetic, the results of arithmetic operations and comparisons vary greatly
depending on whether the binary number is unsigned or signed. As a result, the numeric_std package
defines two new data types, unsigned and signed. An unsigned type is defined to have its MSB in the
leftmost position of the vector and the LSB in the rightmost position of the vector. A signed number uses
two’s complement representation with the leftmost bit of the vector being the sign bit. When declaring a
signal to be one of these types, itis implied that these represent the encoding of an underlying native type
of std_logic/std_logic_vector. The use of unsigned/signed types provides the interpretation of how
arithmetic, logical, and comparison operators will perform. This also implies that the numeric_std
package requires the std_logic_1164 to always be included. While the numeric_std package includes
an inclusion call of the std_logic 1164 package, it is common to explicitly include both the
std_logic_1164 and the numeric_std packages in the main VHDL file. The VHDL compiler will ignore
redundant package statements. The syntax for including these packages is as follows:

library IEEE;
use IEEE.std_logic_1164.all; -- defines types std_ulogic and std_logic
use IEEE.numeric_std.all; -- defines types unsigned and signed

6.2.1 NUMERIC_STD Arithmetic Functions

The numeric_std package provides support for a variety of arithmetic functions for the types
unsigned and signed. These include +, —, *, /, mod, rem, and abs functions. These arithmetic operations
behave differently for the unsigned versus signed types, but the VHDL compiler will automatically use the
correct operation based on the types of the input arguments.

Most synthesis tools support the addition, subtraction, and multiplication operators in this package.
This provides a higher level of abstraction when modeling arithmetic circuitry. Recall that the VHDL
standard package does not support addition, subtraction, and multiplication of types bit/bit_vector using
the +, —, and * operators. Using the numeric_std package gives the ability to model these arithmetic
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operations with a synthesizable data type using the more familiar mathematical operators. The division,
modulo, remainder, and absolute value functions are not synthesizable directly from this package.

Example:

F<=A+ B; -- A, B, Fare type unsigned (3 downto 0)
F<=A-B;

The numeric_std package gives the ability to model arithmetic at a higher level of abstraction. Let’s
look at an example of implementing an adder circuit using the “+” operator. While this operator is
supported for the type integer in the std_logic_1164 package, modeling adders using integers can be
onerous due to the multiple levels of casting, range checking, and manual handling of carry out. A
simpler approach to modeling adder behavior is to use the types unsigned/signed and the “+” operator
provided in the numeric_std package. Temporary signals or variables of these types are required to
model the adder behavior with the “+” sign. Also, type casting is still required when assigning the values
back to the output ports. One advantage of this approach is that range checking is eliminated because
rollover is automatically handled with these types.

Example 6.2 shows a behavioral model for a 4-bit adder in VHDL. In this model, a 5-bit unsigned
vector is created (Sum_uns). The two inputs, A and B, are concatenated with a leading zero in order to
facilitate assigning the sum to this 5-bit vector. The advantage of this approach is that the carry out of the
adder is automatically included in the sum as the highest position bit. Since A and B are of type
std_logic_vector, they must be converted to unsigned before the addition with the “+” operator can
take place. The concatenation, type conversion, and addition can all take place in a single assignment.

Example:

Sum_uns <=unsigned((’'0’ &A)) +unsigned((’'0’ &B));

The 5-bit vector Sum_uns now contains the 4-bit sum and carry out. The final step is to assign the
separate components of this vector to the output ports of the system. The 4-bit sum portion requires a
type conversion back to std_logic_vector before it can be assigned to the output port Sum. Since the
Cout port is a scalar, an unsigned signal can be assigned to it directly without the need for a conversion.

Example:

Sum <= std_logic_vector (Sum_uns (3 downto 0)) ;
Cout <= Sum_uns (4) ;
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Example: Behavioral Model of a 4-Bit Adder in VHDL

library IEEE;
use IEEE.s td_logic_l 164.all;
use IEEE.numeric_std.all;

entity adder 4bit is
port (A, B : in std logic_vector(3 downto 0);

Sum : out std logic_vector(3 downto 0); A 5-bit unsigned signal
Cout : out std_logic): i
end entity; is defined to hold the

sum and carry.

architecture adder 4bit_arch of adder_4bit ‘i/
Adding leading 0's to the

signal Sum uns : unsigned(4 downto 0);

inputs enables an
begin assignment to “Sum_uns".
Sum_uns <= unsigned(('0' & A)) + unsigned(('0’' & B));

Sum <= std logic wvector(Sum_uns (3 downto 0));‘\

ok SR iy e Converting the inputs to
end architecture; : 2 . unsigned allows the “+"
Finally, the 5-bit vector is operator to be used.

broken into its individual
Sum and Cout parts.
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Since no delay was included in the behavioral model,

the outputs are produced instantaneously.

Example 6.2
Behavioral model of a 4-bit adder in VHDL

6.2.2 NUMERIC_STD Logical Functions

The numeric_std package provides support for all of the logical operators (and, nand, or, nor, xor,
xnor, not) for types unsigned and signed. It also provides two new shift functions shift_left() and
shift_right(). These shift functions will fill the vacant position in the vector after the shift with a 0; thus
these are logical shifts. This package also provides two new rotate functions rotate_left() and

rotate_right().

6.2.3 NUMERIC_STD Comparison Functions

The numeric_std package provides support for all of the comparison functions for types unsigned

and signed. These include >, <, <=, >=, =, and /=. These comparisons return type Boolean.

Example: (A = “0000”, B = “1111").

if (A<B) then --This condition is TRUE if A and B are UNSIGNED

if (A<B) then --Thiscondition is FALSE if A and B are SIGNED

6.2.4 NUMERIC_STD Edge Detection Functions

The numeric_std also provides the functions rising_edge() and falling_edge() for the detection of

rising or falling edge transition detection for types unsigned and signed.
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6.2.5 NUMERIC_STD Conversion Functions

The numeric_std package contains a variety of useful conversion functions. Of particular usefulness
are functions between the type integer and to/from unsigned/signed. This allows behavioral models for
counters, adders, and subtractors to be implemented using the more readable type integer. After the
functionality has been described, a conversion can be used to turn the result into types unsigned or
signed to provide a synthesizable output. When converting an integer to a vector, a size argument is
included. The size argument is of type integer and provides the number of bits in the vector that the
integer will be converted to.

Name Input type Return type

To_integer() unsigned integer

To_integer() signed integer

To_unsigned() integer, <size> unsigned (size-1 downto 0)
To_signed() integer, <size> signed (size-1 downto 0)

6.2.6 NUMERIC_STD Type Casting

VHDL contains a set of built-in type casting operations that are commonly used with the numeric_std
package to convert between std_logic_vector and unsigned/signed. Since the types unsigned and
signed are based on the underlying type std_logic_vector, the conversion is simply known as casting.
The following are the built-in type casting capabilities in VHDL.

Name Input type Return type
std_logic_vector() unsigned std_logic_vector
std_logic_vector() signed std_logic_vector
unsigned() std_logic_vector unsigned
signed() std_logic_vector signed

When using these type casts, they are placed on the right-hand side of the assignment exactly as a
conversion function.

Example:
A <= std_logic_vector (B) ; --Bisunsigned, A is std_logic_vector
C <=unsigned(D) ; --Dis std_logic_vector, C is unsigned

Type casts and conversion functions can be compounded in order to perform multiple conversions
in one assignment. This is useful when converting between types that do not have a direct cast or
conversion function. Let's look at the example of converting an integer to an 8-bit std_logic_vector where
the number being represented is unsigned. The first step is to convert the integer to an unsigned type.
This can be accomplished with the fo_unsigned function defined in the numeric_std package. This can
be embedded in a second cast from unsigned to std_logic_vector. In the following example, E is the
target of the operation and is of type std_logic vector. F is the argument of assignment and is of type
integer. Recall that the to_unsigned conversions require both the input integer name and the size of the
unsigned vector being converted to.

Example:

E <= std_logic_vector (to_unsigned(F, 8));
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CC6.2 Does the NUMERIC_STD package provide arithmetic operators that work directly on
signals of type std_logic_vector?

(A) Yes. The entire purpose of this package is to provide math operators for
signals of type std_logic_vector.

(B) No. This package does not provide operators directly for std_logic_vector. It
instead provides arithmetic operators for two new types (UNSIGNED and
SIGNED) and then conversion functions to cast these types to and from
std_logic_vector.

6.3 TEXTIO and STD_LOGIC_TEXTIO

The textio package provides the ability to read and write to/from external input/output (I/O). External
I/O refers to items such as files or the standard input/output of a computer. This package contains
functions that allow the values of signals and variables to be read and written in addition to strings. This
allows more sophisticated output messages to be created compared to the report statement alone, which
can only output strings. The ability to read in values from a file allows sophisticated test patterns to be
created outside of VHDL and then read in during simulation for testing a system. It is important to keep in
mind that the term “I/O” refers to external files or the transcript window, not the inputs and outputs of a
system model. The textio package is not synthesizable and is only used in test benches. The textio
package is within the STD library and is included in a VHDL design using the following syntax.

library STD;
use STD.textio.all;

This package by itself only supports reading and writing types bit, bit_vector, integer, character, and
string. Since the majority of synthesizable designs use types std_logic and std_logic_vector, an addi-
tional package was created that added support for these types. The package is called std_logic_textio
and is located within the IEEE library. The syntax for including this package is below.

library IEEE;
use IEEE.std_logic_textio.all;

The textio package defines two new types for interfacing with external I/O. These types are file and
line. The type file is used to identify or create a file for reading/writing within the VHDL design. The syntax
for declaring a file is as follows:

file file_handle : <file_type> open <file_mode> is <"filename">;

Declaring a file will automatically open the file and keep it open until the end of the process that is
using it. The file_handle is a unique identifier for the file that is used in subsequent procedures. The file
handle name is user-defined. A file handle eliminates the need to specify the entire file name each time a
file access procedure is called. The file_type describes the information within the file. There are two
supported file types, TEXT and INTF. A TEXT file is one that contains strings of characters. This is the
most common type of file used as there are functions that can convert between types string,
bit/bit_vector, and std_logic/std_logic_vector. This allows all of the information in the file to be stored
as characters, which makes the file readable by other programs. An INTF file type contains only integer
values and the information is stored as a 32-bit, signed binary number. The file_mode describes whether
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the file will be read from or written to. There are two supported modes, WRITE_MODE and
READ_MODE. The filename is given within double quotes and is user-defined. It is common to enter
an extension on the file so that it can be opened by other programs (e.g., output.ixt). Declaring a file
always takes place within a process before the process begin statement. The following are examples of
how to declare files.

file Fout: TEXT open WRITE_MODE is "output_file.txt";
file Fin: TEXT open READ_MODE is "input_file.txt";

The information within a file is accessed (either read or written) using the concept of a line. In the
textio package, afile is interpreted as a sequence of lines, each containing either a string of characters or
an integer value. The type line is used as a temporary buffer when accessing a line within the file. When
accessing a file, a variable is created of type line. This variable is then used to either hold information that
is read from a line in the file or to hold the information that is to be written to a line in the file. A variable is
necessary for this behavior since assignments to/from the file must be made immediately. As such, a line
variable is always declared within a process before the process begin statement. The syntax for
declaring a variable of type line is as follows:

variable <line_variable_name> : line;

There are two procedures that allow information to be transferred between a line variable in VHDL
and a line in a file. These procedures are readline() and writeline(). Their syntax is as follows:

readline(<file_handle>, <line_variable_name>);
writeline(<file_handle>, <line_variable_name>);

The transfer of information between a line variable and a line in a file using these procedures is
accomplished on the entire line. There is no mechanism to read or write only a portion of the line in a file.
Once a file is opened/created using a file declaration, the lines are accessed in the order they appear in
the file. The first procedure called (either readline() or writeline()) will access the first line of the file. The
next time a procedure is called, it will access the second line of the file. This will continue until all of the
lines have been accessed. The textio package provides a function to indicate when the end of the file has
been reached when performing a readline(). This function is called endfile() and returns type Boolean.
This function will return true once the end of the file has been reached. Figure 6.3 shows a graphical
representation of how the textio package handles external file access.
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IEEE.textio Package Interpretation of Files

The textio package understands files as a set of lines. Each line contains either an
integer or a string. Each line is read or written individually in the order they appear in the

file.
file Fout: TEXT open WRITE MODE is "output_file.txt";

—_— output__file. txt VHDL Test Bench
The file handle is “Fout”. This
handle is used by the writeline() | Line 1

itell -
| o write ine() Line

procedure to identify this file. > Variable
| Line 2 | i The procedures writeline()
> transfers information from the

VHDL line variable to a new
line in the file. Each writeline()
call adds a new line to the file.

file Fin: TEXT open READ MODE is "input file.txt";

| Line 3 |

The file handle is “Fin". This — input_file.txt VHDL Test Bench
handle is used by the readline() - readline() Line
procedure to identify this file. | Line 1 | e T — Variable
The function endfile() provides a | Line 2 | t> The procedures readline()
mechanism to determine if the . > transfers information from a line
end of the file as been reached : 47 in the file into the line variable in
during a read. z the VHDL test bench. Each

) —_ | Line n | readline() call reads from the
Ex) while (not endfile(Fin)) loop next line in the file.

Fig. 6.3
IEEE.textio package interpretation of files

Two additional procedures are provided to add or retrieve information to/from the line variable within
the VHDL test bench. These procedures are read() and write(). The syntax for these procedures is as
follows:

read(<line_variable_name>, <destination_variable>);
write(<line_variable_name>, <source_variable>);

When using the read() procedure, the information in the line variable is treated as space-delimited.
This means that each read() procedure will retrieve the information from the line variable until it reaches a
white space. This allows multiple read() procedures to be used in order to parse the information into
separate destination_variable names. The destination_variable must be of the appropriate type and size
of the information being read from the file. For example, if the field in the line being read is a 4-character
string (“wxyz”), then a destination variable must be defined of type string(1 to 4). If the field being read is a
2-bit std_logic_vector, then a destination variable must be defined of type std_logic_vector(1 downto 0).
The read() procedure will ignore the delimiting white space character.

When using the write() procedure, the source_destination is assumed to be of type bit, bit_vector,
integer, std_logic, or std_logic_vector. Ifit is desired to enter a text string directly, then the function string
is used with the format string’ <“characters...”. Multiple write() procedures can be used to insert
information into the line variable. Each subsequent write procedure appends the information to the
end of the string. This allows different types of information to be interleaved (e.g., text, signal value, text,
etc.).
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CC6.3 What is the primary functionality that is provided when using the TEXTIO and
STD_LOGIC_TEXTIO packages?

(A) Arithmetic operators for the types bit and bit_vector.

(B) Functions that allow all operators in the standard package to be used on all
data types from the same package.

(C) The ability to read and write from external files.

(D) New data types that can take on more values beyond 0’s and 1’s in order to
more accurately model modern digital systems.

6.4 Other Common Packages

6.4.1 NUMERIC_STD_UNSIGNED

When using the numeric_std package, the data types unsigned and signed must be used in order to
get access to the numeric operators. While this provides ultimate control over the behavior of the signal
operations and comparisons, many designs may only use unsigned types. In order to provide a
mechanism to treat all vectors as unsigned while leaving their type as std_logic_vector, the numeric_st-
d_unsigned package was created. When this package is used, it will treat all std_logic_vectors in the
design as unsigned. This package requires the std_logic_1164 and numeric_std packages to be
previously included. When used, all signals and ports can be declared as std_logic/std_logic_vector,
and they will be treated as unsigned when performing arithmetic operations and comparisons. The
following is an example of how to include this package.

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

use IEEE.numeric_std_unsigned.all;

The numeric_std_unsigned package contains a few more type conversions beyond the numeric_std
package. These additional conversions are as follows:

Name Input type Return type
To_Integer std_logic_vector integer
To_StdLogicVector unsigned std_logic_vector

6.4.2 NUMERIC_BIT

The numeric_bit package provides numerical computation for types bit and bit_vector. Since the
vast majority of VHDL designs today use types std_logic and std_logic_vector instead of bit/bit_vector,
this package is rarely used. This package is included by adding the following syntax at the beginning of
the VHDL file in the design.

library IEEE;
use IEEE.numeric_bit.all; -- defines types unsigned and signed
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The numeric_bit package is nearly identical to numeric_std. It defines data types unsigned and
signed, which provide information on the encoding style of the underlying data types bit and bit_vector.
All of the arithmetic, logical, and comparison functions defined in numeric_std are supported in
numeric_bit (+, —, *, /, mod, rem, abs, and, nand, or, nor, xor, xnor, not, >, <, <=, >=, =, |=) for
types unsigned and signed. This package also provides the same edge detection (rising_edge(),
falling_edge()), shift (shift_left(), shift_right()), and rotate (rotate_left(), rotate_right()) functions for
types unsigned and signed.

The primary difference between numeric_bit and numeric_std is that numeric_bit also provides
support for the shift/rotate operators from the standard package (sll, srl, rol, ror). Also, the conversion
functions are defined only for conversions between integer, unsigned, and signed.

Name Input type Return type

To_integer unsigned integer

To_integer signed integer

To_unsigned integer, <size> unsigned (size-1 downto 0)
To_signed integer, <size> signed (size-1 downto 0)

6.4.3 NUMERIC_BIT_UNSIGNED

The numeric_bit_unsigned package provides a way to treat all bit/bit_vectors in a design as
unsigned numbers. The syntax for including the numeric_bit_unsigned package is shown below. In
this example, all bit/bit_vectors will be treated as unsigned numbers for all arithmetic operations and
comparisons.

library IEEE;
use IEEE.numeric_bit.all;
use IEEE.numeric_bit_unsigned.all;

The numeric_bit_unsigned package contains a few more type conversions beyond the numeric_bit
package. These additional conversions are as follows:

Name Input type Return type
To_integer std_logic_vector integer
To_BitVector unsigned bit_vector

6.4.4 MATH_REAL

The math_real package provides numerical computation for the type real. The type real is the VHDL
type used to describe a 32-bit floating point number. None of the operators provided in the math_real
package are synthesizable. This package is primarily used for test benches. This package is included by
adding the following syntax at the beginning of the VHDL file in the design.

library IEEE;
use IEEE.math_real.all;
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The math_real package defines a set of commonly used constants, which are shown below.

Constant name Type Value

MATH_E real 2.718
MATH_1_E real 0.367
MATH_PI real 3.141
MATH_1_PI real 0.318
MATH_LOG_OF_2 real 0.693
MATH_LOG_OF_10 real 2.302
MATH_LOG2_OF_E real 1.442
MATH_LOG10_OF_E real 0.434
MATH_SQRT2 real 1.414
MATH_SQRT1_2 real 0.707
MATH_SQRT_PI real 1.772
MATH_DEG_TO_RAD real 0.017
MATH_RAD_TO_DEG real 57.295

Description

Value of e

Value of 1/e

Value of pi

Value of 1/pi

Natural log of 2

Natural log of10

Log base 2 of e

Log base 10 of e

Sqrt of 2

Sqrt of 1/2

Sart of pi

Conversion factor from degree to radian
Conversion factor from radian to degree

Only three digits of accuracy are shown in this table; however, the constants defined in the
math_real package have full 32-bit accuracy. The math_real package provides a set of commonly

used floating point operators for the type real.

Function name Return type

SIGN real
CEIL real
FLOOR real
ROUND real
FMAX real
FMIN real
SQRT real
CBRT real
** real
EXP real
LOG real
SIN real
cos real
TAN real
ASIN real
ACOS real
ATAN real
ATAN2 real
SINH real
COSH real
TANH real
ASINH real
ACOSH real
ATANH real

Description

Returns sign of input

Returns smallest integer value
Returns largest integer value
Rounds input up/down to whole number
Returns largest of two inputs
Returns smallest of two inputs
Returns square root of input
Returns cube root of input
Raise to power of (X**Y)

eX

log(X)

sin(X)

cos(X)

tan(X)

asin(X)

acos(X)

atan(X)

atan(X/Y)

sinh(X)

cosh(X)

tanh(X)

asinh(X)

acosh(X)

atanh(X)
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6.4.5 MATH_COMPLEX

The math_complex package provides numerical computation for complex numbers. Again, nothing
in this package is synthesizable and is typically used only for test benches. This package is included by
adding the following syntax at the beginning of the VHDL file in the design.

library IEEE;
use IEEE.math_complex.all;

This package defines three new data types, complex, complex_vector, and complex_polar. The
type complex is defined with two fields, real and imaginary. The type complex_vector is a linear array of
type complex. The type complex_polar is defined with two fields, magnitude and angle. This package
provides a set of common operations for use with complex numbers. This package also supports the
arithmetic operators +, —, *, and / for the type complex.

Function name Return type Description

CABS real Absolute value of complex number

CARG real (radians) Returns angle of complex number

CMPLX complex Returns complex number form of input

CONJ complex or Returns complex conjugate
complex_polar

CSQRT real Returns square root

CEXP real Returns e? of complex input

COMPLEX_TO_POLAR complex_polar Convert complex to complex_polar

POLAR_TO_COMPLEX complex Convert complex_polar to complex

6.4.6 Legacy Packages (STD_LOGIC_ARITH/UNSIGNED/SIGNED)

Prior to the release of the numeric_std package by IEEE, Synopsis, Inc. created a set of packages to
provide computational operations for types std_logic and std_logic_vector. Since these arithmetic
packages were defined very early in the life of VHDL, they were widely adopted. Unfortunately, due to
these packages not being standardized through a governing body such as IEEE, vendors began
modifying the packages to meet proprietary needs. This led to a variety of incompatibility issues that
have plagued these packages. As a result, all new designs requiring computational operations should be
based on the IEEE numeric_std package. While the IEEE standard is the recommended numerical
package for VHDL, the original Synopsis packages are still commonly found in designs and in design
examples, so providing an overview of their functionality is necessary.

Synopsis, Inc. created the std_logic_arith package to provide computational operations for types
std_logic and std_logic_vector. Just as with the numeric_std package, this package defines two new
types, unsigned and signed. Arithmetic, comparison, and shift operators are provided for these types
thatinclude +, —, *, abs, >, <, <=, >=, =, /=, shl, and shr. This package also provides a set of conversion
functions between types unsigned, signed, std_logic_vector, and integer. The syntax for these
conversions is as follows:

Name Input type Return type
CONV_INTEGER unsigned integer
CONV_INTEGER signed integer
CONV_UNSIGNED integer, <size> unsigned
CONV_UNSIGNED signed unsigned
CONV_SIGNED integer, <size> signed

CONV_SIGNED unsigned signed
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Name Input type Return type

CONV_STD_LOGIC_VECTOR integer, <size> std_logic_vector(size-1 downto 0)
CONV_STD_LOGIC_VECTOR unsigned, <size> std_logic_vector(size-1 downto 0)
CONV_STD_LOGIC_VECTOR signed, <size> std_logic_vector(size-1 downto 0)

The Synopsis packages have the ability to treat all std_logic_vectors in a design as either unsigned
or signed by including an additional package. The std_logic_unsigned package, when included in
conjunction with the std_logic_arith package, will treat all std_logic_vectors in the design as unsigned
numbers. The syntax for using the Synopsis arithmetic packages on unsigned numbers is as follows.
The std_logic_1164 package is required to define types std_logic and std_logic_vector. The
std_logic_arith package provides the computational operators for types std_logic and std_logic_vector.
Finally, the std_logic_unsigned package treats all std_logic and std_logic_vector types as unsigned
numbers when performing arithmetic operations.

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

The std_logic_signed package works in a similar manner with the exception that it treats all
std_logic and std_logic_vector types as signed numbers when performing arithmetic operations. The
std_logic_unsigned and std_logic_signed packages are never used together since they will conflict with
each other.

The syntax for using the std_logic_signed package is as follows:

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_signed.all;

One of the more confusing aspects of the Synopsis packages is that they are included in the IEEE
library. This means that both the numeric_std package (IEEE standard) and the std_logic_arith package
(Synopsis, nonstandard) are part of the same library, but one is recommended, while the other is not.
This is due to the fact that the Synopsis packages were developed first and putting them into the IEEE
library was the most natural location since this library was provided as part of the VHDL standard. When
the numeric_std package was standardized by IEEE, it also was naturally inserted into the IEEE library.
As a result, today’s IEEE library contains both styles of packages.

CC6.4 Why doesn’t the VHDL standard package simply include all of the functionality that has
been created in all of the packages that were developed later?

(A) There was not sufficient funding to keep the VHDL standard package updated.

(B) If every package was included, compilation would take an excessive amount
of time.

(C) Explicitly defining packages helps remind the designer the proper way to
create a VHDL model.

(D) Because not all designs require all of the functionality in every package. Plus,
some packages defined duplicate information. For example, both the
numeric_bit and numeric_std have data types called unsigned.
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Summary

The IEEE STD_LOGIC_1164 package
provides more realistic data types for modeling
modern digital systems. This package
provides the std_ulogic and std_logic data
types. These data types can take on nine dif-
ferent values (U, X, 0, 1, Z, W, L, H, and -).
The std_logic data type provides a resolution
function that allows multiple outputs to be
connected to the same signal. The resolution
function will determine the value of the signal
based on a pre-defined priority given in the
function.

The IEEE STD_LOGIC_1164 package
provides logical operators and edge detec-
tion functions for the types std_ulogic and
std_logic. It also provides conversion
functions to and from the type bit.

Exercise Problems

Sec
6.1.1

6.1.2

6.1.3

Sec
6.2.1

6.2.2

6.2.3

6.2.4

tion 6.1: STD_LOGIC_1164

What are all the possible values that a signal of
type std_logic can take on?

What is the difference between the types
std_ulogic and std_logic?

If a signal of type std_logic is assigned both a
0 and Z at the same time, what will the final
signal value be?

If a signal of type std_logic is assigned both a
1 and X at the same time, what will the final
signal value be?

If a signal of type std_logic is assigned both a
0 and L at the same time, what will the final
signal value be?

Are any arithmetic operations provided for the

type std_logic_vector in the
STD_LOGIC_1164 package?

tion 6.2: NUMERIC_STD

If you declare a signal of type unsigned from
the NUMERIC_STD package, what are all the
possible values that the signal can take on?

If you declare a signal of type signed from the
NUMERIC_STD package, what are all the pos-
sible values that the signal can take on?

If two signals (A and B) are declared of type
signed from the NUMERIC_STD package and
hold the values A <= “1111”" and B <= “0000”,
which signal has a greater value?

If two signals (A and B) are declared of type
unsigned from the NUMERIC_STD package

% The IEEE NUMERIC_STD package
provides the data types unsigned and
signed. These types use the underlying
data type std_logic. These types provide the
ability to treat vectors as either unsigned or
two’s complement codes.

% The IEEE NUMERIC_STD package
provides arithmetic operations for the types
unsigned and signed. This package also
provides conversions functions and type
casts to and from the types integer and
std_logic_vector.

% The TEXTIO and STD_LOGIC_TEXTIO
packages provide the functionality to read
and write to external files.

and hold the values A <= “1111" and
B <="0000", which signal has a greater value?

6.2.5  If you are using the NUMERIC_STD package,
what is the syntax to convert a signal of type
unsigned into std_logic_vector?

6.2.6  If you are using the NUMERIC_STD package,
what is the syntax to convert a signal of type
integer into std_logic_vector?

Section 6.3: TEXTIO and STD_LOGIC_
TEXTIO
6.3.1 What does the keyword file accomplish?

6.3.2 What is the difference between the commands
write and writeline?

6.3.3  Can two different types of information be writ-
ten to a line variable in one command?

6.3.4  What is the name of the special file handle

reserved for the standard output of a
computer?

Section 6.4: Other Common Packages

6.4.1 What is the impact of including the
NUMERIC_STD_UNSIGNED package?

6.4.2 Does the NUMERIC-BIT package support
resolved data types?

6.4.3  Are the functions in the MATH_REAL and
MATH_COMPLEX package synthesizable?

6.44 Can the NUMERIC_STD and
STD_LOGIC_ARITH packages be used at
the same time? Explain why or why not?
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Chapter 7: Test Benches

The functional verification of VHDL designs is accomplished through simulation using a test bench.
A test bench is a VHDL system that instantiates the system to be tested as a component and then
generates the input patterns and observes the outputs. VHDL provides a variety of capability to design
test benches that can automate stimulus generation and provide automated output checking. These
capabilities can be expanded by including packages that take advantage of reading/writing to external
I/0. This chapter provides the details of VHDL'’s built-in capabilities that allow test benches to be created
and some examples of automated stimulus generation and using external files.

Learning Outcomes—After completing this chapter, you will be able to:

71 Design a VHDL test bench that manually creates each stimulus pattern using a series of
signal assignments and wait statements within a process.

7.2 Design a VHDL test bench that uses for loops to automatically generate an exhaustive set
of stimulus patterns.

7.3 Design a VHDL test bench that automatically checks the outputs of the system being
tested using report and assert statements.

7.4 Design a VHDL test bench that uses external 1/O as part of the testing procedures

including reading stimulus patterns from, and writing the results to, external files.

7.1 Test Bench Overview

Creating the testing strategy for a design is a critical piece of the digital design process. In
HDL-based testing, the system being tested is often called a device under test (DUT) or unit under
test (UUT). Test benches are only used for simulation so we can use abstract modeling techniques that
are unsynthesizable to generate the stimulus patterns. VHDL also contains specific functionality to report
on the status of a test and also automatically check that the outputs are correct. Example 7.1 shows how
to create a simple test bench to verify the operation of SystemX. The test bench does not have any inputs
or outputs; thus there are no ports declared in the entity. SystemX is declared as a component in the test
bench and then instantiated (DUT1). Internal signals are declared to connect to the component under
test (A_TB, B_TB, C_TB, F_TB). A process is then used to drive the inputs of SystemX. Within the
process, wait statements are used to control the execution of the signal assignments; thus the process
does not have a sensitivity list. Each possible input code is generated within the process. The output
(F_TB) is observed using a simulation tool in either the form of a waveform or a table listing.
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Example: Creating a VHDL Test Bench

SystemX_TB
. The design to be tested
/ Stimulus SystemX (DUT) L is :ecfas:gg aos ae s

The test bench is A_TB |A

; component and
of1|o]1]o]1]o]1

typically named the J—Ll_l_n_l_ instantiated in the test

jvait:? ?Btp:t?hilz? oot Too[iT iB_TB [B F| F_TB | bench. Signalsare

declared to connect to

000 0|| 111 iC_TB |C \ the ports of the DUT.
b. | \\\\

rd .
Stimulus patterns are generated in the test The output of the DUT can be viewed as a
bench and driven into the DUT. The patterns waveform in a simulation tool. VHDL also has
should cover every possible input condition. constructs to perform automated checking

against a description of the expected outputs.

library IEEE;
use IEEE.std logic_1164.all;

entity SystemX TB is
end entity;

architecture SystemX TB arch of SystemX TB is

component SystemX -- Component Declaration
port (A, B, C : in std logic;
F : out std logic);
end component;

signal A TB, B TB, C TB : std logic; -- Signal Declaration
signal F_TB : std_logic;
begin
DUT1 : SystemX port map (A => A TB, =-- DUT Instantiation
B => B _TB,
C => C_TB,
F => F TB);

.

-- Stimulus Generation
STIMULUS : process

begin
ATB <= "'0'; BTB <= '0'; CTB <= '0'; wait for t wait;
A TB <= '0'; BTB <= '0'; C_TB <= 'l'; wait for t wait;
ATB <= '0'; B_TB <= 'l'; C_TB <= '0'; wait for t_wait;
A TB <= '0'; BTB <= 'l'; CTB <= '1l'; wait for t wait;
A TB <= '1'"; BTB <= '0'; CTB <= '0'; wait for t wait;
ATB <= '1'; B_TB <= '0'; C_TB <= 'l'; wait for t_wait;
A TB <= '1'; BTB <= 'l'; CTB <= '0'; wait for t wait;
ATB <= '1'; BTB <= 'l'; CTB <= 'l'; wait for t wait;

end process;

end architecture;

Example 7.1
Creating a VHDL test bench

CC7.1 How can the output of a DUT be verified when it is connected to a signal that does not go
anywhere?

(A) It can’t. The output must be routed to an output port on the test bench.
(B) The values of any dangling signal are automatically written to a text file.
(C) ltis viewed in the logic simulator as either a waveform or text listing.

(D) It can’t. A signal that does not go anywhere will cause an error when the
VHDL file is compiled.
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7.2 Generating Stimulus Vectors Using For Loops

Typically, testing a DUT under all possible input conditions is necessary to verify functionality.
Testing under each and every input condition can require a large number of input conditions. As a
case study, consider an n-bit adder. To test an n-bit adder under each and every numeric input condition
will take (2")? test vectors. For a simple 4-bit adder, this equates to 256 input patterns. Even for a small
circuit such as this, the large number of input patterns precludes the use of manual signal assignments in
the test bench to stimulate the circuit. One approach to automatically generating an exhaustive set of
input test patterns is to use nested for loops. Example 7.2 shows a test bench that uses two nested for
loops to generate the 256 unique input conditions for the 4-bit ripple carry adder designed back in
Example 4.8. Note that the loop variables j and j are automatically created when the loops are declared.
Since the loop variables are defined as integers, type conversions are required prior to driving the values
into the RCA. The simulation waveform illustrates how the ripple carry adder has a noticeable delay
before the output sum is produced. During the time the carry is rippling through the adder chain, glitches
can appear on each of the sum bits in addition to the carry out signal. The values in this waveform are
displayed as unsigned decimal symbols to make the results easier to interpret.

Example: VHDL Test Bench for a 4-Bit Ripple Carry Adder Using Nested For Loops

Nested for loops can be used in order to generate an exhaustive set of test vectors to
stimulate the adder.

library IEEE;
use IEEE.std logic_1164.all;
use IEEE.numeric_std.all;

entity rca 4bit_TB is
end entity;

architecture rca_4bit TB_arch of rca_4bit TB is

component rca_4bit
pert (A, B : in std_logic vector(3 downto 0);
Sum : out std_logic_wector (3 downto 0);
Cout : out std_logic);
end component;

signal A TB, B_TB, Sum_TB : std_logic_vector (3 downto 0);
signal Cout_TB : std_legic;

begin
DUT : rca_4bit port map (A_TB, B_TB, Sum_TB, Cout_TB);

STIM : process
begin

for i in 0 to 15 locop
for j in 0 to 15 loop
A TB <= std logic vector(to_unsigned(i,d));
B_TB <= std_logic_vector(to_unsigned(j,4)):
wait for 30 ns;
end loop;
end loop;

end process;

end architecture;

The simulation waveform for the ripple carry adder is as follows. The numbers are shown
in unsigned decimal format for readability.

12 2 o : : — b ]

s4BTE 8 hz 13 it} hs b I

4 Sum T8 3 KT ,\'& ls 1o I 113 )

S CoutVH |1 - —_—
Now 6000 ns 3 g ) 1360 ns i 1400 ns i 1440 s

2+12=14, so the adder operates correctly. Notice the effect of the
ripple through the circuit. In addition to the correct output being
delayed, there are glitches on both the Sum and C,,, ports.

Glitches due to ripple delay.

Example 7.2
VHDL test bench for a 4-bit ripple carry adder using nested for loops
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CC7.2 If you used two nested for loops to generate an exhaustive set of patterns for the inputs
of an 8-bit adder, how many patterns would be generated? There is no carry-in bit.

(A) 16
(B) 256
() 512
(D) 65,536

7.3 Automated Checking Using Report and Assert Statements

7.3.1 Report Statement

The keyword report can be used within a test bench in order to provide the status of the current test.
A report statement will print a string to the transcript window of the simulation tool. The report output also
contains an optional severity level. There are four levels of severity (ERROR, WARNING, NOTE, and
FAILURE). The severity level FAILURE will halt a simulation, while the levels ERROR, WARNING, and
NOTE will allow the simulation to continue. If the severity level is omitted, the report is assumed to be a
severity level of NOTE. The syntax for using a report statement is as follows:

report "string to be printed" severity <level>;

Let’s look at how we could use the report function within the example test bench to print the current
value of the input pattern to the transcript window of the simulator. Example 7.3 shows the new process
and resulting transcript output of the simulator when using report statements.
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Example: Using Report Statements in a VHDL Test Bench
Report statements are inserted in the process to indicate the current stimulus pattern.

STIMULUS : process

begin
A TB <= '0'; B_TB
report "Inputting
A TB <= '0'; B_TB
report "Inputting
A TB <= '0'; B_TB
report "Inputting
A TB <= '0'; BTB
report "Inputting
A_TB <= '1'; B_TB
report "Inputting
A_TB <= 'l'; B_TB
report "Inputting
A_TB <= 'l'; B_TB
report "Inputting
A TB <= 'l'; B_TB
report "Inputting

end process;

= '0';
Pattern
= 'Q';
Pattern
<= '1';
Pattern
<= '1';
Pattern
= 10';
Pattern
= 10';
Pattern
<= '1l';
Pattern
<= '1l';
Pattern

C_TB
ooo"
C_TB
001"
C_TB
oTo"
C TB
011"
c_TB
100"
C_TB
101"
C_TB
170"
C_TB
111"

= '0'; wait for
severity NOTE;

= 'l'; wait for
severity NOTE;

<= '0'; wait for
severity NOTE;
<= 'l'; wait for

severity NOTE;
= '0'; wait for
severity NOTE;
<= 'l'; wait for
severity NOTE;
<= '0'; wait for
severity NOTE;
<= 'l'; wait for
severity NOTE;

125
125
125
125
125
125
125
125

ns;

ns;

ns;

ns;

ns;

ns;

ns;

ns;

The following is the transcript showing the results of the report statements.

:'q-;_ e

+

VSIM 4> run

W e e e e e e e e e e e

VSIM 5>

# ** Note:
L] Time:
** Note:
Time:
*+ Hote:
Time:
** Note:
Time:
**+ Note:
Time:
** Note:
Time:
**+ Note:
Time:
*+ Note:
Time:

Inputting Pattern
125 ns
Inputting Pactern
250 ns
Inputting Pattern
375 ns
Inputting Pattern
500 ns
Inputting Pattern
625 ns
Inputting Pattern
750 ns
Inputting Pactern
875 ns
Inputting Pattern

Iteration:

Iteration:

Iteration:

Iteration:

Iteration:

Iteration:

Iteration:

000

001

010

011

100

101

110

11

0 Inscance:

0 Instance:

0 Inscance:

0 Inscance:

0 Instance:

0 Inscance:

0 Instance:

fsystemx_tb
/aystemx_tb
/aystemx_tb
/systemx_tb
fsystemx_tb
/systemx_tb

/aystemx_tb

1 us Iteration: 0 Instance: /systemx_tb

[ !

Example 7.3

Using report statements in a VHDL test bench

7.3.2 Assert Statement

The assert statement provides a mechanism to check a Boolean condition before using the report
statement. This allows report outputs to be selectively printed based on the values of signals in the
system under test. This can be used to either print the successful operation or the failure of a system. If
the Boolean condition associated with the assert statement is evaluated true, it will not execute the
subsequent report statement. If the Boolean condition is evaluated false, it will execute the subsequent
report statement. The assert statement is always used in conjunction with the report statement. The
following is the syntax for the assert statement.

assert boolean_condition report "string" severity <level>;

Let’s look at how we could use the assert function within the example test bench to check whether
the output (F_TB) is correct. In the example in Example 7.4, the system passes the first pattern but fails

the second.
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Example: Using Assert Statements in a VHDL Test Bench
Assert statements are used to check the correctness of the system outputs.

STIMULUS : process
begin
A TB <= '0'; BTB <= '0'; CTB <= '0'; wait for 125 ns;
assert (F_TB='l') report "Failed test at 000" severity FAILURE;
assert (F_TB='0') report "Passed test at 000" severity NOTE;

A TB <= '0'; B_TB <= '0'; C_TB <= 'l'; wait for 125 ns;
assert (F_TB='l') report "Failed test at 001" severity FAILURE;
assert (F_TB='0') report "Passed test at 001" severity NOTE;

end process;

An intentional failure was introduced at the second input pattern to show how the
simulation will end if a report statement is issued with a severity level of FAILURE. The
following is the output of the transcript for this case.

f-] Transcript s Hd %
VSIM 6> run ;I
# ** Note: Passed test at 000

] Time: 125 ns Iteration: 0 Inatance: /systemx_tb

# ** Failure: Failed test at 001

# Time: 250 ns Iteration: 0 Process: /systemx tb/STIMULUS File: C:/
Users/lameres/Desktop/EE261_VHDL/ModelSim/Ch08_VHDL_Part2/Test_Bench_Sys
temX/SyscemX IB.vhd

Example 7.4
Using assert statements in a VHDL test bench

CC7.3 What is the main limitation of the built-in report and assert statements when using them
for test benches?

(A) They cannot print the value of a signal.
(B) They can halt a simulation when an error is discovered.
(C) They allow severity levels to be associated along with the report statement.

(D) They automatically report the time at each report statement.

7.4 Using External I/O in Test Benches

7.4.1 Writing to an External File from a Test Bench

When it is desired to report larger amounts of data, writing to the transcript becomes impractical and
an external file is needed. In order to write to an external file from a test bench, the textio and
std_logic_textio packages are needed. To illustrate how to do this, let's look at an example of a test
bench that writes information about the tests being conducted to an external file. Example 7.5 shows the
model for the system to be tested (SystemX) and an overview of the test bench approach (SystemX_TB).
Note that the DUT does not need to include the textio and std_logic_textio packages as the file writing
functionality exists within the test bench file.
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SystemX
AABC Fl—
ABC|F
0 0O0]1
001]0
010][1
01 1fo
1 00]0
10 1|0
11 0]1
1110

SystemX_TB

Example: Writing to an External File from a Test Bench (Part 1)
The following combinational logic circuit is implemented as follows:

library IEEE;
use IEEE.std logic_1164.all;

entity SystemX is

F : out std logic);
end entity;

architecture SystemX arch of SystemX is
begin
SystemX Proc : process (ABC)
begin
case (ABC) is
when "000"["010"|"110" => F <=
when others => F <=
end case;
end process;
end architecture;

port (ABC : in std logic_vector (2 downto 0);

1 ;
0 ;

Dlilﬂlllo :lﬂll
DOI\ ||Oﬂ|||
0000[\ y 8 B |

..Stimulus

SystemX (DuT) output_file.txt
ABC_TB 3 F_TB N
ARG B > | External
»| File

A test bench is created to drive in all possible binary codes into the system to test its
functionality. The input codes (ABC_TB) and the DUT output (F_TB) will be written to an
external file called “output_file.txt".

Example 7.5

Writing to an external file from a test bench (Part 1)

Example 7.6 shows the details of the test bench model. In this test bench, a file is declared in order
to create “output_file.txt.” This file is given the handle Fout. A line variable is also declared called
current_line to act as a temporary buffer to hold information that will be written to the file. The procedure
write() is used to add information to the line variable. The first write() procedure is used to create a text
message (“Beginning Test...”). Notice that since the information to be written to the line variable is of
type string, a conversion function must be used within the write() procedure (e.g., string (“Beginning
Test...”). This message is written as the first line in the file using the writeline() procedure. After an input
vector has been applied to the DUT, a new line is constructed containing both descriptive text, the input
vector value and the output value from the DUT. This message is repeated for each input code in the test

bench.
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Example: Writing to an External File from a Test Bench (Part 2)
The following test bench is created to perform the testing on SystemX.

library IEEE;
use IEEE.std logic_1164.all;
use IEEE.std logic_te

xtio.all;
. The std_logic_textio and textio packages are
i;‘;‘;g f:zié.io all: q—’> included to support external I/O access.

entity SystemX TB is
end entity;

architecture SystemX TB_arch of SystemX TB is

component SystemX Declaration of DUT I

port (ABC : in std_logic_vector(2 downto 0);
F : out std_logic) ;
end component;

Declaration of signals to
signal ABC TB : std logic_vector(2 downto 0); connect to DUT
signal F_TB : std_logic;

begin .__/,I Instantiation of DUT |

DUT : SystemX port map (ABC => ABC TB, F => F_TB);

STIMULUS : process /I Declare file for writing |

file Fout: TEXT open WRITE MODE is "output file.txt";

variable current line : line; - -
- ‘\I Declare line variable |

begin

write (current_line, string'("Beginning Test (Input=ABC, Output=F)"));
writeline (Fout, current line);

This write() procedure adds

ABC TB <= "000"; wait for 125 ns; text to the line variable.

write(current_ line, string' ("ABC="));
write (current line, ABC TB); : :
write (current line, string'(", F=")); :V:;:E[:]teoﬁz?;?;s of the line

write (current line, F_TB);
writeline (Fout, current line); ]S L firsti t catt

et first input pattern.
ABC TB <= "001"; wait for t wait; Write input pattern, output

This writeline() procedure

write(current line, string' ("ABC=")); valut_-! and c_rescriptive text to
write (current line, ABC TB); the line variable and then
write (current line, string' (", F=")); write the line variable to the
write (current line, F TB); file using writeline().

writeline (Fout, current line);

.

Repeat for next pattern.
wait; \ p P

end process; Repeat for all other possible
inputs (not shown for brevity).

end architecture;

Example 7.6
Writing to an external file from a test bench (Part 2)
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Example 7.7 shows the resulting file that is created from this test bench.

Example: Writing to an External File from a Test Bench (Part 3)
The file “output_file.txt" is created with the following contents.

| output_file.tdt - Notepad el |
Eile Edit Format \iew Help
Beginning Test (Input=ABC, Output=F)
ABC=000, F=1
ABC=001, F=0
ABC=010, F=1
ABC=011, F=0

f

ABC=100, F=0
ABC=101, F=0
ABC=110, F=1
ABC=111l, F=0

Example 7.7
Writing to an external file from a test bench (Part 3)

7.4.2 Writing to STD_OUTPUT from a Test Bench

The textio package also provides the ability to write to the standard output of the computer instead of
to an external file. The standard output of the computer is typically routed to the transcript window of the
simulator. This output mode is identical to how the report statement works but using the textio package
allows more functionality in the output text. The standard output of a computer is given a reserved file
handle called OUTPUT. When using this file handle, a new file does not need to be declared in the test
bench since it is already defined as part of the textio package. The reserved file handle name OUTPUT
can be used directly in the writeline() procedure.

Let’s look at an example of a test bench that outputs information about the test being conducted to
STD_OUT. Example 7.8 shows this test bench approach. The test bench is identical as the one used in
Example 7.6 with the exception that the writeline() procedure outputs are directed to the STD_OUTPUT
of the computer using the reserved file handle name OUTPUT instead of to an external file.
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Example: Writing to STD_OUTPUT from a Test Bench (Part 1)

This test bench directs the writeling() outputs to the STD_OUTPUT of the computer by
using the reserved file handle "OUTPUT".

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_textioc.all;

library STD;
use STD.textio.all;

entity SystemX TB is
end entity;

architecture SystemX TB arch of SystemX_TB is
component SystemX
port (ABC : in std logic_vector (2 downto 0);
F : out std_logic);
end component;

signal ABC TB : std_logic_vector (2 downto 0);
signal F_TB : std_logic;

begin
DUT : SystemX port map (ABC => ABC_TB, F => F_TB);
STIMULUS : process

variable current_line : line;

begin

write (current_line, string' ("Beginning Test (Input=ABC, Output=F)"));
writeline (QUTPUT, current_line);

ABC TB <= "000"; wait for 125 ns;

write (current_line, string' ("ABC="));
write (current_line, ABC TB);

write :currant_iine, strix;g' (", F=")); The reserved file handle
write (current line, F_TB); “ 1 I
writeline (OUTPUT, current_line); ————— WUTEST B e o g,

the writeline() output to the
computer STD_OUTPUT.

ABC TB <= "001"; wait for t_wait;

write (current line, string' ("ABC="));
write (current line, ABC TB);

write (current_line, string' (", F="));
write (current line, F TB);

writeline (OUTPUT, current line);

wait; \
end process; Repeat for all other possible

inputs (not shown for brevity).

end architecture;

Example 7.8
Writing to STD_OUT from a test bench (Part 1)

Example 7.9 shows the output from the test bench. This output is displayed in the transcript window
of the simulation tool.
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Example: Writing to STD_OUTPUT from a Test Bench (Part 2)
The results of the writeline() procedure is directed to the STD_OUTPUT of the computer,
which is shown in the transcript of the simulator.
-] Transcript it = H ﬂ
WSIM 232> run =
# Beginning Test (Input=ABC, Output=F)
# ABC=000, F=1
# ABC=001, F=0
# ABC=010, F=1
# ABC=011, F=0
# ABC=100, F=0
# ABC=101, F=0
# ABC=110, F=1
# ABC=111, F=0
YSIM 233> | 5

Example 7.9
Writing to STD_OUT from a test bench (Part 2)

7.4.3 Reading from an External File in a Test Bench

Let’s now look at an example of reading test vectors from an external file using the textio package.
Example 7.10 shows the test bench setup. In this example, the SystemX design from the prior example
will be tested using vectors provided by an external file (input_file.txt). The test bench will read in each
line of the file individually and sequentially. After reading a line, the test bench will drive the DUT with the
input vector. In order to verify correct operation, the results will be written to the STD_OUTPUT of the
computer.

Example: Reading From an External File in a Test Bench (Part 1)
An external file contains a set of input vectors that will be used to test the functionality of
SystemX. The vectors will be read line by line from the file and then sent to the DUT.
The input vectors and resulting output of SystemX will be written to STD_OUTPUT to

verify its correct operation. SystemX_TB
input_file.txt SystemX (DuT)
External |—m }:\BG_‘IIB-’3 ABC F = »
File STD_OUTPUT

| input_file.txt - Notepad [FP=RIE

Eile Edit Format View Help

000 -
001

010

011

In this example, the input file
contains only test vectors.

Example 7.10
Reading from an external file in a test bench (Part 1)
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In order to read the external vectors, a file is declared in READ_MODE. This opens the external file
and allows the VHDL test bench to access its lines. A variable is declared to hold the line that is read
using the readline() procedure. In this example, the line variable for reading is called
“current_read_line.” A variable is also declared that will ultimately hold the vector that is extracted
from current_read_line. This variable (called current_read_field) is declared to be of type
std_logic_vector(2 downto 0) because the vectors in the file are 3-bit values. Once the line is read
from the file using the readline() procedure, the vector can be read from the line variable using the read
() procedure. Once the value resides in the current_read_field variable, it can be assigned to the DUT
input signal vector ABC_TB. A set of messages are then written to the STD_OUTPUT of the computer
using the reserved file handle OUTPUT. The messages contain descriptive text in addition to the
values of the input vector and output value of the DUT. Example 7.11 shows the process to implement
this behavior in the test bench.

Example: Reading From an External File in a Test Bench (Part 2)
The following process reads external vectors from a file and drives them into SystemX.

STIMULUS : process Declare file for reading ‘

|

file Fin: TEXT open READ MODE is "input file.txt";

Declare read line variable ‘

|

variable current read line : line;
variable current read field : std logic vector(2 downto 0} ;
variable current write line : line;

[

Declare variable for vector

begin read from line variable
while (not endfile(Fin)) loop

Declare write line variable

readline (Fin, current_read line);
read (current_read line, current read field);

\[

Read line, read field
ABC_TE <= current_read field; wait for 125 ns; Assign field to ABC_TB

write (current_write line, string' ("Input Vector: ABC_TB="));
write (current write line, ABC TB);
write (current write_line, string'(" "));

write (current write line, string' ("DUT Output: F_TB="));
write (current write line, F TB);

writeline (OUTPUT, current write_line); '\

end loop;
| Write results to STD_OUTPUT

wait;

end process;

Example 7.11
Reading from an external file in a test bench (Part 2)
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Example 7.12 shows the results of this test bench, which are written to STD_OUTPUT.

- Transcript

Example: Reading From an External File in a Test Bench (Part 3)
The STD_OUTPUT provides the status of the test.

1+
Y

VSIM 262> run

Input Vector:
Input Vector:
Input Vector:
Input Vecrtor:
Input Vector:
Input Vector:
Input Vector:
Input Vector:

VSIM 263>

ABC_TB=000
ABC_TB=001
ABC_TB=010
ABC_TB=011
ABC_TB=100
ABC_TB=101
ABC_TB=110
ABC_TB=111

DUT
DUT
DUT
DUT
falipy
falipy
falipy
falipy

Output: F_TB=1
Output: F_TB=0
OQutput: F_TB=1
Qurput: TB=0
Qutput: F IB=0
Qucput: F IB=0
Qucput: F IB=1
Qucput: F IB=0

L x|

Example 7.12

Reading from an external file in a test bench (Part 3)

7.4.4 Reading Space-Delimited Data from an External File in a Test Bench

As mentioned earlier, information in a line variable is treated as white space-delimited by the read()
procedure. This allows more information than just a single vector to be read from a file. When a read()
procedure is performed on a line variable, it will extract information until it reaches either a white space or
the end-of-line character. If a white space is encountered, the read() procedure will end. Let’s look at an
example of how to read information from a file when it contains both strings and vectors. Example 7.13
shows the test bench setup where an external file is to be read that contains both a text heading and test
vector on each line. Since the header and the vector are separated with a white space character, two
read() procedures need to be used to independently extract these distinct fields from the line variable.

-

Example: Reading Space-Delimited Data from an External File in a Test Bench (Part 1)
An external file contains both a text heading and a vector on each line of the file. The
vectors will be used to drive the inputs of the DUT. The test bench will need to perform
two read() procedures to extract the two separate fields from the line variable.

STD_OUTPUT

SystemX_TB
input_file.txt SystemX (ouT)
External |—pl200=T8 3lagc g =TBl
File
==

7| input_file.txt - Notepad

Eile Edit Format View Help

vector0 000
vectorl 001
vector2 010
vector3 011
vectord 100
vector5 101
vector6 110
vector7 111

In this example, the input file
contains both text headers and
the test vectors separated by a
white space character.

Example 7.13

Reading space-delimited data from an external file in a test bench (Part 1)
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The test bench will transfer a line from the file into a line variable using the readline() procedure just
as in the previous example; however, this time two different variables will need to be defined in order to
read the two separate fields in the line. Each variable must be declared to be the proper type and size for
the information in the field. For example, the first field in the file is a string of seven characters. As a result,
the first variable declared (current_read_field1) will be of type string(1 to 7). Recall that strings are
typically indexed incrementally from left to right starting with the index 1. The second field in the file is a
3-bit vector, so the second variable declared (current_read_field2) will be of type std_logic_vector
(2 downto 0). Each time a line is retrieved from the file using the readline() procedure, two subsequent
read() procedures can be performed to extract the two fields from the line variable. The second field (i.e.,
the vector) can be used to drive the input of the DUT. In this example, both fields are written to
STD_OUTPUT in addition to the output of the DUT to verify proper functionality. Example 7.14 shows
the test bench process which models this behavior.

Example: Reading Space-Delimited Data from an External File in a Test Bench (Part 2)
The following process reads external vectors from a file and drives SystemX.

STIMULUS : process Declare file for reading |

\

file Fin: TEXT open READ MODE is "input file.txt";

Declare read line variable |
variable current read line : line;

variable current_read fieldl : string(l to 7); ¢
variable current read field2 : std_logic_vector(2 downto 0);¢—— I
variable current write line : line;

Declare separate variables
begin to hold the two different
fields in the line variable

while (not endfile(Fin)) loop

readline (Fin, current_read_line); Declare write line variable |
read (current read line, current read fieldl);
read(current read line, current read field2); &

Two read() procedures
ABC_TB <= current_read field2; are used to extract both
fields from the line

wait for 125 ns; variable

write (current_wx'ite_line i current_read_fieldl} i
write (current write_line, string'(" ")):
write (current_write_line, current_read_ field2);
write (current write_line, string'(" "))
write (current write_line, string' ("DUT Output: F_TB="));
write (current_write_line, F_TB);
writeline (OUTPUT, current_write_lina} >
end loop;

wait;

end process;

Example 7.14
Reading space-delimited data from an external file in a test bench (Part 2)
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Example 7.15 shows the results of this test bench, which are written to STD_OUTPUT.

Example: Reading Space-Delimited Data from an External File in a Test Bench (Part 3)
The STD_QUTPUT provides the status of the test.

-1 Transaipt

VSIM 268> run

# Vector0 000 DUT Cutput:
# Vectorl 001 DUT Output:
# Vector2 010 DUT Cutput:
# Vector3 011 DUT Cutput:
# Vectord 100 DUT Output:
# Vector5 101 DUT Cutput:
# Vector6é 110 DUT Qutput:
# Vector7 111 DUT Cutput:

=== =]

I

Lo R IR B R IR I R |
0onan
OHOODOKODOMH

(=]
o
]

VSIM 269> |

Example 7.15
Reading space-delimited data from an external file in a test bench (Part 3)

CC7.4 Canthe TEXT_IO and STD_LOGIC_TEXTIO packages accomplish the same function-
ality as a report statement? If so, how?

(A) Yes. If the line variable is simply written to the standard output of the com-
puter, it will show up in the transcript window of the simulator just like the
report statement does.

(B) No. These packages only operate on external files.

Summary

A simulation test bench is a VHDL file that
drives stimulus into a device under test
(DUT). Test benches do not have inputs or
outputs and are not synthesizable.

Stimulus patterns can be driven into a DUT
within a process using a series of signal
assignments with wait statements.

Stimulus patterns can also be automatically
generated using looping structures.

The VHDL standard package supports the
use of report and asserts statement to

Exercise Problems

Section 7.1: Test Bench Overview

711
71.2

What is the purpose of a test bench?
Does a test bench have input and output ports?

713
714

provide a text-based output for tracking the
status of a simulation.

The TEXTIO and STD_LOGIC_TEXTIO
allow the use of external files in test benches.
This is useful for reading in more sophisti-
cated input stimulus patterns and storing
large output sets to files.

Can a test bench be simulated?
Can a test bench be synthesized?
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Fig. 7.1
System

7.1.6

F=2as

Fig. 7.2
System

71.7

Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.1. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” ...). Your test bench should use a pro-
cess and individual signal assignments for
each pattern. Your test bench should change
the input pattern every 10 ns using the wait for
statement within your stimulus process.

N\

Systeml.vhd

ABCD FI—

4
_,(_
Note that the input to
the VHDL model is

declared as a 4-bit
vector.

DAL 0000 |00 |@
Y =1 Y == Y < Y= | PO . ¥} (@]
B O RO RO mO | om0 =0|0

| functionality

Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.2. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” ...). Your test bench should use a pro-
cess and individual signal assignments for
each pattern. Your test bench should change
the input pattern every 10 ns using the wait for
statement within your stimulus process.

SystemJ.vhd

0(4,57,1213,15) .ilABCD F

J functionality

Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.3. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” ...). Your test bench should use a pro-
cess and individual signal assignments for
each pattern. Your test bench should change
the input pattern every 10 ns using the wait for
statement within your stimulus process.

F=Ilaaco(3,7,11,15)

SystemK.vhd

A{ABCD F -

Fig. 7.3
System K functionality

7.1.8  Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.4. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” ...). Your test bench should use a pro-
cess and individual signal assignments for
each pattern. Your test bench should change
the input pattern every 10 ns using the wait for
statement within your stimulus process.

ABCD|F
00O0O|1
00O0A“1|0
00 10]1
00111 SystemL.vhd
01001 4
01101
01 111
100 0(1
100 1|0
101 0/(1
1011]0
11 0 01
11 01|0
111 01
11 1 111

Fig. 7.4

System L functionality

Section 7.2: Generating Stimulus Vectors
Using For Loops

7.21

7.2.2

Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.1. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” ...). Your test bench should use a sin-
gle for loop within a process to generate all of
the stimulus patterns automatically. Your test
bench should change the input pattern every
10 ns using a wait statement.

Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.2. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” ...). Your test bench should use a sin-
gle for loop within a process to generate all of
the stimulus patterns automatically. Your test
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7.2.5

bench should change the input pattern every
10 ns using a wait statement.

Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.3. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” ...). Your test bench should use a sin-
gle for loop within a process to generate all of
the stimulus patterns automatically. Your test
bench should change the input pattern every
10 ns using a wait statement.

Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.4. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” ...). Your test bench should use a sin-
gle for loop within a process to generate all of
the stimulus patterns automatically. Your test
bench should change the input pattern every
10 ns using a wait statement.

Design a VHDL model for an 8-bit Ripple Carry
Adder (RCA) using a structural design
approach. This involves creating a half adder
(half_adder.vhd), full adder (full_adder.vhd),
and then finally a top level adder (rca.vhd) by
instantiating eight full adder components.
Model the ripple delay by inserting 1 ns of
gate delay for the XOR, AND, and OR
operators using a delayed signal assignment.
The general topology and entity definition for
the design are shown in Example 4.6. Design a
VHDL test bench to exhaustively verify this
design under all input conditions. Your test
bench should use two nested for loops within
a process to generate all of the stimulus
patterns automatically. Your test bench should
change the input pattern every 30 ns using a
wait statement in order to give sufficient time
for the signals to ripple through the adder.

Section 7.3: Automated Checking Using
Report and Assert Statements

7.31

7.3.2

Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.1. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” ...). Your test bench should change
the input pattern every 10 ns using a wait
statement. Use the report and assert
statements to output a message on the status
of each test to the simulation transcript window.
For each input vector, create a message that
indicates the current input vector being tested,
the resulting output of your DUT, and whether
the DUT output is correct.

Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.2. Your
test bench should drive in each input code for
the vector ABCD in the order they would
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appear in a truth table (i.e., “0000,” “0001,”
“0010,” ...). Your test bench should change
the input pattern every 10 ns using a wait
statement. Use the report and assert
statements to output a message on the status
of each test to the simulation transcript window.
For each input vector, create a message that
indicates the current input vector being tested,
the resulting output of your DUT, and whether
the DUT output is correct.

Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.3. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” ...). Your test bench should change
the input pattern every 10 ns using a wait
statement. Use the report and assert
statements to output a message on the status
of each test to the simulation transcript window.
For each input vector, create a message that
indicates the current input vector being tested,
the resulting output of your DUT, and whether
the DUT output is correct.

Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.4. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” ...). Your test bench should change
the input pattern every 10 ns using a wait
statement. Use the report and assert
statements to output a message on the status
of each test to the simulation transcript window.
For each input vector, create a message that
indicates the current input vector being tested,
the resulting output of your DUT, and whether
the DUT output is correct.

Section 7.4: Using External I/O in Test
Benches

7.41

7.4.2

Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.1. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” ...). Your test bench should use a pro-
cess and individual signal assignments for
each pattern. Your test bench should change
the input pattern every 10 ns using the wait for
statement within your stimulus process. Write
the output results to an external file called
“output_vectors.txt” using the TEXTIO and
STD_LOGIC_TEXTIO packages.

Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.2. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” ...). Your test bench should use a pro-
cess and individual signal assignments for
each pattern. Your test bench should change
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the input pattern every 10 ns using the wait for
statement within your stimulus process. Write
the output results to the STD_OUTPUT of the
simulator using the TEXTIO and
STD_LOGIC_TEXTIO packages.

Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.3. Cre-
ate an input text file called “input_vectors.txt”
that contains each input code for the vector
ABCD in the order they would appear in a
truth table (i.e., “0000,” “0001,” “0010,” ...) on
a separate line. Use the TEXTIO and
STD_LOGIC_TEXTIO packages to read in
each line of the file individually and use the
corresponding input vector to drive the DUT.

744

Write the output results to an external file
called “output_vectors.ixt.”

Design a VHDL test bench to verify the func-
tional operation of the system in Fig. 7.4. Cre-
ate an input text file called “input_vectors.txt”
that contains each input code for the vector
ABCD in the order they would appear in a
truth table (i.e., “0000,” “0001,” “0010,” ...) on
a separate line. Use the TEXTIO and
STD_LOGIC_TEXTIO packages to read in
each line of the file individually and use the
corresponding input vector to drive the DUT.
Write the output results to the STD_OUTPUT
of the simulator.
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Chapter 8: Modeling Sequential
Storage and Registers

In this chapter, we will look at modeling sequential storage devices. We begin by looking at modeling
scalar storage devices such as D-latches and D-flip-flops and then move into multiple-bit storage models
known as registers.

Learning Outcomes—After completing this chapter, you will be able to:

8.1 Design a VHDL model for a single-bit sequential logic storage device.
8.2 Design a VHDL model for a register.

8.1 Modeling Scalar Storage Devices

8.1.1 D-Latch

Let’s begin with the model of a simple D-latch. Since the outputs of this sequential storage device
are not updated continuously, its behavior is modeled using a process. Since we want to create a
synthesizable model, we use a sensitivity list to trigger the process instead of wait statements. In the
sensitivity list, we need to include the C input since it controls when the D-latch is in track or store mode.
We also need to include the D input in the sensitivity list because during the track mode, the output Q will
be continuously assigned the value of D so any change on D needs to trigger the process. The use of an
if/then statement is used to model the behavior during track mode (C = 1). Since the behavior is not
explicitly stated for when C = 0, the outputs will hold their last value, which allows us to simply end the
if/then statement to complete the model. Example 8.1 shows the behavioral model for a D-latch.

Example: Behavioral Model of a D-Latch in VHDL

library IEEE;
use IEEE.std_logic_1164.all;

entity Dlatch is

—D Qf— port (C, D : in std_logic;
Q, On : out std_logic);
—C Qnt— end entity;
architecture Dlatch_arch of Dlatch is
begin
D_LATCH : process (C, D)
G D Q Qn begin
0 X | LastQ LastQn Store if (C = '1') then
10| 0 1 Track g e Emakdy
end if;
11 1 0 Track end process;

end architecture;

Example 8.1
Behavioral model of a D-latch in VHDL
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8.1.2 D-Flip-Flop

The rising edge behavior of a D-flip-flop is modeled using a (Clock‘event and Clock = ‘1’) Boolean
condition within a process. The (rising_edge(Clock)) function can also be used for type std_logic.
Example 8.2 shows the behavioral model for a rising edge triggered D-flip-flop with both Q and Qn
outputs.

Example: Behavioral Model of a D-Flip-Flop in VHDL
library IEEE;
D Q use IEEE.std logic_l1164.all;
T N entity Dflipflop is
port (Clock : in  std_logic;
D : in std_logic;
—> Qnj— Q, On : out std logic);
end entity;
architecture Dflipflop arch of Dflipflop is
CkD| Q Qn begin
0 X | LastQ LastQn Store D_FLIP FLOP : process (Clock)
1 X | LastQ LastQn Store begin
f 0 0 1 Update if (Clock'event and Clock='l') then
Q <= D; Qn <= not D;
F1 1 0 Update end if:
end process;
end architecture;
Example 8.2

Behavioral model of a D-flip-flop in VHDL

8.1.3 D-Flip-Flop with Asynchronous Resets

D-flip-flops typically have a reset line in order to initialize their outputs to a known state (e.g., Q =0,
Qn = 1). Resets are asynchronous, meaning that whenever they are asserted, assignments to the
outputs take place immediately. If a reset was synchronous, the output assignments would only take
place on the next rising edge of the clock. This behavior is undesirable because if there is a system
failure, there is no guarantee that a clock edge will ever occur. Thus, the reset may never take place.
Asynchronous resets are more desirable not only to put the D-flip-flops into a known state at startup but
also to recover from a system failure that may have impacted the clock signal. In order to model this
asynchronous behavior, the reset signal is placed in the sensitivity list. This allows both the clock and the
reset inputs to trigger the process. Within the process, an if/then/elsif statement is used to determine
whether the reset has been asserted or a rising edge of the clock has occurred. The if/then/elsif
statement first checks whether the reset input has been asserted. If it has, it makes the appropriate
assignments to the outputs (Q = 0, Qn = 1). If the reset has not been asserted, the elsif clause checks
whether a rising edge of the clock has occurred using the (Clock‘event and Clock = ‘1’) Boolean
condition. If it has, the outputs are updated accordingly (Q <= D, Qn <= not D). A final else statement
is not included so that assignments to the outputs are not made under any other condition. This models
the store behavior of the D-flip-flop. Example 8.3 shows the behavioral model for a rising edge triggered
D-flip-flop with an asynchronous, active LOW reset.
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Example: Behavioral Model of a D-Flip-Flop with Asynchronous Reset in VHDL

RCkD| Q Qn
—1° 9 0 X X| o 1 Reset
1 0 X |LastQ LastQn Store
_> anl— 1 1 X |LastQ LastQn Store
1 £ 0 0 1 Update
Reset 1 £ 1 1 0 Update
library IEEE;
use IEEE.std logic_1164.all;
entity Dflipflop is
port (Clock 1 in std logic;
Reset : in  std_logic;
D i in  std_logic;
Q, On : out std logic);

end entity;
architecture Dflipflop arch of Dflipflop is
begin

D_FLIP FLOP : process (Clock, Reset)
begin
if (Reset = '0') then
Q<= '0'; Qn <= '1"';
elsif (Clock'event and Clock='1l') then
Q <= D; Qn <= not D;
end if;
end process;

end architecture;

Example 8.3
Behavioral model of a D-flip-flop with asynchronous reset in VHDL

8.1.4 D-Flip-Flop with Asynchronous Reset and Preset

A D-flip-flop with both an asynchronous reset and asynchronous preset is handled in a similar
manner as the D-flip-flop in the prior section. The preset input is included in the sensitivity list in order to
trigger the process whenever a transition occurs on either the clock, reset, or preset inputs. An if/then/
elsif statement is used to first check whether a reset has occurred, then whether a preset has occurred
and, finally, whether a rising edge of the clock has occurred. Example 8.4 shows the model for a rising
edge triggered D-flip-flop with asynchronous, active LOW reset and preset.
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Example: Behavioral Model of a D-Flip-Flop with Asynchronous Reset and Preset in VHDL

end entity;
architecture Dflipflop_arch of Dflipflop is
begin

D_FLIP_FLOP : process (Clock, Reset, Preset)
begin
if (Reset = '0') then
Q<= '0'; Qn <= '1';
elsif (Preset = '0') then
Q<= "'l'; Qn <= '0';
elsif (Clock'event and Clock='1l') then
Q <= D; Qn <= not D;
end if;
end process;

end architecture;

PCk D| Q Qn
Preset 0 X X X| o0 1 Reset
D Q- 1.0 X X 1 0 Preset
1 1 0 X |LastQ LastQn Store
1 1 1 X |LastQ LastQn Store
D anf- 11 50| o0 1 Update
Reset 1 1 £ 1 1 0 Update
library IEEE;
use IEEE.std logic_1164.all;
entity Dflipflop is
port (Clock : dn std_logic;
Reset, Preset : in std leogic;
D i in  std_logic;
Q, On : out std logic);

Example 8.4

Behavioral model of a D-flip-flop with asynchronous reset and preset in VHDL

8.1.5 D-Flip-Flop with Synchronous Enable

An enable input is also a common feature of modern D-flip-flops. Enable inputs are synchronous,
meaning that when they are asserted, action is only taken on the rising edge of the clock. This means
that the enable input is not included in the sensitivity list of the process. Since action is only taken when
there is a rising edge of the clock, a nested if/then statement is included beneath the elsif (Clock‘event
and Clock = ‘1’) clause. Example 8.5 shows the model for a D-flip-flop with a synchronous enable
(EN) input. When EN = 1, the D-flip-flop is enabled, and assignments are made to the outputs only on the
rising edge of the clock. When EN = 0, the D-flip-flop is disabled, and assignments to the outputs are not
made. When disabled, the D-flip-flop effectively ignores rising edges on the clock, and the outputs

remain at their last values.
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Example: Behavioral Model of a D-Flip-Flop with Synchronous Enable in VHDL

Pk R PCKEND]| Q Qn
b al— 0 X X X X 0 1 Reset
1 0 X X X 1 0 Preset
— EN 1 1 0 X X |LastQ LastQn Store
] 1 1 1 X X|LastQ LastQn Store
1 1 £ 0 X |LastQ LastQn Disabled (ignore clock)
Reset 1 1 £1 0 0 1 Update
1. 1 # 4. 1 1 0 Update
library IEEE;
use IEEE.std logic_l164.all;
entity Dflipflop is
port (Clock : in std logic;
Reset, Preset : in  std_logic;
D, EN : in std legic;
Q, On : out std logic);
end entity;

architecture Dflipflop_arch of Dflipflop is
begin

D_FLIP_FLOP :
begin
if (Reset = '0') then
Q<= '0'; Qn <= '1';
elsif (Preset = '0') then

process (Clock, Reset, Preset)

Q<= '1'; Qn <= '0';
elsif (Clock'event and Clock='1l') then
if (EN = 'l') then
Q <= D; Qn <= not D; 3
end if; ,_\\\\Anested ifithen statement
end if; is used to model the

end process; synchronous enable.

end architecture;

Example 8.5
Behavioral model of a D-flip-flop with synchronous enable in VHDL

Ccs.1

Why is the D input not listed in the sensitivity list of a D-flip-flop?
(A) To simplify the behavioral model
(B) To avoid a setup time violation if D transitions too closely to the clock
(C) Because a rising edge of clock is needed to make the assignment
(D) Because the outputs of the D-flip-flop are not updated when D changes

8.2 Modeling Registers

8.2.1 Registers with Enables

The term register describes a circuit that operates in a similar manner as a D-flip-flop with the
exception that the input and output data are vectors. This circuit is implemented with a set of D-flip-flops
all connected to the same clock, reset, and enable inputs. A register is a higher level of abstraction that
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allows vector data to be stored without getting into the details of the lower-level implementation of the
D-flip-flop components. Register transfer level (RTL) modeling refers to a level of design abstraction in
which vector data is moved and operated on in a synchronous manner. This design methodology is
widely used in data path modeling and computer system design. Example 8.6 shows an RTL model of
an 8-bit, synchronous register. This circuit has an active low, asynchronous reset that will cause the 8-bit
output Reg_Out to go to 0 when it is asserted. When the reset is not asserted, the output will be updated
with the 8-bit input Reg_In if the system is enabled (EN = 1), and there is a rising edge on the clock. If
the register is disabled (EN = 0), the input clock is ignored. At all other times, the output holds its last
value.

Example: RTL Model of an 8-Bit Register in VHDL

8 a R Clk EN| Reg_Out
“Reg_In  Reg_Outp= 0 X X x"00" Reset
—EN 1 X 0 | LastReg_Out Disabled (ignore clock)
_> 1 0 1 | LastReg_Out Store
1 1 1 | LastReg_Out Store
Reset . Reg_In Update
library IEEE;
use IEEE.std logic_l164.all;
entity reg is
port (Clock : in std_leogic;
Reset : in  std_logic;
Reg_In : in  std logic_vwector (7 downto 0);
EN & dm std _logic;
Reg_Out : out std logic vector (7 downte 0));

end entity;

architecture reg arch of reg is

begin
Reg_Proc : process (Clock, Reset)
begin
if (Reset = '0') then

Reg_Out <= x"00";
elsif (Clock'event and Clock='l') then

if (EN = '1') then
Reg_Out <= Reg_In;
end if;
end if;

end process;

end architecture;

Example 8.6
RTL model of an 8-bit register in VHDL

8.2.2 Shift Registers

A shift register is a circuit which consists of multiple registers connected in series. Data is shifted
from one register to another on the rising edge of the clock. This type of circuit is often used in serial-to-
parallel data converters. Example 8.7 shows an RTL model for a 4-stage, 8-bit shift register. In the
simulation waveform, the data is shown in hexadecimal format.
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Example: RTL Model of a 4-Stage, 8-Bit Shift Register in VHDL

Di

use IEEE. sﬂg | logic_1164.all;

entity Shift Register is
port (Clock, Reset : in std logic;

n

Dout0, Doutl : out std_logic_vector(7 downto 0);
Dout2, Dout3 : out std_logic vector (7 downto 0));
end entity;
architecture Shift Register_ arch of Shift Register is

signal DO, D1, D2, D3 : std logic vector(7 downto 0);

begin
SHIFT : process (Clock, Reset)
begin
if (Reset = '0') then

DO <= x"00"; D1 <= x"00"; D2 <= x"00"; D3 <= x"00";
elsif (Clock'event and Clock='l') then
DO <= Din; D1 <= D0O; D2 <= D1; D3 <= D2;
end if;
end process;

Dout3 <= D3; Dout2 <= D2; Doutl <= D1; Dout( <= DO;

end architecture;

: in std logic_vector (7 downto 0);

= Salaal

i

3 -

—{Din  Dout0[7 Dout0 Dout1 Dout2 Dout3)
Dout1 734 8 8 : l - 7:Ll
Dgutz-/s- Din4D Q4 D QD Q=D Q

—  DouB[*~ D > > >

Reset =3 |_ |_ |_ |—
library IE

|# [ | ]
#Clock |0 TJ- L = o 8 e o O ) P 5 O O I
# Reset 1
=% Din 22 oo 11 2 33 Ja4a |55 66 [77 188 1[99 |AA [BB [cC [DD [EE [FF |
©¢ Doutd (11 00 +11 22 B mmmg‘-ma!m‘a: F
=4 Doutl 00 oo 5- 1 8 B
+¢ Doutz |00 00
¢ Dout3 0o
I-.A Now Mns)n, >
] 1 | +lsl
The Data shifts through the four, 8-bit registers on the rising edge of clock.
Example 8.7

RTL model of a 4-stage, 8-bit shift register in VHDL

8.2.3 Registers as Agents on a Data Bus

One of the powerful topologies that registers can easily model is a multi-drop bus. In this topology,
multiple registers are connected to a data bus as receivers or agents. Each agent has an enable line that
controls when it latches information from the data bus into its storage elements. This topology is
synchronous, meaning that each agent and the driver of the data bus are connected to the same clock
signal. Each agent has a dedicated, synchronous enable line that is provided by a system controller
elsewhere in the design. Example 8.8 shows this multi-drop bus topology. In this example system, three
registers (A, B, and C) are connected to a data bus as receivers. Each register is connected to the same

clock and reset signals. Each register has its own dedicated enable line (A_EN, B_EN, and C_EN).
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Example: Registers as Agents on a Data Bus - Topology

8-Bit Data Bus

I__,.Re.gﬁ.,._ 2 I_,,B?,QQ,,,_ . |
-Din B 7 : Din C7*

:EN

1 |  Enable lines are asserted
A_EN B_EN C_EN by a system controller.

Clock

Example 8.8
Registers as agents on a data bus: system topology

This topology can be modeled using RTL abstraction by treating each register as a separate
process. Example 8.9 shows how to describe this topology with an RTL model in VHDL. Notice that
the three processes modeling the A, B, and C registers are nearly identical to each other with the
exception of the signal names they use.

Example: Registers as Agents on a Data Bus — RTL Model in VHDL

library IEEE;
use IEEE.std logic_1164.all;

entity MultiDropBus is

port (Clock, Reset : in  std logic;
Data_ Bus : in  std_logic_vector (7 downto 0);
A EN, B EN, C_EN : in std_logic;
A, B, C : out std logic_vector (7 downto 0));
end entity;
architecture MultiDropBus_arch of MultiDropBus is
begin
A REG : process (Clock, Reset) Each register is m!odeled as a separate
“begin «—— process. The register has a
if (Reset = '0') then synchronous enable that controls when
A <= x"00"; it acquires data off of the data bus.

elsif (Clock'event and Clock='l') then
if (A_EN = 'l') then
A <= Data_ Bus;
end if;
end if;
end process;

B _REG : process (Clock, Reset)

“begin
if (Reset = '0') then
B <= x"00";

elsif (Clock'event and Clock='1l') then All registers are attached

if (B_EN = 'l') then to the data bus as
B <= Data Bus; e

end if; - UL

end if;

end process;

C_REG : process (Clock, Reset)
begin
if (Reset = '0') then
C <= x"00";
elsif (Clock'event and Clock='1') then
if (C_EN = 'l') then
C <= Data Bus;
end if; -
end if;
end process;

end architecture;

Example 8.9
Registers as agents on a data bus: RTL model in VHDL
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Example 8.10 shows the resulting simulation waveform for this system. Each register is updated
with the value on the data bus whenever its dedicated enable line is asserted.

Example: Registers as Agents on a Data Bus — Simulation Waveform

- -

- [

# Clock 0
# Reset 1 J
+ & Data_Bus |EE 00 a1 02 B3 Jaa 55 J66 [77 88 foos Jaa 88 Icc oo
& A_EN 1
# B_EN 0
# C_EN 0
s A 22 00 22
Y 55 00 55
2eC 88 00 lss
100 ns 150 ns 200 ns 250 ns 300 ns

Now 300ns § . 50 ns
|« o).
F

When a register's synchronous enable is asserted, it will latch
the value of data_bus on the next rising edge of clock

Example 8.10
Registers as agents on a data bus: simulation waveform

CC8.2 Does RTL modeling synthesize as combinational logic, sequential logic, or both? Why?

(A) Combinational logic. Since only one process is used for each register, it will be
synthesized using basic gates.

(B) Sequential logic. Since the sensitivity list contains clock and reset, it will
synthesize into only D-flip-flops.

(C) Both. The model has a sensitivity list containing clock and reset and uses an
iffthen statement indicative of a D-flip-flop. This will synthesize a D-flip-flop to
hold the value for each bit in the register. In addition, the ability to manipulate
the inputs into the register (using either logical operators, arithmetic
operators, or choosing different signals to latch) will synthesize into combi-
national logic in front of the D input to each D-flip-flop.

Summary

« A synchronous system is modeled with a
process and a sensitivity list. The clock and
reset signals are always listed by themselves
in the sensitivity list. Within the process is an
iffthen statement. The first clause of the
iffthen statement handles the asynchronous
reset condition, while the second elsif clause
handles the synchronous signal
assignments.

< Edge sensitivity is modeled within a process
using either the (clock‘event and clock = “1”)
syntax or an edge detection function

provided by the STD_LOGIC_1164 package
(i.e., rising_edge()).

Most D-flip-flops and registers contain a syn-
chronous enable line. This is modeled using
a nested if/then statement within the main
process if/then statement. The nested if/then
goes beneath the clause for the synchronous
signal assignments.

Registers are modeled in VHDL in a similar
manner to a D-flip-flop with a synchronous
enable. The only difference is that the inputs
and outputs are n-bit vectors.
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Exercise Problems

Section 8.1: Modeling Scalar Storage
Devices

8.1.1

8.1.2

How does a VHDL model for a D-flip-flop han-
dle treating reset as the highest priority input?

For a VHDL model of a D-flip-flop with a syn-
chronous enable (EN), why isn’t EN listed in
the sensitivity list?

For a VHDL model of a D-flip-flop with a syn-
chronous enable (EN), what is the impact of
listing EN in the sensitivity list?

For a VHDL model of a D-flip-flop with a syn-
chronous enable (EN), why is the behavior of
the enable modeled using a nested if/then
statement under the clock edge clause rather
than an additional elsif clause in the primary
ifthen statement?

Section 8.2: Modeling Registers

8.21

8.2.2

8.2.3

Fig. 8.1

In register transfer level modeling, how does
the width of the register relate to the number of
D-flip-flops that will be synthesized?

In register transfer level modeling, how is the
synchronous data movement managed if all
registers are using the same clock?

Design a VHDL RTL model of a 32-bit, syn-
chronous register. The block diagram for the
entity definition is shown in Fig. 8.1. The regis-
ter has a synchronous enable. The register
should be modeled using a single process.

RegisterX_32bit RTL.vhd

32 32
-4Data_In  Data_Out[*

EN

—P

Reset

T

32-Bit Register block diagram

8.24

Design a VHDL RTL model of an 8-stage,
16-bit shift register. The block diagram for the
entity definition is shown in Fig. 8.2. Each
stage of the shift register will be provided as
an output of the system (A, B, C, D, E, F, G, and
H). Use std_logic or std_logic_vector for all
ports.

Fig. 8.2

Shift_Register_16bit_x8.vhd
16
7~ Din

TG mMmOO®™>P
YFalalatahahataha

Reset

i

16-Bit shift register block diagram

8.2.5

Design a VHDL RTL model of the multi-drop
bus topology in Fig. 8.3. Each of the 16-bit
registers (RegA, RegB, RegC, and RegD) will
latch the contents of the 16-bit data bus if their
enable line is asserted. Each register should
be modeled using an individual process.

Agents_on_Bus.vhd

16
Data_Bus 45—+ | . AL, 16
s —7— RegA
A_EN — {EN
_?.R.e?s,e,t..,
g
1§ oo B s lus
B_EN — EN
_>Re$el
B -
—— RegC
C_EN — {EN
_?B.quﬁt
.
: —7l— RegD
D_EN — {EN
_?Bf,lg,e,l
> Reset
Fig. 8.3

Agents on a bus block diagram
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Chapter 9: Modeling Finite State
Machines

In this chapter, we will look at modeling finite state machines (FSMs). An FSM is one of the most
powerful circuits in a digital system because it can make decisions about the next output based on both
the current and past inputs. Finite state machines are modeled using the constructs already covered in
this book. In this chapter, we will look at the widely accepted three-process model for designing a FSM.

Learning Outcomes—After completing this chapter, you will be able to:

9.1 Describe the three-process modeling approach for FSM design.
9.2 Design a VHDL model for a FSM from a state diagram.

9.1 The FSM Design Process and a Push-Button Window
Controller Example

The most common modeling practice for FSMs is to create a new user-defined type that can take
on the descriptive state names from the state diagram. Two signals are then created of this type,
current_state and next_state. Once these signals are created, all of the functional blocks in the state
machine can use the descriptive state names in their conditional signal assignments. The synthesizer
will automatically assign the state codes based on the most effective use of the target technology (e.g.,
binary, gray code, one-hot). Within the VHDL state machine model, three processes are used to describe
each of the functional blocks, state memory, next state logic, and output logic. In order to examine how to
model a finite state machine using this approach, let's use a push-button window controller example.
Example 9.1 gives the overview of the design objectives for this example and the state diagram
describing the behavior to be modeled in VHDL.
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Example: Push-Button Window Controller in VHDL — Design Description
The window controller will send the appropriate control signals to a motor to open or close it
whenever a button is pressed. The system must keep track whether the window is open or
closed in order to send the correct signal, thus a state machine is needed. The block
diagram and state diagram for this system is shown below.
Block Diagram
& PBWC.vhd
— CW= Open
Open_CW cw
Press Window
Press = 1 ccw Motor
NoPress=0 —P Res etCIose_CCW
CCW = Close

State Diagram Press=1

(Open_CW=1,

Close_CCW= D

Press=0 w_closed w_open Press=0
(Open_CW=0, (Open_CW=0,
Close_CCW=0) Close_CCW=0)
Press=1
(Open_CW=0,
Close_CCW=1)
Example 9.1

Push-button window controller in VHDL: design description

Let's begin by defining the entity. The system has an input called Press and two outputs called
Open_CW and Close_CCW. The system also has clock and reset inputs. We will design the system to
update on the rising edge of the clock and have an asynchronous, active LOW, reset. Example 9.2
shows the VHDL entity definition for this example.

Example: Push-Button Window Controller in VHDL — Entity Definition

PBWC.vhd library IEEE;
use IEEE.std _logic_1164.all;
Open_CW |—

| Press entity PBWC is

port (Clock, Reset : in std_logic;

—> C|OSE_CCW — Press : in  std | |_logic;

Reset Open_CW, Close CCW : out std_. l_logic);
(i) end entity;

Example 9.2
Push-button window controller in VHDL: entity definition

9.1.1 Modeling the States with User-Defined, Enumerated Data Types

Now we begin designing the finite state machine in VHDL using behavioral modeling constructs. The
first step is to create a new user-defined, enumerated data type that can take on values that match the
descriptive state names we’ve chosen in the state diagram (i.e., w_closed and w_open). This is accom-
plished by declaring a new type before the begin statement in the architecture with the keyword type. For
this example, we will create a new type called State_Type and explicitly enumerate the values that it can
take on. This type can now be used in future signal declarations. We then create two new signals called
current_state and next_state of type State_Type. These two signals will be used throughout the VHDL
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model in order to provide a high-level, readable description of the FSM behavior. The following syntax
shows how to declare the new type and declare the current_state and next_state signals.

type State_Type is (w_closed, w_open) ;
signal current_state, next_state : State_Type;

9.1.2 The State Memory Process

Now we model the state memory of the FSM using a process. This process models the behavior of
the D-flip-flops in the FSM that are holding the current state on their Q outputs. Each time there is a rising
edge of the clock, the current state is updated with the next state value present on the D inputs of the
D-flip-flops. This process must also model the reset condition. For this example, we will have the state
machine go to the w_closed state when Reset is asserted. At all other times, the process will simply
update current_state with next_state on every rising edge of the clock. The process model is very similar
to the model of a D-flip-flop. This is as expected since this process will synthesize into one or more D-flip-
flops to hold the current state. The sensitivity list contains only Clock and Reset, and assignments are
only made to the signal current_state. The following syntax shows how to model the state memory of this
FSM example:

STATE_MEMORY : process (Clock, Reset)
begin
if (Reset ='0’) then
current_state <=w_closed;
elsif (Clock’event and Clock=’'1’) then
current_state <=next_state;
end if;
end process;

9.1.3 The Next State Logic Process

Now we model the next state logic of the FSM using a second process. Recall that the next state
logic is combinational logic, thus we need to include all of the input signals that the circuit considers in the
next state calculation in the sensitivity list. The current_state signal will always be included in the
sensitivity list of the next state logic process in addition to any inputs to the system. For this example,
the system has one other input called Press. This process makes assignments to the next_state signal. It
is common to use a case statement to separate out the assignments that occur at each state. At each
state within the case statement, an if/then statement is used to model the assignments for different input
conditions on Press. The following syntax shows how to model the next state logic of this FSM example.
Notice that we include a when others clause to ensure that the state machine has a path back to the reset
state in the case of an unexpected fault.

NEXT_STATE_LOGIC : process (current_state, Press)

begin
case (current_state) is
whenw_closed=>if (Press="'1") then
next_state <= w_open;
else
next_state <=w_closed;
end if;
whenw_open =>if (Press= "'1’) then
next_state <=w_closed;
else
next_state <=w_open;
end if;
when others => next_state <=w_closed;
end case;

end process;
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9.1.4 The Output Logic Process

Now we model the output logic of the FSM using a third process. Recall that output logic is
combinational logic, thus we need to include all of the input signals that this circuit considers in the
output assignments. The current_state will always be included in the sensitivity list. If the FSM is a Mealy
machine, then the system inputs will also be included in the sensitivity list. If the machine is a Moore
machine, then only the current_state will be present in the sensitivity list. For this example, the FSM is a
Mealy machine, so the input Press needs to be included in the sensitivity list. Note that this process only
makes assignments to the outputs of the machine (Open_CW and Close_CCW). The following syntax
shows how to model the output logic of this FSM example. Again, we include a when others clause to
ensure that the state machine has explicit output behavior in the case of a fault.

OUTPUT_LOGIC : process (current_state, Press)

begin
case (current_state) is
whenw_closed => if (Press="'1"') then
Open_CW<= "1’; Close_CCW<="'0";
else
Open_CW<="'0’; Close_CCW<="'0";
end if;
whenw_open =>if (Press="'1’) then
Open_CW<= '0"; Close_CCW<="1";
else
Open_CW<= '0"; Close_CCW<="'0";
end if;

when others =>0Open_CW<="'0"; Close_CCW<="'0";
end case;
end process;

Putting this all together in the VHDL architecture yields a functional model for the FSM that can be
simulated and synthesized. Once again, it is important to keep in mind that since we did not explicitly
assign the state codes, the synthesizer will automatically assign the codes based on the most efficient
use of the target technology. Example 9.3 shows the entire architecture for this example.
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Example: Push-Button Window Controller in VHDL — Architecture

architecture PBWC_ arch of PBWC is

R Declaration of user
type State_Type is (w_closed, w_open); ———  defined type for the
signal current_state, next_state : State_Type; signals current_state

begin and next_state.
STATE MEMORY : process (Clock, Reset) )
begin The first process is
if (Reset = '0') then ¥ used to model the
current_state <= w_closed; state memory.

elsif (Clock'event and Clock='l') then
current state <= next state;
end if; -
end process;

NEXT_STATE_LOGIC : process (current state, Press)

begin The second
case (current state) is +—— process is used
when w_closed => if (Press = 'l’') then to model the next
ds:ext_state <= w_open; state logic.
next_state <= w_closed;
end if;

when w_open => if (Press = 'l') then
next state <= w_closed;

else
next state <= w_open;
end if;
when others => next_state <= w_closed;

end case;
end process;

OUTPUT_LOGIC : process (current state, Press)+« —— The third process is

begin used to model the
case (current_state) is output logic.
when w closed => if (Press = 'l') then
= Open CW <= 'l'; Close_CCW <= '0';
else
Open_CW <= '0'; Close_CCW <= '0';
end if;

when w_open => if (Press = 'l') then
Open CW <= '0'; Close CCW <= '1';

else
Open CW <= '0'; Close CCW <= '0';
end if;
when others => Open_CW <= '0'; Close _CCW <= '0';

end case;
end process;

end architecture;

Example 9.3
Push-button window controller in VHDL: architecture

Example 9.4 shows the simulation waveform for this state machine. This functional simulation was
performed using ModelSim-Altera Starter Edition 10.1d.

Example: Push-Button Window Controller in VHDL — Simulation Waveform
The state mlachine moves to the next st]ate on the rising edge of the clock.
|

£ D | () + - l ]
# Clock i | | [ P
# Reset 1 [
# Pross o L
€ Open_CW 0 A

+ Close_CCW 0 L
# current_state w_closed w_closed /
# next_state _ w_closed w_closed 7L

When Press is asserted, the outputs and nex!_state are updated.

Example 9.4
Push-button window controller in VHDL: simulation waveform
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9.1.5 Explicitly Defining State Codes with Subtypes

In the prior example, we did not have control over the state variable encoding. While the previous
example is the most common way to model FSMs, there are situations where we would like to assign the
state variable codes manually. This is accomplished using a subtype and constants. A subtype is simply
a constrained type, meaning that it defines a subset of values that an existing type can take on. For
example, we could create a subtype to constrain the std_logic data type to only allow values of 0 and
1 and not the values of U, X, Z, W, L, H, and -. This would not be considered a new type since itis simply a
constraint put upon the existing std_logic type. A subtype defines the constraint and has a unique name
that can be used to declare other signals. To use this approach for manually encoding the states of a
FSM, we first declare a new subtype called State_Type that is simply a version of the existing type
std_logic. We then create constants to represent the descriptive state names in the state diagram. These
constants are given the type State_Type and a specific value. The value given is the state code we wish
to assign to the particular state name. Finally, the current_state and next_state signals are declared of
type State_Type. In this way, we can use the same VHDL processes as in the previous example that use
the descriptive state names from the state diagram. The following is the VHDL syntax for manually
assigning the state codes using subtypes. This syntax would replace the State_Type declaration in the
previous example. Example 9.5 shows the resulting simulation waveforms.

subtype State_Type is std_logic;

constant w_open : State_Type :="'0";

constant w_closed : State_Type :='1";

signal current_state, next_state : State_Type;

Example: Push-Button Window Controller in VHDL - Explicit State Codes
e Dotk 5
- P

# Clock

# Reset

# Prass

+ Open_CW

+ Close_CCW

+ current_state
_* next_state

R

Now  70ns . 100 w0ns” 300 a0ns T soms 60
The state machine operates exactly the same except that the simulation shows the state codes for
current_state and next_state (e.g., w_closed = 0 and w_open = 1) instead of the descriptive state names.

Example 9.5
Push-button window controller in VHDL.: explicit state codes

CC9.1 Why is it always a good design approach to model a generic finite state machine using
three processes?

(A) For readability
(B) So thatitis easy to identify whether the machine is a Mealy or Moore
(C) So that the state memory process can be re-used in other FSMs

(D) Because each of the three sub-systems of a FSM has unique inputs and
outputs that should be handled using dedicated processes
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9.2 FSM Design Examples

9.2.1 Serial Bit Sequence Detector in VHDL

Let’s look at the design of the serial bit sequence detector finite state machine from Chap. 7 using
the behavioral modeling constructs of VHDL. Example 9.6 shows the design description and entity
definition for this state machine.

Example: Serial Bit Sequence Detector in VHDL — Design Description and Entity Definition
This circuit will monitor an incoming serial bit stream . The information in the bit stream
represents data in groups of 3-bits. The code “111" represents that an error has occurred in
the transmitter. The FSM will monitor the incoming bit stream and assert a signal called
“ERR" if the sequence “111" is detected. At all other times ERR=0.

Timing Diagram
: ;
Din Do D1 D2 Do D1 D2 Do D1 D2
of, (50 T on [ o2 [ o0 [ o1 [ o2 [ 0 [ o | o2 ]
Bit Seqﬁence #1 Bit Seqﬁence #2 Bit Seqﬁence #3
Entity Definition
Seq_Det.vhd
— Din ERR[—
_> Reset

library IEEE;
use IEEE.std logic_1164.all;

entity Seq Det is
port (Clock, Reset : in std logic;

Din : in  std logic;
ERR : out std_logic);
end entity;
Din=1 Din=0 Din=X
(ERR=1)

Example 9.6
Serial bit sequence detector in VHDL: design description and entity definition

Example 9.7 shows the architecture for the serial bit sequence detector. In this example, a user-
defined type is created to model the descriptive state names in the state diagram.
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Example: Serial Bit Sequence Detector in VHDL — Architecture

architecture Seq Det_arch of Seq Det is

type State_Type is (Start, DO_is_1, D1_is_1, DO_not_ 1, D1 _not_1);
signal current_state, next state : State Type;

begin \

o s e T i e Declaration of user

STATE _MEMORY : process (Clock, Reset) defined type for the
begin signals current_state
if (Reset = '0') then and next_state.

current_state <= Start;
elsif (Clock'event and Clock='l') then
current_state <= next state;
end if;
end process;

NEXT STATE LOGIC : process (current state, Din)

begin
case (current_state) is
when Start => if (Din = 'l') then
next_state <= DO_is 1;
else
next_state <= DO_not_1;
end if;
when DO_is 1 => if (Din = 'l') then
next_state <= D1_is_1;
else
next_state <= D1_not_1;
end if;
when D1 is 1 => next state <= Start; s
when D0_not_1 => next_state <= D1_not 1; Note thatin this sxample
when D1 not 1 => next state <= Start; +—— there are states decisions
when others™ => next state <= Start; that don't require iffthen
end case; - statements.

end process;
OUTPUT LOGIC : process (current state, Din)
begin
case (current state) is

when D1_is 1 => if (Din = 'l') then '\
ERR <= '1'; This is a Meally machine so

else both the current state and

EIRR — L} LI
end if _<_ 0'; the system inputs are
when others => ERR s o' present in the sensitivity list.

end case;
end process;

end architecture;

Example 9.7
Serial bit sequence detector in VHDL.: architecture

Example 9.8 shows the functional simulation waveform for this design.

# Clock 0 | L | L | L | | | | | |
# Reset 1 |

# Din 0 1 L0 0 i3 1 1 ]
< ERR 0 LY i L 2 a

+# current_state Start | Cium_l [Start

® next_state  DO_not 1
Now | 120ms 55" " NGy 6D s ] 1201

The first sequence of 3-bits (1-0-0) does not The second sequence of 3-bits (1-1-1)
cause the ERR output to be asserted. does cause ERR to be asserted.

Example 9.8
Serial bit sequence detector in VHDL: simulation waveform
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9.2.2 Vending Machine Controller in VHDL

Let’s now look at the design of the vending machine controller from Chap. 7 using the behavioral
modeling constructs of VHDL. Example 9.9 shows the design description and entity definition.

Example: Vending Machine Controller in VHDL — Design Description and Entity Definition

The vending machine sells bottles of water for 75¢. Customers can enter either a dollar bill
or quarters. Once a sufficient amount of money is entered, the vending machine will
dispense a bottle of water and, if the user entered a dollar, return one quarter in change.

Block Diagram

“Money Receiver” Vending.vhd “Bo:llf E?it‘:penser“o —
-4 Dollar D_in Dispense i | H ér,
%\ "
i e am “Coin Return” ;. oms
— Change @eea _
Reset 4 @F@ C
State Diagram Y o

Entity Definition

D_in=1 library IEEE;

(Dispense=1 use IEEE.std logic 1164.all;
Change=1) entity Vending is
port (Clock, Reset : in std logic;
D in, Q in : in std logic;
Dispense, Change : out std logic);
end entity;

Q_in=1
(Dispense=1)

Example 9.9
Vending machine controller in VHDL: design description and entity definition

Example 9.10 shows the VHDL architecture for the vending machine controller. In this model, the
descriptive state names Wait, 25¢, and 50¢ cannot be used directly. This is because Wait is a VHDL
keyword and user-defined names cannot begin with a number. Instead, the letter “s” is placed in front of
the state names in order to make them legal VHDL names (i.e., sWait, s25, s50).
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Example: Vending Machine Controller in VHDL — Architecture

architecture Vending_arch of Vending is

type State_Type is (sWait, s25, s50);
signal current_state, next_state : State_Type;

begin

STATE MEMORY :
begin
if (Reset = '0') then
current state <= sWait;
elsif (Clock'event and Clock='l') then
current state <= next state;
end if; -
end process;

process (Clock, Reset)

NEXT_STATE_LOGIC
begin
case (current state) is

when sWait => if (Q_in = '1') then
next_state <= s25;
else
next state <= sWait;
end if;
when s25 => if (Q in = 'l') then
next state <= s50;
else
next state <= s25;
end if;
when s50 => if (Q_in = 'l') then
next state <= sWait;
else
next state <= s50;
end if;
when others => next_state <= sWait;

end case;
end process;

OUTPUT LOGIC :
begin
case (current state) is
when sWait —=> if (D_in '1') then
Dispense <=

process (current_state, D_in, Q_in)

when others
end case;
end process;

Dispense <= '0'; Change <='0"';

end architecture;

Note that an “s” is added to
the beginning of the state
names since “Wait" is a VHDL
keyword and names cannot
start with a number.

: process (current state, D_in, Q in)

This is a Meally machine so
both the current state and
the system inpuls are
present in the sensitivity list.

'l'; Change <='l"';

else
Dispense <= '0'; Change <='0';
end if;
when s25 => Dispense <= '0'; Change <='0"';
when s50 => if (Q_in = 'l') then
Dispense <= 'l'; Change <='0';
else
Dispense <= '0'; Change <='0';
end if;

Example 9.10
Vending machine controller in VHDL: architecture
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Example 9.11 shows the resulting simulation waveform for this design.

Example: Vending Machine Controller in VHDL — Simulation Waveform

A dollar entered (D_in=1) causes the FSM Three quarters entered (Q_in=1) resulls in the
to assert the Dispense and Change outputs. FSM asserting the Dispense output.
e Dtant i e
- - l/ > |
# Clock 1\(. [
# Reset 1
#D_in 0 e / l \
*Qin 0 L | S |
+ Dispense (1] LI 11 | K]
# Change 0 L __I711
# current_state sWait sWait 125 1550 _swait |
# next_state  [sWait _ sWait 25 ls25 50 lsso IsWaitiswait
m, 120ms ) o g 10 ns = nrm dig Nlm : w.!.ll SOm “Im = ?ﬂm i 80
Example 9.11

Vending machine controller in VHDL: simulation waveform

9.2.3 2-Bit, Binary Up/Down Counter in VHDL

Let's now look at how a simple counter can be implemented using the three-process behavioral
modeling approach in VHDL. Example 9.12 shows the design description and entity definition for the

2-bit, binary up/down counter FSM from Chap. 7.

This system will output a synchronous, 2- State Diagram
bit, binary counter. When the system input

Up=1, the system will count up. When
Up=0, the sytem will count down. The
output of the counter is called CNT.

Entity Definition

Example: 2-Bit Binary Up/Down Counter in VHDL — Design Description and Entity Definition

library IEEE;

Counter_2bit_UpDown.vhd use IEEE.std logic 1164.all;
- Up CNT'Jz entity Counter 2bit_ UpDown is

port (Clock : in std_logic;
— Reset : in std logic;

Reset up : in  std_logic;
CNT : out std logic_wvector(l downto 0));
? end entity;

Example 9.12
2-Bit binary up/down counter in VHDL: design description and entity definition

Example 9.13 shows the architecture for the 2-bit up/down counter using the three-process
modeling approach. Since a counter’s outputs only depend on the current state, counters are Moore
machines. This simplifies the output logic process since it only needs to contain the current state in its

sensitivity list.
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Example: 2-Bit Binary Up/Down Counter in VHDL — Architecture (Three Process Model)

library IEEE;
use IEEE.std logic_1164.all;

entity Counter 2bit UpDown is

port (Clock, Reset : in std logic;
Up : in std_legic;
CNT : out std logic_vector(l downto 0));

end entity;

architecture Counter 2bit UpDown_arch of Counter 2bit UpDown is

type State_Type is (CO, C1, C2, C3);
signal current state, next state : State_Type:

STATE MEMORY : process (Clock, Reset)
begin
if (Reset = '0') then
current state <= CO;
elsif (Clsck'evant and Cleck='l') then
current state <= next state;
end if; -
end process;

WEXT STATE LOGIC : process (current state, Up)

begin
case (current_state) is
when CO => if (Up = '1l') then
next_state <= Cl;
else
next state <= C3;
end if;
when C1 => if (Up = '1l') then
next state <= C2;
else
next state <= CO;
end if;
when C2 => if (Up = '1') then
next state <= C3;
else
next_state <= Cl;
end if;
when C3 => if (Up = '1') then
next state <= CO;
else
next state <= C2;
end if;
when others => next state <= CO0;
end case; -

end process;

OUTPUT_LOGIC : process (current state)

begin
case (current_state) is
when CO => CNT <= "00";
when C1 => CNT <= "01";
e SR o "S__ A counteris aMoore machine
when others => CNT <= "OD“; so the output only depends on
end case; the current state.

end process;

end architecture;

Example 9.13
2-Bit binary up/down counter in VHDL: architecture (three process model)
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Example: 2-Bit Binary Up/Down Counter in VHDL - Simulation Waveform
When Up=1, the counter increments on When Up=0, the counter decrements
the rising edge of the clock on the rising edge of the clock
e Oetet I £
- -
# Clock 0 L 1
# Reset 1
* Up 1 E
«# CNT 00 00__Jo1 T J11 oo l11 l10 o1 00
# current_state CO CO__IC1 2 3 ico =) 2 €1 co
_*nextstate C1C1 2 =] o H_B_E | <1 o =]
Now ns ). 20 ns 40 ns 60 ns 80 ns 100 ns 120 ns 140 ns 16¢
Example 9.14

Example 9.14 shows the resulting simulation waveform for this counter finite state machine.

2-Bit binary up/down counter in VHDL: simulation waveform

exception. What is it?
(A)

(B)
D-flip-flop behavior.

(©)
(D)

CC9.2 The state memory process is nearly identical for all finite state machines with one

The sensitivity list may need to include a preset signal.

Sometimes it is modeled using an SR latch storage approach instead of with

The name of the reset state will be different.

The current_state and next_state signals are often swapped.

Summary

Generic finite state machines are modeled
using three separate processes that describe
the behavior of the next state logic, the state
memory, and the output logic. Separate pro-
cesses are used because each of the three
functions in a FSM are dependent on differ-
ent input signals.

In VHDL, descriptive state names can be
created for a FSM with a user-defined,
enumerated data type. The new type is first
declared, and each of the descriptive state
names is provided that the new data type can

Exercise Problems

Sec
9.1.1

tion 9.1: The FSM Design Process

What is the advantage of using user-defined,
enumerated data types for the states when
modeling a finite state machine?

What is the advantage of using subtypes for
the states when modeling a finite state
machine?

take on. Two signals are then created called
current_state and next_state using the new
data type. These two signals can then be
assigned the descriptive state names of the
FSM directly. This approach allows the syn-
thesizer to assign the state codes arbitrarily.
A subtype can be used when defining the
state names if it is desired to explicitly define
the state codes.

When using the three-process behavioral
modeling approach for finite state machines,
does the next state logic process model com-
binational or sequential logic?

When using the three-process behavioral
modeling approach for finite state machines,
does the state memory process model combi-
national or sequential logic?
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When using the three-process behavioral
modeling approach for finite state machines,
does the output logic process model combina-
tional or sequential logic?

When using the three-process behavioral
modeling approach for finite state machines,
what inputs are listed in the sensitivity list of
the next state logic process?

9.1.7  When using the three-process behavioral
modeling approach for finite state machines,
what inputs are listed in the sensitivity list of

the state memory process?

When using the three-process behavioral
modeling approach for finite state machines,
what inputs are listed in the sensitivity list of
the output logic process?

When using the three-process behavioral
modeling approach for finite state machines,
how can the signals listed in the sensitivity list of
the output logic process immediately tell whether
the FSM is a Mealy or a Moore machine?

Why is it not a good design approach to com-
bine the next state logic and output logic
behavior into a single process?

9.1.10

Section 9.2: FSM Design Examples

9.21 Design a VHDL behavioral model to implement
the finite state machine described by the state
diagram in Fig. 9.1. Use the entity definition
provided in this figure for your design. Use
the three-process approach to modeling
FSMs described in this chapter for your design.
Model the states in this machine with a user-
defined enumerated type.

Din=0
(Dout=0)

Din=X
(Dout=0)

Din=1
(Dout=1)

fsml_behavioral.vhd

entity fsml_behavioral is
port (Clock, Reset : in std logic;
Din : in std logic;
Dout : out std_logic);
end entity;
Fig. 9.1

FSM 1 state diagram and entity

9.2.2  Design a VHDL behavioral model to implement
the finite state machine described by the state
diagram in Fig. 9.1. Use the entity definition

provided in this figure for your design. Use

the three-process approach to modeling
FSMs described in this chapter for your design.
Explicitly assign binary state codes using
VHDL subtypes. Use the following state
codes: Start = “00,” Midway = “01,” and
Done = “10.",

Design a VHDL behavioral model to implement
the finite state machine described by the state
diagram in Fig. 9.2. Use the entity definition
provided in this figure for your design. Use
the three-process approach to modeling
FSMs described in this chapter for your design.
Model the states in this machine with a user-
defined enumerated type.

9.2.3

Din=0
(Dout=0)

Din=1
(Dout=1)

Din=1
(Dout=0)

(Dout=1)

Din=1
(Dout=1)

Din=0
(Dout=0)

fsm2 behavioral.vhd

entity fsm2_ behavioral is

port (Clock, Reset : in std_logic;
Din : in  std_logic;
Dout : out std_logic);

end entity;

Fig. 9.2
FSM 2 state diagram and entity

9.2.4  Design a VHDL behavioral model to implement
the finite state machine described by the state
diagram in Fig. 9.2. Use the entity definition
provided in this figure for your design. Use
the three-process approach to modeling
FSMs described in this chapter for your design.
Assign one-hot state codes using VHDL
subtypes. Use the following state codes:
SO0 = “0001,” S1 = “0010,” S2 = “0100,” and
S3 =1000."

Design a VHDL behavioral model for a 4-bit
serial bit sequence detector similar to Example
9.6. Use the entity definition provided in
Fig. 9.3. Use the three-process approach to
modeling FSMs described in this chapter for
your design. The input to your sequence detec-
tor is called DIN, and the output is called
FOUND. Your detector will assert FOUND any-
time there is a 4-bit sequence of “0101.” For all
other input sequences, the output is not
asserted. Model the states in your machine
with a user-defined enumerated type.

9.2.5
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Seq_Det_ behavioral.vhd

entity Seq Det behavioral is

port (Clock, Reset : in std logic;
DIN : in std_logic;
FOUND : out std_logic);
end entity;
Fig. 9.3

Sequence detector entity

9.2.6  Design a VHDL behavioral model for a 20-cent
vending machine controller similar to Example
9.9. Use the entity definition provided in
Fig. 9.4. Use the three-process approach to
modeling FSMs described in this chapter for
your design. Your controller will take in nickels
and dimes and dispense a product anytime the
customer has entered 20 cents. Your FSM has
two inputs, Nin and Din. Nin is asserted when-
ever the customer enters a nickel, while Din is
asserted anytime the customer enters a dime.
Your FSM has two outputs, Dispense and
Change. Dispense is asserted anytime the
customer has entered at least 20 cents and
Change is asserted anytime the customer has
entered more than 20 cents and needs a nickel
in change. Model the states in this machine
with a user-defined enumerated type.

Vending_behavioral.vhd

entity Vending_behavioral is
port (Clock, Reset : in std_logic;
Nin, Din : in std_logic;
Dispense, Change : out std_logic);
end entity;

Fig. 9.4
Vending machine entity

9.2.7  Design a VHDL behavioral model for a finite
state machine for a traffic light controller at the
intersection of a busy highway and a seldom
used side road. Use the entity definition
provided in Fig. 9.5. You will be designing the
control signals for just the red, yellow, and
green lights facing the highway. Under normal
conditions, the highway has a green light. The
side road has car detector that indicates when
car pulls up by asserting a signal called CAR.
When CAR is asserted, you will change the
highway traffic light from green to yellow and
then from yellow to red. Once in the red posi-
tion, a built-in timer will begin a countdown and
provide your controller a signal called
TIMEOUT when 15 s has passed. Once
TIMEOUT is asserted, you will change the
highway traffic light back to green. Your system
will have three outputs GRN, YLW, and RED,
which control when the highway facing traffic
lights are on (1 = ON, 0 = OFF). Model the
states in this machine with a user-defined
enumerated type.

tlc_behavioral.vhd

entity tlc_behavioral is

port (Clock, Reset : in  std_logic;
CAR, TIMEOUT : in std_logic:
GRN, YLW, RED : out atd_logic):
end entity;
Fig. 9.5

Traffic light controller entity
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Chapter 10: Modeling Counters

Counters are a special case of finite state machines because they move linearly through their
discrete states (either forward or backward) and typically are implemented with state-encoded outputs.
Due to this simplified structure and widespread use in digital systems, VHDL allows counters to be
modeled using a single process and with arithmetic operators (i.e., + and —). This enables a more
compact model and allows much wider counters to be implemented. This chapter will cover some of the
most common techniques for modeling counters.

Learning Outcomes—After completing this chapter, you will be able to:

10.1 Design a behavioral model for a counter using a single process.
10.2 Design a behavioral model for a counter with enable and load capability.

10.1 Modeling Counters with a Single Process

10.1.1 Counters in VHDL Using the Type UNSIGNED

Let’s look at how we can model a 4-bit, binary up counter with an output called CNT. First, we want
to model this counter using the “+” operator. Recall that the “+” operator is not defined in the
std_logic_1164 package. We need to include the numeric_std package in order to add this capability.
Within the numeric_std package, the “+” operator is only defined for types signed and unsigned (and not
for std_logic_vector), so the output CNT will be declared as type unsigned. Next, we want to implement
the counter using a signal assignment in the form CNT <= CNT + 1; however, since CNT is an output
port, it cannot be used as an argument (right hand side) in an operation. We will need to create an internal
signal to implement the counter functionality (i.e., CNT_tmp). Since a signal does not contain direction-
ality, it can be used as both the target and an argument of an operation. Outside of the counter process, a
concurrent signal assignment is used to continuously assign CNT_tmp to CNT in order to drive the output
of the system. This means that we need to create the internal signal CNT_tmp of type unsigned also to
support this assignment. Example 10.1 shows the VHDL model and simulation waveform for this
counter. When the counter reaches its maximum value of “1111,” it rolls over to “0000” and continues
counting because it is defined to only contain 4 bits.
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Example: 4-Bit Binary Up Counter in VHDL Using the Type UNSIGNED

library IEEE; i i

use IEEE.std logic 1164.all; TIW furmenic._sks pecngs. 8 eecet i

use IEEE.numeric std.all; include the “+" operator. This operator only
= +— works on lypes signed/unsigned, so we will

entity Counter_ 4bit Up is define the output CNT as type unsigned.

port (Clock, Reset : in std legic;
CNT : out unsigned(3 downto 0));
end entity;

architecture Counter_ 4bit Up_arch of Counter_4bit_Up is

signal CNT_tmp : unsigned(3 downto 0); ,_\

begin An internal signal is needed to
COUNTER : process (Clock, Reset) support assignments in the form
begin C <= C+1; because a port cannot
if (Reset = '0') then be used as an argument in a

CNT_tmp <= "0000";
elsif (Clock'event and Clock='l') then
CNT_tmp <= CNT tmp + 1;
end if;
end process;

signal assignment.

CNT <= CNT_tmp; +—— A concurrent signal assignment is used to continually

end architecture: assign CNT_tmp to CNT.

i Wave - Detaslt e

|- ten
# Clock L Y Ay Iy Oy Iy Sy Uy Sy oy Oy Iy B
# Reset 1 3y
=& CNT «_[_Jooo1 Joo10 0011 f0100 Jo101 fo110 o111 1000 [1001 [1010 J1011 1100 [1101 [1110 J1111 o000 Jooo1
Now ins o '/s'un's' " 100ms  150ms  200ms  250ms  300As 350
] B P il
The counter increments on When the counter reaches 11117, it
each rising edge of clock. rolls over to “0000" and continues.
Example 10.1

4-Bit binary up counter in VHDL using the type UNSIGNED

10.1.2 Counters in VHDL Using the Type INTEGER

Another common technique to model counters with a single process is to use the type integer. The
numeric_std package supports the “+” operator for type integer. It also contains a conversion between
the types integer and unsigned/signed. This means a process can be created to model the counter
functionality with integers and then the result can be converted and assigned to the output of the system
of type unsigned. One thing that must be considered when using integers is that they are defined as
32-bit, two’'s complement numbers. This means that if a counter is defined to use integers and the
maximum range of the counter is not explicitly controlled, the counter will increment through the entire
range of 32-bit values it can take on. There are a variety of ways to explicitly bound the size of an integer
counter. The first is to use an if/then clause within the process to check for the upper limit desired in the
counter. For example, if we wish to create a 4-bit binary counter, we will check if the integer counter has
reached 15 each time through the process. If it has, we will reset it to zero. Synthesizers will recognize
that the integer counter is never allowed to exceed 15 (or “1111” for an unsigned counter) and remove
the unused bits of the integer type during implementation (i.e., the remaining 28-bits). Example 10.2
shows the VHDL model and simulation waveform for this implementation of the 4-bit counter using
integers.



10.1 Modeling Counters with a Single Process + 145

Example: 4-Bit Binary Up Counter in VHDL Using the Type INTEGER

library IEEE;
use IEEE.std logic_1164.all; The numeric_std package contains the “+"
use IEEE.numeric_std.all; 4 gperator for type integer and a conversion

from type integer to type unsigned.

entity Counter_ 4bit Up is

port (Clock, Reset : in std logic; In this example, the output
CNT : out unsigned(3 downto 0));+— port is defined to be of type
end entity; unsigned.

architecture Counter_4bit Up_arch of Counter_4bit Up is

signal CNT int : integer; ————  Aninternal signal of type integer
. is declared to model the counter
begin functionality.

COUNTER : process (Clock, Reset)
begin
if (Reset = '0') then
CNT_int <= 0;
elsif (Clock'event and Clock='l') then

A nested iffthen statement checks

if (CNT int = 15) then —
CNT int <= 0; to see if the integer counter has
else reached its maximum value.
CNT_int <= CNT_int + 1;
end if;
A concurrent assignment between the
end if; internal counter and the output port is
snd procass; made that contains the conversion
CNT <= to_unsigned(CNT int, 4); petv\feen type integer and unsigned. The 4
in this function represents the number of
end architecture; unsigned bits to convert the integer into.

L& ]

# Clock 0

# Reset 1

+ & CNT 1000 0001 J0010 [0011 (0100 Jo101 Jo110 Jo111 1 1001 0 11011 /1100 (1101 11110 (1111 000C
=# CNT_std 1000 [ J0001 (0010 j0011 [0100 J0101 Jo110Jo111 [1000 J1001 [1010 J1011 [1100 J1101 [1110 [1111 [0000
| Now | 480ns jng 50 ns 100 ns 150 ns 200 ns 250 ns ns |
i =15 i I 3

The std_logic_vector is treated as unsigned
and will roll over once it gets to “1111".

Example 10.2
4-Bit binary up counter in VHDL using the type INTEGER

10.1.3 Counters in VHDL Using the Type STD_LOGIC_VECTOR

It is often desired to have the ports of a system be defined of type std_logic/std_logic_vector for
compatibility with other systems. One technique to accomplish this and also model the counter behavior
internally using std_logic_vector is through inclusion of the numeric_std_unsigned package. This pack-
age allows the use of std_logic_vector when declaring the ports and signals within the design and treats
them as unsigned when performing arithmetic and comparison functions. Example 10.3 shows the
VHDL model and simulation waveform for this alternative implementation of the 4-bit counter.
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Example: 4-Bit Binary Up Counter in VHDL Using the Type STD_LOGIC_VECTOR (1)

library IEEE;

use IEEE.std logic_1164.all; Including this package will
use IEEE.numeric_std.all; treat all std_logic_vector
use IEEE.numeric_ “std | unsigned.all; « types as unsigned numbers.

entity Counter_ 4bit Up is

port (Clock, Reset : in std_logic; The output port is
CNT : out std leogic_vector (3 downto 0)) ;«+— defined to be of type
end entity; std_logic_vector.

architecture Counter_ 4bit Up_arch of Counter_ 4bit_Up is
«— Theinternal signal to
model the counter
begin behavior is declared as
type std_logic_vector.

signal CNT_std : std_logic_vector (3 downto 0);

COUNTER : process (Clock, Reset)
begin
if (Reset = '0') then
CNT _std <= "0000";

elsif (Clock'event and Clock='1l') then o
CNT ;td <= CNT std + 1; + A No boundary checking is needed

end if; - since the 4-bit std_logic_vector will
end process; simply roll over.
CNT <= CNT_std; *

Mo type conversion is needed since the
internal signal and output port are of type
std_logic_vector.

end architecture;

- T = [
# Clock 0 l_l_l o S o 5 e i e S o S e S g
# Reset 1
+ & CNT 1000 MWWM&MMM&M
+# CNT_std 1000 (__looo1 jpo10 foo11 [0100 Jo101 o110 Jo111 J1000 J1001 [1010 [1011 J1100 J1101 1110 ] C
o] “n“)“......s.o.”.’.......166..“.......1.50...“.......266'.'3.......156'.“..._.....'."....
J ]« o I 0|
The std_logic_vector is treated as unsigned and
will roll over once it gets to 11117,
Example 10.3

4-Bit binary up counter in VHDL using the type STD_LOGIC_VECTOR (1)

If it is designed to have an output type of std_logic_vector and use an integer in modeling the
behavior of the counter, then a double conversion can be used. In the following example, the counter
behavior is modeled using an integer type with range checking. A concurrent signal assignment is used
at the end of the architecture in order to convert the integer to type std_logic_vector. This is accom-
plished by first converting the type integer to unsigned and then converting the type unsigned to
std_logic_vector. Example 10.4 shows the VHDL model and simulation waveform for this alternative
implementation of the 4-bit counter.
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Example: 4-Bit Binary Up Counter in VHDL Using the Type STD_LOGIC_VECTOR (2)

library IEEE;
use IEEE.std logic_1164.all; -
use IEEE.numeric_std.all; The output port is

entity Counter_ 4bit Up is std_logic_vector.
port (Clock, Reset : in std logic; = ==

CNT : out std_logic_vector(3 downto 0)); —
end entity;

architecture Counter_dbit_Up_arch of Counter_dbit_Up is

A The internal signal to model the

signal CNT int : integer range 0 to 15; s
s counter behavior is declared as

begin type integer. In this declaration,
the integer range is also specified.
comfi : process (Clock, Reset) This is unnecessary since the
if (Reset = '0') then process will check for the

CNT_int <= 0; maximum counter value but is
elsif (Clock'event and Clock='l') then commonly included for readability.

if (CNT_int = 15) then «————— Range checking is required when

CNT <= std _logic_vector( to_unsigned(CNT_int, 4) ):

end architecture;

defined to be of type

CNT int <= 0; i -
o : using the type integer.
sias 9 yp g
CHNT_int <= CNT_int + 1;
end 15, A double type conversion is
end if; used lo‘change the integer to
end process; std_logic_vector.

Y n this example, the output CNT is of type std_logic_vector while the
counter behavior is modeled using type integer.

Example 10.4
4-Bit binary up counter in VHDL using the type STD_LOGIC_VECTOR (2)

Why or why not?

CC10.1 Ifa counteris modeled using only one process in VHDL, is it still a finite state machine?

(A) Yes. ltis just a special case of a FSM that can easily be modeled using one
process. Synthesizers will recognize the single process model as a FSM.

(B) No. Using only one process will synthesize into combinational logic. Without
the ability to store a state, it is not a finite state machine.
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10.2 Counters with Enables and Loads

10.2.1 Modeling Counters with Enables

Including an enable in a counter is a common technique to prevent the counter from running
continuously. When the enable is asserted, the counter will increment on the rising edge of the clock
as usual. When the enable is de-asserted, the counter will simply hold its last value. Enable lines are
clock. As such, they are
modeled using a nested if/then statement within the if/then statement checking for a rising edge of the

synchronous, meaning that they are only evaluated on the rising edge of the

clock. Example 10.5 shows an example model for a 4-bit counter with enable.

Example: 4-Bit Binary Up Counter with Enable in VHDL

library IEEE;

use IEEE.std logic_1164.all;
use IEEE.numeric_: std.all; — EN

entity Counter_ 4bit wEN is
port (Clock, Reset : in std leogic;
EN : in  std_logic;
CNT : out std logic_vector (3 downto 0));

CNT [~

Reset

end entity;
architecture Counter_ 4bit wEN_arch of Counter_ 4bit wEN is
signal CNT_int : integer range 0 to 15;
begin
COUNTER : process (Clock, Reset)
begin
if (Reset = '0') then

CNT_int <= 0;
elsif (Clock'event and Cleock='1l') then

CNT_int <= 0;

end if;
end process;

CNT <= std logic_vector( to_unsigned(CNT_int, 4) ):;

end architecture;

if (EN='1l') then l—\ A nested ifithen statement is used
if (CNT_int = 15) then in order to check if the counter is

enabled on each edge of the clock.

1
S ORD Ant o= CHT int + 1; If EN="1", the counter will increment
end if; - as usual. If EN="0", the counter will
end if; + simply hold its last value.

When the counter is NOT enabled, it will hold its last value.

=
s = —
S Clock |0 ol G B B T e ] S R )
# Reset |1 |
* EN 1 f | |
=& CNT 1011 (o001 [oo10 0011 (0100 0101 o110 huu_[_: _Il_lIlDl_L
+ CNT_int |11 ofi B B B 0N — 5 _10_
. e tn RN T G ; 66-'-9' .I”.Zflil.!s. ..... oy
4 I ] i o)

Example 10.5
4-Bit binary up counter with enable in VHDL
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10.2.2 Modeling Counters with Loads

A counter with a load has the ability to set the counter to a specified value. The specified value is
provided on an input port (i.e., CNT_in) with the same width as the counter output (CNT). A synchronous
load input signal (i.e., Load) is used to indicate when the counter should set its value to the value present
on CNT_in. Example 10.6 shows an example model for a 4-bit counter with load capability.

Example: 4-Bit Binary Up Counter with Load in VHDL

library IEEE;

use IEEE.std_logic_l164.all; —EN 4
use IEEE.numeric_std.all; Load CNT =
entity Counter 4bit wload is 4 .
port (Clock, Reset : in std_logic; 79 CNT_in

EN : in std logic; _>

Load : in  std_logic;

CNT in : in std logic vector(3 downto 0); Reset

CNT : out std logic_vector(3 downto 0));
end entity;

architecture Counter_ 4bit wLoad_arch of Counter_4bit wLoad is
signal CNT_int : integer range 0 to 15;
begin
COUNTER : process (Clock, Reset)
begin
if (Reset = '0') then
CNT_int <= 0;
elsif (Clock'event and Clock='l') then
if (Lecad = 'l') then
CNT_int <= to_integer( unsigned(CNT_in) );
else A nested ifithen statement is used to load
if (EN='l') then CNT with CNT_in when the Load signal is
if (CNT_int = 15) then asserted. Since CNT _int is of type integer
CNT int <= 0; s :
- and CNT_in is of type std_logic_vector, a

else s :
CNT int <= CNT int + 1; lype conversion is needed. Once again,
end if; - two conversions are used since there is
end if; not a direct conversion between
ond 1% std_logic_vector and integer.

end if;
end process;

CNT <= std logic_vector( to_unsigned(CNT_int, 4) ):;

end architecture;

" N_- |
# Clock 1 1 lJ l_, l_l l_l l_J U U |—| l—l l—l u U
# Reset |1 1|
* EN 1 f 1 |
# Load o L A
“$CNT_in (1012 ftoxa
4& CNT 1000 011 [1100 [1101 [1110 [1111 loooo [
# CNT_int_|8 ol A1 12 13 ha [is b &

T R S L Rt SRR

| /% Cursor 1 79.315ns
| HE| Al

&
When the Load signal is asserted, it will update CNT with the value of CNT_in (e.g., “10117).

Example 10.6
4-Bit binary up counter with load in VHDL
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CC10.2 Ifthe counter has other inputs such as loads and enables, shouldn’t they be listed in the
sensitivity list along with clock and reset?
(A) Yes. All inputs should go in the sensitivity list.
(B) No. Only signals that trigger an assignment are listed in the sensitivity list.
The only two signals that have this behavior are clock and reset.
Summary

“ A counter is a special type of finite state
machine in which the states are traversed
linearly. The linear progression of states
allows the next state logic to be simplified.
The complexity of the output logic in a counter
can also be reduced by encoding the states
with the desired counter output for that state.
This technique, known as state-encoded
outputs, allows the system outputs to simply
be the current state of the FSM.

% Counters are a special type of finite state
machine that can be modeled using a single

Exercise Problems

Section 10.1: Modeling Counters with a
Single Process

10.1.1 Design a VHDL behavioral model for a 16-bit,
binary up counter using a single process. The
block diagram for the entity definition is shown
in Fig. 10.1. In your model, declare Count_Out
to be of type unsigned, and implement the
internal counter functionality with a signal of
type unsigned.

Counter_16bit_Up.vhd
Count_Out e
_> Reset

i

Fig. 10.1
16-Bit binary up counter block diagram

10.1.2 Design a VHDL behavioral model for a 16-bit,
binary up counter using a single process. The
block diagram for the entity definition is shown
in Fig. 10.1. In your model, declare Count_Out
to be of type unsigned and implement the inter-
nal counter functionality with a signal of type
integer.

Design a VHDL behavioral model for a 16-bit,
binary up counter using a single process. The

10.1.3

process in VHDL. Only the clock and reset
signals are listed in the sensitivity list of the
counter process because they are the only
signals that trigger signal assignments.

« Within the process of a counter, arithmetic
operators (i.e., + or —) can be used to modify
the counter value. Since these operators
aren’t defined for the type std_logic_vector,
type casting is usually required.

block diagram for the entity definition is shown
in Fig. 10.1. In your model, declare Count_Out
to be of type std_logic_vector and implement
the internal counter functionality with a signal
of type integer.

Section 10.2: Counters with Enables
and Loads

10.2.1 Design a VHDL behavioral model for a 16-bit,
binary up counter with enable using a single
process. The block diagram for the entity defi-
nition is shown in Fig. 10.2. In your model,
declare Count_Out to be of type unsigned
and implement the internal counter functional-

ity with a signal of type unsigned.

Counter_16bit_wEN.vhd

16
—JEN Count_Out =

—

Reset

Fig. 10.2
16-Bit binary up counter with enable block
diagram
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10.2.2

10.2.3

10.2.4

Design a VHDL behavioral model for a 16-bit,
binary up counter with enable using a single
process. The block diagram for the entity defi-
nition is shown in Fig. 10.2. In your model,
declare Count Out to be of type unsigned,
and implement the internal counter functional-
ity with a signal of type integer.

Design a VHDL behavioral model for a 16-bit,
binary up counter with enable using a single
process. The block diagram for the entity defi-
nition is shown in Fig. 10.2. In your model,
declare Count_ Out to be of type
std_logic_vector, and implement the internal
counter functionality with a signal of type
integer.

Design a VHDL behavioral model for a 16-bit,
binary up counter with enable and load using a
single process. The block diagram for the entity
definition is shown in Fig. 10.3. In your model,
declare Count_Out to be of type unsigned, and
implement the internal counter functionality
with a signal of type unsigned.

Counter_16bit_wlLoad.vhd

—{Count_In 16
—oad Count_Out =

—EN
—> Reset

)

Fig. 10.3
16-Bit binary up counter with load block diagram

10.2.5

10.2.6

Design a VHDL behavioral model for a 16-bit,
binary up counter with enable and load using a
single process. The block diagram for the entity
definition is shown in Fig. 10.3. In your model,
declare Count_Out to be of type unsigned, and
implement the internal counter functionality
with a signal of type integer.

Design a VHDL behavioral model for a 16-bit,
binary up counter with enable and load using a
single process. The block diagram for the entity

10.2.7

definition is shown in Fig. 10.3. In your model,
declare Count_ Out to be of type
std_logic_vector, and implement the internal
counter functionality with a signal of type
integer.

Design a VHDL behavioral model for a 16-bit,
binary up/down counter using a single process.
The block diagram for the entity definition is
shown in Fig. 10.4. When Up = 1, the counter
will increment. When Up = 0, the counter will
decrement. In your model, declare Count_Out
to be of type unsigned, and implement the
internal counter functionality with a signal of
type unsigned.

Counter_16bit_UpDown.vhd

16
Count_Out =

-

Reset

(I)

Fig. 10.4
16-Bit binary up/down counter block diagram

10.2.8

10.2.9

Design a VHDL behavioral model for a 16-bit,
binary up/down counter using a single process.
The block diagram for the entity definition is
shown in Fig. 10.4. When Up = 1, the counter
will increment. When Up = 0, the counter will
decrement. In your model, declare Count_Out
to be of type unsigned and implement the inter-
nal counter functionality with a signal of type
integer.

Design a VHDL behavioral model for a 16-bit,
binary up/down counter using a single process.
The block diagram for the entity definition is
shown in Fig. 10.4. When Up = 1, the counter
will increment. When Up = 0, the counter will
decrement. In your model, declare Count_Out
to be of type std_logic_vector, and implement
the internal counter functionality with a signal
of type integer.
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Chapter 11: Modeling Memory

This chapter covers how to model memory arrays in VHDL. These models are technology indepen-
dent, meaning that they can be ultimately synthesized into a wide range of semiconductor memory
devices.

Learning Outcomes—After completing this chapter, you will be able to:

1.1 Describe the basic architecture and terminology for semiconductor-based memory
systems.
. Design a VHDL model for a read-only memory array.
11.3 Design a VHDL model for a read/write memory array.

11.1 Memory Architecture and Terminology

The term memory is used to describe a system with the ability to store digital information. The term
semiconductor memory refers to systems that are implemented using integrated circuit technology.
These types of systems store the digital information using transistors, fuses, and/or capacitors on a
single semiconductor substrate. Memory can also be implemented using technology other than
semiconductors. Disk drives store information by altering the polarity of magnetic fields on a circular
substrate. The two magnetic polarities (north and south) are used to represent different logic values (i.e.,
0 or 1). Optical disks use lasers to burn pits into reflective substrates. The binary information is
represented by light either being reflected (no pit) or not reflected (pit present). Semiconductor memory
does not have any moving parts, so it is called solid state memory and can hold more information per unit
area than disk memory. Regardless of the technology used to store the binary data, all memory has
common attributes and terminology that are discussed in this chapter.

11.1.1 Memory Map Model

The information stored in memory is called the data. When information is placed into memory, it is
called a write. When information is retrieved from memory, it is called a read. In order to access data in
memory, an address is used. While data can be accessed as individual bits, in order to reduce the
number of address locations needed, data is typically grouped into N-bit words. If a memory system has
N = 8, this means that 8-bits of data are stored at each address. The number of address locations is
described using the variable M. The overall size of the memory is typically stated by saying “M x N.” For
example, if we had a 16 x 8 memory system, that means that there are 16 address locations, each
capable of storing a byte of data. This memory would have a capacity of 16 x 8 = 128 bits. Since the
address is implemented as a binary code, the number of lines in the address bus (n) will dictate the
number of address locations that the memory system will have (M = 2"). Figure 11.1 shows a graphical
depiction of how data resides in memory. This type of graphic is called a memory map model.
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Memory Map Model Address Data
0 ML 12[']°] _r N-Bit Data Words
1 datat i
“M” Address 2 dalaz \
Locations : ; Bit positions within
M-1 v the data words

Fig. 11.1
Memory map model

11.1.2 Volatile vs. Nonvolatile Memory

Memory is classified into two categories depending on whether it can store information when power
is removed or not. The term nonvolatile is used to describe memory that holds information when the
power is removed, while the term volatile is used to describe memory that loses its information when
power is removed. Historically, volatile memory is able to run at faster speeds compared to nonvolatile
memory, so it is used as the primary storage mechanism, while a digital system is running. Nonvolatile
memory is necessary in order to hold critical operation information for a digital system such as start-up
instructions, operations systems, and applications.

11.1.3 Read-Only vs. Read/Write Memory

Memory can also be classified into two categories with respect to how data is accessed. Read-only
memory (ROM) is a device that cannot be written to during normal operation. This type of memory is
useful for holding critical system information or programs that should not be altered, while the system is
running. Read/write memory refers to memory that can be read and written to during normal operation
and is used to hold temporary data and variables.

11.1.4 Random Access vs. Sequential Access

Random access memory (RAM) describes memory in which any location in the system can be
accessed at any time. The opposite of this is sequential access memory, in which not all address
locations are immediately available. An example of a sequential access memory system is a tape drive.
In order to access the desired address in this system, the tape spool must be spun until the address is in
a position that can be observed. Most semiconductor memory in modern systems is random access. The
terms RAM and ROM have been adopted, somewhat inaccurately, to also describe groups of memory
with particular behavior. While the term ROM technically describes a system that cannot be written to, it
has taken on the additional association of being the term to describe nonvolatile memory. While the term
RAM technically describes how data is accessed, it has taken on the additional association of being the
term to describe volatile memory. When describing modern memory systems, the terms RAM and ROM
are used most commonly to describe the characteristics of the memory being used; however, modern
memory systems can be both read/write and nonvolatile, and the majority of memory is random access.

CC11.1  An 8-bit wide memory has eight address lines. What is its capacity in bits?

(A)64  (B)256  (C)1024 (D) 2048
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11.2 Modeling Read-Only Memory

Modeling of memory in VHDL is accomplished using the array data type. Recall the syntax for
declaring a new array type below:

type name is array (<range>) of <element_type>;

To create the ROM memory array, a new type is declared (e.g., ROM_type) that is an array.
The range represents the addressing of the memory array and is provided as an integer. The
element_type of the array specifies the data type to be stored at each address and represents the
data in the memory array. The type of the element should be std_logic_vector with a width of N. To define
a 4 x 4 array of memory, we would use the following syntax.

Example:
type ROM_type is array (0 to 3) of std_logic_vector (3 downto 0) ;

Notice that the address is provided as an integer (0 to 3). This will require two address bits. Also
notice that this defines 4-bit data words. Next, we define a new constant of type ROM_type. When
defining a constant, we provide the contents at each address.

Example:
constant ROM : ROM_type := (0 =>*1110",
1=>*0010",
2 =>"1111",
3 =>"0100") ;

At this point, the ROM array is declared and initialized. In order to model the read behavior, a
concurrent signal assignment is used. The assignment will be made to the output data_out based on the
incoming address. The assignment to data_out will be the contents of the constant ROM at a particular
address. Since the index of a VHDL array needs to be provided as an integer (e.g., 0, 1, 2, 3) and the
address of the memory system is provided as a std_logic_vector, a type conversion is required. Since
there is not a direct conversion from type std_logic_vector to integer, two conversions are required. The
first step is to convert the address from std_logic_vector to unsigned using the unsigned type conversion.
This conversion exists within the numeric_std package. The second step is to convert the address from
unsigned to integer using the fo_integer conversion. The final assignment is as follows:

Example:

data_out <= ROM(to_integer (unsigned (address))) ;

Example 11.1 shows the entire VHDL model for this memory system and the simulation waveform.
In the simulation, each possible address is provided (i.e., “00,” “01,” “10,” and “11”). For each address, the
corresponding information appears on the data_out port. Since this is an asynchronous memory system,
the data appears immediately upon receiving a new address.
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Example: Behavioral Model of a 4x4 Asynchronous Read Only Memory in VHDL

"ROM contents for this example:

rom_4x4_async.vhd ) Address Data
2 0 1J1]1]0
-4 Address Data_Out 1 REG
2 11111
3 of1]o]o

library ieee;
use ieee.std_logic_l164.all;

use ieee.numeric std.all; The numeric_std package is required to provide a type

conversion between std_logic_vector and unsigned.
entity rom 4x4 async is
port “(address : in std logic_vector (1l downto 0);
data out : out std logic vector (3 downto 0));
end entity;

architecture rom 4x4_async_arch of rom 4x4_async is

type ROM type is array (0 to 3) of std logic vector(3 downte 0);
=> "1110", L““““ A VHDL “array” is
=> "0010", used to define the

0
3
2 => "1111", MxMN memory size.
3 => "Q100") ;

constant ROM : Rm_tme = |

e A constant is declared that is
begin of size MxN and is initialized

data_out <= ROM( to_integer (unsigned(address) ) );

end architecture; o S Since the ROM constant requires indices of type integer
but the address is in std_logic_vector, a type conversion
is required. The std_logic_vector is first converted to
unsigned using a conversion from the numeric_std
package. The unsigned value is then converted to an
integer using the to_integer cast.

8- |

<& address oo IE Jo1 110 11 Joo
14 data_out 110 l.ﬁm Joo1o 111 0100 J1110
| = Y
i R e
] o ] A} T i
data_out is updated immediately when the address is changed.
Example 11.1

Behavioral model of a 4 x 4 asynchronous read-only memory in VHDL

Latency can be modeled in memory systems by using delayed signal assignments. In the above
example, if the memory system had a latency of 5 ns, this could be modeled using the following
approach:

Example:

data_out <= ROM (to_integer (unsigned(address))) after 5ns;

A synchronous ROM can be created in a similar manner. In this approach, a clock edge is used to
trigger when the data_out port is updated. A sensitivity list is used that contains only the signal clock to
trigger the assignment. A rising edge condition is then used in an if/then statement to make the
assignment only on a rising edge. Example 11.2 shows the VHDL model and simulation waveform for
this system. Notice that prior to the first clock edge, the simulator does not know what to assign to
data_out, so it lists the value as uninitialized.
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Example: Behavioral Model of a 4x4 Synchronous Read Only Memory in VHDL

ROM contents for this example:
rom_4x4_sync.vhd Address Data

=4 Address Data_Out &=

=D

1
0
1
0

WhN =0
o|=lojo

0]1
1)1
110

library ieee;
use ieee.std_logic_l1164.all;
use ieee.numeric_std.all;

entity rom 4x4_sync is
port (clock : in  std_logic;
address : in std logic vector(l downto 0);
data_out : out std_logic_vector (3 downto 0));
end entity;

architecture rom_4x4_sync_arch of rom 4x4_sync is

type ROM type is array (0 to 3) of std logic_vector(3 downto 0);

constant ROM : ROM type := (0 => "1110",
1 => "0010",
2 => "1111",
. 3 => "0100") ;
begin To model synchronous behavior, the clock is
MEMORY : process (clock) placed in the sensiti\wi‘t:.«r list, and a Irising edge
begin condition is used to trigger the assignment.

if (clock'event and clock='l') then
data_out <= ROM( to_integer (unsigned(address) ) );

end if; e
end process; When there is not a clock edge, the memory

ohd arehlitacturas will hold its last output on data_out.

- £r)
- I e | |
# clock ] - [ 1 Iy 1 ] 1 | 1 | ]
+# address |10 oo Jo1 AN T) 11 100
£ 4 data_out |0010 vuuy 1110 10 i1 lo100 FFIT }
S T Y AR P A A MR SRR
] i ] / £l }‘_\ il
Before the first clock edge, the simulator The data does not appear on the
doesn't know what the output should be. output until a rising edge of clock.
Example 11.2

Behavioral model of a 4 x 4 synchronous read-only memory in VHDL

CC11.2 Explain the advantage of modeling memory in VHDL without going into the details of
the storage cell operation.

(A) It allows the details of the storage cell to be abstracted from the functional
operation of the memory system.

(B) ltis too difficult to model the analog behavior of the storage cell.
(C) There are too many cells to model so the simulation would take too long.

(D) It lets both ROM and R/W memory to be modeled in a similar manner.
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11.3 Modeling Read/Write Memory

In a read/write memory model, a new type is created using a VHDL array (e.g., RW_type) that
defines the size of the storage system. To create the memory, a new signal is declared with the
array type.

Example:

type RW_type is array (0 to 3) std_logic_vector (3 downto 0) ;
signal RW : RW_type;

Note that a signal is used in a read/write system as opposed to a constant as in the read-only
memory system. This is because a read/write system is uninitialized until it is written to. A process is then
used to model the behavior of the memory system. Since this is an asynchronous system, all inputs are
listed in the sensitivity list (i.e., address, WE, and data_in). The process first checks whether the write
enable line is asserted (WE = 1), which indicates a write cycle is being performed. If it is, then it makes an
assignment to the RW signal at the location provided by the address input with the data provided by the
data_in input. Since the RW array is indexed using integers, type conversions are required to convert the
address from std_logic_vector to integer. When WE is not asserted (WE = 0), a read cycle is being
performed. In this case, the process makes an assignment to data_out with the contents stored at the
provided address. This assignment also requires type conversions to change the address from
std_logic_vector to integer. The following syntax implements this behavior:

Example:

MEMORY : process (address, WE, data_in)

begin
if (WE="'1") then
RW(to_integer (unsigned(address))) <= data_in;
else
data_out <= RW(to_integer (unsigned (address))) ;
end if;

end process;

A read/write memory does not contain information until its storage locations are written to. As a
result, if the memory is read from before it has been written to, the simulation will return uninitialized.
Example 11.3 shows the entire VHDL model for an asynchronous read/write memory and the simulation
waveform showing read/write cycles.
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Example: Behavioral Model of a 4x4 Asynchronous Read/Write Memory in VHDL

w_4x4 _async.vhd / Contents to be written:

_/2_ Address Data_Out 74L M M
4 = 0 1]11]1]0
7~ Data_In - 1 olof1]0
— WE 2 A BE
3 oj1jojo
library ieee;
use ieee.std_logic_l1164.all;
use ieee.numeric_std.all;
entity rw_4x4_async is
port (address : in std_logic_vector(l downto 0);
data_in : in std logic_wvector (3 downto 0);

WE : in  std_logic;
data_out : out std _logic_vector (3 downto 0));
end entity;

architecture rw_4x4_async_arch of rw_4x4_async is

type RW_type is array (0 to 3) of std_logic_vector(3 downto 0);

signal RW : RW_type; A sig_nal_ is_ used si_nf:e_ the _readfwrite memory
is uninitialized until it is written to.
begin
Type conversions are needed for

MEMORY: process (address, WE, data_ in) both reads and writes to RW.

begin
if (WE = '1') then
RW(to_integer (unsigned(address))) <= data_in;
else
data_out <= RW(to_integer (unsigned (address)));
end if;

end process;

end architecture;
L } - | h

READ b READ
|- el l | !
+# address |00 0o o1 lio ¥ oo o1 o T
=& data_in 1110 0000 i | N I 5 0000 . -
* WE 0 ! & L 1
¢ data_out 1110 UUUY ! ] N - ) [wwwu| fi120  Jooze [uaaa  Joioo
Now | 400ns D 40 ns 200 ns J

) Ja T

On start-up, the memory is empty so the reads  Data is then written to  When reads are performed
from the four addresses yield “uninitialized". the four addresses. again, the data that was
written appears.

Example 11.3
Behavioral model of a 4 x 4 asynchronous read/write memory in VHDL

A synchronous read/write memory is made in a similar manner with the exception that a clock is
used to trigger the signal assignments in the sensitivity list. The WE signal acts as a synchronous control
signal indicating whether assignments are read from or written to the RW array. Example 11.4 shows the
entire VHDL model for a synchronous read/write memory and the simulation waveform showing both
read and write cycles.
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Example: Behavioral Model of a 4x4 Synchronous Read/Write Memory in VHDL

rw_4x4_sync.vhd Contents to be written: h

Address Data_Out & Address Data
=3 1

Data_In —
WE

%

library ieee;
use ieee.std_logic_l164.all;
use ieee.numeric_std.all;

RS

1
0
1
1

ol=lojo

W =O
ol=|o]—=
o =] =

entity rw_4x4_sync is
port  (clock : in  std_logic;
address : in std logic_vector(l downto 0);
data_in : in std | log:u: vector (3 downto 0);
WE : in std logic;
data_out : out std_log:.c_vactor (3 downto 0));
end entity;

architecture rw_4x4_sync_arch of rw_4x4_sync is

type RW_type is array (0 to 3) of std_logic_vector(3 downto 0);

Synchronous behavior is modeled by listing clock in

signal RW : RW type; o * " i
- the sensitivity list and using a rising edge condition.

begin
The WE control signal dictates whether
MEMORY : process (clock) information is read or written to the RW array.
begin
if (clock'event and clock='1l') then
if (WE = '1') then
RW(to_integer (unsigned (address))) <= data_in;
else
data_out <= RW(to_integer (unsigned (address)));
end if;
end if;

Type conversions are needed for

and procass; both reads and writes to RW.

end architecture;

| | { h 4

READ . WRITE v READ :
- m—. A A y A
# clock 0 Ty Y T_m_I_ N ) O e
+# address 00 @ i o i o i o i oo i o B 1_1_
s#dataiin 1110 (0000 KT 10 [1111__ 0100
* WE 0 | [

s data_out (0100 f110 oto  [ii1 Jo100 |
- "W ‘W‘M :nL aﬂ- L mj- ) 240

Reads are performed on the rising Data is wnllen on the rising

edge of clock when WE=0. edge of clock when WE=1.

Example 11.4

Behavioral model of a 4 x 4 synchronous read/write memory in VHDL

CC11.3 Does modeling the R/W memory as an uninitialized array accurately describe the
behavior of real R/W memory technology?

(A) Yes. Read/write memory is not initialized upon power up.

(B) No. Read/write memory should be initialized to all zeros to model the reset
behavior found in memory.




Exercise Problems + 161

Summary

The term memory refers to large arrays of
digital storage. The technology used in mem-
ory is typically optimized for storage density
at the expense of control capability. This is
different from a D-flip-flop, which is optimized
for complete control at the bit level.

A memory device always contains an
address bus input. The number of bits in the
address bus dictates how many storage
locations can be accessed. An n-bit address
bus can access 2" (or M) storage locations.
The width of each storage location (N) allows
the density of the memory array to be
increased by reading and writing vectors of
data instead of individual bits.

A memory map is a graphical depiction of a
memory array. A memory map is useful to
give an overview of the capacity of the array
and how different address ranges of the array
are used.

A read is an operation in which data is
retrieved from memory. A write is an opera-
tion in which data is stored to memory.

An asynchronous memory array responds
immediately to its control inputs. A

Exercise Problems

Section

11.1: Memory Architecture

and Terminology

1111 For a 512k x 32 memory system, how many
unique address locations are there? Give the
exact number.

11.1.2 For a 512k x 32 memory system, what is the
data width at each address location?

11.1.3  For a 512k x 32 memory system, what is the
capacity in bits?

11.1.4 For a 512k x 32-bit memory system, what is
the capacity in bytes?

11.1.5 For a 512k x 32 memory system, how wide
does the incoming address bus need to be in
order to access every unique address
location?

Section 11.2: Modeling Read-Only

Memory

11.21 Design a VHDL model for the 16 x 8, asyn-

chronous, read-only memory system shown in
Fig. 11.2. The system should contain the infor-
mation provided in the memory map. Create a
test bench to simulate your model by reading
from each of the 16 unique addresses and
observing Data_Out to verify it contains the
information in the memory map.

Address

synchronous memory array only responds
on the triggering edge of clock.

Volatile memory will lose its data when the
power is removed. Nonvolatile memory will
retain its data when the power is removed.
Read-only memory (ROM) is a memory type
that cannot be written to during normal oper-
ation. Read/write (R/W) memory is a memory
type that can be written to during normal
operation. Both ROM and R/W memory can
be read from during normal operation.
Random access memory (RAM) is a memory
type in which any location in memory can be
accessed at any time. In sequential access
memory, the data can only be retrieved in a
linear sequence. This means that in sequen-
tial memory the data cannot be accessed
arbitrarily.

Memory can be modeled in VHDL using the
array data type.

Read-only memory in VHDL is implemented
as an array of constants.

Read/write memory in VHDL is implemented
an as array of signal vectors.

Data
x"00"
x11"
x"22"
x"33"
x"44"
X'55" rom_16x8_async.vhd
x"66" 4 8
X'77" -4 Address Data_Out [4=
x"88"
X"99"
KAA"
x"BB”
x"CC"
x'DD"
x"EE”

RO aADOENOORWONSO

Fig. 11.2
16 x 8 asynchronous ROM block diagram

11.2.2  Design a VHDL model for the 16 x 8, synchro-

nous, read-only memory system shown in
Fig. 11.3. The system should contain the infor-
mation provided in the memory map. Create a
test bench to simulate your model by reading
from each of the 16 unique addresses and
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observing Data_Out to verify it contains the
information in the memory map.

Address Data
x"FF"
x"EE"
x"DD"
XCC rom_16x8_sync.vhd
x"BB" 4 8
KAA" -] Address Data_Out &~
Xx"99"

X"88" —>
x"77"
x"66"
x"55"
X"44"
x"33"

x"22"

x"11"
x"00"

R MoAoCENOOBRWN2O

Fig. 11.3
16 x 8 synchronous ROM block diagram

Section 11.3: Modeling Read/Write
Memory

11.3.1  Design a VHDL model for the 16 x_8, asyn-
chronous, read/write memory system shown in
Fig. 11.4. Create a test bench to simulate your
model. Your test bench should first read from
all of the address locations to verify they are
uninitialized. Next, your test bench should write
unique information to each of the address
locations. Finally, your test bench should read
from each address location to verify that the

information that was written was stored and
can be successfully retrieved.

rw_16x8 async.vhd

B 8
-4 Address Data_Out =
8
-4 Data_In
— WE
Fig. 11.4

16 x 8 asynchronous R/W block diagram

11.3.2

Design a VHDL model for the 16 x 8, synchro-
nous, read/write memory system shown in
Fig. 11.5. Create a test bench to simulate
your model. Your test bench should first read
from all of the address locations to verify they
are uninitialized. Next, your test bench should
write unique information to each of the address
locations. Finally, your test bench should read
from each address location to verify that the
information that was written was stored and
can be successfully retrieved.

rw_16x8_sync.vhd

Address Data_Out &~

Data_In
WE

%

| |}t

Fig. 11.5
16 x 8 synchronous R/W block diagram
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Chapter 12: Computer System Design

This chapter presents the design of a simple computer system that will illustrate the use of many of
the VHDL modeling techniques covered in this book. The goal of this chapter is not to provide an in-depth
coverage of modern computer architecture but rather to present a simple operational computer that can
be implemented in VHDL to show how to use many of the modeling techniques covered thus far. This
chapter begins with some architectural definitions so that consistent terminology can be used throughout
the computer design example.

Learning Outcomes—After completing this chapter, you will be able to:

121 Describe the basic components and operation of computer hardware.
12.2 Describe the basic components and operation of computer software.
12.3 Design a fully operational computer system using VHDL.

12.1 Computer Hardware

A computer accomplishes tasks through an architecture that uses both hardware and software.
The hardware in a computer consists of many of the elements that we have covered so far. These include
registers, arithmetic and logic circuits, finite state machines, and memory. What makes a computer so
useful is that the hardware is designed to accomplish a predetermined set of instructions. These
instructions are relatively simple, such as moving data between memory and a register or performing
arithmetic on two numbers. The instructions are comprised of binary codes that are stored in a memory
device and represent the sequence of operations that the hardware will perform to accomplish a task.
This sequence of instructions is called a computer program. What makes this architecture so useful is
that the preexisting hardware can be programmed to perform an almost unlimited number of tasks by
simply defining the sequence of instructions to be executed. The process of designing the sequence of
instructions, or program, is called software development or software engineering.

The idea of a general-purpose computing machine dates back to the nineteenth century. The first
computing machines were implemented with mechanical systems and were typically analog in nature.
As technology advanced, computer hardware evolved from electromechanical switches to vacuum
tubes and ultimately to integrated circuits. These newer technologies enabled switching circuits and
provided the capability to build binary computers. Today’s computers are built exclusively with semicon-
ductor materials and integrated circuit technology. The term microcomputer is used to describe a
computer that has its processing hardware implemented with integrated circuitry. Nearly all modern
computers are binary. Binary computers are designed to operate on a fixed set of bits. For example, an
8-bit computer would perform operations on 8-bits at a time. This means it moves data between registers
and memory and performs arithmetic and logic operations in groups of 8-bits.

Computer hardware refers to all of the physical components within the system. This hardware
includes all circuit components in a computer such as the memory devices, registers, and finite state
machines. Figure 12.1 shows a block diagram of the basic hardware components in a computer.
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Hardware Components of a Computer System
The following are the main hardware components of a computer.

Central Processing Unit hMEIg‘thg that
(CPU) Program AUk NG -
The state machine Memory instructions being
that orchestrates eer:uted (eg.,
the fetch-decode- Control Unit the “program”)
execute process
Memory that
REELaag 100 Data holds temporary
HE NI ALY Registers Memory variables used by
manipulating data the program
and addresses
gg;g'r:;’;that { Arithmetic / Logic | o
: Unit (ALU) nput / Qutput Interface to the
i Tsbcs et Ports outside world

logic operations

Fig. 12.1
Hardware components of a computer system

12.1.1 Program Memory

The instructions that are executed by a computer are held in program memory. Program memory is
treated as read-only during execution in order to prevent the instructions from being overwritten by the
computer. Programs are typically held in nonvolatile memory so that the computer system does not lose
its program when power is removed. Modern computers will often copy a program from nonvolatile
memory (e.g., a hard disk drive) to volatile memory (i.e., SRAM or DRAM) after start-up in order to speed
up instruction execution as volatile memory is often a faster technology.

12.1.2 Data Memory

Computers also require data memory, which can be written to and read from during normal
operation. This memory is used to hold temporary variables that are created by the software program.
This memory expands the capability of the computer system by allowing large amounts of information to
be created and stored by the program. Additionally, computations can be performed that are larger than
the width of the computer system by holding interim portions of the calculation (e.g., performing a 128-bit
addition on a 32-bit computer). Data memory is typically implemented with volatile memory as it is often
faster than read-only memory technology.

12.1.3 Input/Output Ports

The term port is used to describe the mechanism to get information from the output world into or out
of the computer. Ports can be input, output, or bidirectional. I/O ports can be designed to pass information
in a serial or parallel format.

12.1.4 Central Processing Unit

The central processing unit (CPU) is considered the brains of the computer. The CPU handles
reading instructions from memory, decoding them to understand which instruction is being performed,
and executing the necessary steps to complete the instruction. The CPU also contains a set of registers
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that are used for general-purpose data storage, operational information, and system status. Finally, the
CPU contains circuitry to perform arithmetic and logic operations on data.

12.1.4.1 Control Unit

The control unit is a finite state machine that controls the operation of the computer. This FSM has
states that perform fetching the instruction (i.e., reading it from program memory), decoding the instruc-
tion, and executing the appropriate steps to accomplish the instruction. This process is known as fetch,
decode, and execute and is repeated each time an instruction is performed by the CPU. As the control
unit state machine traverses through its states, it asserts control signals that move and manipulate data
in order to achieve the desired functionality of the instruction.

12.1.4.2 Data Path: Registers

The CPU groups its registers and ALU into a sub-system called the data path. The data path refers
to the fast storage and data manipulations within the CPU. All of these operations are initiated and
managed by the control unit state machine. The CPU contains a variety of registers that are necessary to
execute instructions and hold status information about the system. Basic computers have the following
registers in their CPU:

* Instruction Register (IR)—The instruction register holds the current binary code of the
instruction being executed. This code is read from program memory as the first part of
instruction execution. The IR is used by the control unit to decide which states in its FSM to
traverse in order to execute the instruction.

*  Memory Address Register (MAR)—The memory address register is used to hold the current
address being used to access memory. The MAR can be loaded with addresses in order to
fetch instructions from program memory or with addresses to access data memory and/or I/O
ports.

*  Program Counter (PC)—The program counter holds the address of the current instruction
being executed in program memory. The program counter will increment sequentially through
the program memory reading instructions until a dedicated instruction is used to set it to a new
location.

*  General-Purpose Registers—These registers are available for temporary storage by the
program. Instructions exist to move information from memory into these registers and to move
information from these registers into memory. Instructions also exist to perform arithmetic and
logic operations on the information held in these registers.

+  Condition Code Register (CCR)—The condition code register holds status flags that provide
information about the arithmetic and logic operations performed in the CPU. The most common
flags are negative (N), zero (Z), two’s complement overflow (V), and carry (C). This register can
also contain flags that indicate the status of the computer, such as if an interrupt has occurred
or if the computer has been put into a low-power mode.

12.1.4.3 Data Path: Arithmetic Logic Unit (ALU)

The arithmetic logic unit is the system that performs all mathematical (i.e., addition, subtraction,
multiplication, and division) and logic operations (i.e., and, or, not, shifts, etc.). This system operates on
data being held in CPU registers. The ALU has a unique symbol associated with it to distinguish it from
other functional units in the CPU.

Figure 12.2 shows the typical organization of a CPU. The registers and ALU are grouped into the
data path. In this example, the computer system has two general-purpose registers called A and B. This
CPU organization will be used throughout this chapter to illustrate the detailed execution of instructions.
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Typical CPU Organization

A CPU is functionally organized into a control unit and a data path. The control unit
contains the FSM to orchestrate the fetch-decode-execute process. The registers and
ALU are grouped into a unit called the data path. The control unit sends control signals to
the data path to move and manipulate data. The control unit uses status signals from the
data path to decide which states to traverse in its FSM.

Central Processing Unit

(CPU)

Control Unit Data Path
Control

Signals |

1

Status

b Signals

CCR

Fig. 12.2
Typical CPU organization

12.1.5 A Memory-Mapped System

A common way to simplify moving data in or out of the CPU is to assign a unique address to all
hardware components in the memory system. Each input/output port and each location in both program
and data memory are assigned a unique address. This allows the CPU to access everything in the
memory system with a dedicated address. This reduces the number of lines that must pass into the CPU.
A bus system facilitates transferring information within the computer system. An address bus is driven by
the CPU to identify which location in the memory system is being accessed. A data bus is used to
transfer information to/from the CPU and the memory system. Finally, a control bus is used to provide
other required information about the transactions such as read or write lines. Figure 12.3 shows the
computer hardware in a memory-mapped architecture.
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Computer Hardware in a Memory Mapped Configuration

In a memory mapped system, unique addresses are assigned for all locations in program
and data memory in addition to each I/O port. In this way the CPU can access everything
using just an address.

Central Processing Unit Memory System
(CPU) (mapped)
Control Unit Data Path
Program
Control Memory
@ Signals
p Address, .
7 7
= . Data Data
| A I € 7P Memory
p— Control{, N
 Signals | B |
Input / Output

H_/

A bus system is used to move information
between the memory system and the CPU.

Fig. 12.3
Computer hardware in a memory-mapped configuration

To help visualize how the memory addresses are assigned, a memory map is used. This is a
graphical depiction of the memory system. In the memory map, the ranges of addresses are provided for
each of the main subsections of memory. This gives the programmer a quick overview of the available
resources in the computer system. Example 12.1 shows a representative memory map for a computer
system with an address bus with a width of 8-bits. This address bus can provide 256 unique locations.
For this example, the memory system is also 8-bits wide; thus the entire memory system is 256 x 8 in
size. In this example 128 bytes are allocated for program memory; 96 bytes are allocated for data
memory; 16 bytes are allocated for output ports; and 16 bytes are allocated for input ports.
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Example: Memory Map for a 256x8 Memory System
The following is a memory map for an example 8-bit computer system.
Address
00"
Program
Memory
1 (128 bytes of ROM)
X7F"
x|I80|l
Data
Memory
b (96 bytes of RW)
XI'DF"
x"EQ"
10 (outputs)
(16 Ports)
EE"
x"FO" .
l 10 (inputs)
(16 Ports)
x"FF"
le— 8-bits —»|

Example 12.1
Memory map for a 256 x 8 memory system

CC12.1 s the hardware of a computer programmed in a similar way to a programmable logic
device?

(A) Yes. The control unit is reconfigured to produce the correct logic for each
unique instruction just like a logic element in an FPGA is reconfigured to
produce the desired logic expression.

(B) No. The instruction code from program memory simply tells the state
machine in the control unit which path to traverse in order to accomplish the
desired task.

12.2 Computer Software

Computer software refers to the instructions that the computer can execute and how they are
designed to accomplish various tasks. The specific group of instructions that a computer can execute
is known as its instruction set. The instruction set of a computer needs to be defined first before the
computer hardware can be implemented. Some computer systems have a very small number of
instructions in order to reduce the physical size of the circuitry needed in the CPU. This allows the
CPU to execute the instructions very quickly but requires a large number of operations to accomplish a
given task. This architectural approach is called a reduced instruction set computer (RISC). The
alternative to this approach is to make an instruction set with a large number of dedicated instructions
that can accomplish a given task in fewer CPU operations. The drawback of this approach is that the
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physical size of the CPU must be larger in order to accommodate the various instructions. This
architectural approach is called a complex instruction set computer (CISC). The computer example
in this chapter will use a RISC architecture.

12.2.1 Opcodes and Operands

A computer instruction consists of two fields, an opcode and an operand. The opcode is a unique
binary code given to each instruction in the set. The CPU decodes the opcode in order to know which
instruction is being executed and then takes the appropriate steps to complete the instruction. Each
opcode is assigned a mnemonic, which is a descriptive name for the opcode that can be used when
discussing the instruction functionally. An operand is additional information for the instruction that may be
required. An instruction may have any number of operands including zero. Figure 12.4 shows an
example of how the instruction opcodes and operands are placed into program memory.

Anatomy of a Computer Instruction
An instruction consists of a unique opcode and potentially one or more operands.

Opcode, Operand

S N

Each instruction in the set is An operand (optional) provides additional
given a unique code. information needed for the instruction.

The following is an example of how instructions may reside in program memory. Each
opcode is decoded to know which instruction is to be executed. The opcode additionally
tells the CPU whether or not there are operands required in the instruction.

Address
PC x"00" Opcode 1 e
x"01" Operand 1 SR —
x"02" Opcode 2 .
I 2
<"03" Operand 2 nstruction
x"04" Opcode 3 Instruction 3 (no operand)

The program counter contains the address of where to read the instruction from. Each time
a part of an instruction is read, it is incremented to point to the next location in memory.

Fig. 12.4
Anatomy of a computer instruction

12.2.2 Addressing Modes

An addressing mode describes the way in which the operand of an instruction is used. While modern
computer systems may contain numerous addressing modes with varying complexities, we will focus on
just a subset of basic addressing modes that are needed to get a simple computer running. These modes
are immediate, direct, and inherent.

12.2.2.1 Immediate Addressing (IMM)

Immediate addressing is when the operand of an instruction is the information to be used by the
instruction. For example, if an instruction existed to put a constant into a register within the CPU using
immediate addressing, the operand would be the constant. When the CPU reads the operand, it simply
inserts the contents into the CPU register, and the instruction is complete.
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12.2.2.2 Direct Addressing (DIR)

Direct addressing is when the operand of an instruction contains the address of where the informa-
tion to be used is located. For example, if an instruction existed to put a constant into a register within the
CPU using direct addressing, the operand would contain the address of where the constant was located
in memory. When the CPU reads the operand, it puts this value out on the address bus and performs an
additional read to retrieve the contents located at that address. The value read is then put into the CPU
register and the instruction is complete.

12.2.2.3 Inherent Addressing (INH)

Inherent addressing refers to an instruction that does not require an operand because the opcode
itself contains all of the necessary information for the instruction to complete. This type of addressing is
used on instructions that perform manipulations on data held in CPU registers without the need to access
the memory system. For example, if an instruction existed to increment the contents of a register (A), and
then once the opcode is read by the CPU, it knows everything it needs to know in order to accomplish the
task. The CPU simply asserts a series of control signals in order to increment the contents of A, and then
the instruction is complete. Notice that no operand is needed for this task. Instead, the location of the
register to be manipulated (i.e., A) is inherent within the opcode.

12.2.3 Classes of Instructions

There are three general classes of instructions: (1) loads and stores, (2) data manipulations, and
(3) branches. To illustrate how these instructions are executed, examples will be given based on the
computer architecture shown in Fig. 12.3.

12.2.3.1 Loads and Stores

This class of instructions accomplishes moving information between the CPU and memory. A load
is an instruction that moves information from memory into a CPU register. When a load instruction uses
immediate addressing, the operand of the instruction is the data to be loaded into the CPU register. As an
example, let’s look at an instruction to load the general-purpose register A using immediate addressing.
Let's say that the opcode of the instruction is x“86”, has a mnemonic LDA_IMM, and is inserted into
program memory starting at x“00”. Example 12.2 shows the steps involved in executing the LDA_IMM
instruction.
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Example: Execution of an Instruction to “Load Register A Using Immediate Addressing”

A load instruction using immediate addressing will put the value of the operand into a CPU
register. Let's create a program that will load register A in the CPU with the value x"AA”.
The program is as follows:

Using Mnemonics Using Hex Values
LDA_IMM  x"AA" or x"86" x"AA"
When the opcode and operand are put into program memory at x"00", they look like this:
CPU Memory
Address

o :-8?« :,,Ei,, } LDA_IMM x"AA"
MAR 2

x"02" | Next opcode|

PC

The purpose of this instruction
A ¢ is to put the operand into A.

When the CPU begins executing the program, it will perform the following steps:

Step 1 — Fetch the opcode

The program counter begins at x"00", meaning that this address is the location of the
first instruction opcode. The PC address is put on the address bus using the MAR and
aread is performed. The information read from memory (e.g., the opcode) is placed
into the instruction register. The PC is then incremented to point to the next address in
program memory. After this step, the IR holds x"86" and the PC holds x"01".

Step 2 — Decode the instruction

The CPU decodes x"86" and understands that it is a “load A with immediate
addressing”. It also knows from the opcode that the instruction has an operand that
exists at the next address location.

Step 3 — Execute the instruction

The CPU now needs to read the operand. It places the PC address (x"01") on the
address bus using the MAR and a read is performed. The information read from
memory (e.g., the operand) is placed into register A. After this step, A=x"AA". Also in
this step, the PC is incremented to point to the next location in memory (x"02"), which
holds the opcode of the next instruction to be executed.

Example 12.2
Execution of an instruction to “load register A using immediate addressing”

Now let’s look at a load instruction using direct addressing. In direct addressing, the operand of the
instruction is the address of where the data to be loaded resides. As an example, let's look at an
instruction to load the general-purpose register A. Let’'s say that the opcode of the instruction is x“87”,
has a mnemonic LDA_DIR, and is inserted into program memory starting at x“08”. The value to be
loaded into A resides at address x“80”, which has already been initialized with x“AA” before this
instruction. Example 12.3 shows the steps involved in executing the LDA_DIR instruction.
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Example: Execution of an Instruction to “Load Register A Using Direct Addressing”

A load instruction using direct addressing will put the value located at the address provided
by the operand into a CPU register. Let's create a program that will load register A in the
CPU with the contents located at address x"80", which has already been initialized to
X"AA". The program is as follows:

Using Mnemonics Using Hex Values
LDA_DIR x"80" or x"87" x"80"
When the opcode and operand are put into program memory at x"08", they look like this:
CPU Memory
Address

PC x'08" = LDA DIR x'80"

A x"09 x"80
x"0A" | Next opcode
x"80"  Data Memory

The purpose of this instruction is to put
the contents of this address into A.

When the CPU begins executing the program, it will perform the following steps:

PC

A

Step 1 — Fetch the opcode

The program counter begins at x"08", meaning that this address is the location of the
instruction opcode. The PC address is put on the address bus using the MAR and a
read is performed. The information read from memory (e.g., the opcode) is placed into
the instruction register. The PC is then incremented to point to the next address in
program memory. After this step, the IR holds x"87" and the PC holds x"09".

Step 2 — Decode the instruction

The CPU decodes x"87" and understands that it is a “load A with direct addressing”. It
also knows from the opcode that the instruction has an operand that exists at the next
address location.

Step 3 — Execute the instruction

The CPU now needs to read the operand. It places the PC address (x"09") on the
address bus using the MAR and a read is performed. The information read from
memory (e.g., the operand) is the address that contains the value to be put into A. The
operand is immediately put on the address bus using the MAR and another read is
performed. The value read from address x"80" is placed into register A. After this step,
A=x"AA". Also in this step, the PC is incremented to point to the next location in
memory (x"0A"), which holds the opcode of the next instruction to be executed.

Example 12.3
Execution of an instruction to “load register A using direct addressing”

A store is an instruction that moves information from a CPU register info memory. The operand of a
store instruction indicates the address of where the contents of the CPU register will be written. As an
example, let’s look at an instruction to store the general-purpose register A into memory address x“E0”.
Let's say that the opcode of the instruction is x“96”, has a mnemonic STA_DIR, and is inserted into
program memory starting at x“04”. The initial value of A is x“CC” before the instruction is executed.
Example 12.4 shows the steps involved in executing the STA_DIR instruction.
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Example: Execution of an Instruction to “Store Register A Using Direct Addressing”

A store instruction using direct addressing will put the value held in a CPU register into
memory at the address provided by the operand. Let's create a program that will store
register A in the CPU to address location x"E0". We can assume A holds x"CC" prior to
this instruction. The program is as follows:

Using Mnemonics Using Hex Values
STA_DIR x"EOQ" or x"96" x"E0"
When the opcode and operand are put into program memory at x"04", they look like this:
CPU Memory
Address

P :ﬁggﬂ :,,:g_ } STA_DIR X'E0"
MAR

x"06" | Next opcode

s
x"EQ" Output port
-£@‘ 2 Oustn
The purpose of this instruction

is to put A into address x"EOQ".
When the CPU begins executing the program, it will perform the following steps:

Step 1 — Fetch the opcode

The program counter begins at x"04", meaning that this address is the location of the
instruction opcode. The PC address is put on the address bus using the MAR and a
read is performed. The information read from memory (e.g., the opcode) is placed into
the instruction register. The PC is then incremented to point to the next address in
program memory. After this step, the IR holds x"96" and the PC holds x"05".

Step 2 — Decode the instruction

The CPU decodes x"96" and understands that it is a “store A with direct addressing”. It
also knows from the opcode that the instruction has an operand that exists at the next
address location.

Step 3 — Execute the instruction

The CPU now needs to read the operand. It places the PC address (x"05") on the
address bus using the MAR and a read is performed. The information read from
memory (e.g., the operand) is the address of where A will be written. The operand is
immediately put on the address bus using the MAR, A is put on the data bus, and a
write is performed. After this step, location x"EQ" in memory contains x"CC". Also in
this step, the PC is incremented to point to the next location in memory (x"06"), which
holds the opcode of the next instruction to be executed. The write did not effect
register A so it still contains x"CC" after the instruction completes.

Example 12.4
Execution of an instruction to “store register A using direct addressing”

12.2.3.2 Data Manipulations

This class of instructions refers to ALU operations. These operations act on data that resides in the
CPU registers. These instructions include arithmetic, logic operators, shifts and rotates, and tests and
compares. Data manipulation instructions typically use inherent addressing because the operations are
conducted on the contents of CPU registers and don’t require additional memory access. As an example,
let’s look at an instruction to perform addition on registers A and B. The sum will be placed back in
A. Let's say that the opcode of the instruction is x“42”, has a mnemonic ADD_AB, and is inserted into
program memory starting at x“04”. Example 12.5 shows the steps involved in executing the ADD_AB
instruction.
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Example: Execution of an Instruction to “Add Registers A and B”

This instruction adds A and B and puts the sum back into A (A = A+B). This instruction
does not require an operand because the inputs and output of the operation reside
completely within the CPU. This type of instruction uses inherent addressing, meaning that
the location of the information impacted is inherent in the opcode. Let's create a program
to perform this addition. The program is as follows:
Using Mnemonics Using Hex Values
ADD_AB or x"42"
When the opcode is put into program memory at x"04", it looks like this:
CPU Memory

Address

PC C: x"04" x"42" } ADD_AB

x"05" | Next Opcode

MAR
PC

GHHHER

CCR

When the CPU begins executing the program, it will perform the following steps:

Step 1 — Fetch the opcode
The program counter begins at x"04", meaning that this address is the location of the
instruction opcode. The PC address is put on the address bus using the MAR and a
read is performed. The information read from memory (e.g., the opcode) is placed into
the instruction register. The PC is then incremented to point to the next address in
program memory. After this step, the PC holds x"05" and the IR holds x"42".

Step 2 — Decode the instruction

The CPU decodes x"42" and understands that it is an "Add A and B". It also knows that
there is no operand associated with this instruction.

Step 3 — Execute the instruction
The CPU asserts the necessary control signals to route A and B to the ALU, performs
the addition, and places the sum back into A. The CCR is also updated to provide
additional status information about the operation.

Example 12.5
Execution of an instruction to “add registers A and B”

12.2.3.3 Branches

In the previous examples, the program counter was always incremented to point to the address of
the next instruction in program memory. This behavior only supports a linear execution of instructions. To
provide the ability to specifically set the value of the program counter, instructions called branches are
used. There are two types of branches: unconditional and conditional. In an unconditional branch, the
program counter is always loaded with the value provided in the operand. As an example, let’s look at an
instruction to branch always to a specific address. This allows the program to perform loops. Let's say
that the opcode of the instruction is x“20”, has a mnemonic BRA, and is inserted into program memory

starting at x“06”. Example 12.6 shows the steps involved in executing the BRA instruction.
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Example: Execution of an Instruction to “Branch Always”

A branch always instruction will set the program counter to the value provided by the
operand. Let's create a program that will set the program counter to x"00". The program is

as follows: i i .
Using Mnemonics Using Hex Values
BRA x"00" or x"20" x"00"
When the opcode and operand are put into program memory at x'06", they look like this:
CPU Memory
Address
x"00" [ Next Opcode |
)
P 58 T
PC BRA x"00"
S Jrea x
The purpose of this instruction is to put

the value of the operand into the PC.
When the CPU begins executing the program, it will perform the following steps:

Step 1 = Fetch the opcode

The program counter begins at x"08", meaning that this address is the location of the
instruction opcode. The PC address is put on the address bus using the MAR and a
read is performed. The information read from memory (e.g., the opcode) is placed into
the instruction register. The PC is then incremented to point to the next address in
program memory. After this step, the PC holds x"07" and the IR holds x"20".

Step 2 — Decode the instruction

The CPU decodes x"20" and understands that it is a "branch always”. It also knows
from the opcode that the instruction has an operand that exists at the next address
location.

Step 3 — Execute the instruction

The CPU now needs to read the operand. It places the PC address (x"07") on the
address bus using the MAR and a read is performed. The information read from
memory (e.g., the operand) is the address to load into the PC. The operand is latched
into the PC and the instruction is complete. After this instruction, the PC=x"00" and the
program will begin executing instructions at that address.

Example 12.6
Execution of an instruction to “branch always”

In a conditional branch, the program counter is only updated if a particular condition is true. The
conditions come from the status flags in the condition code register (NZVC). This allows a program to
selectively execute instructions based on the result of a prior operation. Let's look at an example
instruction that will branch only if the Z flag is asserted. This instruction is called a branch if equal to
zero. Let’s say that the opcode of the instruction is x“23”, has a mnemonic BEQ, and is inserted into
program memory starting at x“05”. Example 12.7 shows the steps involved in executing the BEQ
instruction.
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Example: Execution of an Instruction to “Branch if Equal to Zero”

This instruction will update the program counter with the address in the operand if the zero
flag (Z) in the condition code register is asserted (Z=1). If Z=0, the program counter will
simply increment to the next location in program memory. Let's look at how this program is
executed. The instruction resides in program memory at addresses x"05" and x"06".

Using Mnemonics Using Hex Values
BEQ x"00" or x"23" x"00"
When the opcode and operand are put into program memory at x"02", they look like this:
3 PC Memory
If Z=1, the branch WILL be taken.
The PC will be loaded with the ~ (Z=1) Address ]
operand (x"00") and begin -, .
executing instructions at x"00". :
If Z=0, the branch will NOT be 05" x'23" BEQ x"00"
taken. The PC will increment and oo » x"06" x"00"
execute the instruction at x"07". PC x"07" '

(Z=0)
When the CPU begins executing the program, it will perform the following steps:

Step 1 — Fetch the opcode

The program counter begins at x"05", meaning that this address is the location of the
instruction opcode. The PC address is put on the address bus using the MAR and a
read is performed. The information read from memory (e.g., the opcode) is placed into
the instruction register. The PC is then incremented to point to the next address in
program memory. After this step, the PC holds x"06" and the IR holds x"23".

Step 2 — Decode the instruction

The CPU decodes x"23" and understands that it is a “branch if equal to zero". It also
knows from the opcode that the instruction has an operand that exists at the next
address location. The FSM now looks at the Z flag and decides which path in the FSM
to take in order to execute the instruction properly.

Step 3 — Execute the instruction

Z=1 - The branch will be taken by loading the PC with the operand. It places the PC
address (x"06") on the address bus using the MAR and a read is performed. The
information read from memory (e.g., the operand) is then loaded into the PC. If this
action is taken, the PC=x"00".

Z=0 — The branch will not be taken. Instead, the PC is simply incremented to point to the
next location in memory, bypassing the operand. If this action is taken, the PC=x"07".

Example 12.7
Execution of an instruction to “branch if equal to zero”

Conditional branches allow computer programs to make decisions about which instructions to
execute based on the results of previous instructions. This gives computers the ability to react to input
signals or act based on the results of arithmetic or logic operations. Computer instruction sets typically
contain conditional branches based on the NZVC flags in the condition code registers. The following
instructions are a set of possible branches that could be created using the values of the NZVC flags.

*  BMI—Branch if minus (N = 1)

«  BPL—Branch if plus (N = 0)

+  BEQ-—Branch if equal to Zero (Z = 1)

+  BNE—Branch if not equal to Zero (Z = 0)
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*  BVS—Branch if two’s complement overflow occurred, or V is set (V = 1)

*  BVC—Branch if two’s complement overflow did not occur, or V is clear (V = 0)
« BCS—Branch if a carry occurred, or C is set (C = 1)

« BCC—Branch if a carry did not occur, or C is clear (C = 0)

Combinations of these flags can be used to create more conditional branches.

*  BHI—Branch if higher (C =1 and Z = 0)

*  BLS—Branch if lower or the same (C=0and Z = 1)

«  BGE—Branch if greater than or equal (N=0and V =0) or (N =1 and V = 1)), only valid for
signed numbers

*+ BLT—Branch ifless than (N =1and V = 0) or (N =0 and V = 1)), only valid for signed
numbers

« BGT—Branchifgreaterthan (N=0andV=0andZ=0)or(N=1andV =1and Z = 0)), only
valid for signed numbers

+  BLE—Branchifless thanorequal (N=1andV =0)or(N=0andV = 1)or (Z = 1)), only valid
for signed numbers

CC12.2 Software development consists of choosing which instructions, and in what order, will
be executed to accomplish a certain task. The group of instructions is called the
program and is inserted into program memory. Which of the following might a software
developer care about?

(A) Minimizing the number of instructions that need to be executed to accom-
plish the task in order to increase the computation rate.

(B) Minimizing the number of registers used in the CPU to save power.

(C) Minimizing the overall size of the program to reduce the amount of program
memory needed.

(D) Both A and C.

12.3 Computer Implementation: An 8-Bit Computer Example

12.3.1 Top-Level Block Diagram

Let's now look at the detailed implementation and instruction execution of a computer system in
VHDL. In order to illustrate the detailed operation, we will use a simple 8-bit computer system design.
Example 12.8 shows the block diagram for the 8-bit computer system. This block diagram also contains
the VHDL file and entity names, which will be used when the behavioral model is implemented.
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Example: Top Level Block Diagram for the 8-Bit Computer System
The following is the top level block diagram for our 8-bit computer system example.
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Example 12.8

Top-level block diagram for the 8-bit computer system

We will use the memory map shown in Example 12.1 for our example computer system. This
mapping provides 128 bytes of program memory, 96 bytes of data memory, 16x output ports, and 16x
input ports. To simplify the operation of this example computer, the address bus is limited to 8-bits. This
only provides 256 locations of memory access but allows an entire address to be loaded into the CPU as

a single operand of an instruction.

12.3.2 Instruction Set Design

Example 12.9 shows a basic instruction set for our example computer system. This set provides a
variety of loads and stores, data manipulations, and branch instructions that will allow the computer to be
programmed to perform more complex tasks through software development. These instructions are
sufficient to provide a baseline of functionality in order to get the computer system operational. Additional

instructions can be added as desired to increase the complexity of the system.
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Example: Instruction Set for the 8-Bit Computer System

The following is a base set of instructions that the 8-bit computer system will be able to
perform. Each instruction is given a descriptive mnemonic, which allows the system
implementation and the programming to be more intuitive. Each instruction is also
provided with a unique binary opcode. Some instructions have an operand, which provides
additional information necessary for the instruction. If an instruction contains an operand,
a description is provided as to how it is used (e.g., as data or as an address).

Mnemonic Opcode. Operand Description

“Loads and Stores”

LDA_IMM x"86", <data> Load Register A using Immediate Addressing
LDA_DIR x"87", <addr> Load Register A using Direct Addressing
LDB_IMM x"88", <data> Load Register B with Immediate Addressing
LDB_DIR x"89", <addr= Load Register B with Direct Addressing
STA_DIR x"98", <addr> Store Register A to Memory using Direct Addressing
STB_DIR x"97", <addr> Store Register B to Memory using Direct Addressing
“Data Manipulations”
ADD_AB x"42" A=A +B (plus)
“Branches”
BRA x"20", <addr> Branch Always to Address Provided
BEQ ®"23", <addr> Branch to Address Provided if Z=1

Example 12.9
Instruction set for the 8-bit computer system

12.3.3 Memory System Implementation

Let’'s now look at the memory system details. The memory system contains program memory, data
memory, and input/output ports. Example 12.10 shows the block diagram of the memory system. The
program and data memory will be implemented using lower-level components (rom_128x8_sync.vhd
and rw_96x8_sync.vhd), while the input and output ports can be modeled using a combination of RTL
processes and combinational logic. The program and data memory components contain dedicated
circuitry to handle their addressing ranges. Each output port also contains dedicated circuitry to handle
its unique address. A multiplexer is used to handle the signal routing back to the CPU based on the
address provided.
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Example: Memory System Block Diagram for the 8-Bit Computer System
The following is the block diagram for the memory system of our 8-bit computer system
example. memory.vhd
rom_128x8_sync.vhd
A 8
Vi 2 address data_out
— clock
rw_96x8_sync.vhd
) 4 address data_out
data_in —) data_in
write 2 write
—clock
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(16%, 8-bit > °]°°"l
input ports) —( rese (processes)
16x8
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1 |1s Input Ports
data_out 4761
clock
reset :q

Example 12.10
Memory system block diagram for the 8-bit computer system

12.3.3.1 Program Memory Implementation in VHDL

The program memory can be implemented in VHDL using the modeling techniques presented in
Chap. 11. To make the VHDL more readable, the instruction mnemonics can be declared as constants.
This allows the mnemonic to be used when populating the program memory array. The following VHDL
shows how the mnemonics for our basic instruction set can be defined as constants.

constant LDA_IMM : std_logic_vector (7 downto 0) :=x"86";
constant LDA_DIR : std_logic_vector (7 downto 0) :=x"87";
constant LDB_IMM : std_logic_vector (7 downto 0) :=x"88";
constant LDB_DIR : std_logic_vector (7 downto 0) :=x"89";
constant STA_DIR : std_logic_vector (7 downto 0) :=x"96";
constant STB_DIR : std_logic_vector (7 downto 0) :=x"97";
constant ADD_AB : std_logic_vector (7 downto 0) :=x"42";
constant BRA : std_logic_vector (7 downto 0) :=x"20";
constant BEQ : std_logic_vector (7 downto 0) :=x"23";

Now the program memory can be declared as an array type with initial values to define the program.
The following VHDL shows how to declare the program memory and an example program to perform a
load, store, and a branch always. This program will continually write x“AA” to port_out_00.
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type rom_type is array (0 to 127) of std_logic_vector (7 downto 0) ;

constant ROM : rom_type := (0 => LDA_TIMM,
1 =>x"AA",

2 => STA_DIR,
3 =>x"EO",

4 => BRA,

5 =>x"00",
others =>x"00") ;

The address mapping for the program memory is handled in two ways. First, notice that the array
type defined above uses indices from 0 to 127. This provides the appropriate addresses for each location
in the memory. The second step is to create an internal enable line that will only allow assignments from
ROM to data_out when a valid address is entered. Consider the following VHDL to create an internal
enable (EN) that will only be asserted when the address falls within the valid program memory range of
0to 127.

enable : process (address)
begin
if ((to_integer (unsigned(address)) >=0) and
(to_integer (unsigned(address)) <= 127)) then

EN<="'1";
else

EN<="'0";
end if;

end process;

If this enable signal is not created, the simulation and synthesis will fail because data_out
assignments will be attempted for addresses outside of the defined range of the ROM array. This enable
line can now be used in the behavioral model for the ROM process as follows:

memory : process (clock)
begin
if (clock’event and clock='1") then
if (EN='1") then
data_out <= ROM (to_integer (unsigned (address))) ;
end if;
end if;
end process;

12.3.3.2 Data Memory Implementation in VHDL

The data memory is created using a similar strategy as the program memory. An array signal is
declared with an address range corresponding to the memory map for the computer system (i.e., 128 to
223). An internal enable is again created that will prevent data_out assignments for addresses outside of
this valid range. The following is the VHDL to declare the R/W memory array:

type rw_type is array (128 to 223) of std_logic_vector (7 downto 0) ;
signal RW : rw_type;
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The following is the VHDL to model the local enable and signal assignments for the R/W memory:

enable : process (address)
begin
if ( (to_integer (unsigned(address)) >= 128) and
(to_integer (unsigned(address)) <= 223)) then

EN<="'1";
else

EN<="'0";
end if;

end process;

memory : process (clock)
begin
if (clock’event and clock='1’) then
if (EN='1" andwrite='1") then
RW(to_integer (unsigned(address))) <=data_in;
elsif (EN='1’ andwrite='0’) then
data_out <= RW(to_integer (unsigned(address))) ;
endif;
end if;
end process;

12.3.3.3 Implementation of Output Ports in VHDL

Each output port in the computer system is assigned a unique address. Each output port also
contains storage capability. This allows the CPU to update an output port by writing to its specific
address. Once the CPU is done storing to the output port address and moves to the next instruction in
the program, the output port holds its information until it is written to again. This behavior can be modeled
using an RTL process that uses the address bus and the write signal to create a synchronous enable
condition. Each port is modeled with its own process. The following VHDL shows how the output ports at
x“E0” and x“E1” are modeled using address specific processes.

--port_out_00 description : ADDRESS x"EQ"
U3 : process (clock, reset)
begin
if (reset ='0’) then
port_out_00 <=x"00";
elsif (clock’event and clock=’'1") then

if (address =x"E0" andwrite='1") then
port_out_00 <=data_in;
end if;
end if;

end process;

--port_out_01 description : ADDRESS X"E1"
U4 : process (clock, reset)
begin
if (reset ='0') then
port_out_01 <=x"00";
elsif (clock’event and clock=’'1") then

if (address =x"E1l" andwrite="1") then
port_out_01 <=data_in;
end if;
end if;

end process;

“the rest of the output port models go here...”
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12.3.3.4 Implementation of Input Ports in VHDL

The input ports do not contain storage but do require a mechanism to selectively route their
information to the data_out port of the memory system. This is accomplished using the multiplexer
shown in Example 12.10. The only functionality that is required for the input ports is connecting their
ports to the multiplexer.

12.3.3.5 Memory data_out Bus Implementation in VHDL

Now that all of the memory functionality has been designed, the final step is to implement the
multiplexer that handles routing the appropriate information to the CPU on the data_out bus based on the
incoming address. The following VHDL provides a model for this behavior. Recall that a multiplexer is
combinational logic, so if the behavior is to be modeled using a process, all inputs must be listed in the
sensitivity list. These inputs include the outputs from the program and data memory in addition to all of
the input ports. The sensitivity list must also include the address bus as it acts as the select input to the
multiplexer. Within the process, an iffthen statement is used to determine which sub-system drives
data_out. Program memory will drive data_out when the incoming address is in the range of 0 to
127 (x“00” to x“7F”). Data memory will drive data_out when the address is in the range of 128 to
223 (x“80” to x“DF”). An input port will drive data_out when the address is in the range of 240 to
255 (x“F0” to x“FF”). Each input port has a unique address, so the specific addresses are listed as
elsif clauses.

MUX1 : process (address, rom_data_out, rw_data_out,
port_in_00, port_in_01, port_in_ 02, port_in_03,
port_in_04, port_in_05, port_in_06, port_in_07,
port_in_08, port_in_09, port_in_10, port_in_11,
port_in_12, port_in_13, port_in_14, port_in_15)

begin
if ( (to_integer (unsigned(address)) >= 0) and
(to_integer (unsigned (address)) <= 127)) then
data_out <= rom_data_out;
elsif ( (to_integer (unsigned(address)) >=128) and
(to_integer (unsigned (address)) <= 223)) then
data_out <= rw_data_out;
elsif (address =x"F0") then data_out <=port_in_00;
elsif (address =x"F1") then data_out <=port_in_01;
elsif (address =x"F2") then data_out <=port_in_02;
elsif (address =x"F3") then data_out <=port_in_03;
elsif (address =x"F4") then data_out <=port_in_04;
elsif (address =x"F5") then data_out <=port_in_05;
elsif (address =x"F6") then data_out <=port_in_06;
elsif (address =x"F7") then data_out <=port_in_07;
elsif (address =x"F8") then data_out <=port_in_08;
elsif (address =x"F9") then data_out <=port_in_09;
elsif (address = x"FA") then data_out <=port_in_10;
elsif (address = x"FB") then data_out <=port_in_11;
elsif (address =x"FC") then data_out <=port_in_12;
elsif (address = x"FD") then data_out <=port_in_13;
elsif (address =x"FE") then data_out <=port_in_14;
elsif (address =x"FF") then data_out <=port_in_15;

else data_out <=x"00";

end if;

end process;
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12.3.4 CPU Implementation

Let’'s now look at the central processing unit details. The CPU contains two components, the control
unit (control_unit.vhd) and the data path (data_path.vhd). The data path contains all of the registers and
the ALU. The ALU is implemented as a sub-component within the data path (alu.vhd). The data path also
contains a bus system in order to facilitate data movement between the registers and memory. The bus
system is implemented with two multiplexers that are controlled by the control unit. The control unit
contains the finite state machine that generates all control signals for the data path as it performs the
fetch-decode-execute steps of each instruction. Example 12.11 shows the block diagram of the CPU in

our 8-bit microcomputer example.

Example: CPU Block Diagram for the 8-Bit Computer System
The following is the block diagram for the CPU of our 8-bit computer system example.
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Example 12.11

CPU block diagram for the 8-bit computer system
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12.3.4.1 Data Path Implementation in VHDL

Let’s first look at the data path bus system that handles internal signal routing. The system consists
of two 8-bit busses (Bus1 and Bus2) and two multiplexers. Bus1 is used as the destination of the PC, A,
and B register outputs, while Bus2 is used as the input to the IR, MAR, PC, A, and B registers. Bus1 is
connected directly to the fto_memory port of the CPU to allow registers to write data to the memory
system. Bus2 can be driven by the from_memory port of the CPU to allow the memory system to provide
data for the CPU registers. The two multiplexers handle all signal routing and have their select lines
(Bus1_Sel and Bus2_Sel) driven by the control unit. The following VHDL shows how the multiplexers are
implemented. Again, a multiplexer is combinational logic, so all inputs must be listed in the sensitivity list
of its process. Two concurrent signal assignments are also required to connect the MAR to the address
port and to connect Bus1 to the to_memory port.

MUX_BUS1 : process (Busl_Sel, PC, A, B)

begin
case (Busl_sSel) is
when "00" => Busl <= PC;
when "01" => Busl <=A;
when "10" => Busl <= B;
when others => Busl <=x"00";
end case;

end process;

MUX_BUS2 : process (Bus2_Sel, ALU_Result, Busl, from_memory)

begin
case (Bus2_Sel) is
when "00" => Bus2 <= ALU_Result;
when "01" => Bus2 <= Busl;
when "10" => Bus2 <= from_memory;
when others => Bus2 <=x"00";
end case;

end process;

address <=MAR;
to_memory <= Busl;

Next, let’s look at implementing the registers in the data path. Each register is implemented using a
dedicated process that is sensitive to clock and reset. This models the behavior of synchronous latches
or registers. Each register has a synchronous enable line that dictates when the register is updated. The
register output is only updated when the enable line is asserted and a rising edge of the clock is detected.
The following VHDL shows how to model the instruction register (IR). Notice that the signal IR is only
updated if IR_Load is asserted and there is a rising edge of the clock. In this case, IR is loaded with the
value that resides on Bus2.

INSTRUCTION_REGISTER : process (Clock, Reset)
begin

if (Reset ='0") then
IR<=x"00";

elsif (Clock’event and Clock = '1") then
if (IR_Load='1") then

IR <= Bus2;

end if;

end if;

end process;

A nearly identical process is used to model the memory address register. A unique signal is declared
called MAR in order to make the VHDL more readable. MAR is always assigned to address in this
system.
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MEMORY_ADDRESS_REGISTER : process (Clock, Reset)
begin
if (Reset ='0') then
MAR <=x"00";
elsif (Clock’event and Clock ='1") then
if (MAR_Load = "'1l’) then
MAR <= Bus2;
end if;
end if;
end process;

Now let’s look at the program counter process. This register contains additional functionality beyond
simply latching in the value of Bus2. The program counter also has an increment feature. In order to use
the “+” operator, we can declare a temporary unsigned vector called PC_uns. The PC process can model
the appropriate behavior using PC_uns and then type cast it back to the original PC signal.

PROGRAM_COUNTER : process (Clock, Reset)
begin
if (Reset ='0') then
PC_uns <=x"00";
elsif (Clock’event andClock = "'1") then
if (PC_Load = "1l’") then
PC_uns <= unsigned (Bus2) ;
elsif (PC_Inc="'1’) then
PC_uns <=PC_uns + 1;
endif;
endif;
end process;

PC <= std_logic_vector (PC_uns) ;
The two general-purpose registers A and B are modeled using individual processes as follows:

A_REGISTER : process (Clock, Reset)
begin
if (Reset ='0') then
A<=x"00";
elsif (Clock’event and Clock ='1") then
if (A_Load= "'1’) then
A <= Bus2;
end if;
end if;
end process;

B_REGISTER : process (Clock, Reset)
begin
if (Reset ='0") then
B<=x"00";
elsif (Clock’event and Clock = '1’) then
if (B_Load = '1") then
B <=Bus2;
end if;
end if;
end process;

The condition code register latches in the status flags from the ALU (NZVC) when the CCR_Load
line is asserted. This behavior is modeled using a similar approach as follows:

CONDITION_CODE_REGISTER : process (Clock, Reset)
begin
if (Reset = '0’) then
CCR_Result <=x"0";
elsif (Clock’event and Clock ='1") then
if (CCR_Load = '"1’) then
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CCR_Result <= NzVC;
end if;
end if;
end process;

12.3.4.2 ALU Implementation in VHDL

The ALU is a set of combinational logic circuitry that performs arithmetic and logic operations. The
output of the ALU operation is called Result. The ALU also outputs 4 status flags as a 4-bit bus called
NZVC. The ALU behavior can be modeled using if/then/elsif statements that decide which operation to
perform based on the input control signal ALU_Sel. The following VHDL shows an example of how to
implement the ALU addition functionality. In order to be able to use numerical operators (i.e., +, —, etc.),
the numeric_std package is included. Variables can be used within the process to facilitate using the
numerical operators. Recall that variables are updated instantaneously so an assignment can be made
to the variable and its result is available immediately. Note that in the following VHDL, each operation
also updates the NZVC flags. Each of these flags is updated individually. The N flag can be simply driven
with position 7 of the ALU result since this bit is the sign bit for signed numbers. The Z flag can be driven
using an if/then condition that checks whether the result was x“00”. The V flag is updated based on the
type of the operation. For the addition operation, the V flag will be asserted if a POS + POS = NEG or a
NEG + NEG = POS. These conditions can be checked by looking at the sign bits of the inputs and the
sign bit of the result. Finally, the C flag can be directly driven with position 8 of the Sum_uns variable.

ALU_PROCESS : process (A, B, ALU_Sel)
variable Sum_uns : unsigned (8 downto 0) ;

begin
if (ALU_Sel = "000") then - ADDITION

---Sum Calculation ~---------------------
Sum_uns :=unsigned(’'0’ & A) + unsigned(’0’ & B) ;
Result <= std_logic_vector (Sum_uns (7 downto 0)) ;

---Negative Flag (N) ———-—--=----—-——-———om o ———
NZVC (3) <= Sum_uns (7) ;

---ZeroFlag (Z) ——=—=======——=———————— - ————

if (Sum_uns (7 downto 0) =x"00") then
NZVC(2) <= "1";

else
NZVC (2) <="'0";

end if;

---OverflowFlag (V) ———=--------—-—---mmm oo ——

if ((A(7)='0" andB(7)='0" and Sum_uns(7)='1’) or
(A(7)="1"andB(7)='1’" and Sum_uns(7)='0")) then
NZVC (1) <="1";

else
NZVC(1l) <="'0";

end if;

---CarryFlag (C) ————=----—-——-————————————————————————
NZVC (0) <= Sum_uns (8) ;

elsif (ALU_Sel =...
“other ALU functionality goes here”

end if;
end process;
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12.3.4.3 Control Unit Implementation in VHDL

Let’'s now look at how to implement the control unit state machine. We'll first look at the formation of
the VHDL to model the FSM and then turn to the detailed state transitions in order to accomplish a variety
of the most common instructions. The control unit sends signals to the data path in order to move data in
and out of registers and into the ALU to perform data manipulations. The finite state machine is
implemented with the behavioral modeling techniques presented in Chap. 9. The model contains three
processes in order to implement the state memory, next state logic, and output logic of the FSM. User-
defined types are created for each of the states defined in the state diagram of the FSM. The states
associated with fetching (S_FETCH_0, S FETCH_1, S FETCH_2) and decoding the opcode
(S_DECODE_3) are performed each time an instruction is executed. A unique path is then added
after the decode state to perform the steps associated with executing each individual instruction. The
FSM can be created one instruction at a time by adding additional state paths after the decode state. The
following VHDL code shows how the user-defined state names are created for six basic instructions
(LDA_IMM, LDA_DIR, STA_DIR, ADD_AB, BRA, and BEQ).

type state_type is
(S_FETCH_O0, S_FETCH_1, S_FETCH_2,
S_DECODE_3,
S_LDA_IMM_4, S_LDA_IMM_5, S_LDA_IMM_6,
S_LDA_DIR_4, S_LDA_DIR_5, S_LDA_DIR_6, S_LDA_DIR_7, S_LDA_DIR_S8,
S_LDB_IMM_4, S_LDB_IMM_ 5, S_LDB_IMM 6,
S_LDB_DIR_4, S_LDB_DIR_5, S_LDB_DIR_6, S_LDB_DIR_7, S_LDB_DIR_S8,
S_STA_DIR_4, S_STA_DIR_5, S_STA_DIR_6, S_STA_DIR_7,
S_STB_DIR_4, S_STB_DIR_5, S_STB_DIR_6, S_STB_DIR_7,
S_ADD_AB_4,
S_BRA_4, S_BRA_5, S_BRA_6,
S_BEQ_4, S_BEQ 5, S_BEQ_6, S_BEQ_7) ;

signal current_state, next_state : state_type;

Within the architecture of the control unit model, the state memory is implemented as a separate
process that will update the current state with the next state on each rising edge of the clock. The reset
state will be the first fetch state in the FSM (i.e., S_FETCH_0). The following VHDL shows how the state
memory in the control unit can be modeled.

STATE_MEMORY : process (Clock, Reset)
begin
if (Reset ='0') then
current_state <= S_FETCH_O;
elsif (clock’event andclock = "'1’) then
current_state <=next_state;
end if;
end process;

The next state logic is also implemented as a separate process. The next state logic depends on
the current state, instruction register (IR), and the condition code register (CCR_Result). The
following VHDL gives a portion of the next state logic process showing how the state transitions can
be modeled.
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NEXT_STATE_LOGIC : process (current_state, IR, CCR_Result)
begin
if (current_state = S_FETCH_O0) then
next_state <= S_FETCH_1;
elsif (current_state =S_FETCH_1) then
next_state <= S_FETCH_2;
elsif (current_state = S_FETCH_2) then
next_state <= S_DECODE_3;
elsif (current_state = S_DECODE_3) then
-- select execution path
if (IR =LDA_IMM) then -- Load A Immediate
next_state <= S_LDA_IMM_4;
elsif (IR =LDA_DIR) then -- Load A Direct
next_state <= S_LDA_DIR_4;
elsif (IR = STA_DIR) then -- Store ADirect
next_state <= S_STA_DIR_4;
elsif (IR =ADD_AB) then -- Add A and B
next_state <= S_ADD_AB_4;
elsif (IR = BRA) then -- Branch Always
next_state <= S_BRA_4;
elsif (IR=BEQ and CCR_Result(2)=’'1’) then -- BEQ and z=1
next_state <= S_BEQ_4;
elsif (IR=BEQ and CCR_Result(2)='0") then -- BEQ and Z=0
next_state <=S_BEQ_7;
else
next_state <= S_FETCH_O0;
end if;

elsif...
“paths for each instruction go here...”

end if;
end process;

Finally, the output logic is modeled as a third, separate process. It is useful to explicitly state the
outputs of the control unit for each state in the machine to allow easy debugging and avoid synthesizing
latches. Our example computer system has Moore-type outputs, so the process only depends on the
current state. The following VHDL shows a portion of the output logic process.

OUTPUT_LOGIC : process (current_state)

begin
case (current_state) is

when S_FETCH_0 => -- Put PC onto MAR to read Opcode
IR_Load <= '0";
MAR_Load <= "1";
PC_Load <="'0";
PC_Inc <="'0";
A_Load <="'0";
B_Load <="'0";
ALU_Sel <= "000";
CCR_Load <= "'0";
Busl_Sel <="00"; -- "00"=PC, "Ol"=A, "10"=B
Bus2_Sel <= "01"; -- "00"=ALU_Result, "01"=Busl, "10"=from_memory
write <='0";

when S_FETCH_1 => -- Increment PC

IR_Load <= "'0";
MAR_Load <= "'0";
PC_Load <="'0";
PC_Inc <="'1";
A_Load <="'0";
B_Load <="'0";
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ALU_Sel <= "000";
CCR_Load <= "'0";

Busl_Sel <= "00"; -- "00"=PC, "01"=A, "10"=B
Bus2_Sel <="00"; -- "00"=ALU, "01"=Busl, "10"=from_memory
write <="'0";

“output assignments for all other states go here...”

end case;
end process;

Detailed Execution of LDA_IMM

Now let’s look at the details of the state transitions and output signals in the control unit FSM when
executing a few of the most common instructions. Let’s begin with the instruction to load register A using
immediate addressing (LDA_IMM). Example 12.12 shows the state diagram for this instruction. The first
three states (S_FETCH_0, S FETCH_1, S_FETCH_2) handle fetching the opcode. The purpose of
these states is to read the opcode from the address being held by the program counter and put it into the
instruction register. Multiple states are needed to handle putting PC into MAR to provide the address of
the opcode, waiting for the memory system to provide the opcode, latching the opcode into IR, and
incrementing PC to the next location in program memory. Another state is used to decode the opcode
(S_DECODE_3)in order to decide which path to take in the state diagram based on the instruction being
executed. After the decode state, a series of three more states are needed (S_LDA_IMM_4,
S_LDA_IMM_5, S_LDA_IMM_6) to execute the instruction. The purpose of these states is to read the
operand from the address being held by the program counter and put it into A. Multiple states are needed
to handle putting PC into MAR to provide the address of the operand, waiting for the memory system to
provide the operand, latching the operand into A, and incrementing PC to the next location in program
memory. When the instruction completes, the value of the operand resides in A and PC is pointing to the
next location in program memory, which is the opcode of the next instruction to be executed.
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Example: State Diagram for LDA_IMM

The following is the state diagram for LDA_IMM. This load instruction will move
information from memory into register A. Immediate addressing implies that the
information to be put into A is provided as the operand of the instruction.

This state will place the PC value into the MAR in order to
provide the address for the opcode. MAR will be updated with
PC in the next state.

S_FETCH_O
Busi_Sel=PC
Bus2_Sel = Bus1
MAR_Load

MAR is now holding the address of the opcode. It will take 1
clock cycle for the memory to provide the opcode after
receiving the address. While waiting, the PC can be
incremented to the next address in the program memory.

The opcode that has been read from memory is now available
on Bus2 and can be latched into IR by asserting IR_Load. IR

Bus2_Sel=from_memory " : -
will be updated with the opcode in the next state.

The opcode now resides in IR and is decoded to determine
which instruction is being executed.

to other instructions....
If (IR=LDA_IMM)

w

S_LDA_IMM_4

Busi_Sel = PC
Bus2_Sel = Bus1
MAR_Load

“Load A Immediate” means that the gperand of the instruction
is the information to be loaded into A. PC is already pointing
to this location in memory so we can put it out on MAR. MAR
will be updated with PC in the next state.

MAR is now holding the address of the operand. It will take 1
clock cycle for the memory to provide the operand after
receiving the address. While waiting, the PC can be
incremented to the next address in the program memory.

The operand that has been read from memory is now
available on Bus2 and can be latched into A by asserting
A_Load. Register A will be loaded with the operand in the
next state (e.g., S_FETCH_0).

S_LDA_IMM_86
Bus2_Sel=from_memory
A_Load

We are done executing this instruction so we can return to the
beginning and fetch the opcode of the next instruction. Notice that the
PC is already pointing to the next address in program memory.

Example 12.12
State diagram for LDA_IMM

Example 12.13 shows the simulation waveform for executing LDA_IMM. In this example, register A
is loaded with the operand of the instruction, which holds the value x“*AA”.
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Example: Simulation Waveform for LDA_IMM

Let's look at the timing diagram when executing the following load instruction located at
addresses x"00" and x"01" in program memory. The opcode for this instruction is x"86".

LDA_IMM  x"AA”

S_FETCH_0 puts PC into MAR
to provide the address of the
opcode. MAR is updated on the
next clock edge.

S_LDA_IMM_4 puts PC into
MAR to provide the address of
the operand. MAR is updated

on the next clock edge.

In S_FETCH_2, the opcode is In S_LDA_IMM_S6, the operand is
available from memory. We route it available from memory. We route it
to Bus2 and assert IR_Load. IR will to Bus2 and assert A_Load. A will
be updated on the next clock edge. be updated on the next clock edge.
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In S_FETCH_1, the PC is incremented In S_LDA_IMM_S5, the PC is incremented
while waiting for the memory to produce while waiting for the memory to produce
the opcode. PC takes on its new value the operand. PC takes on its new value
on the next edge of clock. on the next edge of clock.
S_DECODE_3 decodes the opcode and

Example 12.13

knows that this is a “load A with immediate
addressing” and that the operand is the
data to be loaded into A.

Simulation waveform for LDA_IMM

Detailed Execution of LDA_DIR

Now let’s look at the details of the instruction to load register A using direct addressing (LDA_DIR).
Example 12.14 shows the state diagram for this instruction. The first four states to fetch and decode the
opcode are the same states as in the previous instruction and are performed each time a new instruction
is executed. Once the opcode is decoded, the state machine traverses five new states to execute the
instruction (S_LDA_DIR_4, S_LDA DIR_ 5, S_LDA_DIR_6, S_LDA DIR_7, S_LDA_DIR_8). The pur-
pose of these states is to read the operand and then use it as the address of where to read the contents to

put into A.

Register A has been loaded
with the operand and the
instruction is now complete.
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Example: State Diagram LDA_DIR

e b
s_FE'rcH_o\
Bus1_Sel=PC
Bus2_Sel = Bus1
MAR_Load

“S_FETCH_2
@Js2_SeI=1’r!>m_r:|en'u:\r:.r

\ IR_Load

S_LDA_DIR_4
Bus1_Sel=PC
Bus2_Sel = Busi

If (IR=LDA_IMM) MAR_Load

S_LDA_DIR_6

MAR_Load

S_LDA_DIR_7

Bus2_Sel=from_memory
A_Load

Bus2_Sel=from_memaory

The following is the state diagram for LDA_DIR. This load instruction will move information
from memory into register A. Direct addressing implies that the information to be put into A
is located at the address provided as the operand of the instruction.

The same fetch/decode states are
executed on every instruction.

“Load A Direct” means that the operand of the
instruction is the address of the contents to be put into
A. PC is already pointing to this location in memory so
we can put it out on MAR.

It will take 1 clock cycle for the memory to provide the
operand after receiving the address. While waiting, the
PC can be incremented to the next address in the
program memory.

The operand that has been read from memory is now
available on Bus2. We put this value into MAR by
asserting MAR_Load.

It will take 1 clock cycle for the memory to provide the
contents at the address on MAR. This state simply
gives the memory system time to respond.

Now MAR is driving the correct address. We put the
contents arriving on from_memory onto Bus2 and then
latch the value into A by asserting A_Load. Register A
will be updated in the next state (e.g., S_FETCH_O0).

Example 12.14
State diagram for LDA_DIR

Example 12.15 shows the simulation waveform for executing LDA_DIR. In this example, register A
is loaded with the contents located at address x“80”, which has already been initialized to x"AA”.
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Example: Simulation Waveform for LDA_DIR

Let's look at the timing diagram when executing the following load instruction located at
addresses x"08" and x"09" in program memory. The opcode for this instruction is x"87".
The address x"80" is in data memory, which in this example is already holding x"AA" prior

to this instruction. LDA_DIR xnaon

In S_FETCH_2, the opcode is
available from memory. We route it
to Bus2 and assert IR_Load. IR will
be updated on the next clock edge.

In 5_LDA_DIR_B, the operand is
available from memory. We route it
to Bus2 and assert MAR_Load to
put it on the address bus.

5_FETCH_0 puts PC into MAR
to provide the address of the
opcode. MAR is updated on the
next clock edge.

S_LDA_DIR_4 puts PC into
MAR to provide the address of
the operand. MAR is updated

on the next clock edge.

S_LDA_DIR_7 waits for
the memory system to
respond.

In S_FETCH_1, the PC is incremented
while waiting for the memory to produce
the opcode. PC takes on its new value

on the next edge of clock.

In S_LDA_DIR_S, the PC is incremented
while waiting for the memory to produce the
operand. PC takes on its new value on the

next edge of clock.

S_DECODE_3 decodes the opcode and
knows that this is a "load A with direct
addressing" and that the operand is the
address of the contents to be loaded into A.

In S_LDA_DIR_8, the contents of
memory are available. We route it to
Bus 2 and assert A_Load. A will be
updated on the next clock edge.

Example 12.15
Simulation waveform for LDA_DIR

Detailed Execution of STA_DIR

Now let’s look at the details of the instruction to store register A to memory using direct addressing
(STA_DIR). Example 12.16 shows the state diagram for this instruction. The first four states are again the
same as prior instructions in order to fetch and decode the opcode. Once the opcode is decoded, the
state machine traverses four new states to execute the instruction (S_STA_DIR_4, S_STA DIR_5,
S_STA DIR_6, S_STA_DIR_7). The purpose of these states is to read the operand and then use it as
the address of where to write the contents of A to.
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Example: State Diagram for STA_DIR
The following is the state diagram for STA_DIR. This store instruction will move
information from register A into memory. Direct addressing implies that the operand
provides the address of where to store A to.

— -
~~ S_FETCH_0 ~
’ Bus1_Sel=PC
', Bus2_Sel = Busi
i VMAR_Load

~8_FETCH_1
PC_Inc
N £ The same fetch/decode states are
l g > executed on every instruction.

" S_FETCH 2 ™

[ Bus2_Sel=from_memory |
IR_Load

3

_~§_DECODE_3™~,

-

\’ to other instructions....

If (IR=STA_DIR)

H f
. ]
I 4
<+ (IR=LDA_DIR)
If (IR=LDA_IMM) S _STA DIR 4 “Store A Direct” means that the operand of the

instruction is the address of where to write the
contents of A to. PC is already pointing to this
location in memory so we can put it out on MAR.

Bus1_Sel = PC
Bus2_Sel = Bus1
MAR_Load

It will take 1 clock cycle for the memory to provide the
operand after receiving the address. While waiting,
the PC can be incremented to the next address in the
program memory.

The operand that has been read from memory is now
available on Bus2. We put the address into MAR by

asserting MAR_Load.

Bus2_Sel=from_memory
MAR_Load

Now MAR is driving the correct address. We need to
write A to memory so we put A on Bus1, which is
directly connected to the to_memory port, and assert
the write signal. This puts the contents of A into the
address provided by the gperand.

S_STA_DIR_7
Bus1_Sel=A
Write

Example 12.16
State diagram for STA_DIR

Example 12.17 shows the simulation waveform for executing STA_DIR. In this example, register A
already contains the value x“CC” and will be stored to address x“E0Q”. The address x“EQ” is an output port

(port_out_00) in our example computer system.
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Example: Simulation Waveform for STA_DIR

Let's look at the timing diagram when executing the following store instruction located at
addresses x"04" and x"05" in program memory. The opcode for this instruction is x"96".
The address x"EQ" is for port_out_00. A already contains x"CC".

STA_DIR x"EQ”

S_STA_DIR_4 puts PC into

MAR to provide the address of

the operand. MAR is updated
on the next clock edge.

S_FETCH_O puts PC into MAR
to provide the address of the
opcode. MAR is updated on the
next clock edge.

Address x"EQ" has
been updated with
the contents of A,

In S_FETCH_2, the opcode is
available from memory. We route it
to Bus2 and assert IR_Load. IR will
be updated on the next clock edge.

In S_STA_DIR_S6, the operand is
available from memory. We route it
to Bus2 and assert MAR_Load to
put it on the address bus.
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In S_FETCH_1, the PC is incremented
while waiting for the memory to produce
the opcode. PC takes on its new value

In S_STA_DIR_S, the PC is incremented
while waiting for the memory to produce
the operand. PC takes on ils new value

on the next edge of clock. on the next edge of clock.

S_DECODE_3 decodes the opcode and
knows that this is a “store A with direct
addressing” and that the operand is the
address to write A to.

InS_STA_DIR_7, A is put onto Bus1,
which drives to_memory, and write is
asserted. The contents of A show up at
address x"E0" on the next clock edge.

Example 12.17
Simulation waveform for STA_DIR

Detailed Execution of ADD_AB

Now let’s look at the details of the instruction to add A to B and store the sum back in A (ADD_AB).
Example 12.18 shows the state diagram for this instruction. The first four states are again the same as
prior instructions in order to fetch and decode the opcode. Once the opcode is decoded, the state
machine only requires one more state to complete the operation (S_ADD_AB_4). The ALU is combina-
tional logic, so it will begin to compute the sum immediately as soon as the inputs are updated. The inputs
to the ALU are Bus1 and register B. Since B is directly connected to the ALU, all that is required to start
the addition is to put A onto Bus1. The output of the ALU is put on Bus2 so that it can be latched into A on
the next clock edge. The ALU also outputs the status flags NZVC, which are directly connected to the
condition code register. A_Load and CCR_Load are asserted in this state. A and CCR_Result will be
updated in the next state (i.e., S_FETCH_O0).
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Example: State Diagram for ADD_AB
The following is the state diagram for ADD_AB. This instruction will use the ALU to add A
and B and store the sum back in A. The status flags NVZC will also be generated by the
ALU and latched by the condition code register.

~~ 8_FETCH 0 ™
—p Bus1_Sel = PC 3
. Bus2_Sel = Bus1 /

“~_ MAR load _~

S_FETCHI

PC_Inc

.\\ ./.

" S_FETCH_2 ™~
( Bus2_Sel=from_memory |
\ IR_Load /

~"S_DECODE_3 ™~

-

enmnenaad

The same fetch/decode states are executed
on every instruction.

x’ to other instructions....

If (IR=ADD_AB)

This instruction uses inherent addressing

w If (IR=STA_DIR)
+ If (IR=LDA_DIR)
If (IR=LDA_IMM)

S_ADD_AB_4
Bus1_Sel=A
Bus2_Sel=ALU
ALU_Sel="Add"
A_Load

so no operand is needed. A is placed on
Bus1, which is connected directly to the
ALU. B is also connected directly to the
ALU. The ALU_Sel is set to the code
corresponding to addition. Since the

CCR_Load

ALU is combinational logic, the addition
begins immediately. A_Load and
CCR_Load are asserted in this state. A
and the CCR will be updated in the next
state.

Example 12.18
State diagram for ADD_AB

Example 12.19 shows the simulation waveform for executing ADD_AB. In this example, two load
immediate instructions were used to initialize the general-purpose registers to A = x‘FF” and B = x“01”
prior to the addition. The addition of these values will result in a sum of x“00” and assert the carry (C) and
zero (Z) flags in the condition code register.
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Example: Simulation Waveform for ADD_AB

Let's look at the timing diagram when executing the following add instruction located at
address x"04" in program memory. Prior to this instruction, A=x"FF" and B=x"01". The
opcode for this instruction is x"42".

ADD_AB
S_FETCH_O puts PC into MAR
to provide the address of the
opcode. MAR is updated on the
next clock edge. The inputs to the ALU are B and Bus1.
S_ADD_AB_4 puts A onto Bus1, puts
In S_FETCH_2, the opcode is ALU_Result on Bus2, and sets ALU_Sel
available from memory. We route it to “addition”. A_Load and CCR_Load
to Bus2 and assert IR_Load. IR will are asserted to latch in the sum and
be updated on the next clock edge. status flags on the next clock edge.
g o 1 [ I p 1 1 —T
= Control Unit ———————

+ current_state - smwj—qunJ—kJnﬁz—k_MJ_#b CUW S T E—
Frr=-Tai ] N A s, [ — !
_0 L] 1 (7] AL

* MAR_Load o [ 1 T

* MAR 00 03 11 L
_0 PC_Laad o— / l(

+ PC_ine o Z 1 N I
gt S orfos J )" =

e oo & / : & Y

*B_Lesd o | 1 -

+n ) T I @ ) Fi
:“h.wm_': L477] - ) :’

:w\.---' o1 g; b — X T A

# Busl_Sel 00 00 = = = oL o

: Busl = i e J ¥
% Bus2 [ J ks 2 J s % J Jfos

# write o T Fi
=AY 1 1 !

# ALU_Rasult 01 05 ot E ) LA T

& NIVC )

* CCR_Rusult ) & 2
= e e B I
Lare Cursor 1 | ms |

In S_FETCH_1, the PC is incremented A has been updated with the
while waiting for the memory to produce sum and CCR_Result has
the opcode. PC takes on its new value been updated with NZVC.
on the next edge of clock.
S_DECODE_3 decodes the opcode
and knows that this is a "add A to B”
and that there is no operand.

Example 12.19
Simulation waveform for ADD_AB

Detailed Execution of BRA

Now let’s look at the details of the instruction to branch always (BRA). Example 12.20 shows the
state diagram for this instruction. The first four states are again the same as prior instructions in order to
fetch and decode the opcode. Once the opcode is decoded, the state machine traverses four new states
to execute the instruction (S_BRA_4, S_BRA_5, S_BRA_6). The purpose of these states is to read the
operand and put its value into PC to set the new location in program memory to execute instructions.
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Example: State Diagram for BRA
The following is the state diagram for BRA. This instruction will load the program counter
with the address supplied by the operand of the instruction. This has the effect of setting
the address of the next instruction to be executed to a new location in program memory.

~~ S_FETCH_0 ™
_’ Bus1_Sel=PC

',  Bus2_Sel=Busi
MAR Load -~

s

~8_FETCH_1
( PC_Inc
N 4 The same fetch/decode states are executed on
l > every instruction.

_S_FETCH_2 ™~

[ Bus2_Sel=from_memory |
A IR_Load /

_~§_DECODE_3™~,

-

\to other instructions....

If (IR=BRA)

*
H

.,

“Branch Always" means we are going to load
PC with the address provided by the
operand. PC is already pointing to this

h 4
w i (IR=ADD_AB)
+ If (IR=STA_DIR)

W If (IR=LDA_DIR) S_BRA_4 and. ]
If (IR=LDA_IMM) Bus1_Sel = PC location in memory so we can put it out on
= Bus2_Sel = Bus1 MAR. MAR will be updated with PC in the

MAR_Lead next state.

MAR is now holding the address of the
operand. It will take 1 clock cycle for the
memory to provide the operand after
receiving the address. Since PC will be
loaded with a new value, there is no need to
increment it here as in prior instructions.

S_BRA_6

Bus2_Sel=from_memory
PC_Load

The operand that has been read from
memory is now available on Bus2 and can
be latched into PC by asserting PC_Load.
PC will be updated with the operand in the
next state (e.g., S_FETCH_0).

We are done executing this instruction so we can
return to the beginning and fetch the opcode of the
next instruction. Notice that PC is now pointing to
the new location to begin executing code.

Example 12.20
State diagram for BRA

Example 12.21 shows the simulation waveform for executing BRA. In this example, PC is set back
to address x“00”.



200

Chapter 12: Computer System Design

Example: Simulation Waveform for BRA

Let's look at the timing diagram when executing the following branch always instruction
located at addresses x"06" and x"07" in program memory. The opcode for this instruction

is x"20".

BRA x"00"

S_FETCH_O puts PC into MAR
to provide the address of the
opcode. MAR is updated on the

next clock edge.

S_BRA_4 puts PC into MAR to
provide the address of the
operand. MAR is updated on
the next clock edge.

In S_FETCH_2, the opcode is In S_BRA_B, the operand is available
available from memory. We route it from memory. We route it to Bus2
to Bus2 and assert IR_Load. IR will and assert PC_Load. PC will be
be updated on the next clock edge. updated on the next clock edge.
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In S_FETCH_1, the PC is incremented S_BRA_5 is needed while waiting
while waiting for the memory to produce for the memory system to provide
the opcode. PC takes on its new value the operand. There is no need to
on the next edge of clock. increment PC in this state.

data to be loaded into PC.

S_DECODE_3 decodes the opcode
and knows that this is a “branch
always” and that the operand is the

PC has been loaded with the
operand and the instruction
is now complete.

Example 12.21
Simulation waveform for BRA

Detailed Execution of BEQ

Now let’s look at the branch if equal to zero (BEQ) instruction. Example 12.22 shows the state
diagram for this instruction. Notice that in this conditional branch, the path that is taken through the FSM
depends on both IR and CCR. In the case that Z = 1, the branch is taken, meaning that the operand is
loaded into PC. In the case that Z = 0, the branch is not taken, meaning that PC is simply incremented to

bypass the operand and point to the beginning of the next instruction in program memory.
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Example: State Diagram for BEQ
The following is the state diagram for BEQ. If the zero flag is asserted (Z=1), this
instruction will load the program counter with the address supplied by the operand. If the
zero flag is not asserted (Z=0), the branch is not taken and the program counter is
incremented to the next location in program memory.

— -~
~~ S_FETCH_0
_’" Bus1_Sel=PC
Bus2_Sel = Bus1
"~ MAR Load -~

~8_FETCH_1 ™
PC_Inc

- The same fetch/decode states are executed on

l > every instruction.

_~S_FETCH_2 ™

Bus2_Sel=from_memory |
IR_Load

!

~§_DECODE 3™~

-

\’to other instructions. ...

S BN
! w If(IR=BRA)
i W If(IR=ADD_AB)
+ If (IR=STA_DIR)
+ If (IR=LDA_DIR)
If (IR=LDA_IMM)

If (IR=BEQ and Z=1) If IR=BEQ and Z=0)

S_BEQ_4
Bus1_Sel=PC
Bus2_Sel = Bus1
MAR_Load

If Z=0, this path is taken.
This state simply
increments PC to
bypass the operand and
point at the opcode of
the next instruction
sequentially in memory.
In this case, the branch
is “not taken".

If Z=1, this path is taken.
These three states read the
operand and place it into PC.
In this case, the branch is

“taken”. S_BEQ_6

Bus2_Sel=from_memory
PC_Load

Example 12.22
State diagram for BEQ

Example 12.23 shows the simulation waveform for executing BEQ when the branch is taken. Prior to
this instruction, an addition was performed on x“FF” and x“01”. This resulted in a sum of x“00”, which
asserted the Z and C flags in the condition code register. Since Z = 1 when BEQ is executed, the branch

is taken.
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is x"23".

BEQ x"00"

Example: Simulation Waveform for BEQ When Taking the Branch (Z=1)

Let's look at the timing diagram when executing a branch if equal to zero instruction when
the branch js taken. Prior to this instruction, the addition x"FF"+x"01"=x"00" was
performed. This prior addition set the zero and carry flag in the condition code register.
Since Z=1 during this BEQ instruction, the branch will be taken. The BEQ instruction is
located at addresses x"05" and x"08" in program memory. The opcode for this instruction

S_FETCH_O puts PC into MAR
to provide the address of the
opcode. MAR is updated on the

S_BEQ_4 puts PC into MAR to
provide the address of the
operand. MAR is updated on

next clock edge. the next clock edge.
In S_FETCH_2, the opcode is In S_BEQ_B, the operand is available
available from memory. We route it from memory. We route it to Bus2
to Bus2 and assert IR_Load. IR will and assert PC_Load. PC will be
be updated on the next clock edge. updated on the next clock edge.
s = |
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In S_FETCH_1, the PC is incremented S_BEQ_S5 is needed while waiting
while waiting for the memory to produce for the memory system to provide
the opcode. PC takes on its new value the operand. There is no need to
on the next edge of clock. increment PC in this state.
7=1 comin S_DECODE_3 decodes the opcode and knows that PC has been loaded with the
into this 9 this is a “branch if equal to zero". The decode operand, thus completing the
instruction process also checks the Z flag. Since Z=1, the next branch.
’ state is S_BEQ_4 in order o take the branch.

Example 12.23

Simulation waveform for BEQ when taking the branch (Z = 1)

Example 12.24 shows the simulation waveform for executing BEQ when the branch is not taken.
Prior to this instruction, an addition was performed on x“FE” and x“01”. This resulted in a sum of X“FF”,
which did not assert the Z flag. Since Z = 0 when BEQ is executed, the branch is not taken. When not
taking the branch, PC must be incremented again in order to bypass the operand and point to the next

location in program memory.




12.3 Computer Implementation: An 8-Bit Computer Example + 203

Example: Simulation Waveform for BEQ When the Branch is Not Taken (Z=0)

Let's look at the timing diagram when executing a branch if equal to zero instruction when
the branch is not taken. Prior to this instruction, the addition x"FE"+x"01"=x"FF" was
performed. This addition did not set the zero in the condition code register. Since this
operation resulted in Z=0, the branch will not be taken. The BEQ instruction is located at
addresses x"05" and x"06" in program memory. The opcode for this instruction is x"23".

BEQ x"00"
S_FETCH_O puts PC into MAR
to provide the address of the S_BEQ_7 increments PC in
opcode. MAR is updated on the order to bypass the operand in
next clock edge. program memory.

In 5_FETCH_2, the opcode is
available from memory. We route it
to Bus2 and assert IR_Load. IR will
be updated on the next clock edge.

% ALU_Rasult 03 0% o7 1]
- 0
lax = —r)
- "“"1'..‘.“;".'.”“”‘.“".' ..... P ] UG S P
L Cumerdims)

In S_FETCH_1, the PC is incremented
while waiting for the memory to produce
the opcode. PC takes on its new value

The PC now points to the
next instruction in memory.
The branch was not taken.

on the next edge of clock.
Z=0 comin S_DECODE_3 decodes the opcode and knows that
into this 9 this is a “branch if equal to zero™. The decode
instruction process also checks the Z flag. Since Z=0, the next
i state is S_BEQ_7 so that the branch is not taken.

Example 12.24
Simulation waveform for BEQ when the branch is not taken (Z = 0)
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CC12.3

(A) The width of the program counter would need to be increased to support the

wider address bus.

(B) The size of the memory address register would need to be increased to

The 8-bit microcomputer example presented in this section is a very simple architec-
ture used to illustrate the basic concepts of a computer. If we wanted to keep this
computer an 8-bit system but increase the depth of the memory, it would require
adding more address lines to the address bus. What changes to the computer system
would need to be made to accommodate the wider address bus?

support the wider address bus.

(C) Instructions that use direct addressing would need additional bytes of
operand to pass the wider address into the CPU 8-bits at a time.

(D) All of the above.

Summary

o

o

A computer is a collection of hardware
components that are constructed to perform
a specific set of instructions to process and
store data. The main hardware components
of a computer are the central processing unit
(CPU), program memory, data memory, and
input/output ports.

The CPU consists of registers for fast storage,
an arithmetic logic unit (ALU) for data manip-
ulation, and a control state machine that
directs all activity to execute an instruction.

A CPU is typically organized into a data path
and a control unit. The data path contains
circuitry used to store and process informa-
tion. The data path includes registers and the
ALU. The control unitis a large state machine
that sends control signals to the data path in
order to facilitate instruction execution.

The control unit performs a fetch-decode-
execute cycle in order to complete
instructions.

The instructions that a computer is designed
to execute is called its instruction set.
Instructions are inserted into program mem-
ory in a sequence that when executed will
accomplish a particular task. This sequence
of instructions is called a computer program.
An instruction consists of an opcode and a
potential operand. The opcode is the unique
binary code that tells the control state
machine which instruction is being executed.
An operand is additional information that may
be needed for the instruction.

An addressing mode refers to the way that
the operand is treated. In immediate
addressing the operand is the actual data to
be used. In direct addressing the operand is
the address of where the data is to be
retrieved or stored. In inherent addressing
all of the information needed to complete
the instruction is contained within the opcode
so no operand is needed.

A computer also contains data memory to
hold temporary variables during run time.

A computer also contains input and output
ports to interface with the outside world.

A memory-mapped system is one in which
the program memory, data memory, and 1/O
ports are all assigned a unique address. This
allows the CPU to simply process information
as data and addresses and allows the pro-
gram to handle where the information is
being sent to. A memory map is a graphical
representation of what address ranges vari-
ous components are mapped to.

There are three primary classes of
instructions. These are loads and stores,
data manipulations, and branches.

Load instructions move information from
memory into a CPU register. A load instruc-
tion takes multiple read cycles.

Store instructions move information from a
CPU register into memory. A store instruction
takes multiple read cycles and at least one
write cycle.
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< Data manipulation instructions operate on
information being held in CPU registers.
Data manipulation instructions often use
inherent addressing.

< Branch instructions alter the flow of instruc-
tion execution. Unconditional branches
always change the location in memory of
where the CPU is executing instructions.
Conditional branches only change the

Exercise Problems

Section 12.1: Computer Hardware

1211 What computer hardware sub-system holds
the temporary variables used by the program?

12.1.2 What computer hardware sub-system contains
fast storage for holding and/or manipulating
data and addresses?

12.1.3 What computer hardware sub-system allows
the computer to interface to the outside world?

12.1.4 What computer hardware sub-system contains
the state machine that orchestrates the fetch-
decode-execute process?

12.1.5 What computer hardware sub-system contains
the circuitry that performs mathematical and
logic operations?

12.1.6  What computer hardware sub-system holds
the instructions being executed?

Section 12.2: Computer Software

12.2.1 In computer software, what are the names of
the most basic operations that a computer can
perform?

12.2.2  Which element of computer software is the
binary code that tells the CPU which instruction
is being executed?

12.2.3  Which element of computer software is a col-
lection of instructions that perform a desired
task?

12.2.4 Which element of computer software is the
supplementary information required by an
instruction such as constants or which
registers to use?

12.2.5 Which class of instructions handles moving
information between memory and CPU
registers?

12.2.6  Which class of instructions alters the flow of
program execution?

12.2.7 Which class of instructions alters data using
either arithmetic or logical operations?

location of instruction execution if a status
flag is asserted.

Status flags are held in the condition code reg-
ister and are updated by certain instructions.
The most commonly used flags are the nega-
tive flag (N), zero flag (Z), two’s complement
overflow flag (V), and carry flag (C).

Section 12.3: Computer Implementa-
tion—An 8-Bit Computer Example

12.3.1 Design the example 8-bit computer system

presented in this chapter in VHDL with the
ability to execute the three instructions
LDA_IMM, STA_DIR, and BRA. Simulate your
computer system using the following program
that will continually write the patterns x“AA”
and x“BB” to output ports port_out 00 and
port_out_01:

constant ROM : rom_type := (

0 => LDA_IMM,
1 =>x"AA",

2 => STA_DIR,
3 =>x"EO",

4 => STA_DIR,
5 =>x"El",

6 => LDA_IMM,
7 =>x"BB",

8 => STA_DIR,
9 =>x"EO",
10 => STA_DIR,
11 =>x"El",
12 => BRA,

13 =>x"00",

others =>x"00") ;

12.3.2 Add the functionality to the computer model

from 12.3.1 the ability to perform the LDA_DIR
instruction. Simulate your computer system
using the following program that will continually
read from port_in_00 and write its contents to
port_out_00:

constant ROM : rom_type := (
0 => LDA_DIR,

=>x"FO0",

=> STA_DIR,

=>x"EO0",

=> BRA,

=>x"00",

others =>x"00") ;

g W N
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12.3.3 Add the functionality to the computer model

12.3.4

from 12.3.2 the ability to perform the
instructions LDB_IMM, LDB_DIR, and
STB_DIR. Modify the example programs
given in exercise 12.3.1 and 12.3.2 to use
register B in order to simulate your
implementation.

Add the functionality to the computer model
from 12.3.3 the ability to perform the addition
instruction ADD_AB. Test your addition instruc-
tion by simulating the following program. The
first addition instruction will perform
x“FE” + x“01” = x“FF” and assert the negative
(N) flag. The second addition instruction will
perform x“FF” + x“01” = x“00” and assert the
carry (C) and zero (Z) flags. The third addition
instruction will perform x“7F” + x“7F” = x“FE”
and assert the two’s complement overflow (V)
and negative (N) flags.

constant ROM : rom_type := (

0 => LDA_TIMM, -- A=Xx"FE"
1 =>x"FE",

2 => LDB_IMM, -- B=x"01"
3 =>x"01",

4 => ADD_AB, -- A=A+B

5 => LDA_TIMM, -- A=X"FF"
6 =>x"FF",

7 =>LDB_IMM, -- B=x"01"
8 =>x"01",

9 => ADD_AB, -- A=A+B

10 =>LDA_IMM, -- A=x"T7F"
11 =>x"T7F",

12 => LDB_IMM, -- B=x"7F"
13 =>x"7F",

14 => ADD_AB, --A=A+B
15 => BRA,

16 =>x"00",

others =>x"00") ;

12.3.5 Add the functionality to the computer model

from 12.3.4 the ability to perform the branch if
equal to zero instruction BEQ. Simulate your
implementation using the following program.
The first addition in this program will perform
X‘FE” + x“01” = x“FF” (Z = 0). The subsequent
BEQ instruction should NOT take the branch.
The second addition in this program will per-
form x“FF” + x“01” = x"00” (Z = 1) and
SHOULD take the branch. The final instruction
in this program is a BRA that is inserted for
safety. In the event that the BEQ is not
operating properly, the BRA will set the pro-
gram counter back to x“00” and prevent the
program from running away.

constant ROM : rom_type := (

0 => LDA_TIMM,

1 =>x"FE",

2 => LDB_IMM,

3 =>x"01",

4 => ADD_AB,

5 => BEQ,

6 =>x"00", -- shouldnot
-- branch

7 => LDA_TIMM,

8 =>x"FF",

9 => LDB_TIMM,

10 =>x"01",

11 => ADD_AB,

12 => BEQ,

13 =>x"00", -- should
-- branch

14 => BRA,

15 =>x"00",

others =>x"00") ;



Appendix A: List of Worked Examples

ExampLE 2.1 Derining VHDL ENTITIES
ExampLE 3.1 SOP Loacic circuiT: VHDL MODELING USING LOGICAL OPERATORS ...
ExampLE 3.2 3-T0-8 ONE-HOT DECODER: VHDL MODELING USING LOGICAL OPERATORS
ExAMPLE 3.3 7-SEGMENT DISPLAY DECODER: TRUTH TABLE
EXAMPLE 3.4 7-SEGMENT DISPLAY DECODER: LOGIC SYNTHESIS BY HAND ...ccveeiveesteesseesseesueesssesssessseesseesseesssssssssssesssessseessessns
ExamPLE 3.5 7-SEGMENT DISPLAY DECODER: VHDL MODELING USING LOGICAL OPERATORS ......ccuvveeiuveeesureeesreeesseeeesseeeesseeans
EXAMPLE 3.6 4-T0-2 BINARY ENCODER: LOGIC SYNTHESIS BY HAND ...ecccuvteiueeessreeesisesesseeessseesassesssssesssssessssesasssesssssessssseenns
ExampLE 3.7 4-10-2 BINARY ENCODER: VHDL MODELING USING LOGICAL OPERATORS ..uvveeeuveeesureeessseeesnseeessseeenseesnseeesssneanns
ExamPLE 3.8 4-10-1 MULTIPLEXER: VHDL MODELING USING LOGICAL OPERATORS ....vveeeiueeeeureeeeureeesseeesnsesesseeeaseesasseesssseeans
ExamPLE 3.9 1-T0-4 DEMULTIPLEXER: VHDL MODELING USING LOGICAL OPERATORS ...iecuvveesureeessseeessseeesssesessesessseesssseessseenns
ExampLE 3.10 SOP Locic circuit. VHDL MODELING USING CONDITIONAL SIGNAL ASSIGNMENTS
ExamPLE 3.11 3-T0-8 ONE-HOT DECODER: VHDL MODELING USING CONDITIONAL SIGNAL ASSIGNMENTS ...
ExaMPLE 3.12 7-SEGMENT DISPLAY DECODER: VHDL MODELING USING CONDITIONAL SIGNAL ASSIGNMENTS ...

ExamPLE 3.13 4-10-2 BINARY ENCODER: VHDL MODELING USING CONDITIONAL SIGNAL ASSIGNMENTS ...ccuvveeeireeeeueeeeerreeesneenns
ExamPLE 3.14 4-10-1 MULTIPLEXER: VHDL MODELING USING CONDITIONAL SIGNAL ASSIGNMENTS ..eeiuvieeiureeesseeeesneeesnsneesssneenns
ExampLE 3.15 1-T0-4 DEMULTIPLEXER: VHDL MODELING USING CONDITIONAL SIGNAL ASSIGNMENTS ...veeeiuveeeiureeeineeeeeseeeesneenns
ExampLE 3.16 SOP Locic ciRcuiT. VHDL MODELING USING SELECTED SIGNAL ASSIGNMENTS ....uvvieiuveeeiereeesieeesnseesnsneesssneeans
ExampLE 3.17 3-T10-8 ONE-HOT DECODER: VHDL MODELING USING SELECTED SIGNAL ASSIGNMENTS ....cciuveeeiureeeueeeeeseeeeeseeens
ExAmPLE 3.18 7-SEGMENT DISPLAY DECODER: VHDL MODELING USING SELECTED SIGNAL ASSIGNMENTS ......cccvveeeuveeeirneeeiuneenns
ExampLE 3.19 4-10-2 BINARY ENCODER: VHDL MODELING USING SELECTED SIGNAL ASSIGNMENTS ...
ExampLE 3.20 4-10-1 MuLTIPLEXER: VHDL MODELING USING SELECTED SIGNAL ASSIGNMENTS ..
ExampLE 3.21 1-T10-4 DEMULTIPLEXER: VHDL MODELING USING SELECTED SIGNAL ASSIGNMENTS
ExaMPLE 3.22 MODELING LOGIC USING DELAYED SIGNAL ASSIGNMENTS (INERTIAL DELAY MODEL) ....
ExAMPLE 3.23 MODELING LOGIC USING DELAYED SIGNAL ASSIGNMENTS (TRANSPORT DELAY MODEL) ....eevieteerueesieeseesnesneesseenes
ExaMPLE 4.1 MODELING LOGIC USING STRUCTURAL VHDL (EXPLICIT PORT MAPPING) ....ceuveteruerueeneentensesseeseaneessesseseensesseseeenes
EXAMPLE 4.2 MODELING LOGIC USING STRUCTURAL VHDL (POSITIONAL PORT MAPPING) ...cuveeueeeueeeseesseeseeesneaaesaeesneanseenseees
EXAMPLE 4.3 DESIGN OF A HALF ADDER ....vveeeuueeeseeessseeessssesssesassssessssessssessssssesssssesnssessnsssssssesssssesssssssenssesensseesassessssseenns
EXAMPLE 4.4 DESIGN OF A FULL ADDER ...uvveeeiuveeieteeesseeeioseseaisseeassssesassseassssssssseasesaasssesasssssassesssssessasssesssesesssessasseesssseeans
ExamPLE 4.5 DESIGN OF A FULL ADDER OUT OF HALF ADDERS
ExampLE 4.6 DESIGN OF A 4-BIT RIPPLE CARRY ADDER (RCA)
EXAMPLE 4.7 STRUCTURAL MODEL OF A FULL ADDER IN VHDL USING TWO HALF ADDERS .
EXAMPLE 4.8 STRUCTURAL MODEL OF A 4-BIT RIPPLE CARRY ADDER IN VHDL
EXAMPLE 5.1 BEHAVIOR OF SEQUENTIAL SIGNAL ASSIGNMENTS WITHIN A PROCESS ...ccuvveeeveeeeureeeesresessseeeasseesansesessseeseseesssseeans
EXAMPLE 5.2 BEHAVIOR OF CONCURRENT SIGNAL ASSIGNMENTS OUTSIDE A PROCESS ..vvteeveeesuseesssseeesssesesssesesssesessseesssseessseenns
EXAMPLE 5.3 VARIABLE ASSIGNMENT BEHAVIOR ....vveeeeiiiuseeseeessisseseeseaassssseessasssssssasasassssssessasssssseesssnssssesessnssssseessnssssesessanns
EXAMPLE 5.4 USING IF/THEN STATEMENTS TO MODEL COMBINATIONAL LOGIC ..vveeiuviresureeeauseeeauseesssseessssesessseasssssesssnssnsseesssseeess
EXAMPLE 5.5 USING CASE STATEMENTS TO MODEL COMBINATIONAL LOGIC ..eeuvveessreresueeeenneeeenneeessssessssseessnseesssesesnseesnnseesssseeens
EXAMPLE 5.6 BEHAVIORAL MODELING OF A RISING EDGE TRIGGERED D-FLIP-FLOP USING ATTRIBUTES .....ccccvvieeeveeeiueeesirreeesneanns
ExamMPLE 6.1 BEHAVIORAL MODELING OF A D-FLIP-FLOP USING THE RISING_EDGE() FUNCTION ...
ExAmPLE 6.2 BEHAVIORAL MODEL OF A 4-BIT ADDER IN VHDL
ExamPLE 7.1 CREATING A VHDL TEST BENCH ...

. 100

ExampLE 7.2 VHDL TEST BENCH FOR A 4-BIT RIPPLE CARRY ADDER USING NESTED FOR LOOPS .. 101
ExaMPLE 7.3 USING REPORT STATEMENTS IN A VHDL TEST BENCH ......ciuiiiiiiiiiiiiiciieiesie sttt 103
ExaMPLE 7.4 USING ASSERT STATEMENTS IN A VHDL TEST BENCH ....coiiiiiiiiiiiiiiiicie it 104
EXAMPLE 7.5 WRITING TO AN EXTERNAL FILE FROM A TEST BENCH (PART 1) .oiiiiiiiiiii e 105
EXAMPLE 7.6 WRITING TO AN EXTERNAL FILE FROM A TEST BENCH (PART 2) ..ottt 106
EXAMPLE 7.7 WRITING TO AN EXTERNAL FILE FROM A TEST BENCH (PART 3) ..oiiiiiiiieie e 107
ExampLE 7.8 WRITING TO STD_OUT FROM A TEST BENCH (PART 1) 108
ExampLE 7.9 WRITING TO STD_OUT FROM A TEST BENCH (PART 2) 109
ExamPLE 7.10 READING FROM AN EXTERNAL FILE IN A TEST BENCH (PART 1) . .109
ExamMPLE 7.11 READING FROM AN EXTERNAL FILE IN A TEST BENCH (PART 2) 110
© Springer Nature Switzerland AG 2019 207

B. J. LaMeres, Quick Start Guide to VHDL, https://doi.org/10.1007/978-3-030-04516-6


https://doi.org/10.1007/978-3-030-04516-6

208 < Appendix A: List of Worked Examples

EXAMPLE 7.12 READING FROM AN EXTERNAL FILE IN A TEST BENCH (PART 3) .eiiiiiiiiiiieee e 111
ExAMPLE 7.13 READING SPACE-DELIMITED DATA FROM AN EXTERNAL FILE IN A TEST BENCH (PART 1) .eoviiiiiiiiiiiiceie e 111
EXAMPLE 7.14 READING SPACE-DELIMITED DATA FROM AN EXTERNAL FILE IN A TEST BENCH (PART 2) ....coeiiiiieiiinie e 112
EXAMPLE 7.15 READING SPACE-DELIMITED DATA FROM AN EXTERNAL FILE IN A TEST BENCH (PART 3) ..ccceiiiiiiiiieiie e 113

ExAMPLE 8.1 BEHAVIORAL MODEL OF A D-LATCH IN VHDL ...ttt e
ExAMPLE 8.2 BEHAVIORAL MODEL OF A D-FLIP-FLOP IN VHDL ....oooiiiiiiie et
ExampLE 8.3 BEHAVIORAL MODEL OF A D-FLIP-FLOP WITH ASYNCHRONOUS RESET IN VHDL
ExamPLE 8.4 BEHAVIORAL MODEL OF A D-FLIP-FLOP WITH ASYNCHRONOUS RESET AND PRESET IN VHDL
ExamPLE 8.5 BEHAVIORAL MODEL OF A D-FLIP-FLOP WITH SYNCHRONOUS ENABLE IN VHDL ....
ExampLE 8.6 RTL MODEL OF AN 8-BIT REGISTER IN VHDL

ExampLE 8.7 RTL MODEL OF A 4-STAGE, 8-BIT SHIFT REGISTER IN VHDL .....ooviiiiiiiiie et 123
EXAMPLE 8.8 REGISTERS AS AGENTS ON A DATA BUS: SYSTEM TOPOLOGY .eeruveresureresuereesseeesnneeesssesssssesanseessnsesesnseesmnseesssees 124
ExAMPLE 8.9 REGISTERS AS AGENTS ON A DATA BUS: RTL MODEL IN VHDL .....cciiiiiiiiiii e 124
ExAMPLE 8.10 REGISTERS AS AGENTS ON A DATA BUS: SIMULATION WAVEFORM ....vvieiureeesuseeesnseesssseeessseeesnsesesnsessnseessseesssses 125
ExAMPLE 9.1 PUSH-BUTTON WINDOW CONTROLLER IN VHDL: DESIGN DESCRIPTION ....ecceveeeeureeeeireeeesreeesseeeaseeeesnesesseesessess 128
EXAMPLE 9.2 PUSH-BUTTON WINDOW CONTROLLER IN VHDL: ENTITY DEFINITION ...ecivireetieeereeessreeessreeessseesssesesseesssseesssneas 128

ExamPLE 9.3 PUSH-BUTTON WINDOW CONTROLLER IN VHDL: ARCHITECTURE
ExAMPLE 9.4 PUSH-BUTTON WINDOW CONTROLLER IN VHDL: SIMULATION WAVEFORM
ExAmPLE 9.5 PUSH-BUTTON WINDOW CONTROLLER IN VHDL: EXPLICIT STATE CODES ....
ExAMPLE 9.6 SERIAL BIT SEQUENCE DETECTOR IN VHDL: DESIGN DESCRIPTION AND ENTITY DEFINITION ..ccvveeeveeeeueeeeneeeennnes.
EXAMPLE 9.7 SERIAL BIT SEQUENCE DETECTOR IN VHDL: ARCHITECTURE .....vveiiitieeiiieeeieeeeiseessaseeessseeessseasssaeassnessneeesnsens
ExAMPLE 9.8 SERIAL BIT SEQUENCE DETECTOR IN VHDL: SIMULATION WAVEFORM ......eeeeveeeeureeeeireeeenreeesseeesseeesseesesseeseseess
ExAMPLE 9.9 VENDING MACHINE CONTROLLER IN VHDL: DESIGN DESCRIPTION AND ENTITY DEFINITION ...ccccveeeiveeeenreeeeneeeennnns
ExAMPLE 9.10 VENDING MACHINE CONTROLLER IN VHDL: ARCHITECTURE ..uvvveiutiresieeeseeeeseeeesnseeessseeesneeeessesesnseessnneessnnes
ExAMPLE 9.11 VENDING MACHINE CONTROLLER IN VHDL: SIMULATION WAVEFORM .....veceevieeeireeeeireeesireeesseeesseeeeseeeenseeeesnens
ExampLE 9.12 2-BIT BINARY UP/DOWN COUNTER IN VHDL: DESIGN DESCRIPTION AND ENTITY DEFINITION ..
ExampLE 9.13 2-BIT BINARY UP/DOWN COUNTER IN VHDL: ARCHITECTURE (THREE PROCESS MODEL) .
ExamPLE 9.14 2-BIT BINARY UP/DOWN COUNTER IN VHDL: SIMULATION WAVEFORM ...
ExampLE 10.1 4-BiT BINARY UP cOUNTER IN VHDL usiNGg THE TYyPE UNSIGNED .
ExamPLE 10.2 4-BiT BINARY UP COUNTER IN VHDL USING THE TYPE INTEGER ......ccciiiiieeceee e
ExampLE 10.3 4-BiT BINARY UP COUNTER IN VHDL usING THE TYPE STD_LOGIC_VECTOR (1) .eeoviiiiriieiieieienenieeiee
ExampLE 10.4 4-BiT BINARY UP COUNTER IN VHDL USING THE TYPE STD_LOGIC_VECTOR (2) .eoiieeieeeeeeeeeeeeene
ExamPLE 10.5 4-BIT BINARY UP COUNTER WITH ENABLE IN VHDL ...ooiiiiiiiiiiii ettt
ExamPLE 10.6 4-BIT BINARY UP COUNTER WITH LOAD IN VHDL ..oooiiiiiiiiciiie ettt
ExAmPLE 11.1 BEHAVIORAL MODEL OF A 4 X 4 ASYNCHRONOUS READ ONLY MEMORY IN VHDL .......cccccoviiiiiiiciiecieeee.
ExamPLE 11.2 BEHAVIORAL MODEL OF A 4 X 4 SYNCHRONOUS READ ONLY MEMORY IN VHDL
ExamPLE 11.3 BEHAVIORAL MODEL OF A 4 X 4 ASYNCHRONOUS READ/WRITE MEMORY IN VHDL
ExaMPLE 11.4 BEHAVIORAL MODEL OF A 4 X 4 SYNCHRONOUS READ/WRITE MEMORY IN VHDL ....
EXAMPLE 12.1 MEMORY MAP FOR A 256 X 8 MEMORY SYSTEM ..eeccuveeeiuereireeeireeesiseeeeseeeesseessseessssesessesssssessssseesesseesssees
EXAMPLE 12.2 EXECUTION OF AN INSTRUCTION TO “LOAD REGISTER A USING IMMEDIATE ADDRESSING” .....ccveeivveeenreeeenneeennnns
EXAMPLE 12.3 EXECUTION OF AN INSTRUCTION TO “LOAD REGISTER A USING DIRECT ADDRESSING” .....cccvverveerieenseesseesnesnneennas
ExAMPLE 12.4 EXECUTION OF AN INSTRUCTION TO “STORE REGISTER A USING DIRECT ADDRESSING” ......ccevveeeireeeireeeeenneeennnn
EXAMPLE 12.5 EXECUTION OF AN INSTRUCTION TO “ADD REGISTERS A AND B” ....iiiiiiiiiiiiiccee e
EXAMPLE 12.6 EXECUTION OF AN INSTRUCTION TO “BRANCH ALWAYS” .....uviiiiuiieiireeeeiteeeeseeesseeeeseessnsesesnsessssessssseesesseesessess
EXAMPLE 12.7 EXECUTION OF AN INSTRUCTION TO “BRANCH IF EQUAL TO ZERO”
ExamPLE 12.8 TOP-LEVEL BLOCK DIAGRAM FOR THE 8-BIT COMPUTER SYSTEM
EXAMPLE 12.9 INSTRUCTION SET FOR THE 8-BIT COMPUTER SYSTEM ..
ExamPLE 12.10 MEMORY SYSTEM BLOCK DIAGRAM FOR THE 8-BIT COMPUTER SYSTEM ..
ExamPLE 12.11 CPU BLOCK DIAGRAM FOR THE 8-BIT COMPUTER SYSTEM .....eeciiviieiurieeeureeeeuteeeesseeessseeeasseesaasssesssneesseeesnsess
EXAMPLE 12.12 STATE DIAGRAM FOR LDA_IMM .....oiiiiiiiiee ettt ettt
EXAMPLE 12.13 SIMULATION WAVEFORM FOR LDA_IMM ..ottt st sne e e eneas
EXAMPLE 12.14 STATE DIAGRAM FOR LDA_DIR ...ttt ettt e e s e s e eneas
EXAMPLE 12.15 SIMULATION WAVEFORM FOR LDA_DIR ..eiiiiiie ettt st e s
EXAMPLE 12.16 STATE DIAGRAM FOR STA_DIR ..ottt st ee et e e neesneesneeeneeeneas
ExamPLE 12.17 SiMuLATION WAVEFORM FOR STA DIR ..
ExampLE 12.18 STATE DIAGRAM FOR ADD_AB ...
ExamPLE 12.19 SIMULATION WAVEFORM FOR ADD_AB ...




EXAMPLE 12.20 STATE DIAGRAM FOR BRA .. ..eoieeiii ittt et e e e e et e e et e e sab e e e aateeeeaseeeaseessaeeensaeas 199
EXAMPLE 12.21 SIMULATION WAVEFORM FOR BRA ......oiiiiiiiiie ettt ettt nnas 200
EXAMPLE 12.22 STATE DIAGRAM FOR BEQY ...ooiiiiiiiiiiie ettt ettt e et e et e e eeeeaaeeeseeas 201
EXAMPLE 12.23 SIMULATION WAVEFORM FOR BEQ WHEN TAKING THE BRANCH (Z = 1) eeiiiiiiiiiinie e 202

EXAMPLE 12.24 SIMULATION WAVEFORM FOR BEQ WHEN THE BRANCH IS NOT TAKEN (Z = 0) ..ovcevviiiireieerieesee e 203



Index

A Design abstraction, 4
Design domains, 5
Abstraction, 4 behavioral domain, 5
Adders physical domain, 5
in VHDL, 59 structural domain, 5
c Design levels, 5
algorithmic level, 5
Capacity, 153 circuit level, 5
Classical digital design flow, 8 gate level, 5
Computer system design, 163 register transfer level, 5
addressing modes, 169 system level, 5
arithmetic logic unit (ALU), 165 Digital design flow, 8
central processing unit, 165 F
condition code register, 165
control unit, 165 Finite state machines (FSM)
data memory, 164 behavioral modeling in VHDL, 127
data path, 165 Full adders, 56
direct addressing, 170
example 8-bit system, 177 G
control unit, 188 o ,
CPU, 184 Gajski and Kuhn’s Y-chart, 5
data path, 185 H
detailed instruction execution, 190
instruction set, 178 Half adders, 56
memory system, 179 History of HDLs, 1
general purpose registers, 165
hardware, 163 M

immediate addressing, 169
inherent addressing, 170
input output ports, 164
instruction register, 165
instructions, 163

Memory map model, 153

Modern digital design flow, 8
Multiplexer design by hand, 31, 38, 45
Multiplexers, 31, 38, 45

branches, 174 N

data manipulations, 173

loads and stores, 170 Nonvolatile memory, 154
memory address register, 165
memory mapped system, 166 (0

memory map, 167
opcodes, 169
operands, 169
program, 163

One-hot binary encoder design by hand, 29
One-hot binary encoder modeling in VHDL, 29
One-hot decoder modeling in VHDL, 26, 35, 42

program counter, 165 P
program memory, 164
registers, 165 Place and route, 8

software, 163, 169
Counters, 143
modeling in VHDL, 143

R

Random access memory (RAM), 155

D Read cycle, 153
Read only memory (ROM), 154
Demultiplexer design by hand, 32, 39, 46 Read/write (RW) memory, 154
Demultiplexer, 32, 39, 46 Ripple carry adders (RCA), 58

© Springer Nature Switzerland AG 2019
B. J. LaMeres, Quick Start Guide to VHDL, https://doi.org/10.1007/978-3-030-04516-6

211


https://doi.org/10.1007/978-3-030-04516-6

212 + Index

S relational operators, 23
selected signal assignments, 41
Semiconductor memory, 153 sequential signal assignments, 67
Sequential access memory, 155 shift operators, 23
7-Segment decoder design by hand, 27 signal declaration, 18
7-Segment decoder modeling in VHDL, 28 structural design, 53
T component declaration, 19

component instantiation, 53
explicit port mapping, 53

Technology mapping, 8
9y mapping port mapping, 53

|74 positional port mapping, 55
test benches, 99
Verification, 6 assert statements, 103
Verilog HDL, 2 reading/writing external files, 89
VHDL behavioral modeling techniques report statements, 102
adders, 59 variables, 68
counters, 143 while loops, 75
using type INTEGER, 144 VHDL data types
using type STD_LOGIC_VECTOR, 145 array, 15
using type UNSIGNED, 143 bit, 13
with enables, 148 bit_vector, 14
with Ioads, 149 boglean, 13
D-flip-flops, 118 character, 13
D-latches, 117 integer, 14
finite state machines, 127 natural, 15
explicit state encoding using subtypes, 132 real. 14
three process model, 129 std ’Iogic 81
user-enumerated state encoding, 129 -
. std_logic_vector, 81
modeling agents on a bus, 123 std_ulogic, 81
model!ng memow, 155 std_ulogic_vector, 81
modeling registers, 122 string, 14
modeling shift registers, 122 ) ’
time, 14

VHDL constructs, 16
architecture, 16, 17
assignment operator (<=), 21
attributes, 76
case statements, 71
component declaration, 19
concatenation operator, 24
concurrent signal assignments, 24
concurrent signal assignments with logical operators, 25

user-defined enumerated, 15
VHDL packages, 81

MATH_COMPLEX, 95

MATH_REAL, 93

NUMERIC_BIT, 92

NUMERIC_BIT_UNSIGNED, 93

NUMERIC_STD, 85
conversion functions, 88
type casting, 88

conditional signal assignments, 34 NUMERIC STD UNSIGNED, 92

constant declaration, 19 standard, 16

data types, 13 STD_LOGIC_1164, 81

delayed signal assignments, 48 resolution function, 82
inertial, 48 type conversions, 84
.transport, 48 STD_LOGIC_ARITH, 95

ent!ty, 16_ 3 STD_LOGIC_SIGNED, 96

entity definition, 17 STD_LOGIC_TEXTIO, 89

fOf loops, 75 STD_LOGIC_UNSIGNED, 96

if/then statements, 70 TEXTIO, 89

libraries and packages, 17
logical operators, 22
loop statements, 74 w
numerical operators, 23
operators, 21 Write cycle, 153
packages, 16 Y
process, 65

sensitivity list, 65 Y-chart, 5

wait statement, 66

Volatile memory, 154



	Preface
	Acknowledgments
	Contents
	1: The Modern Digital Design Flow
	1.1 History of Hardware Description Languages
	Concept Check

	1.2 HDL Abstraction
	Concept Check

	1.3 The Modern Digital Design Flow
	Concept Check


	2: VHDL Constructs
	2.1 Data Types
	2.1.1 Enumerated Types
	2.1.2 Range Types
	2.1.3 Physical Types
	2.1.4 Vector Types
	2.1.5 User-Defined Enumerated Types
	2.1.6 Array Type
	2.1.7 Subtypes
	Concept Check


	2.2 VHDL Model Construction
	2.2.1 Libraries and Packages
	2.2.2 The Entity
	2.2.3 The Architecture
	2.2.3.1 Signal Declarations
	2.2.3.2 Constant Declarations
	2.2.3.3 Component Declarations
	Concept Check




	3: Modeling Concurrent Functionality
	3.1 VHDL Operators
	3.1.1 Assignment Operator
	3.1.2 Logical Operators
	3.1.3 Numerical Operators
	3.1.4 Relational Operators
	3.1.5 Shift Operators
	3.1.6 Concatenation Operator
	Concept Check


	3.2 Concurrent Signal Assignments with Logical Operators
	3.2.1 Logical Operator Example: SOP Circuit
	3.2.2 Logical Operator Example: One-Hot Decoder
	3.2.3 Logical Operator Example: 7-Segment Display Decoder
	3.2.4 Logical Operator Example: One-Hot Encoder
	3.2.5 Logical Operator Example: Multiplexer
	3.2.6 Logical Operator Example: Demultiplexer
	Concept Check


	3.3 Conditional Signal Assignments
	3.3.1 Conditional Signal Assignment Example: SOP Circuit
	3.3.2 Conditional Signal Assignment Example: One-Hot Decoder
	3.3.3 Conditional Signal Assignment Example: 7-Segment Display Decoder
	3.3.4 Conditional Signal Assignment Example: One-Hot Encoder
	3.3.5 Conditional Signal Assignment Example: Multiplexer
	3.3.6 Conditional Signal Assignment Example: Demultiplexer
	Concept Check


	3.4 Selected Signal Assignments
	3.4.1 Selected Signal Assignment Example: SOP Circuit
	3.4.2 Selected Signal Assignment Example: One-Hot Decoder
	3.4.3 Selected Signal Assignment Example: 7-Segment Display Decoder
	3.4.4 Selected Signal Assignment Example: One-Hot Encoder
	3.4.5 Selected Signal Assignment Example: Multiplexer
	3.4.6 Selected Signal Assignment Example: Demultiplexer
	Concept Check


	3.5 Delayed Signal Assignments
	3.5.1 Inertial Delay
	3.5.2 Transport Delay
	Concept Check



	4: Structural Design and Hierarchy
	4.1 Components
	4.1.1 Component Instantiation
	4.1.2 Port Mapping
	4.1.2.1 Explicit Port Mapping
	4.1.2.2 Positional Port Mapping
	Concept Check



	4.2 Structural Design Examples: Ripple Carry Adder
	4.2.1 Half Adders
	4.2.2 Full Adders
	4.2.3 Ripple Carry Adder (RCA)
	4.2.4 Structural Model of a Ripple Carry Adder in VHDL
	Concept Check



	5: Modeling Sequential Functionality
	5.1 The Process
	5.1.1 Sensitivity Lists
	5.1.2 Wait Statements
	5.1.3 Sequential Signal Assignments
	5.1.4 Variables
	Concept Check


	5.2 Conditional Programming Constructs
	5.2.1 If/Then Statements
	5.2.2 Case Statements
	5.2.3 Infinite Loops
	5.2.4 While Loops
	5.2.5 For Loops
	Concept Check


	5.3 Signal Attributes
	Concept Check


	6: Packages
	6.1 STD_LOGIC_1164
	6.1.1 STD_LOGIC_1164 Resolution Function
	6.1.2 STD_LOGIC_1164 Logical Operators
	6.1.3 STD_LOGIC_1164 Edge Detection Functions
	6.1.4 STD_LOGIC_1164 Type Converstion Functions
	Concept Check


	6.2 NUMERIC_STD
	6.2.1 NUMERIC_STD Arithmetic Functions
	6.2.2 NUMERIC_STD Logical Functions
	6.2.3 NUMERIC_STD Comparison Functions
	6.2.4 NUMERIC_STD Edge Detection Functions
	6.2.5 NUMERIC_STD Conversion Functions
	6.2.6 NUMERIC_STD Type Casting
	Concept Check


	6.3 TEXTIO and STD_LOGIC_TEXTIO
	Concept Check

	6.4 Other Common Packages
	6.4.1 NUMERIC_STD_UNSIGNED
	6.4.2 NUMERIC_BIT
	6.4.3 NUMERIC_BIT_UNSIGNED
	6.4.4 MATH_REAL
	6.4.5 MATH_COMPLEX
	6.4.6 Legacy Packages (STD_LOGIC_ARITH/UNSIGNED/SIGNED)
	Concept Check



	7: Test Benches
	7.1 Test Bench Overview
	Concept Check

	7.2 Generating Stimulus Vectors Using For Loops
	Concept Check

	7.3 Automated Checking Using Report and Assert Statements
	7.3.1 Report Statement
	7.3.2 Assert Statement
	Concept Check


	7.4 Using External I/O in Test Benches
	7.4.1 Writing to an External File from a Test Bench
	7.4.2 Writing to STD_OUTPUT from a Test Bench
	7.4.3 Reading from an External File in a Test Bench
	7.4.4 Reading Space-Delimited Data from an External File in a Test Bench
	Concept Check



	8: Modeling Sequential Storage and Registers
	8.1 Modeling Scalar Storage Devices
	8.1.1 D-Latch
	8.1.2 D-Flip-Flop
	8.1.3 D-Flip-Flop with Asynchronous Resets
	8.1.4 D-Flip-Flop with Asynchronous Reset and Preset
	8.1.5 D-Flip-Flop with Synchronous Enable
	Concept Check


	8.2 Modeling Registers
	8.2.1 Registers with Enables
	8.2.2 Shift Registers
	8.2.3 Registers as Agents on a Data Bus
	Concept Check



	9: Modeling Finite State Machines
	9.1 The FSM Design Process and a Push-Button Window Controller Example
	9.1.1 Modeling the States with User-Defined, Enumerated Data Types
	9.1.2 The State Memory Process
	9.1.3 The Next State Logic Process
	9.1.4 The Output Logic Process
	9.1.5 Explicitly Defining State Codes with Subtypes
	Concept Check


	9.2 FSM Design Examples
	9.2.1 Serial Bit Sequence Detector in VHDL
	9.2.2 Vending Machine Controller in VHDL
	9.2.3 2-Bit, Binary Up/Down Counter in VHDL
	Concept Check



	10: Modeling Counters
	10.1 Modeling Counters with a Single Process
	10.1.1 Counters in VHDL Using the Type UNSIGNED
	10.1.2 Counters in VHDL Using the Type INTEGER
	10.1.3 Counters in VHDL Using the Type STD_LOGIC_VECTOR
	Concept Check


	10.2 Counters with Enables and Loads
	10.2.1 Modeling Counters with Enables
	10.2.2 Modeling Counters with Loads
	Concept Check



	11: Modeling Memory
	11.1 Memory Architecture and Terminology
	11.1.1 Memory Map Model
	11.1.2 Volatile vs. Nonvolatile Memory
	11.1.3 Read-Only vs. Read/Write Memory
	11.1.4 Random Access vs. Sequential Access
	Concept Check


	11.2 Modeling Read-Only Memory
	Concept Check

	11.3 Modeling Read/Write Memory
	Concept Check


	12: Computer System Design
	12.1 Computer Hardware
	12.1.1 Program Memory
	12.1.2 Data Memory
	12.1.3 Input/Output Ports
	12.1.4 Central Processing Unit
	12.1.4.1 Control Unit
	12.1.4.2 Data Path: Registers
	12.1.4.3 Data Path: Arithmetic Logic Unit (ALU)

	12.1.5 A Memory-Mapped System
	Concept Check


	12.2 Computer Software
	12.2.1 Opcodes and Operands
	12.2.2 Addressing Modes
	12.2.2.1 Immediate Addressing (IMM)
	12.2.2.2 Direct Addressing (DIR)
	12.2.2.3 Inherent Addressing (INH)

	12.2.3 Classes of Instructions
	12.2.3.1 Loads and Stores
	12.2.3.2 Data Manipulations
	12.2.3.3 Branches
	Concept Check



	12.3 Computer Implementation: An 8-Bit Computer Example
	12.3.1 Top-Level Block Diagram
	12.3.2 Instruction Set Design
	12.3.3 Memory System Implementation
	12.3.3.1 Program Memory Implementation in VHDL
	12.3.3.2 Data Memory Implementation in VHDL
	12.3.3.3 Implementation of Output Ports in VHDL
	12.3.3.4 Implementation of Input Ports in VHDL
	12.3.3.5 Memory data_out Bus Implementation in VHDL

	12.3.4 CPU Implementation
	12.3.4.1 Data Path Implementation in VHDL
	12.3.4.2 ALU Implementation in VHDL
	12.3.4.3 Control Unit Implementation in VHDL
	Detailed Execution of LDA_IMM
	Detailed Execution of LDA_DIR
	Detailed Execution of STA_DIR
	Detailed Execution of ADD_AB
	Detailed Execution of BRA
	Detailed Execution of BEQ
	Concept Check





	Appendix A: List of Worked Examples
	Index

