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Preface

In 1974, a wonderful little book came out entitled Formal Philosophy: Selected

Papers of Richard Montague, edited by Richmond H. Thomason. The book was a
beautiful testimony to the fact that formal methods may indeed clarify, sharpen and
solve philosophical problems, defusing airy philosophical intuitions in clear, crisp
and concise ways while at the same time turning philosophical wonder into scientific
inquiry.

Today, formal philosophy is a thoroughly interdisciplinary package. Methods
from logic, mathematics, computer science, linguistics, physics, biology, eco-
nomics, game theory, political theory, psychology, etc. all chip in and have their
place in the methodological toolbox of formal philosophy. Thus, formal philosophy
is not yet another puristic philosophical province but rather a discipline gaining its
momentum and content from its close shaves with the methods of science in general.

Introduction to Formal Philosophy intends to present the formal philosophy
landscape in all its splendour. In self-contained entries written by experts in the field,
the book introduces the methods of formal philosophy and provides an overview
over the major areas of philosophy in which formal methods play crucial roles.
The presentations are comparatively non-technical in the sense that definitions and
theorems are stated with standard formal rigour, but much emphasis is placed on
clarifying the relationships between formal constructions and the informal notions
that they represent. Proofs and derivations are normally not presented. The main
focus is on showing how formal treatments of philosophical problems may help us
understand them better, solve some of them and even present new philosophical
problems that would never have seen the light of day without the use of a formal
apparatus.

Introduction to Formal Philosophy has a pedagogical but also an unabashed
propagandistic purpose. While in no way denigrating other methodologies, we
hope to show the versatility, forcefulness and efficiency of treating philosophical
problems with formal methods. Hopefully, this will serve to increase the self-
consciousness of formal philosophy for the benefit of scientific inquiry in general.
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Chapter 1

Formalization

Sven Ove Hansson

Abstract This introduction to formal philosophy has its focus on the basic method-
ology of formalization: the selection of concepts for formalization, appropriate
splittings and merges of concepts to be formalized, the idealization that is necessary
prior to formalization, the identification of variables and their domains, and the
construction of a formal language. Other topics covered in this chapter are the
advantages and pitfalls of formal philosophy, the relationships between formal
models and that which they represent, and the use of non-logical models in
philosophy.

1.1 Introduction

Few issues in philosophical style and methodology are as controversial among
philosophers as formalization. Some philosophers are anti-formalists who consider
texts making use of logical or mathematical notation as non-philosophical and not
worth reading. Others are pan-formalists who consider non-formal treatments as −
at best − useful preparations for the real work to be done in a formal language. But
discussions on the pros and cons of formalization are more common at the coffee
tables of philosophy departments than in scholarly books and journal articles. That
is unfortunate since formalization has important methodological issues in need of
systematic treatment.

This chapter is devoted to the use of formal methods in philosophy. It has a (non-
exclusive) emphasis on logic which is the most commonly used formal language
in philosophical investigations. We will have a close look at what formal logic is
(Sect. 1.2) and how it can contribute to philosophical clarification (Sect. 1.3), the
process that takes us from natural to logical language (Sect. 1.4), the construction
of a logical language (Sect. 1.5), some philosophical uses of logical inference
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(Sect. 1.6), and the philosophical use of non-logical formal models (Sect. 1.7).
Finally, we will summarize some of the dangers and difficulties in the philosophical
use of formal methods (Sect. 1.8).

1.2 Formal Logic as a Tool for Philosophy

Formal philosophy began with logic, and logic is still its dominating formal
language. A good case can be made for increased use of non-logical formal methods,
but in a general exposition of formal philosophy, logic is still the best starting-point.

1.2.1 The Origins of Logic

Logic is concerned with how we draw conclusions. Its systematic study begins with
the observation that some inferences fall into general patterns. These patterns are
characterized by being insensitive to the meaning of certain elements of that which
we say or think, and even unaffected by the uniform substitution of these elements.
Following Gottfried Wilhelm Leibniz (1646–1716), we can use the term “formal
arguments” for arguments in which “the form of reasoning has been demonstrated
in advance so that one is sure of not going wrong with it” [49, p. 479].1 Consider
the following argument:

Rich men are condescending.
Therefore: Non-condescending men are not rich.

The changeable elements here are of course “rich men” and “condescending men”.
We will call them variables. The example exhibits three important features of
variables in a logical argument. First, the validity of an argument is unaffected by
vagueness in its variables. In most other contexts, the use of vague terms makes it
difficult to determine whether that which is said is valid or not. Thus, the sentence
“He is rich” is vague because the term “rich” is vague, and for a similar reason so
is the sentence “He has condescending manners”. But the inclusion of both these
vague terms into the above argument does not affect its validity.

Secondly, the validity of an argument does not depend on whether that which is
said about the variables is true or false. Suppose that you meet the richest man in
the world and he turns out to be a friendly and respectful person. Then the premise
of the argument is not true, but the argument is still valid, i.e. it is still true that the
conclusion follows from the premise.

1“. . . des argumens en forme; parce que leur forme de raisonner a esté prédemontrée, en sorte qu’on
est seur de ne s’y point tromper” [48, 478–479].
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Thirdly, we can freely substitute the variables for something else, if we do so
uniformly. By uniformity is meant that all instances of a variable are substituted by
the same new element. We can for instance make the following substitution in the
above argument:

Baroque music is beautiful.
Therefore: Non-beautiful music is not Baroque music.

We know that this argument is valid since the previous one is valid. They are
instances of the same argument form. When analyzing an inference, it is useful
to express it in such an argument form.

The above examples represent an argument form with one premise and one
conclusion. In Aristotle’s (384–322 BCE) logic, such arguments are called conver-
sion rules. Aristotle referred for instance to the argument form exemplified by the
conclusion from “No pleasure is good” to “No good is a pleasure” ([2], I:ii, 25a).
However, the major focus in Aristotelian logic was on arguments with two premises
and one conclusion, called syllogisms. The following is an example of a syllogism:

All logicians are philosophers.
Some logicians are cacographers.
Therefore: Some philosophers are cacographers.

The validity of this syllogism is not disturbed by the vagueness of the terms
“logician” and “philosopher”. Even more importantly, to confirm the validity of
this argument one need not know what a cacographer is − or for that matter what a
philosopher or a logician is.

Archimedes (c.287-c.212 BCE) is reported to have said: “Give me a place to
stand on, and I will move the Earth” [16]. For a lever to work properly, we need
a rigid and reliable pivot. Similarly in logic, in order for some terms, namely
the variables, to be flexible in meaning and indeed exchangeable, we need other
terms that provide a rigid and immutable platform on which the movements and
exchanges of variables can take place. The terms that have this function are called
logical constants. In the above examples, “all”, “some”, and “not” have the role
of logical constants. Syllogistic logic, which held sway from Aristotle’s time until
the late nineteenth century, was devoted to these three logical constants and the
argument forms that could be constructed with them. But there were also three
parallel traditions in logic that employed other logical constants.

One of these was sentential logic, the logic of sentences, first developed by
Chrysippus (c.279-c.206 BCE) and other Stoics. In sentential logic, the variables
are sentences or propositions, rather than parts of sentences as in syllogistic logic.
Chrysippus accurately identified a proposition as “that which is capable of being
denied or affirmed as it is in itself” [21, pp. 69–70]. The logical constants are words
like “and”, “or”, “if”, and “not”. An argument in sentential logic can be as follows:

Either I laugh or you cry.
I do not laugh.
Therefore: You cry.
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Here, the variables are the sentences “I laugh” and “You cry”, and the logical
constants are “not” and “and”.2 Sentential logic lived a marginal existence in the
shadow of syllogistic logic but gained in importance through the work of George
Boole (1815–1864) and others in the nineteenth century.

The second of these traditions was modal logic, the logic of necessity, possibility,
and related concepts. Its two most important logical constants are “necessarily”
and “possibly”. The oldest texts on modal logic are by Aristotle himself. Just like
sentential logic, modal logic was overshadowed by standard syllogistic logic. It was
revived in the early twentieth century by C.I. Lewis (1883–1964).

The third tradition is somewhat more difficult to pinpoint. It has its origin in what
Aristotle called the topoi, or topics. These were valid arguments in which the role of
logical constants was played by a wider range of concepts. These include “good”,
“better”, and “child”. Studies of the topics continued through the ages, although
usually with somewhat less precision than in the dominant logical pursuit, namely
syllogistic logic [23]. The importance of such argumentation was emphasized by
Leibniz when he wrote:

“It should also be realized that there are valid non-syllogistic inferences which
cannot be rigorously demonstrated in any syllogism unless the terms are
changed a little, and this altering of the terms is the non-syllogistic inference.
There are several of these, including arguments from the direct to the oblique
− e.g. ‘If Jesus Christ is God, then the mother of Jesus Christ is the mother
of God’. And again, the argument-form which some good logicians have
called relation-conversion, as illustrated by the inference: ‘If David is the
father of Solomon, then certainly Solomon is the son of David.” ([48], p. 479;
translation from [49], p. 479)

1.2.2 The “Newtonian” Revolution in Logic

These traditions in logic − studies of syllogisms as well as the other, subsidiary
subject areas − had one important limitation in common: They were devoted to
single argumentative steps. Actual argumentation usually proceeds by a whole series
of steps. This restriction to single steps, taken one at time, turns out to be a serious
limitation since some arguments cannot be fully understood unless one takes a
more comprehensive approach. Clear examples of this can be found in mathematical
reasoning. In his Elements, Euclid (fl.300 BCE) often introduced an assumption only
in order to refute it. After making the assumption he presented a multi-step argument
based on it. Many steps later he arrived at an inconsistent conclusion, based on
which he inferred that the assumption was false (“reductio ad absurdum”, reduction
to absurdity) This is a type of argumentation that logicians had great difficulties in
accounting for since they dealt with each step separately [45, p. 597].

In the middle of the nineteenth century, logic was still a particularistic discipline,
dealing with small argumentative steps in isolation, and lacking a unifying theory

2This is the argument form later known as Modus tollendo ponens or the disjunctive syllogism [5].
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for the various types of argumentative steps. We can compare its status to that of
mechanics two hundred years earlier. Before Isaac Newton’s (1642–1727) Principia

(1687), there were two branches of mechanics: terrestrial mechanics that dealt
with the movements of objects on earth and celestial mechanics that dealt with
the movements of heavenly bodies. Newton managed to unite the two disciplines
by providing a mathematical model that was sufficiently general to cover the
movements of both earthly and heavenly bodies. His new framework covered not
only single events, but also complex interactions among a large number of objects,
such as the bodies of the solar system.

In 1879 Gottlob Frege (1848–1925) published his Begriffsschrift which did to
logic what the Principia had done to mechanics [19]. Frege’s major invention was
a notation (quantifiers) that could express the logical constants “all” and “some”
in a much more versatile manner, and made them easily combinable with sentential
constants such as “and” and “or”. His new framework was a general logical calculus
lacking the limitation to small steps that was inherent in the Aristotelian system of
syllogisms. Instead of considering just two premises it was now possible to consider
any set of premises, however large. This made it possible to ask questions that did
not even arise in the logic of syllogisms. For any given a set of premises, one could
ask whether a particular conclusion follows from it. Sometimes that question could
be answered affirmatively by providing a step-by-step proof. In other cases it could
be answered negatively by showing that no combination of valid argumentative steps
can lead to the conclusion. With Frege, logic took the giant leap from an atomistic
study of the smallest parts of arguments to a holistic analysis of what can and cannot
be inferred from given premises.

Frege’s system was limited to the logical constants that had been studied for
more than two millennia in syllogistic and sentential logic: “all”, “some”, “not”,
“and”, “or”, “if”, and “if and only if”. Including them all in one and the same
system was a major achievement, not least since arguments using these logical
constants cover a large part of mathematical reasoning. But for philosophy this
was still not enough. In philosophical argumentation the structural properties of
other terms than these have crucial roles. For instance, if we wish to scrutinize
Kant’s views on whether ought implies can, then we do not have much use for the
logical principles governing words like “all” or “and”. Instead, our focus will have
to be on properties of the concepts expressed by the words “ought” and “can” [75].
In the twentieth and twenty-first centuries, philosophical logicians fully realized
this, and developed logical systems in which the role of logical constants is played
by terms representing a wide variety of notions such as “necessary”, “possible”,
“know”, “believe”, “do”, “try”, “after”, “permit”, “decide”, “will”, “right”, “good”,
“blameworthy”, “duty”, “better”, “cause”, “freedom”, “vague”, and a wealth of
others. Many of these had been studied by logicians in previous centuries, as part
of the modal or the topics tradition. However, after Frege they could be included
in holistic systems of argumentation, rather than being used in rules referring to a
single, isolated step of reasoning. Through all these extensions, formal logic has
expanded its territory most substantially, and this expansion is still an on-going
process. We can see it as the second step of the “Newtonian” revolution in logic,
after the first step for which Gottlob Frege was himself responsible.
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1.2.3 The Actual Truth or a Model of the Truth?

The remarkable achievements of Frege’s system of logic inspired many philoso-
phers, and some believed that logical analysis could now replace other, more
uncertain methods used by philosophers. Bertrand Russell (1872–1970) maintained
that “every philosophical problem, when it is subjected to the necessary analysis
and purification, is found either to be not really philosophical at all, or else to be,
in the sense in which we are using the word, logical” [71, p. 14]. He and many
others believed that logic would make it possible to reach a more fundamental level
of philosophical insight, thereby resolving philosophical problems that could not be
solved in natural language due to its lack of precision.

It was soon discovered, however, that philosophers can disagree about a problem
expressed in logical terms just as they can disagree about one expressed in natural
language. Russell’s own analysis of definite descriptions provides a clear example
of this. By a definite description is meant one that applies to exactly one object.
In English, definite descriptions are often expressed with the definite article “the”
followed by a singular: “the teapot on the lowest shelf”, “the current president of
South Africa”, etc. The problematic cases are those in which there is either no object
or more than one object answering to the description. If I ask you to take out the
teapot on the lowest shelf, you will have problems in following the instruction if
there is either no teapot or two or more teapots on that shelf. The following standard
example has been used in the discussion:

The king of France is wise.

According to Russell [69], this should be interpreted as follows in predicate logic,
with K standing for “is the king of France” and W for “is wise”:

(∃x)(Kx & (∀y)(Ky → x = y) & Wx)

This can be paraphrased as follows: “There is (∃) someone (x) who is king of France
(K). Everyone (∀y) who is king of France is identical to him. He is wise (W ).” It
follows directly from this analysis that (as long as France remains a republic) the
quoted sentence is false.

In a criticism of Russell’s account, P.F. Strawson (1919–2006) contended that
if someone uttered the sentence “The king of France is wise”, then the question
whether that sentence was true or false “simply didn’t arise, because there was no
such person as the king of France” [76, p. 330]. In Strawson’s view, our sentence
can be formalized in the simple way

Wk

where W denotes “is wise” and k denotes “the king of France”. According to
Strawson, this sentence expressed a true statement when uttered in the reign of Louis
XIV, and a false statement when pronounced in the reign of Louis XV. But when
asserted during the time of a French republic it expresses no statement at all, and
consequently the question whether it expresses a true or a false statement does not
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even arise. Russell [70] disagreed and defended his original standpoint. The debate
has continued since then [17].

This and many other examples show that merely translating a philosophical
problem into logical language cannot be expected to solve it. Philosophical dispute
can continue, now referring to the logical formulation. What logic can do, however,
is to provide more precise statements of the problem and of alternative standpoints
pertaining to its solution or dissolution. This, as we will see, can be an important
enough achievement.

1.2.4 A Guarded Defence of Formalization

In a larger perspective, the rise of modern symbolic logic can be seen as part
of a more general, long-term, trend: More and more scientific and scholarly
disciplines have become dependant on mathematical modelling. Astronomy is the
only empirical branch of learning that has been thoroughly mathematized ever
since antiquity. Physics became gradually more and more mathematized from
the late Middle Ages onwards, and chemistry since the late eighteenth century.
But the great rush came in the twentieth century, when discipline after discipline
adopted mathematical methods. One of the best examples is economics, which
has gone from almost no use of mathematics to being dominated by theories
expressed in mathematical language [14]. In the last few decades, formal models, in
particular game theory, have had a strong and increasing influence throughout the
social sciences. At the same time, the mathematization of the natural sciences has
accelerated. Today, large parts of biology and the earth sciences, such as ecology,
population genetics, and climatology, are thoroughly mathematized.

The reason why mathematical tools were adopted in these and many other areas
is of course that they have proven efficient; they have improved the predictive and
explanatory capacities of the disciplines in question. The increased role of formal
methods in philosophy has a similar explanation: we have introduced formal tools
in order to express problems more precisely and obtain solutions in new ways.
But there is a caveat: The usefulness of formal tools is not quite as overwhelming
in philosophy as in the empirical disciplines. The difference can be seen from a
comparison between philosophy and early physics.

We usually think of mathematical physics as beginning with Galilei Galileo
(1564–1642), but mathematical methods were used in physics already in the
fourteenth century. When medieval physicists (the so-called calculatores) developed
mathematical models of physical phenomena, they proceeded in much the same
way as Euclidean geometers. A geometer used “pure thought” to determine the
laws that govern lines, surfaces, and three-dimensional bodies. In much the same
way, physicists used their intuition when attempting to find the laws that govern
the movement of bodies. And importantly, intuition had a double role: Not only
was the development of these mathematical models guided by intuition, it was
also against intuition that they were tested. This was before the great revolution in
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physics led by Galileo. Although Galileo used his intuition as a starting-point when
developing mathematical models of physical phenomena, he went on to test these
models against experiments and exact observations. Since our mechanical intuitions
are rather consistently wrong, this reality check was necessary to correct errors in
the previous models [54, 74, 83].

Today, this is the standard approach to mathematical models in the empirical
sciences. Mathematical models are tested against measurements whose values are
expected to correspond to the variables of these models. Obviously, this can only
be done if accurate measurement methods are in place. Before the thermometer
was invented (in the seventeenth century), physicists had no better means to assess
theories about heat than to compare them with everyday experiences of heat and
cold. Exact measurement of temperature was a necessary condition for developing
accurate mathematical theories of heat (thermodynamics). Today, no physicist
would argue in favour of a thermodynamic principle by referring to our vague
everyday experiences of heat and cold.

This is a general pattern in science. Measurement is our bridge between theories
and observations. Mathematics is the medium in which we can transport information
across that bridge, a medium unsurpassed in its information-carrying capacity.
Today the bridge of measurement is quite crowded, carrying loads of information
back and forth that are used on one side for the improvement of theories, and on the
other side for the construction of new experiments and observations.

As we saw, physics had access to the mathematical medium long before it
learnt how to avail itself of the bridge. Unfortunately, philosophy is in a situation
comparable to that of pre-Galilean physics: we have the mathematical medium,
but we do not have the bridge of measurement. And this is not a deficiency
that can easily be mended within the confines of philosophy as we conceive it
today. Philosophers studying concepts such as knowledge, truth, goodness, and
permission are operating with constructs of the human mind that do not necessarily
have exact empirical correlates. Our situation can to some extent be compared to
that of mathematicians, who have all of their foundations on the theoretical side.
Their research can improve the theories that are used in empirical work, but the
information received back from empirical investigations does not normally lead to
corrections of the mathematics. Similarly, philosophy can sometimes be used to
improve theories in other disciplines, and the exactness of formal philosophy is
often needed to match the precision required in these disciplines. But at least in
most philosophical subject areas, empirical observations cannot support or disprove
a theoretical statement in the same clear-cut way as in the empirical sciences.

Therefore, the claims that can be made for formalization are weaker in philos-
ophy than in the natural and social sciences. In philosophy, the major virtue of
formalization is the same as that of idealization in informal languages: By isolating
important aspects it helps to bring them to light. In philosophical discussions
we usually deviate from the general-language meanings of key terms such as
“knowledge” or “value”, giving them meanings that are more streamlined and
more accessible to exact definition. This does not necessarily mean that we have
access to a true philosophical meaning that these concepts should be adjusted to. A



1 Formalization 11

much more credible justification is that such simplifications are necessary in order
to obtain the precision needed for philosophical analysis. However, this is a sail
between Scylla and Charybdis (on the bridgeless waters just referred to). We have
to deviate from general language in order to make a sufficiently precise analysis.
But if we deviate so far as to lose contact with general-language meanings, then
the rationale for the whole undertaking may well be lost. This precarious situation
applies, of course, to formal and informal philosophy alike.

All this boils down to a rather guarded defence of formalization in philosophy. It
is a language in which we can build more precise models of philosophical subject
matter, and as we will see, there are philosophical topics for which this increased
precision is indispensable. However, formalization is no panacea. Mistaken ideas
can be as easily formalized as valid ones. But although formalization is no safe
road to philosophical truth, it is one of the best tools that we have for expressing,
criticizing, and improving philosophical standpoints. It is an obvious but important
corollary of this line of defence that we should not expect to find a uniquely
“correct” formal analysis of philosophical subject matter. Different formalizations
may capture different properties of our concepts [33, 38, 39].

1.3 Formalization as Clarification

The use of formalization in philosophy is part of our general strivings for clarity and
precision in philosophical discussions. In this sense, formalization is continuous
with the development of specialized (non-formal) philosophical language. Since
antiquity, philosophers have spent much effort on clarifying the central concepts
of the discussions they have taken part in, and almost invariably such clarifications
have led to new distinctions and opened up for the formulation of new standpoints
and new questions. We find such linguistic analysis in Plato’s Socratic dialogues,
for instance the discussions on virtue in Meno and knowledge in Theaetetus. We
also find it in ancient texts from other civilizations, for instance in writings in the
Mohist tradition in China that in many ways anticipated modern developments in
the philosophy of language [52, 53].

1.3.1 The Need for Clarity

Clarity is still a major criterion of philosophical quality. We need precise concepts
in order to develop and criticize philosophical arguments, and therefore careful
analysis and development of our own terminology is an essential part of modern
philosophy. This type of work is also an important part of philosophy’s contributions
to other disciplines. In interdisciplinary co-operations, it is often the role of
philosophers to work out precise definitions and distinctions [34]. The importance
of precision has been pointed out by many of the great philosophers, for instance by
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Aristotle and (arguably with some amount of rhetorical exaggeration) by Ludwig
Wittgenstein (1889–1951):

“Our discussion will be adequate if it has as much clearness as the subject-
matter admits of, for precision is not to be sought for alike in all discussions,
any more than in all the products of the crafts.” (Aristotle, Nicomachean
Ethics I:iii, 1094b [3])

“Everything that can be said can be said clearly.” (Wittgenstein, Tractatus
logico-philosophicus 4.116 [85])

So why should we strive for clarity and exactness? To begin with, we do so in order
to facilitate communication. In everyday life we appreciate exactness whenever
information is important for us. When listening to my stories about what I have
seen in the streets of Berlin you probably do not worry much about how accurately
I describe the geographical relations between the different streets, but if I give you
directions to your hotel you will expect me to be quite precise about such details.
If someone tells you about the medicine her aunt took against arthritis you may
even prefer not to hear all the details about dosage and the like, but if your doctor
recommends you to take a drug you want her to be very clear about doses and
timing. As philosophers we are professionally interested in issues and details that
most people seldom worry about, and therefore we often strive for exactness and
clarity in respects that are usually disregarded in other contexts.

In addition to facilitating communication, exactness also facilitates investigation.
If it is unclear to you exactly what I have said, how can you verify or repudiate my
statement? As noted by Karl Popper (1902–1994), a statement has to be precise
in order to be accessible to falsification or corroboration [47, 66]. This applies, of
course, not only to philosophy but to science in general. One of the major virtues of
mathematical theories in the natural and social sciences is that they provide us with
predictions that are precise enough for testing.

In philosophy, as well as other disciplines, we often have to extend our language
in order to express new thoughts and talk about that which we have not spoken of
before. This is taken for self-evident in most academic disciplines. No one would
expect a natural language to contain beforehand all the terms and distinctions needed
to express new developments in chemistry, mathematics, or economics. In philos-
ophy as well, new terms have been introduced along with new ideas and concepts.
“Supervene”, “induction”, “modality”, “consequentialism”, and “prioritarianism”
are examples of this.

Unfortunately, though, some philosophers seem to have believed that philo-
sophical insights are in some way hidden in the language (mostly their own
mother tongue). They have attempted to do philosophy by looking for meanings
or connotations that only a person with an accurate feeling for the finest nuances of
the language can pick up. But very few insights of lasting or general philosophical
interest have been obtained in that way. The so-called ordinary language philosophy
was a cul-de-sac. In order to develop philosophical terminology, we need to
carefully construct and delimit new distinctions that have no obvious counterparts
in non-philosophical language, and assign terms to them.
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Since antiquity onwards, philosophy and poetry have been each other’s antithesis
in terms of their approaches to language. This may seem paradoxical since
philosophy and poetry are closely related in another important respect: They both
deal with “big issues” such as existence, meaning, knowability, and morality. But the
two pursuits deal with these issues in different ways−ways that are complementary
rather than competing. These differences have large effects on their respective
linguistic ideals. In poetry, elegance usually has precedence over precision. In
philosophy the reverse is usually the case, as keenly pointed out by C.S. Peirce
when advocating

“. . . a suitable technical nomenclature, whose every term has a single definite
meaning universally accepted among students of the subject, and whose
vocables have no such sweetness or charms as might tempt loose writers
to abuse them − which is a virtue of scientific nomenclature too little
appreciated.” [65, pp. 163–164]”

In poetry, and in belles lettres in general, disambiguation is no goal. To the contrary,
ambiguity and imprecision are often necessary means to achieve the desired
literary effect [46]. Philosophy does the very contrary: It tries to achieve as much
precision as possible, even though its subject matter often makes this particularly
difficult [77].

1.3.2 What is Exactness?

Clarity is a wider concept that exactness. In order for a statement to be clear it is
not sufficient for it to be exact. It also has to be expressed in a way that makes it
reasonably easy to understand. Something that is clear should, in Descartes’ words,
be “open to the attending mind”3 ([15, p. 22], [20]). For our present purposes we
can focus on the somewhat narrower concept of exactness. (“Exact” can be taken to
be synonymous with “precise”.) This is a concept with two clearly distinguishable
meanings. The following examples serve to show the difference:

(a) The colour of that laser beam is green.
(b) The colour of that laser beam is yellowish green.
(c) The colour of that laser beam lies somewhere in the wavelength interval 495–

570 nanometres.
(d) She is in the centre of Paris.
(e) She is close to Notre Dame.
(f) She is in one of the first six arrondissements of Paris.

When going from (a) to (b) we restrict the scope of colours. Fewer colours answer
to the latter than the former description. If we instead go from (a) to (c), we do not
reduce the number of possible colours, or at least we are not sure to do so since
“green” corresponds approximately to the stated wavelength interval. However,

3“Claram voco illam, quae menti attenditi praesens et aperta est.”
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(c) is considerably less vague than (a) since we have in practice eliminated the
borderline cases that might be classified as either green or not green. Both the move
from (a) to (b) and that from (a) to (c) can be described as moves in the direction
of exactness, but these are different types of exactness. We can describe (b) as more
restricted than (a), and (c) as more definite than (a). Similarly, (e) is more restricted
than (d) and (f) more definite than (d). Restrictedness and definiteness are the two
major forms of exactness.

It turns out that philosophically speaking, not even exactness itself is a suffi-
ciently exact concept! [47, 77, 84] This can be seen clearly if we ask the simple
question which of (b) and (c) is the more exact statement. The best answer to that
question is to refuse answering it, and instead distinguish between the two notions
of exactness, restrictedness and definiteness.

In philosophy, both types of exactness are important, but lack of definiteness
tends to be more detrimental than lack of restrictedness. We can for instance use
a wide concept of “action” that includes omissions (refraining from acting) and
various non-intentional behaviour. Such a wide concept may be impractical for some
purposes, but if its boundaries are sharp enough it will not create communicative
hurdles that we cannot deal with. A concept of action that lacks in definiteness will
be much more problematic, in particular if the undetermined borderline cases are
among those that we need to attend to. Needless to say, the importation of such
indefiniteness into a formal model will make the latter just as loose and ill-defined
as its informal counterpart, and perhaps even more dangerously so if its vagueness
is obscured by the seemingly exact paraphernalia of a mathematical language.

1.3.3 Can Inexactness Be Described Exactly?

We have to be realistic. Using the tools of philosophical analysis, we can make
our concepts more specific and, in particular, more definite. But this is one of the
many human activities in which perfection is in practice unattainable. Even after
considerable efforts, many of our concepts will remain imprecise. Furthermore,
some of the concepts that we wish to include in our analysis may be “essentially
inexact”, i.e. inexactness is part of what they express, and therefore their meaning
cannot be mirrored by a definition from which the vagueness has been removed
[34]. The relational concept “near” may be a case in point. Any precise definition of
that concept, for instance as “within a distance smaller than 5.3 km” can be accused
of missing essential features of nearness, namely that it comes in degrees and that
it is judged differently in different contexts. (For instance, 5.3 km is near if you
are driving on the motorway, but not if you are travelling by foot on an arduous
mountain trail.) The same applies to concepts such as “bald” and “tall”.

In such cases, instead of a vagueness-resolving definition we may opt for a
vagueness-preserving one. The question then arises: Can we provide a formal
representation that preserves the vagueness? The most obvious way to do so would
be to construct a model in which the concept in question comes in degrees. We
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can for instance construct a model in which I am tall to the degree 0.45 and the late
basketball player Manute Bol (who was 46 cm taller than me) tall to the degree 0.99.
But if the notion of tallness is essentially imprecise, as we have supposed, then it
cannot be captured by such exact numbers. Perhaps we should make the numbers
less precise, and assign to me tallness to the degree 0.40–0.55? But then both the
lower and the upper limit appear to be artificially precise. Perhaps we should replace
each of them by something less precise, such as an interval? In this way we are
caught in an infinite regress of dissolving boundaries that seems very difficult to
stop. Arguments like these have led some philosophers to question whether vague
concepts can at all be adequately represented in a formal language [72, 78].

But there is a way out, for which we have already prepared the ground. A model
should not be expected to correspond exactly to that which it is a model of. All that
we can expect is that some features of the model should be structurally interrelated
in the same way as some important features of the original. The grass mats used
in a model railway may consist of plastic, but they represent lawns and meadows,
not plastic mats. Similarly, the exact numbers in our model of degrees of tallness do
not represent precise degrees. Instead, they represent the vagueness of our intuitive
concept of tallness. They do this remarkably better than a model with all-or-nothing
tallness, but they do not correspond perfectly to the intuitive concept. This should
not be a problem, once we have realized that our formal construction is a model
of our intuitive notion, not the “real truth” behind it. “[W]e can have mathematical
precision in the semantics without attributing it to the natural language being studied
by making use of the logic as modelling picture” [12, p. 246].4

1.4 From Natural Language to Logical Representation

Any representation of a concept in logic or some other formal language is the
outcome of a streamlining of the concept, a simplification for the sake of clarity,
in other words an idealization. In this section we are first going to have a close
look at philosophical idealization, and in particular the relationship between formal
and informal idealizations. After that we will turn to some of the major problems
that have to be solved in the process of formalization, or idealization into a formal
language as it can also be called. Throughout this section, the examples will concern
logical formalization although most of the principles discussed are also relevant for
formalization into other formal languages.

4Cf. Williamson’s [84, pp. 270–275] notion of a “variable margin model”.
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1.4.1 The Nature of Idealization

Formal models are ideals in the sense of “[s]omething existing only as a mental
conception”. (OED) To idealize in this sense means to perform a “deliberate
simplifying of something complicated (a situation, a concept, etc.) with a view to
achieving at least a partial understanding of that thing. It may involve a distortion of
the original or it can simply mean a leaving aside of some components in a complex
in order to focus the better on the remaining ones” [61, p. 248].

This sense of idealization must be distinguished from the more common sense
of expressing a (too) high opinion of something. Formal models may or may
not represent something as “perfect or supremely excellent in its kind”. (OED)
In (formal and informal) philosophy, both types of idealization are common. In
particular, the concepts that we use when philosophizing on human behaviour tend
to be both (1) idealizing−simplifying, i.e. they leave out many of the complexities of
real life, and (2) idealizing−perfecting, usually by representing patterns that satisfy
higher standards of rationality than what most humans live up to [37]. Since formal
philosophy has its starting-points in informal philosophy, it tends to inherit both
types of idealization.

The reason why we idealize−simplify is that philosophical subject-matter is
typically so complex that an attempt to cover all aspects will entangle the model to
the point of making it useless. A reasonably simple model has to leave out some
philosophically relevant features. For a simple example of this we can consider
philosophical usage of the term “better”. In ordinary language, “A is better than
B” and “B is worse than A” are not always exchangeable. It would for instance be
strange to say: “Zubin Mehta and Daniel Nazareth are two excellent conductors.
Nazareth is worse than Mehta.” Given the first sentence, the second should be:
“Mehta is better than Nazareth.” Generally speaking, we only use “worse” when
emphasizing the badness of the lower-ranked alternative ([25, p. 13]; [80, p. 10]; [11,
p. 244]). There may also be other psychological or linguistic asymmetries between
betterness and worseness [79, p. 1060]. However, a long-standing philosophical
tradition persists in not making this distinction in regimented philosophical language
[7, p. 97]. The reason for this is that the distinction does not seem to have enough
philosophical significance to be worth the complications that it would give rise to.
The logic of preference adheres to this tradition from informal philosophy, and
A > B is taken to represent “B is worse than A” as well as “A is better than B”.

Idealization−simplifying − be it formal or informal − always involves devia-
tions from that which we model. Therefore, counter-arguments can always be made
against an idealized account of philosophical subject matter. It is for instance easy to
find examples in which betterness and worseness are not interdefinable in the way
described above. Such deviations will always have to be judged in relation to the
purpose of the model and how it is used. Does the deviation show that an important
aspect of the subject matter has been “lost in idealization”? If it does, then we have
to consider how much we would lose in simplicity by including it. Sometimes, the
best strategy is to replace the idealization by a richer account. On other occasions,
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it may be better to continue its use while keeping in mind how it deviates from
that which it is intended to capture. In this respect idealizations are like maps: They
always require a compromise between overview and detail, and it is often advisable
to use different maps for different purposes.

The reason why we idealize−perfect is that as philosophers we are at least
as interested in what should be as in what is. Throughout the long history of
our discipline, philosophers have tried to answer questions about how to think
and how to behave. Requirements of rationality are usually important parts of
the answers to such questions, and therefore idealization−perfection is commonly
concerned with the ideal of rationality. Philosophical investigations of inferences,
beliefs, decisions, and moral behaviour usually expound on the behaviour of rational
thinkers, believers, decision makers and moral agents. We idealize−perfect in order
to get a grip on what rationality demands of us, and sometimes also in order to gain
insights on other normative demands such as those of morality.

It is important to keep track of one’s idealizations and the reasons for them.
Unfortunately, that is often not done. A particularly problematic confusion is that
between the two forms of idealization. As one example of this, most accounts
of human preferences depict them as transitive, i.e. someone who prefers a to b

and b to c is assumed to also prefer a to c. That is not always the case for real-
life preferences.5 The reason why transitivity is assumed may be that the concept
has been idealized−simplified, idealized−perfected, or both. In a discussion of
divergences between the model and actual human behaviour it is important to
know why the model assumes transitivity. Our analysis of such divergences may
differ depending on whether transitivity was assumed for perfecting or simplifying
reasons.

1.4.2 An Idealization in Two Steps

Formalization in philosophy typically results from an idealization in two steps,
first from common language to a regimented philosophical language, and then
from regimented into mathematical or logical language. For example, consider
the derivation of the permission predicate (P ) of deontic logic from the non-
philosophical concept of a permission. We can use the following example from
non-regimented language:

(1) Li-Hua is permitted to drive the forklift.

Here, the permission refers to an action. In regimented philosophical language,
it is common to represent each action by a sentence denoting the state of affairs
consisting in that action taking place. Hence:

5See Chap. 29.
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(2) It is permittedphil that Li-Hua drives the forklift.

where “permittedphil” is the philosophical idealization of the “permitted” of ordinary
language. “Permittedphil” differs from “permitted” in referring exclusively to what
conscious agents do. It also differs in other ways. In non-philosophical usage,
“when saying that an action is permitted we mean that one is at liberty to perform
it, that one may either perform the action or refrain from performing it.” In
regimented philosophical language, however, “being permitted to perform an action
is compatible with having to perform it” [67, p. 161].

The difference is perhaps best illustrated by the fact that in ordinary language we
do not call something “permitted” that is in fact obligatory. Suppose that someone
pays you in advance for cleaning their house. It would seem strange to say that you
are then “permitted” to clean the house, since that would give the impression that
you have a choice to do otherwise. However, according to philosophical usage of
the term, it would be correct to say that you are permitted to do the cleaning. More
generally, in philosophical language a permission is assumed to hold whenever the
corresponding obligation holds ([67, p. 161]; [1, p. 55]; [10, p. 76]).

The second step of idealization takes us from “permittedphil” to the deontic
predicate P . This means that we go from (2) to

(3) Pa,

where P is a predicate expressing permission and a the sentence (or the proposition
represented by the sentence) “Li-Hua drives the forklift”. There are major differ-
ences in meaning between “permitted” and P . It should be noted, though, that in
terms of most of the more philosophically significant differences, “permittedphil”
is closer to P than to “permitted”. This applies for instance to the property of
“permittedphil” that we focused on above, namely that it holds for whatever is
obligatory. This corresponds rather exactly the property of P that for all actions
a, Oa implies Pa, where Oa is the corresponding predicate of obligation.

Intuitively speaking, most of the idealization in this example took place in the
first step (from ordinary language to regimented philosophical language) rather than
in the second (from regimented to formal language). And this is not untypical.
Informal idealizations can sometimes be quite far-reaching. For instance, the
concept of a person used in some philosophical discussions on personal identity
is remarkably remote from the concept of a person in everyday language.

As all this should make clear, the difference between logical treatments of
philosophical subject matter and treatments of the same matter in regimented natural
language is not their distance to everyday concepts. The major differences are
instead the mathematical skills that the formal models require and the characteristic
types of questions that can be asked and answered with their help. Some philoso-
phers who complain about the lacking realism of formal representations may to
some extent confuse unfamiliarity in appearance with dissimilarity in meaning.
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1.4.3 Selecting Concepts for Formal Representation

Logic is concerned with reasoning, but not all types of reasoning are included in
the subject matter of logic. When discussing the pros and cons of different cars, we
use arguments couched in terms such as “safe”, “comfortable”, “easy to drive”, etc.
These terms and their interrelations are not part of logic. Similarly, the terms used
in wine tasting, such as “earthy” and “fruity” do not seem to have been subject to
logical (or other formal) analysis. The same applies, of course, to the vast majority
of terms that we use in different types of arguments. Logic is only concerned with
a small fraction of the concepts and thought patterns employed in argumentation
and reasoning. Whereas virtually every concept with some role in philosophy has
been subject to some degree of informal idealization, only few of them have been
formalized. Those that have been formalized are characterized by having wide usage
and a role in inferences that is largely independent of context.

The core concepts of logic are the truth-functional concepts “and”, “or”, “not”,
“if. . . then”, “if and only if”, “some”, and “all”. These are concepts that we assume,
for good reason, to have the same role in inferences in widely different contexts.
They are often called the logical constants. (However, the definition of a logical
constant is controversial [56].) But very few of the issues about valid argumentation
that arise in philosophy (or outside of philosophy) concern the properties of words
like these. It is more common for such issues to be concerned with the rules
governing our usage of terms such as “know”, “believe”, “try”, “do”, “good”,
“better”, “ought”, “forbidden”, and “permitted”. These are also concepts with
interesting structural interrelations that are fairly constant across contexts, and they
have all been subject to logical formalization.

The choice of concepts for formalization should ultimately depend on whether
the resulting models will be useful for philosophical and other worthwhile purposes.
Since the shaping of new formal models is a creative rather than a rule-bound
process, the following five critera for what to formalize should be read as tentative
suggestions and nothing more.

First, the promising candidates usually have a meaning that is reasonably
constant across contexts. This applies for instance to the words “good” and “bad”.
The meaning of these terms is presumably the same if we isolate them from a
discussion on good and bad teachers as if we isolate them from a discussion on good
and bad refrigerators [29]. This makes “good” and “bad” more promising candidates
than, say, “earthy” or “sweet”.

Secondly, the promising candidates usually provide a structure into which other,
more context-specific, concepts can be inserted. This applies pre-eminently to the
truth-functional concepts, but also to many others, such as our examples “good”
and “bad”. We can for, instance, talk about a collection containing both good and
bad books, or an organ having both good and bad registers. Other examples are the
action-theoretical concepts “do”, “try”, “refrain from”, and “see to it that”, to which
we can affix more context-specific expressions denoting various types of actions.
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Thirdly, it is usually a positive sign if we can combine the concept with some
kind of logical or other mathematical operations. The most common examples are
truth-functional and set-theoretical operations. As an example of the former, the
concept “see to it that” can be combined with sentences describing states of affairs,
and such sentences can be negated, combined into conjunctions and disjunctions,
etc. As an example of the latter, in discussions about collective action we can talk
about different groups of people, and one such group may for instance be a subset
of another.

Fourthly, promising candidates tend to come with interesting issues about
potential structural properties that seem to be generalizable across contexts. We
can for instance ask whether something can be at the same time both good and bad.
We can also ask whether someone who sees to it that a thereby also sees to that
a-or-b.

Fifthly and finally, it is also a good sign if connections with previous formaliza-

tions are in sight. For instance, a logic of “good” and “bad” has obvious connections
with the logic of “better”. (If a is good and b bad, can we conclude that a is better
than b?) Similarly, a logic of collective action can be connected with previously
developed logics of individual action.

1.4.4 Structuralizing

After we have chosen a concept for formalization, we have to idealize it to make it
suitable for formal treatment. As noted above, much of that idealization has often
already been performed in informal philosophy. But for the purpose of formalization
we may need to streamline the structural properties of the concept somewhat further.
We can call this form of idealization structuralizing. In practice it often consists of
the unification or splitting of concepts and the search for definability relations.

The unification of concepts is usually advisable when we are dealing with
conceptually closely related terms in the informal language that have important
structural properties in common. Such terms often differ in fine details that we can-
not capture in the formal language without losing too much in simplicity. We have
already seen one example that answers to this description, namely the unification of
betterness and (converse) worseness. Another example is the collection of words
used in ordinary language to denote obligatoriness: “must”, “should”, “ought”,
“have to”, etc. These words are not exact synonyms. Typically, “obligations”
originate from promises or agreements, whereas “duties” are associated with roles
and offices in organizations and institutions [6, 18, 62]. Already in informal moral
philosophy it is nevertheless common to regard “Yasmin ought to . . . ”, “It is a
duty for Yasmin to . . . ”, and “Yasmin has an obligation to . . . ” as synonymous.
The reason for this is that the differences in meaning between these expressions
have little or no relevance in most philosophical discussions. In deontic logic this
simplification is even more useful. Therefore deontic logic standardly contains
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only a single prescriptive predicate (denoted O) rather than several predicates
corresponding to different prescriptive natural-language terms. The prescriptive
predicate of the formal language can be seen as representing the common core
of the various prescriptive expressions in natural language. Arguably, this core is
more streamlined and more suitable for formal treatment than each of the natural-
language predicates that were the starting-points of the formalization.

The opposite operation of splitting concepts is useful, sometimes necessary,
when the concept we wish to formalize has meanings that differ in their structural
properties. The splitting of concepts is, of course, quite common also in informal
philosophy, but in preparing for formalization we have to pay particular attention to
structural properties when deciding whether or not to split a concept.

Again, we can use prescriptive terms from moral philosophy as examples.
Consider the following two sentences:

(a) “You must help her.”
(b) “You must be wrong.”

(a) expresses an obligation. (b) does not. Instead it expresses necessity. This is
reason enough for the informal philosopher to distinguish between the two meanings
of the word. For the formal philosopher there is an additional reason, namely that
the two senses have different structural (logical) properties. To see this, consider the
following property:

If Must(X) then X.

This property holds for the “must” of our second example. If I am right in saying
that you must be wrong, then surely you are wrong. We can easily verify that the
property also holds in other cases where “must” is used in the same sense. But it
does not hold in the first example. Even if I am right in saying that you must help
the person referred to, it certainly does not follow that you actually do so. Again,
we can verify that the same applies to other sentences where “must” has the same
meaning. Such a consistent difference in terms of (logical) structure is a sure sign
that for the purposes of formalization, “must” has to be split into two concepts. It is
only obligation−must that can be unified with the other prescriptive predicates into
the deontic operator O. Necessity−must can instead be unified with “necessary”,
“unavoidable” and the like.

Next, consider the following two uses of the word “ought”:

(c) “You ought to help your destitute brother.”
(d) “There ought to be no suffering in the world.”

(c) expresses a prescription, something that someone should do. Alternatively, we
could express the same statement with some other such term, saying for instance
“You have a duty to help your destitute brother”. In this respect, (d) is quite different.
It expresses a wish about the state of the world, or an evaluation of such a state.
It does not directly prescribe or recommend any action. This is a well-known
distinction. The “ought” of (c) is called ought-to-do (Tunsollen) and that of (d)
ought-to-be (Seinsollen or ideal ought) ([68, p. 195]; [13]).
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This double usage is specific for “ought”, and does not apply to prescriptive
predicates in general. It would not make much sense to say that there is a duty for the
world not to contain any suffering. Since deontic logic is concerned with prescrip-
tions in general, not only those expressed by the English word “ought”, ought-to-be
and ought-to-do have to be split. Only the latter should be unified with the other
prescriptive predicates into the deontic O operator. Just like necessity−must, ought-
to-be should be treated as a separate concept, not to be merged or confused with the
prescriptive ones.

Unfortunately, this has not always been realized. (Perhaps one of the reasons
for this is that the O operator is usually read “ought”, and we are not sufficiently
often reminded that in spite of this, it represents the common core of several
natural language expressions.) A considerable amount of confusion has been
created by attempts to unify ought-to-do with ought-to-be. This is usually done
by reconstructing ought-to-do as ought-to-be referring to actions, in the way shown
in the following two examples:

Person i ought to do x. = It ought to be the case that person i does x.
Person i ought to do x. = The world ought to be such that person i does x.

But this does not work. “You ought to sing in tune” means something quite different
from “The world ought to be such that you sing in tune.” And more generally
speaking, that which we ought to do does not coincide with that which the world
ought to be such that we do. The world ought to be free of racism, and in such a
world no one would help victims of racism (since there would be none). Recently, a
newly wed woman was killed by a robber. It certainly ought not to be the case that
her husband went to her funeral less than a month after they married. But of course
he ought to go to the funeral. The distinction between ought-to-do and ought-to-be
is fundamental, and the two notions should be kept apart in both formal or informal
moral discourse [35].

If one concept is definable in terms of another, then we can focus on the latter,
and treat the defined concept as a mere abbreviation in the formal language. It is
not uncommon for philosophically important concepts to be definable in terms of
each other. One example is the interdefinability among the three modal concepts of
necessity, possibility and impossibility. To be impossible means not to be possible,
and something is necessary if and only if it is not possible that it is not the case.
Letting � stand for necessity, ♦ for possibility, and /♦ for impossibility, we can
express these relationships as follows:

� a ↔ /♦ ¬ a

� a ↔ ¬ ♦ ¬ a

/♦ a ↔ ¬ ♦ a
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It follows, of course, that in a modal logic we can take any of these three concepts
as primitive (undefined), and define the others in terms of it. It is unimportant which
of them we select to be the primitive notion.

In other cases, definability comes only in one direction. We can for instance
define “best” in terms of “better” in the following way:

x is (uniquely) best if and only if for all y other than x: x is better than y.

However, there is no corresponding way to define “better” directly in terms of
“best”.6 Therefore, “best” is in practice always treated as a defined concept in formal
languages.

In general, logical languages with fewer primitive (undefined) concepts tend
to be more manageable. The aim to have as few primitives as possible is called
definitional economy. In order to achieve it we have to investigate carefully if some
of the concepts on our agenda for formalization can be defined in terms of some of
the others.

1.4.5 Introducing Formulas

As we have already seen, the concepts that are subject to formalization tend to owe
much of their usefulness to the ways in which they can be connected to various more
specific expressions. The common truth-functional connectives can be combined
with any sentences carrying truth-values. To the deontic operators P and O we
attach action-describing sentences. To a “stit” (see-to-it-that) operator we connect
a name representing a person and a sentence describing a potential outcome of an
action by that person, for instance:

stitia

where i is a person and a the outcome of that person’s action. These attachments
are called “variables”.

Variables are essential components of formal languages; without them non-trivial
formalization would not be possible. Historically, they are an important invention. In
medieval times, names (such as “Socrates”) were used to denote arbitrary persons.
That practice is still frequent in philosophical texts, but it is also common to use
single letters to denote persons. (“If A borrows money from B and then gives it
to C,. . . .”) Informal philosophical discourse also contains symbols representing
objects that do not have proper names in other contexts. (“If the state of affairs a

obtains at time t ,. . . .”) In logic, we do more of the same. The following series of
synonymous statements illustrates the different degrees of compactness of notation:

6We can do so if we manipulate the sets of alternatives, see Chap. 27.
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Ordinary language:

The first cause took place either before or at the same time as the second
cause, and the second cause took place before the effect.

Informal philosophical language:

c1 preceded or was simultaneous with c2, and c2 preceded e.

Logical language:

c1 ≤ c2 & c2 < e.

The following series of restatements of a definition illustrates the pros and cons of
the more compact notation that formalization makes available.

Ordinary language:

A cousin is a person with whom one has at least one grandparent in common
but no parent in common.

Semi-formal language 1:

Person i is a cousin of person j if and only if (1) there is a person who is a
grandparent of both i and j , but (2) there is no person who is a parent of both
i and j .

Semi-formal language 2:

Person i is a cousin of person j if and only if (1) there is a person x who is
a grandparent of both i and j , but (2) there is no person v who is a parent of
both i and j .

Semi-formal language 3:

Person i is a cousin of person j if and only if (1) there are persons x, y, and z

such that x is a parent of y who is a parent of i and x is also a parent of z who
is a parent of j , but (2) there is no person v who is a parent of both i and j .

Logical language:

iCj if and only if :
(∃x)(∃y)(∃z)(xPyP i & xPzPj) & ¬(∃v)(vP i & vPj)

The first of these statements is clearly the most easily readable one, and the last is
the most precise and compact one. For many purposes, some compromise between
readability and precision may be desirable; then one of the intermediate, semi-
formal options may be optimal. The cases when logical notation is most useful are
those in which we want to prove some property of the concepts we are working
with. Box 1.1 on page 25 shows how the compactness of formal notation makes a
proof easier to follow.



1 Formalization 25

Box 1.1 Two versions of the same argument

Consider the two relations on points in time: “precedes or is equal to” (≤) and
“precedes” (<). We are going to show that if the former of these is transitive,
then so is the latter.

In natural language

Consider three points in time such that the first precedes the second and the
second precedes the third. Then clearly the first precedes or is equal to the
second, and the second precedes or is equal to the third. Since the relation
“precedes or is equal to” is transitive, we can conclude that the first precedes
or is equal to the third. Now suppose that the first does not precede the third.
Since the first precedes or is equal to third, we can conclude that the third
is equal to the first. Thus the third precedes or is equal to the second. But
this is impossible since the second precedes the third. We have derived a
contradiction from the assumption that the first does not precede the third.
Thus the first precedes the third. This shows that the relation “precedes” is
transitive.

In formal language

Let t1, t2, and t3 be three points in time such that t1 < t2 and t2 < t3. Then
t1 ≤ t2 and t2 ≤ t3, and transitivity yields t1 ≤ t3. Now suppose that t1 < t3 is
not the case. It then follows from t1 ≤ t3 that t1 = t3. We can then substitute
t3 for t1 in t1 ≤ t2, and obtain t3 ≤ t2. But that is impossible since t2 < t3. It
follows from this contradiction that t1 < t3. [36]

1.4.6 Determining the Number of Variables

In ordinary language, one and the same concept can be associated with different
numbers of variables:

Cynthia is a mother.
Cynthia is Peter’s mother.

It would be tempting to follow the same pattern in formal language, and (with the
predicate M denoting motherhood) translate the sentences as follows:

Mc

Mcp

This would require that we allow one and the same predicate to appear with different
numbers of variables. However, the introduction of such flexible predicates would
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Table 1.1 Four usages of the term “free” that differ with respect to the variables

Example Schema

She is free now. i is free.

She is free from all those debts now. i is free from the obstacle x.

Finally she was free to take up her
studies again.

i is free to perform the action y.

She is now free from any legal
obstacles to leave the country.

i is free from the obstacle x to perform the action y.

leave the exact relationship between formulas such as Mc and Mcp unclear. There
is a much better way to deal with this, namely to introduce M as a two-place
predicate, which means that an expression containing M can only be well-defined if
each instance of M has two variables. The single-variable expression “Cynthia is a
mother” is synonymous with “Cynthia is someone’s mother”, which we can express
with the existential quantifier ∃ as follows:

(∃x)Mcx

When introducing a predicate or a relation into the formal language, it is important
to choose the right number and type(s) of variables. It is often preferable to
include representations of all the variables that can be attached to the corresponding
informal expressions, and then define uses with a reduced number of variables in
the way we just did for motherhood.

The term “free” as used in political philosophy is an interesting example of
this. If we classify uses of “free” in informal language according to the variables,
then we will find at least four variants. Table 1.1 gives examples of these, and it
also provides general schemata for each of the variants. These variants represent
different notions of freedom, notions that are controversial in political philosophy.
Some political thinkers have claimed that all true freedoms can be fully expressed
by statements of the second type, “freedom from” (negative freedom). Others have
put much emphasis on freedoms representable by the third type of expressions,
“freedom to” (positive freedom). They see freedom largely as ability to make and
implement one’s own choices [4]. The fourth variant is less common, but it is quite
useful since all the others can be defined in terms of it [55]. In formal analysis it
would take the form of a three-place predicate

F(i, x, y)

where i is an individual, x an obstacle, and y some action that the individual can
potentially perform. In this case it is much more difficult than for motherhood to
determine how the three-place predicate should be used to define the two-place and
one-place ones. As a first attempt we could define “freedom to” as (∀x)F (i, x, y),
i.e. one is free to y if and only if one is free from all obstacles that might prevent the
attainment of y. However, that may seem somewhat extreme. Arguably I am free
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Table 1.2 Two usages of the term “duty” that differ in terms of the variables

Example Schema

It is his duty to answer the phone on
all times of the day.

Person i has a duty to do x.

The lawyer has a duty towards the
client to defend her interests.

Person i has a duty towards person j to do x.

to read the morning newspaper even if a snowdrift makes it impossible for me to
get hold of it. A distinction between different classes of obstacles may have to be
introduced. Similar problems arise for the reduction of the three-place predicate to
the two-place “freedom from”. However, these difficulties should not be counted
against the three-place predicate. To the contrary, these are real philosophical
difficulties in the analysis of political freedom. The three-place predicate is a tool
to present these difficulties more clearly, thereby making them more amenable to
precise analysis.

But this is a controversial area. Traditionally, the negative notion of freedom
is associated with right-leaning and the positive notion with left-oriented political
ideas. Not surprisingly, the three-place predicate has been accused of both a left-
wing and a right-wing bias ([22]; [64, p. 253]). Nevertheless, it has the advantage
of allowing us to represent “freedom from” and “freedom to” in one and the same
format, rather than just treating them as mutually incompatible notions.

In doubtful cases it is usually better to include than to exclude a variable when
introducing a formal predicate. But of course, there are cases when one or other of
the variables has such a small role that it can for most purposes be excluded. For a
possible example, let us consider the notion of a duty, as shown in the examples and
schemas of Table 1.2. Common usage of the term “duty” is dominated by the first
variant mentioned in the table, two-place duty. The second variant, the three-place
notion of a duty, is more uncommon. The two-place notion has the advantage that it
can be unified with other prescriptive notions in the way discussed above. (Some of
these, such as “morally required”, do not have a three-place variant.) It is indeed
common practice in philosophy to treat duty as a two-place concept. There are
good reasons for this practice, but it has a price: We lose the ability to express that
someone owes something to a specific person. Such relationships will then have to
be treated in separate investigations, using a different formal representation [30, 58].
As noted above, there is nothing wrong with using different formal representations
of a concept for different purposes.

But something more can be learned from this example. Even the two-place
format “Person i has a duty to do x” does not correspond to the standard deontic
operator for obligations, namely Ox which only has place for one variable. How
is that possible? Obligations are normally tied to persons, and surely it makes a
difference who is subject to an obligation? The explanation is that x in Ox is
normally taken to refer to an action by a specified agent. If x represents the action
consisting in me paying my rent, then we can take it for granted that I am the duty-
holder in Ox. However, this is a rather precarious principle since information that is
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not stated explicitly runs a risk of being forgotten or misunderstood. The suppression
of the person variable can make us forget about its existence, so that we treat moral
prescriptions as impersonal although they are not. This may be one of the sources
of the confusion about ought-to-be that was referred to above.

1.4.7 Specifying the Domains of the Variables

For each variable-place attached to a predicate we need a well-defined domain
(source), i.e. a set whose elements represent the objects that variables in that place
can stand for. In some cases the same domain can be used for more than one
variable-place. This applies to the two-place predicate of motherhood. Here we can
use the same domain, namely the set of all human beings, for both variable-places.
For the three-place predicate of freedom the situation is quite different. We need
three sets of variables, representing persons, obstacles, and actions.

In a formal treatment it is important to assign well-defined domains to all
variable-places, and to be careful not to transgress them. There are two ways to
deal with the complication that different variable-places refer to different groups of
objects. To exemplify this, consider a simple logic of parenthood relationships with
the predicates F and M , such that Fxy means that x is father of y and Mxy that x

is mother of y. We can assume that fathers are men, mothers are women, and their
children can be either. One way to express this is to use two sets of variables, W
representing women and M representing men, and then introduce the distinction in
the requirements for formulas to be well-formed, as follows:

Mxy is a well-formed formula if and only if x ∈W and y ∈M ∪W.
Fxy is a well-formed formula if and only if x ∈M and y ∈M ∪W.

The other alternative is to have only one domain, namely the domain H consisting of
human beings, and include the restrictions in the logic rather than in the formation
rules for the language. This can be done with one-place predicates denoting “is
male” and “is female”:

Each of Mxy and Fxy is a well-formed formula if and only if x ∈ H and y ∈ H.
From Mxy it follows logically that Lx, where L denotes “is female”.
From Fxy it follows logically that Gx, where G denotes “is male”.

The two approaches are equivalent, and the choice between them is a matter of
taste and convenience. The latter approach places the restrictions in the logic
rather than in the language. This can be seen as an advantage since it makes
the restrictions somewhat more accessible to modifications and adjustments. For
instance, if (∀x)(Lx ∨Gx) holds in our original statement of the logic, then we can
easily remove this principle in order to include people who are neither female or
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male. It may be an advantage to be able to do this without changing the language,
which is considered to be a more drastic change of the framework.

1.5 Building a Logical Language

The distinguishing feature of logical language as compared to other formal lan-
guages is its focus on the representation of propositions (statements), by which
we usually mean something that can be either true or false. In natural language
we express propositions with sentences. One and the same proposition can be
expressed by different sentences. Thus, “Dana is married to Lou” expresses the
same proposition as “Lou is married to Dana” (and of course the same proposition
can also be expressed by sentences in other natural languages).

Other formal languages than logic also contain sentences expressing proposi-
tions. In the appropriate contexts, x2 = y2 + z2 represents a proposition about the
relationships between the lengths of the hypotenuse and the legs of a right-angled
triangle, E = mc2 one about the mass−energy equivalence in relativity theory, etc.
However, logic is distinguished by the generality of its treatment of sentences and
by its suitability for formal work related to the conclusions that can be drawn from
sets of sentences.

Sometimes, logical expressions are used to represent sentences that are not to
be classified as true or false, but rather according to some other dichotomy, such
as that between morally approved and morally unapproved actions or states of
affairs. There are also logical systems, called many-valued logics, in which the
traditional true/false dichotomy is replaced by a classification containing more than
two alternatives, such as true/false/unknown. These distinctions have little impact
on the construction of logical languages, and they will therefore not be considered
in this section.

The simplest tools for building a logical language are those that treat sentences
as wholes and do not contain separate representations of their parts. These construc-
tions will be the topic of Sect. 1.5.1. In Sect. 1.5.2 we turn to the construction of
sentences from their parts, and in Sect. 1.5.3 to formal elements that refer to the
parts of the sentences thus formed. Section 1.5.4 shows how the formation rules for
a formal language are usually expressed.

1.5.1 From Atomic to Composite Sentences

Let us start with a set of (proposition-representing) sentences. We can call them
a, b, . . . . To begin with, we will treat them as “atoms” (“atomic sentences”), i.e. we
disregard their internal structure. This is of course a choice of a level of abstraction.
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Fig. 1.1 A language formation diagram for sentential (propositional) logic

It provides us with a sort of bird’s-eye view that has turned out to be quite useful for
the study of phenomena such as conclusions and assumptions.

In order to get things going we need means to combine atomic sentences to form
composite, or as we usually say, molecular sentences. The construction elements
used for this purpose are called sentential operators, since they are operators that
take us from a sentence (or several sentences) to a new sentence. The simplest
sentential operator is negation, often denoted ¬. It takes us from a sentence a to its
negation¬a. If a represents the same proposition as “I am tired”, then¬a represents
the same proposition as “I am not tired”. Other such operators are conjunction
(“and”, &), disjunction (“or”, ∨), material implication (“if . . . then”,→ or ⊃), and
equivalence (“if and only if”,↔ or≡). (All these are truth-functional operators, but
that is not a property of the language but one of the logic.)

Figure 1.1 shows how these operators can be used to form the full language of
propositional logic. Two important features should be noted in that diagram. First,
the atomic sentences are themselves directly introduced into the language, as shown
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Fig. 1.2 A language formation diagram for modal logic. � stands for necessity and ♦ for
possibility

with the horizontal arrow. Secondly, the operators ¬, & etc. can be applied not
only to atomic but also to molecular formulas. This means that unlimitedly complex
formulas can be formed, such as ¬a ∨ ¬(b ∨ c), etc.

Other operators can be added to the language in the same way. In a discussion
about necessity and possibility we will need the unary (single input) operators �

(“it is necessary that . . . ”) and ♦ (“it is possible that . . . ”), and often also the binary
(two input) operator of strict implication⇒ (“if . . . then necessarily . . . ”). These are
inserted into the logical language in Fig. 1.2. An important feature of this language
is that � and ♦ can take as inputs sentences in which they are themselves already
present. We can therefore form sentences such as ��b and �(a → ♦(a∨b)). From
an interpretational point of view this is not quite uncontroversial. It can for instance
be questioned whether a sentence such as ��b (“it is necessary that it is necessary
that b”) is at all meaningful. Is necessity iterable?
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Fig. 1.3 A language formation diagram for a deontic logic that does not allow the iteration of
deontic operators. O stands for obligation, P for permission, and F for prohibition

One operator whose repeated use in a formula has often been questioned is the
deontic operator O that stands for moral requirement. From a factual statement
a representing some human action we can form the sentence Oa saying that a

is morally required. But how meaningful is the sentence OOa? Does it say that
it is morally required that it is morally required that a? Then, exactly what does
that mean? There are reasonable interpretations of O that make this sentence
meaningless. In order to block the formation of such sentences we need to construct
a somewhat more complex language formation diagram, as shown in Fig. 1.3.
Here we are not allowed to affix O to sentences already containing O. Therefore
neither OOa nor O(Oa ∨ O¬a) are well-formed formulas, which means that
although they consist of parts of the language, they are not themselves parts of the
language. However, we can apply truth-functional operators to sentences containing
O, forming sentences such as ¬O(a → b) and Oa ∨Ob.

Figure 1.4 shows an alternative language formation diagram for a deontic
language that does not allow “repeated” application of the deontic operators. The
difference between Figs. 1.3 and 1.4 is that in the latter, atomic and molecular factual
statements such as a, a ∨ b etc. are directly included in the deontic language. Here
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Fig. 1.4 Another language formation diagram for a deontic logic that does not allow the iteration
of deontic operators. It differs from the diagram of Fig. 1.3 in allowing for the direct introduction
of factual sentences into the language

it is also possible to form sentences such as Op & ¬p and other sentences with
“mixed” deontic and factual contents.

1.5.2 Decomposing the Atoms

Factual sentences in many natural languages tend to have a standard grammatical
form containing two main parts, a subject and a predicate. The subject represents
that which we say something about, and the predicate that which we say about it:

Socrates wrote no book. Nevertheless, his thoughts changed the world.
subject predicate connective subject predicate

sentence 1 sentence 2

As we have already seen, formal logic has taken over this structure from natural
language. Predicate language that is based on the subject/predicate distinction is by
far the most common formal representation used to decompose the logical atoms
and scrutinize their components. When we translate the sentence “The author is
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a bore” into predicate logic, we identify the subject (“The author”) and assign a
symbol such as i to it. Similarly, we identify the predicate (“is a bore”) and assign
to it a symbol such as B. The sentence is then denoted Bi.

Many natural language predicates refer to some specific individual or other object
of thought. In grammars of natural language there are two competing ways to
analyze such sentences:

First analysis: Second analysis:

Angelina is in love with Barbara. Angelina is in love with Barbara.
subject predicate subject predicate object

sentence sentence

For the purposes of logic the second analysis is preferred, since it allows for more
detailed investigations. It makes use of the predicate “is in love with” which takes
two variables, one of which corresponds to the subject and the other to the object
of the natural language sentence. The sentence can then be rendered by the formula
Lab, where L represents “is in love with”.

As mentioned in Sect. 1.4.6, each predicate always takes the same number of
variables (often called arguments). The number of variables is often called the arity
of the predicate. A predicate is called unary (monadic, 1-ary, one-place) if it takes
one variable, binary (dyadic, 2-ary, two-place) if it takes two, ternary (3-ary, three-
place) if it takes three, and for any natural number n it is called n-ary (n-place) if it
takes n variables. A 0-ary (nullary, zero-place) predicate, i.e. a predicate without
variables, functions in the same way as an atomic sentence. That a predicate is
nullary does not mean that there is nothing that it says something about. Instead, this
means that we have chosen not to decompose it and introduce variables representing
one or more of its components.

When formalizing natural language, it is a good general rule to use predicates
with the lowest arity that is compatible with an adequate representation of the
subject matter. In particular, if predicates with high arity can be replaced by truth-
functional combinations of predicates with lower arity, then that should be done.
“The author and the bookseller are bores” should be translated as Ba & Bb, not
as Bab with a dyadic predicate B. Similarly, “Ivan and Joanna are Kelly’s parents”
should be translated as P ik & Pjk, not as P ijk.

Two warnings are warranted. First, use nothing else than the existential quantifier
(∃) to represent “exists”. Do not introduce a predicate to represent “exists”, since
doing so gives rise to complications that you would like to avoid [8]. Secondly, use
nothing else than the equality sign (=) to represent “is equal to” or “is the same as”
as a binary predicate. It is important to follow the standard rules for predicate logic
with identity, which can be found in most textbooks on elementary logic.

Figure 1.5 shows a formation diagram for a simple predicate language with
monadic and dyadic predicates. Note that the components of sentences (variables
and non-nullary predicates) are not themselves included in the language, contrary to
the atomic sentences in Figs. 1.1, 1.2, and 1.4.
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Fig. 1.5 A language formation diagram for standard predicate logic without quantifiers

1.5.3 Quantifiers

In order to make efficient use of the decomposition of atomic sentences into
predicates and variables, we need to employ Frege’s great invention, quantifiers. The
quantifiers ∀ (“all”) and ∃ (“some”) are a type of sentential operators. Just like the
monadic operators referred to in Sect. 1.5.1, they take us from a sentence to another
sentence, hence if Fxy denotes “x has y as a friend” and i denotes the author, then
(∃y)F iy says that the author has some friend. Similarly, the sentence

(∀x)(∀y)(Fxy → Fyx)

says that friendship is always mutual, whereas the sentence

(∃x)(∃y)(Lxy & ¬Lyx)

where L denotes “loves” expresses the most unfortunate fact that the same does not
apply to love.
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The translation of sentences from natural language into predicate logic is not
always straightforward, and sometimes it requires considerable changes in structure.
Often, sentences with one and the same structure in natural language require quite
different translations:

The dog is a Mastiff.
The giraffe is a mammal.

The first sentence is preferably translated into

Md

where M is the predicate “is a Mastiff” and d the particular dog referred to. The
second sentence is best translated as

(∀x)(Gx → Mx)

where G is the predicate “is a giraffe” and M the predicate “is a mammal”.
In a language with quantifiers we need to distinguish between constants and

variables. A constant, such as d in our formula Md, refers invariably to a particular
object, and it is not affected by quantifiers. It can be compared to a unique name
such as “Louis XIV” in natural language. A variable, such as x in our formula
(∀x)(Gx → Mx), has no meaning in itself but acquires meaning in the context, just
like pronouns such as “that”, “this”, and “it” in natural language.

The use of variables makes predicate logic well suited to keep track of complex
relationships. The resources of natural language are much less suited for that
purpose. We can distinguish between “this” and “that”, but we do not use them
repeatedly with persistent reference. We can introduce phrases like “the first person”
and “the second person”, but talk using such expressions is usually difficult to
follow. (See Box 1.1 on p. 25.)

The language formation diagram in Fig. 1.6 (an extension of Fig. 1.5) sum-
marizes the construction of predicate logic with quantifiers. Note that in this
language, quantifiers cannot be applied to predicates. For instance, a formula such
as (∃P)(∀x)Px is not well-formed. Due to this limitation, the logic based on
this language is called first-order predicate logic. In second-order predicate logic,
(∃P)(∀x)Px is a well-formed formula. (It can be interpreted as “There is a property
that everything has.”)

Ordinary language contains many expressions that have similar functions in
sentences as “all” and “some”:

Most Icelanders understand Norwegian.
Very few Germans understand Chinese.
At most three Government members have experience of blue-collar work.
There are infinitely many prime numbers.
The committee has an an odd number of members.
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Fig. 1.6 A language formation diagram for standard predicate logic with quantifiers

The formal representation of such generalized quantifiers is of considerable philo-
sophical interest. The same applies to second- and higher-order logics, in which the
predicates themselves are treated as variables of quantifiers.

1.5.4 Specifying the Language

Formal languages are usually defined recursively, i.e. the definition identifies
their smallest elements and then proceeds to specify how these elements can
gradually be combined into larger and larger linguistic expressions. Our language
formation diagrams show how this recursive process proceeds with repeatable steps
of concatenation. In the specialized literature, this is expressed in more compact
fashion. There are two common ways to specify a logical language. One is to list a
set of language formation rules. In the following example this is done for the modal
language presented in Fig. 1.2:
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L is the language consisting exactly of the sentences obtainable through the
following rules:

1. T ⊆ L, where T = {a1, a2, . . . } is a countably infinite set of sentences.
2. If α ∈ L, then ¬α ∈ L, �α ∈ L, and ♦α ∈ L.
3. If α ∈ L and β ∈ L, then α & β ∈ L, α ∨ β ∈ L, α → β ∈ L, and

α ↔ β ∈ L.

The other method, particularly common in computer science, is an abbreviation of
the former as a so-called Backus-Naur Grammar clause:

φ ::= a1, a2, . . . | ¬φ | φ & ψ | φ ∨ ψ | φ → ψ | φ ↔ ψ | �φ | ♦φ

Here, ::= denotes that the symbol to the left should be replaced by one of those on
the right, and | denotes a choice among different such substitutions.

1.6 The Uses of Logical Inference

Translations into logical language can to some extent be clarifying in themselves.
This applies for instance to translations from the rather erratic quantifiers of natural
language to the more regular ones of predicate logic. But the most important advan-
tages of formalization are only obtainable when we go beyond mere translation, and
investigate, with logical tools, the properties of the models that we have built. It is
a major advantage of formal models that they are so precisely described that such
properties can be determined with certainty. Their major disadvantage, of course, is
that these properties may be different from those of that which they are a model of.
Efficient use of formal models requires both that we investigate the formal properties
of our models and that we critically evaluate how these properties relate to those of
the phenomena that led us to develop the models.

This is not the place to delve into the methodology of logico-mathematical
work, how to construct axioms and prove lemmas and theorems. Instead, this
section is devoted to the connections between the construction of a system of
logical inferences and the process of formalization. Section 1.6.1 discusses the
choice between extensional and non-extensional logic for sentential operators.
Section 1.6.2 shows how logical analysis can reveal distinctions that are less obvious
in natural language, thereby contributing to the development of new philosophical
concepts. This is followed by a discussion of how logical analysis can lead to
improvements of the formal framework itself. Sometimes minor adjustments are
sufficient (Sect. 1.6.3). On other occasions, logical analysis forces us back to the
drawing-board in search for a better formal model (Sect. 1.6.4).
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Box 1.2 Two ways to use a name

“Charles-Édouard Jeanneret” was the legal full name and “Le Corbusier” the
pseudonym of a famous architect. Consider the following sentences:

(1) Le Corbusier was born in 1887.
(2) Charles-Édouard Jeanneret was born in 1887.
(3) Le Corbusier is a pseudonym.
(4) Charles-Édouard Jeanneret is a pseudonym.

In the first two sentences, the names refer to the person. These two sentences
have the same truth conditions, and they are indeed both true. In the last two
sentences, the names refer to themselves, and these two sentences do not have
the same truth conditions. (3) is true and (4) false.

In sentence (1), “Le Corbusier” is used extensionally, by which is meant
that the truth-value of this sentence is not changed if “Le Corbusier” is
replaced by another expression with the same extension. (The extension of
an expression is the collection of objects to which it refers, in this case a
collection consisting of one person.) In sentence (3), “Le Corbusier” is used
non-extensionally.

1.6.1 Intersubstitutivity of Logical Equivalents

It is important in philosophy to distinguish between extensional and non-extensional
uses of an expression. (See Box 1.2 for a reminder.) Therefore, when constructing
the logic of a sentential operator, we have to decide whether to give it an extensional
or a non-extensional logic.7 We can illustrate this with the sentences about the Dodo
(Raphus cucullatus) that can be formed with the following notation:

d The Dodo is extinct.
r Raphus cucullatus is extinct.
E There is sufficient scientific evidence that . . . .
K Alix knows that . . . .

Since r and d are equivalent, so are Er and Ed. More generally speaking, if we can
replace a sentence attached to the operator E by an equivalent sentence, then the
truth-value is not changed. An operator with this property is said to be extensional

or satisfy intersubstitutivity of logical equivalents.
The operator K does not have this property, since Kr and Kd are not logically

equivalent. It is both possible and quite common to know that the Dodo is extinct

7Rudolf Carnap [9, pp. 57–63] claimed that all non-extensional concepts can be reconstructed as
extensional, but his mode of reconstruction has not caught on and does not seem to be practicable.
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without knowing that Raphus cucullatus is extinct. This is a feature that K

shares with most other operators representing attitudes such as believing, doubting,
wishing, preferring etc.

When constructing a logical system that contains sentential operators, it is
important to specify which of these operators satisfy intersubstitutivity and which
do not. (Note that this is a property of the inference pattern applied to the language,
not a property of the language itself.) It might seem obvious that a logical operator
that represents a non-extensional concept in natural language, such as a knowledge
or belief operator, should also be non-extensional. In practice, however, it is quite
common to use extensional operators to represent non-extensional concepts. The
reason for this is that non-extensionality usually comes with a high price: it makes
the logic of the operator so weak that very little can be proved. Intersubstitutivity of
logical equivalents is an idealization that allows us to have a much richer logic to
work with. There are two major ways to justify that idealization.

The most common justification is that the “non-extensional” uses of the concept
can in most cases easily be identified. We can therefore use an operator with an
extensional logic and just bear in mind that it is inadequate to deal with problems
where non-extensional properties of the underlying concept have a role. We can for
instance develop a logic of belief with an extensional belief operator B and assign
properties to it such as Ba & Bb → B(a&b) and Ba → ¬B¬a. A disadvantage
with this approach is that the outer limits of the logic’s area of application cannot be
specified in precise terms.

The other, somewhat more sophisticated, approach is to change the interpretation
of the operator so that it does not refer to the original ordinary-language concept but
to some variant of it that can be expected to allow for the substitution of logical
equivalents. For the belief operator such a reinterpretation has been proposed by
Isaac Levi [50, 51]. His solution is to interpret B as referring to what the agent is
committed to believe rather than what she actually believes.8 A person who believes
in the above statement d (“The Dodo is extinct”), is also committed to believe in r

(“Raphus cucullatus is extinct”) upon understanding its meaning. This approach
has the advantage over the previous one that the delimitation is more precise and
therefore more accessible to criticism and improvement.

For another example, consider again the predicate O of moral requirement. In
deontic logic, O is usually taken to be extensional. But examples are not difficult to
find in which this assumption gives rise to strange results. Let a1 signify that John
kills his wife’s murderer, a2 that he kills only other persons than his wife’s murderer,
and b that he does not kill anybody at all. Then ¬a1 is logically equivalent with

8Arguably, this interpretation deviates from the common understanding of what it means to be
committed to something. In ordinary parlance, commitment seems to be subject to a “committed
implies can” restriction that parallels the “ought implies can” restriction. If I am committed to
believe in all true mathematical statements, then this is a commitment in an entirely different sense
from that in which I am committed to keep my promises and repay my loans. In a more exact
analysis, such a commitment would have to be conditional on knowledge or knowability.



1 Formalization 41

a2∨b. If O is extensional, then it follows from this that O¬a1 and O(a2∨b) are
equivalent, and in particular that

O¬a1 → O(a2∨b)

In words: If John ought not to kill his wife’s murderer, then he ought to kill either
only other persons than his wife’s murderer, or no one at all. This is the revenger’s
paradox [31]. It can be avoided by giving up intersubstitutivity. However, that would
be a far-reaching weakening of deontic logic. Therefore, just as in epistemic logic,
it is customary in deontic logic to retain intersubstitutivity in spite of the problems
that it can give rise to. In the case of deontic logic, one way to justify this is that
the sentences that cause trouble tend to be expressed in misleading ways so that we
easily overlook that they are synonymous. For instance, although the two sentences
“John is obliged not to kill his wife’s murderer” and “John is obliged to either kill
only other persons than his wife’s murderer, or no one at all” mean exactly the same
thing, only the second makes it explicit that no prohibition to kill other persons
than his wife’s murderer is pronounced. In deontic logic, just as epistemic logic, the
tradition is to accept extensionality and avoid the “intensional contexts” that give
rise to trouble.

1.6.2 Logical Inference as a Means to Discover New Concepts

We can use the treatment of moral dilemmas in deontic logic as an example of
how logic can be used to analyze philosophical concepts in a precise way that
also gives rise to new philosophical concepts. Suppose that there is some action
representable by the sentence a, such that both Oa and O¬a hold, in other words
both a and not-a are morally required. This means that the dictates of the O

operator cannot be completely complied with. This is the most obvious case of a
moral dilemma. Indeed, moral dilemmas are often defined as situations with two
conflicting obligations.

But need they be two? Suppose that someone needs to be able to reach me
urgently, so that I am morally required to keep my mobile phone on. At the same
time I am, for quite different reasons, obliged to be in the audience when my
child performs in a school play. But members of the audience are required to keep
their mobile phones turned off during the performance. Letting a denote that I
have my phone on and b that I attend the performance, I am then under the three
obligations Oa, Ob, and O¬(a&b). It is easy to check that each combination of
two of these three obligations is fully compatible, so there is no dilemma according
to the standard definition that refers to two conflicting moral requirements. Still,
the situation seems dilemmatic enough. The reason for this is of course that the
combined contents of all three obligations is inconsistent. This should lead us to
define moral dilemmas in terms of such combined inconsistency rather than in terms
of two conflicting obligations.

For another example, suppose that I am morally required both to be in Stockholm
at 10.00 a.m. (c) and to be in the neighbouring town Uppsala at 10.30 a.m. the same
day (d). This is by no means logically impossible; it would indeed be practically
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possible if I had access to a helicopter. But I don’t. The set consisting of the two
sentences c and d is not logically inconsistent. Still, this appears to express a true
moral dilemma. Although the set in question is not inconsistent, it is impossible
to satisfy the contents of both its elements. If we want examples like this to
be regarded as moral dilemmas, then we will have to revise our definition of
dilemmas so that it refers to impossibility rather than inconsistency. Realizing all
elements of a finite set of sentences means the same as realizing their conjunction.
We can therefore express this condition with a possibility operator ♦: A set of
obligations {Oa1,Oa2, . . . , Oan} gives rise to a moral dilemma if and only if
¬ ♦ (a1&a2& . . . &an), where ♦ denotes possibility.

In this way, we have generalized our original notion of a moral dilemma to the
more general notion of (lack of) joint possibility (compossibility) of a set of moral
obligations. This opens up for further distinctions since there are different notions
of possibility. We can now speak of moral dilemmas of different types, depending
on how we interpret ♦. If we interpret it as logical possibility, then we are concerned
with “moral dilemmas with respect to logical possibility” which are of course much
fewer than the “moral dilemmas with respect to practical possibility” that we obtain
with a weaker interpretation of ♦.

Once we have formulated the issue of joint possibility of a set of moral
obligations, we can generalize it further, and discuss the joint possibility of sets of
norms that may contain permissions. Should we treat permissions in the same way
as obligations? In other words, must the contents of a set of permissions be jointly
possible in order for the set of permissions to be consistent? It is easy to show
that such a requirement would be unreasonable. Just consider the set {Pa, P¬a},
where P denotes permission and a that you take part in the weekly ceremonies of a
local religious establishment. Since a&¬a is inconsistent, such a requirement would
render this set of permissions inconsistent. This is unconvincing since the very
idea of religious freedom is to let us choose between such, mutually incompatible
alternatives. For a set of permissions to be consistent, it seems to be sufficient that
each of them, taken alone, is consistent (or possible).

Next, let us consider sets of norms that contain both obligations and permissions.
There is a rather obvious way to combine the above two criteria into a single
criterion that covers this more general case: Each combination of the contents
of all the obligations with that of any single one of the permissions should be
jointly possible. This criterion was proposed by Georg Henrik von Wright (1916–
2003) ([82]; cf. [26]). It seems to work fairly well when put to test in various
examples. However, calling all situations in which some permission cannot be used
a “dilemma” would seem to stretch the term too far. Therefore, it may be better to
use a different terminology for these cases, such as the following:

A set of norms (obligations and permissions) is compossible if and only if the
set consisting of the contents of all its elements is jointly possible.

A set of norms (obligations and permissions) is realizable if and only if each
subset containing all the obligations and at most one of the permissions is
compossible.
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A set of norms (obligations and permissions) gives rise to a moral dilemma if
and only if the subset consisting of all its obligations is not compossible.

As we have already noted, these definitions come in different variants, depending
on the standard of possibility that we apply.

We have just expressed these distinctions in natural, rather than formal, language.
So what was the point of formalization in this case? The point is that it is no
coincidence that these distinctions were developed by deontic logicians, rather than
by moral philosophers working without the aid of a formal language. In this and
many other cases, the formal language directs our attention to inference-related
considerations that turn out to be helpful for the development of philosophical
terminology. The usefulness of formal models is confirmed, not disconfirmed, when
they give rise to distinctions that can also be expressed and used in informal
philosophy.

1.6.3 Reconsidering the Formalization: Splitting Concepts

As emphasized in Sect. 1.4.4, the process of formalization should include careful
consideration of whether or not terms from natural language can be treated
uniformly in the formal language. However, in spite of the formalizer’s best efforts,
it is not uncommon that once rules of logical inference have been introduced, new
problems are discovered that reveal a need to modify the original formalization. On
occasions, a need for additional splitting of concepts is discovered. Consider the
following two sentences, said to someone who beats a cat:

(1) “You must stop beating Mei-Yin.”
(2) “You are not allowed to be cruel to animals.”

(1) differs from (2) in offering a norm for only one situation, namely the present one.
In contrast, (2) exemplifies the most common type of norms referring to several
situations, namely normative rules.9 This distinction is not easily extracted from
deontic discourse in natural language, since most languages use the same linguistic
forms for both purposes. This applies to conditional as well as non-conditional
norms. Consider the following examples:

(3) “If a president from the left is elected, then rich people will have to pay more
taxes.”

(4) “If you bribe the head of department, then you will be permitted to take part in
the extra retake.”

(5) “If you borrow money, then you must pay it back.”

9This distinction was made in [28]. Similarly, Carlos Alchourrón [1] distinguished between “a
norm for a single possible circumstance (which may be the actual circumstance)” and a norm
for “all possible circumstances”, and David Makinson [59] distinguished between norms “in all
circumstances” and norms “in present circumstances”.
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(6) “If you pay the exam fee at least one week in advance, then you will be
permitted to take part in the extra retake.”

(3) and (4) are conditional statements saying that if the situation satisfies (will
satisfy) a certain characteristic, then certain actions are (will be) obligatory, respec-
tively permitted. These statements do not report any normative rules; they only
tell us what will be the case (normatively) under certain conditions. Contrastingly,
(5) and (6) express rules stating that in situations satisfying the given criteria, a
particular norm holds. The similarity between (4) and (6) illustrates that linguistic
form does not help us to distinguish between the two types of statements. In fact,
natural language provides no cue about the different types of conditionality in (4)
and (6). It is our knowledge of what legal and administrative rules usually look like
that makes us infer that (6) reports a permissive rule and (4) a statement about what
will in fact be permitted under certain circumstances.

In order to explore the logical significance of this distinction, we can use the
standard notation for conditional obligation and permission: We write O(a | b) for
“a is obligatory, given b”, and similarly P(a | b) for “a is permitted, given b”.10

Now consider the following two logical principles:

If b is true and Oa holds, then so does O(a | b).
If b is true and Pa holds, then so does P(a | b).

Let us first try them out on statements expressing situation-specific norms. Suppose
that before the presidential election I made the statement denoted (3) above. A left-
wing president is elected, and after the election it turns out that rich people are
indeed required to pay more taxes. It would then be strange to claim that what I
said was wrong. In particular, a rebuttal could not be based on the claim that (3)
does not hold in general − the statement only referred to the specific situation.
The same analysis applies, perhaps even more clearly, to statement (4). In fact,
these principles apply, although perhaps less obviously, if the sentences a and b are
completely unrelated. This is due to properties of “if. . . then . . . ” that are unrelated
to the normative component of the sentences. In a non-normative context, we would
admit the following inference as valid (albeit somewhat awkward):

Xiu-xiu has a blue shirt.

Xiu-xiu knows the ancient Greek language.

If Xiu-xiu has a blue shirt, then she knows the ancient Greek language.

For the same reason we should accept the following inference:

Xiu-xiu has a blue shirt.

Xiu-xiu is permitted to read classified government documents.

If Xiu-xiu has a blue shirt, then she is permitted to read classified government documents.

10This notation was introduced by Bengt Hansson [27].
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But this can only be true provided that we do not read the conditional statement as
expressing a normative rule. From the facts that Xiu-xiu has a blue shirt and that she
is permitted to read classified government documents we certainly cannot conclude
that there is a rule to the effect that if she has a blue shirt, then she is permitted to
read these documents. And it is easily checked that the two inference rules do not
hold for rule-reporting normative statements such as (6). From the two facts that I
paid the exam fee more than one week in advance and that I was permitted to take
part in the exam, it does not necessarily follow that there is a rule to the effect that
if one pays the fee within this time then one is allowed to take part in the exam.

Since situation-specific and rule-expressing norms are expressed in the same
way in natural language, the distinction between them has often gone unnoticed. It
received attention when the formal structure was put to test in logical investigations,
and it turned out that they differ in what logical rules they obey. The logical
differences between situation-specific and rule-expressing norms is nevertheless a
good reason to make this distinction in both formal and informal philosophy, despite
the fact that ordinary language does not distinguish between them.

1.6.4 Reconsidering the Formalization: Radical Reform

To illustrate how logical investigations can reveal the need for a radical reform of
a formalization, we can consider the problem of so-called free-choice permissions
[81, pp. 21–22]. These are permissions for someone to make a choice, for instance:

You are allowed to marry either a man or a woman.

The surgeon is permitted to take out either the patient’s left or his right kidney,
and transplant it to the patient’s daughter.

An obvious first attempt to formalize free choice permission is to represent “or”
with ordinary truth-functional disjunction (∨), and this is indeed the formalization
that was the starting-point of the discussion. It would then seem rather obvious that
the following postulate should hold:

P(a∨b) → Pa & Pb

This postulate looks innocuous when presented in connection with an example of
permitted choice. However, if we also require intersubstitutivity for logically equiv-
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alent sentences, then we can make derivations with highly implausible outcomes,
such as the following [44, pp. 176–177]:

P((a&b)∨(a&¬b)) → P(a&b) & P(a&¬b)

(a substitution instance of the postulate)
Pa → P(a&b) & P(a&¬b)

(follows from the intersubstitutivity of logically equivalent sentences)
Pa → P(a&b)

The endpoint of this derivation is obviously absurd, and it gives us reason to either
give up the formalization of free choice permission as P(a ∨ b), or else modify the
framework in which the derivation took place. Following the first line, some authors
have tried to solve the problem by replacing the standard permission operator
P by some other operator, but such alternative operators have invariably been
shown to have implausible properties [41]. The underlying problem is that all these
constructions are based on the assumption that free choice permission to p or q can
be represented as a property of the sentence p ∨ q. However, if intersubstitutivity
holds, then this single sentence assumption is not at all plausible. The reason for
this is that it has the following rather obvious consequence:

If a ∨ b is equivalent with c∨ d, then there is a free choice permission to a or
b if and only if there is a free choice permission to c or d.

It is not difficult to find examples showing that this leads to absurd conclusions:

The vegetarian’s free lunch [41]

In this restaurant I may have a meal with meat or a meal without meat.
Therefore I may either have a meal and pay for it or have a meal and not
pay for it.

Proof

Let m denote that you have a meal with meat, v that you have a meal
without meat, and p that you pay. ((m∨v)&p) ∨ ((m∨v)&¬p) is equivalent
with m∨ v. Therefore, it follows from the single sentence assumption that
((m∨v)&p) ∨ ((m∨v)&¬p) is (free choice) permitted if and only if m∨v is
(free choice) permitted.

To sum up, in a framework with intersubstitutivity of logical equivalents, (free
choice) permission to perform either a or b cannot be represented as a function of the
single sentence a∨b. Instead, we can treat it as a function of the two sentences a and
b, i.e. as a function of two variables, not one. Similarly, (free choice) permission
to perform either a, b, or c can be treated as a function of three variables, etc.
Alternatively, we can treat free choice permission as a property of a set of action-
describing sentences ({a, b} respectively {a, b, c}) in these examples) [41]. In this
case, logical investigations of what initially seemed to be a quite straightforward
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formalization revealed the need for a rather drastic reform of that representation. In
the process, we also learned something about the underlying informal notion that
would otherwise not have been easy to discover.

1.7 Going Beyond Logic

The previous sections have been devoted to the use of logic in philosophy, and
this for good reasons. Much philosophical subject matter is well represented by
sentences, and logic provides us with powerful tools to investigate how sentences
connect with each other.

But in spite of these advantages, there are no a priori grounds why logical
languages should be better suited than other symbolic languages for modelling
each and every subject matter studied by philosophers. In some cases, other formal
approaches can capture features of the subject matter that are difficult to express in
logic. It is also important to note that there is no clear demarcation between logical
and “non-logical” formal methods. Arguably, much if not most of mathematics can
be reconstructed in a logical framework, and conversely, logic can be seen as a
branch of mathematics. But for practical purposes we can distinguish between those
symbolic languages that are taught in courses and textbooks on logic and those
that one has to learn elsewhere. The following subsections will briefly introduce
three formal approaches of the latter category that have fairly widespread use in
philosophy, namely numerical models, decision matrices, and choice functions.

1.7.1 Numbers

Numbers are ubiquitous in most of the sciences. Physicists, economists, ecologists,
demographers, and scientists of almost any other discipline make frequent use of
models whose variables take numerical values. Philosophy is an exception, and
this for a reason that we discussed in Sect. 1.2.4: The variables that are relevant in
philosophy usually cannot be correlated with empirical measurements, and therefore
the most important advantage that numerical models have in other disciplines does
not apply in philosophy. But nevertheless, there are cases when models involving
numbers are useful in philosophy.

In value theory, it is often assumed that value, for instance moral value, can
be expressed numerically. Moral value can then be represented by a function u,
such that for each object a of evaluation, u(a) is a number that represents its
value. Since there is no measurement-based unit for moral value, a fictive unit is
employed, often called “utile” or “util”. But although the unit is elusive, the use of
a numerical value function imposes a structure with considerable impact on how
value is conceived. In particular, it allows us to add and multiply values. If some
event has the consequences a, b, and c, we feel free to speak of their total value and
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calculate it as u(a)+u(b)+u(c). This, of course, is the basic structure of utilitarian
moral philosophy. In contrast, deontological ethics is usually conceived in terms of
the binary distinction between duties and non-duties, and therefore it has much less
use for quantitative measures of value.

Standard logical models are not good at representing time. The reason for this
is that we usually assume that for any two (non-identical) points in time, there is
some third point in time that is posited between them. Such a structure is beyond
elementary logic; the best way to introduce it is to employ rational (or real) numbers.

A third important area for numerical representation is probability. It can be
introduced through a function p on event-representing propositions, such that if
a is an event, then p(a) is the probability of that event. Probabilities are used in
epistemology, decision theory, and many other areas of philosophy. They can be
given either an objective or a subjective interpretation. “Objective” probabilities
represent frequencies or tendencies pertaining to events in nature. “Subjective
probabilities” represent an agent’s degree of belief in statements. Notably, the term
“probability” should only be used about measures that have the same mathematical
properties as the objective probabilities that we know from examples with coins,
dice and other randomizing devices. Mathematically, this means that probabilities
have to satisfy the Kolmogorov axioms.11 It can plausibly be argued that our
subjective degrees of belief should be represented by degree-of-belief functions that
do not satisfy these axioms, but then they should not be called “probabilities”.

In epistemology, probabilistic and logical models have complementary strengths
and weaknesses. Logical models can provide us with a reasonable account of the
inferential relationships among beliefs, in other words how acceptance of one belief
can lead us to accept or reject some other belief. However, logical models have
difficulties in representing the relations of strength among beliefs, i.e. how one
belief can be stronger or weaker than another. For probabilistic models it is the
other way around. They can provide good accounts of the differences in strength
among beliefs, but not of the inferential connections among them [57]. Neither type
of model is well suited to represent both these aspects of belief systems. That is why
we need them both.

1.7.2 Decision Matrices

In a formal model of decision problems, several prominent components need to
be represented. There is a set of alternatives that the decision-maker can choose
among. In many real-life problems, the set of alternatives is open in the sense that
new alternatives can be invented or discovered [32, 43]. A typical example is your
decision how to spend tomorrow evening. In other decision problems, the set of
alternatives is closed, so that no new alternatives can be added. Your decision how
to vote in the upcoming elections will probably be an example of this. There will be

11See Chap. 19.
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Fig. 1.7 The basic construction of a decision matrix

a limited number of alternatives (candidates or parties) that you can choose among.
In decision theory, the alternative set is almost invariably assumed to be closed. The
major reason for this is that formal treatment is much easier if the alternative set is
closed. For the same reason, it is also commonly assumed that the alternatives are
mutually exclusive, i.e., it is not possible to choose more than one of them.

The effects of a decision depend not only on the decision-maker’s choice but also
on various factors beyond her control. In decision theory, these extraneous factors
are usually summarized into a number of cases, called states of nature. The states
of nature include natural events but also decisions by other persons. As an example,
consider a young boy, Peter, who makes up his mind whether or not to go to the local
soccer ground to see if there is any soccer going on that he can join. The effect of
that decision depends on whether there are any soccer players present. In decision
theory, this situation can be described in terms of two states of nature, “players
present” and “no players present”.

The possible outcomes of a decision are determined by the combined effects of
the chosen alternative and the state of nature that turns out to prevail. Hence, if Peter
goes to the soccer ground and there are no players present, then the outcome can be
summarized as “walk and no soccer”. If he goes and there are players present, then
the outcome is “walk and soccer”. If he does not go, then the outcome is “no walk
and no soccer”.

The basic idea of a decision matrix is to tabulate alternatives against states of
nature in order to show which outcome results from each combination. The decision
matrix for Peter’s decision is shown in Fig. 1.7. Such a matrix provides a clear
presentation of the decision, but it does not contain all the information that the
decision-maker needs in order to make the decision. The most important missing
information concerns how the outcomes are valued and how plausible the states of
affairs are.

The values of outcomes are usually expressed with numbers. Sometimes an
empirical value measure is available, such as economic costs or gains, or the number
of persons killed in an accident. But often fictitious numbers have to be used. In our
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Fig. 1.8 A utility matrix
No soccer

players
Soccer
players

Go to soccer
ground

0 10

Stay

home
3 3

Fig. 1.9 A probabilistic
utility matrix .7 .3

Go to soccer
ground

0 10

Stay

home
3 3

example, we may for instance assume that Peter assigns the value 0 to walking to
the soccer ground but finding no opportunity to play soccer, the value 3 to staying
at home, and the value 10 to walking to the soccer ground and playing soccer
there. We can then replace the basic decision matrix of Fig. 1.7 by a utility matrix

(payoff matrix) in which these values take the place of the outcome descriptions, see
Fig. 1.8.

Peter’s decision will be influenced by how probable he believes it to be that there
are any players at the soccer ground. Suppose that he takes this probability to be 0.3.
Then he can replace the states of nature by probabilities, as in Fig. 1.9. This type of
matrix is the starting-point in much of decision theory.

Game theory differs from decision theory in that there are two or more agents,
each of whom has a set of alternatives to choose among. In game theory it is usually
assumed that the outcome depends only on the decisions of the agents, so that no
distinction is made between different states of nature. (This is an idealization that
may of course sometimes be problematic.) In the basic game theoretical matrix for
two agents, the decisions of the agents are tabulated against each other, and the
outcome is determined by the combinations of their decisions. Figure 1.10 shows an
example of this. Two agents, Rosa and Carmen, are going to meet for a meal. Rosa
will make the food and Carmen will bring a bottle of wine. Rosa prefers red wine
for meat and white wine for fish, whereas Carmen prefers white wine for all kinds
of food.

Just as in decision matrices, the outcome descriptions of game matrices are often
replaced by numerical values representing the values of the outcomes. In games
it is important to distinguish between values for the different players. Therefore,
outcome values are represented by vectors. When there are two agents, the vector
〈x, y〉 represents a situation in which the agent choosing among the rows in the
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Bring

red wine

Bring

white wine

Bring a

meat dish

R satisfied

C dissatisfied

R dissatisfied

C satisfied

Bring

fish dish
R dissatisfied

C dissatisfied

R satisfied

C satisfied

Fig. 1.10 The basic construction of a game matrix for two agents (players)

Fig. 1.11 A utility matrix for
the same game as in Fig. 1.10 Bring

red wine

Bring

white wine

Bring a

meat dish
1 0 0 1

Bring

fish dish
0 0 1 1

matrix assigns the value x to the outcome, whereas the other agent assigns the value
y. Figure 1.11 is a utility version of the matrix in Fig. 1.10.

Both decision matrices and game matrices have turned out to be quite useful
in moral and political philosophy. In particular, game matrices put focus on
coordination problems that are not so easily treated in traditional logic-based
models. Game matrices are also increasingly used in (social) epistemology in order
to capture collective epistemic processes.

1.7.3 Choice Functions

A choice function is a representation of an agent’s choice tendencies. If C represents
your choice tendencies, then C({x, y, z}) = {x} means that if you have to choose
among x, y, and z, then you will choose x. Choice functions are usually applied
to sets whose elements are mutually exclusive, and they allow for ties; thus
C({x, y, z}) = {x, y} means that in the choice among x, y, and z you have a
tendency to choose either x or y, but you have no inclination to choose one of these
rather than the other. Choice functions have an important role in decision theory,
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in particular in social decision theory where a central issue is how the choices of
individuals can be combined into a social choice.12

In addition, choice functions have turned out to be useful in several other
applications, such as belief revision, non-monotonic reasoning, and the logic of
conditionals. Consider an agent who initially believes in the two statements a and
b, but then receives information showing that they cannot both be true. In the
terminology of belief revision, the agent has to contract by the sentence a&b. She
must then give up either her belief in a or that in b, or both. A choice function
can be used to model such choices. Virtually all belief revision models make use of
choice functions, but they differ in what the choice functions are applied to: beliefs
to remove, beliefs to retain, belief states that can be the outcome of the operation,
etc. The application of choice functions to different types of objects in a model of
a human belief system can give rise to operations of belief change with different
properties [42].

1.7.4 Combinations

The use of non-logical formal tools does not mean that logic is discarded. To the
contrary, the different non-logical tools are often combined with components from
logic. It is for instance convenient to apply the utility function u to sentences that
represent the states of affairs under evaluation, and the same applies to the prob-
ability function p. Increasingly, logicians are working with “hybrid systems” that
combine logic’s unsurpassed ability to represent statements and their interrelations
with various non-logical formal tools that enable us to treat and rearrange these
statements in ways that logic alone does not have resources for: choose among them,
assign values and probabilities to them, arrange them in temporal order, etc. Such
hybrid systems can sometimes make it possible to combine the advantages of two
or several formal representations.

1.8 Aberrations in Formal Models

In spite of all its advantages, formalization is not always useful. In some cases it has
given rise to more confusion than clarity. And even when it is useful, it is seldom if
ever without problems. As pointed out in Sect. 1.2.4, a formal model is always the
outcome of a trade-off between simplicity and faithfulness to the object of study. If
the subject-matter is complex, then a reasonably simple model will usually have to
leave out some of its philosophically relevant features.

12See Chap. 37.
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Due to this trade-off, an uncriticizable formal model of philosophical subject
matter is in practice unachievable. It will always be possible to develop a criticism
that puts focus on the simplifications that are inherent in the model. However,
even if such a counter-argument convincingly discloses an imperfection in the
model, it does not necessarily follow that the model is unfit for use. If a problem
in the model cannot be solved without substantial losses of simplicity, then it
may be appropriate to continue using the model, bearing in mind its weaknesses
(and perhaps supplementing it with other models that have other strengths and
weaknesses). The same applies, of course, to inaccuracies in informal models and
approaches in philosophy. The “adversary method” [63] in philosophy which takes
any flaw in a philosophical theory as proof that the theory should be rejected in toto,
is equally misguided in formal as in informal philosophy.

This is the reason why this section is called “Aberrations in formal models”,
rather than for instance “Faults in formal models”. Depending on what we use the
model for, some aberrations may be acceptable whereas others are not.

We can divide aberrations in formal models into two major types: those
concerning what can be expressed in the model’s language and those concerning
what can be inferred in the model. Each of these types can be further subdivided
depending on whether the aberration concerns an unjustified addition to what can
be expressed respectively inferred, or an unjustified subtraction from it.

1.8.1 Aberrations of Expression

Almost all formal models have a conspicuous deficit in what they can express. This
is mainly because in order to construct a workable formal model, the number of
primitive notions has to be kept to a minimum. A few examples will be sufficient to
show the rather drastic limitations in the expressive power of most formal languages.
In formal value theory, only a few value concepts are represented, primarily “better”
and “at least as good as”, and those that can be defined from these, such as “best”
and perhaps “good”. In contrast, ordinary language is rich in value terms, most of
which are seldom if ever included in formal accounts: “acceptable”, “fairly good”,
“worthless”, “invaluable” etc. As discussed in Sect. 1.4.4, deontic logic usually has
only one concept of moral requirement (O), whereas natural language has a whole
collection of prescriptive terms that differ in strengths and connotations, such as
“must”, “should”, “ought”, “has to”, “duty”, “obligation”, etc. Epistemic logic has
its focus on representations of the two terms “know” and “believe”, mostly leaving
out other epistemic terms such as “assume”, “guess”, “be convinced”, “doubt”, “be
aware that”, “have a hunch that”, “suspect”, etc.

Some formal languages contain superfluous expressions that do not correspond
to anything meaningful that can be said about their subject matter. One way in which
this comes about is through the formation rules of logical languages. If the language
contains a sentential operator G for “good”, then the formation rules allow us, for
any sentence a, to form a statement Ga meaning “a is good”. Then this will also
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apply to tautologies and contradictions, and we can form sentences such as G(b ∨
¬b) and G(c&¬c) that do not seem to have a meaningful interpretation. For similar
reasons, the language of deontic logic contains the sentence O(a&¬a). It seems
to express some form of moral impossibility, but it does not correspond to how we
normally think about moral conundrums. Although one can say “I am obliged both
to be here and not to be here”, this refers to two separate obligations. (“I am obliged
to be here and I am also obliged not to be here”, Oa & O¬a.) It does not refer to a
single obligation to do something impossible (O(a&¬a)).

Such superfluous expressions can, if we so wish, be excluded from the language.
Technically, this requires somewhat more complicated language formation rules
than the conventional ones. In our examples, we can postulate that G and O can only
be affixed to sentences that are neither logically true nor logically false. However,
most logicians would be reluctant to employ language formation rules that refer to
what can be logically inferred. There are good reasons to construct the language
prior to, and independently of, the rules of inference. Therefore, it is much more
common to retain these artefacts in the logical language, and either treat them as
uninterpreted anomalies or, if possible, provide them with an interpretation that
corresponds to the conditions under which they can be inferred. We can for instance
treat O(p&¬p) as an indicator of the presence of a moral conflict or dilemma.

The choice between these different ways to deal with artefacts in the logical
language is largely a matter of convenience, and not very important. What is
important, however, is that we do not take it for granted that all expressions in a
formal language are meaningful just because they are constructed from meaningful
language elements.

1.8.2 Aberrations of Inference

In some cases, the formal language does not support inferences that are reasonable
and can be drawn in ordinary language. One example of this is the inference from
“a is permitted” to “not-a is permitted” that we can draw in ordinary language with
its bilateral notion of permission, but not in deontic logic with its unilateral notion.

But the major problem with inferences is usually the opposite one: formal
models tend to support excessive inferences, i.e. inferences that are allowed by the
formal system but do not correspond to any properties of that which is modelled.
Arguably, most of the more problematic aberrations in formal models consist in such
superfluous inference patterns. In Sect. 1.6.1 we noted that the intersubstitutivity of
logically equivalent sentences produces superfluous inferences, but we also noted
that for many purposes this may be an aberration that is worth its price.

A somewhat related idealization is the use of logically closed sets for various
purposes in formal models, perhaps most conspicuously to represent an epistemic
agent’s set of beliefs. A set of sentences is logically closed if and only if everything
that follows logically from it is among its elements. Hence if both a and a → b
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are elements of a logically closed set, then so is b. In the logic of belief revision,
a logically closed set (called a “belief set”) is the standard representation of an
agent’s beliefs. Since all mathematical truths that are expressible in a language are
logical truths in that language, this means that she believes in all mathematical truths
that can be expressed in the language. Such logico-mathematical omniscience is of
course far beyond human capabilities. The best justification for this aberration from
our actual doxastic behaviour seems to be the reinterpretation of belief sets proposed
by Isaac Levi: They do not represent what an agent actually believes but what she is
committed to believe. (Cf. Sect. 1.6.1 where this solution was applied to the belief
operator.)

Another interesting example of excessive inferences can be taken from deontic
logic. Consider the following three properties of a deontic logic:

Existence of moral dilemmas:

There are action-describing sentences a and b such that Oa & Ob, although
a&b is logically inconsistent.

Agglomeration:

If Oa and Ob then O(a&b).

Necessitation:

If Oa, and a logically implies b, then Ob.

Each of these principles has immediate intuitive appeal, as can easily be confirmed
with examples. But in combination they lead to an absurd conclusion. According to
Existence of moral dilemmas, there are sentences a and b such that Oa & Ob and
a&b is logically inconsistent. According to Agglomeration, O(a&b). Since a&b

is inconsistent, it holds for any sentence c that a&b implies c. Necessitation yields
Oc, and we have proved the following remarkably undesirable property:

Universal obligatoriness:

Oc

Obviously, the formal inference from Oa, Ob and the inconsistency of a&b to
Oc does not correspond to how we normally reason or argue about our moral
obligations. From “I ought to be at home with my children this evening” and “I ought
to work all night at the office”, we do not conclude “I ought to spend this evening
boozing in a nightclub”. Therefore, the derivation of Universal obligatoriness from
three seemingly quite plausible postulates is a logical artefact that has nothing to do
with the subject matter of deontic logic. Universal obligatoriness is so damaging
that any system implying it will have to be rejected. Consequently, a workable
system of deontic logic cannot contain all three of the principles Existence of moral
dilemmas, Agglomeration, and Necessitation. The most common solution is to give
up Existence of moral dilemmas. But for some purposes, such as the study of moral
dilemmas, one of the other two principles will have to go instead.
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If we replace necessitation by the weaker assumption of intersubstitutivity,

Intersubstitutivity of logical equivalents:

If Ox and x is logically equivalent with y, then Oy.

then the derivation of Oc (universal obligatoriness) will be blocked, but we can
instead derive O(c&¬c) (obligatory inconsistency) from Oa and Ob, given that
a&b is logically inconsistent. This is also an artefact of the formal model, but as
argued in Sect. 1.8.1, O(c&¬c) does not do much damage. Arguably, it can be
tolerated, and treated as an innocuous artefact of the formal system. Possibly, it
can even be given a meaningful interpretation, as an indicator of the presence of an
inconsistency.

1.8.3 Conclusion

In philosophy, like other disciplines, formal models are useful tools that allow us to
express ideas more precisely and to probe their implications. As in other disciplines,
we can only use formal models efficiently if we keep track of their strengths and
weaknesses. Since all formal models are idealizations, they all have imperfections,
and we should never expect to find the uniquely best formal model that will tell
us the whole truth and nothing but the truth about some philosophical subject
matter. But there can be no doubt that formal models are indispensable tools in
philosophical investigations. Today, no philosopher can afford to be ignorant of how
they can contribute to new philosophical insights.
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Chapter 2

Argument

Henry Prakken

Abstract This chapter discusses how formal models of argumentation can clarify
philosophical problems and issues. Some of these arise in the field of epistemology,
where it has been argued that the principles by which knowledge can be acquired
are defeasible. Other problems and issues originate from the fields of informal logic
and argumentation theory, where it has been argued that outside mathematics the
standards for the validity of arguments are context-dependent and procedural, and
that what matters is not the syntactic form but the persuasive force of an argument.

Formal models of argumentation are of two kinds. Argumentation logics for-
malise the idea that an argument only warrants its conclusion if it can be defended
against counterarguments. Dialogue systems for argumentation regulate how dia-
logue participants can resolve a conflict of opinion. This chapter discusses how
argumentation logics can define non-deductive consequence notions and how their
embedding in dialogue systems for argumentation can account for the context-
dependent and procedural nature of argument evaluation and for the dependence
of an argument’s persuasive force on the audience in an argumentation dialogue.

2.1 Introduction

Introductions to logic often portray logically valid inference as ‘foolproof’ reason-
ing: an argument is valid if the truth of its premises guarantees the truth of its
conclusion. However, we all construct arguments from time to time that are not
foolproof in this sense but that merely make their conclusion plausible when their
premises are true. For example, if we are told that Peter, a professor in economics,
says that reducing taxes increases productivity, we conclude that reducing taxes
increases productivity since we know that experts are usually right within their
domain of expertise. Sometimes such arguments are defeated by counterarguments.
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For example, if we are also told that Peter has political ambitions, we have to retract
our previous conclusion that he is right about the effect of taxes if we also believe
that people with political ambitions are often unreliable when it comes to taxes.
Or, to use an example of practical instead of epistemic reasoning, if we accept that
reducing taxes increases productivity and that increasing productivity is good, then
we conclude that the taxes should be reduced, unless we also accept that reducing
taxes increases inequality, that this is bad and that equality is more important than
productivity. However, as long as such counterarguments are not available, we are
happy to live with the conclusions of our fallible arguments. The question is: are we
then reasoning fallaciously or is there still logic in our reasoning?

An answer to this question has been given in the development of argumentation
logics. In a nutshell, the answer is that there is such logic but that it is inherently
dialectic: an argument only warrants its conclusion if it is acceptable, and an
argument is acceptable if, firstly, it is properly constructed and, secondly, it can
be defended against counterarguments. Thus argumentation logics must define
three things: how arguments can be constructed, how they can be attacked by
counterarguments and how they can be defended against such attacks.

Argumentation logics are a form of nonmonotonic logic, since their notion of
warrant is nonmonotonic: new information may give rise to new counterarguments
defeating arguments that were originally acceptable. Besides a logical side, argu-
mentation also has a dialogical side: notions like argument, attack and defence
naturally apply when (human or artificial) agents try to persuade each other to adopt
or give up a certain point of view.

This chapter1 aims to show how formal models of argumentation can clarify
philosophical problems and issues. Some of these arise in the field of epistemology.
Pollock [10] argued that the principles by which knowledge can be acquired are
defeasible. Later he made this precise in a formal system [11], which inspired the
development of argumentation logics in artificial intelligence (AI). Rescher [20] also
stressed the dialectical nature of theories of knowledge and presented a disputational
model of scientific inquiry.

Other issues and problems originate from the fields of informal logic and
argumentation theory. In 1958, Stephen Toulmin launched his influential attack on
the logic research of those days, accusing it of only studying mathematical reasoning
while ignoring other forms of reasoning, such as commonsense reasoning and legal
reasoning [21]. He argued that outside mathematics the standards for the validity
of arguments are context-dependent and procedural: according to him an argument
is valid if it has been properly defended in a dispute, and different fields can have
different rules for when this is the case. Moreover, in his famous argument scheme
he drew attention to the fact that different premises can have different roles in an
argument (data, warrant or backing) and he noted the possibility of exceptions to
rules (rebuttals). Perelman argued that arguments in ordinary discourse should not
be evaluated in terms of their syntactic form but on their rhetorical potential to
persuade an audience [9]. These criticisms gave rise to the fields of informal logic

1An earlier version of this chapter has appeared as [14].
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and argumentation theory, which developed notions like argument schemes with
critical questions and dialogue systems for argumentation. Many scholars in these
fields distrusted or even rejected formal methods, but one point of this chapter is
that formal methods can also clarify these aspects of reasoning. Another claim often
made in these fields is that arguments can only be evaluated in the context of a
dialogue or procedure. A second point of this paper is that this can be respected by
embedding logical in dialogical accounts of argumentation.

The philosophical problems to be discussed in this chapter then are:

– Can argumentation-based standards for non-deductive inference be defined?
– To what extent are these standards procedural?
– To what extent are they context-dependent?
– What is the nature of argument schemes?
– Can the use of arguments to persuade be formalised?

2.2 Dung’s Abstract Argumentation Frameworks

In 1995 Phan Minh Dung introduced a now standard abstract formalism for
argumentation-based inference, which assumes as input nothing but a set (of
arguments) ordered by a binary relation (by Dung called ‘attack’ but in this chapter
the term ‘defeat’ will be used).

Definition 2.1 An abstract argumentation framework (AF ) is a pair 〈A, Def 〉,
where A is a set arguments and Def ⊆ A × A is a binary relation of defeat. We
say that an argument A defeats an argument B iff (A,B) ∈ Def , and that A strictly

defeats B if A defeats B while B does not defeat A. A set S of arguments is said to
defeat an argument A iff some argument in S defeats A.

Dung [4] defined four alternative semantics for AFs (over the years further seman-
tics have been proposed; cf. Baroni et al. [1]). A semantics for AFs characterises
so-called argument extensions of AF ’s, that is, subsets of A that are in some sense
coherent. One way to define extensions is with labellings of AFs, which assign to
zero or more members of Args either the label in or out (but not both) satisfying the
following constraints:

1. an argument is in iff all arguments defeating it are out.
2. an argument is out iff it is defeated by an argument that is in.

Stable semantics labels all arguments, while grounded semantics minimises and
preferred semantics maximises the set of arguments that are labelled in, and
complete semantics allows all labellings satisfying the two constraints. Let S ∈
{stable, preferred, grounded, complete} and (In, Out) an S-status assignment. Then
In is defined to be an S-extension.2

2This definition is different from but equivalent to Dung’s [4] definition of extensions.
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Fig. 2.1 Four argumentation frameworks

Some known facts (also holding for the corresponding extensions) are that each
grounded, preferred or stable labelling of an AF is also a complete labelling of that
AF ; the grounded labelling is unique but all other semantics allow for multiple
labellings of an AF ; each AF has a grounded and at least one preferred and
complete labelling, but there are AF s without stable labellings; and the grounded
labelling of an AF is contained in all other labellings of that AF .

Then the acceptability status of arguments can be defined as follows:

Definition 2.2 For grounded semantics an argument A is justified iff A is in the
grounded extension; overruled iff A is not in the grounded extension but defeated by
a member of the grounded extension; defensible otherwise. For stable and preferred
semantics an argument A is justified iff A is in all stable/preferred extensions;
overruled iff A is in no stable/preferred extension; defensible otherwise.

Figure 2.1 illustrates the definitions with some example argumentation frameworks,
where defeat relations are graphically depicted as arrows.

In AF (a) all semantics produce the same unique labelling. Argument C is in

by constraint (1) since it has no defeaters, so B is out by constraint (2) since it
is defeated by C, so A is in by constraint (1) since C defeats B. So all semantics
produce the same, unique extension, namely, {A,C}. Hence in all semantics A and
C are justified while B is overruled. It is sometimes said that C reinstates, or defends

A by defeating its defeater B.
In AF (b) grounded semantics does not label any of the arguments while preferred

and stable semantics produce two alternative labellings: one in which A is in and B

is out and one in which B is in and A is out. Hence the grounded extension is empty
while the preferred-and-stable extensions are {A} and {B}. All these extensions are
also complete. Hence in all semantics both A and B are defensible.

AF (c) has no stable extensions since no argument can be labelled both in and
out while there is a unique grounded, preferred and complete extension, which is
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empty, generated by a labelling which does not label any argument. Note that if a
fourth argument D is added with no defeat relations with the other three arguments,
there is still no stable extension while the unique grounded, preferred and complete
extension is {D}.

Finally, AF (d) shows a difference between grounded and preferred semantics.
The grounded extension is empty, since A and B can be left unlabelled so that
C and D are also unlabelled, while the two preferred (and stable) extensions are
{A,D} and {B,D}. Thus while in grounded semantics all arguments are defensible,
in preferred and stable semantics A and B are defensible, D is justified and C is
overruled.

The above definitions characterise sets of arguments that are in some sense
acceptable. In addition, procedures have been studied for determining whether a
given argument is a member of such a set. Some take the form of an argument game

between two players, a proponent and an opponent of an argument. The precise rules
of the game depend on the semantics the game is meant to capture. The rules should
be chosen such that the existence of a winning strategy (in the usual game-theoretic
sense) for the proponent of an argument corresponds to the investigated semantic
status of the argument, for example, ‘justified in grounded semantics’ or ‘defensible
in preferred semantics’.

Because of space limitations we can give only briefly one example game. The
following game is sound and complete for grounded semantics in that the proponent
of argument A has a winning strategy just in case A is in the grounded extension.
The proponent starts a game with an argument and then the players take turns, trying
to defeat the previous move of the other player. In doing so, the proponent must
strictly defeat the opponent’s arguments while he is not allowed to repeat his own
arguments. A game is terminated if it cannot be extended with further moves. The
player who moves last in a terminated game wins the game. Thus the proponent has
a winning strategy if he has a way to make the opponent run out of moves (from the
implicitly assumed AF ) whatever choice the opponent makes.

As remarked in the introduction, argumentation logics must define three things:
how arguments can be constructed, how they can be attacked and how they can be
defended against attacks. Dung’s abstract formalism only answers the third question.
To answer the first two questions, accounts are needed of argument construction and
the nature of attack and defeat. We next discuss a general framework for formulating
such accounts.

2.3 An Abstract Framework for Structured Argumentation

The ASPIC+ framework [7, 8, 13] aims to integrate and further develop the main
current formal models of structured argumentation. While some of its design choices
can perhaps be debated, the framework is still representative of work in the field, for
which reason we present it here. ASPIC+ gives structure to Dung’s arguments and
defeat relation. It defines arguments as inference trees formed by applying strict (→)
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or defeasible (⇒) inference rules to premises formulated in some logical language.
Informally, if an inference rule’s antecedents are accepted, then if the rule is strict,
its consequent must be accepted no matter what, while if the rule is defeasible,
its consequent must be accepted if there are no good reasons not to accept it.
Arguments can be attacked on their ‘ordinary’ premises and on their applications
of defeasible inference rules. Some attacks succeed as defeats; whether this is so
is partly determined by preferences. The acceptability status of arguments is then
defined by applying any of [4] semantics for abstract argumentation frameworks to
the resulting set of arguments with its defeat relation.

ASPIC+ is not a system but a framework for specifying systems. To start with, it
defines the notion of an abstract argumentation system as a structure consisting of
a logical language L with a negation symbol ¬,3 a set R consisting of two subsets
Rs and Rd of strict and defeasible inference rules, and a naming convention n in L

for defeasible rules in order to talk about the applicability of defeasible rules in L.
Thus, informally, n(r) is a wff in L which says that rule r ∈ R is applicable. (As is
usual, the inference rules in R are defined over the language L and are not elements
in the language.)

Definition 3.1 An argumentation system is a triple AS = (L,R, n) where:

– L is a logical language with a negation symbol ¬.
– R = Rs ∪ Rd is a set of strict (Rs) and defeasible (Rd ) inference rules of the

form ϕ1, . . . , ϕn → ϕ and ϕ1, . . . , ϕn ⇒ ϕ respectively (where ϕi, ϕ are meta-
variables ranging over wff in L), and Rs ∩Rd = ∅.

– n : Rd −→ L is a naming convention for defeasible rules.

We write ψ = −ϕ just in case ψ = ¬ϕ or ϕ = ¬ψ (we will sometimes informally
say that formulas ϕ and −ϕ are each other’s negation).

Henceforth, a set S ⊆ L is said to be directly consistent iff ∄ ψ , ϕ ∈ S such that ψ =
−ϕ, otherwise S is directly inconsistent. And S is said to be indirectly (in)consistent

if its closure under application of strict inference rules is directly (in)consistent.

Definition 3.2 A knowledge base in an AS = (L,R, n) is a set K ⊆ L consisting
of two disjoint subsets Kn (the axioms) and Kp (the ordinary premises).

Intuitively, the axioms are certain knowledge and thus cannot be attacked, whereas
the ordinary premises are uncertain and thus can be attacked.

Definition 3.3 An argumentation theory is a tuple AT = (AS,K) where AS is an
argumentation system and K is a knowledge base in AS.

ASPIC+ arguments are now defined relative to an argumentation theory AT =
(AS,K), and chain applications of the inference rules from AS into inference graphs
(which are trees if no premise is used more than once), starting with elements

3In most papers on ASPIC+ negation can be non-symmetric. In this paper we present the special
case with symmetric negation.
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from the knowlege base K. Arguments thus contain subarguments, which are the
structures that support intermediate conclusions (plus the argument itself and its
premises as limiting cases). In what follows, for a given argument the function
Prem returns all its premises, Conc returns its conclusion, Sub returns all its sub-
arguments, DefRules returns all defeasible rules of an argument and TopRule

returns the final rule applied in the argument.

Definition 3.4 An argument A on the basis of an argumentation theory with
a knowledge base K and an argumentation system (L,R, n) is any structure
obtainable by applying one or more of the following steps finitely many times:

1. ϕ if ϕ ∈ K with Prem(A) = {ϕ}; Conc(A) = ϕ; Sub(A) = {ϕ};
DefRules(A) = ∅; TopRule(A) = undefined.

2. A1, . . . An →/⇒ ψ4 if A1, . . . , An are arguments such that there exists a
strict/defeasible rule Conc(A1), . . . ,Conc(An) →/⇒ ψ in Rs /Rd .
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = ψ ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A}.
DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An);
TopRule(A) = Conc(A1), . . . ,Conc(An)→/⇒ ψ .

Then A is: strict if DefRules(A) = ∅; defeasible if DefRules(A) �= ∅; firm if
Prem(A) ⊆ Kn; plausible if Prem(A) ⊆ Kp.

Example 3.5 Consider a knowledge base in an argumentation system with Rs =
{p, q → s; u, v → w}; Rd = {p ⇒ t; s, r, t ⇒ v}; Kn = {q}; Kp = {p, r, u}.
An argument for w is displayed in Fig. 2.2. The type of a premise is indicated with
a superscript and defeasible inferences and attackable premises and conclusions are
displayed with dotted lines. Formally the argument and its subarguments are written
as follows:

A1: p A5: A1 ⇒ t

A2: q A6: A1, A2 → s

A3: r A7: A5, A3, A6 ⇒ v

A4: u A8: A7, A4 → w

We have that

Prem(A8) = {p, q, r, u}
Conc(A8) = w

Sub(A8) = {A1, A2, A3, A4, A5, A6, A7, A8}
DefRules(A8) = {p ⇒ t; s, r, t ⇒ v}
TopRule(A8) = u, v → w

4→/⇒ means that the rule is a strict, respectively, defeasible rule.
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Fig. 2.2 An argument

Arguments can be attacked in three ways: on their premises (undermining attack),
on their conclusion (rebutting attack) or on an inference step (undercutting attack).
The latter two are only possible on applications of defeasible inference rules.

Definition 3.6 A attacks B iff A undercuts, rebuts or undermines B, where:

• A undercuts argument B (on B ′) iff Conc(A) = −n(r) for some B ′ ∈ Sub(B)

such that B ′’s top rule r is defeasible.
• A rebuts argument B (on B ′) iff Conc(A) = −ϕ for some B ′ ∈ Sub(B) of the

form B ′′1 , . . . , B ′′n ⇒ ϕ.
• Argument A undermines B (on B ′) iff Conc(A) = −ϕ for some B ′ = ϕ, ϕ ∈ Kp.

In Example 3.5 argument A8 can be undercut on two of its subarguments, namely,
A5 and A7. An undercutter of A5 must have a conclusion −ϕ where n(p ⇒ t) = ϕ

while an undercutter of A5 must have a conclusion −ϕ where n(s, r, t ⇒ w) = ϕ.
Argument A8 can be rebutted on A5 with an argument for −t and on A7 with an
argument for −v. Moreover, if the rebuttal of A5 has a defeasible top rule, then A5
in turn rebuts the argument for −t . However, A8 itself does not rebut that argument,
except in the special case where w = −−t . Finally, argument A8 can be undermined
with an argument that has conclusion −p, −r or −u.

Attack relations between arguments can be resolved with an ordering on
arguments. To formalise this, the notion of a structured argumentation framework is
introduced.

Definition 3.7 Let AT be an argumentation theory (AS,KB). A structured argu-

mentation framework (SAF) defined by AT is a triple 〈A, Att, � 〉 where

– A is the set of all arguments on the basis of AT ;
– � is an ordering on A;
– (X, Y ) ∈ Att iff X attacks Y .

Modgil and Prakken [7] also study a variant of this definition in which arguments
are required to have indirectly consistent premises.
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Now attacks combined with the argument ordering yield three kinds of defeat.
For undercutting attack no preferences are needed to make it succeed, since under-
cutters are explicit exceptions to the rule they undercut. Rebutting and undermining
attacks succeed only if the attacked argument is not stronger than the attacking
argument.

Definition 3.8 A defeats B iff: A undercuts B, or; A rebuts/undermines B on B ′

and A ⊀ B ′.5 A strictly defeats B iff A defeats B and B does not defeat A

The success of rebutting and undermining attacks thus involves comparing the
conflicting arguments at the points where they conflict. The definition of successful
undermining exploits the fact that an argument premise is also a subargument.

The ASPIC+ framework assumes the argument ordering as given. It may depend
on all sorts of standards, such as statistical strength of generalisations, reliability of
information sources, preferences over outcomes of actions, or norm hierarchies. In
many contexts such standards can themselves be argued about. One way to formalise
this is by using Modgil’s [6] idea to decompose the defeat relation of Dung’s [4]
abstract argumentation frameworks into a more basic attack relation and to allow
attacks on attacks in addition to attacks on arguments. Combined with ASPIC+, the
idea is that if argument C claims that argument B is preferred to argument A, and A

attacks B, then C undermines the success of A’s attack on B (i.e., A does not defeat

B) by pref-attacking A’s attack on B.
Recall that argumentation logics must define three things: how arguments can be

constructed, how they can be defeated and how they can be defended against defeat-
ing counterarguments. While Dung’s abstract argumentation semantics addresses
the last issue, we can now combine it with the ASPIC+ framework to address the
first two issues.

Definition 3.9 An abstract argumentation framework (AF) corresponding to a SAF
= 〈A, Att,� 〉 is a pair (A, Def ) such that Def is the defeat relation on A determined
by 〈A, Att, � 〉.
The justified arguments of the above defined AF are then defined under various
semantics, as in Definition 2.2. We now see that an argument can be defended
against attacks in two ways: by showing that the attacker is inferior to it or by
defeating the attacker with a counterattack that reinstates the original argument.

We can now finally define an argumentation-based consequence notion for well-
formed formulas (relative to an AT and with respect to any given semantics):

Definition 3.10 A wff ϕ ∈ L is justified if ϕ is the conclusion of a justified
argument, and defensible if ϕ is not justified and is the conclusion of a defensible
argument.

An alternative definition of a justified wff is to say that every extension contains an
argument with the wff as its conclusion. Unlike the above definition, this alternative

5X ≺ Y means as ususal that X � Y and Y �� X.
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definition allows different extensions containing different arguments for a justified
conclusion. This is similar to the different treatments that semantics for abstract
argumentation give to Fig. 1.1d.

One possible analysis of this difference is that some semantics, or some
definitions of justification, are better than others, but an alternative analysis is that
different definitions capture different senses or strengths of justification, which each
may have their use in certain contexts. For example, in the law, criminal cases
require higher proof standards than civil cases. And while in domains like the law
and medicine defeasible arguments are acceptable, in the field of mathematics all
arguments must, of course, be deductive. Thus we see how our formal framework
for argumentation can make sense of Toulmin’s claim that the standards for the
validity of arguments are context-dependent.

In addition, the kind of reasoning can be relevant, such as the distinction
between epistemic and practical reasoning. If, for instance, two incompatible actions
(say reducing and increasing taxes) have two different good consequences (say
increasing productivity and increasing equality in society) and there is no reason
to prefer one consequence over the other, then an arbitrary choice is (all other things
being equal) rational. If, on the other hand, two experts disagree about whether
reducing taxes increases productivity, then an arbitrary choice for one of them
seems irrational. So it might be argued that in practical reasoning a defensible
conclusion can be good enough while in epistemic reasoning we should aim for
justified conclusions.

2.4 The Nature of Inference Rules

While we now have a general framework for the definition of argumentation logics,
much more can be said. To start with, the framework can be instantiated in many
ways, so there is a need for principles that can be used in assessing the quality of
instantiations. Caminada and Amgoud [3] formulated several so-called rationality
postulates, namely, that each extension should be closed under subarguments and
under strict rule application, and be directly and indirectly consistent. ASPIC+

unconditionally satisfies the two closure postulates while Prakken [13] and Modgil
and Prakken [7] identify conditions under which some broad classes of instantia-
tions satisfy the two consistency postulates.

The next question is, what are ‘good’ collections of strict and defeasible inference
rules? In AI there is a tradition to let inference rules express domain-specific
information, such as all penguins are birds or birds typically fly. This runs counter
to the usual practice in logic, in which inference rules express general patterns of
reasoning, such as modus ponens, universal instantiation and so on. This practice
is also followed in systems for so-called classical argumentation [2], in which
arguments from a possibly inconsistent knowledge base are classical proofs from
consistent subsets of the knowledge base. These systems are in fact a special case of
the ASPIC+ framework with L being the language of standard propositional or first-
order logic, the strict rules being all valid propositional or first-order inferences, with
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no defeasible rules and no axiom premises, and with the premises of all arguments
required to be indirectly consistent. In this approach (which can be generalised
to other deductive logics) arguments can thus only be sensibly attacked on their
premises.

While this approach has some merits, it is doubtful whether all argumentation
can be reduced to inconsistency handling in some deductive logic. In particular John
Pollock strongly emphasized the importance of defeasible reasons in argumentation.
He was quite insistent that defeasible reasoning is not just some exotic, exceptional,
add-on to deductive reasoning but is, instead, an essential ingredient of our
cognitive life:

. . . we cannot get around in the world just reasoning deductively from our
prior beliefs together with new perceptual input. This is obvious when we look
at the varieties of reasoning we actually employ. We tend to trust perception,
assuming that things are the way they appear to us, even though we know that
sometimes they are not. And we tend to assume that facts we have learned
perceptually will remain true, as least for a while, when we are no longer
perceiving them, but of course, they might not. And, importantly, we combine
our individual observations inductively to form beliefs about both statistical
and exceptionless generalizations. None of this reasoning is deductively valid.
[12, p. 173]

Here the philosophical distinction between plausible and defeasible reasoning is
relevant; see Rescher [19, 20] and Vreeswijk [23, Ch. 8]. Plausible reasoning is
valid deductive reasoning from an uncertain basis while defeasible reasoning is
deductively invalid (but still rational) reasoning from a solid basis. In these terms,
models of deductive argumentation formalize plausible reasoning, while Pollock
modeled defeasible reasoning and the ASPIC+ framework gives a unified account
of these two kinds of reasoning.

There is also semantic support for the idea of defeasible inference rules.
Consider, for example, the statistical generalisation men usually have no beard.
Concluding from this that people with a beard are usually not men is a so-
called ‘base rate fallacy’ [22]. If (epistemic) defeasible reasoning is reduced to
inconsistency handling in deductive logic, such fallacies are easily committed.
Likewise, it has been argued that reasons of practical and normative reasoning are
inherently defeasible; cf. e.g. [18].

While the case for defeasible inference rules thus seems convincing, the question
remains what are ‘good’ defeasible inference rules, especially if they are to express
general patterns of inference. Here two bodies of philosophical work are relevant,
namely, Pollock’s [10, 11] notion of defeasible reasons and argumentation-theory’s
notion of argument schemes [26]. Pollock’s defeasible reasons are general patterns
of epistemic defeasible reasoning. He formalised reasons for perception, memory,
induction, temporal persistence and the statistical syllogism, as well as undercutters
for these reasons. In the ASPIC+ framework Pollock’s defeasible reasons can be
expressed as schemes (in the logical sense, with metavariables ranging over L) for
defeasible inference rules. The same analysis applies to argument schemes, which
are stereotypical non-deductive patterns of reasoning. Uses of argument schemes are
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evaluated in terms of critical questions specific to the scheme. In the literature on
argumentation theory many collections of argument schemes have been proposed,
both for epistemic, practical and evaluative reasoning. An example of an epistemic
argument scheme is the scheme from expert opinion [26, p. 310]:

E is an expert in domain D, E asserts that P is true, P is within D, therefore
presumably P is true

Walton [26] give this scheme six critical questions: (1) Is E credible as an expert
source? (2) Is E an expert in domain D? (3) What did E assert that implies P ? (4) Is
E personally reliable as a source? (5) Is P consistent with what other experts assert?
(6) Is E’s assertion of P based on evidence?

A practical argument scheme is the scheme from good (bad) consequences (here
in a formulation that deviates from Walton [26] to stress its abductive nature):

Action A results in P , P is good (bad), therefore all other things being equal
A should (not) be done.

This scheme is usually given two critical questions: (1) Does A result in P ? (2)
Does A also result in something which is bad (good)? (3) (When P is concluded to
be good) Is there another way to realise P ?

In ASPIC+, argument schemes can also be formalised as schemes for defeasible
inference rules; then critical questions are pointers to counterarguments. In the
scheme from expert opinion questions (2) and (3) point to underminers (of,
respectively, the first and second premise), questions (4), (1) and (6) point to
undercutters (the exceptions that the expert is biased or incredible for other reasons
and that he makes scientifically unfounded statements) while question (5) points to
rebutting applications of the expert opinion scheme. In the scheme from good (bad)
consequences question (1) points to underminers of the first premise, question (2)
points to rebuttals using the opposite version of the scheme while question (3) points
to undercutters.

This account of argument schemes can also clarify Toulmin’s [21] distinction
between warrants (rule-like premises) and backings of warrants. For example, a
warrant can be that smoking causes cancer while its backing can be an expert
opinion: then the defeasible inference rule expressing the scheme from expert
opinion allows to infer the warrant from the backing.

Let us illustrate the just-proposed modelling of defeasible reasons and argument
schemes with an example. The logical language L is informally assumed to be a
first-order language augmented with a conditional for defeasible generalisations,
Rs consists of all deductively valid inferences over L and Rd consists of the above
schemes from expert opinion (e) and from good (gc) and bad (bc) consequences,
plus a modus ponens scheme (dmp) for defeasible generalisations. Consider then
the following arguments (where premise arguments are assumed to be in Kp and
defeasible inferences are labelled with the inference rule they apply).
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A1: P says “lowering taxes increases productivity”

A2: P is an expert in economics

A3: “lowering . . . productivity” is about economics

A4: A1, A2, A3 ⇒e lowering . . . productivity B1: lowering taxes increases inequality

A5: Increased productivity is good B2: Increased inequality is bad

A6: A4, A5 ⇒gc taxes should be lowered B3: B1, B2 ⇒bc taxes should not be

lowered

C1: P has political ambitions D1: P is never on TV

C2: people with political ambitions are usually D2: people who are never on TV usually

not reliable about taxes have no political ambitions

C3: C1, C2 ⇒dmp P is not reliable about taxes D3: D1,D2 ⇒dmp P has no political

ambitions

C4: Rule e does not apply to unreliable people

C5: C3, C4 → Rule e does not apply to P

Arguments A6 and B3 rebut each other. Assume B3 ≺ A6 so A6 strictly defeats
B3. Assuming the obvious naming convention, argument C5 undercuts A6 on A4 and
so defeats both, while D3 undermines C5 on C1 and C1 in turn rebuts D3. At this
point we know that all unattacked premise arguments are justified in any semantics,
since they have no defeaters. For the remaining arguments, suppose first D3 ≺ C1.
Then C1 strictly defeats D3, so in any semantics D3, A4 and A6 are overruled, while
all Ci and B3 are justified. Suppose next C1 ≺ D3. Then D3 strictly defeats C3
and C5 by strictly defeating C1, so in any semantics D3 and all Ai are justified,
while C1, C3, C5 and B3 are overruled. Suppose finally that neither C1 ≺ D3 nor
D3 ≺ C1. Then C1 and D3 defeat each other so, even though D3 still strictly defeats
C3 and C5, in any semantics all non-premise arguments plus C1 are defensible.

2.5 Argumentation as a Form of Dialogue

As stated in the introduction, argumentation theorists often claim that arguments
can only be evaluated in the context of a dialogue or procedure. More specifically,
Walton [24] regards argument schemes as dialogical devices, determining dialectical
obligations and burdens of proof. An argument is a move in a dialogue and the
scheme that it instantiates determines the allowed and required responses to that
move. At first sight, our account of argument schemes as defeasible inference rules
would seem to be incompatible with Walton’s dialogical account. However, these
two accounts can be reconciled by embedding argumentation logics in dialogue
systems for argumentation.

While argumentation logics define notions of consequence from a given body of
information, dialogue systems for argumentation [25] regulate disputes between real
agents, who each have their own body of information, and who may be willing to
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learn from each other so that their information state may change. Moreover, during
the dialogue they may construct a joint theory on the issue in dispute, which also
evolves over time. Essentially, dialogue systems define a communication language
(the well-formed utterances) and a protocol (when a well-formed utterance may be
made and when the dialogue terminates).

Consider the following simple example, with a dialogue system that allows
players to move arguments and to challenge, concede or retract premises and
conclusions of these arguments. Each challenge must be answered with a ground
for the challenged statement or else the statement must be retracted. The two agents
have their own knowledge base but a shared ASPIC+ argumentation system with a
propositional language and three defeasible inference rules: p ⇒ q, r ⇒ p and
s ⇒ ¬r . Paul’s and Olga’s knowledge bases contain, respectively, single ordinary
premises p and r . Let us assume that all arguments are of equal preference. Paul
wants to persuade Olga that q is the case. He can internally construct the following
argument for q: A1: r , A2: A1 ⇒ p, A3: A2 ⇒ q. However, a well-known
argumentation heuristic says that arguments in dialogue should be made as sparse
as possible in order to avoid attacks. Therefore, Paul only utters the last step in the
argument, hoping that Olga will accept p so that Paul does not have to defend r .
This leads to the following dialogue.

P1: q since p O1: why p

P2: p since r O2: ¬r since s

P3: retract r , retract q

What has happened here? If Olga had been a trusting person who concedes a
statement if she cannot construct an argument for the opposite, then she would
have conceded p and q after P1. But q is not a justified conclusion from the joint
knowledge bases, so this outcome is undesirable. In fact, Olga was less trusting and
first asked Paul for his reasons for p. Since Paul was honest, he gave his true reasons,
which allowed Olga to discover that she could attack Paul with an undermining
counterargument. Paul could not defend himself against this attack, so he realised
that he cannot persuade Olga that q is true; he therefore retracted r and q.

Argumentation logic applies here in several ways. It can model the agents’
internal reasoning but it can also be applied at each dialogue stage to the joint theory
that the agents have created at that stage. For example, after O2 the logic says that
q is overruled on the basis of Kn = ∅,Kp = {p, r, s} while after P4 the logic says
that no argument for q can be constructed on the basis of Kn = ∅,Kp = {p, s}.
Argumentation logic can also be used as a component of notions of soundness and
completeness of protocols, such as:

– A protocol is sound if whenever at termination p is accepted, p is justified by the
participants’ joint knowledge bases.

– A protocol is weakly complete if whenever p is justified by the participants’ joint
knowledge bases, there is a legal dialogue at which at termination p is accepted.
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– A protocol is strongly complete if whenever p is justified by the participants’
joint knowledge bases, all legal dialogues terminate with acceptance of p.

These notions can also be defined relative to the joint theory constructed during
a dialogue, or made conditional on particular agent strategies and heuristics (for
example, a protocol could be sound and complete on the condition that all agents
are honest but not trusting).

We can now without giving up the idea of an argumentation logic make sense
of the claim that arguments should be evaluated in the context of a dialogue or
procedure. The dialogue provides the relevant statements and arguments at each
stage of the dialogue. The logic then determines the justified arguments at that
stage. The logic also points at the importance of investigation. Since arguments
can be defeated by counterarguments, the search for information that gives rise to
counterarguments is an essential part of testing an argument’s viability: the more
thorough this search has been, the more confident we can be that an argument is
justified if we cannot find defeaters. The ultimate justification of an argument is then
determined by applying the logic to the final information state. Thus the ultimate
justification of an argument depends on both logic and dialogue, or more generally
on both logic and investigation.

On this account the critical questions of argument schemes have a dual role. On
the one hand they define possible counterarguments to arguments constructed with
the scheme (logic) while on the other hand they point at investigations that could
be done to find such counterarguments (dialogue and procedure). This account also
gives a further explanation why argument evaluation is context dependent, since
different contexts may require different protocols for dialogue: when a decision
has to be reached in reasonable time (as in a business meeting), a protocol may
be more restrictive than in settings like academic debate. For example, the right to
give alternative replies to a move may be restricted so that agents are forced to think
what is their best reply.

Finally, on this account persuasiveness of arguments can be modelled as follows.
Each dialogical agent has an internal argumentation theory and evaluates incoming
arguments in terms of how they fit with the AF that it can internally generate. Given
an acceptance attitude the agent will either accept the argument’s premises and/or
conclusion, or attack it with a counterargument, or ask for further grounds for a
premise. Personality models can help modelling which types of arguments an agent
of a certain type tends to accept. This gives a third way in which argument evaluation
is context-dependent: the persuasive force of an argument depends on the listener.
Current work of this kind is still preliminary but fascinating and promising (see
e.g., the proceedings of the annual ArgMas workshops on argumentation in multi-
agent systems). In fact this work provides a formal or even computational account
of Perelman’s New Rhetoric [9].
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2.6 Conclusion

In this chapter we discussed five philosophical problems concerning argumentation.
We first showed how argumentation-based standards for non-deductive inference
can be defined, by presenting an abstract framework for argument evaluation given
a set of arguments and their attack and defeat relations, and by supplementing it
with accounts of argument construction and the nature of attack and defeat. We then
clarified how a dialogical account of argument evaluation can be given in formal
terms, by discussing the embedding of argumentation logics in dialogue systems
for argumentation. This embedding also clarified the nature of argument schemes:
argument schemes can be seen as defeasible inference rules and their critical ques-
tions as pointers to counterarguments. We also clarified how the use of arguments to
persuade can be formalised, by adding the notions of argumentation strategies and
heuristics and suggesting the use of personality models of argumentative agents.
Finally, we gave several reasons why argument evaluation is context-dependent:
different domains may have different sets of argument schemes, different contexts
may require more or less strict semantics and/or protocols for dialogue and the
persuasive force of arguments may depend on the listener.
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Chapter 3

Formal Methods and the History
of Philosophy

Catarina Dutilh Novaes

Although not (yet) entirely mainstream, uses of formal methods for the study of
the history of philosophy, the history of logic in particular, represent an important
trend in recent philosophical historiography. In this chapter, I discuss what can
(and cannot) be achieved by the application of formal methods to the history of
philosophy, addressing both motivations and potential pitfalls. The first section
focuses on methodological aspects, and the second section presents three case
studies of historical theories which have been investigated with formal tools:
Aristotle’s syllogistic, Anselm’s ontological argument, and medieval theories of
supposition.

3.1 Methodological Considerations

3.1.1 Why (Not) Apply Formal Methods to the History

of Philosophy?

Let us begin by discussing motivations and potential objections to the use of formal
methods in the study of the history of philosophy. A recurring concern pertains to
the risk of anachronism: formal methods are for the most part recent inventions, and
applying these modern frameworks to theories of the past is bound to bring along a
range of presuppositions and assumptions that have no counterpart in the historical
framework in question.

However, while this issue may be more acute in the case of formal methods, it in
fact pertains to philosophical historiography in general. Indeed, a certain amount of
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anachronism is inherent to any historical analysis, and it is not immediately obvious
why the anachronism brought in by formal methods would be substantially different
from the anachronism brought in by other recent methodologies and frameworks.
Thus, even acknowledging that philosophical theories bear a mark of historicity,
formal methods can still be seen as legitimate interpretive tools for historical
investigations.

Nonetheless, the risk of excessive anachronism when employing formal methods
is real, and perhaps more acute than with other methodologies. Thus, the historian
of philosophy who employs formal methods must remain particularly alert so as
to minimize or in any case take into account the inevitable traces of anachronism
in her investigations. The choice of the formalism to be used must be judicious,
as for a given historical analysis some formalisms will bring in a lesser degree of
anachronism and inadequacy than others.

This being said, formal methods can in fact be valuable tools in the context of
textual exegesis. Much of what the historian of philosophy does consists in working
with texts, and formalization may help elucidate particularly thorny passages or
arguments.1 (However, it must be stressed that a formalization of a historical theory
usually does not consist in taking the very linguistic expression of the theory in
the original text as its object.2) In other words, formal methods can serve as a
hermeneutical tool among others; by engaging in the formalization of a given
historical theory, the interpreter may obtain a deeper understanding of the theory,
possibly an understanding that other interpretive methods could not provide.

Indeed, formal methods seem particularly well-placed to unveil certain aspects
of the target theory. A formalization presupposes a deconstruction of the historical
theory so that some of its key elements are isolated from the others, thus outlining
its logical scaffolding. Furthermore, formal methods may disclose ‘hidden’ aspects
of a historical theory, which are not visible to the ‘naked eye’ (to pursue Frege’s
metaphor of a formalism as a microscope, in the preface of the Begriffsschrift).

Hence, provided they are used with caution and that their inherent anachronism
is taken into account, formal methods can be irreplaceable items in a historian’s
toolkit. But their use is only justified if they truly shed new light on the object of
analysis; unless new insight is obtained, fancy formalization may simply be overkill.

1More recently, computational methods have been gaining quite a lot of traction for research in
history of philosophy, under the umbrella of ‘digital humanities’. These are exciting developments
that may well change substantially how historians of philosophy approach their topics, but for now
they are still at early stages. While these can be broadly understood as formal methods, in this
piece I do not discuss them any further for reasons of space.
2In fact, I have argued elsewhere ([11], chap. 3) that it is a mistake to think about formalizations in
general merely as taking portions of ‘natural language’ as their starting point and translating them
into a formal language.
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3.1.2 How (Not) to Apply Formal Methods in History

of Philosophy

How does a historian of philosophy who applies formal methods proceed? It cannot
be sufficiently emphasized that the formal historian remains above all a historian:
it is solely on the basis of solid conceptual knowledge of her object of study that
she can successfully apply formal methods in her investigations. While formal tools
can be instrumental even in the interpretive process of textual analysis, ultimately
the formal historian must be thoroughly familiar with the historical framework in
question before formalization begins.

Next, an important step is the choice of an adequate formalism. The first uses
of formal methods to study the history of philosophy, in the second half of the
twentieth century, tended to adopt uncritically the ‘standard’ logical systems of
the time, in particular classical predicate logic. But as we will see with the case
studies below, uncritically adopting an inadequate framework is likely to lead to
poor results. An inadequate formalism will bring along unwarranted assumptions
and presuppositions, and/or fail to capture some key components of the historical
theory if they have no counterpart in the formalism.

The point is not that there will be at most one adequate formal framework for
each historical theory; there may well be different, equally adequate frameworks, or
frameworks adequate for different aspects of the theory. In other words, conceptual
as well as semi-pragmatic considerations will play a role, but some formalisms
are hopelessly unsuitable for a given historical theory. The choice of a formalism
is already an interpretive choice; there is no such thing as a theoretically neutral
formalization.

A formalization is always a process of abstraction, but one which promises to
offer further insight precisely because it separates what is crucial from what is
secondary in a given theory (relative to a given purpose), allowing for a more
uniform analysis. In any formalization, some elements of the target phenomenon
are represented by certain features of the model – what Shapiro3 refers to as the
representors – while other features of the model are artifacts (again in Shapiro’s
terminology), introduced for convenience. So a good formalization is not one where
every aspect of what is being formalized is represented, but rather one where the
tradeoff between simplification and accuracy of representation is favorable.

In particular, the chosen formalism must have the right level of granularity with
respect both to the target historical theory and the purpose of the formalization: it
must abstract the right amount of information away – not too much, not too little.
The formalization is too coarse if it fails to capture important aspects of the historical
theory, and it is too fine-grained if it projects distinctions and concepts into the
theory that are not there to start with (naturally, it can be both too coarse and too
fine-grained).

3Shapiro [30].
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Note that these general considerations must be viewed as no more than schematic
guidelines for what is to count as an adequate formalization. Actual criteria must be
discussed on a case-by-case basis, as will be illustrated by the case studies below.

3.1.3 Interpreting the Results

Assume that the historian has undertaken a formalization of an episode in the history
of philosophy, and is now looking at the end-product. What does the formalization
mean? Has it succeeded in outlining aspects of the historical theory that alternative
methodologies had failed to identify?

There is a sense in which the goal of a formalization (of a historical theory or
otherwise) is precisely to reveal novel, hidden aspects of its object of study. In some
sense, the goal is to obtain a situation of mismatch between one’s initial beliefs about
a given historical theory and the results of the formalization.4 But if a formalization
makes a prediction that is not explicitly to be found in the informal theory being
formalized (or vice-versa) – i.e. if there is a mismatch between formalization and
what is formalized – then this may mean two things: either the formalization is not
sufficiently faithful to the informal theory – in which case it is a ‘bad’ formalization;
or the formalization in fact ‘sees’ something in the original theory that was not
immediately apparent – in which case it is a ‘good’ formalization in that it is
illuminating.

If, however, the historian’s prior views on the historical theory and the results
of the formalization match completely, then on the one hand one may say that the
formalization is entirely accurate and adequate, but on the other hand one may also
say that it is uninformative in that it produced no new insights. So there is a sense
in which precisely the cases of mismatch are the interesting ones; when mismatch
occurs, further analysis is required in order to establish whether it is indeed a novel
result revealed by the formalization or rather a sign that it is inadequate.5

Again, there is no one-fits-all answer here; in each case, further analysis
is required to establish whether a mismatch between initial expectations and
the results of the formalization signals inadequacy, or alternatively, novelty and
informativeness. This may also be done with a critical stance, i.e. the formalization
may be able to outline shortcomings and flaws in the historical theory itself (e.g. the
potential invalidity of Anselm’s ontological argument). But often, what may appear
to be a shortcoming in the historical theory is, on further scrutiny, an unwarranted
projection of presuppositions (e.g. some of Łukasiewicz’s criticisms of Aristotelian
syllogistic). Thus, although a certain amount of critical stance is to be commended,
the principle of charity remains an important guideline for the formal historian of
philosophy.

4See [13].
5For an example of formal analysis actually revealing something new about a historical theory, see
[8] on Bradwardine’s solution to the Liar paradox.
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3.2 Case Studies

To appreciate the (initially) innovative character of applying modern mathematical
logic to the analysis of so-called ‘traditional logic’, it is important to bear in
mind that much (though not all) of modern mathematical logic emerged as a
rejection of traditional logic. But since then (first half of twentieth century), much
has changed, and formal methods have been regularly used for the analysis of
philosophical theories of the past. In what follows, I discuss three case studies:
Aristotle’s syllogistic; Anselm’s ontological argument; and medieval theories of
supposition. By its very nature, the history of logic is particularly amenable to
formal analysis, but Anselm’s ontological argument illustrates a fruitful application
of formal methods outside the history of logic.

3.2.1 Syllogistic

The founder of ‘formal history of philosophy’ is the Polish logician Jan
Łukasiewicz, well known for his work on mathematical logic; the historical theory
he set out to formalize was Aristotle’s syllogistic. In the Prior Analytics, Aristotle
presents the logical system which became known as syllogistic, whose language
contains only four kinds of sentences (a and b are arbitrary terms):

A: All a is b

I: Some a is b

E: No a is b

O: Some a is not b

Aristotle develops a theory of the pairs of such sentences yielding conclusions
that ‘follow of necessity’ – the famous syllogistic arguments. Of the 256 possible
combinations, 24 are said by Aristotle to constitute valid arguments. Łukasiewicz
became interested in Aristotle’s syllogistic already in the 1920s, but his major work
on the topic was published only in 1951: his monograph Aristotle’s Syllogistic from

the Standpoint of Modern Formal Logic [20]. Łukasiewicz’s account of Aristotelian
syllogistic can be thus summarized:

The logic of Aristotle is a theory of the relations A, E, I, and O (in their
mediaeval senses) in the field of universal terms. [ . . . ] As a logic of terms,
it presupposes a more fundamental logic of propositions, which, however,
was unknown to Aristotle and was discovered by the Stoics in the century
after him. Aristotle’s theory is an axiomatized deductive system, in which the
reduction of the other syllogistic moods to those of the first figure is to be
understood as the proof of these moods as theorems by means of the axioms
of the system. ([23], 134)

Crucially, Łukasiewicz formulates syllogistic as an axiomatic theory embedded
in a propositional logic, thus disregarding its original term-based nature. He arrives
at the same results as Aristotle (at least in terms of which arguments are deemed



86 C. D. Novaes

valid or invalid), but his derivations are nothing like Aristotle’s own. In particular, he
criticizes Aristotle’s per impossibile proofs of the syllogisms Baroco and Bocardo

(in the medieval terminology) as incorrect, simply because they are not deemed
correct within his axiomatic approach. He himself acknowledges that, taking valid
syllogisms to be rules of inference rather than axioms, Aristotle’s proofs are
correct, but rather than viewing this as a sign that his axiomatic interpretation
might be inadequate, he prefers to attribute the error to Aristotle.6 Łukasiewicz’s
formalization in fact imposes “an order on Aristotle’s syllogistic, rather than
discovering the order within it” ([33], 192).

In the early 1970s, John Corcoran [5, 6] and Timothy Smiley [31] independently
presented alternative formalizations of Aristotle’s syllogistic; contra Łukasiewicz’s
axiomatic approach, they emphasized the role of rules of inference in the system.
Corcoran, for instance, views syllogistic as a term-based natural deduction system.
Thus, a valid syllogism such as “All a is b, all b is c, thus all a is c”, which is
rendered as an axiom by Łukasiewicz (in Polish notation):

CKAbcAabAac7

is formalized by Corcoran as a rule of inference:

Azy + Axz |=Axy

In this way, “Corcoran succeeds, as Lukasiewicz did, in reproducing Aristotle’s
results, and he succeeds, as Lukasiewicz did not, in reproducing Aristotle’s method
step by step, so that the annotated deductions of his system D are faithful translations
of Aristotle’s exposition.” ([23], 134) Undoubtedly, Corcoran’s formalization (as
Smiley’s) is a great improvement over Łukasiewicz’s from the point of view of
historical accuracy.

Alongside a presentation of Aristotle’s syllogistic as a natural deduction system,
Corcoran also introduces a formal semantics for the system, on the basis of families
of non-empty sets. He proves that his deductive system is sound and complete with
respect to this semantics, and then goes on to argue that this establishes the adequacy
of his deductive system. But why is it that this particular semantics should serve
as yardstick for the adequacy of the deductive system? Corcoran does not offer
much motivation for the choice of this semantics, and indeed other semantics for
syllogistic have been proposed in the literature [2].

There is no doubt that formal analysis has greatly improved our understanding
of syllogistic as a logical system.8 But the divergences between Łukasiewicz’s
formalization and Corcoran’s also outline the extent to which conceptual, historical
analysis of the texts remains crucial, and illustrate the open-ended nature of
formalization in history of philosophy.

6See ([29], 37–39).
7Polish notation is based on prefixing operators. ‘C’ stands for implication and ‘K’ for conjunction,
so this expression roughly means ‘Abc & Aab ➔ Aac’.
8See for example [1] for some interesting meta-theoretical results, and [18] for a formal analysis
of Buridan’s modal syllogism.



3 Formal Methods and the History of Philosophy 87

3.2.2 Anselm’s Ontological Argument

Anselm’s so-called ontological argument (most famously presented in chapter II of
the Proslogion, written c. 1077-78) purports to demonstrate the existence of God
on the basis of a seemingly plausible definition of God as ‘that than which nothing
greater can be thought’. More precisely, it purports to show from this definition
alone that a contradiction can be derived from the assumption that God does not
exist.9

Anselm’s argument is one of the most discussed arguments in the history of
philosophy, and continues to puzzle commentators. Structurally, it is prima facie a
plausible argument, but there is something highly unsettling about deriving such a
strong conclusion (God exists) from apparently modest premises, by an apparently
valid reasoning. Commentators widely disagree on where the problem lies; as
summarized by Uckelman ([35], section 5),

The verdict on the premises range from “obviously true” to “obviously false”,
and similarly for the validity of the argument(s). The difficulty of determining
the soundness and validity of the argument is also located in different places,
with some of the various possibilities put forward including the problem of
counterfactual reasoning, the role played by the term ‘God’, the analysis
of definite descriptions, substitution into opaque contexts, the definition of
perfection, and the nature of possibility. Others believe that the real error of
the proof is still to be found, while some believe that the error is as simple as
begging the question or the fallacy of equivocation.

(Uckelman provides extensive references to the different commentators holding
these views.) Given this interpretive conundrum, it seems that the application of
modern logical apparatuses could be of great use to the interpreter. In effect, an
adequate formalization might be able to unveil the logical structure of the argument,
making hidden assumptions explicit, and bringing to the fore each of the inferential
steps in the argument. However, the different formalizations of Anselm’s argument
proposed in the literature disagree significantly on how best to interpret and analyze
it, which again illustrates the fluidity of formalization in research on the history of
philosophy: even a single argument, originally expressed in what amounts to half a
page of text, is susceptible to receiving highly diverging formal analyses.

Two notable applications of formal tools to Anselm’s argument were proposed
by Jacquette [16] and Oppenheimer and Zalta [24, 25]. Jacquette argues that the
argument has a strong modal component, more precisely an intensional/epistemic
component, introduced by the notion of ‘that than which nothing greater can be

thought’. (In fact, arguably there are two intensional layers: one introduced by ‘can
be’ and the other introduced by ‘thought’.) On his reconstruction, the argument
commits the fallacy of substitution in opaque contexts, as two co-referential terms

9See [34] for a concise presentation of the argument.
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(the definiens and the definiendum in the proposed definition of God) cannot be used
interchangeably in opaque contexts. Thus, according to Jacquette, the argument is
not valid.

While Jacquette focuses on the intensional/epistemic component of the argu-
ment, Oppenheimer and Zalta highlight the fact that the definiens in the proposed
definition of God corresponds to a definite description.10 Rather than eliminating
the definite description, they maintain that, in an analysis/reconstruction of the
argument, the phrase should be explicitly represented as such. For this end, they
resort to the framework of free logic, which allows for terms or expressions having
no denotation. On their reconstruction, the argument comes out as valid, once the
proposed logical behavior of definite descriptions is properly spelled out.

Arguably, each of these two formal analyses of Anselm’s argument has illumi-
nated a particular central aspect thereof: the intensional/epistemic component for
Jacquette, and the definite description component for Oppenheimer and Zalta. In
itself, this is not particularly remarkable; as argued in Sect. 3.1.2, a formalization
always entails a decision to focus on certain aspects of its object at the expense of
others. Thus, it is perfectly conceivable that there might be more than one adequate
formalization for the same object. Nonetheless, the fact that these two analyses
disagree on their verdict regarding the validity of Anselm’s argument does suggest
that they cannot both be equally ‘right’. Perhaps a unified analysis taking both
elements into account would be required to adjudicate the issue.

In any case, formalizations of Anselm’s argument illustrate applications of
formal methods in history of philosophy going beyond the history of logic strictly
speaking. They also illustrate the fact that formalizations always entail theoretical
choices, but suggest as well that, while there is typically room for more than one
adequate formalization, at times two formalizations turn out to be true competitors
that cannot both be adequate.

3.2.3 Medieval Theories of Supposition

Supposition is a key concept in Latin medieval semantics, but the phrase ‘medieval
theories of supposition’ covers a rather heterogeneous group of theories, ranging
from the twelfth to the fifteenth century [9]. The fragments of theories of supposition
having attracted the attention of contemporary philosophers and logicians are pri-
marily those (seemingly) related to the modern concept of quantification, especially
the so-called modes of personal supposition [10]. This is in itself quite revealing:
in first instance, modern philosophers were mostly interested in the similarities,
rather than in the differences, between the historical theories in question and modern
frameworks. Indeed, from early on, the ‘quantificational fragment’ of supposition

10([24], 509).
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theories was viewed from the perspective of modern conceptions of quantification:
“The theory of supposition is, to a very large extent, one with the modern theory of
quantification . . . ” ([3], 28).11

The different modes of personal supposition offer a semantic account of a wide
range of what the medieval authors referred to as syncategorematic terms (‘every’,
‘not’, ‘no’, ‘some’, ‘only’ etc.).12 This is spelled out by means of inferential
relations between sentences where such terms occur, and sentences of the form ‘This
a is b’, where ‘a’ and ‘b’ are terms occurring in the original sentences; the latter, the
categorematic terms, are those said to have such-and-such supposition. (There are
also rules specifying in which syntactic contexts, defined by the syncategorematic
terms and word order, a term would have such-and-such supposition)

The main modes of personal supposition can be defined as follows. Let (S) and
(Q) stand for any syncategorematic term (or combination thereof), and the general
form of a sentence P be ‘(Q) a is (S) b’. The generic definitions of the modes of
personal supposition in terms of inferential relations are13:

– A term a has determinate supposition in P if and only if: A disjunction of
sentences of the form ‘This a is (S) b’ can be inferred from P, but a conjunction
of sentences of the form ‘This a is (S) b’ cannot be inferred from P.

– A term a has confused and distributive supposition in P if and only if: A
conjunction of sentences of the form ‘This a is (S) b’ can be inferred from P.

– A term a has merely confused supposition in P if and only if: A sentence with
a disjunctive subject term of the form ‘This a, or that a etc . . . is (S) b’ can be
inferred from P, but neither a disjunction nor a conjunction of propositions of the
form ‘This a is (S) b’ can be inferred from P.

The same applies mutatis mutandis to predicate terms, so that P can be fully
analyzed in terms of disjunctions and conjunctions of simpler sentences (possibly
including disjunctive terms). For example, in ‘Every a is b’, ‘a’ has confused and
distributive supposition and ‘b’ has merely confused supposition; in ‘No a is b’ both
terms have confused and distributive supposition; in ‘Some a is b’ both terms have
determinate supposition; and in ‘Some a is not b’ ‘a’ has determinate supposition
and ‘b’ has confused and distributive supposition.

Earlier interpreters noted that, while modern theories of quantification are
expressed in the formal language of predicate calculus, medieval theories were
expressed in the regimented form of Latin used at the time. But if this is merely a
superficial difference in modes of expression – that is, if theories of supposition are
indeed “one” with modern theories of quantification – then the translation into the
language of predicate calculus should be a straightforward affair. Matthews ([21],
99) was the first to challenge this assumption, noting that “Ockham [and medieval

11See also [22], and [4] for an overview focusing specifically on the scholarship on Ockham.
12See [26] for an overview from a contemporary perspective.
13See (Ockham [36], chap. 70) and ([17], chaps. 4.3.5 and 4.3.6) for some of the original
formulations of these definitions.
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authors in general] quantifies over terms whereas modern logicians quantify over
variables”; thus, “Ockham and the moderns are not free to agree on the interpretation
of any categorical propositions”. In a similar vein, Henry [14] suggested that,
rather than variable-based theories of quantification, an alternative system, namely
Leśniewiski’s Ontology, would be the right modern system to formalize medieval
theories of supposition. Indeed, Ontology is term-based, and the basic sentential
form is the traditional subject-copula-predicate form, thus being closer in spirit to
the medieval framework. But it brings along yet other presuppositions alien to the
supposition framework, and at any rate it never became widely adopted by historians
of philosophy. For the most part, formal treatments of supposition theory continued
to rely on standard predicate logic [19, 32], with mixed results.

Another challenge for any formalization of supposition theory with modern
predicate logic is the definition of merely confused supposition. As seen above,
merely confused supposition relies on term-disjunction: “This a or that a or that
other a etc. is b”. Now, in its standard versions, modern predicate logic does not
contain the device of term-disjunction (or of term-conjunction, for that matter).
It is not an insurmountable problem, and Priest and Read [28] adapted standard
predicate logic so as to accommodate term-disjunction. Nevertheless, the need for
such adaptations suggests once again that the equation between medieval theories
of modes of supposition and modern standard approaches to quantification is by no
means straightforward.

Does this mean that medieval theories of supposition are not amenable to
investigations with modern logical tools? This conclusion would be unwarranted.
Given the striking similarities between portions of Latin medieval semantics and
the modern enterprise of formal semantics, it would seem that formal tools can
indeed be fruitfully applied here.14 Nevertheless, as stressed in section “How (not)
to apply formal methods in history of philosophy”, formalization requires prior and
extensive conceptual analysis: one must first grasp the historical theory in its own
terms so as to determine which modern formalism, if any, might be adequate for a
formalization. With respect to theories of supposition, rather than hastily concluding
that they are “one” with modern quantification theory, some of the questions to
be asked are: what did theories of supposition represent for the medieval authors
themselves? What were the purposes assigned to them by these authors? ([7], chap.
1; [4], 11–15)

There is no doubt that the modes of personal supposition deal with ‘quantifi-
cational phenomena’ broadly construed, but a formalization must also do justice
to the profound differences between how medieval authors conceptualized these
phenomena and the presuppositions underlying modern systems such as predicate
logic. Generally, it would seem that the latter is not a particularly suitable system
to formalize the former, especially given the centrality of the concept of variable in

14[27] is a particularly ambitious and impressive recent example of applications of modern formal
tools borrowed from logic and linguistic to medieval logical theories.
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the latter and its complete absence in the former. Indeed, it would seem that tailor-
made formalisms are more likely to offer informative analyses of these (and other)
medieval theories.

3.3 Conclusion

I have here attempted to offer a nuanced picture of the role of formal methods in
the study of the history of philosophy. Views on the matter tend to be extreme, split
between those who maintain that the application of formal methods for historical
analysis is hopelessly anachronistic and thus unwarranted; and those who deem it
entirely unproblematic. I have suggested that formalization can be an illuminating
approach for the historian of philosophy, but also that it requires careful reflection
and conceptual analysis. I have also suggested that, while generally there is not
one unique correct formalization of a historical theory, some formalizations are
definitely more adequate than others. Ultimately, a formalization must strive to
balance the orthogonal desiderata of faithfulness and informativeness; not an easy
task, but one with potentially fruitful results.
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Chapter 4

Nonmonotonic Reasoning

Alexander Bochman

Abstract Nonmonotonic reasoning is a theory of the rational use of assumptions.
We describe the relations between NMR and Logic, and two main paradigms of
NMR, preferential and explanatory one.

4.1 Nonmonotonic Reasoning Versus Logic

Nonmonotonic reasoning (NMR) is an essential part of the logical approach to
Artificial Intelligence. Its birth is due to the research methodology suggested in
McCarthy [16] whose objective was a logical formalization of common sense

reasoning for dealing with AI problems. NMR itself was born, however, as a
result of dissatisfaction with traditional logical methods. Reasoning necessary for
an intelligent behavior and decision making has appeared to be impossible to
represent as deductive inferences in a logical system. The essence of the problem
was formulated in Minsky [21] that questioned the suitability of representing
commonsense knowledge in a form of a deductive system. Minsky also pointed
to monotonicity of logical systems as a source of the problem:

Monotonicity: . . . In any logistic system, all the axioms are necessarily
“permissive” - they all help to permit new inferences to be drawn. Each added
axiom means more theorems, none can disappear. There simply is no direct
way to add information to tell such the system about kinds of conclusions that
should not be drawn!

Long before the first nonmonotonic formalisms, there have been problems and
applications in AI that required some forms of nonmonotonic reasoning. Initial
solutions to these problems worked, and this was an incentive for trying to provide
them with a more systematic logical basis [15].
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NMR is intimately related to traditional philosophical problems of natural kinds
and ceteris paribus laws. These notions resist precise logical definition, but involve
description of normal cases. Reasoning with such concepts is inherently defeasible,
so it fails to ‘preserve truth’ under all circumstances, which has always been
considered a standard for logical reasoning.

Natural kinds have reappeared in AI as a practical problem of building taxonomic
hierarchies for large knowledge bases that are allowed to have exceptions. The the-
ory of reasoning in such taxonomies has been called nonmonotonic inheritance (see
[10]). The guiding principle in resolving conflicts in such hierarchies was a speci-

ficity principle: more specific information should override more generic information
in cases of conflict. Thus, a knowledge base may contain both Birds fly and Penguins

don’t fly, but then, given that Tweety is a penguin, we univocally infer that it does
not fly, since Birds fly is a less specific claim. Though nonmonotonic inheritance
relied more on graph-based representations than on traditional logical tools, it has
managed to provide a plausible analysis of reasoning in this restricted context.

Nonmonotonicity of a different kind occurs in databases, logic programming
and planning algorithms. A common assumption in such systems is that positive
assertions that are not explicitly stated or derivable should be considered false.
Thus, a database of students enrolled in a particular course implicitly presupposes
that students that do not appear in the list are not enrolled in the course. Databases
embody such negative information by appealing to the closed word assumption,
which states that if a positive fact is not derivable from the database, its negation is
assumed to hold. A similar principle is employed in programming languages for AI
such as Prolog and Planner. Thus, in Prolog, the goal not G succeeds if the attempt
to find a proof of G fails. Prolog’s negation not is a nonmonotonic operator: if G
is not provable from some axioms, it needn’t remain nonprovable from an enlarged
axiom set. This negation-as-failure has been used to implement important forms of
commonsense reasoning, which eventually has led to developing modern declarative
logic programming as a general representation formalism for AI (see [1]).

But first and foremost, nonmonotonicity has appeared in reasoning about actions.
The main problem here was the frame problem: how efficiently determine which
things remain the same in a changing world (e.g., a red block remains red after
we have put it on top of another block). The frame problem arises in the context
of predictive reasoning that is essential for planning and formalizing intelligent
behavior, though neglected in traditional logic. Prediction involves the inference
of later states from earlier ones. Changes in this setting do not merely occur,
but occur for a reason. Furthermore, we usually assume that most things will
be unchanged by the performance of an action. It is this inertia assumption that
connects reasoning about action and change with NMR. What complicates the
problem, however, is a ramification problem, the necessity of taking into account
derived effects (ramifications) of actions. Suppose we have a suitcase with two
locks, and it is opened if both locks are open. Then the action of opening one lock
produces an indirect effect of opening the suitcase if the other lock is open. Such
derived effects override the inertia assumption. The ramification problem has raised
general questions about the role of causation in dynamic reasoning, and has led,
eventually, to the so-called causal approach to the frame problem (see [8]).
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Last but not least, there was the qualification problem, the problem of specifying
conditions for a given action to have its intended effect. If I turn the ignition key
in my car, I expect the car to start. However, many conditions have to be true for
this: the battery must be alive, there must be gas in the tank, there is no potato in the
tailpipe, etc. – an open-ended list of qualifications. Still, we normally assume that
turning the key will start the car. This is obviously a special instance of a general
philosophical problem of ceteris paribus laws, laws or generalizations that are valid
under ‘normal’ circumstances which are usually impossible to specify exactly. It has
become, however, an urgent practical problem for the representation of action and
change in AI.

The above problems and their first solutions provided the starting point and basic
objectives for the first nonmonotonic theories. These origins explain, in particular,
an eventual discrepancy that has developed between NMR and commonsense
reasoning. Though the latter has often appeared to be a promising way of solving
AI problems, the study of ‘artificial reasoning’ need not be committed to it. Still,
in trying to cope with principal commonsense reasoning tasks, the suggested
formalisms have succeeded in capturing important features of the latter and thereby
have broken new territory for logical reasoning. Today, nonmonotonic reasoning
is not yet another application of logic, but a relatively independent field of logical
research that has a great potential in informing, in turn, general logical theory and
many areas of philosophical inquiry.

4.2 What Is Nonmonotonic Reasoning?

In everyday reasoning, we usually have incomplete information about a given
situation, and we use a lot of assumptions about how things normally are in order
to carry out further reasoning. Without such assumptions, it would be impossible
to accomplish the simplest human reasoning tasks. Speaking generally, human
reasoning is not reducible to collecting facts and deriving their consequences,
but involves also making assumptions (and wholesale theories) about the world
and acting in accordance with them. In this sense, commonsense reasoning is a
simplified form of a general scientific methodology.

NMR is a theory of the rational use of assumptions. Now, assumptions are
just beliefs, so they are abandoned when we learn new facts that contradict them.
However, NMR assigns a special status to assumptions; it makes them default

assumptions. Default assumptions are seen as always acceptable unless they conflict
with current evidence. This presumptive reading has a semantic counterpart in the
notion of normality; defaults are considered as holding for normal circumstances,
and the nonmonotonic reasoning always assumes that the world is as normal as is
compatible with known facts. This kind of belief commitment is a novel contribution
of NMR to a general theory of reasoning.
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This form of reasoning is distinct from deductive inference already because the
latter is monotonic: if C is provable from a set a, it will be provable from a larger set
a ∪ {A}. Assumption-based reasoning is not monotonic, however, because adding
new facts may invalidate some of the assumptions.

The default Birds fly is not a statement that is true or not of the world; some
birds fly, some do not. Rather, it is an assumption used in building our theory
of the world. NMR does not make any claims about the objective status of the
assumptions it uses, so it does not depend on the objective confirmation of the latter.
What it cares about, however, is the internal coherence of the choice of assumptions
in particular situations. Of course, if we make an entirely inappropriate claim a
default assumption, it will either be useless (inapplicable in most situations) or,
worse, it may produce wrong conclusions. This makes nonmonotonic reasoning a
risky business. Still, in most cases assumptions we make are useful and give desired
results, and hence they are worth the risk of making an error. But what is even more
important, more often than not we simply have no ‘safe’ replacement for such a
reasoning strategy. That is why it is worth to teach robots and computers to reason
in this way.

4.3 Two Problems of Default Assumptions

The primary problem of NMR is how we can make and consistently use default
assumptions. Three initial nonmonotonic formalisms, namely circumscription [17],
default logic [23] and modal nonmonotonic logic [20] have provided rigorous
answers to this problem. The formalisms used three different languages – the
classical language in circumscription,1 a set of inference rules in default logic, and a
modal language in modal nonmonotonic logic. Still, a common idea was to represent
commonsense conditionals as ordinary conditionals with additional assumptions
that could readily be accepted in the absence of contrary information. The differ-
ences between the three theories amounted, however, to different mechanisms of
making default assumptions. In fact, default logic and modal nonmonotonic logics
embodied the same nonmonotonic mechanism. However, the differences between
both of them and circumscription were more profound. In order to articulate them,
we should consider yet another important problem of default assumptions.

In order to preserve consistency of the resulting solutions, default assumptions
should not be used when they contradict known facts and other defaults. Clearly, if
a default plainly contradicts the facts, it should be ‘canceled’. But if a number of
defaults are jointly inconsistent with the facts, although each of them taken alone is
consistent with them, then we have a selection problem: which of the defaults should
be retained, and which abandoned in each particular case? An apparent solution is
to choose all maximal consistent subsets of defaults; this solution was implicitly

1Circumscription amounts to using only minimal models satisfying a first-order description.
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used in the circumscription approach of [17]. Unfortunately, it has turned out to be
inadequate as a general solution to the selection problem. The main reason is that
commonsense defaults are not born equal, and in most cases there is an additional
structure of dependence and priority among the defaults themselves. As a result, not
all consistent combinations of defaults turn out to be adequate as options for choice.
We mentioned, for instance, that the choice of defeasible rules in nonmonotonic
inheritance is constrained by the specificity principle: the two rules Birds fly and
Penguins don’t fly are jointly incompatible with a fact that Tweety is a penguin, but
we univocally drop only the first rule in this situation, since it is a less specific claim
than Penguins don’t fly. Speaking generally, commonsense defaults involve much
more structure than just a set of assumptions. That is why a solution to the primary
problem of NMR, how to make default assumptions, does not necessary provide a
solution to the selection problem. The latter requires a deeper understanding of the
use of assumptions in commonsense reasoning.

A general way of handling the selection problem in the framework of circum-
scription, called prioritized circumscription, has been suggested by Lifschitz and
endorsed in McCarthy [18]. The solution amounted to imposing priorities among
minimized predicates. In fact, it was one of the origins of a general preferential

approach to NMR (see below).
Default and modal nonmonotonic logics suggested a different, explanatory

approach to the selection problem. In fact, this approach has ‘borrowed’ a much
larger piece of commonsense methodology than circumscription. In both scientific
and commonsense discourse, a particular law may fail to explain the actual outcome
due to interference with other mechanisms and laws that contribute to the combined
result. In other words, violations of laws are always explainable (at least in principle)
by other laws that are active. It is this justificational aspect of reasoning that has been
formalized in the notion of extension in default logic and corresponding models
of modal nonmonotonic logic. An extension is a model generated by a set of
defaults that is not only consistent, but also, and most importantly, explains away,
or refutes, all other defaults that are left out. The latter requirement constitutes
a very strong constraint on the coherence of potential choices, which goes far
beyond plain consistency. Using this requirement, an explanatory theory can be
‘tuned’ to intended combinations of defaults by supplying the underlying logic
with appropriate refutation rules for default assumptions. In a hindsight, this might
be seen as one of the reasons why these formalisms have been relatively slow in
realizing the complexity of the selection problem. In fact, the problem has ‘survived’
initial attempts of formalization, and has reappeared in a most dangerous form as a
Yale Shooting Anomaly in Hanks and McDermott [9], where it was demonstrated
that apparently plausible representations of defaults in default logic and other
formalisms still do not provide an intended choice of assumptions for the solution
of the frame problem. Nevertheless, despite initial, radically anti-logicist, reactions
(cf. [19]), subsequent studies have shown that the Yale Shooting problem can be
resolved, after all, in the framework of these formalisms.
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4.4 Logic in Nonmonotonic Reasoning

The first nonmonotonic systems have re-shaped the initial contrast between NMR
and logic. Namely, it has been shown that a nonmonotonic formalism can be defined
by supplying some logical formalism with a nonmonotonic semantics, which forms
a distinguished subset of the corresponding logical semantics determined by the
logical formalism itself. Thus, for circumscription, the underlying logical formalism
is just the classical logic (and its semantics), while the nonmonotonic semantics is
given be the set of minimal models.

Unfortunately, this latter description has also brought to life a problematic
‘shortcut’ notion of nonmonotonic logic as a formalism determined directly by
syntax and associated nonmonotonic semantics. On this view, a nonmonotonic
logic has become just yet another logic determined by an unusual (nonmonotonic)
semantics. However, this view has actually hindered in a number of ways an
adequate understanding of nonmonotonic reasoning.

In ordinary logical systems, the semantics determines the set of logical con-
sequences of a given theory, but also, and most importantly, it provides an
interpretation for the syntax itself. Namely, it provides propositions and rules of
a formalism with meaning, and its theories with informational content. By its
very design, however, the nonmonotonic semantics is defined as a certain subset
of logically possible models, and consequently it does not determine, in turn, the
meaning of the propositions and rules of the syntax. Two radically different theories
may (accidentally) have the same nonmonotonic semantics. Furthermore, such a
difference cannot be viewed as apparent, since it may well be that by adding further
rules or facts to both these theories, we obtain new theories that already have
different nonmonotonic models (see [3] for further discussion).

The above situation is remarkably similar to the distinction between meaning
(intension) and extension of logical concepts, a distinction that is fundamental for
modern logic. Nonmonotonic semantics provides, in a sense, the extensional content
of a theory in a particular context of its use. In order to determine the meaning, or
informational content, of a theory, we have to consider all potential contexts of
its use, and hence ‘retreat’ to the underlying logic. This distinction suggests the
following more adequate understanding of nonmonotonic reasoning:

Nonmonotonic Reasoning = Logic +Nonmonotonic Semantics

Logic and its associated logical semantics are responsible for providing the
meaning of the rules of the formalism, while the nonmonotonic semantics provides
us with nonmonotonic consequences of a theory in particular situations.

In addition to a better understanding of the structure of nonmonotonic for-
malisms, the above two-layered structure has important benefits in comparing
different formalisms. In particular, it allows us to see many of them as instantiations
of the same nonmonotonic mechanisms in different underlying logics.
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4.5 Preferential Nonmonotonic Reasoning

In solving the selection problem of default assumptions, preferential approach
follows the slogan “Choice presupposes preference”, which makes it an instance
of a general methodology that is at least as old as decision theory and the theory
of social choice. According to this approach, the choice of assumptions should be
made by establishing preference relations among them.

Generalizing prioritized circumscription, [25] defined a model preference logic
based on an arbitrary preference ordering on interpretations.

Definition An interpretation i is a preferred model of A if it satisfies A and there
is no better interpretation j > i satisfying A. A preferentially entails B (written
A |∼B) if all preferred models of A satisfy B.

Shoham’s approach was very appealing, and apparently suggested a unifying
perspective on NMR. Kraus et al. [11] provided an axiomatization of such inference
relations. This has established logical foundations for a research program that
attracted many researchers both in AI and in logic. A detailed description of the
preferential approach can be found in [15].

A representation of preferential entailment more suitable for real NMR can
be based on the following model, where belief states correspond to admissible
combinations of default assumptions (see [2]):

Definition An epistemic state is a triple (S, l,≺), where S is a set of belief states,
≺ a preference relation on S , while l is a labeling function assigning a deductively
closed belief set to every belief state from S .

Epistemic states can determine what to believe in particular situations. Changes
in facts do not automatically lead to changes in epistemic states: the actual
assumptions made in particular situations are obtained by choosing preferred belief
states that are consistent with the facts.

A preferentially entails B in an epistemic state if A ⊃ B holds in all preferred
belief states consistent with A. Though apparently different from the original
definition of Shoham, it is actually equivalent to the latter.

It is tempting to conclude from the above that preferential approach has
assimilated nonmonotonic reasoning to plain deductive reasoning in a certain
‘nonmonotonic’ logic. This conclusion would be premature, however.

Preferential entailment is called nonmonotonic for the obvious reason that its
rules do not admit Strengthening: A |∼B does not imply A ∧ C |∼B. However, it
is a monotonic, logical system in the more important sense that addition of new
rules preserves previous derivations. Furthermore, the above semantics determines
the meaning of conditionals, and hence preferential entailment describes precisely
their logic. This inevitably implies, however, that it cannot capture the associated
nonmonotonic reasoning with such defaults.

Preferential inference is severely sub-classical and does not allow us, for
example, to infer Red birds fly from Birds fly. Clearly, there are good reasons for not
accepting such a derivation as a logical rule; otherwise Birds fly would imply also
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Penguins fly. Still, we could accept Red birds fly as a reasonable default conclusion
from Birds fly in the absence of contrary information. By doing this, we would
follow the general strategy of NMR of making reasonable assumptions on the basis
of available information. This kind of reasoning will be defeasible, or globally

nonmonotonic, since addition of new rules can block some of the conclusions made
earlier. We can follow the idea of NMR also on the semantic side, namely by
choosing ‘most normal’ epistemic states that satisfy a given set of conditionals. By
doing this, we will accept rules that would not be derivable by preferential inference
alone.

Summing up, the logic of preferential entailment should be extended to a
nonmonotonic formalism by defining the associated nonmonotonic semantics. In
fact, the literature is abundant with attempts to define such a theory.

Lehmann and Magidor [12] described a semantic construction, called rational

closure, that allows us to make default conclusions from a set of conditionals.2 This
was a starting point in the quest for an adequate theory of defeasible entailment.
A large number of modifications have been suggested, but a consensus has not
been achieved. A general approach to this problem can be found in Geffner [6].
Finally, nonmonotonic inheritance (see [10]) can be viewed as a syntactic approach
to defeasible entailment. Though it deals with conditionals restricted to literals, it
has achieved a remarkable correspondence between what is derived and what is
expected intuitively.

Most systems of defeasible entailment assume that classical implications corre-
sponding to conditionals should serve as defaults in the associated nonmonotonic
reasoning. Already this choice allows us to derive Red birds fly from Birds fly

in the absence of conflicting information about redness. It is still insufficient,
however, for capturing some further reasoning patterns. Suppressing details3, what
needs to be added here is a principled way of constructing a preference order on
default sets. Recall, however, that establishing preferences among defaults is the
main tool used by the preferential approach for resolving the selection problem of
NMR. Accordingly the problem of defeasible entailment boils down again to the
general selection problem for defaults. Unfortunately, this problem has turned out
to be far from being trivial, or even univocal. Geffner’s conditional entailment and
nonmonotonic inheritance still remain the most plausible solutions suggested in the
literature on preferential reasoning.

The preferential approach to NMR has suggested a powerful research program
that significantly advanced our understanding of nonmonotonic reasoning and even
of commonsense reasoning in general. Its most important achievement consists in
formalizing a plausible logic of default conditionals that could serve as a logical
basis for a full, nonmonotonic theory of defeasible reasoning. Unfortunately, it has
not succeeded in achieving this latter goal.

2An equivalent construction, called system Z, has been suggested in Pearl [22].
3See [2].
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4.6 Explanatory Nonmonotonic Reasoning

The explanatory approach encompasses almost all nonmonotonic formalisms that
are actively investigated in AI today, including logic programming, argumentation
and causal reasoning. Explanation can be seen as its basic ingredient. Propositions
may not only hold in a model, but some of them are explainable (or caused) by
other facts and rules. Furthermore, explanatory NMR is based on principles of
Explanation Closure or Causal Completeness (see [24]), according to which any
fact holding in a model should be explained.

By the above description, abduction and causation are integral parts of explana-
tory NMR. In some domains, explanatory reasoning adopts simplifying assumptions
that exempt certain facts from the burden of explanation. Thus, the Closed World

Assumption stipulates that negative assertions do not require explanation. In fact,
minimization of models employed in McCarthy’s circumscription can be seen as a
by-product of this stipulation.

Simple default theories. Recall that a Tarski consequence relation is a set of
rules a ⊢A (where A is a conclusion, and a a set of premises) that satisfies the
usual postulates. Its associated provability operator is Cn(u) = {A | u⊢A}. A
consequence relation is supraclassical if it subsumes classical entailment.

For a set � of rules, let Cn� denote the provability operator of the least
supraclassical consequence relation containing �. Then A ∈ Cn�(u) precisely
when A is derivable from u using the rules from � and classical entailment.

Now, a simple way of defining a nonmonotonic theory consists in combining a
logical theory, given by a set of (Tarski) rules, and a set of default assumptions:

Definition A simple default theory is a pair (�,A), where � is a set of rules, and
A a distinguished set of propositions called defaults.

Reasoning in this setting amounts to deriving plausible conclusions using rules
and defaults. Explanatory reasoning requires here that a reasonable set of defaults
explains why the rest of the defaults should be rejected.

Definition

• A set A0 of defaults is stable if and only if it is consistent and refutes any other
default: (¬A) ∈ Cn�(A0), for any A ∈ A\A0.

• A set s of propositions is an extension of a simple default theory iff s = Cn�(A0),
for some stable set of defaults A0. Extensions determine the nonmonotonic

semantics of a default theory.

Simple default theories provide a transparent description of explanatory NMR.
Despite its simplicity, however, this formalism is equivalent to Reiter’s default logic
(see [4]). It is also closely related to the general argumentation (or assumption-
based) framework of [5].

Generalizing the logic. For actual reasoning tasks of AI, we have to generalize
the logical basis from Tarski rules to disjunctive rules a ⊢ b, where b is a set of
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propositions. Informally, such a rule says that if all a’s hold, then at least one of b’s
should hold. The theory of disjunctive inference is actually a well-developed part of
general logical theory. A set of such rules forms a Scott consequence relation if and
only if it satisfies the following postulates:

(Reflexivity) A ⊢ A.
(Monotonicity) If a ⊢ b and a ⊆ a′, b ⊆ b′, then a′ ⊢ b′;
(Cut) If a ⊢ b,A and a,A ⊢ b, then a ⊢ b.

Let u denote the complement of a set u of propositions. Then u is a theory of a
Scott consequence relation if u � u.4 A Scott consequence relation in a classical
language is supraclassical, if it satisfies:

Supraclassicality If a � A, then a ⊢ A.
Falsity f ⊢.

The Falsity postulate excludes, in effect, classically inconsistent models.
Simple default theories can be naturally extended to disjunctive rules. The

resulting formalism will be equivalent to a disjunctive generalization of default
logic [7], and even to powerful formalisms suggested in Lin and Shoham [14]
and Lifschitz [13] as unified formalisms for nonmonotonic reasoning and logic
programming.

Biconsequence Relations. For a detailed analysis of explanatory NMR, we can
employ reasoning with respect to a pair of contexts. On the interpretation suitable
for NMR, one of these contexts is the main (objective) one, while the other context
provides assumptions that justify inferences in the main context.

A bisequent is an inference rule of the form a : b � c : d, where a, b, c, d are
sets of propositions. On the explanatory interpretation, it says ‘If a’s hold then one
of c’s holds provided no b is assumed, and all d’s are assumed’.

A biconsequence relation is a set of bisequents satisfying the rules:

Monotonicity
a : b � c : d

a′ : b′ � c′ : d ′ , if a ⊆ a′, b ⊆ b′, c ⊆ c′, d ⊆ d ′;

Reflexivity A : � A : and : A � : A;

Cut
a : b � A, c : d A, a : b � c : d

a : b � c : d
a : b � c : A, d a : A, b � c : d

a : b � c : d .

A biconsequence relation can be seen as a product of two Scott consequence
relations. A pair (u, v) of sets of propositions is a bitheory of a biconsequence
relation if u : v � u : v. A set u is a theory if (u, u) is a bitheory. A bitheory
(u, v) is positively minimal, if there is no bitheory (u′, v) such that u′ ⊂ u. Finally,
a biconsequence relation is supraclassical if both its component contexts respect the
classical entailment.

Nonmonotonic semantics of a biconsequence relation is a set of theories that are
explanatory closed in the sense that all their propositions are explained (i.e., derived)
when the theory itself is taken as the assumption context.

4Or, equivalently, if a ⊢ b and a ⊆ u, then u ∩ b �= ∅.
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Definition A set u is an extension of a biconsequence relation, if (u, u) is a
positively minimal bitheory. A default nonmonotonic semantics of a biconsequence
relation is the set of its extensions.

A direct correspondence between default logic and biconsequence relations
can be established by representing Reiter’s default rules a : b/A as bisequents
a:¬b � A:. Then the above nonmonotonic semantics will correspond precisely to
the semantics of extensions in default logic. Moreover, many other nonmonotonic
formalisms, such as logic programming, modal and autoepistemic logics, and the
causal calculus can be expressed in this framework by varying the underlying logic
(see [3] for details).
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Chapter 5

Induction

Rafal Urbaniak and Diderik Batens

5.1 Introductory Remarks

Inductive reasoning, initially identified with enumerative induction (inferring a
universal claim from an incomplete list of particular cases) is nowadays commonly
understood more widely as any reasoning based on only partial support that the
premises give to the conclusion. This is a tad too sweeping, for this includes any
inconclusive reasoning. A more moderate and perhaps more adequate characteri-
zation requires that inductive reasoning not only includes generalizations, but also
any (ideally, rational) predictions or explanations obtained in absence of suitable
deductive premises. Inductive logic is meant to provide guidance in choosing the
most supported from a given assembly of conjectures. (Some authors think that this
has to be done by capturing the notion of partial support, but this conviction is by
no means universally accepted.)
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Approaches to inductive reasoning are so varied that it is difficult to find a more
specific characterization of all of them. In an attempt to draw at least a partial
connection, let us observe that among requirements which such a logic is often
expected to satisfy [20] are:

Connection with deduction: Deductive consequence and logical contradiction
should fit into an inductive logic as extreme cases of support that a conclusion
can obtain from premises.

Objectivity: If premises support the conclusion, this fact depends only on the
meaning of the premises and the conclusion.

Connection with probability: Some notion of probability should play an important
role in the development of inductive logic.

As we will see later on, the last two requirements are not universally accepted.
To fix the ideas, recall the standard axiomatization of probability theory, as given

in 1933 by Kolmogorov [44]:

Pr(p) ≥ 0 for any proposition p (5.1)

Pr(p) = 1 if p is necessary (5.2)

Pr(p ∨ q) = Pr(p)+ Pr(q) if p and q exclude each other (5.3)

The first stab at capturing the notion of the support that a piece of evidence E

gives to a hypothesis H might be to identify it with the probability of the material
conditional E → H . Alas, this approach does not work. For the probability of
E → H is the same as the probability of ¬E∨H , which means that even if there is
no connection between E and H whatsoever, if the probability of H is high enough
or the probability of E is low enough, the probability of E → H is still high (at
least as high as the probability of H or the probability of ¬E). (In fact, mutatis

mutandis, on this approach you can run any of the paradoxes usually associated
with material implication.) Thus, if there is a connection between inductive support
and probability, it has to be more sophisticated.

The received view is that the degree of confirmation is to be identified with the
conditional probability of the hypothesis given the evidence, defined by:

Pr(H |E) = Pr(H ∧ E)

Pr(E)
if Pr(E) �= 0 (5.4)

Pr(p) is usually caled the absolute probability of p, as opposed to the conditional

probability of p given q, noted as Pr(p |q). Probability theory which tells one how
probabilities are related is not a full confirmation theory, though. To complete the
story we also have to explain and justify the basic assignment of probabilities to
propositions involved – their probability measure.

The first mathematically developed proposal following this path was put forward
by Carnap [11], and we start with presenting his approach (meant to satisfy all
three above-mentioned requirements) in Sect. 5.2. In Sect. 5.3 we will briefly survey
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Reichenbach’s attempt to satisfy all three requirements. In Sect. 5.4 we discuss
one of the main theories on today’s market, Bayesianism, which drops the second
requirement. Next, in Sect. 5.5, we discuss Popper’s approach (which is a serious
attempt to drop the third requirement). Finally, in Sect. 5.6 we discuss the adaptive
approach to inductive generalization, which proceeds qualitatively and drops the
third requirement, not taking any degrees of confirmation as necessary for inductive
inferences.

A very important issue which we will not discuss in detail is the philosophical
problem of finding a general justification of inductive methods. The problem, raised
by Hume [33], has received enough attention in the literature (see for instance the
survey by Vickers [75]) and we could not do it justice in this short essay meant to
focus on formal methods (one exception is Sect. 5.3, where we look at an attempt
of justifying induction by means of certain results about a formal method). Another
thing which we won’t mention are causal and abductive inferences. They do fall
under our general notion of induction, but we decided to focus on more crucial
phenomena in the development of formal methods of induction instead.

5.2 Carnap and Induction

5.2.1 Preliminaries

The main notion which Carnap’s approach to induction [11] is meant to explicate is
the logical notion of the degree of confirmation of a hypothesis H by a given body

of evidence E : c(H,E). If E is the conjunction of the available observational data,
c(H,E) expresses the degree of confidence or belief that one should assign to H .1

Consider a first-order language containing a finite number of logically inde-
pendent monadic predicates, a finite number of individual constants and standard
Boolean connectives. A literal in such a language is either an atomic formula or its
negation.

A state description in such a language is a conjunction which for any predicate
and any constant contains exactly one literal composed of them (e.g. either Ga or
¬Ga but not both). Thus, a state description for any property and any object says
whether this object has this property. Every sentence is logically equivalent to the
disjunction of the state descriptions which entail it. If every object in the domain
is named by a different individual constant, then the set of all state descriptions
exhausts the possible states of the domain as describable in the language.

1Early defenders of the logical approach include Keynes [43] and Johnson [36, 37].
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A structure description generated from a given state description φ is the set of
all state descriptions that result from φ by a permutation of individual constants
(sometimes, it’s identified with the disjunction of its elements). Structure descrip-
tions can be interpreted as encoding information about the numerical distribution of
properties among objects.

For instance, take a language with only one predicate G and only two constants
a and b. There are four state descriptions:

(a) Ga ∧Gb, (b) Ga ∧ ¬Gb, (c) ¬Ga ∧Gb, (d) ¬Ga ∧ ¬Gb.

and three structure descriptions:

(A) {Ga ∧Gb} (‘all objects have property G’),
(BC) {Ga ∧ ¬Gb,¬Ga ∧Gb} (‘exactly one object has property G’),
(D) {¬Ga ∧ ¬Gb} (‘no object has property G’).

A probability measure assigns probabilities to state descriptions, so that the sum
of the probability measures of all state descriptions is 1. As state descriptions are
mutually exclusive, the probability measure of a disjunction of state descriptions is
the sum of the probability measures of all disjuncts. Each sentence is equivalent to
a disjunction of state descriptions, so the probability measure covers all sentences.
Given a probability measure m, c(H,E) (the degree of confirmation of H by E)
can be defined by:

c(H,E) = m(H ∧ E)

m(E)
(5.5)

That is, the degree to which evidence E confirms hypothesis H is the proportion of
the probability of the hypothesis and the evidence to the probability of the evidence.2

Thus, various confirmation functions arise from various probability measures.

5.2.2 Probability Measures m
† and m

∗

One way to define a probability measure, introduced by Carnap, is to divide the
probabilities equally among the state descriptions. If there are k available (up to
logical equivalence) state descriptions, and exactly n of those state descriptions
logically imply sentence H , the probability of H is defined by m†(H) = n/k.

Each state description in our example is assigned the m†-value of 1/4. So,
m†(¬Ga) = m†(c) + m†(d) = 1/4 + 1/4 = 1/2. As it turns out, the degree
of confirmation of ¬Ga by Gb is also 1/2:

2In case no evidence is available, hypothesis H is evaluated against any logical theorem ⊤, so that
c(H,∅) = c(H,⊤) = m(H).
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c†(¬Ga,Gb) = m†(¬Ga ∧Gb)

m†(Gb)
= m†(c)

m†(a)+m†(c)
= 1/4

1/2
= 1/2.

Analogous calculations show that m†(Ga) = c†(Ga,Gb) = 1/2. But this shows
that observing Gb has no impact on the degree of belief one should assign to Ga.

The problem with this independence generalizes. Even for a thousand objects
a1, a2, . . . , a1000 the following will hold:

c(P (a1), P (a2)∧· · ·∧P(a1000)) = c(¬P(a1), P (a2)∧· · ·∧P(a1000)) = m(P (a1)).

But this means that no amount of evidence will have any impact on the level of
confirmation of P(a1).

This led Carnap to consider a different probability measure, m∗. The method of
assigning m∗ is quite simple: first divide probability 1 equally among the available
(up to logical equivalence) structure descriptions, thus building in the assumption
that each structure description is equally probable. Then, divide the probability of
each structure description equally among its members.

In our example, each of three structure descriptions is assigned probability
measure 1/3. Since (A) and (D) contain exactly one state description, each of those
state descriptions is assigned probability measure 1/3. On the other hand, each
element of (BC) obtains the value 1/6.

To see how this probability measure favors homogenous descriptions and deals
with the independence issue, compare the probability measure of ¬Ga with the
confirmation of the hypothesis that ¬Ga on the evidence that Gb (intuitively, the
latter should be lower). ¬Ga holds in (c) and (d) and hence m∗(¬Ga) = m∗(c) +
m∗(d) = 1/3+ 1/6 = 1/2. On the other hand:

c∗(¬Ga,Gb) = m∗(¬Ga ∧Gb)

m∗(Gb)
= m∗(c)

m∗(a)+m∗(c)
= 1/6

3/6
= 1/3.

As expected, c∗(¬Ga,Gb) < m∗(¬Ga). Similarly, c∗(Ga,Gb) = 2/3 >

m∗(Ga) = 1/2, so Gb (partially) confirms Ga and (partially) disconfirms ¬Ga.

5.2.3 The λ-Continuum of Confirmation Functions

As it turns out, there is a wide variety of confirmation functions [12]. To see how
such a variety arises, consider the following. If F1, F2, . . . , Fk are all the monadic
predicates of a given language, we say that a Q-formula predicated of a constant a

is of the form:

±F1a ∧ ±F2a ∧ · · · ∧ ±Fka
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where each ± stands either for a negation or for nothing. Q-formulas of such a
language can be enumerated, let’s pick the i-th one and call it Qi . One of the key
confirmation assignments that we would like to calculate is that of c(HQi

, EQ)

where HQi
is the Qi-formula predicated of a certain constant a and EQ is a

conjunction of certain Q-formulas predicated of some constants different from a.
(That is, we would like to be able to measure how complete information about
certain objects observed so far confirms a given complete description of a new
object.)

As Carnap suggests, there are at least two important factors in our assessment
of c(HQi

, EQ). One is the empirical factor of the relative frequency of Qis in EQ:
si/s (where si is the number of occurrences (modulo logical equivalence) of Qi in
E and s is the number of non-equivalent Q-formulas in E). The other factor is the
logical one: the logical factor of Qi equals 1/K , where K is the number of all Q-
predicates of the language. Following Carnap, c(HQi

, EQ) should be somewhere
between these two values. A convenient way of representing this is to take it to be
their weighted mean defined by:

c(HQi
, EQ) =

w1si
s
+ w2

K

w1 + w2
(5.6)

where w1 and w2 are weights. Actually, since what matters is the ratio of the
weights, one of them can be parametrized. Carnap suggested parametrizing w1 and
taking it to be s, thus making sure that the empirical factor gains weight as more
observations are being made. The other weight is usually represented as λ:

c(HQi
, EQ) = si + λ/K

s + λ
(5.7)

Any choice of λ in (5.7) gives a new confirmation function in the sense of (5.5).
Consider what happens when we take λ = 0. In this case

c(HQi
, EQ) = si + 0/K

s + 0
= si/s

For instance, suppose there are only three constants a, b, c and only one predicate
F and that we so far observed only two of them, which turned out to be F . What
are the confirmation values of the hypothesis that the last object will also be F and
of the opposite hypothesis, if λ = 0?

c(Fc, Fa ∧ Fb) = sF /s = 2/2 = 1

c(¬Fc, Fa ∧ Fb) = S¬F /s = 0/2 = 0

If however, one observed object is F and another one isn’t, we get:

c(Fc, Fa ∧ ¬Fb) = sF /s = 1/2



5 Induction 111

In this sense, (5.7) for λ = 0 assigns maximal role to the evidence and no role
whatsoever to the logical possibilities (it corresponds to Reichenbach’s straight rule
— see Sect. 5.3).

For comparison, consider what happens as λ approaches ∞: in the limit (5.7)
yields 1/K . Thus, in our example, no matter whether we observed any other objects
which are F , the confirmation of the hypothesis that the next object will be F is just
the prior logical probability of that hypothesis3:

c(Fc, Fa ∧ Fb) = c(Fc,¬Fa ∧ ¬Fb) = m(Fc) = 1/2.

So taking λ = ∞ assigns maximal importance to the logical factor and no role to the
evidence and does not allow for learning from experience. In fact, the confirmation
function thus defined is c†, which we already discussed.

The above choices of λ are two extremes of a continuum of confirmation
functions (the lower λ, the more important the impact of the evidence on the
confirmation value of the hypothesis). Where is the c∗ in this continuum? It is
obtained by equating λ to K , in which case (5.7) yields the following:

c(HQi
, EQ) = si +K/K

s +K
= s1 + 1

s +K
. (5.8)

5.2.4 Challenges and Tweaks

One difficulty is that the above framework provides a variety of probability measures
without indicating why we should prefer any of them over the others. Hájek [28] and
Glaister ([22]: 569) see this as a serious challenge. Vickers [75] is more moderate:
given certain basic restrictions,4 even if the confirmation function is not unique,
quite a few useful claims hold no matter which non-extreme function we pick.
Initially, Carnap felt quite strongly about m∗, but eventually this embarrassment
of riches motivated Carnap to accept a somewhat subjectivist attitude consisting
in saying that there is a wide variety of options which remain open, even after all
methodological considerations have been brought it.5 Some others, like Fitelson
[20], see nothing wrong in relativizing confirmation to probability measures and
using the logically objective ‘given such-and-such probability measure, the confir-
mation degree in this case is. . . ’ (Fitelson compares this to special relativity theory
in which it is not velocity but rather velocity with respect to a frame of reference
that is objective.)

3This holds as long as the evidence does not contain any constant occurring in the hypothesis.
4Most notably, regularity (every state description has non-zero probability) and symmetry (com-
plete permutations of individual constants and predicates of the same type do not change the value
of the function).
5See [79] for historical remarks.
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Another problem with Carnap’s inductive logic is that it is not very successful at
handling reasoning by analogy. Intuitively speaking, the more primitive properties
two objects share, the more likely it should be that they would agree on other
properties. Yet, c∗ fails to capture this intuition.6

For instance, suppose we have a language with two predicates F and G and two
constants a and b. If reasoning by analogy worked, then the fact that Fa∧Fb∧Ga

should give more support to the hypothesis that Gb than just the evidence Ga:

c∗(Gb, Fa ∧ Fb ∧Ga) > c∗(Gb,Ga) (5.9)

And yet, (5.9) fails, because in this case both degrees of confirmation are equal:

c∗(Gb,Ga) = m∗(Ga ∧Gb)

m∗(Ga)
= 1/3

1/2
= 2/3

c∗(Gb, Fa ∧ Fb ∧Ga) = m∗(Fa ∧ Fb ∧Ga ∧Gb)

m∗(Fa ∧ Fb ∧Ga)
= 1/9

3/18
= 2/3

Carnap attempted to deal with such issues [13] (he introduced yet another
parameter apart from λ, usually called η), but the success is quite limited. Some
attempts to deal with analogical reasoning within a (widely) Carnapian framework
are [15, 44, 53, 70] and [50].

Once we generalize the notions to infinite domains, Carnap’s inductive methods
a priori assign zero probabilities to universal generalizations. This is considered
a problem [2] because usually laws of nature are taken to be universal, and if it
were true that no finite evidence can provide support for any universal statement,
this would go against our intuitions that certain scientific hypotheses are better
confirmed than others. The requirements put on confirmation functions can be
modified to allow for non-zero probabilities of universal generalizations [77], and
some attempts to give a systematic account of non-zero probabilities of universal
claims have been put forward. Most notable are those by Hintikka [30], who
introduced yet another parameter α dependent on the number of constants available
in the language to contribute to the non-zero confirmation of universal claims (the
theory has been extended in Hintikka and Niiniluoto [31]) and Kemeny [39], who
even with almost-zero confirmation degrees of universal hypotheses allowed to
compare their support in model-theoretic terms.7 Hintikka’s approach only enables
one to assign non-zero probabilities to really general hypotheses, such as ‘all G are
F ’, but not to objective probabilistic sentences like ‘the ratio of F within the set of
Gs is r’.

6The problem was noticed already by Kemeny [40]. See however ([3]: 92–96) and [51] for more
details.
7See also [3, 5, 78] and [57] for more detailed accounts.
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Fitelson [20] worries that on a Carnapian account nothing warrants the relevance
of the evidence to the hypothesis, and irrelevant evidence may highly confirm
a hypothesis just because the hypothesis is highly likely or the evidence highly
unlikely. He suggests [19] that the only historically proposed definition of con-
firmation that obeys certain basic relevance requirements is that of Kemeny and
Oppenheim [42], which identifies it with

Pr(E|H)− Pr(E|¬H)

Pr(E|H)+ Pr(E|¬H)
.

Thus, he suggests, relevance requirements help to deal with the initial embarrass-
ment of riches.8

A challenge to a purely syntactic approach to confirmation has been posed by
Goodman [26]. Say we have drawn a marble from a certain bowl on each of the past
ninety days and they all have been red. Thus, it seems, the evidence that the first
ninety marbles were red increases the confirmation of the hypothesis that the next
one will be red as well. But take another predicate, S, defined as ‘drawn up to today
and red, or drawn after today and blue.’ Our evidence tells us that the ninety marbles
observed so far were S, and so, if Carnapian theory was straightforwardly adequate,
that the next one will be S too. But this is clearly not the case: our evidence does
not confirm the hypothesis that the next marble will be blue.9 The main lesson to
be drawn is that which predicates can be sensibly used in inductive reasonings is an
extralogical issue.

Carnap set out to solve the problem of confirmation in terms of logical probabil-
ity, apparently expecting that there would be a single adequate probability measure.
After 1952 it turned out that he had to justify the choice of a probability measure.
The only sensible way of achieving this which he saw was in terms of empirically
motivated methodological considerations. In a sense this turned his program upside
down. For instance, choosing different w1 in (5.6) leads to a new variety of measures
and parameterizing on s in (5.7) already presupposes that induction is justified (for
example, weighing it with 1/s leads to an anti-inductive measure).

Despite the difficulties, Carnap’s contributions were among the first technically
elaborate attempts to explicate the notions involved. The Carnapian program
encountered its difficulties, but their very appearance motivated researchers to
follow many different paths and led to a variety of ongoing research projects.

8In fact, many other attempts of redefining c have been observed. See [18, 32] and [1] for a variety
of options.
9The paradox is slightly better known in the version from 1953, where Goodman speaks of ‘blue’
and ‘grue’ [27].
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5.3 Reichenbach’s Straight Rule and Pragmatic Justification

of Induction

Reichenbach identifies the probability of an event with the limit of the relative
frequency of events of the same kind.10 Given that we normally observe only finite
sequences of events, the question arises as to how we are to assess the relative
frequency at the limit and how our general strategy of achieving this is to be
justified. Reichenbach’s response to the first question is that we should apply what
he calls the straight rule (SR), which roughly speaking, says that one should take
observed relative frequencies to be the limiting relative frequencies (and adjust as
new observations are made) [4].

Reichenbach [4, 65] attempted to motivate the acceptance of SR, and hence
induction by the following considerations. Either there is an inductive method which
succeeds, or there is none. If there is none, we do not lose anything by using SR.
If there is one, then SR will succeed as well. This justification turns out to be
problematic ([3]: 152–153), for there are many inductive methods which agree with
SR on past success ratio, vary from it in the predictions about the future which they
legitimize at any finite point [67], and converge to the same value. Reichenbach
provides no way of picking SR from among all its rivals. Even if it is SR which in
fact makes the right predictions, when assessed in terms of past successes it does
not stand out from a crowd of so far equally successful methods (although, for a
defense of SR against this qualm see [38]).

A related difficulty is that the type of convergence involved in SR is somewhat
weak because if one wants to obtain knowledge about infinitely many probabilistic
relations there might be no single upper limit on the number of observations that
have to be made even if for each such relation an upper limit exists ([17]: 375).11

5.4 Bayesian Approaches to Induction

5.4.1 Bayesianism and Subjective Probability

The embarrassment of riches which haunts the Carnapian objectivist program is
embraced by Bayesians. While the logical approach faces the difficulty of finding a
justification for a specific choice of initial probabilities, the personalistic Bayesians
take the choice of initial probabilities to be an extralogical (and personal) issue. For
them, an important task of a formal theory of inductive reasoning is to explain how,

10Reichenbach developed a slightly unorthodox probability calculus, see [17] for details.
11Reichenbach’s approach also has to face all the challenges which haunt any frequentist
approaches to probability (like the need for a sensible account of the probabilities of singular
events). For a discussion, see [3, 28].
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given certain initial degrees of beliefs, one has to revise their commitment when
faced with new evidence.

Bayesians take personal probabilities (degrees of beliefs, also called subjective
probabilities or credences) to be strongly connected with bets [16, 64]. Suppose you
bet an amount n on a certain outcome S and I bet 3n against S. If S takes place,
you win 4n (gaining 3n) and I lose 3n. If S does not take place, I win 4n (gaining
n) and you lose n. In such a case we say that the stake is 4n (the sum of all bets),
your betting rate is 1/4 and my betting rate against S is 3/4. In general, a betting
rate is just the bet divided by the stake. (A conditional bet is just like that, with the
difference that if the condition is not satisfied, the bet is off.) A bet on S at rate k

is called fair if there is no advantage in betting on S at rate k rather than against
S at rate 1 − k. The degree of your belief in S is within the Bayesian framework
identified with what you consider the fair betting rate on S.12

An important role in updating beliefs in face of new evidence is played by a
theorem of probability theory called Bayes’ Theorem. Before we describe how
Bayesian updating works, let us introduce the theorem.

5.4.2 Understanding and Applying Bayes’ Theorem

Bayes’ Theorem in its simple formulation states:

Pr(H |E) = Pr(E |H)Pr(H)

Pr(E)
(5.10)

The denominator can be rewritten in terms of conditional probabilities. By the law
of total probability, if A1, . . . An are mutually disjoint hypotheses such that the sum
of their probabilities is 1,

Pr(E) = Pr(E|A1)Pr(A1)+ · · · + Pr(E|An)Pr(An).

Applied to (5.10), this yields:

Pr(H |E) = Pr(E |H)Pr(H)

Pr(E|A1)Pr(A1)+ · · · + Pr(E|An)Pr(An)
. (5.11)

In particular, we can use H,¬H as elements of the partition, in which case we have:

Pr(H |E) = Pr(E |H)Pr(H)

Pr(E|H)Pr(H)+ Pr(E|¬H)Pr(¬H)
.

12As almost always in philosophy, the devil is in the details, and various worries arise when one
really wants to measure degrees of belief in terms of bets, but those issues lie beyond the scope of
our survey.
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The most interesting feature of Bayes’ Theorem is that it determines the
conditional probability of a hypothesis given a body of evidence in terms of
other probabilities (which is quite helpful if those other probabilities are easier to
ascertain). In general, determining Pr(E|Hi) is often much easier than determining
Pr(Hi |E) (and there may be good reasons for assigning equal probabilities to all Hi).

An important role in Bayesianism is played by a procedure called conditional-

ization. It consists in changing our belief in a hypothesis H once new evidence E is
obtained in the following way. Take your initial probabilities involved in the right-
hand side of (5.11) at time t . If you already have the right-hand side probabilities,
Bayes’ Theorem allows you to calculate the probability of H conditional on E at
time t : Prt (H |E). Now, if new evidence E is provided at some later time t ′, your
Prt ′(H) should be identical to Prt (H | E). That is, if at a certain time you believe
that the probability of a certain hypothesis given E is k, this is the probability you
should assign to that hypothesis once you find out that E (and you don’t find out
anything else that might have impact on the relevant probabilities).13

The Bayesian framework allows for a number of ways of making sense of the
confirmation that a piece of evidence gives to a hypothesis. A piece of evidence E

(incrementally) confirms hypothesis H if Pr(H |E) > Pr(H) and the confirmation
level of H by E is often identified either with the difference measure Pr(H |E) −
Pr(H) or the ratio measure Pr(H |E)/Pr(H).

5.4.3 Arguments for Bayesianism

Why would a rational agent’s degrees of belief satisfy the axioms of probability?
The claim is supported by considerations meaning to show that the acceptance of
the axioms of probability theory is required to avoid being susceptible to sure loss.
A Dutch Book against an agent is a bet (or a series thereof) which, collectively
taken, the agent has to lose. Agents are called coherent if they are not susceptible to
a Dutch Book. De Finetti [16] proved that if one’s degrees of belief do not comply
to the axioms of probability theory, one is not coherent. Kemeny [41], Shimony [69]
and Lehman [49] proved that the implication in the opposite direction also holds.

One might be worried that grounding an epistemic standard in pragmatic
considerations is inappropriate. For people with such concerns, another class of
arguments developed from the perspective of epistemic utility theory, is available
[5]. Think of truth as 1 and falsehood as 0. Pick a measure of distance between
a given degree of belief and the given sentence’s truth-value (for instance, one
can use squared difference). The lower the score, the greater the accuracy of your
belief. Define some sensible way of aggregating inaccuracies of one’s beliefs into

13 Jeffrey [35] provides a more general formulation which applies also to cases where one only
finds out that E is probable to a certain degree. A Dutch Book argument (see Sect. 5.4.3) for this
general formulation has been given by Armendt [1] (see also [70]).
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one global measure of inaccuracy. Now, Accuracy theorem is available to the effect
that if a set of degrees of beliefs violates the axioms of probability, there is a set of
probabilistic degrees of belief which are more accurate, no matter what truth-values
the beliefs have, and the Converse accuracy theorem says that no probabilistic set of
beliefs is so dominated by a non-probabilistic one. From this perspective, not being
Bayesian is irrational, because it entails being further from the truth, no matter what
the truth is.

5.4.4 Challenges to Bayesianism

Let’s briefly list the main concerns that the Bayesians have to deal with (some of
them apply also to Carnap’s approach):

⊲ Bayesianism does not say anything about the choice of initial probabilities of
E, of H and of E | H , so the same evidence might legitimately motivate two
researchers to assign quite different probabilities to a hypothesis, if their initial
probabilities are sufficiently different.

The Bayesian response to this difficulty is that one can prove that as the
amount of evidence increases, probabilities assigned to relevant hypotheses will
converge (almost) independently of what the initial subjective probabilities are
[68]. The problem is that (i) this works only if the initial subjective probabilities
are not 0 or 1, and (ii) extreme initial probabilities (close to 1 or close to 0)
prevent rapid convergence and make the further search for evidence practically
useless.

⊲ In actual reasoning, rational agents rarely can assign (or even decently approx-
imate) subjective probabilities to the relevant factors, and it is unclear whether
betting preferences are a sufficient and correct way of discovering the priors
[35].

⊲ If Pr(E) = 1, then Pr(H | E) = Pr(H), so old evidence cannot confirm
any hypothesis even if one realizes now that the evidence is relevant for the
hypothesis, for example because it is implied by it (this is called the problem

of old evidence [18, 23–25]).14 Some (like [21]) try to avoid this by weakening
the assumption that agents are logically omniscient,15 but it is not clear what
modifications of the Bayesian formal apparatus this move entails. Some try to
apply pre-formal philosophical discussion to massage the phenomenon into the
Bayesian framework [14, 48].

⊲ Bayesianism in a sense disregards the structure of explanation and does not
take into account such factors as its simplicity or the unity of the underlying
theory. That is, all that is considered when we evaluate a given theory is our prior
probabilities and available evidence in its favor: factors like simplicity or unity,

14For a discussion, see [1].
15That is, the assumption that they know all logical consequences of what they know.
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intuitively important for the evaluation of a theory, are not explicitly considered
in the evaluation procedure. Sure, one can take these factors to be incorporated
among prior probabilities, but if that is the case, bayesianism does not really
explain how these factors are to be assessed and sweeps them under the carpet
of unexplained prior belief degrees.

⊲ Bayesianism tells a story about rationality and its relation to betting behavior.
Yet, it does not say much about why being rational in this sense should put one
in an epistemologically privileged position. Why does the fact that I obey rules
which would help me to avoid a Dutch Book result in Bayesian updating being
the best way to go about scientific reasoning? It is not immediately clear why
scientific success and winning bets should be related [10].

⊲ As already mentioned, Bayes’ Theorem establishes a connection between
certain probabilities. The connection is useful if the probabilities on the right-
hand side are easier to ascertain than the one we attempt to assess. Perhaps,
Pr(E |H) often can be easily assessed, but the other probabilities on the right-
hand side of (5.11) may be more problematic. For example, Pr(E | ¬H) seems
at least as mysterious as Pr(H |E) if H is a general hypothesis. For instance, it
is not really clear how to establish the probability of observing a black raven if
not all ravens are black or the probability of Eddington’s observation if relativity
theory is false.

⊲ Conditionalization does not follow from Bayes’ Theorem and is not justified as
an a priori rule of rationality. It does not follow from Bayes’ Theorem, because
one can obey Bayes’ Theorem at each moment while completely changing one’s
degrees of beliefs between moments. Nor does it seem a priori, because it is
diachronic, which means that it incorporates a prediction about what will happen
at a later time based on what has happened so far (and such moves are usually
not considered a priori since Hume). Some diachronic Dutch Book arguments
have been given by David Lewis (as reported by [73]), but they rely on stronger
assumptions which themselves do not seem a priori.

⊲ The claim that rational agents should obey the laws of probability implies
their logical omniscience (insofar as deductive logic is involved). This difficulty
Bayesianism shares with many formal approaches to epistemology.16

Given a variety of troubles that a fully subjectivist approach to priors encounters,
various unorthodox versions of Bayesianism are being put forward [34, 66, 76]
which try to put some additional constraints on priors without running into the
problems that fully objectivist and syntactical accounts run into [for a survey of
early papers of Bayesianism see [46], and for a survey and further refences see 3].17

16A twist to this problem is that once classical logic becomes the underlying logic, Bayesianism
is unable to account for the possibility of the underlying logic being revised and to explain how
evidence might motivate a change of underlying logic [72].
17It is also worth mentioning that one of the strength of Bayesianism lies in various applications of
the framework to classical philosophical problems. For instance, the framework is used to describe
and assess more precisely various arguments in the philosophy of religion (see e.g., [29]).
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5.5 Popper

As is well-known, Popper rejected the early Vienna Circle’s verificationism from his
(1935) on. For him, the central mechanism of scientific methodology is falsification.
Good scientists try to falsify theories, and our best theories are the outcome of such
attempts. Popper also rejects the idea of confirmation in the sense in which it was
used before in this paper. No finite set of observational data can justify one to raise
one’s degree of belief in a theory18; a single falsification to the contrary justifies
one’s rejection of the theory. The very idea of inductive logic is rejected. For Popper,
all logic is deductive (and coincides with classical logic).

Popper’s disagreement with the Vienna Circle, not to mention personalists, lies in
his different conception of science. Scientific theories are not mere generalizations
of observations, but express lawlike connections. They are not justified by (passive)
observations, but by actions: attempts to falsify the theories. This requires that
one looks for specific observations or, even more typically, performs specific
experiments. Finding ‘confirming instances’ is too easy.19 But so is the duplication
of experiments that are likely to succeed. This is why Popper requires severe tests,
tests that are most likely to lead to falsification. The stress on theories is Popper’s.
Separate generalizations cannot be tested because their falsification can always be
reasoned away by modifying another generalization.20 Popper pushed the idea of
falsification to its extreme consequences—we shall see only part of that here.

Popper invoked formal methods to make all this precise. These methods invoke
classical logic. They also invoke logical probabilities. This, however, did not cause
any embarrassment of riches for Popper. As he explained in appendix ∗vii of
[61], he considered Carnap’s m† as the only methodologically acceptable measure
function for logical probability. All other measure functions can only be justified
by non-logical considerations. So any occurrence of Pr in this section should be
interpreted in terms of m†.

Testing a theory means trying to bring about an observable fact that falsifies the
theory. So the first question for Popper’s methodology is which theories one should
test first.21 A theory is falsifiable if a possible observable fact contradicts it—non-

18Compare this to the fact that if the number of constants is infinite, then every measure function
m from Carnap’s λ-continuum gives m(h) = 0 whenever h is a universally quantified formula, and
gives c(h, e) = 0 whenever h is a universally quantified formula and e is the conjunction of finitely
many singular formulas.
19In the appendix of (1979) Popper moreover rejects the common sense ‘bucket theory’ of
knowledge.
20Compare this to Quine’s arguments in “Two dogmas of empiricism” [63], which led Quine to a
holistic position.
21Many of Popper’s ideas stem from (what since Kuhn is called) revolutionary science and this
requires conceptual change. Yet Popper’s formal criteria (like all approaches discussed in the
previous sections) presuppose a given language.



120 R. Urbaniak and D. Batens

falsifiable theories are deemed unscientific.22 A theory is more falsifiable (has a
higher degree of testability) to the extent that more logically possible facts contradict
it. This brings Popper to two criteria: generality and specificity. A hypothesis is
more general to the extent that it concerns a logically larger set of objects; it is more
precise to the extent that it specifies more about those objects. To get the flavor:
where P , Q, and R are logically independent predicates, ∀x(Px ⊃ Qx) is more
general than ∀x((Px ∧ Rx) ⊃ Qx): the former is contradicted by every sentence
of the form Pα ∧ ¬Qα whereas the latter is only contradicted by sentences of the
form Pα ∧ Rα ∧ ¬Qα; ∀x(Px ⊃ (Qx ∧ Rx)) is more specific than ∀x(Px ⊃
Qx): the former is contradicted by sentences of the form Pα ∧ ¬Qα as well as by
sentences of the form Pα ∧ ¬Rα, whereas the latter is only falsified by the former
sentences.23 Popper identifies the content of a sentence A with the falsifiability of A

and measures it, for example, by 1− Pr(A), which is Pr(¬A). (By the way, despite
using probability to define the content of a sentence, Popper did not use probability
to explicate the notion of confirmation.) Note that, where A and B are logically
independent,24 A∧B has an intuitively higher content than A and indeed Pr(¬(A∧
B)) > Pr(¬A).

Needless to say, m† is unable to capture the differences between the general
sentences from the previous paragraph if the domain is infinite. All those sentences
have probability zero. These probabilities are defined by a limit for the number
of elements of the domain going to infinity. In appendix ∗vii of (1935), Popper
introduces a “fine-structure of probability”. Even if Pr(A) = Pr(B) = 0, it is
possible that Pr(A |B) > Pr(B |A), and this indicates that B has a higher content
than A. A ready example is obtained by letting A be ∀x(Px ⊃ Qx) and letting B

be ∀x(Px ⊃ (Qx ∧ Rx)). In this case 1 = Pr(A | B) > Pr(B |A). A different way
to look at the criterion is by noting that the limits of the probabilities of both A and
B converge to zero as the domain increases, but that the ratio of these probabilities
is always larger than 1 (and goes to infinity).

So the objective is clear: formulate and test bold hypotheses. If the hypothesis
survives the tests, one obtains a corroborated informative hypothesis—see below. If
it fails, one may still move to a non-falsified hypothesis that has the next highest
content (degree of falsifiability). Of course, no single (non-falsified) hypothesis has
the highest content. In the propagandistic style that was usual for those days, Popper
does not stress this. Here (as elsewhere), he is a free-market pal: pick yours and go
for it. The market (sorry, the facts) will decide.

To compare theories, Popper [59, 60] introduced (and in [62] elaborated on) the
notion of verismilitude or truthlikeness. Its qualitative version (as opposed to the
quantitative formulation, mentioned below) is as follows: take an interpreted theory

22But Popper hastens to relativize this ‘demarcation criterion’. ‘Metaphysical’ ideas play a central
role in generating scientific theories.
23Compare also “all heavenly bodies move in circles” to “all planets of the sun move in ellipses”,
remembering that all circles are ellipses.
24Note this entails they’re contingent.
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T and let T 1 (T 0) be the set of its true (false) sentences. T is more truthlike than
a theory S iff both S1 ⊆ T 1 and T 0 ⊆ S0, and either S1 �= T 1 or T 0 �= S0 (That
is, a theory to be more truthlike has to surpass the other in its truth content without
surpassing it in its falsity content, or to have smaller falsity content without being
ahead in its truth content.) Miller [52] and Tichý [74] provide a compelling criticism
of Popper’s definitions.25

Suppose then some theories survived the imposed tests. How good are they? Here
too, Popper formulates a measure, which he calls the degree of corroboration of a
hypothesis. Here is a definition from appendix ∗ix of [61]:

C(H,E) = Pr(E |H)− Pr(E)

Pr(E |H)− Pr(E ∧H)+ Pr(E)

So, where E is the conjunction of the available empirical evidence, the degree of
corroboration of the hypothesis H is proportional to the difference between the
probability of the evidence given the hypothesis and the absolute probability of the
evidence. The denominator is a normalizing factor, which keeps the values between
−1 and +1. If E contradicts H , Pr(E | H) = Pr(E ∧ H) = 0. So the degree of
corroboration of H is −1. This indicates that H is falsified. The maximal value to
which H may be corroborated is obtained if E is identical to H—this will apply
if H is a singular statement or if, being God, you see that H obtains. In this case
Pr(E/H) = 1 and Pr(E ∧ H) = Pr(H). The degree of corroboration of H then
reduces to 1 − Pr(H)/1, in other words Pr(¬H). So the maximal degree to which
a hypothesis H may be corroborated is the content of H (the falsifiability degree
of H ). The higher the content of a hypothesis, the higher its potential degree of
corroboration.

It is amusing to see that falsifiability turns up again here. Yet, putting the formal
machinery in perspective, Popper stresses that the corroboration of H is only
significant if H was subjected to the severest possible tests. We have seen before
that these are the tests that are most likely to falsify the hypothesis. That Popper
never offered a formal criterion for this, is presumably related to a weak spot in his
formalisms. Intuitively, repeating an experiment that did not lead to falsification is
not a severe test. But why is that? Apparently because, in view of previous instances
of the test, the next instance is likely not to lead to falsification. But why is that so?
Apparently this conclusion can only be drawn if we presume that the outcome of
the next instance of the test is likely similar to the outcome of previous instances.

25Popper introduced also two quantitative notions of verisimilitude, which employed the notion of
probability. Tichý [74] argues that both attempts have highly counterintuitive consequences. This
is not to say that the project of defining truthlikeness is doomed. There are various interesting
attempts to define the concept after Popper’s initial failure (see e.g., [54, 58]). Even though no
particular account is currently agreed on by everyone, certain progress has been made, and the
issue is a lively topic (for a survey, see [55, 56]).
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To presume so, however, is to presume a measure function different from Carnap’s
m†, viz. one that assigns a non-zero weight to the empirical factor. And this Popper
does not want.

Indeed, Popper always stressed that a (non-falsifying) degree of corroboration of
H should not affect our degree of rational belief in H . He nevertheless advised one
to use the best tested theory as basis for action, and some take this to mean that the
degree of rational belief of those theories is raised. In Section 9 of [62], Popper tried
to remove this confusion. He distinguished preferring the best tested theory as basis
for action from relying on that theory. Preferring such theory is justified, because
of the merits the theory proved to have in the past. But this says nothing about the
future. So we cannot rely on the theory; no theory was shown true or can be shown
true. Our present most corroborated theories embody the best knowledge available
today. Only fools take alternative theories as better. But even our best theories may
be falsified tomorrow.

5.6 Inductive Generalization in Terms of a Logic

The approaches discussed before have clearly sensible application contexts. More
problematic is their explicit or implicit claim on universality. Why, for example,
should the decision to act on a certain scientific theory be arrived at by the same
method as the decision to participate in a certain lottery?

Once a plurality of methods is accepted, there can hardly be any objection against
phrasing some of these as logics: functions that assign a consequence set to every
premise set. In the present section, we shall present such an approach, the one we
are most familiar with: adaptive logics. The discussion will be restricted to logics of
inductive generalization. These are logics that enable one to infer hypotheses of the
form “all A are B” from sets of data, and which (most importantly) provide such
consequence operation with a proof theory.26

An advantage of this approach to the ‘acceptance’ of scientific hypotheses is that
it is more realistic than approaches in terms of degrees of (rational) belief. While
data, hypotheses, and theories may be rejected in view of new observations or in
view of a new systematization, they are provisionally considered as ‘given’. Next, it
is easily possible to consider scientific research as problem solving in the presence
of provisionally accepted background knowledge. Moreover, there is no need to
assign specific degrees of certainty to data, background knowledge, and inferred
generalizations. Still, as we shall see, it is possible to express that some background
theories are more ‘reliable’ than others.

26To complete the picture, we would need adaptive logics that enable one to derive hypotheses of
the form Pr(A | B) = r , in which Pr is an objective probability, and we would need adaptive logics
that enable one to derive predictions that do not follow from derived general hypotheses.
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5.6.1 An Example

A logic that enables one to derive general hypotheses from sets of data is obviously
ampliative with respect to CL (Classical Logic); the derived general hypotheses
are not derivable from the premises by CL. Moreover, such derivations are risky in
several senses. For one thing, new evidence may become available and it may falsify
some of the formerly derived hypotheses. Moreover, in the presence of background
knowledge (formerly ‘accepted’ theories), it may be impossible to show, within a
finite period of time, that a certain generalization is incompatible with the data and
background knowledge.27

This situation has several consequences for the proofs of logics of inductive
generalization. All ampliative conclusions drawn at some point in a proof, may
later have to be revoked for one of the two reasons mentioned in the previous
paragraph. This means that such proofs are dynamic and hence that one needs a
device to control this dynamics. In adaptive logics, the control is exerted by, on
the one hand, introducing ampliative conclusions on a (non-empty) condition and,
on the other hand, providing a marking definition. At every stage of a proof, the
marking definition settles which lines are marked and which unmarked. Marked
lines are considered as OUT: the formula of a line that is marked at a stage of the
proof is considered as not derived on that line at the stage. A stage of a proof is
a sequence of lines that are correct according to the rules of the logic. A stage s′

extends another stage s if all lines that occur in s occur in the same order in s′.
Marks may come and go with every new stage of the proof; a line may unmarked

at a certain stage, marked at a later stage, unmarked again at a still later stage, and
so on. So, apart from derivability at a stage, we need a stable notion of derivability,
which is called final derivability. The premises may not enable one to show by
means of a finite proof that a generalization is finally derived. If this is the case and
we applied the right heuristic means, the proof provides us with a reason to prefer

the derived generalizations as basis for action, but it does not allow us to rely on
them—we borrow this distinction from Popper, as the reader will remember from
Sect. 5.5.

Introducing adaptive logics in general would take too much space; we refer for
example to [4, 7] for that. Here we shall start with a toy example proof and next
introduce the machinery in as far as we need it. The idea behind the proof will be
falsification. One may introduce any generalization in the proof on the condition
that the negation of the generalization can be considered as false in view of the

27 There is a mechanical procedure which for any particular inconsistent premise set will show that
it is inconsistent. But there is no mechanical procedure which for any particular premise set will
decide whether it is inconsistent. So, technically speaking, the set of inconsistent sets of formulas
is semi-recursive (or semi-decidable) but not recursive (not decidable).
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premises.28 Let the premises be those of lines 1–4 of the proof, in which we also
introduce some consequences.

1 Pa ∧Qa ∧ Sa premise ∅
2 Pb ∧ ¬Qb ∧ ¬Rb ∧ Sb premise ∅
3 ¬Sc premise ∅
4 ¬Pd premise ∅
5 ∀x(Px ⊃ Sx) RC {¬∀x(Px ⊃ Sx)}
6 ∀x(Px ⊃ Qx) RC {¬∀x(Px ⊃ Qx)}
7 ∀x(Px ⊃ (Qx ∧ Sx)) 5, 6; RU {¬∀x(Px ⊃ Sx),¬∀x(Px ⊃ Qx)}
8 ∀xPx RC {¬∀xPx}
9 ∀x¬Rx RC {¬∀x¬Rx}
10 ∀x(Qx ⊃ Rx) RC {¬∀x(Qx ⊃ Rx)}
11 ¬Pc 3, 5; RU {¬∀x(Px ⊃ Sx)}
Apart from the premise rule, two generic rules are used in the proof. The conditional
rule RC may be read provisionally as: introduce any generalization A on the
condition {¬A}. The unconditional rule RU may be read as: if B is CL-derivable
from A1, . . . , An and A1, . . . , An occur in the proof (on some conditions), one
may derive B on the condition that is the union of the conditions of A1, . . . , An.
Formulas introduced by the premise rule receive the empty set as their condition:
premises need never be revoked. Note that 11 is a prediction derived from a derived
generalization in view of the premises (the data).

The reader will have noted that some of the generalizations are falsified by the
premises. In the subsequent extension of the proof, we show how this is handled.
We do not repeat the premises.

5 ∀x(Px ⊃ Sx) RC {¬∀x(Px ⊃ Sx)}
6 ∀x(Px ⊃ Qx) RC {¬∀x(Px ⊃ Qx)} �12

7 ∀x(Px ⊃ (Qx ∧ Sx)) 5, 6; RU {¬∀x(Px ⊃ Sx),¬∀x(Px ⊃ Qx)} �12

8 ∀xPx RC {¬∀xPx} �13

9 ∀x¬Rx RC {¬∀x¬Rx}
10 ∀x(Qx ⊃ Rx) RC {¬∀x(Qx ⊃ Rx)}
11 ¬Pc 3, 5; RU {¬∀x(Px ⊃ Sx)}

12 ¬∀x(Px ⊃ Qx) 2; RU
13 ¬∀xPx 4; RU ∅
By deriving 12 from 2, we obtain a member of the conditions of lines 6 and 7. So the
conditions of these lines cannot be considered as false, because a member of them
has to be true if the premises are true. Similarly, line 8 is marked in view of line 13.
These are plain cases of falsification.

There are also some unexpected features, which we illustrate in the following
extension of the proof, in which we leave out the marked lines for reasons of
pagination.

28We do not say “on the condition that the generalization is not falsified by the premises”. Soon,
the reason will become clear.
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5 ∀x(Px ⊃ Sx) RC {¬∀x(Px ⊃ Sx)}
. . .

9 ∀x¬Rx RC {¬∀x¬Rx} �16

10 ∀x(Qx ⊃ Rx) RC {¬∀x(Qx ⊃ Rx)} �16

11 ¬Pc 3, 5; RU {¬∀x(Px ⊃ Sx)}
12 ¬∀x(Px ⊃ Qx) 2; RU
13 ¬∀xPx 4; RU ∅

14 Ra ∨ ¬Ra RU ∅
15 Ra ∨ (Qa ∧ ¬Ra) 1, 14; RU ∅
16 ¬∀x¬Rx ∨ ¬∀x(Qx ⊃ Rx) 15; RU ∅
17 Pc ∨ ¬Pc RU ∅
18 (P c ∧ ¬Sc) ∨ ¬Pc 3, 17; RU ∅
19 ¬∀x(Px ⊃ Sx) ∨ ¬∀xPx 18; RU ∅
Note that 14 and 17 are theorems of CL and that RU allows one to introduce these
anywhere in a proof. The first interesting case is line 16, at which a disjunction of
negations of generalizations is derived. What this tells us is that either ¬∀x¬Rx or
¬∀x(Qx ⊃ Rx) is true, but is does not tell us which of them is true. So should we
mark lines 9 and 10 or not? We cannot have both unmarked because they jointly
contradict the premises (as line 16 shows). And no logical consideration allows us
to mark one rather than the other. So we had better mark both lines.

Why does line 19 not lead to marking line 5 (together with line 8)? Line 19 tells
us that either ¬∀x(Px ⊃ Sx) or ¬∀xPx is true and it also does not tell us which
of them is true. But line 13 tells us that: ¬∀xPx is true (on these premises). So
¬∀x(Px ⊃ Sx) is off the hook: if we know that A as well as A ∨ B are true and
start to consider as many members of {A,B} as false as is possible, we can safely
consider B as false.

For the present logic, negations of generalizations are the abnormalities; the
formulas of which as many as possible are considered as false. Let the set Us(Ŵ)

comprise all disjuncts of minimal disjunctions of abnormalities that are derived on
the condition ∅ at stage s of the proof. The members of Us(Ŵ) are the abnormalities
that are unreliable at stage s. The marking definition goes as follows: a line is
marked at a stage s if and only if its condition contains a member of Us(Ŵ).29

In general, an adaptive logic in standard format is defined as a triple: a lower
limit logic (required to have certain properties), a set of abnormalities characterized
by a logical form, and an adaptive strategy. The logic informally introduced before
is called LIr—see [5] and [8]. Its lower limit logic is CL, its set of abnormalities is
the set comprising all negations of generalizations, and its strategy is Reliability.

We promised to introduce final derivability. Let A be the formula of line l of a
stage s of a proof from Ŵ. A is finally derived from Ŵ at line l if and only if l is

29 This is the so-called Reliability strategy. The Minimal Abnormality strategy is slightly
different from Reliability and offers a few more consequences than Reliability (and never less
consequences). We shall not introduce it here.
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unmarked at stage s and every stage s′ that extends s and in which l is marked, can
be further extended in such a way that l is unmarked. It is handy to see this in game-
theoretic terms: the proponent writes s, the opponent extends it to s′, and then the
proponent is allowed to further extend s′. For Reliability both extensions are finite.

Adaptive logics also have a semantics. Consider the minimal disjunctions of
abnormalities that are CL-derivable from Ŵ and let U(Ŵ) be the set of their
disjuncts. A reliable model of Ŵ is a CL-model of Ŵ that verifies no other
abnormalities than members of U(Ŵ). For logics that have Reliability as their
strategy, semantic consequences of Ŵ are the formulas verified by all Reliable
models of Ŵ. An interesting feature of the (occasionally mentioned) standard format
is that it provides every adaptive logic in standard format with its proof theory,
its semantics, soundness and completeness proofs, and proofs for lots of other
metatheoretic properties. The standard format provides also certain criteria for final
derivability: if one follows a certain (proof or tableau) procedure, final derivability
will, for some premise sets and consequences, be established after finitely many
steps.

Back to inductive generalization. Basic moves underlying LIr can arguably
provide guidance in actual research. The logic suggests one to obtain certain
observations, possibly by experimental means. These observations might falsify cer-
tain generalizations. If that happens, shorter disjunctions of abnormalities become
derivable, and by the same token, other, often more specific generalizations may
become derivable.

5.6.2 Some Alternatives

Logics should not make methodological decisions, but should offer means to express
methods in a precise way. So there should be many adaptive logics of inductive
generalization, from which a scientist may choose on methodological grounds. This
is indeed the case.

A first series of them is obtained by varying the elements of the adaptive
logic. The Minimal Abnormality strategy was mentioned in Footnote 29; no other
strategies seem sensible in the present context. Variants of the set of abnormalities
have been studied. For some logics, this set comprises the formulas of the form
∃xA(x) ∧ ∃x¬A(x) in which A(x) is a disjunction of literals. The effect of
this change is a logic richer than LIr in which ∀x(Px ⊃ Qx) can only be
introduced in a proof if a formula of the form ¬Pα ∨ Qα (an instance of the
generalization in the logician’s sense) is derivable from the premises. A still richer
logic is obtained if the set of abnormalities comprises the formulas of the form
∃x(A(x)∧πx)∧∃x(A(x)∧¬πx), In which πx is a literal and A(x) is a conjunction
of literals. In this case ∀x(Px ⊃ Qx) can only be introduced in a proof if a ‘positive
instance’ of it is available, a formula of the form Pα ∧ Qα. One might of course
also vary the lower limit logic.
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A different series of variants is obtained by combining adaptive logics (not
necessarily those mentioned so far). There are several ways to do so. One of
them goes as follows: first apply an adaptive logic that has one of the above sets
of abnormalities restricted to the case where only one predicate occurs in the
abnormality; to the resulting consequence set, apply an adaptive logic that has
abnormalities in which at most two predicates occur; and so on. This leads to a
serious enrichment and agrees with Poppers requirement that one should first test
hypotheses that have the highest content.

An interesting extension is where the person applying the logic is allowed to
introduce certain preferences. A scientist may have several reasons to do so, going
from relying on ‘established’ science to personal preferences and mere guesses.
These preferences may be expressed by defeasibly denying certain abnormalities
in a prioritized way: this abnormality is almost certainly false, that one is probably
false, etc. The priorities are expressed in the language by operators, which basically
have a comparative effect. Several adaptive logics to handle such prioritized
rejections are available in the literature [4, 6, 10] and each of them can be combined
with an adaptive logic for inductive inference.

Most realistic applications require that handling background knowledge is
combined with inductive inference. Background knowledge will drastically extend
the data, but it may be falsified by them. Sometimes this is a reason to reject the
whole theory, sometimes this is a reason to reject only falsified consequences of the
theory and provisionally go with the others, hoping for a new systematization in the
future. Again, adaptive logics to handle both cases (even jointly) are available. For
a more complete overview of materials in this section and for further references we
refer to Batens [6].
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Chapter 6

Conditionals

John Cantwell

Abstract Conditional constructions – constructs of the form If A, then B – have for
over a century been subject to intense study in a wide variety of philosophical areas,
as well as outside of philosophy. One important reason is that such constructs allow
one to encode connections and dependencies, be they causal, epistemic, conceptual,
or metaphysical. This chapter briefly outlines some of the main formal models
that have been employed to analyze such constructs, as well as their philosophical
motivation.

6.1 Background

The conditional construction – here I include such constructions as If A then B,
B even if A, B only if A, and so on – is a small unassuming construction that for
decades (in some cases centuries) has attracted massive interest from philosophers,
logicians, linguists, computer scientists and cognitive psychologists. The huge
interest in this small construction can be traced to two circumstances. First, the con-
ditional is one of our primary vehicles for talking about, describing and representing
connections and dependencies, be the connections and dependencies causal, concep-
tual, metaphysical, epistemic, or logico-semantic. Second, the problems one has in
accounting for the meaning of the conditional to a large extent overlaps with the
problems one has in accounting for the nature of these connections and dependen-
cies. So the study of the conditional is one pathway into a large body of issues with
ramifications far beyond the seemingly minor issue of the semantics of a small unas-
suming construction. Importantly, the formal methods that have been introduced in
order to deal with the problems posed by conditionals have proved to be useful and
illuminating in a range of other areas. Not surprisingly, the area – with its connec-
tions to many of the deepest problems of philosophy – is rife with controversy.
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Consider the following conditionals:

(1) If x is even and greater than 2, then x is not prime.
(2) If the conditions of the Versaille treaty had not been so severe, there would have

been no WWII.
(3) If Shakespeare didn’t write Hamlet someone else did.

The first of these can be used to express that even and prime are conceptually related
properties; the second conditional can be used to express that there is a causal
connection between the conditions set up in the Versaille treaty and the breakout of
WWII; the third conditional can be be used to express that there is some degree of
epistemic independence between one’s conviction that Shakespeare wrote Hamlet
and one’s conviction that someone wrote Hamlet (e.g. some of the evidence that
one has for the latter, is not also evidence that one has for the former). Three
conditionals that can be used to express three very different kinds of connections
and dependencies.

A substantial portion of the literature on conditionals deals with the semantics of
conditionals in natural language. Various fundamental semantic questions have been
addressed. Is there at some deeper semantic level only one type of conditional or
are there different semantic kinds of conditionals? Compare the difference between
(3) above, which is in the grammatically indicative mood, and the grammatically
subjunctive:

(4) If Shakespeare hadn’t written Hamlet someone else would have.

Clearly they don’t have the same meaning, and this has convinced many that
that there are different semantic kinds of conditionals. Further questions: Does
the semantic value of a conditional depend on the (conceptual/causal/epistemic)
connections and dependencies it is used to express, or does the conditional express
the connections and dependencies that it does through the pragmatics of assertion?
Can conditionals have truth values and, if so, do they always have truth values (or
do they express ‘gappy’ propositions, propositions that can lack truth value)? Is
the truth value of a conditional (if it has one) a function of the truth values of its
constituent sentences or is the conditional semantically intensional? Note that some
of these questions may have different answers for different kinds of conditionals.

Many, however, have approached the study of conditionals from another direc-
tion. Seeing that conditionals are linguistic vehicles for expressing connections and
dependencies one may ask what kind of connections and dependencies – perhaps
encoded in some underlying structure – they can be used to express. In such studies
felicity to natural language usage is of secondary importance (although the link and
appeal to linguistic intuitions is seldom abandoned altogether), instead more general
structural phenomena are investigated.

One important phenomenon is defeasibility (sometimes referred to as failure of

antecedent strengthening or nonmonotonicity). From the fact that one accepts A→
C (I here use→ as a generic conditional) it does not follow that one thereby should
accept (A ∧ B) → C. For instance, from the fact that one accepts:
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(5) If the match is struck it will light.

it does not follow that one should accept:

(6) If the match is submerged in water and struck it will light.

The phenomenon of defeasibility reflects the fact that connections and dependencies
often do not hold unconditionally or by necessity; often they depend on things being
as they normally are, or on contingencies that just happen– as far as we know – to
be the case or on other things being equal (ceteris paribus). A fundamental problem
is that typically it is impossible to spell out in full detail how things normally are,
what contingencies are necessary and sufficient or what the ‘other things’ are that
are to be considered ‘equal’. The expressive power of conditionals to a large extent
derives from the fact that they implicitly invoke dependencies that are impossible
to spell out. As nearly all discourse outside the realm of mathematics (and other
aprioristic disciplines) deals with such defeasible connections and dependencies, it
is of the first importance to understand how conditionals do the magic of depending
on what cannot be spelled out. Note that we will make no progress here by merely
mentioning that a conditional depends on that things are as they normally or on other
things being equal. For from the fact that one accepts:

(7) If the match is struck it will, other things being equal, light.

it still does not follow that one should accept:

(8) If the match is submerged in water and struck it will, other things being equal,
light.

The phenomenon of defeasibility is a core feature of the conditional itself, and the
development of formal methods for analysing this phenomenon has been of central
interest in the literature on conditionals.

In this paper I shall briefly discuss some of the main approaches to the analysis
of conditionals, outline the formal structures that have made the analyses possible,
and briefly indicate their philosophical underpinnings, with a particular eye towards
how they account for how conditionals can be used to express connections and
dependencies. I will consider two basic kinds of analyses: those that assign truth
conditions to the conditional, and those that instead assign acceptance conditions
(using the Ramsey Test).1

1The field is far too wide to enable an exhaustive survey in these few pages and so the present
overview largely reflects the author’s own interests and prejudices. Many important issues are
ignored or treated only in passing and countless important contributions will not be credited.
References given reflect (but by no means exhaust) works of seminal importance, works that give
a more thorough overview of the issues, as well as work that may point towards interesting new
developments.
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6.2 Conditionals with Truth Values

6.2.1 Formal Preliminaries

Assume a language with atoms p, q, r, . . . closed under ¬ (negation), ∧ (conjunc-
tion) and ∨ (disjunction). The language will subsequently be extended with the
generic conditional→. Non-atomic sentences will be denoted A, B, C, . . ..

The semantics for this language will be given relative a set U of states; these can
be thought of as assignments of truth values to the atoms or as possible worlds, or
as pairs of possible worlds and moments in time, what is crucial is that each state
determines the truth values of the atomic sentences.

1. u |= p if and only if p is true at u.
2. u |= ¬A if and only if it is not the case that u |= A.
3. u |= A ∧ B if and only if u |= A and u |= B.
4. u |= A ∨ B if and only if u |= A or u |= B.

In the form of truth-tables, at any given state u:

A ¬A

t f
f t

A B A ∧ B

t t t
t f f
f t f
f f f

A B A ∨ B

t t t
t f t
f t t
f f f

A sentence B is a consequence of A1, . . . , An, in symbols A1, . . . , An |= B if and
only if u |= B whenever u |= A1, . . . , u |= An (that is, if and only if B is true
whenever each Ai is true).

6.2.2 The Material Conditional

The material conditional, here written A ⊃ B, is typically the first fully analysed
conditional that students of logic encounter. In its classical form it is a truth-
functional connective with interpreted according to the truth-table:

A B A ⊃ B

t t t
t f f
f t t
f f t
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The interpretation has the virtue of simplicity (truth-tables belong to the simplest of
formal structures), furthermore it can be derived from seemingly compelling logical
principles; for instance, one can show that it is the interpretation that⊃must have if
it is to be truth-functional and satisfy (given the classical interpretation of negation):

A,A ⊃ B |= B. (Modus ponens)

¬B,A ⊃ B |= ¬A. (Modus tollens)

If A |= B, then |= A ⊃ B.

It is clear from the semantics of the material conditional that its truth value
does not depend in any interesting way on connections and dependencies between
antecedents and consequents: the material conditional is only sensitive to their truth
value. As a result, if we take, say, the indicative conditional of natural language to
have the semantics of the material conditional, semantics alone does very little to
explain how and when such conditionals are asserted and denied. On the basis of
semantics alone one would predict that both of the following conditionals would be
generally accepted:

(9) If Shakespeare didn’t write Hamlet, then his grandmother did.
(10) Even if someone other than Shakespeare wrote Hamlet, Shakespeare wrote

Hamlet.

For if Shakespeare wrote Hamlet, then both these conditionals are true (as their
antecedent is false). Yet those who believe that Shakespeare wrote Hamlet are not in
general inclined to accept the conditionals. Indeed most would be inclined to reject

these conditionals; so there is a deep and disturbing mismatch between the truth
values of the conditionals and speakers’ inclinations to use them. Such systematic
mismatch is sometimes labeled ‘paradoxes’ of the material conditional and can be
traced back to various logical properties such as:

¬A |= A ⊃ B.

B |= A ⊃ B.

If the semantics of the material conditional is to have any credibility as a seman-
tics of the conditional in natural language (specifically: the indicative conditional)
then most of the explanatory work – including how such conditionals are used to
express connections and dependencies – must be relegated elsewhere: to pragmatics.
For instance, one can hold that the reason why one is not inclined to accept (9) is
the same as the reason why one is not inclined to assert

(11) Either Shakespeare wrote Hamlet or his grandmother did.

even though one believes that it is true (due to one of the disjuncts being
true): it would be misleading and would convey less information than the simple
“Shakespeare wrote Hamlet”. This was the strategy proposed by Grice [12] and
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has subsequently been defended by Lewis [22] and elaborated by Jackson [13].
However, many have come to the conclusion that the discrepancy between the
semantics of the material conditional and the way in which indicative conditionals
are used is too great: the semantics lacks credibility.

Some have argued (e.g. [5, 7]) that the most blatant collisions between semantics
and pragmatics (e.g. cases where one is inclined to reject a conditional that one,
allegedly, believes is true) can be avoided by allowing conditionals to have ‘gappy’
truth conditions:

A B A→ B

t t t
t f f
f t −
f f −

That is, the conditional is taken to lack truth value when the antecedent is false.
This still leaves much of the explanatory work to pragmatics (e.g. the way the
conditional is used to express connections and dependencies) but at least does not
force pragmatics to explain why true conditionals are rejected. The semantics also
has support from the psychological literature on how people assess conditionals.
Nevertheless, the account is still viewed with scepticism, mainly regarding the
intelligibility of truth-value gaps and how such gaps are to be accommodated in
a wider story where conditionals embed in more complex sentences (see [23, 24]).

6.2.3 The Strict Conditional

An example of a conditional that semantically reflects a stronger connection
between the antecedent and the consequent is the strict conditional, with the truth-
conditions:

u |= A→ B if and only if v |= B for every state v such that v |= A.

The strict conditional is not supposed to reflect any particular construction in natural
language, but it is a nice simple example of how a language can contain conditionals
that reflect interesting connections between their antecedents and consequents, in
this case: the connection of semantic consequence (for with the present truth-
conditions, A → B is true if and only if B is a semantic consequence of A). If
the English indicative conditional had these truth conditions then

(12) If you are a bachelor then you are not married,

would be true, while

(13) If Jim was run over by a truck, he died,

would be false (even if Jim was run over by a truck and died).
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Notably, as semantic consequence involves the preservation of a property (the
property of being true at a state), the strict conditional is not defeasible, that is, we
have the property:

A→ C |= (A ∧ B)→ C.

6.2.4 Ontic Selection Functions: Counterfactuals

An explosion of interest in the formal structures used to represent conditionals came
with the work of Stalnaker [29, 31] and Lewis [19]. In different ways they introduced
the idea of a selection function γ that for each state u and each sentence A picks out
a sub-set of the states in which A is true. Given such a selection function one can
give truth conditions for a conditional as follows:

u |= A→ B if and only if v |= B for every v in γ (u,A).

A selection function gives rise to many degrees of freedom both in terms of
abstract structural properties and in terms of substantive interpretations. Common
examples of structural constraints are2:

If v is in γ (u,A), then v |= A.
If u |= A, then γ (u,A) is the unit set {u}. (Centering)
If v |= B for each v in γ (u,A), then γ (u,A) = γ (u,A ∧ B).

In these cases each structural constraint gives rise to a logical property:

|= A→ A.

A,A→ B |= B.

A→ B,A→ C |= (A ∧ B) → C.

Notably, the semantics allows for defeasibility, that is, we do not in general have:

A→ C |= (A ∧ B)→ C.

For instance, consider the graphical representation in Fig. 6.1 of the states in which
A, B and C are true and the areas selected by the selection function:
From this picture it is clear that we can have u |= A → C although we do not have
u |= (A ∧ B)→ C.

Relationships between structural properties of the selection function and logical
properties of the conditional are, of course, interesting in their own right. But it

2 Arló-Costa [3] presents a thorough overview of the logic of conditionals and how they relate to
structural conditions.
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Fig. 6.1 γ (u,A) is a subset
of the C-states while
γ (u,A ∧ B) is not

A B

C

γ(u, A)

γ(u, A ∧ B)

has been the prospect that selection functions can be used to represent fundamental
structures – the kind of structures that underlie the connections and dependencies
that we express by natural language conditionals – that has been the main philosoph-
ical driving force for investigating selection-function semantics for conditionals.

By far the most influential interpretation is due to David Lewis (e.g. [19, 21])
who suggested that the selection function γ (u,A) selects those A-worlds (on his
account states are possible worlds) that are most similar to u; that is, the selection
function is based on a similarity relation v ≤u w between possible worlds (v ≤u w

holds if v is no less similar to u than is w). The similarity relation is standardly
taken to be reflexive, transitive and complete3 and to satisfy some proviso – the limit

assumption – to ensure that in a given set of worlds there is at least one world that
is most similar to the target world, that is one needs to guarantee that there are no
infinitely descending chains of similarity.4

Similarity relations between worlds can be thought of as providing a substantive
interpretation of the ceteris paribus-intuition in the evaluation of conditionals: a
conditional is true if it is the case that if the antecedent were true, and as much as

possible (this is where the similarity relation kicks in) remained the same, then the
consequent would be true.

The introduction of a similarity relation shifts the focus to the question: Similar

in what way? There are various ways of approaching this question. Lewis, who
followed a tradition broadly deriving from David Hume, took special interest in
similarity criteria that would allow for a reductive analysis of causal relations in
terms of the similarity relation (and so for a reductive analysis of causal relations in
terms of counterfactuals).

Counterfactual analyses of causality have been criticized (e.g. [32]), but this is
not the place to evaluate Lewis’ theory of causality. What is clear however is that
a Lewis-style similarity semantics provides a robust and convincing model (even
if one may be sceptical about the underlying metaphysical assumptions) for the

3Reflexivity: v ≤u v. Transitivity: If v ≤u w and w ≤u z, then v ≤u z. Completeness: Either
v ≤u w or w ≤u v.
4The limit assumption is not, strictly speaking, necessary, but if one omits this constraint the
semantic clause becomes more complex.
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analysis of counterfactual conditionals, a class of conditionals that largely coincides
with conditionals in the subjunctive mood:

(14) If the match had been struck, it would have lit.
(15) The Vietnam war would have escalated even if Kennedy had not been

murdered.

As we typically take the truth values of such conditionals to depend on underlying
causal connections and dependencies, this provides strong support for the idea that
similarity relations can be used to encode important aspects of the causal structure
of the world. Accordingly, the Lewis-Stalnaker analysis remains the dominant
paradigm in the semantics of counterfactual conditionals, one where the truth-value

of a conditional is sensitive to underlying causal connections and dependencies
between antecedents and consequents.

Within the more linguistically oriented study of the semantics of conditionals, the
dominant tradition is to take conditionals to have an underlying Lewis-Stalnaker-
style semantic structure. Some of the most influential work here is due to Angelika
Kratzer (see e.g. [14, 15], see collection in [16]). Kratzer combines a Lewis-
style semantics with a ‘restrictor’ analysis of conditionals: the antecedent of a
conditional is taken to restrict the space of possibilities relative to which the
consequent is evaluated. This becomes particularly important when the consequent
of a conditional contains a modality of some sort, as in:

(16) If the die is thrown lands on an even number, the probability that it will show
a six is 1/3.

(17) If you kill him, you should kill him gently.

In the first case the antecedent constrains the possible outcomes that is relevant for
the probability modality (for note that absent the antecedent, the probability that
the result of a throw of a fair die will show a six is 1/6). In the second case the
antecedent constrains the space of possible actions to be considered in deliberating
what one should do (and note that it is not the case that you should kill him gently,
but if you kill him, then a gentle killing seems to be the most humane course of
action).

6.3 Epistemic Interpretations

Epistemic interpretations of conditionals5 cannot be discussed without mention of
Frank Ramsey’s [28] famous footnote:

If two people are arguing ‘if p will q?’ and both are in doubt as to p, they are
adding p hypothetically to their stock of knowledge and arguing on that basis

5Some key references here are Stalnaker [30], Adams [1], Edgington [9], Levi [18] and Bennett
[4].
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about q. We can say that they are fixing their degrees of belief in q given p.
If p turns out false, these degrees of belief are rendered void. If either party
believes ¬p for certain, the question ceases to mean anything to him except
as a question about what follows from certain laws and hypotheses.

In the footnote Ramsey identifies the main feature of what has become known as the
Ramsey Test: conditionals are evaluated on the basis of what one would take to hold
on the hypothetical assumption that the antecedent is true. As hypothetical reasoning
is a key way of exploring epistemic connections such as evidential relations and
other structures of justification, the Ramsey Test points the way to explaining how
conditionals can be used to express such connections.

For instance, say that you have quite convincing testimony from the butler that
suggests that either the maid or the gardener commited the murder. So on supposing,
hypothetically, that it wasn’t the maid, you conclude (hypothetically) that it was the
gardener; that is, you accept

(18) If the maid didn’t do it, the gardener did.

On the other hand, on supposing that neither the maid nor the gardener did it,
you come to the conclusion that there must be something wrong with the butler’s
testimony, indeed that would suggest that he is the culprit; so you accept:

(19) If neither the maid nor the gardener did it, the butler did it.

The fact that you accept both conditionals reveal something important about how
you evaluate the situation and what counts as evidence for what (note, in particular,
that the examples show that the epistemic interpretation allows for defeasible
conditionals).

Epistemic interpretations of conditionals typically do not take the connections
and dependencies expressed by the use of a conditional to reside in its truth-
conditions. The epistemic connections and dependencies expressed by a conditional
are not taken to be objective features of the world, but are rather features of one’s
current epistemic state.

There is wide agreement6 that the epistemic intepretation provides a good
analysis of stand-alone (non-embedded) indicative conditionals (conditionals in
the indicative mood) like (3), (18), and (19) above.7 From the point of view of
meaning theoretical orthodoxy the big problem with the epistemic interpretation is
that it doesn’t provide truth-conditions for the conditional. This creates a problem
both in accounting for its logic, as the semantic consequence relation is based
on sentences taking a truth value, and in accounting for its interaction with other
connectives like negation (¬) and disjunction (∨), as these are truth-functional.
Some have thus sought to combine epistemic interpretations with truth-functional

6See [4] and [10] for extensive discussions and references, but compare [26] and [25] for putative
counterexamples (e.g. [8] argues that McGee fails to establish a counterexample).
7Some have argued that counterfactual conditionals can be given an epistemic interpretation, but
this is a matter of considerable controversy.
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accounts and take the epistemic interpretation to spell out, in a systematic way,
the pragmatics of indicative conditionals, thus maintaining the traditional semantic-
pragmatics distinction (see the discussion in Sect. 6.2.2). Others have taken this
to show that the indicative conditional is inherently different from other truth-
conditional constructions and has no semantics proper.

6.3.1 The Ramsey Test and Logic

In its most abstract form, the epistemic interpretation relies on the notion of
an epistemic state E and on a function ∗ that takes a sentence A and returns
the epistemic state E ∗ A that corresponds to the epistemic state in which it is
hypothetically assumed that A. As neither the acceptance conditions of conditionals
nor their logic are derivable from their truth-conditions, one also needs a separate
account of acceptance conditions and of epistemic consequence.

Let E ||=A stand for in the epistemic state E one is committed to accepting A

(some models, such as the probabilistic model, allow also for a notion of degree of
acceptability, but this notion will not be covered here). With this in place one can
state the Ramsey Test as follows:

E ||=A→ Bif and only if E ∗ A||=B.

The Ramsey Test by itself gives no indication of the acceptance conditions for
other kinds of sentences or of their logic. So let A1, . . . , An||=B stand for B is an

epistemic consequence of A1, . . . , An. A reasonable minimal requirement is that as
long as the sentences are not conditionals (nor contain conditionals) we have:

Semantic Closure If A1, . . . , An |= B, then A1, . . . , An||=B.

A further reasonable requirement is:

Epistemic Closure If E ||=A1, . . . , E ||=An implies E ||=B for every epistemic
state E , then A1, . . . , An||=B.

If we allow for the converse direction then the epistemic consequence relation can
be fully analyzed by acceptance conditions:

Reverse Epistemic Closure If A1, . . . , An||=B, then E ||=A1, . . . , E ||=An

implies E ||=B.

The logical properties of the conditional will to a large extent depend on
properties of the ∗-operator. Here are two candidate properties (again, see Arló-
Costa [3] for thorough overview):

Success E ∗ A||=A.
Vacuity If E ||=A, then E ∗ A = E.
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These give rise to the properties:

||=A→ A.

A,A→ B||=B.

Another possible requirement is:

Iteration E ∗ A ∗ B = E ∗ (A ∧ B).

This gives rise to the logical export-import-properties:

A→ (B → C)||=(A ∧ B)→ C.

(A ∧ B)→ C||=A→ (B → C).

Importantly, it is typically not assumed that ∗ satisfies monotonicity:

Monotonicity If E ||=B, then E ∗ A||=B.

Accordingly, the epistemic conditional can be defeasible: it is not in general the case
that A→ C||=(A ∧ B)→ C.

Sometimes weaker properties than monotonicity are assumed, such as:

Preservation If E ||=B and E � ||=¬A, then E ∗ A||=B.

Together with Logical Closure this entails:

If E ||=A ⊃ B and E � ||=¬A, then E ||=A→ B.

This can be combined with the requirement:

If E ∗ A||=B and E � ||=¬A, then E ||=A ⊃ B.

Together with Preservation and Logical Closure this entails that as long as one
doesn’t reject the antecedent of a conditional the acceptance conditions of the epis-
temic conditional coincides with acceptance conditions of the material conditional.
This is important as the counterintuitive properties of material implication (as a
model for the indicative conditional) mainly emerge in cases when the antecedent
is believed to be false; the epistemic conditional thus keeps the ‘good’ parts of the
material analysis of the conditional but avoids its problematic parts. For instance, in
the absence of the monotonicity requirement we do not have:

¬A||=A→ B.

B||=A→ B.
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6.3.2 Formal Models

Two main types of formal structures are often used to model such epistemic states:
models that assign probabilities to sentences and a broad range of models – closely
related or identical to the models applied in the area of belief revision – that rank
sentences according to their entrenchment (plausibility, etc.). Often (but not always)
the latter kind of models use qualitative relations rather than numerical measures.

Probabilistic models (see in particular Adams [1]) follow a Bayesian tradition in
which epistemic states are taken to be probability measures.8 The revision operator
∗ in such a model takes a probability measure EP and a sentence A and returns a
new probability measure EP ∗ A by conditionalisation9:

(EP ∗ A)(B) = EP(B |A) = EP(A ∧ B)/EP(A).

In a simple model of probabilistic acceptance one accepts all and only those non-
conditional sentences that exceed some threshhold α (.5 ≤ α ≤ 1), so that, when A

is not a conditional:

EP||=A if and only if EP(A) > α.

For the epistemic consequence relation there are different options; Adams [2] makes
a case for the p-consequence relation (the uncertainty of the conclusion cannot be
greater than the sum of the uncertainty of the premises):

A1, . . . , An||=B if and only if (1−EP(B)) ≤ (1−EP(A1))+· · ·+(1−EP(An)),
for all EP.

These jointly ensure that Semantic Closure and Epistemic Closure are satisfied. The
model ensures that we have a defeasible conditional that satisfies important logical
properties like modus ponens and export-import.

As an example of a qualitative representation of a epistemic state one can
consider an epistemic state to be represented as an epistemic selection function Eγ

that for any sentence B that has truth conditions picks out the set Eγ (B) of most

plausible B-states (the B-states, recall, are the states in U where B is true). So
here again we have a selection function, but notice that while selection functions
in the ontic models were relativized to the states (worlds) themselves, here they are
relativized to epistemic states, making the evaluation procedure speaker-dependent.
The epistemic state that results from making the hypothetical assumption that A,

8A probability measure is, as is standard, here taken to be a real-valued function P that take
sentences as their arguments and satisfies (a) 0 ≤ P(A) ≤ 1, (b) P(¬A) = 1 − P(A), and (c)
P(A ∨ B) = P(A)+ P(B)− P(A ∧ B).
9Conditionalisation only covers the case when P(A) > 0; to deal with the case when P(A) = 0
one can use Popper-measures or let P ∗A be a non-standard measure that assigns probability 1 (or
0) to all sentences.
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Eγ ∗ A, can then be defined to be the epistemic selection function that for any
sentence B picks out the set of most plausible B-states that are also A-states (i.e.
the most plausible A ∧ B-states):

(Eγ ∗ A)(B) = Eγ (A ∧ B).

A non-conditional sentence is accepted if it is true in all the most plausible models,
i.e. letting⊤ be an arbitrary tautology (Eγ (⊤) will pick out the most plausible of all

states) and A a non-conditional sentence:

Eγ ||=A if and only if v |= A, for all v ∈ Eγ (⊤).

The epistemic consequence relation can be defined as:

A1, . . . , An||=B if and only if Eγ ||=A1, . . . , Eγ ||=An implies Eγ ||=B, for all
Eγ .

These jointly ensure that Semantic Closure, Epistemic Closure and Reverse Epis-
temic Closure are satisfied. The model also ensures that we have a defeasible
conditional that satisfies important logical properties like modus ponens and export-
import.

This is not the place to discuss the relative merits of probabilistic versus
qualitatitve models. Both kinds of models allow for a rich (but by no means
exhaustive) representation of evidential relations and justificational structures and
are able to explain intuitive judgements about indicative conditionals quite well.

6.3.3 Impossibility Results

As noted, epistemic interpretations of conditionals often treat them as exceptional,
particularly, by not assigning truth-conditions to them. However, could it not be the
case that the conditional has truth-conditions that are such that they just happen
to also satisfy the Ramsey Test? For instance, couldn’t the conditional have truth-
conditions that, given the axioms of probability, forced the equality:

P(A→ B) = P(B |A)?

No, Lewis [20] showed (and this result has since been strenghtened in a number
of ways) that a language with a conditional that embeds just like other connectives
(which we would expect if the conditional had truth-conditions) cannot, on pain
of triviality, satisfy this equality. As long as the standard axioms of probability are
satisfied, the equality forces the probability of A to be either 0 or 1. Gärdenfors [11]
has established a similar impossibility result for the qualitative case.

So to satisfy the epistemic interpretation the conditional must truly be excep-
tional. This conclusion is not undermined by the fact that the above equality can be
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non-trivially satisfied if one allows for gappy truth-conditions (see Sect. 6.2.2) as
gappy truth-conditions are exceptional in their own right and probability measures
on gappy propositions will not in general satisfy the standard axioms of probability
(see, e.g. [6] for a discussion).

6.4 Concluding Remarks

Over the past century the conditional has been the locus of a rich and diverse range
of philosophical debates. Considerable progress has been made in the understanding
of how conditionals can be used to express connections and dependencies, as well
as in the understanding of their defeasible character. To a large extent the progress
can be traced back to the careful study of the formal apparatus used to represent the
underlying structures. Furthermore, the insights have shed new light on issues of
independent interest, a consequence of the fact that conditionals feed on structures
that are of core interest in epistemology and metaphysics in general. The area of
conditionals is thus one of the success stories of formal philosophy.

Many issues remain, however. Some hold that causal relations cannot be fully
analyzed by counterfactuals, and so cannot be fully analyzed by similarity relations
between worlds. Given that many counterfactuals are parasitic on the underlying
causal structure of the world, this suggests that there may be alternative representa-
tions of this structure that could serve as the semantic basis of counterfactuals (e.g.
Pearl’s [27] work on causal models and Leitgeb’s [17] work on probabilistic models
to name just two such alternatives). Here there is a lot of work to be done. Likewise,
the status of the indicative conditional under the epistemic interpretation is far from
settled: Can one find representations that elegantly account for their special nature?
Representations that also account for their semantic connections to counterfactuals?
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Chapter 7

Neural Network Models of Conditionals

Hannes Leitgeb

Abstract This chapter explains how artificial neural networks may be used as
models for reasoning, conditionals, and conditional logic. It starts with the historical
overlap between neural network research and logic, it discusses connectionism as a
paradigm in cognitive science that opposes the traditional paradigm of symbolic
computationalism, it mentions some recent accounts of how logic and neural
networks may be combined, and it ends with a couple of open questions concerning
the future of this area of research.

7.1 Introduction

Neural networks are abstract models of brain structures capable of adapting to
new information. The learning abilities of artificial neural networks have given
rise to successful computer implementations of various cognitive tasks, from the
recognition of facial images to the prediction of currency movement. Under the
heading ‘deep learning’, neural networks have become prominent again lately as
major tools in the field of machine learning.

Logic deals with formal systems of reasoning; in particular, inductive logic
studies formal systems of reasoning towards plausible but uncertain conclusions.
As evidence accumulates, the degree to which it supports a hypothesis, as measured
by the logic, should tend to indicate that the hypothesis is likely to be true.

Although sharing a joint focus on information and reasoning, until recently these
two areas developed in opposition to each other: neural networks are quantitative
dynamic systems, while logical reasoners must be symbolic systems; networks
are described by mathematical equations, whereas logic is subject to normative
statements about how we ought to reason; neural networks have been studied by
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scientists, whilst the classical “problem of induction” is regarded as belonging to
philosophy. And so forth.

In recent years, however, this assessment has been changing: the emergence of
logical formalisms for uncertain reasoning and the discovery that these formalisms
apply to neural net processes on the representational level give rise to the expectation
that the dynamics of artificial neural networks can be understood in terms of logi-
cally valid, and thus rational, rules of inference. As neural networks, commonsense
reasoning, and maybe even scientific induction seem to conform to similar logical
systems, a joint theoretical framework might be in the offing which might lead to
new insights into the logical and cognitive basis of everyday reasoning, language,
and science.

In this article we will focus on one outcome of these new developments:
neural network semantics for conditionals. We will start with McCulloch’s and
Pitts’ original interpretation of neural network components in terms of formulas of
classical propositional logic, we will summarize the main features of connectionism
which emerged as an alternative paradigm of cognitive science that was thought
to be in opposition to logical takes on reasoning, and we will sketch how recent
theories nevertheless attempt to describe states and processes in neural networks
by means of logical terms. Finally, we will deal with one of these theories in
more detail. Along the way we will also present very brief recaps of nonmonotonic
reasoning and of the logical and philosophical literature on conditionals, as far as
this serves the purpose of illuminating the neural networks models of conditionals
that are the topic of this paper. We end with some tentative philosophical conclusions
and with a list of interesting open questions. Clearly, this new field of research is
relying heavily on the application of formal methods, mostly from logic and the
mathematical theory of dynamical systems.1

7.2 Neural Networks as Models of Reasoning

In their famous article “A Logical Calculus of the Ideas Immanent in Nervous
Activity”, McCulloch and Pitts [45] first introduced artificial neural networks as
mathematical abstractions from neural circuits in the brain. A McCulloch-Pitts
network consists of a set of nodes and a set of connections between these nodes.
Each node can be in one of two possible states: it fires (1), or it does not (0). Each
connection is of one of two possible kinds: along inhibitory connections, nodes
receive inhibitory signals by which they get deactivated at the next point of time
(on a discrete time scale). Via excitatory connections, signals are transferred from

1This article is a revised and extended version of: Leitgeb [41]. Some material contained in Leitgeb
[37, 38], Ortner and Leitgeb [46], and in the popular and non-technical exposition of logic and
neural networks in Leitgeb [39] was used, too.

We are grateful for generous support received from the Alexander von Humboldt Foundation.
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one node to another which have a stimulating effect on the target node: if the node
does not get inhibited, and if the number of all incoming excitatory signals exceed
or are identical to some fixed threshold value that is associated with the node,
then the node fires at the next point of time. Although these appear to be quite
simple devices, McCulloch and Pitts [45] effectively established that in principle
every finite automaton can be realized by such a McCulloch-Pitts network (a formal
result which was later made perfectly precise by the logician S. Kleene in his [31]).
Furthermore, the state transitions which take place in such networks allow for a
description in logical terms: if the activity of a node is considered as a truth value,
then the node itself may be regarded as an entity which has a truth value, i.e., as
a formula or proposition. If the “truth value” of a node does not depend on the
“truth values” of other nodes (but, say, only on some given input), then it is indeed
natural to regard such nodes as atomic formulas or propositions. Accordingly, if
nodes are put together in a network, such that connections between nodes can cause
the “truth values” of other nodes to be altered, then the latter nodes may be taken
to correspond to complex formulas; the semantic dependency of the truth value of a
complex formula on the truth values of its component formulas is thus represented
by the network topology and the choice of thresholds.

As an example, consider two very elementary McCulloch-Pitts networks: In the
first network, excitatory connections lead from nodes p and q to a third node. If
this latter node has a threshold value of 2, then the node is going to fire if and only
if both p and q were active at the previous point of time. So we can associate the
formula p ∧ q with this node:

p

In the second network, two excitatory lines lead from p to the output node,
whereas q is connected to the latter by an inhibitory edge. If e.g. the output node has
a threshold of 2, it will be activated at the next point of time if and only if p is set
to 1 and q is set to 0 (and therefore does not have any inhibitory influence). Hence,
the third node in the network corresponds to the formula p ∧ ¬q:

q q

p

p

This way of associating nodes in networks with formulas in the language of
classical propositional logic extends to more interesting networks with multiple
layers of nodes and with more complex patterns of excitatory and inhibitory



150 H. Leitgeb

connections. E.g., it would be easy to extend the second network by a node that
represents ¬(p ∧ ¬q), i.e., a formula which is logically equivalent to the material
conditional p ⊃ q. If our brains were, at least on some level, similar to neural
networks of the McCulloch-Pitts kind, they could thus be understood as collections
of simple logical units put together in order to calculate binary truth values from
external or internal input. The calculation of the truth values of material conditionals
would be a special case of this form of computational processing.

Of course, the McCulloch-Pitts networks are, in several respects, much too
simple to be plausible models of actual neural networks in animal or human brains.
In particular, they are not yet able to learn. The next decisive step in the development
of artificial neural networks was to introduce variable weights that are attached
to connections and which encode the degree of influence that nodes can exert
on their target nodes via these connections. By sophisticated learning algorithms,
these weights can be adjusted in order to map inputs to their intended outputs,
e.g., facial images of persons to the names of these persons, or verbs to their
correct past tenses. Despite some initial success in the 1950s and 1960s – mainly
associated with F. Rosenblatt’s Perceptrons which famously came under attack by
M. Minsky’s and S. Papert’s monograph with the same title – it was only in the
1980s that artificial neural network models of cognition became serious contenders
to the dominant symbolic computation paradigm in artificial intelligence. These new
approaches to cognition are usually subsumed under the term ‘connectionism’.2 As
we will explain below, the more recent neural network models do not only differ
from the original McCulloch-Pitts networks in terms of complexity and learning
abilities, they also differ in terms of the interpretation of their components: instead of
assigning meaning – expressed by formulas – to single nodes, the modern approach
emphasizes that it is rather patterns or sets of nodes which receive an interpretation.

How does ‘cognition by neural networks’ relate to the traditional ‘cognition
by symbolic computation’ paradigm of cognitive science (exemplified by classical
Artificial Intelligence)? According to the latter, (i) intelligent cognition demands
structurally complex mental representations, such that (ii) cognitive processing
is only sensitive to the form of these representations, (iii) cognitive processing
conforms to rules, statable over the representations themselves and articulable in
the format of a computer program, (iv) (standard) mental representations have
syntactic structure with a compositional semantics, and (v) cognitive transitions
conform to a computable cognitive-transition function (we adopt this charac-
terization essentially from [30], with slight deviations). Intelligent cognition is
supposed to be “systematic” and “productive” (see [21]), i.e., the representational
capacities of intelligent agents are supposed to be necessarily closed under various
representation-transforming and representation-generating operations (e.g., if an

2Rumelhart et al. [51] is still something like the “bible” of connectionism; Rojas [50] is a nice
introduction to neural networks, and at 〈http://plato.stanford.edu/entries/connectionism/〉 the entry
on connectionism in the Stanford Encyclopedia of Philosophy can be found – have a look at these
for more background information.

http://plato.stanford.edu/entries/connectionism/
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agent is able to represent that aRb, it is also able to represent that bRa, etc.). This
capacity is hypothesized to be due to the combinatorial properties of languages of
mental symbols based on a recursive grammar. A cognitive agent that conforms
to the symbolic computation paradigm has the belief that ϕ if and only if a cor-
responding sentence ϕ is stored in the agent’s symbolic knowledge base. The rules
that govern cognitive processes according to the symbolic computation paradigm are
either represented within the cognitive agent as symbolic entities themselves, or they
are hard-wired. Inference processes are taken to be internalizations of derivation
steps within some logical system, and the alleged “systematicity” of inferences (see
again [21]) is explained by the internal representation or hard-wiring of rules which
are only sensitive to the syntactic form of sentential representations.

Cognition by artificial neural networks, on the other hand, belongs to the so-
called dynamical systems paradigm of cognitive science which can be summarized
by what van Gelder [59] calls the “dynamical hypothesis”: “for every kind of cog-
nitive performance exhibited by a natural cognitive agent, there is some quantitative
[dynamical] system instantiated by the agent at the highest relevant level of causal
organization [i.e., at the level of representations], so that performances of that kind
are behaviors of that system” [59, p. 622]. A dynamical system may be regarded
as a pair of a state space and a set of trajectories, such that each point of the
space corresponds to a total cognitive state of the system, and every point of the
space lies precisely on one trajectory. If a certain point corresponds to the system’s
total cognitive state at some time, the further evolution of the system follows the
trajectory emanating at this point. Usually, such systems are either defined by
differential equations, or by difference equations, defined over the points of the
state space: in the first case one speaks of continuous dynamical systems with
continuous time, while in the latter case one speaks of discrete dynamical systems
with discrete time. In the discrete case, the set of trajectories may be replaced by
a state-transition mapping, such that each trajectory is generated by the iterated
application of the mapping. A cognitive dynamical system is a dynamical system
with representations, i.e., where states and state transitions can be ascribed content
or interpretation. The dynamic systems paradigm assumes that intelligent cognition
takes place in the form of state-transitions in quantitative systems, i.e., systems in
which a metric structure is associated with the points of the state space, and where
the dynamics of the system is systematically related to the distances measured by
the metric function. The distances between points may be regarded as a measure of
their similarity qua total cognitive states. Moreover, the typical dynamical systems
that are studied within the dynamical systems paradigm also have a vector space
structure, and thus they “support a geometric perspective on system behaviour” [59,
p. 619].

Connectionism is the most important movement within the dynamical systems
paradigm: Artificial neural networks are the dynamical systems that the connection-
ists are interested in. Smolensky [54] characterizes connectionism by the following
hypotheses: (i) “The connectionist dynamical system hypothesis: The state of the
intuitive processor at any moment is precisely defined by a vector of numerical
values (one for each unit). The dynamics of the intuitive processor are governed
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by a differential equation. The numerical parameters in this equation constitute the
processor’s program or knowledge. In learning systems, these parameters change
according to another differential equation.” (ii) “The subconceptual unit hypothesis:
The entities in the intuitive processor with the semantics of conscious concepts of
the task domain are complex patterns of activity over many units. Each unit partic-
ipates in many such patterns.” (iii) “The subconceptual level hypothesis: Complete,
formal, and precise descriptions of the intuitive processor are generally tractable
not at the conceptual level, but only at the subconceptual level.” The subconceptual
level is the level of analysis that is preferred by the connectionist paradigm, or, as
Smolensky expresses it, by the subsymbolic paradigm; it lies “below” the conceptual
level that is preferred by the symbolic computation paradigm, but “above” the neural
level preferred by neuroscience.

Claim (i) proves connectionism to belong to the dynamical systems paradigm.
The subconceptual unit hypothesis (ii) and the subconceptual level hypothesis
(iii) highlight the main differences between the old McCulloch & Pitts approach
presented above and modern day connectionism: by (ii), single nodes or single
connections in a neural network are normally not supposed to carry any meaning
at all; the representing units are distributed patterns of activation that involve a
great number of nodes or even the network topology as a whole (see van Gelder
[60] on “Distributed versus local representation”). In more metaphorical terms:
there is not generally anything like a “grandmother cell”, i.e., a single neuron that
would correspond to a very complex formula which describes your grandmother
and which would fire if and only if your grandmother were perceived. Rather,
your grandmother’s being perceived is represented by some complex pattern of
activation which spreads throughout parts of the network at the time of perception.
Furthermore, by (iii), if symbols can be attached to the activation patterns of nodes
or to some other “global” aspects of neural networks at all, the transitions from
one representing item – one pattern – to another will no longer be effected on
the level of these representing items themselves but rather on the sub-symbolic
level of nodes and edges. Therefore, for connectionists in the sense described,
it seems impossible to translate the computations on the sub-symbolic level into
sequences of rules on the symbolic level, let alone into logical rules which apply
to complex symbolic expressions. Thus, McCulloch and Pitts’ original logical

approach to neural networks became something like the paradigmatic antagonist of
the movement, and hence it had to be given up, or so it seemed. Instead of analyzing
cognition in terms of localized representations of formulas – “hard constraints” –
Smolensky [54, p. 18], suggests that connectionist cognition proceeds by means
of “soft constraints”: “Formalizing knowledge in soft constraints rather than hard
rules has important consequences. Hard constraints have consequences singly; they
are rules that can be applied separately and sequentially – the operation of each
proceeding independently of whatever other rules may exist. But soft constraints
have no implications singly; any one can be overridden by the others. It is only
the entire set of soft constraints that has any implications. Inference must be a
cooperative process [. . .] Furthermore, adding additional soft constraints can repeal
conclusions that were formerly valid: Subsymbolic inference is fundamentally
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nonmonotonic.” If human reasoning is as connectionists describe it, then McCulloch
and Pitts’ account of reasoning in terms of neural network implementations of truth
functions in classical logic can hardly be adequate.

Even if this very last statement about McCulloch and Pitts’ theory is true, this
does not yet entail that the symbolic computation paradigm and the dynamical
systems paradigm themselves have to be completely mutually exclusive, i.e.: sig-
nificant aspects of the two paradigms could actually turn out to be compatible with
each other. As Gärdenfors [23, p. 67f], suggests, the two paradigms might even be
complementing each other: “they are best viewed as two different perspectives that
can be adopted when describing the activities of various computational devices.”
Results on symbol manipulation in networks (see e.g. [12, 13, 55]), neural networks
approaches to grammar representation (see e.g. [33, 56]), and hybrid systems that
involve both neural network and symbolic components (see e.g. [10, 49]) indicate
that there might be continuous paths of transition from the one paradigm to the other.
In particular, the analysis of neural networks in terms of logical laws and rules has
become a topic of research again in recent years, and on it we are going to focus
now.

Here are some relevant references on logical accounts of neural network cogni-
tion (they can also be found in the bibliography – note that this is a very incomplete
list though!):

• A.S. d’Avila Garcez, K. Broda, and D.M. Gabbay [15].
• A.S. d’Avila Garcez, K.B. Broda, and D.M. Gabbay [16].
• A.S. d’Avila Garcez, L.C. Lamb, and D.M. Gabbay [17].
• A.S. d’Avila Garcez et al. [18].
• S. Bader and P. Hitzler [3].
• C. Balkenius and P. Gärdenfors [4].
• R. Blutner [9].
• E.-A. Dietz, S. Hölldobler, and L. Palacios [19].
• P. Hitzler, S. Hölldobler, and A.K. Seda [26].
• S. Hölldobler [27].
• S. Hölldobler [29].
• S. Hölldobler and Y. Kalinke [28].
• H. Leitgeb [35].
• H. Leitgeb [37].
• H. Leitgeb [38].
• R. Ortner and H. Leitgeb [46].
• K. Stenning and M. van Lambalgen [57]

The main idea behind all of these theories is that if classical logic is replaced by
a different logical calculus – in particular, by a system of nonmonotonic reasoning
that is closer to the commonsense reasoning that our brains are usually involved in –
then a logical description or characterization of neural network states and processes
might be possible in a way, such that: (i) “The connectionist dynamical system
hypothesis” is satisfied, maybe even in combination with (ii) “The subconceptual
unit hypothesis”, yet (iii) “The subconceptual level hypothesis” turns out to be
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false (for the precise statements of these theses see above). In other words: Logical
descriptions of reasoning might become tractable again at the conceptual level, even
when reasoning is realized in terms of the dynamics of an artificial neural network.3

Here is a brief, and very sketchy, guide to the literature as cited above:
A.S. d’Avila Garcez et al. [18], Bader and Hitzler [3], and Hölldobler [29] are

very useful survey papers. Many authors and papers in this area of research can be
found by checking the websites of the “NeSy” events in the workshop series on
Neural-Symbolic Learning and Reasoning, which has been an ongoing endeavour
since 2005.

The Hölldobler et al. group in Dresden has done pioneering work on how
to generate neural networks from logic programs.4 (See also Stenning and van
Lambalgen, Chapter 7.) A logic program consists of rules which may look like this:

CanF ly(T weety) ⇐ Bird(T weety),¬Penguin(T weety)

This is to be read as: if one has the information that Tweety is bird but one lacks

the information that Tweety is a penguin, then one may infer that Tweety can fly.
‘⇐’ here is much like the (non-material) if-then symbol in the sequent calculus
of classical logic which connects the two sides of a sequent. Rational inferences
that are based on such rules are nonmonotonic: given additional information, such
as that Tweety is in fact a penguin, the inference would not longer be supported.
Note that negation here is what is called default negation: e.g.,¬Penguin(T weety)

expresses the absence of the positive information Penguin(T weety). What Höll-
dobler et al. managed to show was that it is possible to transform such logic
programs into artificial neural networks, so that: the atomic formulas used in a
given logic program correspond to the input nodes and to the output nodes in a
feed-forward network; the rules in the logic program correspond to the nodes in
the hidden layers; positive and negative information in the bodies of rule clauses
correspond to excitatory and inhibitory connections, respectively; and additional
feedback connections from the output nodes to the input nodes enable the network
to converge on a model for the rules of the logic program, such that the model
corresponds to a stable network state.

The group around d’Avila Garcez et al. has built on, and added to, this work,
amongst others (i) by suggesting extraction methods that reverse the process just
described by generating logic programs from (trained) neural networks, and (ii)
by extending the results to logic programs that involve modal operators or that
are based on intuitionistic logic. What the theories of these two groups have in
common, too, is that they lie on the consistency-based fixed point operator side

3See Brewka et al. [11] for a very nice overview of nonmonotonic reasoning, Makinson [44] for a
comprehensive logical treatment of the subject, and Schurz and Leitgeb [53] for a compendium of
articles on cognitive aspects of nonmonotonic reasoning. Ginsberg [24] is an outdated collection
of articles but it is still very useful if one wants to see what nonmonotonic reasoning derives from.
4Brewka et al. [11] includes a very clear and accessible introduction to logic programming.



7 Neural Network Models of Conditionals 155

of nonmonotonic reasoning: explained in terms of the rule above, as long as it is
consistent to assume that Tweety is not a penguin, one may infer that Tweety is
bird; what one is ultimately supposed to believe given evidence is computed by
generating a fixed point of an immediate-consequence operator that is determined
by the logic program.5

However, there is also the more recent preference-based nonmonotonic inference

relation side of nonmonotonic reasoning, which became prominent through the now
classical articles by Kraus, Lehmann, and Magidor [32] and Lehmann and Magidor
[34]. In these approaches, metalinguistic statements such as

Bird(T weety) |∼CanF ly(T weety)

are considered which are now interpreted as saying: in the most preferred (most

normal, most plausible) worlds in which Tweety is a bird, Tweety is also able to
fly. Here, ‘ |∼ ’ is a binary metalinguistic predicate which is syntactically like the
symbol ‘|=’ for classical logical consequence. If one replaces such metalinguistic
statements by conditionals in the object language, such as by

Bird(T weety) ⇒ CanF ly(T weety),

and one makes the preference-based semantics for these conditionals precise, the
resulting semantics ends up being very close indeed to standard semantics for
conditional logic as developed by philosophical logicians since the 1960s and
1970s (about which more in the next section). This preference-based approach is
characterized by having much nicer logical properties than its consistency-based
fixed-point operator counterpart. For instance, in all of the preference-based calculi,
the following two rules (now spelled out in terms of conditionals)

ϕ ⇒ ψ, ϕ ∧ ψ ⇒ ρ

ϕ ⇒ ρ
(Cautious Cut)

ϕ ⇒ ψ, ϕ ⇒ ρ

ϕ ∧ ψ ⇒ ρ
(Cautious Monotonicity)

are logically valid. The combination of these two rules is usually referred to by
the term ‘cumulativity’ (see [32]). Cumulativity expresses that adding inferred
formulas to the evidence neither increases nor decreases the inferential strength of
the evidence. However, the rule

ϕ ⇒ ρ

ϕ ∧ ψ ⇒ ρ
(Monotonicity)

5 Almost all of the classical approaches to nonmonotonic reasoning from the 1980s, such as default
logic, inheritance networks, truth maintenance systems, circumscription, and autoepistemic logic
belong to this class of nonmonotonic reasoning mechanisms.
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is not logically valid anymore, which is why one cannot simply infer from

Bird(T weety) ⇒ CanF ly(T weety)

that also

Bird(T weety) ∧ Penguin(T weety) ⇒ CanF ly(T weety)

holds. In contrast with the former approach to nonmonotonic reasoning, exceptions
do not have to be stated explicitly anymore in the relevant rules or conditionals.6

It is nonmonotonic inference in this latter preferential sense that Balkenius and
Gärdenfors represented in terms of state transitions within artificial neural networks,
and which they studied by means of concrete experiments in computer simulations.
Leitgeb’s work builds on Balkenius and Gärdenfors’ approach but adds soundness
and completeness proofs for systems of nonmonotonic reasoning or conditional
logic based on a corresponding neural network semantics. Blutner also starts from
Balkenius and Gärdenfors but represents nonmonotonic inferences in so-called
weight-annotated Poole systems by means of state-transitions in Hopfield networks,
relating the results so obtained to Harmony or Optimality Theory in the sense
of Smolensky and Legendre [56]. One point of difference between Blutner’s and
Leitgeb’s theories – and one of agreement between Blutner’s theory and the theories
by Hölldobler et al. and d’Avila Garcez et al. – is that while Blutner represents
atomic formulas in neural networks in terms of nodes, Leitgeb represents atomic
formulas as distributed patterns of activity. Accordingly, generally, connections
between nodes cannot be assigned any local symbolic interpretation anymore in
Leitgeb’s account. Since distributed representation was supposed to be one of the
hallmarks of connectionism – in correspondence with (ii) “The subconceptual unit
hypothesis” from above – we will concentrate on Leitgeb’s theory in Sect. 7.4, where
we will present the theory as a neural networks semantics for conditionals.

If any of these logical accounts of neural network cognition were to prove
successful in the long run (logically, philosophically, and in applications), the gap
between the dynamic systems paradigm and the symbolic computation paradigm in
cognitive science would be bridged, or, at the very least, diminished. This would
also constitute an important step in understanding what neural networks actually
do; otherwise, we might be stuck with an ingenious technical machinery that maps
an input to its desired output, but where the process that leads from the one to the
other remains uninterpreted, unexplained, and unjustified. While it is certainly true
that current implementations of machine learning do not themselves rely on the
application of logical methods (see Wheeler [61]), logic might still play a role in the
rational reconstruction and assessment of machine learning: in checking whether

6For more on the differences between the two sides of nonmonotonic reasoning, see Brewka et al.
[11].
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the “black box” conforms to norms of rationality and, perhaps, morality. Progress on
the logic of neural networks might also lead to new insights in uncertain reasoning,
induction, and even the philosophy of science – we will return to this in the final
section of this article, which will include a list of open questions.7

7.3 A Brief Recap on Conditionals

Before I turn to a concrete example of a neural network semantics for conditionals,
let me say a bit more about the conditionals that will be involved. Conditionals
are sentences of an ‘if. . . then. . .’ form; so, the logical form of a conditional is an
expression of the form

If ϕ, then ψ

or, more formalized,

ϕ ⇒ ψ

where ϕ is called the ‘antecedent’ of the conditional and ψ its ‘consequent’; both
the antecedent and the consequent of a conditional are sentences. (See also John
Cantwell’s chapter 6 on conditionals in this handbook.)

Conditionals are crucial in everyday communication, especially when we want
to convey information that goes beyond the currently present perceptual situation.
Conditionals also play a major role in philosophical theories about dispositions,
causality, laws, time, conditional norms, probability, belief, belief revision, and so
forth. Finally, conditionals are closely related closely to quantifiers, such as ‘All ϕ

are ψ’, ‘There are ϕ which are ψ’, ‘Most ϕ are ψ’, etc.8 But note that in these
latter cases, ‘ϕ’ and ‘ψ’ are place holders for open formulas – formulas with a free
variable – rather than sentences.

Amongst conditionals in natural language, usually the following distinction is
made9:

1. If Oswald had not killed Kennedy, then someone else would have.
2. If Oswald did not kill Kennedy, then someone else did.

7We should add that there are also results concerning the description of neural network states
and processes by means of classical logic, over and above the traditional McCulloch and Pitts
approach: see Pinkas [48] and Bechtel [5] for examples.
8See van Benthem [58] for a nice discussion of this relationship between conditionals and
quantifiers; more can be found by consulting the theory of generalized quantifiers – see e.g. Peters
and Westerstahl [47].
9The following famous example is due to Ernest Adams.
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2 is accepted by almost everyone, whilst we do not seem to know whether 1 is true.
This invites the following classification: a conditional such as 2 is called indicative,
whereas a conditional like 1 is called subjunctive. In conversation, the antecedents of
subjunctive conditionals are often assumed or presupposed to be false: in such cases,
one speaks of these subjunctive conditionals as counterfactuals. Roughly, indicative
conditionals represent the denoted act or state as an objective fact, while subjunctive
conditionals represent a denoted act or state not as fact but as contingent or possible.
Subjunctive and indicative conditionals may have precisely the same antecedents
and consequents (as in the example above) while differing only in their conditional
connectives, i.e., their ‘if’-‘then’ occurrences having different meanings.

When logic developed into a serious philosophical and mathematical discipline
in the late nineteenth and the early twentieth century, logicians quickly came
up with two suggestions of how to formalize conditionals, whether indicative or
subjunctive:

• ϕ ⊃ ψ : Formalization by means of material conditionals (material implications).
• ϕ�ψ : Formalization by means of strict conditionals (strict implications).

From an axiomatic point of view, the meaning of the former is given by any of the
typical deductive systems for classical propositional logic. The logical systems for
the latter were investigated intensively by C.I. Lewis, however it was only after the
axiomatic systems of normal modal logic had been developed by S. Kripke that the
analysis of ϕ�ψ in terms of �(ϕ ⊃ ψ) emerged as a standard (where � is the
necessity operator studied by modal logicians). On the semantic side, the meaning
of⊃ is given by its well-known truth table, whereas the semantics of� can be stated
on the basis of the usual Kripkean possible worlds semantics of �.

These formalizations of the ‘if. . . then. . .’ in classical logic proved to be
enormously successful, especially in the formalization of mathematical theories
and of fragments of empirical theories. However, there was still a problem: both
⊃ and � are monotonic, i.e., the rule ϕ⇒ψ

ϕ∧ρ⇒ψ
is logically valid if ‘⇒’ is replaced

by either of the two connectives. On the other hand, there seem to be many
instances of indicative and subjunctive conditionals in natural language which are
nonmonotonic, i.e., for which the rule ϕ⇒ψ

ϕ∧ρ⇒ψ
should not assumed to be valid.

E.g., ‘If it rains, I will give you an umbrella’ does not seem to logically imply
“If it rains and I am in prison, I will give you an umbrella”, nor does ‘If it
rained, I would give you an umbrella’ seem to logically imply “If it rained and
I were in prison, I would give you an umbrella”. Accordingly, add e.g. ‘. . .and
Kennedy in fact survived all attacks on his life’ to the antecedent of ‘If Oswald
did not kill Kennedy, then someone else did’ and the resulting conditional does not
seem acceptable anymore. Therefore, philosophical logicans started to investigate
new logical systems in which monotonicity (or strengthening of the antecedent)
would not turn out to be logically valid. Lewis [43] is the classic treatise on
counterfactuals as nonmonotonic conditionals, in which subjunctive conditionals
are evaluated based on similarity orderings of possible worlds (which are similar
to the preference orderings of possible worlds used in nonmonotonic reasoning).
Since the nonmonotonicity phenomenon had already been well known in probability
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theory – a conditional probability P(Y |X) being high does not entail the conditional
probability P(Y |X ∩ Z) being high – it is not surprising that some of the modern
accounts of conditionals instead relied on a probabilistic semantics: indeed, Adams
[1] famously developed a probabilistic theory of indicative conditionals that does
not support monotonicity (see Adams [2] for a more general overview of probability
logic).10

It is these axiomatic and semantic systems of conditionals which got rediscovered
a bit later (note: philosophy was first!) by theoretical computer scientists who
initiated the field of nonmonotonic reasoning. For assume you want to represent in
a computer system what happens to your car when you turn the ignition key: well,
you might say, the car starts, so ‘if the ignition key is turned in my car, then the car
starts’ seems to describe the situation properly. But what if the gas tank is empty?
You better improve your description by saying ‘if the ignition key is turned in my
car and the gas tank is not empty, then the car starts’. However, this could still be
contradicted by a potato that is clogging the tail pipe, or by a failure of the battery, or
by an extra-terrestrial blocking your engine, or. . . The possible exceptions to ‘if the
ignition key is turned in my car, then the car starts’ are countless, heterogeneous,
and unclear. Nevertheless, we seem to be able to communicate information with
such simple conditionals, and, equally importantly, we are able to reason with them
in a rational manner. In order to do so we make use of a little logical “artifice”:
we do not really understand ‘if the ignition key is turned in my car, then the car
starts’ as expressing that it is not the case that the ignition key is turned and the
car does not start – after all, what is negated here might indeed be the case in
exceptional circumstances – but rather that normally, or with a high probability,
given the ignition key is turned, the car starts. Instead of trying to enumerate the
indefinite class of exceptions in the if-part of a material or strict conditional, we
tacitly or explicitly qualify ‘if the ignition key is turned in my car, then the car starts’
as holding only in normal or likely circumstances, whatever these circumstances
may look like. As a consequence, the logic of such normality claims again differs
from the logic of material or strict conditionals: ‘if Tweety is a bird, then [normally]
Tweety is able to fly’ is, presumably, true, but ‘if Tweety is a penguin bird, then
[normally] Tweety is able to fly’ is not, and neither is ‘if Tweety is a dead bird, then
[normally] Tweety is able to fly’ or ‘if Tweety is a bird with his feet set in concrete,
then [normally] Tweety is able to fly’. So computer scientists found themselves
in need of describing reality in terms of nonmonotonic normality conditionals on
the basis of which computers should be able to draw justified inferences about the
everyday world while being unaffected by the omnipresence of exceptions. And this
need eventually led to conclusions very similar to those drawn by philosophers who
cared about the logic and semantics of conditionals in natural language.

In the next section we will suggest that so-called interpreted dynamical systems

may be used to yield a semantics for nonmonotonic conditionals. The logical

10For a textbook-like overview of the philosophical literature on indicative and subjunctive
conditionals, see Bennett [7].
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systems which turn out to be sound and complete with respect to such semantics are
standard systems of conditional logic which have been studied both in philosophical
logic and nonmonotonic reasoning. Interpreted artificial neural networks will be
shown to be the paradigm case examples of such interpreted dynamical systems.
Although the conditionals that are satisfied by such interpreted artificial neural
networks are represented distributedly by these networks, the logical rules they
obey are precisely the rules of systems which had been developed in order to make
computers cope with the real world by means of symbolic computation, and which
had been investigated even before by philosophers who intended to give a proper
logical analysis of indicative and subjunctive conditionals. Since the dynamics
of state changes in interpreted neural networks can be described correctly and
completely by sets of conditionals that are closed under the rules of such logical
systems, neural networks may be understood as nonmonotonic reasoners who, when
they evolve under an input towards a state of “minimal energy”, draw conclusions
that follow from premises in all minimally abnormal cases.

7.4 From Dynamical Systems to Conditionals: Interpreted

Dynamical Systems

Following Gärdenfors’ proposal mentioned above, we will study cognitive dynam-
ical systems from two complementary perspectives. On the one hand, cognitive
dynamical systems such as neural networks can be described in terms of differential
or difference equations, i.e., as dynamical systems. On the other hand, they
exemplify cognitive states and processes that can be ascribed propositional contents
which may in turn be expressed by sentences or formulas; so they are also cognitive

agents or reasoners.
Here is an example. For the sake of simplicity, let us forget about the weights

again that are attached to the edges of a typical neural network, and let us also
assume that the activation functions that are defined for the nodes in such a network
are as straight-forward and simple as in the case of the McCulloch-Pitts networks.
Then we might, e.g., end up with a simple qualitative neural network that looks like
this11:

n1

n2

n3

n4

11Such networks are called ‘inhibition networks’ in Leitgeb [35].
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This is a network with four nodes. n1 is connected both to n2 and n3 by excitatory
connections. In contrast with traditional McCulloch-Pitts networks, there is also an
inhibitory connection that leads from n4 to the excitatory connection from n1 to n2.
So, if n4 is active, this is not going to directly inhibit the activation of some other
node at the next point of time, but instead any activity by n4 will have the effect that
no excitatory stimulus will be able to pass the edge from n1 to n2 at the next point
of time.

Now, say, node n1 gets activated by some external stimulus, e.g., by some sensory
signal coming from outside. We will assume that such inputs always remain constant
for sufficiently long, hence, in the present example, one should think of n1 as being
activated from the outside until the computational process that we are interested in
has delivered its final output. Formally, we can describe what is going on in the
following way: the network is in an initial state s0; e.g., the state in which no node
fires. This state s0 may be regarded as a mapping from the set of nodes into the set
{0, 1}, such that each node is mapped to 0 or “inactivity”. Furthermore, the network
is fed an input s∗ that makes n0 fire but which activates no other node: it is useful
to identify such an input with the network state that the input would generate just
by means of external influences on the network. Thus, in our case, s∗ will be the
state in which the node n0 is mapped to 1 and in which all other nodes are mapped
to 0. The resulting dynamics of the network can be described by means of a state
transition mapping Fs∗ that is given relative to the (constant) incoming input – s∗ –
and which is applied to the initial state s0 in order to determine the next state s1 of
the network. Since no node is active in s0, the only nodes which will be active in s1
will be those activated by the input itself, i.e., n1. So we have:

n1

n2

n3

n4

Input s

s1 Fs (s0)

Accordingly, in order to determine the next state s2 of the network, the state
transition mapping Fs∗ is applied again. The state transition will be such that the
activity of n1 in s1 spreads to n2 and n3, which yields:

n1

n2

n3

n4

Input s

s2 Fs (s1)
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If the state transition mapping is applied again, then nothing is going to happen
anymore (until the input to the network changes): hence, s3 = Fs∗(s2) = s2.
Connectionists regard such a stable or equilibrium state as a network’s “answer”
to the “question” posed by the input. So, s2 – the state in which only n1, n2, n3 fire
– is the output that belongs to the input s∗. As we will also say, s2 is an s∗-stable
state.

What would happen if we applied a different input to the same initial state? Let
s∗∗ be the state in which both n1 and n4 fire, i.e., where the external input now causes
these two nodes to become active. Then we have, by the same token as before:

n1

n2

n3

n4

Input s

s
1

Fs (s0)

But now the state transition will be such that the activity of n4 in s1 blocks the
excitation of n2 by n1. In other words:

n1

n2

n3

n4

Input s

s
2

Fs (s1)

Once again, a stable state is reached after two computation cycles, and this time
the output to the input state s∗∗ is the state in which n1, n3, n4 fire, i.e., s′2 is an
s∗∗-stable state.

What we have said so far constitutes a typical description of (simplified) network
processes in the language of the theory of dynamical systems. Out goal is now
to complement this description by one according to which cognitive dynamical
systems have beliefs, draw inferences, and so forth. So if x is a neural network,
we want to say things like

• x believes that ¬ϕ

• x infers that ϕ ∨ ψ from ϕ
...
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where ϕ and ψ are sentences. Our task is thus to associate states of cognitive
dynamical systems with sentences or propositions: the states of such dynamic
systems ought to carry information that can be expressed linguistically.

Let us make this idea more precise. In order to do so, we first have to abstract
from the overly simplified dynamical systems that were given by the qualitative
neural networks sketched above. Indeed, we want to leave open at this point what
our dynamical systems will be like – whether artificial neural networks or not – as
long as they satisfy a few abstract requirements.

Here is what we will presuppose: we are dealing with a discrete dynamical
systems with a set S of states. On S, a partial order12 � is defined, which we will
interpret as an ordering of the amount of information that is carried by the states
in question; so, s � s′ will be read as: s′ carries at least as much information as
s does. We will also assume that � is “well-behaved” in so far as for every two
states s and s′ there is a uniquely determined state sup(s, s′) (i) that carries at least
as much information as s, (ii) that carries at least as much information as s′, and
(iii) which is the state with the least amount of information among all those states
for which (i) and (ii) hold. Formally, such a state sup(s, s′) is the supremum of s

and s′ with respect to the partial order �. Finally, an internal next-state function is
defined for the dynamical system, such that this next-state function is like the state
transition mapping described above except that – for the moment – we will disregard
possible inputs to the system. Hence, in the examples above, an application of the
corresponding next-state mapping would lead to the transmission of the activity of
n1 to n3 once n1 gets activated, but it will never lead to any activation of n1 itself
since n1 can only be activated by external input.

Summing up, we determine what is called an ‘ordered discrete dynamical
system’ by Leitgeb [38]:

Definition 1 S = 〈S, ns,�〉 is an ordered discrete dynamical system if and
only if

1. S is a non-empty set (the set of states).
2. ns : S → S (the internal next-state function).
3. � ⊆ S × S is a partial order (the information ordering) on S, such that for all s,

s′ ∈ S there is a supremum sup(s, s′) ∈ S with respect to �.

In the example networks above, we had S = {s | s : N → {0, 1}} with N =
{n1, n2, n3, n4} being the set of nodes. In order to define a suitable information
ordering � on S, we can, e.g., use the following idea: the more nodes are activated
in a state, the more information the state carries. Thus we would have, e.g.:

12A partial order � (on S) is a reflexive, antisymmetric, and transitive binary relation, i.e.: for all
s ∈ S: s � s; for all s, s′ ∈ S: if s � s′ and s′ � s then s = s′; for all s1, s2, s3 ∈ S: if s1 � s2 and
s2 � s3 then s1 � s3.
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n1

n2

n3

n4

n1

n2

n3

n4

If � is defined in this way, then sup(s, s′) turns out to be the union of the
activation patterns that correspond to s and s′; in such a case one may also speak of
sup(s, s′) as the “superposition of the states s and s′”. The internal dynamics of the
network is captured by the next-state mapping ns that is determined by the pattern
of excitatory and inhibitory edges in the network.

Just as in the examples above, we are now ready to also consider an input, which
is regarded to be represented by a state s∗ ∈ S, and which is supposed to be held
fixed for a sufficiently long duration of time. The state transition mapping Fs∗ can
then be defined by taking both the internal next-state mapping and the input s∗ into
account: the next state of the system is given by the superposition of s∗ with the
next internal state ns(s), i.e.,

Fs∗(s) := sup(s∗, ns(s)).

The dynamics of our dynamical systems is thus determined by applying Fs∗

iteratively to the initial state. Fixed points sstab of Fs∗ , i.e., where Fs∗(sstab) = sstab,
are again regarded to be the “answers” the system gives to s∗; any such state sstab

is called s∗-stable (relative to the given ordered discrete dynamical system). Note
that in general there may be more than just one stable state for the state transition
mapping Fs∗ that is determined by the input s∗ (and by the given dynamical system),
and there may also be no stable state at all for Fs∗ : in the former case, there is more
than just one “answer” to the input, in the latter case there is no “answer” at all. The
different stable states may be reached by starting the computation in different initial
states of the system.

Finally, we are ready to assign formulas to the states of ordered discrete dynam-
ical system. These formulas are supposed to express the content of the information
that is represented by these states. For this purpose, we fix a propositional language
L which (i) includes finitely many propositional variables p, q, r, . . ., and (ii) is
closed under the application of the standard classical propositional connectives,
i.e., ¬,∧,∨,⊃,⊤,⊥, where ⊤ is the logical verum (a tautology) and ⊥ is the
logical falsum (a contradiction). The formulas of L do not yet include any of the
nonmonotonic conditional signs such as⇒ that we are interested in. The assignment
of formulas to states is achieved by an interpretation mapping I. If ϕ is a formula
in L, then I(ϕ) is the state that carries exactly the information that is expressed
by ϕ, i.e., not less or more than what is expressed by ϕ. So we presuppose that
for every formula in L there is a uniquely determined state the total information
of which is expressed by that formula. If expressed in terms of belief, we can
say that in the state I(ϕ) all the system believes is that ϕ, i.e., the system only
believes ϕ and all the propositions which are contained in ϕ from the viewpoint
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of the system (compare [42] on the modal logic of the ‘all I know’ operator).
We will not demand that every state necessarily receives an interpretation but just
that every formula in L will be the interpretation of some state. Furthermore, not
just any assignment of states to formulas will do, but we will additionally assume
certain postulates to be satisfied which will guarantee that I is compatible with the
information ordering that was imposed on the states of the system beforehand. An
ordered discrete dynamical system together with such an interpretation mapping
is called an ‘interpreted ordered system’ (cf. [38]). This is the definition stated in
detail:

Definition 2 SI = 〈S, ns,�,I〉 is an interpreted ordered system if and only if

1. 〈S, ns,�〉 is an ordered discrete dynamical system.
2. I : L→ S (the interpretation mapping) is such that the following postulates are

satisfied:

(a) Let T HI = {ϕ ∈ L |for all ψ ∈ L: I(ϕ) � I(ψ) }:
then it is assumed that for all ϕ,ψ ∈ L: if T HI |= ϕ ⊃ ψ , then I(ψ) �

I(ϕ).
(b) For all ϕ,ψ ∈ L: I(ϕ ∧ ψ) = sup(I(ϕ),I(ψ)).
(c) For every ϕ ∈ L: there is an I(ϕ)-stable state.
(d) There is an I(⊤)-stable state sstab, such that I(⊥) � sstab.

SI satisfies the uniqueness condition if and only if for every ϕ ∈ L there is
precisely one I(ϕ)-stable state.

How can these postulates be justified? First of all, T HI is the set of formulas
that are the interpretations of states which carry less information than, or an
equal amount of information as, any other state with an interpretation. Hence, if
ϕ ∈ T HI, then the information expressed by ϕ is contained in every interpreted
state of the system. If spelled out in terms of belief, we may say: ϕ is believed
by the system in every state that has an interpretation. For the same reason, such
a belief cannot be revised by the system – it is “built” into the interpreted ordered
system independently of its current input or state, as long as the state it is in has
an interpretation at all. In more traditional philosophical terms, we might say that
every such formula is believed a priori by the system. So if a material conditional
ϕ ⊃ ψ follows logically from T HI, then – since (rational) belief is closed under
logical deduction – ϕ ⊃ ψ must also be (rationally) believed by the system in every
interpreted state whatsoever; indeed we may think of such a conditional as a strict a
priori conditional: it is a material conditional which is epistemically necessary in the
sense of being entailed by T HI, hence, if � expresses entailment by T HI, then
for every conditional ϕ ⊃ ψ that is derivable from T HI it holds that �(ϕ ⊃ ψ).
But if this is so, then the system must regard the propositional information that is
expressed by ψ to be included in the propositional information that is expressed by
ϕ – from the viewpoint of the system, ϕ must express a stronger proposition than
ψ . In this case, with respect to the information ordering of the system, the state that
belongs to ψ should be “below” the state that is associated with ϕ, or at worst the
two states should be equal in the information ordering. In other words, I(ψ) � I(ϕ)
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ought to be the case. That is exactly what is expressed by postulate 2a. T HI may be
interpreted as the set of “hard laws” or “strict laws” represented by the interpreted
system.

Postulate 2b is more easily explained and justified: the state that belongs to a
conjunctive formula ϕ ∧ ψ should be the supremum of the two states that are
associated with the two conjuncts ϕ and ψ , just as the proposition expressed by
a conjunctive sentence is the supremum of the propositions expressed by its two
conjuncts in the partial order of logical entailment.

Postulate 2c makes sure that we are dealing with systems that have at least one
“answer” – whether right or wrong – to every “question” posed to the system.

Postulate 2d only allows for interpreted ordered systems which do not end up
believing a contradiction when they receive a trivial or empty information (i.e., ⊤)
as an input.

Finally, we are in the position to define what it means for a nonmonotonic

conditional to be satisfied by an interpreted ordered system. Consider an arbitrary
conditional ϕ ⇒ ψ where ϕ and ψ are members of our language L from above,
and where ⇒ is a new nonmonotonic conditional sign. Then we say that a system
satisfies ϕ ⇒ ψ if, and only if, whenever the state that is associated with ϕ is fed
into the system as an input, i.e., whenever the input represents a total belief in ϕ, the
system will eventually end up believing ψ in its “answer states”, i.e., the state that
is associated with ψ is contained in all the states that are stable with respect to this
input. If we collect all such conditionals ϕ ⇒ ψ satisfied by the system, then we get
what we call the ‘conditional theory’ corresponding to the system. In formal terms:

Definition 3 Let SI = 〈S, ns,�,I〉 be an interpreted ordered system:

1. SI |= ϕ ⇒ ψ if and only if for every I(ϕ)-stable state sstab: I(ψ) � sstab.
2. T H⇒(SI) =

{
ϕ ⇒ ψ

∣∣SI |= ϕ ⇒ ψ
}

(the conditional theory corresponding to SI).

T H⇒(SI) may be interpreted as the set of “soft laws” or “normality laws”
represented by the interpreted system. Leitgeb [40] gives an interpretation of
the cognitive states that correspond to such conditionals in terms of so-called
conditional beliefs, where conditional beliefs are to be distinguished conceptually
from beliefs in conditionals.

Here is an example: consider again the simple qualitative network which we
presented as a discrete ordered dynamical system above. In order to turn it into an
interpreted ordered system, we have to equip it with an interpretation mapping I
that is defined on a propositional language L. Let, e.g., L be determined by the set
{b, f,w, p} of propositional variables (for ‘Tweety is a bird’, ‘Tweety is able to fly’,
‘Tweety has wings’, ‘Tweety is a penguin’). We choose the following interpretation
mapping: let I(b) = {n1},I(f ) = {n1, n2},I(w) = {n1, n3},I(p) = {n1, n4}, and
I(¬ϕ) = 1 − I(ϕ), where the latter is to be understood in the way that whenever
a node is active in I(ϕ) then the same node is inactive in I(¬ϕ) and vice versa.13

13So 1 here is actually the constant 1-function, i.e., the function that maps each node to the
activation value 1.
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One can show that there is one and only one interpretation that has these properties
and which also satisfies the postulates in Definition 2. Note that we have assumed
I(¬ϕ) = 1 − I(ϕ) just for convenience, as it becomes easier then to pin down an
interpretation for our example. It is not implied at all by Definition 2 that the pattern
of active nodes that is associated with a negation formula ¬ϕ is actually identical
to the complement of the pattern of active nodes that belongs to the formula ϕ; this
is merely the way in which we have set up our example. One consequence of this
choice of I is that, e.g., the following material conditionals turn out to be members
of T HI: p ⊃ b, (p ∧ w) ⊃ b,¬b ⊃ ¬p, and so forth.

Reconsidering our example from above, the dynamics of the system which we
studied back then now turns out to have the following symbolic counterparts:

n1

n2

n3

n4

Input s

Total belief: b
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Obviously, there will be lots of “soft” if-then “laws” about birds and penguins
which this interpreted ordered system will get wrong. After all, it would be very
surprising indeed if a little network with just four nodes were able to represent all
of the systematic relationships between birds and penguins and flying and having
wings faithfully. But the example should suffice to give a clear picture of how the
definitions above are to be applied.

So we find that in this case T H⇒(SI) contains, e.g., b ⇒ f, b ⇒ w, b ⇒
(f ∧w), (b∨p)⇒ f, (b∧p)⇒ ¬f, p ⇒ b, p ⇒ ¬f without containing, e.g.,
b ⇒ p, (b∨p) ⇒ p, (b∧p) ⇒ f . In particular, we see that b ⇒ f ∈ T H⇒(SI)

while (b ∧ p)⇒ f �∈ T H⇒(SI).
What can be said in general terms about the conditional theories T H⇒ corre-

sponding to interpreted dynamical systems? Here is the answer from the logical
point of view:

Theorem 4 (Soundness of C)

Let SI = 〈S, ns,�,I〉 be an interpreted ordered system:

Then T H⇒(SI) is sound with respect to the rules of the system C of nonmono-

tonic conditional logic (see [32] for details on this system), i.e.:

1. For all ϕ ∈ L: ϕ ⇒ ϕ ∈ T H⇒(SI) (Reflexivity)

2. T H⇒(SI) is closed under the following rules: for ϕ, ψ , ρ ∈ L,
T HI|=ϕ↔ψ,ϕ⇒ρ

ψ⇒ρ
(Left Equivalence)

ϕ⇒ψ,T HI|=ψ⊃ρ

ϕ⊃ρ
(Right Weakening)

ϕ⇒ψ,ϕ∧ψ⇒ρ
ϕ⇒ρ

(Cautious Cut)

3. If SI satisfies the uniqueness condition (remember Definition 2), then T H⇒(SI)

is also closed under
ϕ⇒ψ,ϕ⇒ρ
ϕ∧ψ⇒ρ

(Cautious Monotonicity)

4. T H⇒(SI) is consistent, i.e., ⊤ ⇒ ⊥ /∈ T H⇒(SI).

So given the uniqueness assumption – an interpreted orderered system has a
unique answer to each interpreted input – the class of conditionals it satisfies is
closed under a well-known and important system of nonmonotonic conditional
logic, namely the system C of cumulative reasoning, which is given by the rules
listed above. Note that monotonicity, or strengthening of the antecedent, is not a
valid rule for interpreted systems: as our example from above has shown, there may
be formulas ϕ,ψ, ρ in L, such that the conditional ϕ ⇒ ψ is satisfied by a system
but ϕ ∧ ρ ⇒ ψ is not.

One can also show a corresponding completeness theorem for the system C with
respect to this interpreted ordered systems semantics for⇒:
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Theorem 5 (Completeness of C)

Let T H⇒ be a consistent theory of conditionals closed under the rules of C while

extending a given classical theory T H as expressed by the Left Equivalence and the

Right Weakening rules:

It follows that there is an interpreted ordered system SI = 〈S, ns,�,I〉, such

that T H⇒(SI) = T H⇒, T HI ⊇ T H, and SI satisfies the uniqueness condition.

This means that whatever conditional theory you might be interested in, as long
as it is closed under the rules of the system C, it is possible to find an interpreted
ordered system which satisfies precisely the conditionals contained in that theory.
These results can be found in Leitgeb [37].

It is also possible to extend these results into various directions. In particular,
some interpreted ordered systems can be shown to have the property that each of
their states s may be decomposed into a set of substates si which can be ordered in
a way such that the dynamics for each substate si is determined by the dynamics for
the substates s1, s2, . . . , si−1 at the previous point of time. Such systems are called
‘hierarchical’ in Leitgeb [38]. We will not go into any details, but one can prove
further soundness and completeness theorems for such hierarchical interpreted
systems and the system CL = C + Loop of nonmonotonic conditional logic, where
Loop is the following rule:

ϕ0 ⇒ ϕ1, ϕ1 ⇒ ϕ2, . . . , ϕj−1 ⇒ ϕj , ϕj ⇒ ϕ0

ϕ0 ⇒ ϕj

(Loop)

Note that Loop is a weakened version of transitivity, whereas standard transitivity
is not valid, just as the rule of cautious monotonicity above is a weakened version
of monotonicity without standard monotonicity being valid anymore. (Consult [32]
for more information on CL.)

In Leitgeb [36, 37], further soundness and completeness theorems can be found
for more restricted classes of interpreted dynamical systems and even stronger
logical systems for nonmonotonic conditionals. E.g., the important system P of so-
called preferential reasoning, where P results from adding the rule

ϕ ⇒ ρ,ψ ⇒ ρ

(ϕ ∨ ψ)⇒ ρ
(Or)

to the system CL, is sound and complete with respect to another particular class
of interpreted dynamical systems. P coincides with Adams’ [1] logical system for
indicative conditionals as well as with the “flat” fragment of Lewis’ [43] logic for
subjunctive conditionals. (‘Flat’ means: iterations of subjunctive conditionals and
other compositional constructions on their basis are excluded.) Moreover, various
semantical systems for nonmonotonic reasoning have been found to “converge” on
system P as their logical calculus.
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As one can show, if artificial neural networks with weights are extended by an
information ordering as well as an interpretation mapping along the lines explained
above, then they turn out to be special cases of interpreted ordered systems.
Furthermore, if the underlying artificial neural network consists of layers of nodes,
such that the layers are arranged hierarchically, and all connections between nodes
reach from one layer to the next one, then the interpreted ordered system is indeed
a hierarchical one.

In more formal detail: 〈U,W,A,O,NET, ex〉 is an artificial neural network if
and only if

1. U is a finite and nonempty set of nodes.
2. W : U × U → R assigns a weight to each edge between nodes.
3. A maps each node u ∈ U to an activation mapping Au : R3 → R such that the

activation state au(t + 1) of u at time t + 1 depends on the previous activation
state au(t) of u, the current net input netu(t + 1) of u, and the external input
ex(u) fed into u, i.e. au(t + 1) = Au(au(t), netu(t + 1), ex(u)).

4. O maps each node u ∈ U to an output mapping Ou : R → R such that the
output state ou(t+1) of u at time t+1 is solely dependent on the activation state
au(t + 1) of u, i.e. ou(t + 1) = Ou(au(t + 1)).

5. NET maps every node u ∈ U to a net input (or propagation) mapping NETu :
(R× R)U → R such that the net input netu(t + 1) of u at time t + 1 depends on
the weights of the edges leading from nodes u′ to u, and on the previous output
states of the nodes u′, i.e. netu(t + 1) = NETu(λu′.

〈
W(u′, u), ou′(t)

〉
).14

6. ex : U → R is the external input function.

We can view such networks as ordered dynamical systems when we define:

1. S = {s | s : U → R}.
2. ns : S → S with ns(s)(u) := Au(s(u),NETu(λu′.

〈
W(u′, u),Ou′(s(u

′))
〉
), 0)

(so, in the definition of the internal next-state function, ex(u) is set to 0).
3. � ⊆ S × S with s � s′ if and only if for all u ∈ U : s(u) � s′(u).

(Thus, sup(s, s′) is simply max(s, s′).)

〈S, ns,�〉 is an ordered discrete dynamical system, such that Fs∗(s) =
sup(s∗, ns(s)) = max(s∗, ns(s)) which entails that Fs∗(s)(u) = max(s∗(u),

ns(s)(u)) = max(s∗(u), Au(s(u),NETu(λu′.
〈
W(u′, u),Ou′(s(u

′))
〉
), 0)), which

corresponds to the assumption that the external input to a network interacts with
the current activation state of the network by taking the maximum of both. Given
this assumption, the dynamics of artificial neural networks and the dynamics of
the corresponding ordered dynamical systems coincide. If the network is layered,
then the corresponding ordered system is hierarchical. Stable states are regarded
as the relevant “answer” states just as it is the case in the standard treatment of
neural networks. If such networks are equipped with a corresponding interpretation

14λu′.
〈
W(u′, u), ou′ (t)

〉
is the function that maps u′ to the pair

〈
W(u′, u), ou′ (t)

〉
.
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mapping I as defined above, they satisfy conditional theories which are closed
under the rules of well-established systems of logic for nonmonotonic conditionals.

Furthermore, on the level of representation or interpretation we have:

• In interpreted ordered systems, propositional formulas are represented as total
states s of the system; in particular, in interpreted neural networks, propositional
formulas are represented as patterns of activity distributed over the nodes of the
network.

• In interpreted ordered systems, nonmonotonic conditionals are represented
through the overall dynamics of the system; in particular, in interpreted neural
networks, nonmonotonic conditionals are represented by means of the network
topology and the manner in which weights are distributed over the connections
of the network. It is not single edges that correspond to conditionals, but
the conditional theory that belongs to an interpreted network is a set of soft
constraints that is represented by the network as a whole.

Thus, in contrast with the old McCulloch-Pitts idea, the representation of formulas
in interpreted dynamical systems is distributed, as suggested by connectionists. At
the same time, the set of conditionals satisfied by an interpreted dynamical system is
closed under the rules of systems of nonmonotonic conditional logic that were intro-
duced, and which have been studied intensively, by researchers in the tradition of the
symbolic computation paradigm of cognitive science. Subsymbolic inference may
be fundamentally nonmonotonic, as claimed by Smolensky (reconsider Sect. 7.2),
but that does not mean that it could not be formalized in logical terms – it only
means that the formalization has to be given in terms of systems of nonmonotonic
reasoning or conditional logic.

The dynamical systems paradigm and the symbolic computation paradigm may
thus be taken to yield complementary perspectives on the one and the same
cognitive system. The precise meaning of this ‘complementarity’ is given by
soundness and completeness theorems. Although these results only apply to highly
idealized imitations of actual structures in the brain, the possibility of having such
correspondences between symbolic and dynamic descriptions at all should be of
great interest to philosophers of mind. Moreover, since nonmonotonic conditionals
have been shown to have interpretations in terms of preference or similarity
orderings of possible worlds or in terms of conditional probability measures (recall
Sect. 7.3), the nonmonotonic conditionals that are satisfied by interpreted dynamical
systems may be taken to represent aspects of some of these semantic structures.
In this way, neural networks – artificial ones, but maybe even biological ones –
may be understood as representing orderings of possible worlds or conditional
probability measures, accordingly. This might pave the way for new interpretations
and explanations of cognition done by neural networks, which should be relevant
to cognitive scientists. Finally, as follows from the results above, conditionals
in natural language, normality conditionals used by computer scientists, and the
conditionals by which one may describe the dynamics of neural networks all seem
to converge on more or less the same logic. This constitutes tentative evidence for
two conclusions: first, the correspondence with normality conditionals in computer
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science indicates why conditionals in natural language might have the logical
properties that they have – because we, much as the computer systems in artificial
intelligence, need to be able to cope with exceptions. Secondly, the neural network
semantics above suggests how we, natural language speakers, are capable of
determining whether or not a conditional is acceptable to us – by feeding the
information that is conveyed by its antecedent into a neural network that is run
offline and the stable states of which are checked for whether they contain the
information conveyed by the consequent of the conditional. Both of these tentative
conclusions should be of obvious relevance to philosophers of language who are
interested in conditionals.

7.5 Some Open Questions

Here is an (incomplete) to-do-list in this area of research:
Extending soundness/completeness results: How can all of the logical systems

discussed by Kraus et al. [32], Lehmann and Magidor [34], and beyond be
characterized in terms of connectionistically plausible and elegant constraints on
interpreted dynamical systems? So far, there only seem to be partial answers to
this question, sometimes relying on very restricted classes of dynamic systems.
Which logical systems do we get if we drop the uniqueness assumption (see
Definition 2)? How can full-fledged systems of conditional logic for subjunctive
conditionals, for which nestings of conditionals and the application of propositional
connectives to conditionals are well-defined, be represented by means of interpreted
dynamical systems? The results achieved up to this point seem more suitable for
indicative conditionals for which the meaningfulness of nesting and the application
of propositional connectives are less plausible.

Characterizing learning in neural networks by logical rules: As we have seen,
state transitions in a fixed (possibly, trained) neural network can be described by
means of conditionals. However, it is as yet unknown how learning processes in
networks – by which the weights in a network change under the influence of a
learning algorithm and training data – can be represented by logical rules. Learning
schemes such as Hebbian learning or backpropagation (by which the weights of
connections between co-active nodes are increased) might translate into particular
systems of inductive logic in which inferences can be drawn from factual training
data and conditionals to learned conditionals. In order to facilitate this study,
computer implementations of interpreted networks and their learning algorithms
will be crucial.

Applying the theory to open problems in uncertain reasoning: The results
achieved by the previous tasks are expected to feed back on open problems in
uncertain reasoning. E.g.: The standard theory of belief revision was created as
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a theory for the “one-shot” revision of beliefs by a single piece of evidence.15 It
is well-known that belief revision and (preferential) nonmonotonic reasoning are
more or less intertranslatable. Attempts of extending the theory of belief revision
to iterated occurrences of evidence led to a multitude of suggestions lacking clear
philosophical interpretation. By means of the results achieved in this area, it might
be possible to understand evidence-induced changes of networks as iterated belief
revisions. We hypothesise that different schemes of iterated revision correspond to,
and can be understood as, different learning algorithms for neural networks.

Applying the theory in philosophy of science: In philosophy of science, it was
realized early on that new empirical evidence can have the effect that previous
hypotheses must be withdrawn, as a scientists might learn that what she had regarded
likely is actually not. As Flach [20] argues, the same logics that govern valid
commonsense inferences can be interpreted as logics for scientific induction, i.e.,
for data constituting incomplete und uncertain evidence for empirical hypotheses.
Schurz [52] demonstrates that scientific laws are subject to normality or ceteris
paribus restrictions that obey the logic of nonmonotonic reasoning. At the same
time, the study of neural networks is expected to transform our philosophical
understanding of science: Churchland [14] presents networks as models of scientific
theories and regards prototype representations in networks as a system’s explanatory
understanding of its inputs. Bechtel [6] explains scientific model building in terms of
the satisfaction of soft constraints represented in networks. Bird [8] observes: “The
time is ripe for a reassessment of Kuhn’s earlier work in the light of connectionist
and neural-net research”. Is it possible to throw some new light on these insights
from the philosophy of science on the basis of new findings on logical accounts of
neural networks and learning?
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Chapter 8

Proof Theory

Jeremy Avigad

Abstract Proof theory began in the 1920s as a part of Hilbert’s program, which
aimed to secure the foundations of mathematics by modeling infinitary mathe-
matics with formal axiomatic systems and proving those systems consistent using
restricted, finitary means. The program thus viewed mathematics as a system of
reasoning with precise linguistic norms, governed by rules that can be described and
studied in concrete terms. Today such a viewpoint has applications in mathematics,
computer science, and the philosophy of mathematics.

8.1 Introduction

At the turn of the nineteenth century, mathematics exhibited a style of argumentation
that was more explicitly computational than is common today. Over the course of the
century, the introduction of abstract algebraic methods helped unify developments
in analysis, number theory, geometry, and the theory of equations, and work by
mathematicians like Richard Dedekind, Georg Cantor, and David Hilbert towards
the end of the century introduced set-theoretic language and infinitary methods
that served to downplay or suppress computational content. This shift in emphasis
away from calculation gave rise to concerns as to whether such methods were
meaningful and appropriate in mathematics. The discovery of paradoxes stemming
from overly naive use of set-theoretic language and methods led to even more
pressing concerns as to whether the modern methods were even consistent. This
led to heated debates in the early twentieth century and what is sometimes called
the “crisis of foundations.”

In lectures presented in 1922, Hilbert launched his Beweistheorie, or Proof
Theory, which aimed to justify the use of modern methods and settle the problem of
foundations once and for all. This, Hilbert argued, could be achieved as follows:
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• First, represent portions of the abstract, infinitary mathematical reasoning in
question using formal axiomatic systems, which prescribe a fixed formal lan-
guage and precise rules of inference.

• Then view proofs in these systems as finite, combinatorial objects, and prove
the consistency of such systems—i.e. the fact that there is no way to derive a
contradiction—using unobjectionable, concrete arguments.

In doing so, said Hilbert,

. . . we move to a higher level of contemplation, from which the axioms,
formulae, and proofs of the mathematical theory are themselves the objects of
a contentional investigation. But for this purpose the usual contentual ideas of
the mathematical theory must be replaced by formulae and rules, and imitated
by formalisms. In other words, we need to have a strict formalization of the
entire mathematical theory. . . . In this way the contentual thoughts (which of
course we can never wholly do without or eliminate) are removed elsewhere—
to a higher plane, as it were; and at the same time it becomes possible to draw
a sharp and systematic distinction in mathematics between the formulae and
formal proofs on the one hand, and the contentual ideas on the other. [17]

Gödel’s second incompleteness theorem shows that any “unobjectionable” portion
of mathematics is insufficient to establish its own consistency, let alone the
consistency of any theory properly extending it. Although this dealt a blow to
Hilbert’s program as it was originally formulated, the more general project of
studying mathematical reasoning in syntactic terms, especially with respect to
questions of algorithmic or otherwise concrete content, has been fruitful. Moreover,
the general strategy of separating syntactic and semantic concerns and of main-
taining a syntactic viewpoint where possible has become a powerful tool in formal
epistemology. (See [34, 42] for more on Hilbert’s program.)

Today, Proof Theory can be viewed as the general study of formal deductive
systems. Given that formal systems can be used to model a wide range of types
of inference—modal, temporal, probabilistic, inductive, defeasible, deontic, and so
on—work in the field is varied and diverse. Here I will focus specifically on the
proof theory of mathematical reasoning, but even with this restriction, the field is
dauntingly broad: the 1998 Handbook of Proof Theory [9] runs more than 800 pages,
with a name index that is almost as long as this article. As a result, I can only attempt
to convey a feel for the subject’s goals and methods of analysis, and help ease the
reader into the broader literature. References are generally to surveys and textbooks,
and results are given without attribution.

In the next section, I describe natural deduction and a sequent calculus for first-
order logic, and state the cut-elimination theorem and some of its consequences.
This is one of the field’s most fundamental results, and provides a concrete example
of proof-theoretic method. After that, I survey various aspects of proof-theoretic
analysis, and, finally, in the last section, I discuss some applications.
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8.2 Natural Deduction and Sequent Calculi

I will assume the reader is familiar with the language of first-order logic. Contem-
porary logic textbooks often present formal calculi for first-order logic with a long
list of axioms and a few simple rules, but these are generally not very convenient for
modeling deductive arguments or studying their properties. A system which fares
better on both counts in given by Gerhard Gentzen’s system of natural deduction, a
variant of which we will now consider.

Natural deduction is based on two fundamental observations. The first is that it is
natural to describe the meaning, or appropriate use, of a logical connective by giving
the conditions under which one can introduce it, that is, derive a statement in which
that connective occurs, and the methods by which one can eliminate it, that is, draw
conclusions from statements in which it occurs. For example, one can establish a
conjunction ϕ ∧ψ by establishing both ϕ and ψ , and, conversely, if one assumes or
has previously established ϕ ∧ ψ , one can conclude either ϕ or ψ , at will.

The second observation is that it is natural to model logical arguments as taking
place under the context of a list of hypotheses, either implicit or explicitly stated. If
Ŵ is a finite set of hypotheses and ϕ is a first-order formula, the sequent Ŵ ⇒ ϕ is
intended to denote that ϕ follows from Ŵ. For the most part, these hypotheses stay
fixed over the course of an argument, but under certain circumstances they can be
removed, or canceled. For example, one typically proves an implication ϕ → ψ

by temporarily assuming that ϕ holds and arguing that ψ follows. The introduction
rule for implication thus reflects the fact that deriving ψ from a set of hypotheses Ŵ

together with ϕ is the same as deriving ϕ → ψ from Ŵ.
Writing Ŵ, ϕ as an abbreviation for Ŵ ∪ {ϕ}, the rules for natural deduction

are shown in Fig. 8.1. The quantifier rules are subject to the usual restrictions. For
example, in the introduction rule for the universal quantifier, the variable x cannot
be free in any hypothesis. For intuitionistic logic, one also needs the rule ex falso

sequitur quodlibet, which allows one to conclude Ŵ ⇒ ϕ from Ŵ ⇒ ⊥, where ⊥
represents falsity. One can then define negation, ¬ϕ, as ϕ →⊥. For classical logic,
one adds reductio ad absurdum, or proof by contradiction, which allows one to
conclude Ŵ ⇒ ϕ from Ŵ,¬ϕ ⇒ ⊥.

For many purposes, however, sequent calculi provide a more convenient repre-
sentation of logical derivations. Here, sequents are of the form Ŵ ⇒ �, where Ŵ

and � are finite sets of formulas, with the intended meaning that the conjunction of
the hypotheses in Ŵ implies the disjunction of the assertions in �. The rules are as
shown in Fig. 8.2. The last rule is called the cut rule: it is the only rule containing
a formula in the hypothesis that may be entirely unrelated to the formulas in the
conclusion. Proofs that do not use the cut rule are said to be cut free. One obtains a
proof system for intuitionistic logic by restricting � to contain at most one formula,
and adding an axiomatic version of ex falso sequitur quodlibet: Ŵ,⊥ ⇒ ϕ. The
cut-elimination theorem is as follows:
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Γ, ϕ ⇒ ϕ

Γ ⇒ ϕ Γ ⇒ ψ

Γ ⇒ ϕ ∧ ψ

Γ ⇒ ϕ0 ∧ ϕ1

Γ ⇒ ϕi

Γ ⇒ ϕi

Γ ⇒ ϕ0 ∨ ϕ1

Γ ⇒ ϕ ∨ ψ Γ, ϕ ⇒ θ Γ, ψ ⇒ θ

Γ ⇒ θ

Γ, ϕ ⇒ ψ

Γ ⇒ ϕ → ψ

Γ ⇒ ϕ → ψ Γ ⇒ ϕ

Γ ⇒ ψ

Γ ⇒ ϕ

Γ ⇒ ∀y ϕ[y/x]

Γ ⇒ ∀x ϕ

Γ ⇒ ϕ[t/x]

Γ ⇒ ϕ[t/x]

Γ ⇒ ∃x ϕ

Γ ⇒ ∃y ϕ[y/x] Γ, ϕ ⇒ ψ

Γ ⇒ ψ

Fig. 8.1 Natural deduction. Derivability of a sequent Ŵ ⇒ ϕ means that ϕ is a consequence of the
set of hypotheses Ŵ, and Ŵ, ϕ denotes Ŵ ∪ {ϕ}

Γ, ϕ ⇒ ∆, ϕ

Γ, ϕi ⇒ ∆

Γ, ϕ0 ∧ ϕ1 ⇒ ∆

Γ ⇒ ∆, ϕ Γ ⇒ ∆, ψ

Γ ⇒ ∆, ϕ ∧ ψ

Γ, ϕ ⇒ ∆ Γ, θ ⇒ ∆

Γ, ϕ ∨ θ ⇒ ∆

Γ ⇒ ∆, ϕi

Γ ⇒ ∆, ϕ0 ∨ ϕ1

Γ, ⇒ ∆, ϕ Γ, θ ⇒ ∆

Γ, ϕ → θ ⇒ ∆

Γ, ϕ ⇒ ∆, ψ

Γ ⇒ ∆, ϕ → ψ

Γ, ϕ[t/x] ⇒ ∆

Γ, ∀x ϕ ⇒ ∆

Γ ⇒ ∆, ψ[y/x]

Γ ⇒ ∆, ∀x ψ

Γ, ϕ[y/x] ⇒ ∆

Γ, ∃x ϕ ⇒ ∆

Γ ⇒ ∆, ψ[t/x]

Γ ⇒ ∆,∃x ψ

Γ ⇒ ∆, ϕ Γ, ϕ ⇒ ∆

Γ ⇒ ∆

Fig. 8.2 The sequent calculus
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Theorem 2.1 If Ŵ ⇒ � is derivable in the sequent calculus with cut, then it is

derivable without cut.

Gentzen’s proof gives an explicit algorithm for removing cuts from a proof. The
algorithm, unfortunately, can yield an iterated exponential increase in the size of
proofs, and one can show that there are cases in which such an increase cannot
be avoided. The advantage of having a cut-free proof is that the formulas in each
sequent are built up directly from the formulas in the sequents above it, making it
easy to extract useful information. For example, the following are two consequences
of the cut-elimination theorem, easily proved by induction on cut-free proofs.

The first is known as Herbrand’s theorem. Recall that a formula of first-order
logic is said to be existential if it consists of a block of existential quantifiers
followed by a quantifier-free formula. Similarly, a formula is said to be universal if
it consists of a block of universal quantifiers followed by a quantifier-free formula.
Herbrand’s theorem says that if it is possible to prove an existential statement from
some universal hypotheses, then in fact there is an explicit sequence of terms in the
language that witness the truth of the conclusion.

Theorem 2.2 Suppose ∃!x ϕ(!x) is derivable in classical first-order logic from a set

of hypotheses Ŵ, where ϕ is quantifier-free and the sentences in Ŵ are universal

sentences. Then there are sequences of terms !t1, !t2, . . . , !tk such that the disjunction

ϕ(!t1)∨ϕ(!t2)∨ . . .∨ϕ(!tk) has a quantifier-free proof from instances of the sentences

in Ŵ.

For intuitionistic logic, one has a stronger property, known as the explicit

definability property.

Theorem 2.3 Suppose ∃!x ϕ(!x) is derivable in intuitionistic first-order logic from a

set of hypotheses Ŵ in which neither ∨ nor ∃ occurs in a strictly positive part. Then

there are terms !t such that ϕ(!t) is also derivable from Ŵ.

Theorem 2.2 provides a sense in which explicit information can be extracted from
certain classical proofs, and Theorem 2.3 provides a sense in which intuitionistic
logic is constructive. We have thus already encountered some of the central themes
of proof-theoretic analysis:

• Important fragments of mathematical reasoning can be captured by formal
systems.

• One can study the properties of these formal systems, for example, describing
transformations of formulas and proofs, translations between formulas and
proofs in different systems, and canonical normal forms for formulas and proofs.

• The methods provide information about the logic that is independent of the
choice of formal system that is used to represent it.

For more on the cut-elimination theorems, see [11, 23, 31, 36, 38].
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8.3 Methods and Goals

8.3.1 Classical Foundations

Recall that Hilbert’s program, broadly construed, involves representing mathe-
matical reasoning in formal systems and then studying those formal systems as
mathematical objects themselves. The first step, then, requires finding the right
formal systems. It is common today to view mathematical reasoning as consisting of
a properly mathematical part that is used in conjunction with more general forms of
logical reasoning, though there are still debates as to where to draw the line between
the two. In any case, the following list portrays some natural systems of reasoning
in increasing logical/mathematical strength:

1. pure first-order logic
2. primitive recursive arithmetic (denoted PRA)
3. first-order arithmetic (PA)
4. second-order arithmetic (PA2)
5. higher-order arithmetic (PAω)
6. Zermelo-Fraenkel set theory (ZF)

Primitive recursive arithmetic was designed by Hilbert and Bernays to be a
patently finitary system of reasoning. The system allows one to define functions
on the natural numbers using a simple schema of primitive recursion, and prove
facts about them using a principle of induction:

ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1))→ ∀x ϕ(x).

In words, if ϕ holds of 0 and, whenever it holds of some number, x, it holds of x+1,
then ϕ holds of every number. Here ϕ is assumed to be a quantifier-free formula. In
fact, one can replace this axiom with a suitable induction rule, whereby primitive
recursive arithmetic can be formulated without quantifiers at all. Surprisingly, via
coding of finitary objects as natural numbers, this system is expressive and strong
enough to develop most portions of mathematics that involve only finite objects
and structures [3]. Peano arithmetic can be viewed as the extension of PRA with
induction for all first-order formulas.

There is no effective axiomatization of second- or higher-order logic that is
complete for the standard semantics, where second-order quantifiers are assumed
to range over all subsets of the universe of individuals. As a result, one has
to distinguish axiomatic second- and higher-order logic from the corresponding
semantic characterization. Axiomatically, one typically augments first-order logic
with comprehension rules that assert that every formula defines a set (or predicate):

∃X ∀y (X(y) ↔ ϕ)



8 Proof Theory 183

Here ϕ is a formula in which X does not occur, although ϕ is allowed to have
other free variables in addition to y. One can augment these with suitable choice
principles as well. Second-order arithmetic can be viewed as the extension of Peano
arithmetic with second-order logic and second-order principles of induction, but one
can, alternatively, interpret second-order arithmetic in second-order logic together
with an axiom asserting the existence of an infinite domain. Similar considerations
hold for higher-order logic as well.

Axioms for set theory can be found in any introductory set theory textbook, such
as [22]. Of course, these axioms can be extended with stronger hypotheses, such
as large cardinal axioms. For information on primitive recursive arithmetic, see [14,
38]; for first-order arithmetic, see [11, 15, 18]; for second-order arithmetic, see [35];
for higher-order arithmetic, see [36].

8.3.2 Constructive Foundations

Given the history of Hilbert’s program, it should not be surprising that proof
theorists have also had a strong interest in formal representations of constructive and
intuitionistic reasoning. From an intuitionistic standpoint, the use of the excluded
middle, ϕ ∨ ¬ϕ, is not acceptable, since, generally speaking, one may not know
(or have an algorithm to determine) which disjunct holds. For example, in classical
first-order arithmetic, one is allowed to assert ϕ∨¬ϕ for a formula ϕ that expresses
the twin primes conjecture, even though we do not know which is the case. If one
restricts the underlying logic to intuitionistic logic, however, one obtains Heyting

arithmetic, which is constructively valid.
Stronger systems tend to be based on what has come to be known as the

Curry-Howard-Tait propositions as types correspondence. The idea is that, from
a constructive perspective, any proposition can be viewed as specifying a type of
data, namely, the type of construction that warrants the claim that the proposition
is true. A proof of the proposition is thus a construction of the corresponding type.
For example, a proof of ϕ ∧ ψ is a proof of ϕ paired with a proof of ψ , and so
ϕ∧ψ corresponds to the type of data consisting of pairs of type ϕ and ψ . Similarly,
a proof of ϕ → ψ should be a procedure transforming a proof of ϕ into a proof
of ψ , so ϕ → ψ corresponds to a type of functions. This gives rises to systems of
constructive type theory, of which the most important examples are Martin-Löf type

theory and an impredicative variant designed by Coquand and Huet, the calculus

of constructions. Thus, our representative sample of constructive proof systems, in
increasing strength, runs as follows:

1. intuitionistic first-order logic
2. primitive recursive arithmetic (PRA)
3. Heyting arithmetic (HA)
4. Martin-Löf type theory (ML)
5. the calculus of inductive constructions (CIC)
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Good references for intuitionistic systems in general are [7, 39]. For more informa-
tion on type theory, see [30]; for the calculus of inductive constructions in particular,
see [8].

8.3.3 Reverse Mathematics

In the 1970s, Harvey Friedman observed that by restricting the induction and
comprehension principles in full axiomatic second-order arithmetic, one obtains
theories that are strong enough, on the one hand, to represent significant parts of
ordinary mathematics, but weak enough, on the other hand, to be amenable to proof-
theoretic analysis. He then suggested calibrating various mathematical theorems
in terms of their axiomatic strength. Whereas in ordinary (meta)mathematics, one
proves theorems from axioms, Friedman noticed that it is often the case that a
mathematical theorem can be used in the other direction, namely, to prove an
underlying set-existence principle, over a weak base theory. That is, it is often the
case that a theorem of mathematics is formally equivalent to a set comprehension
principle that is used to prove it.

In that years that followed, Friedman, Stephen Simpson, and many others worked
to calibrate the axiomatic assumptions used in a wide range of subjects. They
isolated five key theories along the way:

1. RCA0: a weak base theory, conservative over primitive recursive arithmetic,
with a recursive comprehension axiom, that is, a principle of comprehension for
recursive (computable) sets.

2. WKL0: adds weak König’s lemma, a compactness principle, to RCA0.
3. ACA0: adds the arithmetic comprehension axiom, that is, comprehension for

arithmetically definable sets.
4. ATR0: adds a principle of arithmetical transfinite recursion, which allows one to

iterate arithmetic comprehension along countable well-orderings.
5. �1

1−CA0: adds the �1
1 comprehension axiom, that is, comprehension for �1

1 sets.

Simpson [35] provides the best introduction to these theories and the reverse
mathematics program.

8.3.4 Comparative Analysis and Reduction

We have now seen a sampling of the many formal systems that have been designed
to formalize various aspects of mathematics. Proof theorists have also invested a
good deal of energy in understanding the relationships between the systems. Often,
results take the form of conservation theorems which fit the following pattern, where
T1 and T2 are theories and Ŵ is a class of sentences:

Suppose T1 proves a sentence ϕ, where ϕ is in Ŵ. Then T2 proves it as well
(or perhaps a certain translation, ϕ′).
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Such a result, when proved in a suitably restricted base theory, provides a founda-
tional reduction of the theory T1 to T2, justifying the principles of T1 relative to T2.
For example, such theorems can be used to reduce:

• an infinitary theory to a finitary one
• a nonconstructive theory to a constructive one
• an impredicative theory to a predicative one
• a nonstandard theory (in the sense of nonstandard analysis) to a standard one

For example:

1. Versions of primitive recursive arithmetic based on classical, intuitionistic, or
quantifier-free logic all prove the same �2 theorems (in an appropriate sense)
[38].

2. The Gödel-Gentzen double-negation interpretation and variations, like the
Friedman-Dragalin A-translation, interpret a number of classical systems in
intuitionistic ones, such as PA in HA [1, 10, 12, 38, 39].

3. There are various translations between theories in the language of (first-, second-,
or higher-order) arithmetic and subsystems of set theory [27, 35].

4. Both I�1, the subsystem of Peano arithmetic in which induction is restricted
to �1 formulas, and WKL0, the subsystem of second-order arithmetic based on
Weak König’s Lemma, are conservative over primitve recursive arithmetic for
the class of �2 sentences [2, 11, 15, 20, 33, 35, 38].

5. Cut elimination or an easy model-theoretic argument shows that a restricted
second-order version, ACA0, of Peano arithmetic is a conservative extension of
Peano arithmetic itself. Similarly, Gödel-Bernays-von Neumann set theory GBN,
which has both sets and classes, is a conservative extension of Zermelo-Fraenkel
set theory. See, for example, [28, 35]. In general, proofs in ACA0 may suffer an
iterated exponential increase in length when translated to PA, and similarly for
GBN and ZF, or I�1 and PRA.

6. Theories of nonstandard arithmetic and analysis can be calibrated in terms of the
strength of standard theories [19].

7. The axiom of choice and the continuum hypothesis are conservative extensions
of set theory for �2

1 sentences in the analytic hierarchy [22].

Such results draw on a variety of methods. Some can be obtained by direct
translation of one theory into another. Many are proved using cut-elimination or
normalization [11, 33]. The double-negation translation is a remarkably effective
tool when it comes to reducing classical theories to constructive ones, and can
often be supplemented by realizability, functional interpretation, or other arguments
[1, 20, 37]. Model-theoretic methods can often be used, though they do not provide
specific algorithms to carry out the translation [15, 18]. Even forcing methods,
originally developed as a set-theoretic technique, can be fruitfully be applied in
proof-theoretic settings [4, 22].
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8.3.5 Characterizing Logical Strength

The results described in the previous section serve to characterize the strength of one
axiomatic theory in terms of another. Showing that a theory T2 is conservative over
T1 shows that, in particular, T2 is consistent, if T1 is. This provides a comparison of
the consistency strength of the two theories.

But there are other ways of characterizing the strength of a theory. For example,
the notion of an ordinal generalizes the notion of a counting number. Starting with
the natural numbers, we can add an infinite “number,” ω, and keep going:

0, 1, 2, 3, . . . , ω, ω + 1, ω + 2, ω + 3, . . .

We can then proceed to add even more exotic numbers, like ω · 2, ω2, and ωω. The
ordering on these particular expressions is computable, in the sense that one can
write a computer program to compare any two them. What makes them ordinals is
that they satisfy a principle of transfinite induction, which generalizes the principle
of induction on the natural numbers. Ordinal analysis gauges the strength of a theory
in terms of such computable ordinals: the stronger a theory is, the more powerful
the principles of transfinite induction it can prove. See, for example, [26, 27, 36].

Alternatively, one can focus on a theory’s computational strength. Suppose a
theory T proves a statement of the form ∀x ∃y R(x, y), where x and y range over
the natural numbers, and R is a computationally decidable predicate. This tells us
that a computer program that, on input x, systematically searches for a y satisfying
R(x, y) always succeeds in finding one. Now suppose f is a function that, on input
x, returns a value that is easily computed from the least y satisfying R(x, y). For
example, R(x, y) may assert that y codes a halting computation of a particular
Turing machine on input x, and f may return the result of such a computation.
Then f is a computable function, and we can say that the theory, T , proves that f

is totally defined on the natural numbers. A simple diagonalization shows that no
effectively axiomatized theory can prove the totality of every computable function
in this way, so this suggests using the set of computable functions that the theory
can prove to be total as a measure of its strength.

A number of theories have been analyzed in these terms. For example, by the
results in the last section, the provably total computable functions of PRA, I�1,
RCA0, and WKL0 are all the primitive recursive functions. In contrast, one can
characterize the provably total computable functions of PA and HA in terms of
higher-type primitive recursion [5, 37], or using principles of primitive recursion
along an ordinal known as ε0 [27, 36]. Weaker theories of arithmetic can be used to
characterize complexity classes like the polynomial time computable functions [11].
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8.4 Applications

In this final section, I will describe some of the ways that proof theory interacts
with other disciplines. As emphasized in the introduction, I am only considering
applications of the traditional, metamathematical branch of proof theory. Formal
deductive methods, more broadly, have applications across philosophy and the
sciences, and the use of proof-theoretic methods in the study of these formal
deductive systems is far too diverse to survey here.

8.4.1 Proof Mining

One way in which traditional proof-theoretic methods have been applied is in the
process of extracting useful information from ordinary mathematical proofs. The
reductive results of the twentieth century showed, in principle, that many classical
proofs can be interpreted in constructive terms. In practice, these ideas have been
adapted and extended to the analysis of ordinary mathematical proofs. Georg Kreisel
described the process of extracting such information as “unwinding proofs,” and
Ulrich Kohlenbach has more recently adopted the name “proof mining” [20].

Substantial work is needed to turn this vague idea into something practicable.
Ordinary mathematical proofs are not presented in formal systems, so there are
choices to be made in the formal modeling. In addition, the general metamathemat-
ical tools have to be tailored and adjusted to yield the information that is sought in
particular domains. Thus the work requires a deep understanding of both the proof-
theoretic methods and the domain of mathematics in question. The field has already
had a number of successes in fields like functional analysis and ergodic theory; see,
for example, [20].

8.4.2 Combinatorial Independences

Yet another domain where a syntactic, foundational perspective is important is in
the search for natural combinatorial independences, that is, natural finitary com-
binatorial principles that are independent of conventional mathematical methods.
The Paris-Harrington statement [24] is an early example of such a principle. Since
then, Harvey Friedman, in particular, has long sought to find exotic combinatorial
behavior in familiar mathematical settings. Such work gives us glimpes into what
goes on just beyond ordinary patterns of mathematical reasoning, and yields
interesting mathematics as well. See the extensive introduction to [13] for an
overview of results in this area.
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8.4.3 Constructive Mathematics and Type Theory

As noted above, proof theory is often linked with constructive mathematics, for
historical reasons. After all, Hilbert’s program was initially an attempt to justify
mathematics with respect to methods that are finitary, which is to say, syntactic,
algorithmic, and impeccably constructive. Contemporary work in constructive
mathematics and type theory draws on the following facts:

• Logical constructions can often be interpreted as programming principles.
• Conversely, programming principles can be interpreted as logical constructions.
• One can thereby design (constructive) proof systems that combine aspects of both

programming and proving.

The references under Sect. 8.3.2 above provide logical perspectives on constructive
type theory. For a computational perspective, see [25].

8.4.4 Automated Reasoning and Formal Verification

Another domain where proof-theoretic methods are of central importance is in
the field of automated reasoning and formal verification. In computer science,
researchers use formal methods to help verify that hardware and software are
bug-free and conform to their specifications. Moreover, recent developments have
shown that computational formal methods can be used to help verify the correctness
of complex mathematical proofs as well. Both efforts have led to interactive
approaches, whereby a user works with a computational proof assistant to construct
a formal proof of the relevant claims. The have also led to more automated
approaches, where software is supposed to carry out the task with little user input. In
both cases, proof-theoretic methods are invaluable, for designing the relevant logical
calculi, for isolating features of proofs that enable one to cut down the search space
and traverse it effectively, and for replacing proof search with calculation wherever
possible.

For more information on automated reasoning, see [16, 29]. For more informa-
tion on formally verified mathematics, see [41], or the December 2008 issue of the
Notices of the American Mathematical Society, which was devoted to formal proof.

8.4.5 Proof Complexity

Finally, the field of proof complexity combines methods and insights from proof
theory and computational complexity. For example, the complexity class NP can
be viewed as the class of problems for which an affirmative answer has a short
(polynomial-size) proof in a suitable calculus. Thus the conjecture that NP is not
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equal to co-NP (which is weaker than saying P is not equal to NP) is equivalent
to saying that in general there is no propositional calculus that has efficient proofs
of every tautology. Stephen Cook has suggested that one way of building up to the
problem is to show that particular proof systems are not efficient, by establishing
explicit lower bounds. Such information is also of interest in automated reasoning,
where one wishes to have a detailed understanding of the types of problems that
can be expected to have short proofs in various calculi. The works [21, 28, 32, 40]
provide excellent introductory overviews.
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Chapter 9

Logics of (Formal and Informal)
Provability

Rafal Urbaniak and Pawel Pawlowski

9.1 Introduction

Provability logics are, roughly speaking, modal logics meant to capture the formal
principles of various provability operators (which apply to sentences) or predicates
(which apply to sentence names). The first candidate for a provability logic was
the modal logic S4, which contains as axioms all the substitutions of classical
tautologies (in the language with �; throughout this survey when talking about
instances or substitutions we’ll mean instances and substitutions in the full language
of the system under consideration), all substitutions of the schemata:

(K) �(ϕ → ψ) → (�ϕ → �ψ)

(M) �ϕ → ϕ

(4) �ϕ → ��ϕ

and is closed under two rules of inference: modus ponens (from ⊢ ϕ and ⊢ ϕ → ψ

infer ⊢ ψ), and necessitation (Nec): if ⊢ ϕ, then ⊢ �ϕ.
The principles of S4 seem sensible when �ϕ is read as ‘it is provable that ϕ’: if

an implication and its antecedent are provable, then so is its consequent, whatever
is provable should be true, and if something is provable, we can prove that it is (by
simply displaying the proof). The system was used in 1933 by Gödel to interpret
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intuitionistic propositional calculus (which is closely related to reasoning about
provability). Alas, S4 turned out to be inadequate as a tool for modeling the behavior
of formal provability predicate within axiomatic arithmetic, mostly due to the fact
that (M), also (in the context of provability logics) called local reflection, while
intuitively plausible, cannot be provable in a consistent sufficiently strong axiomatic
arithmetic for the formal provability predicate of that arithmetic. Let us elaborate.

Let’s fix our attention on the standard first-order axiomatic arithmetic called
Peano Arithmetic (PA). With this system in the background, instead of talking
about an arithmetical formula ϕ, we can use a coding to represent it by some
natural number, denoted by 	ϕ
. Once we’ve done this, there is (a standard way to
construct) an arithmetical formula ProvPA(x) true exactly about the codes of those
formulas, which are provable in PA. This is the formal provability predicate of PA.

One crucial property of this predicate is stated by Löb’s Theorem, according to
which for any arithmetical ϕ, if PA ⊢ ProvPA(	ϕ
) → ϕ, then already PA ⊢ ϕ.
This means that reflection can hold only for those sentences which are already
theorems of PA, and not universally for all sentences of arithmetic, and so S4 cannot
be the logic of formal provability predicate.

It turns out that another modal logic is the provability logic of formal arithmetical
provability—it’s the Gödel-Löb logic GL. Its axioms are all the substitutions of
classical tautologies, all the substitutions of (K), all the substitutions of:

(Löb) �(�ϕ → ϕ) → �ϕ

and the rules are modus ponens and necessitation. Various modal logics similar to
GL have been developed for various notions of provability related to the standard
formal provability.

In the language of GL we can express claims such as ‘p is provable’, but we
cannot express things such as ‘t is a proof of p’ (that is, we cannot express explicit

provability statements). The latter task can be achieved in the so-called Logic of

Proofs (LP), whose language is much richer: it contains terms for proofs, ways of
constructing complex terms for proofs, and a predicate ‘ is a proof of ’. LP is an
adequate logic of explicit provability. Various extensions of LP has been developed.

Somewhat independently of the research on the logic of the formal provability
predicate, attempts have been made to develop a formal logic of informal math-
ematical provability, for which (M) holds. The challenge is to develop a sensible
system which can be mixed with other parts of mathematics without running into
inconsistency due to (Löb) or related reasons.

This survey discusses the developments described above in a bit more detail.
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9.2 The Beginnings

9.2.1 Modal Logic S4

Formulas of the language of a propositional modal logic LM are built from
propositional variables p1, p2, . . . , two propositional constants ⊥ (contradiction)
and ⊤ (logical truth), classical connectives ¬,∧,∨,→,≡, brackets, and unary
modal connectives � and ♦, in the standard manner. Sometimes, without loss of
generality, we’ll treat LM as containing only a single classical connective and a
single modal operator—this will shorten some definitions, and is enough to make
all the other connectives definable. Given a formal language (not necessarily LM ,
the context will make the range of meta-variables clear on each occasion), we’ll use
lower case Greek letters ϕ,ψ, χ, . . . as meta-variables for formulas of that language
(sometimes, we’ll also use σ as a metavariable for an arithmetical sentence).

A normal modal logic contains as axioms all the substitutions of formulas of LM

for propositional variables in classical tautologies, all substitutions (in LM ) of the
schema:

�(ϕ → ψ) → (�ϕ → �ψ) (K)

and is closed under two rules of inference: modus ponens (from ⊢ ϕ and ⊢ ϕ → ψ

infer ⊢ ψ) and necessitation (Nec): if ⊢ ϕ, then ⊢ �ϕ. The weakest normal modal
logic is called K, all other normal logics are its extensions.

The standard semantics of LM involves relational models (also called Kripke

models). A frame F is a tuple 〈W,R〉, where W is a non-empty set of possible
worlds (or simply nodes, if you’re not too much into bloated terminology) and R is
a binary relation on W (‘is a possible world from the perspective of’), often called
an accessibility relation. A model M over F = 〈W,R〉 is a triple 〈W,R,�〉, where
� is a forcing (or satisfaction) relation between W and the formulas of LM (think
about it as ‘being true in’), satisfying the following conditions for any w ∈ W and
any ϕ,ψ ∈ LM :

w �� ⊥ w � ⊤
w � (ϕ → ψ) iff w �� ϕ or w � ψ

w � �ϕ iff for all w′ ∈ W, if wRw′, then w′ � ϕ

It turns out that the class of formulas forced in every node in every frame is
exactly the class of theorems of K. Sound and complete semantics for various other
normal modal logics is obtained by putting further conditions on R.

One modal logic that will be of particular interest for us is S4, which (in one of
the formulations) is obtained from K by adding as axioms all the instances of the
following schemata:

�ϕ → ϕ (M)

�ϕ → ��ϕ (4)
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(M) is sometimes called (T), but in what follows we’ll often use T as a variable
for an axiomatic theory, so to avoid confusion, we’ll stick to (M). S4 is sound
and complete with respect to frames in which the accessibility relation is reflexive
(∀w ∈ W wRw) and transitive (∀w1, w2, w3 ∈ W(w1Rw2∧w2Rw3 → w1Rw3)).

Modal connectives of various modal systems admit various interpretations. �
can be interpreted as logical necessity, metaphysical necessity, physical necessity,
moral obligation, knowledge, etc.1 Different modal systems are taken to capture
principles essential for these various notions. In what follows, we’ll be concerned
with the reading on which �ϕ means ‘it is provable that ϕ’ (this reading will need
further specifications, as it will turn out). Now the question is: which modal logic
captures adequately the formal principles that hold for this reading?

Prima facie, S4 seems like a decent candidate. (K) holds, because the consequent
of a provable implication whose antecedent is provable is also provable. (M) holds,
because whatever is provable is true. Equation (4) holds, because if ϕ is provable,
then by producing a proof of ϕ, by the same token, you are proving that it is
provable (necessitation is reliable for pretty much the same reason). But are these
considerations satisfactory? Not completely. First of all, we still don’t know if there
aren’t any principles that hold for provability but are not provable in S4, because
the argument so far was about the soundness of S4 with respect to our intuitions
about provability, not about completeness. Secondly, the argument is somewhat
handwavy—it would be good to have a more precise explication of the notion of
provability involved. Thirdly, even with such an explication in hand, we have to
double-check if all principles of S4 hold with respect to this explication. Things
will turn out to be more complicated than one might initially expect.

9.2.2 Intuitionism and S4

S4 was first proposed as a logic of provability in the context of Brouwer’s
intuitionistic logic, which, very roughly speaking, results from replacing the notion
of truth with that of constructive provability. The intuitionstic logic was formalized
by Heyting [31] as Intuitionistic Propositional Calculus (IPC) (see also Troelstra
and van Dalen [76]). On the intuitionistic approach, a mathematical claim is true
just in case it has a proof, and false just in case there is a proof that it leads to
contradiction. This idea inspired Heyting and Kolmogorov [32, 33, 45] to introduce
the so-called Brouver-Heyting-Kolmogorov (BHK) semantics, which identifies truth
with provability, falsehood with refutability, and further specifies:

1Notice however that different interpretations might make different principles plausible. For
instance, (M) is not too convincing in the deontic reading, for unfortunately, not all that should
be the case indeed is the case.
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A proof of ϕ ∧ ψ consists of a proof of ϕ and a proof ofψ.

A proof of ϕ ∨ ψ is provided by giving either a proof of ϕ or a proof of ψ.

A proof ofϕ → ψ is a construction of proofs of ψ from proofs of ϕ.

⊥ has no proof and ¬ϕ means ϕ →⊥.

Gödel [24] attempted to formalize the BHK semantics. He put forward S4 as the
logic of classical provability. Then, he suggested a translation t from the non-modal
language of intuitionistic logic into LM by taking a non-modal formula and putting a
box in front of each of its subformulas (in fact, this translation is already mentioned
in [61]). Gödel proved that if IPC ⊢ ϕ, then S4 ⊢ t (ϕ). The implication in the
opposite direction has been later on proved by McKinsey and Tarski [52]. Thus,
IPC, in a sense, can be taken to be about the classical provability, if, indeed, S4 is
the logic of classical provability (there are other modal logics into which IPC can be
translated). Alas, an explicit provability semantics of � in S4 was missing, and so,
the picture wasn’t quite complete. One natural candidate for the interpretation of �
was a formal provability predicate in a standard axiomatized mathematical theory,
to which we will now turn.

9.2.3 Arithmetical Provability Predicate

Considerations of formal provability predicate (or predicates) are usually developed
in the context of an axiomatic arithmetic. This is the case for various reasons:
via Gödel coding, instead of expressions, we can talk about numbers, standard
arithmetical theories are usually strong enough to include a sufficiently reach theory
of syntax (modulo coding), and arithmetic in general is a field where many results
are already known and can be borrowed and applied to syntax.

For the sake of simplicity, we’ll focus on one fairly standard axiomatic arith-
metic: Peano Arithmetic (PA), although many results apply to other arithmetical
theories, including some weaker ones (see for example Hájek and Pudlak [27] for
details). The language of PA, LPA, is a first-order language with identity and a few
specific symbols: 0, S,× and + (in the standard model of arithmetic N interpreted
as referring to the number zero, the successor function, multiplication, and addition,
respectively). For any number m, the standard numeral for m has the form S . . . S︸ ︷︷ ︸

m

0

and is abbreviated by m. The specific axioms of PA consist of:

∀x (0 �= Sx) (PA 1)

∀x, y (Sx = Sy → x = y) (PA 2)

∀x (x + 0 = x) (PA 3)

∀x, y (x + Sy = S(x + y)) (PA 4)
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∀x (x × 0 = 0) (PA 5)

∀x, y (x × Sy = (x × y)+ x) (PA 6)

and all the instances of the induction schema:

ϕ(0) ∧ ∀x (ϕ(x) → ϕ(S(x))) → ∀x ϕ(x) (PA Ind)

Formulas of LPA can be classified according to their logical complexity. If t

is a term not containing x, ∀x ≤ t ϕ(x) and ∃x ≤ t ϕ(x) abbreviate ∀x (x ≤ t →
ϕ(x)) and ∃x (x ≤ t∧ϕ(x)) respectively. Such occurrences of quantifiers are called
bounded, and formulas whose all quantifiers are bounded are called �0-formulas.
The hierarchy proceeds in two “layers”, that of �n and that of �n formulas.
�0 = �0 = �0. �n+1-formulas are of the form ∃x1, . . . , xk ϕ(x1, . . . , xk), where
ϕ(x1, . . . , xk) is �n. �n+1-formulas are of the form ∀x1, . . . , xk ϕ(x1, . . . , xk),
where ϕ(x1, . . . , xk) is �n. Every formula of LPA is logically equivalent to a �n

formula and to a �m formula, for some n and m (and there always exist the least
such n and m).

The class of �1 formulas is of particular interest, because it turns out that a
function is recursively enumerable (see Smith [68] for a nice introduction to the
topic) just in case it is �1-definable. This result, for instance, makes sure that an
axiomatic system which is strong enough to handle �1-sentences (in a sense to
be specified) is strong enough to properly handle computable functions, including
those related to syntactic manipulations, and so is strong enough to prove things
about syntax of a formal language within it.

We say that an arithmetical theory T is �1-sound just in case for any �1-formula
ϕ, if T ⊢ ϕ, then N |=ϕ (that is, ϕ is true in the standard model of arithmetic).
The dual notion is that of �1-completeness. T is �1-complete just in case for any
sentence ϕ ∈ �1, if N |=ϕ, then T ⊢ ϕ.

Fact 1.1 PA is �1-complete.

There are various ways of coding syntax, effectively mapping syntactic objects,
such as expressions, formulas, sentences and sequences thereof to natural numbers,
so that each syntactic object τ of LPA is represented by its Gödel code 	τ
. The
details are unimportant here, so let’s just focus on one of them and work with it
(again, see Smith [68] for an accessible introduction).

Consider now any theory T in LPA extending PA. It is said to be elementary

presented just in case there is an arithmetical �0-formula AxT(x) true of a natural
number just in case it is a code of an axiom of T. Such a formula can be further used
in a fairly standard way to construct a �0 arithmetical formula PrfT(y, x) which
is the standard binary proof predicate of T such that it is true of natural numbers
m and n just in case m is the code of a sequence of formulas which is a proof of
the formula whose code is n (the details of the construction are inessential here).
Moreover:

(Binumeration) If in the standard model PrfT(m, n), then PA ⊢ PrfT(m, n)

If in the standard model ¬PrfT(m, n), then PA ⊢ ¬PrfT(m, n)
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PrfT(y, x) can be further used to define the so-called standard provability

predicate (since we won’t be talking about non-standard provability predicates,
we’ll simply talk about provability predicates, assuming they’re standard) and the
consistency statement:

ProvT(x) := ∃y PrfT(y, x)

Con(T) := ¬ProvT(	⊥
)

ProvT(y) is obtained from a �0 formula by preceding it with an existential
quantifier, and so, it is a �1-formula. Therefore, by �1-completeness, the first
half of (Binumeration) holds for it (and the second one fails, for somewhat more
complicated reasons):

If in the standard model ProvT(n) is true, then PA ⊢ ProvT(n)

Note however, that even though the second half of (Binumeration) fails,
ProvT(x) succeeds at defining provability, in the sense that ProvT(	ϕ
) is true in
the standard model of arithmetic just in case in fact T ⊢ ϕ (by the way, from now on
we’ll skip using the bar above numbers coding of formulas, assuming it is normally
there, that is, that in the formulas we’ll mention, numerals of codes of formulas are
standard).

Still assuming T is elementary presented, ProvT(x) satisfies the following so-
called Hilbert-Bernays conditions [34, 48] for any arithmetical formulas ϕ,ψ :

T ⊢ ϕ iff PA ⊢ ProvT(	ϕ
) (HB1)

PA ⊢ ProvT(	ϕ → ψ
) → (ProvT(	ϕ
) → ProvT(	ψ
) (HB2)

PA ⊢ ProvT(	ϕ
) → ProvT(	ProvT(	ϕ
)
) (HB3)

In particular, the provability predicate of T can be taken to be that of PA itself. Also,
keep in mind, that most of the results apply to certain theories weaker than PA and
to elementary presented theories extending PA, either of which we usually chose to
ignore for the sake of simplicity.

Another important piece of the puzzle will be Gödel’s incompleteness theorems,
which we include here in a somewhat modernized statement:

Theorem 1.2 If an elementary presented theory T extends PA and is consistent,

then there is a sentence G ∈ LPA such that T �⊢ G and T �⊢ ¬G. Moreover,

T �⊢ Con(T ).

Incompleteness follows from a more general result (which have been stated by
Carnap [17]; see Gaifman [23] for a deeper historical discussion):

Lemma 1.3 (Diagonal Lemma) For any formula ϕ(x) ∈ LPA there is a sentence

λ ∈ LPA such that

PA ⊢ λ ≡ ϕ(	λ
)
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The Diagonal Lemma, when we take ϕ(x) to be ¬ProvPA(x), entails the existence
of a sentence that can be used in the incompleteness proof, which provably satisfies
the condition:

G ≡ ¬ProvPA(	G
)

Such a G is independent of PA. The result generalizes: if a theory satisfies certain
requirements and is consistent, its Gödel sentence is independent of it.

Quite a few years later Henkin [30] asked a related question: what happens,
however, with sentences such as:

H ≡ ProvT(	H
)? (Henkin)

The question was soon answered by Löb [48]:

Theorem 1.4 (Löb) If the Diagonal Lemma applies to T, and the provability

predicate of a theory T satisfies (his formulation of) the Hilbert Bernays conditions

(HB1-3), T ⊢ ProvT(	ϕ
) → ϕ if and only if T ⊢ ϕ.

For a given sentence ϕ, the formula ‘ProvT(	ϕ
) → ϕ’ is called reflection for

ϕ (over T), and Löb’s theorem says that reflection is provable in T for all and only
theorems of T. The theorem can be obtained fairly easily from the Diagonal Lemma
applied to ProvT(x) → ϕ. For if the Diagonal Lemma applies to T (it is enough
that T extends PA), the Lemma entails the existence of a ψ such that:

T ⊢ ψ ≡ (ProvT(	ψ
) → ϕ) (L)

The rest of the reasoning is propositional.

1 T ⊢ (ProvT(	ψ
) → ϕ) → ψ (L), Classical logic

2 T ⊢ ψ → (ProvT(	ψ
) → ϕ) (L), Classical logic

3 T ⊢ ProvT(	ψ → (ProvT(	ψ
) → ϕ)
) (HB1), 2

4 T ⊢ ProvT(	ψ
) → ProvT(	(ProvT(	ψ
) → ϕ)
) (HB2), 3

5 T ⊢ ProvT(	ψ
) → (ProvT(	ProvT(	ψ

)) → ProvT(	ϕ
)) (HB2), 4

6 T ⊢ ProvT(	ψ
) → ProvT(	ProvT(	ψ

)) (HB3)

7 T ⊢ ProvT(	ψ
) → ProvT(	ϕ
) 5, 6

8 T ⊢ ProvT(	ϕ
) → ϕ Assumption

9 T ⊢ ProvT(	ψ
) → ϕ 7, 8

10 T ⊢ ψ Classical logic, 1, 8

11 T ⊢ ProvT(	ψ
) (HB1), 10

12 T ⊢ ϕ 9, 11
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9.2.4 The Inadequacy of S4 with Respect to Formal Provability

Coming back to the question of whether � of S4 can be sensibly interpreted
as the formal provability predicate: what happens when we take �ϕ to mean
ProvT(	ϕ
)? As it turns out, things fall apart quite quickly. For the sake of
simplicity we’ll take the case where T = PA, but the point generalizes to consistent
recursively axiomatizable extensions of PA.

Since S4 ⊢ �ϕ → ϕ for any ϕ, the interpretation would require that for all
ϕ ∈ LPA, PA ⊢ ProvPA(	ϕ
) → ϕ. But this, jointly with Löb’s theorem, would
entail that for any ϕ ∈ LPA, PA ⊢ ϕ. So, if PA is consistent, S4 is not the logic of
the formal provability predicate of PA.

There is a somewhat different way to notice the inadequacy of S4 in this
context, already brought up by Gödel [24]. The formula expressing Con(PA)

is ¬ProvPA(	⊥
), which is logically equivalent to ProvPA(	⊥
) → ⊥. At
the modal level, this is just an axiom of S4, since �⊥ → ⊥ falls under
schema (M). Thus, if S4 was adequate, we would have PA ⊢ Con(PA), which
would contradict Gödel’s second incompleteness theorem. Moreover, necessitation
would yield �(�⊥ → ⊥), and so in S4 we would be able to derive the claim
that the consistency claim is derivable, which again, contradicts Gödel’s second
incompleteness theorem.

At this stage, at least two questions remain open. What is the right modal logic
of formal provability? What’s the right provability semantics for S4?

9.3 Gödel-Löb Modal Logic (GL)

9.3.1 Axiomatizing GL

The inadequacy of S4 was mainly due to Löb’s theorem. How to proceed to obtain
a modal logic better fit to the formal provability interpretation?

The first move results from noticing that it was (M) that was responsible for
the trouble. Consequently, (M) has to be dropped. Another step is to notice that a
formalized version of Löb’s theorem can be proved in any elementary presented T

extending PA, so that we have:

T ⊢ ProvT(	ProvT(	ϕ
) → ϕ
) → ProvT(	ϕ
)

So, our modal logic of provability should validate the corresponding modal princi-
ple:

�(�ϕ → ϕ)→ �ϕ (Löb)
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GL (from Gödel-Löb) is a modal system resulting from these moves. Its axioms
are all the substitutions of classical tautologies (in the language of LM ), all the
substitutions of (K), all the substitutions of (Löb), and the rules are modus ponens

and necessitation.
Note that while (Nec) is a rule of GL, we cannot have ϕ → �ϕ as an axiom

schema. While (Nec) is well-motivated (it says, in the intended interpretation, that
any theorem is provably provable), the implication would say that anything true is
provable, and that is far from obvious. In the arithmetical setting, we already have
the formalized version of the second incompleteness theorem:

PA ⊢ Con(PA)→ ¬ProvPA(	Con(PA)
)

so if we also had:

PA ⊢ Con(PA)→ ProvPA(	Con(PA)
)

it would follow that PA ⊢ ¬Con(PA).
Now, is GL at least sound with respect to the formal provability interpretation?

Well, the necessitation rule is the modal version of (HB1) and (K) is the modal
version of (HB2). We can also prove in GL the modal version of (HB3), that is,
GL ⊢ (4), and so it can also be dropped when moving from S4 to GL.

To get a better grasp of proofs in GL, let’s see what the proof of this fact looks
like. Before we give the proof we need two introductory steps. For one thing, since
we have (Nec) and (K), we can easily move from GL ⊢ (ϕ → ψ) or from
GL ⊢ �(ϕ → ψ) to GL ⊢ �ϕ → �ψ . In what follows we’ll make such moves
without hesitation, sometimes calling them (Distr)—since they basically consist
in distributing � over material implication. If you’re not convinced, the official
argument starts with ⊢ ϕ → ψ . Use (Nec) to obtain ⊢ �(ϕ → ψ). Then (K)
tells you ⊢ �(ϕ → ψ) → (�ϕ → �ψ), and so by detachment ⊢ �ϕ → �ψ . It’s
just too repetitive to go through these moves every time.

For another, we’ll need this fairly straightforward fact:

Fact 3.1 GL ⊢ �(ϕ ∧ ψ) ≡ (�ϕ ∧�ψ)

Proof Reason within GL. From left to right:

1. ϕ ∧ ψ → ϕ Tautology
2. ϕ ∧ ψ → ψ Tautology
3. �(ϕ ∧ ψ) → �ϕ (Distr), 1
4. �(ϕ ∧ ψ) → �ψ (Distr), 2
5. �(ϕ ∧ ψ) → (�ϕ ∧�ψ) Classical logic, 3, 4
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From right to left:

1. ϕ → (ψ → (ϕ ∧ ψ)) Tautology
2. �ϕ → (�ψ → �(ϕ ∧ ψ)) (Distr), 1
3. (�ϕ ∧�ψ) → �(ϕ ∧ ψ) Classical logic, 2

⊓⊔
Observe also that Fact 3.1 entails (left to right, together with conjunction

elimination):

GL ⊢ �(�ϕ ∧ ϕ)→ ��ϕ (3.2)

Finally we have:

Fact 3.3 GL ⊢ (4), that is GL ⊢ �ϕ → ��ϕ.

Proof Again, let’s reason within GL.

1. ϕ → ((ψ ∧ χ)→ (χ ∧ ϕ)) Tautology
2. ϕ → ((��ϕ ∧�ϕ) → (�ϕ ∧ ϕ)) Substitution, 1
3. ϕ → (�(�ϕ ∧ ϕ) → (�ϕ ∧ ϕ)) Fact 3.1, 2
4. �ϕ → �(�(�ϕ ∧ ϕ) → (�ϕ ∧ ϕ)) (Distr), 3
5. �(�(�ϕ ∧ ϕ) → (�ϕ ∧ ϕ)) → �(�ϕ ∧ ϕ) (Löb)
6. �ϕ → �(�ϕ ∧ ϕ) Classical logic, 4, 5
7. �ϕ → ��ϕ (3.2), 6

⊓⊔
We’ve shown that (4) is derivable in GL. But since (M) was the source of the

problems, we also need to make sure it is not a derivable theorem schema for GL.
Simply dropping it from the axiom schemata is not enough.

Fact 3.4 If GL �⊢ ⊥, it is not the case that for any ϕ, GL ⊢ �ϕ → ϕ.

Proof Suppose the opposite holds. Then we have GL ⊢ �⊥ → ⊥, and so we can
reason within GL:

1. �⊥→ ⊥ Assumption
2. �(�⊥→ ⊥) (Nec), 1
3. �(�⊥→ ⊥) → �⊥ (Löb)
4. �⊥ Detachment, 2, 3
5. ⊥ Detachment, 1, 4

⊓⊔
The assumption of consistency of GL above is explicit not because we have any

serious doubts about it. It’s rather that when it is explicitly stated, the unprovability
of reflection can be easily proven in a few steps, as we’ve just seen. Proof of a similar
claim without this assumption is slightly more convoluted.
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Fact 3.5 GL �⊢ ⊥ and GL �⊢ �p → p.

Proof The general structure of the argument is this. We show that all theorems of
GL have a certain property, which ⊥ and �p → p don’t have, and so ⊥ and
�p → p are not theorems of GL. The property is: being a classical propositional

tautology under the following translation. So now we need to define a translation t

from LM into the classical propositional language, which translates all theorems of
GL into classical tautologies, but at the same time translates ⊥ and �p → p into
formulas whose negations are classically satisfiable. Let’s start with the translation:

t (⊥) = ⊥
t (p) = p (for all propositional variables)

t (ϕ → ψ) = (ϕ)⋆ → (ψ)⋆

t (�ϕ) = ⊤

Clearly:

1. If ϕ is a substitution of a classical tautology, t (ϕ) is a tautology. This is because
the translation effectively is a substitution, and it gives a formula in the classical
propositional language, in which all substitutions of tautologies are classical
tautologies.

2. t(K) is ⊤→ (⊤→ ⊤), which is a classical tautology.
3. t(Löb) is ⊤→ ⊤, which also is a tautology.

We handled the axioms of GL, making sure their translations are classical tautolo-
gies. Now we need to take care of the inference rules.

4. Consider modus ponens (arguments for any classical propositional rule are pretty
much the same). One can still apply modus ponens to t (ϕ), t (ϕ → ψ) =
(t (ϕ) → t (ψ)). So if GL ⊢ ϕ, GL ⊢ ϕ → ψ , we know that GL ⊢ ψ , and
that the following are tautologies: t (ϕ), t (ϕ) → t (ψ), and t (ψ).

5. What about necessitation? Say GL ⊢ ϕ so that also GL ⊢ �ϕ. Quite trivially
t (�ϕ) = ⊤, which is a tautology.

Together, points 1–5 show that all theorems of GL translate into classical tau-
tologies. Finally, we have to show that the translations of the formulas that we’re
interested in aren’t tautologies.

6. t (�p → p) = ⊤→ p, which is not a tautology.
7. t (⊥) = ⊥, which also isn’t a tautology.

Points 6–7 mean that these formulas are not theorems of GL, which completes the
proof. ⊓⊔
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9.3.2 Another Way Towards GL: K4LR

Another modal logic that might come to mind when one thinks of � as provability is
K4LR. Just as GL, it allows necessitation and classical consequence (for the modal
language), and just as GL it has (K) as an axiom schema. But it keeps (4), drops
(Löb), and admits the following Löb’s rule (LR) instead:

If ⊢ (�ϕ → ϕ), infer ⊢ �ϕ (LR)

It turns out that GL and K4LR have the same theorems.

Fact 3.6 If K4LR ⊢ ϕ, then GL ⊢ ϕ.

Proof We need to check that GL proves the axioms of K4LR and that it is closed
under its rules. As for the axioms, (K) is shared, and Fact 3.3 shows that GL ⊢(4).
As for the rules (Nec) is shared, and we only need to show that GL is closed under
(LR). This can be shown by the following reasoning within GL:

1. �ϕ → ϕ Assumption (as a GL-theorem)
2. �(�ϕ → ϕ) (Nec), 1
3. �(�ϕ → ϕ)→ �ϕ (Löb)
4. �ϕ MP, 2, 3
5. ϕ MP, 1, 4

⊓⊔
Implication in the opposite direction also holds.

Fact 3.7 If GL ⊢ ϕ, then K4LR ⊢ ϕ.

Proof (K) and (Nec) and classical logic in the background are shared. The only
thing that needs to be shown is K4LR ⊢(Löb), that is that (LR) in the context of
K4LR is strong enough to give us the formula corresponding to the rule.

To see that this is not immediately obvious, note that, in principle, rules are
weaker than corresponding implications, because they apply to theorems only. For
instance, (Nec) is sensible because it says that any theorem is necessary, but the
formula p → �p is not an axiom of any sensible standard modal logic, for it says,
roughly, that any truth is necessary. Let’s prove (Löb) within K4LR.

1. �(�ϕ → ϕ)→ (��ϕ → �ϕ) (K)
2. �(�ϕ → ϕ)→ ��(�ϕ → ϕ) (4)

3. �[�(�ϕ → ϕ) → �ϕ] → [��(�ϕ → ϕ) → ��ϕ] (K)
4. �[�(�ϕ → ϕ) → �ϕ] → [�(�ϕ → ϕ) → ��ϕ] PL, 1, 3
5. �[�(�ϕ → ϕ) → �ϕ] → [�(�ϕ → ϕ) → �ϕ] PL, 2, 4
6. �(�ϕ → ϕ)→ �ϕ (LR), 5
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Line 1 applies (K) to the antecedent of (Löb). In line 2 we use (4) to modalize the
antecedent of (Löb) even deeper. Line 3 applies axiom (K) to distribute necessity
over the antecedent and the consequent of (Löb). By classical logic, lines 2 and
3 allow us to replace ��(�ϕ → ϕ) with �(�ϕ → ϕ) in the antecedent of the
consequent of the formula in line 3. In line 5, thanks to line 1 we could remove one
box in the last consequent of the formula in line 4. Now we notice that line 5 is just
the premise for an application of (LR) and we apply this rule. ⊓⊔

9.3.3 GL vs. Logical Necessity

What difference does it make to read � as ‘it is provable in the system’ rather than
as ‘it is logically necessary’? Well, (K), (4) and necessitation intuitively speaking
hold for both readings. But there are some important differences.

One thing, already mentioned, is that GL �⊢ �p → p, while all suitable
candidates for a modal logic of logical necessity (the main one being S5) prove
�p → p. And rightly so, for it seems intuitively true that whatever is logically
necessary holds.

What about (Löb)? It obviously is a theorem of GL (yes, we’re sloppy about the
distinction between formula and schemata, but this shouldn’t cause any misunder-
standing). But if we read � as logical necessity, it is somewhat difficult to sort out
our modal intuitions about (Löb). Notice that our intuitions about necessity validate
reflection for all formulas. Among them is:

�⊥→ ⊥

This seems right: if a contradiction is necessary, it is true (hopefully, it isn’t).
Also, the implication seems to be a logical truth itself, and as such should also
be necessary. So we have:

�(�⊥→ ⊥)

as an intuitive truth when � is read as logical necessity. At the same time, we
(with a few notable exceptions, such as Graham Priest) don’t think there are true
contradictions – so, a fortiori, we don’t think there are necessary contradictions.
This gives us:

¬�⊥

Put those two things together, and we easily have:

¬[�(�⊥→ ⊥) → �⊥]
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So, when we read � as logical necessity, we have an intuitively convincing formula
which is the negation of an instance of (Löb)! And in general, it seems false that just
because all necessary sentences are true, all sentences are true.

Another way to see why (Löb) is problematic when � is read as necessity is
this. Substitute ¬p and apply a few trivial classical moves and the fact that ♦ϕ is
equivalent to ¬�¬ϕ:

�(�¬p → ¬p)→ �¬p

�¬(p ∧�¬p)→ �¬p

¬�¬p → ¬�¬(p ∧�¬p)

♦p → ♦(p ∧�¬p)

But the last formula says that if p is possible then it is possible that p and yet p

is necessarily false. This surely isn’t an intuitively convincing principle of logical
necessity.

9.3.4 GL and Deontic Modalities

Multiple sources, when introducing GL, mention [67]—a paper titled “The Logical
Basis of Ethics” as the source in which the Löb’s theorem stated as a modal formula
first occurred. However, to our knowledge, none of these sources actually explains
what it was doing there. For instance, in Verbrugge [78] all that we can read about
it is:

Ironically, the first time that the formalized version of Lö’s theorem was stated
as the modal principle [. . . ] was in a paper by Smiley in 1963 about the logical
basis of ethics, which did not consider arithmetic at all.

We’d like to be more specific, and so a short digression about how (Löb) entered the
stage follows.

Smiley is developing the ideas from Anderson [1], where an attempt is made to
define a deontic modality O (it is obligatory that) in terms of an alethic one (it is

necessary that). Anderson’s basic idea is to define:

Oϕ =df �(¬ϕ → S)

where S is an unspecified constant expressing the claim that some sanction is
applied. Given this analysis, a modal logic of obligation is obtained via a translation
from a modal logic of necessity (as far as Anderson’s system is concerned, the
resulting system is S4 with O instead of �).

Smiley [67] contains an interesting discussion of a philosophical concern raised
by Nowell-Smith and Lemmon [60] as to whether S is supposed to contain a deontic
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aspect, or is it supposed to be purely factive, and different difficulties arising in
these two cases, but let’s put these issues aside. Smiley’s point, however, is that a
contrapositive reformulation of Anderson’s account makes the connection between
the left-hand side and the right-hand side more intuitive. Instead of meeting a
sanction if φ is not performed, Smiley talks about being a consequence of a moral
code, so that:

Oϕ ≡ �(T → ϕ)

where T is a moral code. Now, Smiley argues, we can ask what inferential principles
hold for O no matter which particular T is chosen.

An important difference in Smiley’s approach, however, is that the above
equivalence is not definitional, and so the respective formulas aren’t replaceable
in all contexts. This is like treating the equivalence as an assumption (to which
(Nec) cannot be applied) rather than as an axiom schema. This reading, he claims,
validates (K), application of (Nec) to tautologous formulas, but not axioms (4) or
(M). Accordingly, he conjectures that the right modal logic will comprise exactly
these.

Further on, Smiley discusses another reading, on which Oϕ holds if ϕ follows
from the totality of obligatory propositions. But then, there is no single sentence
expressing this totality, and so instead of using T as a sentential symbol, Smiley
considers using it as an operator, so that T ϕ means that ϕ belongs to this totality.
While one might object that it is not clear what philosophical progress can be made
by analysing being an obligatory sentence in terms of following from the totality
of obligatory sentences (especially as, presumably, all obligatory sentences that
follow from the totality of obligatory sentences are already in it), we can still ask
what formal properties O thus defined would have. Smiley’s reply is that given that
such operators aren’t treated in any modal logic, we should turn to arithmetic and
the arithmetical provability predicate, which, arguably, might have similar formal
properties as ‘being a consequence of a moral code’ (so the claim in [78] that the
paper didn’t consider arithmetic at all is a bit hasty). A this point, Smiley observes
that on this arithmetical reading, all tautologous formulas are theorems, (K) and (4)
hold, and so do modus ponens and (Nec). Then, Smiley mentions Löb’s theorem
saying:

. . . and Kripke has pointed out to me that this proof can itself be arithmetised
to provide a proof of the formula O(OA→ A)→ OA.
[67, 244]

So, indeed, Smiley does mention the formula in the context of ethics.
Now, just a few words about what doesn’t happen in the paper. Smiley doesn’t

explain how (Löb) would be understood if the modality is interpret as a deontic
modality, doesn’t discuss any philosophical motivations for (Löb) in this interpreta-
tion (independent of the behavior of provability in arithmetic), and doesn’t propose
(Löb) as an additional axiom of a modal logic of obligation.

Come to think of it, (Löb) in the deontic reading, doesn’t seem too plausible.
On one hand, it should be the case that whatever should be the case happens (i.e.
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obligations should be obeyed). On the other hand, it seems unintuitive that just
because of that, simply anything whatsoever should be the case.

9.3.5 GL and Formal Provability

We know S4 turned out inadequate with respect to formal provability predicate. GL

does a much better job. To elaborate, we first need to explain the relation between
LM and LPA that will underlie what follows.

A mapping from propositional variables of LM to the set of sentences of LPA

is called an arithmetical realization. In a sense, an arithmetical realization tells us
which variables are to be interpreted as which sentences of arithmetic. Given an
elementary presented theory T, any arithmetical realization r can be extended to a
T-interpretation rT(ϕ) of a modal formula, by the following conditions:

rT(⊥) = ⊥ rT(⊤) = ⊤
rT(p) = r(p) for any variable p

rT(ϕ → ψ) = rT(ϕ) → rT(ψ)

rT(�ϕ) = ProvT(	rT(ϕ)
)

If you worry that LPA doesn’t really contain ⊥ and ⊤, feel free to replace them
with any LPA-formulas that are, respectively, refutable and provable by pure logic.
Let’s call the set of all possible T-interpretations of ϕ ∈ LM (under all possible
realizations) ϕT.

Given the correlation between the axioms and rules of GL and the Hilbert-
Bernay’s conditions and Löb’s theorem, adequacy of GL at least in one direction
is clear:

Fact 3.8 GL is sound with respect to the arithmetical interpretation, that is:

If GL ⊢ ϕ, then PA ⊢ ϕT.

(where by PA ⊢ ϕT we mean that PA proves all the members of ϕT).

In fact, implication in the opposite direction also holds, provided that T is �1-
sound, so that the claim can be strengthened to equivalence [71]:

Theorem 3.9 (Solovay Completeness) If T is �1-sound, then for any ϕ ∈ LM :

GL ⊢ ϕ if and only if T ⊢ ϕT.

This shows that given a sensible arithmetical theory, those principles of its formal
provability predicate that are provable in arithmetic are adequately axiomatized by
GL. The proof lies beyond the scope of this survey, but the general strategy can
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be quickly described. Assume GL �⊢ ϕ. Then, by the results to be described in
Sect. 9.3.6 (feel free to read this passage again after reading that section) there is a
finite transitive and reversely well-founded model such that for some w in it, w �� ψ .
Since the set of worlds in the model W is finite, we can safely identify W with an
initial segment of natural numbers = {1, 2, . . . , n} with w = 1 and 1Ri just in case
1 < i ≤ n. The tricky part now, the part for which Solovay is deservedly famous, is
using this arithmetical counterpart of W to construct an interpretation such that the
arithmetical theory fails to prove the arithmetical interpretation of ϕ.

9.3.6 Relational Semantics for GL

We have drawn a connection between GL and the formal provability predicate.
What about relational semantics for GL, though? As it turns out [63], there is a
natural class of relational models with respect to which GL is sound and complete.

Theorem 3.10 GL is sound and complete with respect to the class of finite frames

in which R is transitive and irreflexive.

There is a somewhat different class of frames with respect to which GL is sound
and complete. We say that the accessibility relation R is reversely well-founded in
W just in case every non-empty subset X of W has an R-maximal element (that is,
a w ∈ X such that ¬∃w′ ∈ W wRw′).

Theorem 3.11 GL is sound and complete with respect to transitive and reversely

well-founded frames.

Notice that there is a connection between these two. Any reversely well-founded R

is irreflexive, and a transitive R on a finite set is reversely well-founded just in case
it is irreflexive. The result can be strengthened:

Theorem 3.12 GL is sound and complete with respect to finite transitive and

reversely well-founded frames.

Since the proof employs a construction that given a formula to be checked gives an
upper limit on the finite size of models to be checked, the proof by the same token
proves the decidability of GL.

The full proof of weak completeness (that is, the one that applies to theoremhood,
read on for details) is beyond the scope of this survey. To give you a taste, however,
we’ll run the following interesting part of the argument to the effect that if (Löb)
holds in a frame, its accessibility relation is reversely well-founded. We’ll argue by
contraposition, by showing that if a frame isn’t reversely well-founded, there is a
possible world in it and a forcing relation over it, such that (Löb) fails there.

So assume R is not reversely well-founded. This means there is a set X ⊆ W

such that the elements of X constitute an infinite chain w1Rw2Rw3 . . . . Take �

such that w � p for all w ∈ W \ X and w′ � ¬p for all w′ ∈ X. Pick an arbitrary
w ∈ X. Now we want to show that the antecedent of (Löb), �(�p → p), holds in
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w. This requires showing that �p → p holds in any world accessible from w. So
assume wRv. We’ll want to show v � �p → p.

Either v ∈ X or v �∈ X. If the former, then v can access at least one world in
the infinite chain. So for some u ∈ X, vRu. Since p is false in all elements of X

we have u �� p and so v � ♦¬p, that is v � ¬�p. But this classically entails
v � �p → p. If the latter, v � p, and classically v � �p → p.

Either way, if wRv, v � �p → p. Since our choice of v was arbitrary, and
the only assumption was that wRv, this means that w � �(�p → p). This is the
antecedent of (an instance) of (Löb). On the other hand, w is in a chain in X, and so
it can access a world where p fails, and so w � ¬�p, which is the negation of (our
instance of) (Löb).

Notice that the property of being conversely well-founded isn’t first-order defin-
able.2 That is, there is no first-order formula containing the binary predicate letter R

which holds in a model just in case R is conversely well-founded. For suppose there
is such a formula ψ . Introduce infinitely many new constants c1, c2, . . . . Consider
the infinite set of formulas composed of ψ and {ciRcj | i < j} (which jointly
state the existence of an infinite chain). Each finite subset of that set is satisfiable
in a model (take any finite conversely well-founded model, where there are more
objects than constants under consideration). But then, by compactness theorem for

first-order classical languages (which in one of its formulations says that if any
finite subset of a set of first-order formulas is satisfiable, then so is the whole set),
the whole set has a model. Among other things, this model makes ψ true (in which
no new constants occur), and yet, R in it cannot be conversely well-founded, because
it has to contain an infinite R-chain of objects corresponding to the new constants.

Compactness (to be elaborated on in Sect. 9.3.7), as used in the above argument,
holds for first-order logic, and our argument was about first-order definability, so its
use in this context is legitimate. This issue shouldn’t be confused with the question
of compactness of GL, because, as it will turn out, GL itself is not compact.

One remark: soundness and completeness in the above theorems is taken in the
weak sense: ψ is valid in all finite, transitive and reversely well-founded frames just
in case it is a theorem of GL. This sense is to be distinguished from strong soundness
and completeness. To introduce this notion we have to define GL-derivability first.
We say that ψ is GL-derivable from (a finite or infinite) premise set Ŵ (Ŵ ⊢GL ψ)
just in case there is a proof of ψ from the axioms of GL and formulas belonging to Ŵ

by the rules of GL, provided (Nec) is applied only to theorems of GL (alternatively,
iff there is a proof of ψ from theorems of GL and elements of Ŵ by means of
modus ponens only; the latter formulation has the advantage that the deduction
theorem to the effect that ⊢ ϕ → ψ just in case ϕ ⊢ ψ applies to derivability
thus defined). Now, the relevant strong completeness claim is that Ŵ ⊢GL ψ just
in case in every possible world in every finite, transitive and reversely well-founded
model, if all elements of Ŵ are true in it, then so is ψ . Alas, the claim is false—strong

2See [14] for an extensive introduction to issues related to definability of properties of frames.
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completeness for GL fails, pretty much for the same reasons for which compactness
fails for GL. We’ll explain this in more detail soon.

Given the arithmetical soundness and completeness, relational semantics pro-
vides us with a handy tool for showing that a certain claim about provability is not
provable in PA: to show this it is enough that its modal counterpart is not provable
in GL, and given the relational semantics, to show this it is enough to construct
a transitive reversely well-founded model making the claim false. A nice example
[15] is that of

�(�p ∨�¬p) → (�p ∨�¬p)

Is it provable in GL? The answer is negative. Consider a model composed of three
possible worlds a, b, c such that aRb, aRc, c � ¬p, b � p. Since b and c are blind
worlds, b, c � �p,�¬p,�p ∨ �¬p, and so a � �(�p ∨ �¬p). Yet, a sees a
world where p and a world where ¬p, and so a �� �p ∨�¬p.

This means there is an arithmetical sentence σ which can be assigned to p by a
realization, such that the negation of the resulting PA-interpretation of the formula
in question can be consistently added to it.

In other words, it is consistent with PA that it is provable that either σ is provable
or refutable, but nevertheless σ is neither provable nor refutable. And this clearly is
a nice little fact that will score you some extra points in a late night conversation
with a stranger in a pub.

9.3.7 Compactness Failure for GL

Compactness was already mentioned in Sect. 9.3.6. We say that a logic L is compact

just in case for any set Ŵ of formulas of the appropriate formal language, if every
finite subset of Ŵ has a model suitable for L, the whole Ŵ has such a model. In the
case of GL, compactness would mean that for every set Ŵ of formulas of LM , if
every finite subset of Ŵ has a transitive and conversely well-founded model, then so
does Ŵ. Interestingly, compactness fails for GL.

To see why, first reflect on the meaning of ♦ in this context. ♦ϕ is defined as
¬�¬ϕ, and so while ‘�ϕ’ is read as ‘ϕ is provable’, the intuitive reading of ‘♦ϕ’ is
‘ϕ is not refutable’ or ‘the negation of ϕ is not provable’.

Now we can proceed with the reasoning. Take an infinite assembly of proposi-
tional variables p0, p1, . . . , and the following infinite set of formulas:

C = {♦p0} ∪ {�(pi → ♦pi+1) | i ∈ N}

Every finite subset of C has a transitive reversely well-founded model. There is no
space for the general argument here, but to see why this is plausible consider the
finite subset of C:
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C2 = {♦p0,�(p0 → ♦p1),�(p1 → ♦p2)}

Take (the transitive closure of) the frame composed of w,w0, w1, w2 only, such that
wRw0Rw1Rw2. Whether propositional variables are true at w is irrelevant, for the
other worlds take the forcing relation such that wi � pi and wi �� pj if i �= j . We’ll
argue that w � C2.

• Since wRw0 and w0 � p0, w � ♦p0.
• w2 �� p0, so w2 � p0 → ♦p1. For a similar reason, w1 � p0 → ♦p1. Moreover,

since w1 � p1, w0 � ♦p1, and so w0 � p0 → ♦p1. This shows that p0 → ♦p1
holds in all worlds accessible from w. So w � �(p0 → ♦p1).

• A perfectly analogous argument goes for w � �(p1 → ♦p2).

However, C doesn’t have a transitive and conversely well-founded model. For
suppose there is a model with a w such that w � C. Define:

X = {v | wRv ∧ ∃i v � pi}

That is, collect all the possible worlds accessible from w where at least one pi

holds. We have ♦p0 ∈ C, so w � ♦p0, and X is non-empty, say wRw0, w0 � p0.
Since w � �(p0 → ♦p1), w0 � p0 → ♦p1. So w0 � ♦p1, and there is a
w1 ∈ X such that w1 �= w0 (R is irreflexive) such that w0Rw1 and w1 � p1. But
w � �(p1 → ♦p2) and (by transitivity) wRw1, and so w1 � p1 → ♦p2. Therefore
w1 � ♦p2, and so w1 has to see yet another member of X, etc. In short: X has to
contain an infinite chain, which contradicts the assumption that R is conversely
well-founded.

The example of C can be also used to explain why strong completeness fails for
GL. We already know C has no transitive, conversely well-founded model. Another
way to say this is that C semantically entails⊥ (with respect to this class of frames):
C |=⊥. Yet, ⊥ is not derivable from C, C �⊢ ⊥—for any proof from C could only
use a finite number of premises from C, and we already know that no finite subset
of C entails (and so, by soundness, proves) ⊥.

The fact that compactness fails is partially responsible for why the semantic
completeness for GL is a bit more tricky than one for a more usual modal logic.
Normally, in the proof, one constructs a canonical model by taking infinite sets
of consistent formulas as possible worlds; for GL, however there are syntactically
consistent sets of formulas which nevertheless aren’t semantically coherent.
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9.3.8 Letterless Sentences and the Normal Form Theorem

for GL

A letterless sentence of LM is a formula built from the classical and modal
connectives, devoid of propositional variables, and containing only ⊥ among its
atomic formulas. Instead of preceding ϕ with n boxes, we’ll write �nϕ.

One of the reasons why letterless sentences are interesting is because some
of them formally certain fairly natural statements. For instance, ¬ProvT(	⊥
)
is (=formalizes) the consistency statement (hopefully true, but under standard
conditions unprovable), ProvT(	¬ProvT(	⊥
)
) is the provability of consistency
(false), ¬ProvT(	⊥
) → ¬ProvT(	¬ProvT(	⊥
)
) expresses the second
incompleteness theorem, etc.

One of the interesting uses of GL (to which we will move soon) relate to the
existence of a certain decision procedure, whose description employs the notion of a
normal form. By a normal form of a letterless sentence ϕ we mean a truth-functional
combination of sentences of the form �i⊥.

Theorem 3.13 (Normal form theorem (Boolos)) For any letterless formula ϕ ∈
LM , there is a normal form letterless ψ such that GL ⊢ ϕ ≡ ψ .

The normal form theorem, while at first it might seem abstract, will come handy
quite soon, see Sect. 9.3.11.

9.3.9 ω-Consistency

An arithmetical theory T is ω-inconsistent just in case there is a formula ψ(x) in the
language of T such that for each n ∈ N we have T ⊢ ψ(n), and yet, we also have
T ⊢ ∃x ¬ψ(x). T is ω-consistent iff it is not ω-inconsistent.

ω-inconsistency doesn’t entail inconsistency simpliciter. After all, T can have a
non-standard model, where all the standard numbers have the property expressed
by ψ , and yet, some non-standard number (not named by a numeral) is a witness to
∃x ¬ψ(x) (see [29, 43, 46] for more details on non-standard models of arithmetic).
By the same token, consistency doesn’t entail ω-consistency either.

Now, in the standard interpretation of GL, � represents provability. What is
represented by ♦? Well, by definition ♦ϕ just in case ¬�¬ϕ, and so ♦ϕ holds just
in case the negation of ϕ is not provable – that is, just in case ϕ is consistent (with
the underlying axiomatic system of arithmetic). In this sense, GL can be thought of
as a logic of consistency.

The question arises—what is the logic of ω-consistency? Can its propositional
principles be axiomatized? The answer is easier than expected.

Let ωConT(	ϕ
) be the arithmetical formula expressing the ω-consistency of ϕ

with an elementary presented theory T. If we think of it as ♦ϕ, then �ϕ corresponds
to ¬ωConT(	¬ϕ
). Accordingly, let’s modify the definition of realisation so that:
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rT(�ϕ) = ¬ωConT	¬rT(ϕ)
.

Theorem 3.14 Given the above conventions, the set of always provable formulas

is axiomatized by GL, and the set of always true formulas is axiomatized by S (an

extension of GL described in Sect. 9.4.1).

9.3.10 Provability in Analysis

Roughly speaking, analysis is second-order arithmetic, that is, arithmetic with
second-order logic available, where the infinity of instances of the induction schema
is replaced with a single induction axiom (see however [66] for more details and
variety of higher-order systems):

∀P [(P (0) ∧ ∀x (Px → P(Sx)) → ∀x Px]

What is the logic of provability of analysis? Again, no surprises: it is GL.
Now imagine we want to strengthen the system with the so-called ω-rule will

allows to infer ∀x ψ(x) from ψ(n) for all n ∈ N. Note: ψ is ω-inconsistent with T

just in case ¬ψ is derivable from T by one application of the ω-rule.
It turns out that this move doesn’t change the underlying logic of provability.

Still, GL is the modal logic of provability in analysis with the ω-rule.

9.3.11 Applications of GL

Solovay completeness allows us to use GL to make inferences about provability
predicates of elementary presented theories. Let’s call a sentence of LPA a constant

sentence of PA if it belongs to the least set of formulas containing ⊥ (if you don’t
like ⊥ being explicitly in LPA take it to be 0 = 1), closed under classical connec-
tives, such that if ψ is a constant sentence, then so is ProvPA(	ψ
) (the notion
generalizes to other theories). The notion was introduced by Harvey Friedman,
who asked whether there is an effective decision procedure for evaluating the truth-
value of constant sentences. The answer is positive and relies on Theorem 3.13. The
procedure is this:

• Take the letterless ϕ ∈ LPA and find the letterless ψ ∈ LM such that rT(ψ) = ϕ

(notice, for letterless sentences, the choice of r is irrelevant).
• Put ψ in the normal form.
• �i⊥ has the same truth value as ⊥, so delete all �i in front of ⊥.
• We are left with a sentence in the non-modal language of propositional logic,

devoid of propositional variables. Evaluate it. It is true just in case so is ϕ.
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One nice general result about GL that has interesting consequences is De Jongh-
Sambin fixed point theorem. To introduce it, some preliminaries are needed. A
formula ϕ of LM is said to be modalized in the propositional variable p just in case
every occurrence of p in ϕ is within the scope of � (this also applies to vacuous
cases, so formulas devoid of p are also modalized in p). A formula is called a
p−formula if it contains no variable other than p.

A formula ϕ is called a fixed point of a formula ψ with respect to variable p just
in case ϕ contains only those sentence letters that occur in ψ , doesn’t contain any
occurrence of p, and:

GL ⊢ �(p ≡ ψ) ≡ �(p ≡ ϕ)

Theorem 3.15 (De Jongh-Sambin fixed point theorem) If ψ is modalized in p,

there is a fixed point ϕ for ψ relative to p.

This form of the theorem is useful for eliminating apparent self-reference from
arithmetical sentences: finding their provably equivalent counterparts which do not
contain self-reference. For instance, if ψ is ¬�p, the fixed point is ¬�⊥. So, by
fixed point theorem:

GL ⊢ �(p ≡ ¬�p) ≡ �(p ≡ ¬�⊥)

By arithmetical soundness of GL, for any arithmetical sentence χ , we have PA ⊢
χ ≡ ¬ProvPA(	χ
) just in case PA ⊢ χ ≡ ¬ProvPA(	⊥
). So χ , equivalent
to its own unprovability turns out to be also provably equivalent to the consistency
statement. A few more examples. The fixed point of �p is ⊤. So if we take χ

provably equivalent to its own provability, the fixed point theorem tells us that we
can equally well describe χ without self-reference, in the sense that:

PA ⊢ χ ≡ ProvPA(	χ
) iff PA ⊢ χ ≡ ⊤

and similarly:

PA ⊢ χ ≡ ProvPA(	¬χ
) iff PA ⊢ χ ≡ ProvPA(⊥)

PA ⊢ χ ≡ ¬ProvPA(	¬χ
) iff PA ⊢ χ ≡ ⊥

The utility of the fixed point theorem might perhaps become more clear if we look
at a somewhat different formulation. Let ψ(p) be a formula containing p among
propositional variables occurring in it.

Theorem 3.16 (De Jongh-Sambin, second formulation) For any ψ(p) ∈ LM

modalized in p, there is a formula ϕ ∈ LM containing only variables from ψ ,

not containing p, such that:

GL ⊢ ϕ ≡ ψ(ϕ)
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Any fixed points of ψ(p) are provably equivalent in GL.

In a sense, fixed point theorem is the modal counterpart of the Diagonal Lemma.
This formulation makes it clear why the theorem is called a fixed-point theorem.
Generally, a fixed point of a function f is an argument such that f (x) = x, and ϕ is
the fixed point of ψ because ψ(ϕ) ≡ ϕ.

Moreover, the proof is effective, in the sense that it provides a recipe for
constructing appropriate fixed points. Some examples of formulas and their fixed
point are:

Formula Fixed Point
�p ⊤
�¬p �⊥
¬�p ¬�⊥
¬�¬p ⊥
q ∧�p q ∧�q

Consider the third formula. ¬�p says that p isn’t provable. Its fixed point is
¬�⊥, and so, by the fixed point theorem, we have:

GL ⊢ ¬�⊥ ≡ ¬�(¬�⊥)

But the arithmetical realization of ¬�⊥ for T is Con(T). So the above formula
(from left to right):

¬�⊥→ ¬�(¬�⊥) (G2)

represents the formalized version of Gödel’s second incompleteness theorem: if the
theory is consistent, it doesn’t prove its own consistency.

In fact, Gödel’s second incompleteness can be fairly easy reached in GL without
the full power of the fixed point theorem:

1. �(�⊥→ ⊥) → �⊥ (L)
2. ¬�⊥→ ¬�(�⊥→ ⊥) contraposition, 1
3. ¬�⊥→ ¬�(¬�⊥) def. of ¬, 2

Second incompleteness is about not being able to prove the consistency claim.
This, however, can be strengthened to the undecidability of consistency, because in
GL it is also possible to prove that if the inconsistency is not provable, then neither
is the inconsistency claim:
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1. �⊥→ ⊥ (M)
2. �(�⊥→ ⊥) (Nec), 1
3. ��⊥→ �⊥ (Distr), 2
4. ¬�⊥→ ¬��⊥ Contraposition, 3

The modally formalized version of Gödel’s first incompleteness theorem is:

¬�⊥→ (�(p ≡ ¬�p) → ¬�p) (G1)

It also can be proved within GL (we’ll use “CL” to mark moves made by classical
propositional logic)

1. �p → p (M)
2. �¬p → ¬p (M)
3. �p ∧�¬p →⊥ CL, 1, 2
4. (�p ≡ �¬p) ∧�p → �p ∧�¬p CL
5. (�p ≡ �¬p) ∧�p →⊥ CL, 3, 4
6. (�p ≡ �¬p) ∧�p → �⊥ CL, 5
7. �(p ≡ ¬p) → (�p ≡ �¬p) (Distr)
8. �(p ≡ ¬p) ∧�p → �⊥ CL, 6,7
9. ¬(�(p ≡ ¬p) → ¬�p) → �⊥ CL, 8
10. ¬�⊥→ (�(p ≡ ¬p) → ¬�p) CL, 9

Another argument which is quite easy to run with GL at hand, is for the claim
that no sentence consistent with PA can imply all reflection principles. For suppose
that for any ϕ

1. GL ⊢ S → (�ϕ → ϕ) Assumption
2. GL ⊢ S → (�¬S → ¬S) Instance of 1
3. GL ⊢ �¬S → ¬S CL, 2
4. GL ⊢ ¬S (Löb), 3

The result means that in PA (and in any sensible T extending PA) we cannot finitely
axiomatize reflection principles involving the provability predicate of any sensible
T′ extending PA (PA included).

Coming back to the fixed point theorem, observe that it doesn’t hold for all
formulas of LM . For instance, a fixed point of p (or ¬p ) itself would be a letterless
sentence Sp such that GL ⊢ Sp ≡ p (or GL ⊢ S¬p ≡ ¬p), and it can be easily
proven by induction on formula length that there is no such a letterless sentence.
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9.4 Close Kins of GL

9.4.1 Modal Logic S

What happens, however, when instead of asking about those principles that are
provable in the background arithmetic, we ask about those principles which are true
in the standard model?

Modal system S is defined as the closure of GL together with (M) under modus

ponens and substitution. Notice: (Nec) is inadmissible, apart from the job it does in
generating the theorems of GL, included in S. Otherwise we could argue:

1. �⊥→ ⊥ (M)
2. �(�⊥→ ⊥) (Nec), 1
3. �⊥ (Löb), 2
4. ⊥ CL, 1, 3

The failure of (Nec) means that S is not a normal modal logic. Interestingly,
despite the failure of (Nec) in S, S validates the inference from S ⊢ ϕ to S ⊢
♦ϕ, which is not validated by GL. For reflection for ¬ϕ gives S ⊢ �¬ϕ → ¬ϕ,
contraposition gives S ⊢ ϕ → ¬�¬ϕ. The result then follows by the definition of
♦ and modus ponens.

Now, let S(ϕ) be:

(�ϕ1 → ϕ1) ∧ · · · ∧ (�ϕk → ϕk)

where �ϕ1, . . . ,�ϕk are all subformulas of ϕ of the form �χ . The following holds:

Theorem 4.1 (II Solovay Completeness) If T is sound (that is, for any ϕ ∈ LPA,

if T ⊢ ϕ, then N |=ϕ), the following conditions are equivalent for any ψ ∈ LM :

S ⊢ ψ

GL ⊢ S(ψ) → ψ

N |=ψT

In a sense, Theorem 4.1 tells us that the only claims always true but not always
provable are those which are required to make reflection hold.

Since S isn’t a normal modal logic, it doesn’t have straightforward relational
models. A semantics for S in terms of the so-called tail models have been given by
Visser [80].
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9.4.2 Strong Provability and Grzegorczyk’s Grz

Consider exending a realization r to the Grzegorczyk T-interpretation rG
T , which

differs from T-interpretation in what it does with the modal operator:

rG
T (�ϕ) = rG

T (ϕ) ∧ ProvT(	rG
T (ϕ)
)

Thus, while the standard interpretation reads the box as provable, Grzegorczyk
interpretation reads it as true and provable [26]. The arithmetically complete logic
of strong provability [15] is Grz, which is obtained from S4 by adding:

�(�(ψ → �ψ) → ψ) → ψ (Grz)

There is an interesting connection between most of the axioms of Grz and the
properties of strong provability provable in a somewhat weaker system K4 (that
is, GL without (Löb)) [70]. Define [s]ϕ as �ϕ ∧ ϕ. Then, if K4 ⊢ ϕ, then also
K4 ⊢ [s]ϕ. K4 proves (all instances of) the following:

[s]ϕ ∧ [s](ϕ → ψ) → [s]ψ
[s]ϕ → [s][s]ϕ, [s][s]ϕ → [s]ϕ

[s]ϕ → ϕ

Note however, that if we replace � in (Grz) with [s], the result is not a K4 theorem
schema (it is invalidated by a single-world model, where ψ is false in the only
possible world).

By the way, strong provability can be used in obtaining GL in yet another
manner. For suppose you want to enrich K4 with something that does the job of
the diagonal lemma at the arithmetical level. To do this is, we need to say that if
something is the consequence of a diagonalization, it should be a theorem. One way
to capture this intuition is to add the Diagonalization Rule:

If ⊢ [s](p ≡ ϕ(p)) → ψ, then ⊢ ψ. (DR)

De Jongh has proven that GL is closed under (DR), and Smoryński has shown that
K4+(DR) coincides with GL.

Grz is another example of a logic of provability into which a translation of
intuitionistic IPC can be given. Extensions of Grz to the context of the logic of
proofs have been further studied in [58, 59].
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9.4.3 Provability of �1-Sentences (GLV and GLSV)

�1 sentences have the specific property that for any such sentence σ

PA ⊢ σ → ProvPA(	σ
).

Accordingly, the modal logics of the provability of �1 sentences has been charac-
terized by Visser by first taking GLV to be an extension of GL with all formulas
of the form p → �p (it’s crucial that p is a propositional variable, because �1
aren’t closed under arbitrary Boolean combinations). The rules of GLV are the
same as those of GL—modus ponens and (Nec). Then, GLSV has as axioms all
the theorems of GLV and all instances of reflection, and its only rule of inference is
modus ponens.

A realization r is a �1-realization if for any propositional variable p, r(p) is a
�1-sentence. Call a relational model a GLV-model just in case it is finite, irreflexive,
transitive and such that for all w, v ∈ W and all propositional variables p:

wRv,w � p ⇒ v � p

(the last condition means that accessibility preserves the satisfaction of propositional
variables).

Theorem 4.2 ([82, 84]) GLV ⊢ ψ just in case ψ is valid in all GLV-models just in

case for all �1-realization r , PA ⊢ rPA(ψ). GLSV ⊢ ψ iff for all �1 realizations

r , rPA(ψ) is true in the standard model.

9.5 The Logic of Proofs LP

9.5.1 Motivations

One of the reasons why thinking about provability is tricky, especially in the context
of first-order theories, is that a universal quantifier is involved. Given that first-
order arithmetical theories have non-standard models which contain non-standard
numbers, this leads to certain troubles. In general, if we take a model M of an
arithmetical theory, it might be the case that ∃x ϕ(x) holds in that model, with no
ϕ(n) holding for n ∈ N, because the existential formula has a non-standard witness.

In particular, this applies to ProvT(	ϕ
), which in fact means ∃x PrfT(x, 	ϕ
).
The problem is, this formula doesn’t entail that for some n ∈ N, PrfT(n, 	ϕ
). This
feature results in certain disparities in the behavior of ProvT(y) and PrfT(x, y).

The case where this is particularly visible is that of reflection. Explicit reflection

has the form PrfT(n, 	ϕ
) → ϕ. All instances of explicit reflection are provable in
the underlying arithmetical theory T (satisfying our standard conditions). For either
N |= PrfT(n, 	ϕ
) or N �|= PrfT(n, 	ϕ
). In the former case, then indeed there
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is a proof of ϕ in T, and since T ⊢ ϕ, by classical logic, T ⊢ PrfT(n, 	ϕ
) → ϕ.
If, on the other hand, it’s not the case that PrfT(n, 	ϕ
), then (since it’s a �0
formula, and we assumed T to be sufficiently strong) T ⊢ ¬PrfT(n, 	ϕ
), and
again, by classical logic, T ⊢ PrfT(n, 	ϕ
) → ϕ. Either way, an arithmetical
theory satisfying the standard strength requirements proves explicit reflection, for
any n ∈ N and any ϕ ∈ LPA.

In contrast, due to Löb’s theorem, given a consistent and sufficiently strong T,
local reflection for ProvT(x):

ProvT(	ϕ
) → ϕ

is provable only for those formulas, which are theorems of T. Indeed, at the level of
GL, due to (Löb), one cannot consistently add reflection �ϕ → ϕ, for otherwise,
the reasoning already described in Sect. 9.4.1 can be used to derive contradiction.

Clearly, LM lacks the resources to represent explicit reflection, because �

represents provability, and �ϕ → ϕ can be used to represent local reflection only.
A more expressive language to achieve that goal has been devised to underlie the
logic of proofs, LP [5, 7, 8].

9.5.2 The Language and Axioms of LP

The pure language of the logic of proofs extends the non-modal propositional
language with new symbols:

• proof variables (x, y, z, . . . ) and proof constants (a, b, c, . . . ),
• three proof operation symbols: binary application (·), binary union (+) and unary

proof checker (!),
• is a proof of symbol (:).

A proof polynomial is either a proof variable, or a proof constant, or is built from
proof polynomials by means of ·,+, or !. Binary application intuitively corresponds
to modus ponens, in the sense that if t is a proof of ϕ → ψ , and s is a proof of ϕ,
then t · s is a proof of ψ . The union of two proofs t and s, t + s proves anything that
either t or s does. The proof checker operation checks whether a given proof t of ϕ

is correct, and if it is, it yields a proof that t proves ϕ.
The is a proof of symbol is used to construct atomic formulas from proof

polynomials and formulas. If t is a proof polynomial and ϕ is a formula, t :ϕ is
a formula saying that t is a proof of ϕ, or simply t proves ϕ.3

3A short historical remark: Gödel suggested the use of explicit proofs to interpret S4 in a public
lecture in Vienna, without describing the logic. The content of the lecture has been published in
1995, and the logic of proofs was formulated independently before that publication.
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One rule of LP is modus ponens. The axioms of LP (on top of classical
propositional logic) are:

t:(ϕ → ψ)→ (s:ϕ → (t · s):ψ) (Application)

t:ϕ → ϕ (Reflection)

t:ϕ →!t:(t:ϕ) (Proof checker)

s:ϕ → (s + t):ϕ, t:ϕ → (s + t):ϕ (Sum)

Another rule of LP, allows to introduce c:ϕ as a theorem, whenever ϕ is an axiom,
where c is a new constant in a given proof. In this context, the LP-counterpart of
(Nec) is a derivable rule.

Fact 5.1 If LP ⊢ ϕ, then for some proof polynomial p, LP ⊢ p:ϕ.

Notice that LP is not a normal modal logic: we can’t simply treat t: as we would
treat � in a normal modal logic. For instance, (K) for t: fails, as this is not generally
the case:

t:(p → q) → (t:p → t:q)

9.5.3 Properties of LP

LP is decidable [53]. It is also sound and complete with respect to provability
interpretation in PA (where proof polynomials are mapped to appropriate proof
codes). Quite some time ago we seemed to have left S4 behind, as arithmetically
inadequate. One of the nice features of LP is that it brings S4 back to the table. A
forgetful projection of an LP-formula ϕ is a modal formula resulting from replacing
all the occurrences of t:(ϕ) with �(ϕ).

Theorem 5.2 ([6]) The forgetful projection of LP is S4.

Possible worlds semantics for LP (requiring the extension of the standard
framework with the so-called evidence function) has been developed by Mkrtychev
[53] and Fitting [21].

LP itself doesn’t allow to express (and a fortiori) prove mixed statements about
explicit proofs and provability, which nevertheless seem of indepedent interest. For
instance, in the provability semantics the following explicit-implicit principle is
valid:

¬(t:ϕ)→ �¬(t:ϕ).
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9.5.4 Mixed Logic of Explicit Proofs and Provability (B)

Such claims can be proven in a mixed logic of explicit proofs and provability, B [5].
The axioms are that of GL enriched with:

t:ϕ → ϕ

t:ϕ → �(t:ϕ)

¬(t:ϕ) → �¬(t:ϕ)

and the Rule of reflection, which allows to infer B ⊢ ϕ from B ⊢ �ϕ. Artemov
proved also the following:

Theorem 5.3 B is sound and complete with respect to the semantics of proofs and

provability in PA.

For a survey of further studies and properties of LP and its extensions, see [10]
and other developments in [58, 85, 86].

9.6 Formal Logics of Informal Provability

9.6.1 Motivations

Informal provability is closely related to what mathematicians do when they prove
theorems, rather than to formal provability in an axiomatic system [72]. A sentence
is informally provable if it is provable by any commonly accepted mathematical
means. According to the proponents of the standard view there is no important
difference between formal and informal proofs. Any informal proof, they say, is
just a sloppy and incomplete version of a fully formalized proof in an appropriate
formal theory. Thus, informal provability reduces to formal provability within some
axiomatic system, usually to some version of set theory.

Yet, some people disagree with the above picture [37, 47, 51, 57]:

• It is not clear which axiomatic system we should choose to represent informal
provability. It seems that the informal notion of provability is unified whereas in
different formal systems different theorems are provable.

• It is not clear how to convert an informal proof into a formal one.
• It is not clear whether we should associate each informal proof with exactly one

formal proof or with some abstraction class of formal representations of informal
proofs, and if yes, how such a class is to be identified.

• It is not clear whether the conversion to formal proofs preserves identity laws
for informal proofs. It may be the case, that two substantially different informal
proofs are associated with exactly the same formal representation.



9 Logics of (Formal and Informal) Provability 223

• Formal proofs are stated in a fully formalized language. Informal proofs on
the other hand are stated in the natural language expanded with additional
mathematical vocabulary.

• The role of axioms is different in proofs of these two kinds. In formal proofs
axioms are simply one of the syntactically admissible ways of extending a given
proof. In an informal proof, axioms partially or fully explicate the meaning of
the notions involved.

• The justification of subsequent steps is of a different nature. In formal proofs it’s
purely syntactical. In informal proofs, mathematicians often refer to semantical
notions such as truth-preservation or mathematical intuition.

• The reflection schema, which says that if something is (informally) provable
then it is true, is intuitively compelling for informal provability. Yet, as already
discussed, for any sensible notion of formal provability, we cannot have it.

Since Gödel , however, there is an agreement as to which principles are intuitively
correct for informal provability: those are the principles of S4. So, if we were to
produce an axiomatization of those principles, which intuitively hold for informal
provability, the validity of all the instances of the reflection schema is crucial. For
formal provability, by Löb’s theorem, we know that the reflection schema is only
provable for theorems – and there is no independent philosophical motivation for
this restriction to be imposed on informal provability.

One way out might be to strengthen the underlying axiomatic system by
brute force by adding all the instances of the reflection schema. One thing to
observe, however is that even a small amount of reflection schema turns out to be
arithmetically strong:

Fact 6.1 Let T be a theory consisting of PA and all the instances of the reflection

schema for ProvPA(x) restricted to �1 formulas. Then T ⊢ Con(PA).

Proof Let ϕ be ∀x x �= x. It is a �1 pure logical contradiction. Let’s abbreviate it
as ⊥. By the assumption, T ⊢ ProvPA(	⊥
) → ⊥. By classical logic, T ⊢ ¬⊥.
So we have T ⊢ ¬ProvPA(	⊥
). ⊓⊔

But say we’re not worried about intuitively obvious claims about provability
turning out to be arithmetically strong. Another observation is that as far as
formal provability is concerned, we can only consistently add reflection for the old

formal provability predicate, thus obtaining a new formal theory with new formal
provability predicate, for which reflection still fails to be provable.

Indeed, what we can consistently do still falls short of accepting reflection
for the theory that we are working within. Suppose we extend LPA with an
additional primitive symbol, a new provability predicate P , for which we add to
our background arithmetical theory T (extending PA) all instances of the Hilbert-
Bernays conditions and all the instances of the reflection schema, thus obtaining a
new theory TP. We run into the following problem:

Fact 6.2 No TP satisfying the conditions below is consistent.
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TP ⊢ P(	ϕ
) → ϕ

If TP ⊢ ϕ, then TP ⊢ P(	ϕ
)

(HB1-3) for P hold.

This and related results motivated various attempts to develop a formal logic
of informal provability (which formally captures inferential principles intuitively
valid for informal provability, most notably reflection) while avoiding such pitfalls.
The main idea is that instead of constructing a formal provability predicate within
arithmetic, one develops a logic of informal provability by introducing a new symbol
for provability and considering various axioms and rules that might apply to it.
We’ll now take a look at the main candidates, which come in two flavors. The first
group treats informal provability as an operator not as a predicate, thus blocking
those inferential moves with are available for predicates, but not for operators, and
thus avoiding contradiction at the cost of limited expressivity. The second group
of theories treats informal provability as a predicate, but limit the scope the Hilbert-
Bernays conditions for the new provability predicate. At the end of this section we’ll
also take a look at two stray dogs which don’t really fit into any of these groups.

9.6.2 Epistemic Arithmetic (EA)

Historically, the first theory of informal provability is Shapiro’s Epistemic Arith-

metic (EA) presented in [64] and developed by Goodman [25] and Flagg and
Friedman [22]. The idea here is to extend the standard arithmetical language LPA

to LK by adding a unary operator K that applies to formulas. The underlying
arithmetical theory is PA, and the behavior of K is characterized by the following
rules:

KI If Ŵ ⊢ ϕ and every element of Ŵ is epistemic, then Ŵ ⊢ K(ϕ)

KE K(ϕ) ⊢ ϕ

where a formula ϕ is ontic iff it does not contain any occurrences of the operator K

and is epistemic iff it has the form K(ψ) for some formula ψ . So EA has all axioms
of PA and the above two rules for K . Note, the above rules imply S4 principles
for K .

Unfortunately, the internal logic of EA (that is, what in EA is provably provable)
is quite a weak theory – in a sense, it is an elementary extension of intuitionistic
Heyting Arithmetic (HA). Define a translation V from LHA, the language of HA,
into LK . We use ϕ̄ to indicate that ϕ belongs to LHA as follows:

1. For atomic formulas: V (ϕ̄) = K(ϕ̄),
2. V (ϕ ∧ ψ) = K(V (ϕ)) ∧K(V (ψ)),
3. V (ϕ ∨ ψ) = K(V (ϕ)) ∨K(V (ψ)),
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4. V (ϕ → ψ) = K(K(V (ϕ))→ K(V (ψ))),
5. V (ϕ ≡ ψ) = K(K(V (ϕ)) ≡ K(V (ψ))),
6. V (¬ϕ) = K(¬K(V (ϕ))),
7. V (∀x ϕ(x)) = K(∀x V (ϕ(x))),
8. V (∃x ϕ(x)) = ∃x KV (ϕ(x)).

Just for the sake of simplicity we will write ϕ instead of ϕ̄ whenever it does not
lead to confusion. The above translation is sound and complete in the following
sense:

Theorem 6.3 For every ϕ ∈ LHA, if HA ⊢ ϕ, then EA ⊢ V (ϕ).

Theorem 6.4 ([25]) For every ϕ ∈ LHA, if EA ⊢ V (ϕ), then HA ⊢ ϕ.

EA, however, does have some interesting properties—we’ll mention only two
of them. The numerical existence property is that for any formula ϕ, if EA ⊢
∃x Kϕ(x) then for some natural number n, EA ⊢ Kϕ(n). The disjunction property

is that if EA ⊢ K(ϕ ∨ ψ) then either EA ⊢ K(ϕ) or EA ⊢ K(ψ).

9.6.3 Modal Epistemic Arithmetic (MEA)

In Shapiro’s EA, K is a primitive operator which cannot be further analyzed.
Horsten [35] suggests that the provability operator is not primitive but complex.
He distinguishes between two components of informal provability: the modal and
the epistemic.

The modal component is associated with possibility. The epistemic component
is explained in terms of a mathematical proof. Instead of just one operator K we
have two unary operators applying to formulas: ♦ and P , where ♦ is interpreted as
possibility and P intuitively stands for “some mathematician has a proof that. . . ”.
In LPA extended with these two operators, LMEA, and following these intuitions
we present the so-called Modal Epistemic Arithmetic (MEA) [35]. The axioms of
MEA are as follows:

1. all the axioms of PA with induction for the extended language,
2. ♦ϕ → ϕ where ϕ is ontic i.e. ϕ ∈ LPA,
3. P(ϕ) → ϕ,
4. P(ϕ) → P(P (ϕ)),
5. (♦P(ϕ) ∧ ♦P(ϕ → ψ)) → ♦P(ψ),
6. all axioms of the modal system S5 for ♦,

and a rule of inference: if ϕ is a theorem, then so is ♦P(ϕ).
Axioms 1 and 2 are some variants of the reflection principle which is provable for

P for ontic sentences, and for ♦ for all sentences. It does not follow that reflection
is provable for ♦P . Axioms 3 and 4 are standard axioms for provability ((HB3) and
(HB1)). Note that (HB3) works for provability operator and (HB1) for ♦P . By a
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♦P -formula we will mean any formula ϕ where all subformulas of ϕ of the form
Pχ are immediately preceded with ♦.

Observation 6.5 Let ϕ ∈ LMEA be a ♦P -formula. Then the following claims hold:

MEA ⊢ ♦Pϕ → ϕ

MEA ⊢ ♦Pϕ → ♦P♦Pϕ

The above observation shows that we have a certain version of reflection schema
and certain version of (HB3), at least for a restricted class of formulas.

9.6.4 Problems with Provability as an Operator

The main aim of treating provability as an operator is to circumvent the impossibility
that arises for the formal provability predicate—that of having all HB conditions and
all the instances of the reflection schema at the same time.

Theorem 6.6 (Montague’s theorem) Peano Arithmetic, if consistent, cannot con-

tain (or be consistently extended to contain) a (possibly complex) predicate for

which all Hilbert-Bernays conditions and all instances of the reflection schema hold.

Proof Suppose that there is such a predicate, call it P . We will use natural deduction
system. Argue inside the theory:

1.λ ≡ P(	¬λ
) Diagonal lemma
1.1λ Hypothesis
1.2P(	¬λ
) Equivalence elimination: 1,1.1
1.3¬λ Modus ponens and reflection schema: 1.2
2.¬λ Reductio ad absurdum: 1.1 → 1.3
3.P (	¬λ
) (HB1)
4.¬P(	¬λ
) CL, 1, 2
5.contradiction CL, 3, 4

⊓⊔
In order to prove Montague’s theorem one applies the diagonal lemma to a certain

formula involving provability predicate. But if provability is treated as an operator,
we cannot use the diagonal lemma to generate this paradoxical formula.

MEA is capable of proving variants of reflection schema. It is an interesting
result, for the name of the game here is to gather as many instances of reflection
schema as possible without inconsistency. Unfortunately, the theory has some other
philosophical problems:
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1. The choice which rules are postulated for P and which are postulated for ♦ seems
somewhat arbitrary. It is possible to consider different combination of those rules.
For instance, to add axiom (K) directly for P .

2. The reflection schema is available only for ♦P . It is not clear why other types
of reflection shouldn’t be introduced. For instance, reflection restricted to �1
formulas doesn’t look completely insane.

3. Usually provability is treated as a predicate and not as an operator. There seems to
be no motivation for using an operator, independent of blocking the Montague’s
theorem.

4. Both EA and MEA seem to be a bit too weak– there are translations to HA which
preserve theorems.

9.6.5 PEA and Its Basis

Another strategy is to treat informal provability as a predicate and weaken some
of the Hilbert-Bernays conditions for this predicate. Again, expand LPA with an
additional predicate P for informal provability, thus obtaining a new language LP .
The idea here is straightforward: we divide the set of problematic principles (HB
conditions and the reflection schema) for the additional predicate P between two
theories: PPEA and its basis. Then we add to PEA all the instances of the axiom
saying that if something is derivable in the basis, it is informally provable.

We will start with a theory called the basis of PEA (BPEA) [36], which is
defined by:

Basis Axiom 1 PA in extended language with induction extended to LP

Basis Axiom 2 P(	ϕ
) → (P (	ϕ → ψ
) → P(	ψ
)) for all ϕ,ψ ∈ LP

Basis Axiom 3 P(	ϕ
) → P(	P(	ϕ
)
) for all ϕ ∈ LP

So, we have (K) and (4) for P . By ProvB we mean the standard provability
predicate of BPEA. PEA is given by the following axioms:

Axiom 1 PA in the extended language with induction extended to LP

Axiom 2 P(	ϕ
)→ ϕ for all ϕ ∈ LP

Axiom 3 ProvB(	ϕ
) → P(	ϕ
) for all ϕ ∈ LP

We have the reflection schema for P . Notice that we do not have (Nec) for P ,
but we have the implication ProvB(	ϕ
) → P(	ϕ
), which together with the
reflection schema gives us ProvB(	ϕ
) → ϕ which is a certain version of (Nec).

These theories are still under investigation. One of the nice things about PEA,
apart from the reflection schema holding in it, is the fact that PEA has nice models.

Fact 6.7 PEA has a model based on the standard model of arithmetic.
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However, it seems that the philosophical motivations underlying the system are
somewhat lacking. While informal provability seems unified, this system clearly has
two separate layers. The restrictions on the claims for which reflection can be used
is still there—it’s just that they’re somewhat less visible, because they arise at the
point in which a restriction is put on what can be provably provable (Axiom 3). Yes,
Axiom 2 guarantees that reflection is provable for any φ, but given that the internal
logic of P is built starting from the forma provability predicate of BPEA, it holds
universally at the price of being idle on many occasions.

9.6.6 Non-deterministic Many-Valued Approach

Another, rather non-standard approach [62] is to change the underlying logic and to
build theories of informal provability where the notion is treated as a partial notion.
The partition seems intuitive: some mathematical sentences are informally provable,
others are informally refutable and some, it seems, are informally undecidable.

In order to model reasoning with a partial notion formally a three-valued logic
comes handy. So think about partitions as values: 1 stands for informally provable,
0 for informally refutable, and n for neither.

One initial problem is that if we take a close look at disjunctions or conjunctions
of mathematical sentences, it seems that their logical value depends not only
on the values of their disjuncts or conjuncts. For instance, take two disjunction
of two undecidable sentences. One is built from the Continuum Hypothesis and
its negation. The other one is composed from the claim that the standard set
theory (ZFC) is consistent, and the General Continuum hypothesis. The first one is
informally provable, because it is a substitution of propositional tautology, whereas
the other disjunction at least isn’t known to be informally provable, and there is no
contradiction in thinking that it is not informally provable.

In order to formally represent the above intuition consider a standard proposi-
tional language with one additional modal operator B (LB ), intuitively read as it is

provable that. Use the three values and the indeterminacy discussed above to define
matrices for connectives and the operator B by:

ϕ ψ ¬ϕ Bϕ ϕ ∨ ψ ϕ ∧ ψ ϕ → ψ ϕ ≡ ψ

1 1 0 1 1 1 1 1

n 1 n 0/n 1 n 1 n

0 1 1 0 1 0 1 0

1 n 1 n n n

n n n/1 0/n n/1 0/n/1

0 n n 0 1 n

1 0 1 0 0 0

n 0 n 0 n n

0 0 0 0 1 1
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where for two values x, y, when we write x/y we mean that either the formula has
value x or y. The matrix is rather straightforward. The only interesting case is for B

when ϕ has value n. Then either we cannot informally prove its undecidability then
it remains n or we can do that, at the same time disproving B(ϕ), hence value 0.

By an assignment we mean a function v : Prop %→ V al from the set
of propositional variables to the set of values. An evaluation is an extension
of the assignment to complex formulas respecting conditions given above. The
general phenomenon is that an assignment doesn’t unambiguously determine unique
evaluation: it only underlies a class of evaluations that extend it. For instance, if
v(p) = v(q) = n, there will be one evaluation with e1

v(p∨q) = n and another with
e2
v(p ∨ q = 1).

If we were to define a logic in terms of preservation of value 1, it would turn out
to be too weak (for instance, conjunction and disjunction aren’t even guaranteed to
commute). We need one more requirement:

Definition 6.8 (Closure condition) For any LB-formulas ϕ1, ϕ2, · · · , ϕn, ψ

such that

ϕ1, ϕ2, · · · , ϕn |= ψ,

where |= is the classical consequence relation for LB , for any e, if e(Bϕi) = 1 for
any 0 < i ≤ n, then e(Bψ) = 1.

We will use ýC ϕ iff for all evaluations satisfying the closure condition ϕ has
value 1. Similarly, we define ŴýC ϕ as the preservation of value 1 in all evaluations
satisfying the closure condition. This logic is called CABAT.

One of the most interesting features of this logic is the fact that under a certain
translation of the standard provability predicate as B, the translation of Löb’s
theorem doesn’t hold. This is a good sign. There was no initial intuition that Löb’s
theorem is correct principle for informal provability. It’s a rather unwanted technical
result.

If we look at Montague’s theorem, after applying the diagonal lemma, the rest
of the proof is done on the propositional level. We can translate all the premises of
the theorem together with the formula resulting from application of diagonal lemma
into CABAT language. It turned out that the theorem does not hold. This shows
that using quite natural philosophical intuitions we can build a formal system with
certain intuitive principles for provability which can be consistently extended with
all the instances of the reflection schema.

The above proposal has its drawbacks. It is nothing but obscure how to build
an arithmetical theory using this logic. It seems that the most common strategies
for building partial models using three-valued logics will not work here. The
second issue is that this proposal is still underdeveloped. The current semantics for
CABAT is convoluted – it is not clear which evaluations are removed by the closure
condition. Simpler and more intuitive semantics needs to be developed. Moreover,
provability here is treated as an operator not as a predicate, and it is not clear what
the consequences of moving to the predicate level with this logic would be.
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9.6.7 Conditional Epistemic Obligation and Believability Logic

A somewhat different formal approach to our (at least prima facie) commitment
to reflection arose in the context of formal axiomatic theories of truth built over
arithmetic (see [18, 28, 38] for more details on the truth-theoretic aspects of the
developments).

Truth-theoretic considerations aside, from the axioms and rules of PA local
reflection for PA doesn’t follow, and so we don’t seem logically committed to local
reflection for PA just because we accept the axioms and rules of the system. Yet,
there seems something irrational about accepting PA without thinking that for any
ϕ ∈ LPA, indeed, if PA ⊢ ϕ, then ϕ (if we had a truth predicate available, we could
use a single claim: that whatever PA proves, is true; but we’re trying to avoid getting
into a discussion of theories of truth). Assuming this is correct, the challenge is to
explain why someone who accepts PA is rationally commited to reflection which
nevertheless doesn’t logically follow from the axioms of PA by the rules of PA.
(Another example of a commitment of this sort is that to the Gödel sentence of PA,
which seems true, even though it doesn’t follow from PA.)

For such occasions, Ketland [44] introduced the notion of a conditional epistemic

obligation. Ketland hasn’t really explicated the notion, but only pointed out that
once we accept a theory, we become conditionally epistemically obligated to accept
some other claims in its language which nevertheless don’t follow from the theory
itself, and listed some examples such as that of reflection or the Gödel sentence.

A philosophically interesting explication of the notion of conditional epistemic
obligation is not trivial (see [18, 19] for a discussion). But even putting this
daunting task aside, the question arises whether we can achieve a more humble
goal: that of describing the inferential behavior of the predicate expressing this sort
of commitment by means of a formal system. Such an attempt can be found in the
works of Cieślinski. For the sake of simplicity, we’ll discuss the system as built over
a particular arithmetical theory, PA.

Extend LPA with a new unary predicate symbol B, thus obtaining a new language
LB . The goal is to describe the theory of believability built over PA. Let the result
of taking the axioms of PA with induction extended to LB be called PAB. Theory
Bel(PA) extends PAB with the following axioms:

∀ψ ∈ LB [ProvPAB(	ψ
) → B(	ψ
)] (A1)

∀ϕ,ψ ∈ LB [B(	ϕ
) ∧ B(	ϕ → ψ
) → B(	ψ
)] (A2)

On top of the axioms, Bel(PA) has two additional rules of inference. (Nec) for B,
which allows to infer

Bel(PA) ⊢ B(	ψ
)

from

Bel(PA) ⊢ ψ,

and the generalization rule (Gen), which allows to infer
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Bel(PA) ⊢ B(	∀x ψ(x)
)

from

Bel(PA) ⊢ ∀x B(	ψ(x)
).

While the motivations for (Nec) and the axioms are quite straightforward (and not
completely different from the considerations pertaining to PEA), one thing that
makes the theory stand apart is (Gen). Normally, in PA, just because for every
standard numeral n PA ⊢ ψ(n), it doesn’t follow that PA ⊢ ∀x (ψ(x)). This is
because PA as a first-order theory admits non-standard models, and so can have
a model in which there are non-standard numbers not denoted by any standard
numeral. It is exactly (Gen) that allows our commitment (tracked by B, that is,
the internal logic of Bel(PA)) to go beyond what PA already can prove, including
reflection and the consistency of PA.

9.7 Further Topics

The scope of this survey (which is, admittedly, already quite long) is limited. In
this section we list and briefly describe multiple further issues related to provability,
which we couldn’t properly cover. The list is, of course, far from complete.

9.7.1 Mixed Logic of Consistency and ω-Consistency

One interesting fact about the interaction between the notions of consistency and
ω consistency is that the negation of the consistency of PA, while not being
inconsistent with PA, is ω-inconsistent with PA. Now the question is: can we
develop a propositional logic to reason about such claims?

For this purpose we need a bimodal logic with two modalities [39, 40]. Let �ψ

stand for the provability of ψ , and � stand for the ω-inconsistency of ¬ψ with the
background theory.

The axioms of GLB (B from bimodal) are all tautologies, all instances of (K) for
�, all instances of (K) for �, all instances of (Löb) for � and all instances of (Löb)
for �, and all instances of the following schemata:

�ϕ → �ϕ

¬�ϕ → �¬�ϕ

The rules are modus ponens and (Nec) for � (clearly, (Nec) for � follows by the
first of the above formulas). Given a realization r for the language of GLB, it is
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extented to a T-interpretation by the standard conditions for classical connectives
together with:

rT(�ϕ) = ProvT(	rT(ϕ)
)

rT(�ϕ) = ¬ωConT (	rT(¬ϕ)
)

GLB is arithmetically sound and complete.

9.7.2 Provability Logic with Quantifiers

One way to extend LM with quantifiers is to add propositional quantifiers binding
propositional variables, which would allow to express claims such as ‘some formula
is not provable’, or ‘for every formula there is one which is provable just in case the
former one isn’t’ (by ∃p ¬�p and ∀p ∃q (�q ≡ ¬�p). As proven by Shavrukov
[65], the set of arithmetically valid sentences of this language is undecidable.

Another move to consider is moving to a first-order modal language and
extending the intended semantics appropriately. Alas, the set of first-order formulas
true in every realization is not effectively axiomatizable [2], and neither is the set
of formulas provable in PA under any realization (the complexity of this set �0

2)
[77]. Montagna et al. [56] showed moreover that quantified GL is not complete
with respect to any class of Kripke frames, and that it doesn’t have the fixed point
property. Similarly, the first-order version of the logic of proofs has been proven to
not be recursively enumerable [86].

9.7.3 Interpretability Logics

The notion of interpretability was introduced into meta-logic by Tarski et al. [75]. A
theory T is interpretable in theory U just in case the language of T can be translated
into that of U so that the translations of theorems of T become theorems of U. One
example of interpretability is the relation between PA and the standard set theory
ZFC. There is a translation from the language of arithmetic into the language of set
theory, such that the translations of all theorems of PA are provable in ZFC.

The formal symbol representing interpretability was introduced into a language
of a logic of provability by Švejdar [73]. The intended reading of ϕ ⊲ ψ if that for
a sufficiently arithmetically rich theory T (such as [PA]), T+ψ is interpretable in
T+ϕ.

Interpretability logics were further studied by Visser [81, 83]. There is a sensible
logic IL which axiomatizes interpretability principles valid in all sensible theories.
It is GL expanded with:
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�(ϕ → ψ) → ϕ ⊲ ψ

(ϕ ⊲ ψ ∧ ψ ⊲ χ)→ ϕ ⊲ χ

(ϕ ⊲ χ ∧ ψ ⊲ χ)→ (ϕ ∨ ψ) ⊲ χ

ϕ ⊲ ψ → (♦ϕ → ♦ψ)

(♦ϕ) ⊲ ϕ

However, the class of all principles that hold in all realizations is sensitive to the
choice of the underlying theory (see [83] for a comprehensive survey).

9.7.4 Generalization and Classifications

The notion of provability can be considered on a more general level, that of
provability logic of a given theory T relative to a metatheory U—the notion was
introduced by Artemov [4] and Visser [79]. Such a logic, denoted by PLT(U), is the
set of all propositional principles of provability for T that can be proven in U. From
this perspective, GL is the provability logic PLPA(PA), and S is PLPA(T r(N)),
where T r(N) is the set of all LPA-formulas true in the standard model of arithmetic.
Much work has been done on the classification of logics PLT(U), where T and U

are known and independently studied extensions of PA [3, 4, 12, 41, 80].

9.7.5 Algebraic Approaches

Magari [49, 50] developed an algebraic approach to provability logic. The Magari
algebra of T, is the set of T-sentences factorized modulo equivalence within T.
Further applications of the algebraic toolkit to provability logics are Montagna [54,
55].

9.7.6 Connections with Other Domains

Provability logics have some use in computability theory. For instance, Beklemishev
[12] uses them to investigate which computable functions can be proved to be total
by means of restricted induction schemata. Another domain where provability logics
find applications is proof theory [13]; see also Japaridze and Jongh [42] for a survey.
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9.8 References and Further Readings

A historical account of the beginnings of the development of the logics of provability
can be found in Boolos and Sambin [16]. For more introductory surveys of the logics
of provability, read [74, 78]. For a short, but dense survey see Artemov [9]. For a
survey focusing on self-reference read [70]. For material focusing on introducing the
Logic of Proofs consult [10]. For more advanced surveys of the logic of provability,
consult Japaridze and de Jongh [42] and Artemov and Beklemishev [11]. As for full
blown book-long treatments, Boolos [15] is invaluable, and so is Smoryński [69].
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Chapter 10

Theory of Concepts

Erich Rast

Abstract The word ‘concept’ is sometimes used as a synonym for ‘property’,
but many authors use it in a more specific sense, for example as standing for
unsaturated entities whose extensions are sets and classes, for Fregean senses, or
for abstract objects. Although there is no universal agreement on a definition of
concepts, a viable theory of concepts has to address a number of formal issues:
How to deal with counterfactual and possibly contradictory concepts, how to restrict
comprehension schemes in higher-order logic to avoid semantic paradoxes like the
Paradox of Predication, how to nominalize concepts, and how to express similarity
and typicality of concepts. The article gives a brief survey of the most important
problems in concept theory and their possible solutions.

10.1 Key Notions and Problems

Concept theories draw on a rich tradition, ranging from Plato and Aristotle over
Leibniz to Frege. Two key aspects of a theory of concepts need to be distinguished.
(i) The cognitive aspect regards the role of concepts in cognition and how these
enable an epistemic agent to classify and categorize reality. A concept system is
sometimes considered the cornerstone and starting point of a ‘logic of thinking.’ (ii)
From a metaphysical point of view, concept theory must provide an explanation of
the ontological status of universals, how these combine, whether there are different
modes of predication, and what it means in general for an object to fall under a
concept. Both aspects will be addressed in what follows. The survey starts with a
brief overview of selected problems and positions.

The Demarcation Problem. There is no general agreement in the literature on
what a concept is. Sometimes ‘concept’ is more or less used as a synonym for
‘property’, but many authors use it in a more specific sense, for example as standing
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for unsaturated entities whose extensions are sets and classes (Frege), for Fregean
senses (Church), or for abstract objects (Zalta). One goal shared by many authors,
despite terminological differences, is to carve out the differences between closely
related notions such as concepts, properties, abstract objects, Leibnizian concepts,
or Fregean senses and make these notions more precise.

Nominalism, Realism, Cognitivism. A particular object is said to fall under a
singular or individual concept and likewise a group of objects sharing some common
trait is said to fall under a general concept. Being sorts of universals, different
stances towards general concepts may be taken: According to strict nominalism
there are only particulars; quantification over predicate expressions is not allowed
at all or very limitedly. In this view general concepts do not exist in reality although
they might play a role as thinking devices. In contrast to this, according to realism
predicates denote universals either directly or whenever the predicate has been
nominalized. There are universals in the sense that one may fully quantify over them
although they might not be considered to exist in the narrow sense. Cognitivism
is a mixed position. In this view, there are universals but only insofar as they are
represented (or representable) by mental states.

Intensionality, Hyperintensionality, Contradictory Concepts. Having a heart and
having a liver are often given as an example of two different concepts with the
same extension. Modal logics have been used to account for this difference. Normal
possible worlds semantics does not, however, provide the means to distinguish
two different mathematical concepts with the same extension from each other. For
example, two different ways of describing an equiangular triangle will determine
the same set of objects in all possible worlds. To tackle this problem a stronger
form of intensionality known as hyperintensionality is needed. Moreover, a person
might erroneously believe that 37 is a prime number while not believing that 21+ 16
is prime, might erroneously believe that

√
2 is a rational number, or might muse

about round squares. To represent irrational attitudes and impossible objects a
logic must in one way or another allow contradictory statements. Since in classical
logic any formula can be derived from a contradiction (ex falso quod libet) a
paraconsistent logic is needed; such a logic allows one to derive some, but not
arbitrary consequences from a contradiction.

Similarity. A concept may be more or less similar to other concepts. For example,
the concept of being a chair is similar to the concept of being a stool and both of
them are more similar to each other than any of them is to the concept of being the
back of a horse. From a cognitive perspective it is desirable to have a concept theory
that allows for a measure of similarity between concepts and the objects falling
under them.

Typicality. Typically chairs have four legs, but some have less. Typically birds
can fly, but penguins cannot fly. How can this typicality be accounted for?
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10.2 Preliminaries of Logical Concept Theory

In order to formulate a broadly-conceived logical theory of concepts it is necessary
to quantify over concepts or corresponding abstract objects. Unless a very strict
nominalism based on first-order logic is defended this naturally involves the use
of second-order logic. For this reason results from mathematical logic need to be
taken into account when developing a logical theory of concepts, some of which are
addressed in what follows.

Henkin Models and Standard Models. There are two kinds of models for higher-
order logic. In a standard model, first-order variables range over a domain D,
second-order variables over P(D) for predicates and P(D1 × · · · × Dn) for n-
ary relations, third-order predicate variables over P(P(D)), and so on. In a Henkin
model (general model), only a fixed subset of the powerset is chosen respectively.
So for instance the quantifier in ∀F [F(a)] ranges over a fixed subset of P(D).
Higher-order logic with Henkin models is essentially a variant of many-sorted first-
order predicate logic [10]. It is complete, compact and the Löwenheim-Skolem
theorems hold in it, but does not allow one to define certain mathematical structures
categorically, i.e. in a way that is unique apart from differences captured by the
notion of an isomorphism between models. In contrast to this, higher-order logic
with standard models is not complete, not compact, and the Löwenheim-Skolem
theorems do not hold in it. Lack of a full-fledged proof theory is compensated by the
ability to categorically define important concepts such as countable vs. uncountable
domains, quantifiers like ‘most’, and well-foundedness conditions. The distinction
between higher-order logic and second-order logic with standard models is less
important, since the former can be reduced to the latter without significant loss of
expressivity [11]. For this reason many authors focus on second-order logic.

Box 10.1 Comprehension schemes and stratification

Stratification: Formula φ is homogeneously stratified iff there is a
function f (.) that maps terms and formulas of the language to natural
numbers such that for any atomic formula P(x1, . . . , xn) in φ, f (P ) =
max[f (xi)] + 1 and f (xi) = f (xj ) f or 1 ≤ i, j ≤ n.

∃F∀!x[F(!x)↔ φ(!x)] (Scheme A)

∃F∀!x[F(!x)↔ (G(!x) ∧ φ(!x))] (Scheme B)

Conditions: (I) !x := x1, . . . , xn are free in φ, i.e. bound in the whole
scheme; (II) F is not free in φ, i.e. not bound in the whole scheme; (III)
φ is homogeneously stratified.

① Unrestricted Comprehension: Scheme A + I
② Predicative Comprehension: Scheme A + I, II, III
③ Separation Axiom: Scheme B + I, II
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Logical Paradoxes and Comprehension. Given some condition expressible in
a formal language, what concepts are there? One way to answer this question is
by specifying a comprehension scheme. Unrestricted comprehension asserts that
there is a concept corresponding to any condition φ that can be formulated in
the language (see Box 10.1, Principle ①). It allows one to introduce Russell’s
paradox of predication, the analogue to the well-known set-theoretic paradox.
Take the predicate P(x) that is not predicable of itself and is defined as ¬x(x).
Choosing φ := ¬x(x) and existential instantiation allows one to derive ∀x[P(x) ↔
¬x(x)] and by universal instantiation the contradiction P(P ) ↔ ¬P(P ). Different
provisions to avoid such inconsistencies lead to higher-order logics with varying
expressive power that reflect different stances towards nominalism, cognitivism, and
realism.

Predicativity vs. Impredicativity. A definition is impredicative iff it quantifies
over a collection of objects to which the defined object belongs; otherwise it is
predicative. Some mathematicians like Poincaré, Weyl, and Russell himself held
the view that paradoxes arise because a logic with unrestricted comprehension
allows for impredicative definitions. As a solution, the logic is made predicative.
One way to achieve this is by assigning an order to all variables and prescribe that
in any atomic formula P(x1, . . . , xn) in a condition φ formulated in the language
the order of all x must be lower than the order of P (see Box 10.1, Principle ②

and stratification). This makes ¬x(x) ungrammatical. Church’s influential Simple
Type Theory (STT) is another way to define a predicative higher-order logic. Every
term has a type with corresponding domain. Starting with finitely many base types,
infinitely many compound types can be built. If α and β are types, then (αβ) is
the type of a function that takes an object of type β and yields an object of type
α, where β and α may themselves be compound types. Predicates and relations are
represented by several functions. This is called Currying or Schönfinkelization. For
example, a unary predicate P is of type (σ ι), indicating a function that takes a term
of type ι and yielding a truth-value of type σ , a second-order predicate is of type
(σ (σ ι)), and so on. (Another notation which was popularized by Montague uses e

for objects, t for truth-values, and the order is reversed.)
Impredicativity does not automatically lead to paradoxes. On the contrary, many

useful mathematical concepts such as the induction principle used for defining
natural numbers are impredicative. For this reason some conceptual realists opt for
impredicative second-order logics that give rise to larger mathematical universes.
In these logics comprehension is restricted less radically than in predicative ones
(see e.g. Box 10.1, Principle ③) or full comprehension is combined with a
limited substitution principle in order to gain more expressivity while avoiding the
paradoxes. The downside is that it is harder to ensure consistency in such systems
than in purely predicative logics.

Philosophical Relevance. First-order logic and predicative higher-order logic
with Henkin models reflect a strict nominalist stance as has been defended by
Lésniewski, for example. Predicative higher-order logic with standard models may
also be considered nominalist in spirit, because predicative comprehension reduces
the existence of general concepts to conditions explicitly given in the language.
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In contrast to this, impredicative higher-order logics with standard models clearly
reflect a realist stance. More fine-grained distinctions can be found in Cocchiarella
[5, 6].

10.3 Concepts as Abstract Objects

Possibilism. While the conceptual realist wants to talk about concepts it would
be implausible to claim that concepts exist in the same sense as ordinary objects.
Therefore, many conceptual realists distinguish, pace Quine, between quantification
as a means of counting and quantification as a means of asserting existence. A
logic in which non-trivial properties can be ascribed to nonexistent objects is
possibilist or Meinongian, where the latter term is often used for metaphysical
theories that allow one to talk about contradictory objects. In a classical setting,
possibilism can be obtained by introducing two sorts of quantifiers. Actualist
quantifiers are mere means of counting and run over the total domain, whereas
possibilist quantifiers additionally assert existence and run only over a subset of the
total domain. Alternatively, a unary existence predicate E(x) may be introduced to
which possibilist quantifiers are relativized, for instance ∀∗xA := ∀x[E(x) → A]
and ∃∗xA := ∃x[E(x) ∧ A].

Nominalization. One positive answer to the problem of universals is to assert
that we cannot only quantify over concepts but are also able to talk about concepts
like being nice as objects. Sometimes λ-abstraction is thought to fulfill this purpose.
Semantically, a term of the form λx.P (x) is interpreted as the function that with
respect to an assignment g takes an a within the domain of x and whose result
is the same as P(x) evaluated with respect to the modified assignment g′ that is
the same as g except that g′(x) = a. One might then consider λx.P (x) to stand
for being nice if P stands for the predicate nice. However, λ-terms can be used
instead of relations (as in STT) and the converse transformation is also possible
in a logic with both functions and relations, and so λ-abstraction might not be
considered a tool for nominalization understood in the narrow sense. Abstract object
theory [18] and alternative ontologies such as trope theories [4, 12, 16] provide
more elaborate nominalization mechanisms. Differing considerably in details and
terminology, generally in these approaches nuclear and extranuclear properties are
distinguished from each other [14], where the former are being constitutive of an
object and the latter are not, and two different modes of predication are available:
An object, which does not have to be concrete or existent, encodes a property if
the property takes part of a description or listing of the object’s essential features
whereas it exemplifies a property if it has the property accidentally. For example,
in bundle trope theories an object encodes a property if its constituting bundle
of properties (viz., property moments also sometimes called qualitons) contains
the property and exemplifies a property if it stands in a designated relation to the
property. A concept is, in this view, a nonexistent non-concrete bundle of primitive
properties or property moments. Analogously, in abstract object theory aF stands
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for the fact that the abstract (nonexistent) object a encodes property F . Care must be
taken to restrict the range of properties that can be encoded. For example, forming
an abstract object existent red sphere must either be disallowed or the existence-
entailing predicate ‘existent’ must be interpreted in a derived, non-literal way in this
construction.

10.4 Concepts and Intensionality

Modal Concepts and Intensionality. Modal operators may be added to higher-order
logic in the same way as they are added to first-order logic, which in the second-
order setting allows one to precisely express philosophical positions about the modal
properties of concepts. For example, Anti-Essentialism may be expressed by adding
the following axiom:

∀F [∃x�F(x) → ∀x�F(x)] (10.1)

which may be paraphrased as “if an object has an essential property, then any object
has this essential property.”

Hyperintensionality. Inspired by Frege’s informal distinction between the sense
and the denotation of an expression, there is a tradition of hyperintensional logics in
which the following Axiom of Extensionality does not hold:

∀F∀G(∀!x[F(!x) ↔ G(!x)] → ∀H [H(F)→ H(G)]) (10.2)

This axiom states that if exactly the same objects fall under two concepts, then
the concepts are identical in Leibniz’ sense of having the same properties. Despite
considerable differences in detail, hyperintensional logics generally invalidate this
axiom by interpreting expressions over a domain of fine-grained intensions, which
are in turn mapped to their extensions by an extension function [13]. Consequently,
two notions of identity are available in such a logic: coarse-grained extensional
identity and fine-grained intensional identity interpreted over intensions (Fig. 10.1).
By interpreting functions and operators standing for notions like de dicto belief
over intensions it is possible to distinguish having a heart from having a liver and
deal with ordinary cases of referential opacity like Frege’s Morning–Evening Star
example. Additionally, strong intensions allow one to represent attitudes that are not
closed under logical consequence, i.e. someone’s believing that 37 is prime while
not believing that 21+ 16 is prime.

Fig. 10.1 Intensional versus
extensional identity in a
possibilist intensional logic.
ES evening star, MS morning
star, V Vulcan, TP the planet
between Mercury and Sun

Terms Intensions

MS

ES
Venus

V

TP
Vulcan

Extensions
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Contradictory Concepts. Representing irrational attitudes or contradictory con-
cepts like being a round square requires substantial changes to the underlying
logic. In a modal logical setting sometimes impossible worlds are introduced. At
an impossible world ‘anything goes’; arbitrary formulas, including contradictions,
may be true at such a world by mere syntactic assignment. Another approach
based on seminal work by Asenjo, da Costa, Anderson and Belnap is to use a
3-valued logic such as LP or RM3. These logics are paraconsistent and allow a
contradictory formula to have a designated truth value that is interpreted as ‘both
true and false.’ Paraconsistent logics have also been proposed as a way of dealing
with the paradoxes, allowing the logic to mirror the philosophical position that there
are real paradoxes and our talk about them is meaningful (Dialetheism).

The logical aspects of concept theory mentioned so far are well-known, but
are not commonly combined into one all-encompassing metaphysical theory. Most
authors focus on some of these aspects, such as how they can be used to answer
the problem of universals, or logical reconstructions of historical positions such as
Leibniz’ Concept Calculus or Platonic Forms. References to further work are given
in Sect. 10.6.

10.5 Geometrical Approaches

In this section some promising alternatives to the logical approach shall be men-
tioned, which are not metaphysical in the narrow sense. These broadly-conceived
geometrical concept approaches fare particularly well with issues related to the
cognitive aspects of concepts such as vagueness, typicality, and similarity and can
either be combined with, or are thought to complement, logical theories.

Typicality. In a qualitative approach a preorder relation (preference relation)
between all objects falling under a concept can be used to order objects falling under
a given concept according to their typicality. The center represents a prototype and
the nearer an object is to the center the more typical it is (Fig. 10.3a). In a logical
setting this kind of typicality can be expressed in Preference Logics and related
descendants of Lewis’ Conditional Logic. Quantitative accounts induce a similar
ordering by assigning a degree of typicality as a real number between 0 and 1 to each
object as dependent on the concept it falls under, and despite some differences the
two approaches can for many practical purposes be translated into each other. There
are interconnections of these basic forms of typicality to non-monotonic logics
for default reasoning, belief revision, ǫ-entailment, and plausibility and possibility
measures.

Conceptual Spaces. Gärdenfors [9] proposes to model concepts not just on a
symbolic, but also on a geometrical level. A conceptual space is an n-dimensional
metric space with n quality dimensions, each of which represents a basic quality
like height, width, hue, saturation, or loudness. A distance function allows for
measuring the distance between any two points in such a space. In the simplest
case of familiar n-dimensional Euclidean space this distance measure between two
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points x = 〈x1, . . . , xn〉 and y = 〈y1, . . . , yn〉 is defined as

dE(x, y) =

√√√√
n∑

i=1

wi(xi − yi)2 (10.3)

where wi represents the weight of the respective quality dimension. More general
topological definitions of spaces allow for an adequate treatment of purely qualita-
tive dimensions. Generally speaking, in a conceptual space objects are represented
as vectors x = 〈x1, . . . , xn〉 and concepts by regions in the space. Similarity
between two objects in a conceptual space is defined as a function of their distance.

Gärdenfors has conjectured that natural concepts should be represented by
convex regions. A region C of a space S is convex iff for any two points x, y ∈ C

any point tx + (1 − t)y, where 0 ≤ t ≤ 1, on the line segment xy between x

and y is also in C (Fig. 10.2a). One advantage of this assumption is that every
convex region has a center, which may be interpreted as a prototypical object falling
under the concept. Taking these centers p1, . . . , pk as starting points, concepts
Ci can be defined around them by partitioning the space such that for each point
x ∈ Ci , d(pi, x) ≤ d(pj , x) if i �= j . The result is called a Voronoi diagram
(Fig. 10.3b). The closer a point is to the center pi of its concept Ci in such a
partitioning, the higher is the degree of typicality of the object it represents. The
convexity condition has also been taken as a first step toward distinguishing between
natural and non-natural concepts. For example, with ‘standard’ quality dimensions
Goodman’s artificial concept grue, which is true of green objects before some
point in time and of blue ones afterwards, is represented by a non-convex region
(Fig. 10.2b). However, this solution depends on criteria for finding natural quality
dimensions, as a natural concept may be turned into a non-natural one by changing
the underlying dimensions and vice versa.

Formal Concept Analysis. In formal concept analysis a set M of attributes is
associated with a set of objects G by a binary relation I (x, y) read as “object x
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Fig. 10.3 (a) Typicality expressed as a preference ordering. (b) A Voronoi diagram with seven
centers

has attribute G”, where the triple 〈M,G, I 〉 is called a context. Such a context may
be thought of as a table with objects as rows and attributes as columns and a mark
at the row-column intersection if the object at that row has the respective attribute.
A formal concept is then a pair 〈A,B〉 of subsets A ⊆ G and B ⊆ M such that
all objects in A share all the attributes in B. The formal concepts of a context can
be ordered by a relation (A,B) ≤ (C,D) which is true iff A ⊆ C, false otherwise.
Ordering all concepts in a context yields a lattice structure in which the least specific
concept is at the bottom and the most specific one is at the top. Various methods and
algorithms based on this representation have been used for data mining, machine
learning, discovering new relationships between concepts, concept visualization,
explaining human concept acquisition, and models of concept change.

10.6 Further Reading

Andrews [1] contains an introduction to type theory; reprints of original articles
can be found in Benzmüller et al. [2]. Shapiro [17] is a comprehensive treatment of
second-order logic. Burgess [3] discusses predicative and impredicative foundations
of arithmetics with a focus on Frege. Metaphysical implications of different
comprehension schemes are discussed at length in Cocchiarella [5, 6]. Priest [15]
is a modern defense of possibilism and dialetheism; it may serve as a reference for
further literature. Zalta [18] is the main work on abstract object theory and contains
reconstructions of Platonic Forms and Leibniz’ Concept Theory; many refinements
can be found in Zalta’s more recent works. Gärdenfors [9] is the seminal work on
Conceptual Spaces. Ganter and Wille [7] and Ganter et al. [8] lay out formal concept
analysis in a rigid manner.
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Chapter 11

Categories

Jean-Pierre Marquis

Abstract Mathematical categories provide an abstract and general framework for
logic and mathematics. As such, they could be used by philosophers in all the basic
fields of the discipline: semantics, epistemology and ontology. In this paper, we
present the basic definitions and notions and suggest some of the ways categories
are starting to infiltrate formal philosophy.

11.1 Introduction

Mathematical categories were introduced in 1945 by the mathematicians Samuel
Eilenberg and Saunders Mac Lane in order to define two concepts that were seen at
that time to be more important and mathematically relevant, the concepts of functors
and natural transformations. (See [10, 15, 16, 22, 23].) The concepts introduced were
so clearly general that Eilenberg and Mac Lane could not refrain from picking from
the philosophers’ vocabulary.

Now the discovery of ideas as general as these is chiefly the willingness to
make a brash or speculative abstraction, in this case supported by the pleasure
of purloining words from the philosophers: “Category” from Aristotle and
Kant, “Functor” from Carnap, and “natural transformation” from then current
informal parlance. [19, pp. 29–30.]

Eilenberg and Mac Lane themselves never made anything of the connection with
the philosophical meaning of the term, although with hindsight, it is clear that they
made a prescient choice of terminology. The original definition given by Eilenberg
and Mac Lane does suggest that a mathematical category is a system of a uniform
mathematical “kind” or type, e.g. the category of groups. Thus, many mathematical
kinds form categories, allowing mathematicians to relate and compare those kinds
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via functors and natural transformations. Hence, categories could be thought of
as some sort of organizational or classificatory tool for mathematical structures,
although it certainly does not yield a proper classification in terms of a partition of
mathematical structures. The theory of categories developed during the 1950s and
1960s and by the end of the 1960s and early 1970s, its connections to logic and the
foundations of mathematics became clear. From the latter perspective, it can now
be seen as a global framework encompassing both syntactical and semantical – in
fact very often blurring the distinction between these two aspects – components of
logical analysis, together with the links between these components.

It is my belief that mathematical categories are relevant to formal philosophy and
metaphysics in at least two complementary ways. First, as formal tools, category
theory and categorical logic can be seen to be generalizations of first-order logic
and set theory. As such, they become fundamental frameworks to model, analyze
and give a precise expression to philosophical concepts and theories. Thus, in as
much as logical and set-theoretical tools can be used for philosophical purposes,
categorical methods provide a more general and conceptual framework for the same
purposes. By so doing, it often opens the door to unexpected connections and links
between heretofore unrelated domains. Second, mathematical categories occupy a
central and fundamental place in contemporary mathematics and the organization
and foundations of contemporary mathematics can now be understood from this
perspective. Thus, if one of the goals of metaphysics is to provide an understanding
of various kinds of beings, in particular mathematical beings, then mathematical
categories are more than relevant to this enterprise.

A caveat is in order. It will be impossible to do justice to the richness of the
theory in such a short paper. In particular, some fundamental notions of the theory
will simply be ignored. For instance, we will not say a word about adjoints, monads,
toposes, categorical logic and higher-dimensional categories. This is nothing less
than a shame and we certainly press the reader to look up the references in the text
to learn about these notions too.

11.2 Categories: Definition

Informally, a mathematical category can be thought of as a network satisfying
simple properties. The network is made of nodes X, Y,Z, . . . who exchange
information. A sender can send multiple information and in various ways to a
receiver. We can of course think of the sender X as representing a property and the
information into a receiver Y as a way of transforming the given representation in X

into a representation in Y . Thus, the information transmitted can tell us, for example,
how one property varies with respect to another. One such way is represented by

an arrow from the sender X to the receiver Y , namely by X
f

Y . Notice that
there can be many different arrows from one receiver to a sender as there are many
different informations that X can send to Y . Also an information is automatically
and always attached to a sender and a receiver, it is never “free floating” so to speak.
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It is always originating from a definite sender and always received by a definite
receiver and these data constitute an intrinsic part of the information transmitted. In
a nutshell: information is always traceable. Naturally, there can be arrows going the
opposite way and one and the same node can be the sender and the receiver of an
information (as when I recall something to myself). It is also assumed that whenever
a sender X sends an information to a receiver Y and the later sends an information
to another receiver Z, then Z can retrieve the information that Y received from X

but in this case, only via the message it received from Y . (I say in this case, since Z

can also receive information directly from X.) In more technical terms, information
composes. Furthermore, it is assumed that nodes are always “active”, that is they
always send information to themselves, which we will call the identity information
and will denote by 1X for a specific node X. The network is characterized by the
following simple properties. Transfer of information is assumed to be associative:
the information exchanged from W to Y via X and then sent to Z is the same
as the information sent from W to X and then from X to Z via Y . Informally,
this says that, in the end, the intermediary steps are irrelevant in the exchange of
information: if you were to collect the information at one stage and verify it at that
stage, you would get the same thing in the end if you were to verify it at a different
step. A second simple property is that the identity information does not affect the
information coming in nor the information coming out. A mathematical category
can be thought of as such a simple network. As such it is hard to see why it could be
of any interest. Before we go into this, we will give a formal definition of a category
to fix the notation once and for all.1

Definition 1 A category C is a system made up of nodes or objects X, Y,Z . . . and
arrows (or morphisms) f, g, h, . . . such that

• For each arrow f there are given nodes dom(f ), cod(f ), respectively the domain

and the codomain, and we write

X
f

Y or f : X Y

whenever X = dom(f ) and Y = cod(f );
• Given arrows f : X Y and g : Y Z, there is a given arrow

g◦f : X Z

called the composite of f and g.

1We should emphasize that this is but one definition and that there are others (equivalent, of course).
It very much depends on the background one wants to assume to start with and the goals one has in
mind when using categories. If we were to assume that all mathematical entities have to be sets, we
would give a slightly different definition. On the other hand, if we were to assume a purely formal
set up, a fully specified formal framework, we would give a different definition still. For alternative
definitions, see for instance [2, 19, 24].
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• For each node X, there is an arrow:

1X : X X

called the identity arrow of X.

These data must satisfy the following properties:

• For all f : W X, g : X Y , h : Y Z

h◦(g◦f ) = (h◦g)◦f

that is, composition is associative.
• For all f : X Y

f ◦1X = f = 1Y ◦f

that is, the identity arrow is a unit.

The arrows of a category C automatically yield a criterion of identity for nodes.

Definition 2 An arrow f : X Y is said to be an isomorphism if it has an inverse,
that is there is an arrow g : Y X such that f ◦g = 1Y and g◦f = 1X.

It can readily be shown that whenever such an inverse exists, it is unique and for
that reason it is written f−1.

Two nodes X and Y are isomorphic, written X ≃ Y , whenever there is an
isomorphism between them. It is important to understand that isomorphic nodes
are, from the point of view of the category in which they sit, indistinguishable. In
our informal discussion, one could say that two isomorphic nodes contain the same
information, possibly encoded differently. Thus, it might not be obvious that they
are isomorphic and they can be isomorphic in more than one way.

Categories automatically come with a duality, via the notion of the opposite
category, denoted by Cop, of a category C. The nodes of Cop are the same as those of
C, but the arrows go in the opposite direction. Thus, there is an arrow f o : Y X

in Cop if there is an arrow f : X Y in C. Composition is defined by

f o◦go = (g◦f )o.

Categories abound and are varied in nature. Philosophers have to keep in mind
that the nodes and arrows can be interpreted in many different ways and in many
different contexts. In other words, the nodes do not have to be entities of a specific
kind, they do not have to be constituted in a uniform manner from one category to
the next. The best way to illustrate this is probably by giving examples, to which we
now turn.



11 Categories 255

11.3 Categories: Examples

Naturally, examples coming from mathematics arise immediately and are important.
There are, however, two drawbacks to these examples in the present context. First,
one has to rely on already known mathematical structures and functions, otherwise
the examples are just as opaque as the definition of categories itself and one fails to
see the shift from the already known concept, e.g. of groups, to the conceptually new
level, namely the category of groups. Understandably, few philosophers are familiar
with a large spectrum of mathematical structures, e.g. modules, groups, vector
spaces, rings, fields, Banach spaces, Hilbert spaces, topological spaces, topological
groups, Lie algebras, associative algebras, simplicial complexes, chain complexes,
etc., in which case, one fails to see clearly the variety of cases naturally falling
under the concept. Second, and almost in contradiction with what I have just said,
the mathematical examples might lead the reader to believe that there is what might
first appear to be a “deeper” unity to categories, namely that the nodes are in fact
sets and the arrows are in fact functions between sets, that a category is merely
a metamathematical device allowing mathematicians to put some order in their
otherwise chaotic house of structures. This would be an undesirable impression
and an unwarranted conclusion at this stage. Things are more subtle and delicate
than what these cases suggest. So, let us start with examples coming from logic and
abstract algebra and then give a few standard examples from mathematics.

(1) We will begin this enumeration with simple, abstract but useful examples. The
category 0 has no node and no arrow. It is the empty category. The category 1

has one node and only the identity arrow. It can be pictured as follows:

The category 2 has two nodes and one arrow between them besides the
identity arrows. Here is a picture of 2:

Finally, the category 3 has three nodes and three non-trivial arrows, one of
them being the composite of the other two. It can be represented thus:

‘
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(2) Let (P,≤) be a pre-order, that is a reflexive and transitive relation. As a
category, its objects are the points p, q, r, . . . of P and there is an arrow
f : p q if and only if p ≤ q. Thus there is at most one arrow between
two nodes. It is easily verified that in this way one gets a category. In particular,
any partial order is a category. This suggests immediately that category theory
ought to be useful in mereology.

(3) Consider now propositions and logical relations between them, i.e. a deductive
system. Thus the nodes are propositions p, q, r, . . . and there is an arrow f :
p q if and only if p ⊢ q where “⊢” denotes the usual consequence relation.
Again, one immediately verifies that this is a category.

(4) Let T be a first-order theory (in a standard first-order language L, but in a
categorical context, it is natural to work with many-sorted languages). It is
possible to construct a category from T , denoted by CT and called its syntactic

category or also its category of concepts. Here is a sketch of the construction.
(See, for instance, [20] or [14] for details.)

We first have to consider what is called a formal set [!x;ϕ(!x)], where !x
denotes a n-tuple of distinct variables containing all free variables of ϕ and
ϕ is a formula of the underlying formal system L. Notice that a formal set is
not a set as such. It is a purely syntactic construction. Two such formal sets,
[!x;ϕ(!x)] and [!y;ϕ(!y)] are equivalent if one is the alphabetic variant of the
other, that is if !x and !y have the same length and sorts and ϕ(!y) is obtained
from ϕ(!x) by substituting !y for !x (and changing bound variables if necessary).
This is clearly an equivalence relation and it is therefore possible to consider
equivalence classes of such formal sets. A node of the syntactic category CT

is such an equivalence class of formal sets [!x;ϕ(!x)], where ϕ is a formula of
the formal system L. The nodes of CT are the equivalence classes of these
formal sets, for all formulas of L. Notice: all formulas of the language are taken,
not only those which appear in T . Thus, in a sense, the space of nodes is the
collection of all possible properties and sentences expressible in that language,
thus all possible theories in the given formal system. No logical relationship is
considered at this stage, we have only identified the nodes. The next step will
introduce the structure corresponding to the structure of that particular theory
T and it is this step that will capture the particular features of T .

An arrow should be given by a formula of the theory T that defines a
function, that is a formula θ(!x, !y) of T that is provably functional. The only
trick in the construction is to construct a morphism between two (equivalence
classes of) formal sets [!x;ϕ(!x)] and [!y;ψ(!y)] in such a way that, when
interpreted, it yields the graph of the function, in the standard set-theoretical
sense of that expression, between the actual sets {(x1, . . . , xn) | ϕ(!x)} and
{(y1, . . . , ym) | ψ(!y)}. In fact, all definable functions in T will be represented
by an arrow in CT .

Needless to say, the verification that this is indeed a category requires more
work than in the preceding cases.

What is especially clear in this case is that this is a purely syntactical
construction. What makes it interesting is that the constructed category, an
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algebraic object usually denoted by CT , embodies syntactical features of the
theory T . It can be seen to be a generalization of the Lindenbaum-Tarski
construction for propositional theories. We want to emphasize this aspect since
categories are traditionally put in the semantical basket. In fact, categories have
found a wide range of applications in proof theory. This example and the next
show that categories are in both camps and provide a natural bridge between
syntax and semantics.

(5) Instead of starting with a first-order theory, we could have started with a
functional programming language L, e.g. Haskell. The nodes of the associated
category are the data types of L and the arrows are the computable functions of
L, e.g. the “programs”. Again, this is a purely syntactic construction.

(6) Here are now some of the usual examples found in textbooks. The category Set

has as its nodes sets and arrows, functions between sets. It is of course a very
important category in mathematics. The category Top of topological spaces and
continuous functions between them can easily be seen to be a category. So is the
category Grp of groups and group homomorphisms. Readers acquainted with
various mathematical structures will easily convince themselves that given a
type of mathematical entities and structure-preserving functions between them,
it is easy to verify that they form a category (or not!). See [19] for more standard
examples.

(7) Any monoid M (or group for that matter) is a category. It has one object, which
we might simply denote by a “•”, and an arrow is simply an element of M .
Composition of arrows correspond to composition of elements.

11.4 Basic Categorical Constructions

Category theory provides an extremely powerful language to express, explore and
analyse concepts and theories. Some of these are directly relevant to exploration
of formal metaphysics and formal ontology. We will here restrict ourselves to the
most simple. Another interesting feature of category theory is that it does not
presuppose that the objects it talks about, the nodes, are made up of points, elements
or urelements. It has been argued that set theory could not be used in mereology, for
instance, since one is then forced to assume that all objects are made up of elements,
an assumption that does not fit with the ends of mereology. (See, for instance, [29].)
It turns out that category theory does not suffer from this limitation at all. Quite
the contrary. It can be used, for instance to express some of the basic concepts of
mereology.

Let us start with what can certainly be considered to be one of the basic
constructions of category theory: the notion of product of two objects X and Y

of a category C. A product of X and Y in C is an object P together with two arrows
pX : P X and pY : P Y , called the projections satisfying the following
universal property: for all object Q with arrows f : Q X and g : Q Y there
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is a unique arrow h : Q P such that pX◦h = f and pY ◦h = g. The definition
holds readily in a simple commutative diagram, meaning that whenever you can go
from one node to another node via two routes, then they are equal:

X P
pX

P Y
pY

Q

X

f

Q

P

h

Q

Y

g

It can easily be shown that products are defined up to a unique isomorphism:
if (P, pX, pY ) and (Q, qX, qY ) are products of X and Y , then there is a unique
isomorphism P ≃ Q. For that reason, we talk about “the” product of X and Y and
it is denoted by X × Y with the usual projections.

Using our informal analogy with information networks, a product of X and Y is
a node that combines the information of X and the information of Y in a minimal
manner, that is, any other node that can transmit at the same time information to
X and to Y can actually be transmitted in a unique fashion through a product of X

and Y . Of course, the interesting aspect of products is that once we have them, it is
possible to consider how two kinds of information, e.g. coming from X and from Y ,
can be send together, that is from X×Y . In the category Set, Cartesian products with
the obvious projection functions are products in this sense. But here lies one of the
strength of category theory: one can consider products in different categories and
determine whether they exist and what they are in this context and here, the nodes
do not have to be sets and the arrows do not have to be functions. Once again, the
easiest example comes from logic: in a deductive system, a product of propositions
p and q is the conjunction p∧q (or any other proposition logically equivalent to it).
Notice that it is not necessarily the case that all objects have a product in a category
C. Whenever a category C does, we say that C has (binary) products. Notice also
that if we take the empty product, we obtain an object, denoted by 1 such that for
any object X of C, there is a unique arrow X 1. The latter object is called the
terminal object of C.2

The dual concept, usually called the coproduct, is also important. It is simply
obtained by reversing the arrows in the foregoing definition. Thus, a coproduct of X

and Y is an object S of C together with two arrows iX : X S, iY : Y S, called
the inclusions, such that for any object T with arrows f : X T and g : Y T ,
there is a unique arrow h : S T with f = h◦iX and g = h◦iY . In diagrammatic
form, we get:

2Notice that the latter concept can be defined directly in terms of arrows with no reference to the
concept of product. Thus a category can have a terminal object without having all products.
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iX
X

T

f

iY
S

T

h

Y

T

g

As with products, coproducts are defined up to a unique isomorphism and “the”
coproduct of X and Y is usually denoted by X ∐ Y with the usual inclusions. In
Set, disjoint unions form coproducts. In a deductive system, the disjunction p ∨ q

form a coproduct of p and q. Whenever coproducts exist for all pairs of objects
of a category C, we say that C has (binary) coproducts. If we consider the empty
coproduct, we get an object, denoted by 0, such that for any object X of C, there is
an arrow 0 X. It is called the initial object of C.3

These constructions correspond to well-known concepts in various contexts.
Algebraic topologists developed slightly more general concepts that find a natural
expression in category theory and are directly relevant to mereology or mereotopol-
ogy, namely the concepts of pullback and pushout.

Given the following diagram X
f

Z
g

Y in a category C, a pullback of X and

Y over Z is given by an object X×ZY together with two morphisms X×ZY
pX

X

and X×Z Y
pY

Y such that f ◦pX = g◦pY and satisfying the universal property:

for all Q together with Q
l

X and Q
k

Y such that g◦k = f ◦l, there is a

unique arrow Q
h

X ×Z Y such that pY ◦h = k and pX◦h = l. In diagrammatic
form:

f

X ×Z Y

X

pX

X ×Z pY
Y

Z

g

Q

Y

k

Q

X ×Z Y

h

Q

X

l

3The preceding remark concerning the possibility of defining the concept of terminal object
directly applies mutatis mutandis to the concept of initial object.
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Pullbacks can be understood as generalization of products. Indeed, it can easily be
verified that the pullback of X and Y over the terminal object 1 is the same as the
product of X and Y .

But there is an intuitive reading of pullbacks. It is the product of X and Y over
the area of Z on which the arrows f and g agree. For instance, in the category Set,

the pullback of X
f

Z
g

Y can be described as the set of pairs {(x, y)|f (x) =
g(y)}. Thus, one can think of a pullback as a local or parametrized product over an
object.

The dual construction is just as important. Given the following diagram

X
f

Z
g

Y in a category C, a pushout of X and Y along Z is given by an
object X∐Z Y together with two morphisms X

iX

X∐Z Y and Y
iY

X∐Z Y

such that iX◦f = iY ◦g and satisfying the universal property: for all T together with

X
p

T and Y
q

T such that p◦f = q◦g, there is a unique arrow X∐Z Y
r

T

such that r◦iX = p and r◦iY = q. In diagrammatic form:

∐Z Y
iX

Z

X

f

g
Y

X ∐Z Y

iY

Y

T

q
X

T

p

X ∐Z Y

T

r

Notice that the notion of coproduct is a special case of a pushout: simply take the

pushout over the initial object X
f

0
g

Y .
In the case of topological spaces, pushouts have a direct and intuitive interpreta-

tion. The pushout amounts to “gluing” together X and Y along the image of Z in
both of them. Thus, for instance, if Z is the Euclidean unit disk D and X and Y are
both unit spheres S2, then the pushout S2 ∐D S2 is a system of two spheres glued
together along the images of D on both spheres. Figuratively, the two spheres are
“smashed” together on the images of the disk.

It should be clear that these constructions can be iterated and combined in various
ways. The foregoing constructions are all special cases of general constructions
in categories, called limits and colimits in the literature. In the finite cases, one
can show that finite limits and finite colimits can be constructed out of pullbacks
and terminal object, on the one hand, and pushouts and initial object, on the other
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hand. But the situation is different when one considers arbitrary limits and colimits,
concepts that are relevant to formal metaphysics.

A diagram D in a category C is a pattern of arrows (together with their
domains and codomains). For instance, in the case of pullbacks, we had the diagram

X
f

Z
g

Y . In the arbitrary case, we will denote an arrow of such a diagram

by Di

fij

Dj .
A cone to a diagram D in C is an object C together with a family of arrows

ci : C Di , one for each Di such that for each fij : Di Dj of D, the
following triangle commutes

Di Dj
fij

C

Di

ci

C

Dj

cj

A limit for a diagram D is a cone, denoted by lim←−Dj with arrows lim←−Dj

π i

Di ,
to the diagram D satisfying the following universal property: for each cone C to D,
there is a unique arrow h : C lim←−Dj such that for each arrow fij : Di Dj

of D, the following diagrams commute:

C

Di

ci

C

lim
←−

Dj

h

C

Dj

cj

Di Dj

fij

lim
←−

Dj

Di

πi

lim
←−

Dj

Dj

πj

It is easy to see that products and pullbacks are special cases of (finite) limits.
In the case of products, simply take the diagram consisting of two objects X

and Y with no arrows between them. In the case of pullbacks, take the diagram

X
f

Z
g

Y . In both cases, one verifies that the definition of limit yields
the respective constructions. Informally, a limit can be thought of as a restricted
product of the objects of the diagram, the restriction being given by the arrows of
the diagram.

Naturally, the concept of limit has a dual, namely the concept of colimit.
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A cocone from a diagram D in C is an object C together with a family of arrows
di : Di C, one for each object Di of the diagram D, such that for each fij :
Di Dj , the following triangle commutes

Di

C

di

Di Dj

fij

Dj

C

dj

A colimit for a diagram D is a cocone, denoted by lim−→Dj or simply colim D,

with arrows ιi : Di lim−→Dj , one for each i, satisfying the following universal

property: for each cocone C from D, there is a unique arrow u : lim−→Dj C such

that for each arrow fij : Di Dj , the following diagrams commute:

Di

limDj

ιi

Di Dj
fij

Dj

limDj

ιj

C

Di

ci

C

limDj

u

C

Dj

cj

Informally, a colimit can be thought of as being a fusion – in the mereological sense
of that expression – of the given pieces with the incidence relations provided by the
arrows in the diagram.

Limits and colimits are powerful constructions. From a theoretical point of view,
one wants to investigate how they combine, whether they commute, under what
conditions, etc. For applications, one has to verify that the category in which one is
working has limits and colimits.

11.5 Parts and Propert Parts in Category Theory

The notion of being a part of an object X receives an analysis that differs from
the usual one offered by set theory and mereology. Let us first define the property of
being monomorphic for an arrow: an arrow i : A X is said to be monomorphic or
a monomorphism if it is left-cancellable, that is given any arrows f, g : B A such
that i◦f = i◦g, then f = g. A monomorphism is usually denoted by i : A ֌ X.
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In our informal analogy, we could say that the information coming out of A to X is
never confused, i.e. distinct information remains distinct.

Informally, a monomorphism i : A X picks up a part of X. It is as if the
information delivered by i would allow us to see clearly and distinctly a genuine
part of X, even though i itself is not that part. Alternatively, one could think of i as
yielding a copy of a part of X, namely the domain of i, A. In fact, these “copies” of
parts of X are systematically related to one another as follows.

Two monomorphisms i : A ֌ X and j : B ֌ X are equivalent if there is an
isomorphism k : A B such that j◦k = i. This obviously defines an equivalence
class of arrows and a subobject of X is defined to be such an equivalence class. Thus,
technically speaking, category theorists identify a part of X as being an equivalence
class of monomorphisms with codomain X.

Notice that there is a natural partial order on these subobjects of X: given i : A ֌

X and j : B ֌ X, the subobject [i] is included in the subobject [j ], [i] ⊂ [j ], if
and only if there is an arrow k : A B such that j◦k = i. (It can be shown that
whenever such a k exists, it is a monomorphism and it is unique.)

We could say that a part of X is a monomorphism i : A ֌ X isomorphic to a
subobject of X.

How does this capture the notion of being a part? First, in the category Set, a
monomorphism is the same thing as an injection and the image of an injection can
be identified with a subset. (But this need not be the case in other categories.) In
Set, a part of a set X is any isomorphic copy of a subset of X.4 In Top, a part is
automatically a subspace (the induced topology is taken care of by the arrows). In
Grp, a part is a subgroup (again, a monomorphism in that category is automatically
a homomorphism of group). Given a category C with products, a part R ֌ X ×
X is a relation. It is important, however, to understand that the notion of being a
monomorphism is a generalization of the notion of being injective for a function.
It therefore yields an analysis of parthood that is more general than the usual set-
theoretical notion. We will come back to this point.

A proper part can be defined as follows: i : A ֌ X is a proper part of X if
i : A ֌ X is a part of X but i is not an isomorphism.

An arrow q : X ։ Q is an epimorphism if it is right cancellable, that is given
arrows f, g : Q→ Y such that f ◦q = g◦q, then f = g.

In Set, an epimorphism is a surjective function and epimorphisms are often the
same as surjective homomorphisms. But not always. For instance, in the category
of commutative rings with unit, epimorphisms are not necessarily surjective. In the
case of Hausdorff spaces, epimorphisms are precisely continuous functions with a
dense image. (See [4, pp. 28–29] for details.) Again, the notion of epimorphism is a
natural generalization of the notion of surjective function, but it is context sensitive
in a way the latter is not.

4This is shocking only if someone sticks firmly to the axiom of extensionality. From a categorical
point of view, the axiom of extensionality is not the adequate criterion of identity for abstract sets.
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We would like to show that the notion of a boundary between objects can be
given a purely algebraic definition in a categorical framework, but in order to do so,
we need to define two intermediate concepts, which are important in themselves.

First, given two objects X and Y of a category C, one might want to consider the
space of all arrows YX as an object of C itself. Of course, the latter does not always
exist. Whenever it does, it can be defined via the structure of arrows of the category
and provided C has products. Thus, given two objects X and Y of a category C, an
exponentiation of Y by X is an object YX together with an arrow ev : YX×X Y ,
called evaluation, such that for each Z and for each f : Z × X Y , there is a
unique 	f 
 : Z YX such that ev◦(	f 
×1X) = f .5 The diagram corresponding
to the last property is:

Z

Y
X

f

Y
X × X Y

evX ×

×

X

Z X

f ×1X

Y

f

In Set, the exponentiation of Y by X is the set YX of all functions from X to Y .
In a deductive system, YX is the implication X ⇒ Y .

When the category is a deductive system, the characterizing property of expo-
nentiation benefits from a presentation in terms of deductive rules:

Z ⊢

⊢

X ⇒ Y

Z X Y

There are two rules: from top to bottom and from bottom to top.
The “dual” construction is less well known but just as important in our context.

Given a category C with coproducts, the subtraction of X from Y , is an object
written Y \X, together with an arrow i : Y (Y \X) ∐ X such that for each Z and
each f : Y Z∐X, there is a unique �f � : Y \X Z such that (�f �∐1x)◦i = f ,
i.e.:

Y Y \X ∐ X
i

Y

Z ∐ X

f

Y \X ∐ X

Z ∐ X

f ∐1X

Z

Y \X

f

5Since this object is also defined up to a unique isomorphism, we immediately introduce the
standard notation.
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Again, when C is a deductive system, we can express the characterizing property
in terms of deductive rules:

Y \

⊢

⊢X Z

Y Z X

Whenever a category C has subtractions, products and a terminal object 1, we can
define a complement X′ of an object X by setting X′ = (1\X). The boundary ∂X of
an object X is then defined by6:

∂X = X ∧X′

It is important to understand that this definition of the boundary of an object is
a genuine generalization of the definition usually found in topology.7 It is the same
definition when the category C is Top, but it applies to other cases just as well. We
therefore have a general definition of boundary that applies to the usual cases but
that could be used just as well in mereology, mereotopology and systems theory in
general.

11.6 Functors and Natural Transformations

In a category, the information is carried by the arrows and the algebra of arrows.
This situation should apply to categories themselves and, surprisingly perhaps, it
does. An arrow between two categories C and D is called a functor.

Definition 3 A (covariant) functor F : C D assigns:

(1) to each node X of C, a node F(X) of D

(2) to each arrow f : X Y of C, an arrow F(f ) : F(X) F(Y ) of D

in such a way that

• F(g◦f ) = F(g)◦F(f )

• F(1X) = F(1X)

In other words, a functor preserves identities and composition, i.e. the structure of a
category.

6As far as I know, Bill Lawvere was the first to propose this general definition. For more on its
properties, see [18].
7Notice that we do not have to take the closure of X since in the case of topological spaces, the
operations define a coHeyting algebra, i.e. the algebra of closed sets.



266 J.-P. Marquis

A functor that reverses the order of composition, i.e. a functor F : C D such
that F(g◦f ) = F(f )◦F(g) is said to be contravariant.

It can be asserted that contemporary mathematics is functorial: all basic concepts
and constructions now introduced are functorial, i.e. they are functors. A list
of examples could cover all fields of mathematics at all levels, from the most
elementary to the most arcane. We will restrict ourselves to a few simple examples.
The reader is urged to consult references for other relevant examples. (See, for
instance, [2, 4, 19, 24].)

Examples:

(1) For each category C, there is an identity functor, 1C, which sends each object
to itself and each arrow to itself.

(2) The power-set operation ℘ : Set Set is functorial. Its operation on objects
is obvious. Given a function f : X Y , for each subset A ⊂ X, ℘(f )(A) =
f [A], the image of A in Y under f . This is clearly a covariant functor.

(3) The power-set operation induces a second, different functor ℘ : Seto Set,
acting in the same way on objects but this time, for each subset B ⊂ Y ,
℘(f )(B) = f−1[B], the inverse image of B in X. This is now a contravariant
functor.

(4) A functor F : 2 C simply picks up an arrow of C.
(5) A functor F : 3 C picks up a commutative triangle of C or, in other terms,

composable arrows of C.
(6) If M is a monoid, seen as a category, it can be verified that a functor F :

M Set picks up a set F(•) = X together with an (right) action, also called
an M-set in the literature. More formally, an M-set can be described as a pair
(X, (fm)m∈M) where, for each m ∈ M , fm : X X such that for all m, n in
M:

fe = 1X;
fm◦n = fm◦fn

where e is the unit of M and m◦n is the product in M . These readily describe
systems that are in various states, the latter being given by the monoid M . It
is worthwhile to notice the pattern here: the monoid M provides a schema of
possible states whereas a functor F : M Set or an M-Set is an actual system
with an actual state space. Automata theory can be developped in this setting.
See, for instance [1, 30].

(7) If P is a pre-order or a partial-order, seen as a category, then a functor F :
P Set sends each arrow p ≤ q of P to a function F(p) F (q) between
sets. It is perhaps worth looking at the case when we have the linearly ordered
set (N,≤). In the case of the linearly ordered set, a functor F : N Set a
sequence of sets

X0 X1 X2 · · ·
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and functions Xn Xn+1. Whereas in the previous case, we had a set in
various states, here we have a sequence of sets seen as a whole, or evolving
through time.

It is easy to see that functors compose and that therefore categories form a
category.8

Definition 4 Given two parallel functors F,G : C D, a natural transformation

η from F to G, η : F G, is given by the following data:

(1) For each object X of C, an arrow ηX : F(X) G(X) of D such that:
(2) For each arrow f : X Y of C, the following square commutes:

F (Y ) G(Y )
ηY

F (X)

F (Y )

F (f)

F (X) G(X)
ηX

G(X)

G(Y )

G(f)

From the definition alone, natural transformations might seem to be odd beasts.
As we have already said, they actually constitute the reason why Eilenberg and Mac
Lane introduced functors and categories in the first place. In other words, natural
transformations were noticed first as a mathematically significant phenomenon that
deserved to be clarified. They turn out to pervade mathematics. Here are a few
selected examples.

Examples:

(1) The power-set operation induces a third functor, contravariant again,

℘ : Setop BA

where BA is the category of Boolean algebras and Boolean homomorphisms.
There is a parallel functor

Hom(−, 2) : Setop BA

defined as follows: to each set X, Hom(X, 2) is the set of all functions from
X into the Boolean algebra 2, itself a Boolean algebra, and to each function
f : X Y , the functor Hom(f, 2) : Hom(Y, 2) Hom(X, 2) is defined
by Hom(f, 2)(g) = g◦f . There is a well-known isomorphism Hom(X, 2) ≃
℘(X). In fact, this isomorphism is a natural transformation. This means that,
for any function f : X Y , the following square of Boolean algebras and
Boolean homomorphisms commutes:

8There are obvious foundational issues arising at this point, but we will simply brush them under
the carpet and ignore them altogether.
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X

Y

f

Hom(Y,2) ℘(Y )
≃

Hom(X,2)

Hom(Y,2)

Hom(X,2) ℘(X)
≃

℘(X)

℘(Y )

(2) Here is a simple and perhaps shallow example. Consider the identity functor
1Set : Set Set and the covariant power-set functor ℘ : Set Set. Consider
now the function sX : X ℘(X) defined by sX(x) = {x}. It can easily be
verified that it is a natural transformtion s(−) : 1Set ℘.

11.7 Functor Categories, Presheaves and Sheaves

Although the constructions presented in the preceding section illustrate the power
and flexibility of category theory, it can be argued that one of the most striking
tool of the trade is that of functor categories and the latter are certainly relevant to
metaphysics, since they can be used to model possible worlds, various semantics,
constructive mathematics and numerous other situations.

Given two categories C and D, the functor category DCop
has as its objects

functors F : Cop D and arrows natural transformations η : F G.9 Very
often in practice, D is taken to be the category Set, but it need not be. Notice also
that the operation can be iterated, i.e. D can already be a functor category. It is in fact

not unlikely to consider in practice, even in logic, categories of the form (DCop)Eop

.
Here are some key examples of functor categories.

Examples:

(1) The functor category C1 is obviously the same as the category C.
(2) The functor category C2 is the category of arrows of C, that is an object of C2

is an arrow of C. An arrow of C2 consists of a pair of arrows of C making the
appropriate square commute.

(3) The objects of the functor category SetN have been given in the example 7
above. An arrow between two sequences of sets is a natural transformation η :
F G such that all the squares in the following diagram commute:

9Notice that the functors go from the opposite category Cop . This is related to theoretical aspects
of category theory that we cannot explain in such a short paper.
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Y0 Y1Y1 . . .

X0 X1X0

Y0

η0

X1 . . .X1

Y1

η1

. . .

. . .

η2

(4) If we take the category SetN
op

instead, we simply reverse the arrows of the
objects as follows:

Y0 Y1Y1

X0 X1X0

Y0

η0

X1 · · ·X1

Y1

η1

· · ·

· · ·

η2

The foregoing examples are all cases of what are called presheaves in the
literature. They have been used, for instance, to construct models of non-Boolean
negations. (See [17].) Among functor categories, categories of sheaves occupy
a central position, both because they have strong links to topology and logic.
They have been used to obtain important results in various areas of logic, for
instance in modal logic, see [3, 12, 21], in intuitionistic logic and intuitionistic
mathematics in general, see [25], in constructive mathematics, see [11], and,
recently, in mathematical physics, see [5–9]. Thomas Mormann has used sheaves
to model an ontology of tropes. The next step here would be to investigate the logic
of tropes since a category of sheaves has an internal logic. (See [26] and also [27, 28]
for other applications.). A standard reference on sheaves in mathematics and logic
is [20].

11.8 Conclusion

As we have already mentioned, we have barely scratched the surface in the foregoing
sections. A proper treatment would have included a discussion of categorical logic,
Grothendieck toposes and modal logic, process algebras and higher-dimensional
categories. This in itself strongly suggests that it ought to be included in the toolbox
of anyone interested in formal metaphysics.

And there is more. Category theory is now being applied in many different ways
in theoretical computer science, from linear logic to ontology engineering. (For an
introduction to the latter, see for instance [13].) As we have also mentioned, it is
finding its way in the foundations of physics. It is my conviction that it is bound to
occupy a central position in formal philosophy.
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Chapter 12

Can Natural Language Be Captured
in a Formal System?

Martin Stokhof

Abstract The question whether natural language can be captured in a formal
system has been argued at length, and both a positive and a negative answer has
been defended. The paper investigates the main lines of argument for both, and
argues that the stalemate that appears to have been reached is an indication that the
question itself rests on a wrong conception of the relation between natural languages
and formal languages, and hence of the methodological status of formal modelling
of natural language.

12.1 Introduction

The question that this paper addresses has been answered with both an unqualified
“Yes” and an unqualified “No”, and both answers are not only straightforward but
apparently, they can also both be justified. That suggests that perhaps something is
wrong with the question, and that hence the best possible answer we can give is “It
depends”. In what follows we will proceed to explore these three options.

But before we start we must do some preliminary work. First of all, we should
further specify the question by determining what we will take “natural language”
to refer to. Is that the phonetic system of a natural language, its morphology, or its
syntax? Although in these areas, too, the question of the possibilities and limitations
of formalisation are interesting and important, we will concentrate on the “meaning”
aspect of natural language, i.e., on its semantics and its pragmatics. The main reason
for this restriction is that it is in this area that the question appears to have its main
philosophical interest.

It should be noted at the outset that by distinguishing the question of the possible
formalisation of meaning from that of, say, syntax, we allow for the possibility
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that the first question can be answered in the negative while at the same time the
latter is answered positively. (As we shall see, the reverse possibility seems much
harder to maintain.) Such a situation would be in accordance with the theoretical
view that, indeed, there is a principled distinction between the syntax of natural
languages on the one hand, and their semantics and pragmatics on the other,
and that this distinction is reflected in the nature of linguistic competence. The
former would correspond to Chomsky’s conception of “the faculty of language in
the narrow sense” (FLN), that is connected not with the communicative function
of actual natural languages, but with an evolutionary and physiologically distinct
computational system that is not unique for language. Semantics, and pragmatics
in so far as it deals with meaning, would belong to a different system, “the faculty
of language in the broad sense” (FLB), a conceptual system that draws on different
cognitive capacities that are physiologically realised in different ways than those
characteristic for the computational system.1

Most people working in semantics would tend not to agree with such a radical
difference between systems, and one reason for this disagreement is that they
conceive of semantics as a homogeneous domain, despite the customary distinction
between lexical semantics and structural semantics. According to this view, the
former deals with the meaning content of lexical expressions, whereas the latter
is concerned with the semantic rules that govern the ways in which meaningful
expressions are combined into larger, meaningful wholes. For an account of the
meaning content of a complex expression we need both, hence semantics, at least
in theory, should be homogeneous and unified, although in practice there may be a
division of labour, of course. This assumed homogeneity does not sit well with the
Chomskyan division between FLN and FLB, in particular because, according to the
received wisdom of compositionality, the semantic rules that are the prime subject
of structural semantics, in their turn should be aligned with the rules of syntax.
But if Chomsky would be right, that would mean that there is a fundamental split
between structural semantics and lexical semantics after all, the former being part
of FLN and the latter belonging to FLB. This is certainly a possible point of view,
one which is potentially agreeable to Chomsky, but nevertheless awkward for most
semanticists, since it robs them of a homogeneous empirical domain. Whether the
question of formalisation can shed further light on this issue is something we will
return to later on.

So, we focus in what follows on the question of the formalisability of meaning,
and hence the question addressed will be “Can natural language meaning be
captured in a formal system?”. Do note that the relevance of that question extends
beyond semantics and pragmatics as parts of linguistic theory: if natural language
meaning is non-formalisable, then this will arguably have implications for the
potential of formalisation in epistemology, metaphysics, and other philosophical
disciplines. Inasmuch as the concepts and the argumentative strategies employed in

1Cf., Hauser et al. [11]. The position that semantics is not part of grammar is one that Chomsky
has defended throughout, cf., e.g., [4], Chapter 2.
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those disciplines depend on, and are conducted in, natural language, the effects of
natural language meaning being formalisable, or not as the case may be, will trickle
down and affect what formalisation can reasonably be expected to achieve in these
disciplines.

12.2 Yes

The wholeheartedly positive answer “Yes” started to be heard in philosophy, and
a little later on in linguistics, only at the end of the sixties of the previous
century. There had been people who had suggested that the tools of formal logic
could be applied to the analysis of natural language meaning in a systematic and
empirically explanatory way earlier on, but their voices were hardly heard at the
time,2 or their suggestions were brushed aside as irrelevant.3 In analytic philosophy
the two dominant schools of thought, logical positivism and ordinary language
philosophy, both shied away from the idea of formalisation of natural language
meaning, though for different reasons. For the positivists, natural language as such
lacked sufficient systematicity and their semantic analyses were carried out by
constructing interpreted formal languages and studying their logic. That same lack
of systematicity for ordinary language philosophers also presented an obstacle to
formalisation, but in their view, this was not so much a reason to switch to formal
languages as to adhere to a more descriptive and informal methodology. As we shall
see, both perspectives are still around.

It was only with the work of Davidson and Montague, and later on Lewis,
Partee, Bartsch and a host of others, that the very idea of a formal treatment of
natural language meaning came into its own. In view of Chomsky’s rejection of
Bar-Hillel’s suggestion that logic and linguistics join forces (cf., footnote 3), it
may come as a surprise that it is Chomsky who was often referred to as a major
source of inspiration: his work in generative syntax inspired confidence that on that
score doubts concerning a lack of systematicity could be considered as settled.4

Syntax being amenable to a rigorously formal treatment meant that one condition

2The most prominent example perhaps being Hans Reichenbach, whose Elements of symbolic
logic, which dates from 1947, contained a substantial part devoted to systematic treatment of,
among other things, tenses and other temporal expressions in natural language, which became
known and very influential only much later.
3Which is what happened to Yehoshua Bar-Hillel, who, inspired by Carnap’s work in intensional
logic, in the early fifties suggested that the formal methods of logic could be applied to the results
of Chomsky’s early work in generative syntax so as to provide a formal semantics for natural
language (cf., [1]). The proposal met with a brusque and negative response from Chomsky (cf.,
[3]), and it took another decade for other people to take up on this idea.
4Cf., e.g., Davidson: ‘Recent work by Chomsky and others is doing much to bring the complexities
of natural languages within the scope of serious theory.’ [7], and Montague: ‘On this point [viz.,
that natural languages can be treated formally, MS] I differ from a number of philosophers, but
agree, I believe, with Chomsky and his associates.’ [21].
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for a formal semantics was met. For, in some form or other, the compositionality
principle, that says that the meaning of a complex expression is determined by the
meanings of its component parts and the way these are combined, was leading, as it
had been in philosophical logic since the days of Frege. It requires that the ‘means of
combination’ of the expressions of a language, i.e., its syntactic rules, be determined
in order to serve as the carrier of a compositional specification of their meaning. No
guts no glory, no syntax no (formal) semantics.

Of course, the availability of a formal theory of syntactic structure fulfils a
necessary condition, by itself it does not show that meaning can be formalised
as well. This is where the enterprise of formal semantics starts. Looking back,
we can discern a number of different trends. Some authors seem to aim at what
can almost be called ‘transcendental’ arguments of the formalisability of natural
language meaning, whereas others take a much more empirical stance, and proceed
stepwise. The former approach starts from an assumption that can be epitomised in
the following quote from Moerdijk and Landman: ‘Things must be very strange
if they cannot be captured in mathematical terms.’5 It is that ultimately every
phenomenon that is systematic and that can be understood by means of a rational
inquiry, has sufficient structure and can be modelled formally. The subsequent task
is then to find, or to develop, the appropriate formal tools and to apply them to real
instances. That, to be sure, is indeed an empirical undertaking, and one that may
run into problems or even fail. But formalisability as such seems less an empirical
issue than a precondition for a phenomenon to be meaningful and subject to rational
inquiry in the first place.

It comes as no surprise that this way of looking at things can be found primarily
among the philosophers and logicians who were engaged in the development of
formal semantics. An example to illustrate this. Richard Montague started his
‘Universal grammar’ with the following statement ([21], p. 373):

There is in my opinion no important theoretical difference between natural
languages and the artificial languages of logicians; indeed, I consider it
possible to comprehend the syntax and semantics of both kinds of languages
within a single natural and mathematically precise theory.

This claim functions more as a starting point than as a conclusion. In his ‘Universal
grammar’ paper Montague proceeds to specify the form and content of such a
‘single natural and mathematically precise theory’, which consists of algebraic
frameworks for the analysis of expressions, meanings and the meaning relation
that associates (analysed) expressions with meaning in an explicitly formal way.
What is outlined in ‘Universal grammar’ is a general framework, one that needs
to applied to concrete phenomena, as Montague himself has done, for example, in
his seminal paper ‘The proper treatment of quantification in ordinary English’ [22].
What is interesting about Montague’s starting point is that it is conceptual, rather
than empirical. The possibility of formalising natural language meaning is a starting

5Cf., Moerdijk and Landman [20]. Cf., also Cresswell’s defence of his use of set theory as his
metalanguage in his Logics and languages [5].
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point, one that needs to be tested, but not as a specific claim but as something that
defines an entire theoretical approach.

For Montague, this has consequences also for the empirical character of the
subsequent application of the general framework. Thomason explains this in
his introduction to Formal philosophy, the collection of Montague’s papers on
semantics, as follows (Thomason 1974, p. 2):

According to Montague the syntax, semantics, and pragmatics of natural
languages are branches of mathematics, not of psychology. The syntax of
English, for example, is just as much a part of mathematics as number
theory or geometry [ . . . ] This mathematical conception of semiotics does
not imply that data are irrelevant to, for instance, the syntax of English. Just
as mathematicians refer to intuitions about points and lines in establishing a
geometrical theory, we may refer to intuitions about sentences, noun phrases,
subordinate clauses, and the like in establishing a grammar of English. But this
conception does presuppose agreement among theoreticians on the intuitions,
and it renders statistical evidence about, say, the reactions of a sample of
native speakers to “Mary is been by my mother” just as irrelevant to syntax as
evidence about their reactions to “7 + 5 = 22” would be to number theory.

According to this characterisation, which seems to capture an influential early way
of thinking about the nature of formal theories of natural language meaning, such
theories are empirical in as much as they describe some form of idealised semantic
competence, that plays out in the intuitions of skilled theoreticians.6 The crucial
question then becomes whether thus isolating meaning from use by relying on a dis-
tinction between competence and performance, is an independently motivated move
and the formalisability of meaning an empirical hypothesis, or rather a precondition
for conceiving of natural language meaning as formalisable to begin with.

Other pioneers as well deliver arguments for a formal treatment of natural
language meaning that are primarily conceptual. Cf. the following passage from
an early paper of Davidson (1965):

I propose what seems to me clearly to be a necessary feature of a learnable
language: it must be possible to give a constructive account of the meaning
of the sentences in the language. Such an account I call a theory of meaning
for the language, and I suggest that a theory of meaning that conflicts with
this condition, whether put forward by philosopher, linguist, or psychologist,
cannot be a theory of a natural language; and if it ignores this condition, it
fails to deal with something central to the concept of a language.

The ‘constructive account’ that Davidson refers to in this passage, is, of course, a
Tarski-style theory of truth: a formal theory that specifies in a rigorously formal
manner the truth conditions of the well-formed sentences of a natural language.

6Thus, in that respect aligning formal semantics with the generative tradition. Cf., Stokhof [30] for
a diagnosis of how that came about.
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One final example, is provided by Lewis’ early paper ‘General semantics’, which
starts with the following claim (Lewis 1970, p. 18):

On the hypothesis that all natural or artificial languages of interest to us can
be given a transformational grammar of a certain not-very-special sort, it
becomes possible to give very simple answers to the following questions:

(1) What sort of thing is a meaning?
(2) What is the form of the semantic rules whereby meanings of com-

pounds are built up from the meanings of their constituent parts?
It is not my plan to make any strong empirical claim about language. To

the contrary: I want to propose a convenient format for semantics general
enough to work for a great variety of logically possible languages. This paper
therefore belongs not to empirical linguistic theory but to the philosophy
thereof.

What we see expressed here resembles the views of Montague and Davidson in
relevant respects: that both natural and formal languages can be analysed in a similar
syntactic framework, and that the formalisability of syntax makes a compositional
semantics possible. What is explicit in this passage is the status accorded to the
theory that is based on these observations: the claims of general semantics are not
empirical but philosophical.

Despite their abundance in the early works of formal semanticists, it would
be inappropriate to mention only conceptual arguments such as these. Even the
foundational and theoretical work of Montague, Davidson, Lewis, Cresswell and
others contains applications of their ideas to concrete phenomena of natural
language meaning. In fact, as was already mentioned above, it was not Montague’s
theoretical outline of his approach in ‘Universal grammar’ that served as a model
for formal semantics in the early days, but the applied version in his ‘The proper
treatment of quantification in ordinary English’ [22], that he used to analyse certain
phenomena concerning quantification such as de dicto/de re ambiguities, and the
like. This is characteristic of formal semantics as a branch of linguistics, of course. It
deals with empirical phenomena, analysing and describing them by means of formal
systems. That not just preaches formalisability of natural language meaning, it also
practices it. Success and failure are measured by empirical adequacy and formal
rigour. And whenever the enterprise succeeds, one might say, that constitutes ever
so many arguments that meaning is indeed formalisable.

In that sense then, there is abundant evidence for a positive answer to the question
under discussion: formal semantics has made great strides over the last four decades
in capturing central aspects of natural language meaning. Quantification, anaphora,
tense and aspect, modality and conditionals, mass nouns, plurals, questions, pre-
supposition, focus and information structure, vagueness, and a host of other aspects
of natural language meaning have been studied with formal means, by developing
formal systems that describe the phenomena in question and provide systematic
ways to make predictions about acceptability judgements of competent language
users. Although initially most work was mono-lingual, increasingly cross-linguistic
studies and typological investigations are being conducted in the framework of
formal semantics as well. So, the scope of the formalisations has steadily increased,
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both in terms of the phenomena captured as well as in terms of the languages
covered, and this has contributed in important ways to our understanding of the
phenomena in question.

A particularly successful example (though certainly not the only one) is provided
by work on generalised quantifiers (by Barwise & Cooper, Van Benthem, Higgin-
botham & May, Keenan & Faltz, and many others). Building on Montague’s original
analysis (in [22]) and on logical work by Mostowski and others, semanticists have
come up with a small number of general, formal properties of generalised quantifiers
that characterise the quantifiers we actually find in natural language: among the
totality of logically perfectly possible quantifiers these properties determine the
restricted set we actually find in natural language. Although there is further
discussion about empirical details, this is indeed an impressive result, one that
seems to vindicate the positive answer to our question, perhaps even in a more
convincing manner than the more conceptual considerations with which formal
semantics started out. Other empirical results, too, provide insights into underlying
constraints on how natural languages express meaning and reveal complicated
relations between apparently unrelated phenomena, and taken together they seem
to build a convincing case for the formal nature of fundamental aspects of natural
language meaning.

Then all is well and the “Yes”-answer goes unchallenged? Not quite. There are
a number of concerns that may provide reason to think things over. The first is the
lack of a unified formal framework, the second concerns the distinction between
structural and lexical semantic features.

Let us start with the first concern. In the early days of formal semantics research
tended to be carried out in a uniform framework. Of course, there were various
candidates for such a framework around, with Davidsonians preferring first order,
extensional systems, Montagovians making use of higher-order intensional type
theory, and Cresswellians favouring set-theory. But within each ‘school’ researchers
tended to carefully fit their analyses in the overall framework of their choice, taking
care to make sure that their results were actually consistent with those of others
by showing that they could be unified in the overall framework. Fairly quickly
this gave way to a much more liberal use of formal systems, with little or no
attention being paid to their compatibility. Browsing through the literature one may
find applications of domain theory, property theories, belief revision systems, event
calculus, different many-valued logics, various non-monotonic logics, dynamic
logic, various forms of game theory, second-order type theory, Martin-Löf’s type
theory, untyped lambda-calculus, Boolean algebras, lattices of various kinds, set
theory with or without ur-elements: basically everything in the book has been
thrown at natural language phenomena at some point. And then there are the custom
built formal systems, such as various versions of discourse representation theory, of
situation theory, and so on.

Pluriformity as such presumably is no objection per se, but the existing variety
of methods and frameworks does shed a different light on the question of the for-
malisability of natural language meaning, and the positive answer that is indirectly
provided by empirically successful descriptions and analyses. Where in the early
days, formal languages appeared to be used as models for natural languages, as
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is testified by the conceptual considerations which we illustrated above, the more
piecemeal approach that has become characteristic of formal semantics suggests
a more pragmatic stance, in which formal languages are regarded not as models
but as tools. This is a crucially different way of looking at what we do when we
apply formal methods in semantics, and hence a different type of positive answer.
In the first case, the “Yes” is continued with “because natural languages are formal
languages”, whereas in the second case the reason given reads “because natural
languages actually can be described in a formal manner”. The practices may not be
that different, but the underlying ideologies are really quite distinct.

Does that mean that the second, more pragmatic stance, which regards formal
systems as tools rather than as models, is unobjectionable? Again, the answer seems
qualified. In as far as it instantiates the general attitude that, indeed, “things must
be very strange if they cannot be described in mathematical terms”, it represents no
stronger a claim than that, like any other natural phenomenon, natural languages
are systematic and by that very fact should be amenable to systematic, formal
investigation. By itself that seems a reasonable point of view, although as we shall
see later on, it can be challenged. But does it also excuse the actual pluriformity
of methods employed? In as much as these methods themselves carry different
assumptions about the nature of what they are used to describe, the answer here
must be negative, at least for the time being. Different formal systems may ascribe
to the natural languages that they are used to analyse wildly different ontologies,
they may be actually logically incompatible among themselves as they are based on
incompatible logical principles, they may make different assumptions concerning
the cognitive capacities of natural languages users, they may draw the line between
semantics and pragmatics at different points, and so on. How to deal with such
divergence is a concern that cannot be left unanswered, and it would seem that
unless a satisfactory answer is given, the indirect positive answer to our question
that empirically successful applications provide still needs additional justification.

Let us now to turn to the second consideration that may provide some reasons
to suspend judgement on the positive answer, viz., the distinction between lexical
and structural aspects of natural language meaning. Again, there is a distinct
development to be discerned here. In the early days of formal semantics, the focus of
research was on the meaning of expressions and constructions that play a structural
role in the formation of the meanings of complex expressions. Quantifiers, tense
and temporal expressions, modal expressions, and the like, appear to function
very much like logical expressions, and it makes sense to focus on their analysis
by taking suitable formal languages with appropriate counterparts, as models for
their semantic behaviour. These are expressions that are systematic, invariant over
different occasions of use, largely invariant over the linguistic context in which they
occur, and their semantic content can be captured, it seems, in general principles of
a more or less logical nature. On the other end of the spectrum we find the meaning
of the majority of lexical items, which form the input of the semantic rules, but
which do not play a structural role themselves. Their meanings often vary with
linguistic and non-linguistic context, and it is often very difficult to distinguish
between those aspects of their meaning that are properly linguistic and those that
are intimately connected with various kinds of world knowledge. To be sure, there
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are generalizable features, semantic properties that are characteristic for a class
of lexical items, but these are difficult to establish and their specification always
underdetermines the full meaning of a specific lexical item. Yet, in the further
development of formal semantics there was an increasing interest to ‘re-instate
content’, i.e., to try and capture as much of the meaning of lexical expressions in
formal models.7

As was mentioned above, for some authors this has been a reason to give up
on the idea that natural language meaning is a homogeneous phenomenon, and to
assign the specification of lexical and structural aspects to completely different kinds
of theories.8 Most formal semanticists do not draw such a drastic conclusion and
prefer to view their field of study as essentially homogeneous. Yet the distinction is
real, and it seems to signal a definite limit to the formalisability of natural language
meaning that has to be acknowledged.

12.3 No

The considerations mentioned at the end of the last section suggest at least a
qualification of the positive answer outlined earlier on. We will return to them later
on in this section, but first consider some of the reasons that people have given for a
more principled negative answer to our leading question.

For clear examples of such “No”-answers, we can go back in time again, in
this case, almost all the way (as far as the Western philosophical tradition is
concerned). Complaints about the unsystematic and misleading character of natural
language, with its vagueness, lack of precision, ambiguities and referential failures,
are of all times. Of course, not all such complaints are made in the context of the
question whether natural language meaning can be formalised. One would expect
that point of view to become prominent only when the development of suitable
formal languages had made formalisation of natural languages an option to begin
with. To a large extent that is true, specific arguments concerning formalisation
were developed in close conjunction with the development of modern logic in
the nineteenth and early twentieth century, in the work of Peirce, Bolzano, Frege,
Russell, and the early Wittgenstein. But also in a non-formal setting philosophers of
diverse orientation (empiricists, rationalists, hermeneuticists and romanticists alike)
voiced concerns about the adequacy of natural language as a medium for rigorous
philosophical thought. In the seventeenth century, a whole movement originated
around the idea of creating artificial languages, and to the extent that such artificial
languages (as developed for example by Wilkins, Dalgarno, Leibniz, and others)
were of a formal nature, the various arguments in favour of their creation and

7Cf., Kamp and Stokhof [16] for extensive discussion of this development.
8Cf., above on Chomsky’s distinction between the computational and the conceptual system.
Cf., Higginbotham 1997 for extensive discussion of the implications of such a move for formal
semantics.
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deployment and their suitability as alternatives to natural languages can be looked
at as arguments against the formalisability of the latter.9

But it was at the end of the nineteenth and in the early twentieth century that
the issue became more pronounced. After all, one reason for the interest in the
development and application of formal languages in the analysis of reasoning was
the assumed deficiency of natural language. Explicating why he found himself
forced to develop his ‘conceptual notation’ by the difficulties he encountered trying
to analyse reasoning rigorously using natural language, Frege said it as follows in
his Begriffsschrift ([8], p. 5–610):

I found the inadequacy of language to be an obstacle; no matter how unwieldy
the expressions I was ready to accept, I was less and less able, as the relations
became more complex, to attain the precision that my purpose required. This
deficiency led me to the idea of the present ideography.

Vagueness and ambiguity, the lack of an explicit and formal structure, lack of
precision and context-dependence are some of the deficiencies that Frege, Russell,
the early Wittgenstein and, at a later stage, some of the logical positivists, identified.
Such deficiencies, they claimed, could be overcome only by improving on natural
language, or by a wholesale replacement of it, for those purposes, such as logic and
philosophical analysis, for which explicitness, rigour and precision were crucial.

But to what extent are these considerations really arguments against the formal-
isability of natural language meaning, rather than a mere rejection of the idea as
such? As was already mentioned, the observations as such were hardly new. Many
philosophers had already deplored for instance the fact that in typical Indo-European
languages existence, predication and identity tend to be expressed grammatically
by one and the same verb. What was new is that with the development of explicit
formal languages there was for the first time a real alternative: philosophers and
logicians did not have to settle for what they regarded as a deficient tool, they
could employ better ones, and even, develop such tools themselves as need arose.
But perhaps more importantly, the conditions under which formalisation is possible
also became much clearer. In particular the necessity of a formal specification of
the syntax for a compositional semantics was identified as a condition that natural
languages apparently did not satisfy.11 And as we have seen above, it was exactly
when opinion as to the formalisability of natural language syntax started to change,
that the possibility of a formal semantics became a serious option.

The question whether a formal semantics of natural language can be, or should
be, a compositional one, is much debated, and this is not the place to review the

9Cf., Maat [19].
10Page references are to the English translation in Van Heijenoort.
11The locus classicus is Tarski’s 1944 paper on the semantic conception of truth, where he writes:
“The problem of the definition of truth obtains a precise meaning and can be solved in a rigorous
way only for those languages whose structure has been exactly specified. For other languages –
thus, for all natural, ‘spoken’ languages – the meaning of the problem is more or less vague, and
its solution can have only an approximate character.”
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various positions and arguments.12 What is important is that even if full compo-
sitionality is replaced by something like ‘systematicity’ the demands on the formal
specification of the syntax are not really diminished.13 In fact, compositionality may
be somewhat orthogonal to the question that is under discussion here,14 but it would
go too far to explore that in any detail.

The formal nature of syntax being more or less universally agreed upon, the
real challenge for the formalisability of natural language meaning comes from a
different quarter. It is a line of thought that in a sense generalises some of the old
objections, regarding vagueness and context-dependence, and regards such features
both as much more pervasive, and as a virtue rather than as a vice.

In analytic philosophy, this perspective on natural language had been endorsed
in particular by the ordinary language philosophers, such as Austin, Ryle, Warnock
and others. In their view, it is precisely because of its pervasive context-dependence
that natural languages are able to serve the purposes that they do. Exact definitions,
strictly delineated concepts, and a precise formal structure are not just constraints
that natural languages do not meet, they would in fact diminish their usefulness.

Recently, similar observations and arguments have been subject of intense debate
between minimalists and (radical) contextualists. Both parties agree that context-
dependence is a defining characteristic of natural language. In fact, this realisation
goes back to Frege, who in ‘Der Gedanke’ [9], argues that in order to preserve
determinate meaning, we need to re-analyse natural language sentences of which
the truth value depends on context, as implicitly containing a specification of the
relevant contextual parameters. This form of ‘eternalism’ postulates a substantial
difference between what intuitively is the meaning of such sentences and what
this approach construes it to be. Also, there are good arguments to think that
this form of ‘de-contextualisation’ will not always work, as it cannot account
for the role of essential indexicals in action explanation.15 In formal semantics
indexicality is usually dealt with by associating context-dependence expressions
with two distinct but related semantic objects: one that constitutes the context-
independent content and another that determines such a content in each context.16

But such an approach only works for a limited set of indexical expressions, such as
pronouns, temporal expressions, locatives, etc.. Radical contextualists argue that in
fact all expressions are context-dependent, that no descriptive context is immune for
contextual variation. In fact, they claim, there is no such thing as semantic content,
i.e., natural language meaning cannot be specified independent of the use that is
made of language in concrete contexts. As Charles Travis formulates it ([36], p.41):

12Cf., Pagin and Westerståhl [23, 24] for a comprehensive overview.
13Cf., Pullum and Scholz [27].
14In view of the fact that for example model-theoretic approaches to syntax (cf., [26]), though
definite alternatives to generative ones, are committed to the formal specifiability of syntax just as
well.
15Cf. Perry [25].
16The most well-known instance of such an approach is that of Kaplan, cf., [17].
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The core thesis of [radical contextualism] is that any way for things to be
which an English (or etc.) open sentence speaks of admits of understandings
as to when something would be that way. Any of many different things may
thus be said of a given item in saying it to be that way. The same variety of
different things may thus be said of it in using that open sentence of it.

But how would one argue for such a position? The arguments that radical con-
textualists adduce to support their view usually consist of ingenious examples that
indicate that even such apparently stable descriptive predicates as the adjective ‘red’
can be used in radically different ways depending on the context. Such observations
and constructions are certainly appealing for a sympathetic reader who might be
willing to generalise from them to the systematic position that radical contextualism
defends. But it is also true that such observations as such do not constitute a
principled argument: suggestive as they may be, they do not force one to accept
that there are no context-independent aspects of meaning whatsoever that could be
captured in a formal model.

12.4 It Depends

Confronted with two such well-argued, seemingly firmly justified, yet diametrically
opposite answers to a simple question, we should perhaps stop and step back
and ask ourselves whether the question we asked, which initially looked simple,
straightforward and clear, might not be so on closer inspection. After all, taking
sides would be decidedly odd for it would mean to reject sound argumentation and
reasonable observation and to declare it as somehow due to a deep misunderstanding
of the issue at stake. More plausible, it seems, is that each party answered a slightly
different question: those who favour the “Yes”-answer are concerned with structural
aspects of natural language meaning, whereas those who defend a “No”-answer
focus primarily on lexical content.

So, does that mean that the best answer we can give to the unqualified question
is “It depends”? Although it may look like it, the “It depends”-answer really is not
a way of dodging the issue, but neither does it represent a definite, contentful stance
on what natural language meaning is and on how semantics therefore should (or
should not) be done. Rather, it represents a more meta-level perspective on what it
is that we do when we do things formally. It assumes that the question that this paper
is concerned with, should not be construed as a factual one: there is no fact of the
matter as to whether natural language meaning is something (an object, a complex
entity with a certain structure) that is formal in nature, the structure of which
can hence be explicated in some formalised description. Formal theories are not
descriptions of formal objects, they are specific ways of interacting with a complex
phenomenon, some aspects of which lend themselves to formal representation,
whereas others do not. Arguments that purport to show that one grand unified formal
theory must be possible because the nature of what gets formalised allows for it, and
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arguments that are supposed to prove that such is not the case because there are no
formal properties of natural language meaning to begin with, both miss this simple,
but profound point.

One may feel that the “It depends”-answer motivated along the lines just sketched
is something that actually holds across the board for any type of scientific inquiry.
Many phenomena that we encounter in reality are too complex to be fully captured
in a formal model or theory, and abstracting away from real but to a certain extent
irrelevant aspects is standard procedure and in many cases, saves the day. Why
wouldn’t the formal study of natural language meaning be yet another instance
of this general feature of scientific inquiry? That is an objection that deserves a
much longer answer that we can provide here.17 Let us just mention one important
reason to think that natural language, in particular natural language meaning, might
be a different case. It is that there is a distinct dependency in the case of natural
language meaning between what is captured in a formal theory and the ways and
means by which we formulate such a theory and understand those constructed by
others: the object understood and the medium of understanding are by and large
the same. This goes beyond the straightforward observation that, ultimately, any
formal theory can be understood only because of our natural linguistic abilities.
And of course, this should not be taken to mean that such formal theories cannot
extend our understanding and those abilities, because when successful they do, in
fact, it is one of the criteria in terms of which success is measured. What makes
the case of the formalisation of natural language meaning different is that what we
seek to understand and what that understanding ultimately relies on are one and the
same thing. And that can be taken as an indication that the relation between formal
theories in this domain has a different status.

So, what are formal descriptions, formal theories of natural language? They are,
to borrow an apt phrase from Wittgenstein,18 ‘übersichtliche Darstellungen (‘per-
spicuous presentations’): insightful, lucid, surveyable presentations of particular
aspects of natural language meaning; presentations that are explicit, that can be
formally manipulated, and that lend themselves to implementation; presentations
that by their very being formal allow us to see and do things that we could not see
or do as easily using the expressions they formalise. But also, and this is the crux of
the matter, presentations that themselves can be understood only in terms of what
they present: not exclusively, because that would mean that they don’t add to our
knowledge and insight and they obviously do; but nevertheless essentially, since our
understanding of such presentations, the very fact even that we have an interest in
constructing them, can be understood only in the context of natural language itself.
This is a kind of self-reference that facilitates all kinds of ‘looping effects’ between
what is described by the formal theory and what makes our understanding and our
use of that formal theory possible.

17Cf., Stokhof and Van Lambalgen [32, 33] for further discussion.
18Cf., Wittgenstein [37], section 122.
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This is a point of view on the nature of formalisation of human language
and kindred phenomena, on its usefulness and its limitations, that authors in
quite different traditions have expressed as well. Wittgenstein having already been
mentioned, perhaps it is apt to end with a quote from another prominent twentieth-
century philosopher, Martin Heidegger, who in his essay ‘The way to language’
stated ([13], p. 422):

There is no such thing as a natural language, a language that would be the
language of a human nature at hand in itself and without its own destiny.
Every language is historical, also in cases where human beings know nothing
of the discipline of history in the modern European sense. Nor is language as
information the sole language in itself. Rather, it is historical in the sense of,
and written within the limits set by, the current age.

For Heidegger then, just as for Wittgenstein, the distinction between formal
language and natural language is not a real opposition, but a reflection of a particular
way of dealing with the world. What matters is a clear awareness of the perspective
we take, and the pragmatic concerns that motivate it. In that sense, truly “it
depends”.

12.5 Conclusion

So where does this leave us with regard to the question we started out with? As is
customary with such profound questions, final answers are hard to come by. That
does not mean that we should not address them, of course. Such considerations as
we have reviewed in the above do tell us something, albeit not something definite.
First of all, it is clear that the conceptual motivation for a positive answer is in
general insufficient. Not only is it constitutive of the enterprise rather than based on
independent evidence or considerations, also it seems to steer a formal approach far
too much in the direction of “modelling”, something that runs into deep conceptual
problems. If anything, more evidence based arguments, consisting of actual and
successful attempts at formalisation in the end carry more weight. Second, this more
pragmatic view comes with a focus on formal systems as tools, rather than models.
That seems a much more realistic perspective, but it does come with its own set
of questions, the most important of which is: what are the adequacy criteria for
our choice of tools from the enormous toolbox that logic, computer science and
mathematics have to offer? If we take a theory of natural language meaning to be a
theory of semantic competence, then the multiplicity of the formal systems that are
employed constitutes a serious challenge, one that still needs to be met.
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Chapter 13

Reference and Denotation

Robert van Rooij

Abstract According to Frege, the meaning of an expression is the description that
helps language users to determine what its reference is. Natural as the view might
seem, it gives rise to the conceptual problem that it presupposes that we already
know the meaning of the terms used in the description (Wittgenstein, Quine),
and it is empirically incorrect because ‘having a correct description in mind’ is
neither a sufficient nor a necessary condition for successful reference (Kripke,
Kaplan). Perhaps reference for at least some times is non-descriptive, and depends
on context. Anaphora have a referential use as well, picking up the speaker’s referent
of an earlier used indefinite description. The challenge of this view is to provide a
satisfactory analysis of so-called donkey-sentences.

13.1 The Descriptive Theory of Meaning and Its Problems

The perhaps most ‘natural’ conception of ‘meaning’, at least in its point of
departure, identifies ‘meaning’ with naming. The meaning of an expression is that
what the expression refers to, or is about. What meaning does is to establish a
correspondence between expressions in a language and things in the (model of the)
world. For simple expressions, this view of meaning is natural and simple. The
meaning of a proper name like ‘John’ or definite description like ‘the number of
major planets’, for instance, is the object or number denoted by it, while the meaning
of a simple declarative sentence like ‘John came’ could then be the fact that John
came. Beyond this point of departure, things are perhaps less natural. What, for
example, should be the things out in the world that common nouns and a negated
sentence like ‘John didn’t come’ are about? This referential, or Millian, theory of
meaning gives rise to a serious empirical difficult as well: the substitution problem.
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Assuming, by the principle of compositionality, that the meaning of a complex
sentence depends only on the meanings of its part and the way these parts are put
together, it follows that if two expressions have the same meaning, one can substitute
the one expression for the other in a complex sentence without change of meaning.
But because there are 8 major planets in our solar system, on the theory of meaning
at hand the expressions ‘8’ and ‘the number of major planets’ refer to the same thing,
and thus have the same meaning. Still, we cannot substitute the expressions ‘the
number of major planets’ for the number 8 in the sentence ‘It is necessary that 8 is
bigger than 7’ without changing its truth value. Frege [5] concluded that the meaning

of an expression should not be identified with the reference, or denotation, of that
expression. Instead, the meaning of ‘the number of major planets’ is the description
itself, and the meaning of a noun or name is given by a set of properties associated
with the expression that give necessary and sufficient conditions for objects or stuff
to be in its denotation. Obviously, the above substitution puzzle does not arise on
such a view.

However appealing and natural this cluster theory of reference might be, it gives
rise to at least two problems, one conceptual and one empirical in nature. The first

conceptual problem concerns the predicates, or properties, used in the description
that is supposed to identify the referent. What is the meaning of those predicates?
The standard theory of meaning doesn’t seem to do more than explaining the
meaning of one part of the language in terms of other parts – the predicates in
terms of which the descriptions are given. One proposal to solve this problem would
be that we indeed have a set of ‘basic predicates’, e.g. the predicates that refer to
natural kinds. But how does this reference come about, if not via description?

A possible way out of the above regress problem is to propose to study meaning
in terms of outward and observable correlates of language behavior. Perhaps
motivated by such concerns, [24], for instance, proposed that we should study the
meaning of expressions in terms of their use, and the logical positivists proposed
their verificationalist’ analysis of meaning mainly because they considered the
way to verify a sentence as a particularly good way to get clear how a certain
sentence is used. The verificationalist’ reductive analysis of meaning failed, for
one thing because it is difficult – if not impossible – to interpret the terms of a
language individually. To determine the meanings of expressions we have to look
simultaneously at a whole group (or perhaps all) of expressions of the language as

a whole [1, 9]. One way to cash out such a holistic theory of meaning idea would
be to claim that the terms refer to whatever things, properties, and relations that
do the best job of making the set of sentences true that speakers in fact consider
to be true. Unfortunately, generalizing Quine’s (1960) well-known argument for
the indeterminacy of reference, Putnam [18] showed that this picture as such is
not constrained enough to fix the meaning of the expressions of a language in
the intuitively correct way. Even if one knows the truth value of a sentence in
every possible circumstance, this doesn’t necessarily mean that one knows the
intuitively correct meanings of its constituents. For instance, it is possible to
formulate highly counterintuitive meanings for expressions like cat and mat, so that
in the actual world they refer to trees and cherries, respectively, without affecting
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the meaning of The cat is on the mat. To determine the meaning of the terms of
our language, knowing the truth value or meaning of a collection of sentences is not
enough, because the terms of the language can be assigned weird and ‘unintended’
interpretations.

The second problem for the description theory of reference is empirical in
nature. Donnellan [2, 3] and Kripke [12] have convincingly argued that this theory
leads to counterintuitive results for proper names. They have shown that speakers
can refer, and even can intend to refer, to particular individuals without being able
to describe or identify those individuals. Ordinary people can, for instance, use the
name Feynman to denote the physicist Feynman even though they have no uniquely
identifying set of descriptions in mind. Kripke argued that uniquely fitting some set
of descriptions that the speaker associates with a proper name is not a sufficient
condition for its successful use either. Kripke [12] and Putnam [17] have similarly
argued that the set of properties that speakers or agents associate with natural kind

terms should also not be equated with the meaning of the noun. This is made very
clear by the ‘Twin Earth’ stories given by Putnam [17] and others. In Putnam’s story,
the stuff that the inhabitants of the counterfactual situation call water is superficially
the same as the stuff we call water, but its chemical structure is not H2O, but XYZ.
If, then, both the earthling and his twin assert ‘Water is the best drink for quenching
thirst’, intuitively they have said something different. But how can this be if they
associate exactly the same description with the word and if speaker’s description
determines reference?

13.2 The Causal Theory of Reference,

and Context-Dependence

According to Kripke, Putnam and others, the meaning of at least proper names and
natural kind terms is simply what they refer to. But this gives rise to the question
of why these expressions have the references they in fact have. At this point, Kripke
proposed his causal theory of reference. Kripke [12] argues that proper name ‘N’
can refer to a, only if, and because, a is the entity that is the source of the reference-
preserving link from the initial baptism of the expression to the speaker’s use of
the name. This causal ‘theory’ of reference, or of meaning, is in accordance with a
naturalistic philosophy and seems also the natural candidate to limit the possible
interpretations of the expressions of ‘our’ language to solve Putnam’s paradox
(cf. [14]).

The causal account of meaning is not without problems. For instance, it is
unclear how a causal theory could ever determine the meaning of functional words,
or of prepositions like ‘in’. Moreover, it is not clear how to cash out the causal
account in a completely naturalistic way and there are problems of how to account
for our intuitions that we can have false beliefs. One way solve both of these
problems involves making use of so-called ‘normality conditions’. But in order for
the resulting analysis to be wholly naturalistic, we need a naturalistic analysis of
such conditions. A natural candidate that suggests itself to provide such an analysis
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is Millikan’s [15] bio-semantics, but it is controversial whether this theory can do the
full job. The main problem of the causal theory, however, is the original substitution
problem: if the meanings of ‘Hesperus’ and ‘Phosphorus’ are just their referents,
‘Hesperus is Phosporus’ is predicted to express the necessary true proposition. But,
then, how can we account for the fact that agents can seriously doubt that such
statements are true?

It is an obvious observation that what is expressed by a sentence is context-

dependent: in different contexts the same sentence can express different things.
What is expressed by ‘I am living in Amsterdam’ depends on who is the speaker in
that context. Kaplan’s (1989) theory of context dependence allows us to distinguish
different reasons why a sentence is ‘necessarily’ true. First, what a sentence
expresses in context c can be true everywhere. A sentence like ‘Hesperus is
Phosphorus’ is necessary in this way, given that the meaning of a proper name
is just its referent. But it might also be the case that a sentence is true in every
context in which it is expressed. For instance, an English sentence like ‘I am here
now’ is necessarily true for this reason. But now consider John’s uttering of ‘I
am John’. Though this sentence is necessarily true, the sentence can, intuitively,
still be informative. This is because the hearer might be ignorant of the identity
of the speaker, or at least doesn’t know that he is called ‘John’. This intuition
can be accounted for in the theory by claiming that the speaker doesn’t know
in which context he is. One might now propose to use this analysis to account
for the other problems as well: people can doubt whether the identity statement
‘Hesperus is Phosphorus’ is really true, because the referent of a proper name is
context dependent, just like the referent of ‘I’. And indeed, not only the reference of
expressions like ‘I’ and ‘you’ depend on contingent features of the context, but this
is also true – at least according to the causal theory of reference – for proper names
and natural kind terms. Notice, though, that there is a difference between the sense
in which the reference of these expressions depends on context. The expression ‘I’
is context dependent, because in English, ‘I’ always refers to the speaker in direct
speech, and the same expression of English might be uttered by different speakers.
The reference of ‘Phosphorus’ and ‘water’, on the other hand, are context dependent
only because in different worlds they have a different meaning, or causal origin.
But, of course, in that sense the meaning of ‘I’ is context dependent as well, and
depends on the language we speak. Assuming that we speak a particular language,
it follows that we sometimes don’t know the meanings of the expressions (names
and nouns) we use. Though this conclusion is natural to some, to others it feels like
a contradiction in terms.

13.3 Indefinites and Anaphora

According to Quine [20], our learning and use of pronouns marks our ability to refer.
If we may believe [6], scholastic philosophers held that pronouns can refer back to
indefinites because indefinites are referential expressions. The indefinite refers to



13 Reference and Denotation 293

that object that the speaker intends to refer to by the use of the indefinite. Moreover,
if a speaker uses a referential expression in his utterance, the proposition expressed
by this utterance is object-dependent. Geach [6] has criticised this account. If John
intends to refer to d by his use of the indefinite an S, and wants to say of d that he is
P , even though d is not, John is not saying something false when he claims An S is

P, according to Geach, if there actually is an S that is P . In order not to make such
a prediction, according to Geach, it is better to represent an assertion like An S is P

semantically simply by an existential formula, ∃x[Sx∧Px]. The specific/unspecific
distinction belongs to pragmatics, which should be kept separate from semantics.
To handle pronouns, we should follow Quine’s insight and treat them as bound
variables. A sequence of the form Some S is P. It is Q should, according to him,
be translated as ∃x[Sx ∧ Px ∧Qx].

But there are well-known problems with this latter assumption. First, it leads to
the unnatural consequence that we can interpret a sentence with an indefinite or
other anaphoric initiator only at the end of the whole discourse: incrementality is
given up. Second, if we want to interpret the pronouns in a donkey sentence like
If a farmer owns a donkey, he beats it as bound variables, it seems we have to
represent the indefinites in the antecedent as universal quantifiers to get the truth
conditions right. But then it seems we have to give up compositionality. We cannot
treat indefinites in all contexts in the same way. Finally, sometimes we cannot
even get the truth conditions right by assuming that all pronouns should be treated
as bound variables. This was shown by Evans [4] by sentences like Tom owned

some sheep and Harry vaccinated them. According to a Geachian analysis of this
sentence, we learn that Harry vaccinated some sheep that Tom owned if we accept
what is expressed by the sentence; what we seem to learn, though, is that Harry
vaccinated all of the sheep that Tom owned. Evans proposed that in a sequence of
the form Some S are P. They are Q, the pronoun they goes proxy for the description
(all) the S such that P.1 Such pronouns he called E-type pronouns.

The above argument does not show that all pronouns are E-type pronouns. The
pronouns occurring in sentences like ‘Every man loves his cat’, for instance, seems
to function like the bound variables of quantification theory. Indeed, since Evans
[4], proponents of the E-type approach normally make a distinction between bound

and unbound pronouns, claiming that such a distinction can be made on purely
syntactic grounds; and propose that only unbound pronouns should be treated as
E-type pronouns.

However, if we use the term unbound pronoun in the above sense, it seems that
not even all unbound pronouns go proxy for the definite or universal noun phrase
recoverable from the antecedent clause and should be treated as E-type pronouns.
Consider for instance Yesterday, John met some girls. They invited him to their

place. We don’t want to say that they needs to stand for all the girls John met
yesterday. If we want to say that the pronoun is going proxy for a description

1Evans [4] claimed that the pronoun rigidly refers to (all) the S such that P . See Neale [16] for a
motivation of the interpretation I have chosen.
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recoverable from its antecedent, the relevant description should not be definite or
universal, but indefinite: some girls that John met yesterday. To treat the pronoun as
an abbreviation of an indefinite description also seems to be needed to get the right
reading of a sentence like Socrates owned a dog, and it bit him. It seems that this
sentence can be true if there was a dog that Socrates owned and it bit him, although
at the same time there was also another dog that he owned that did not bite him.

A correct analysis for such discourses was given in Kamp’s [10] ‘Discourse
Represention Theory’, Heim’s [9] ‘File Change Semantics and Groenendijk and
Stokhof’s [8], ‘Dynamic Predicate Logic’. These theories treat anaphoric pronouns
simply as bound variables and indefinites as existential quantifiers. However, they
interpret existential quantifiers dynamically in such a way that they introduce new
objects, or discourse referents, that are available for reference. In this way, they
solved Geach’s incrementality problem. Moreover, they assure that with negation
and conditionals, a universal quantification over assignment functions or sequences
of individuals is involved, thereby accounting for donkey sentences and solving
Geach’s compositionality problem.

Note that, due to their use of existential closure, the anaphoric pronoun he in
a sequence like A man is walking in the park. He is whistling is basically treated
as an abbreviation of the indefinite description ‘a man who is walking in the
park’. But claiming that the pronoun is an abbreviation of an indefinite description
would be very implausible. Pronouns are definite expressions. To quote Quine
[19, p. 113], “‘He’, ‘she’, and ‘it’ are definite singular terms on a par with ‘that
lion’ and ‘the lion’ ” But if a singular pronoun cannot be treated as a definite
description that (in extensional contexts) refers to (all) of the object(s) that verify
the antecedent sentence, how then can a pronoun be treated as a definite expression?
Some empirical phenomena also show/suggest that unbound anaphoric pronouns
should in general have a more specific interpretation than the standard dynamic
theories can offer.

One of those specific phenomena is the case of pronominal contradiction,
originally due to Strawson [22]. When John asserts A man is running through the

park, Mary may react by saying He is not running, but just walking. It is clear that
in such examples the pronoun cannot be used as an abbreviation for the indefinite
description a man is running in the park. The natural assumption to make here,
however, is to say that in this case the pronoun is used referentially, referring back
to the speaker’s referent of the antecedent indefinite, the man the speaker had in
mind for his use of the indefinite.2

Pronominal contradiction examples are well known to be problematic for the
recently developed dynamic semantic theories. It is normally assumed that these

2Arguably, a type of pronominal contradiction is also involved in Geach’s [7] notorious Hob-Nob
sentences: Hob believes that a witch blighted Bob’s mare, and Nob believes that she killed Cob’s
cow. Hob-Nob sentences are problematic for standard analyses because (i) witches do not exist,
which rules out a de re analysis of the antecedent-anaphor relationship, and (ii) the discourse can
be true in case Nob doesn’t believe that the witch he talks about blighted Bob’s mare, which rules
out a descriptive E-type analysis.
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problematic examples are rather special, though, and that for the ‘standard’ cases
this notion of speaker’s reference is irrelevant. The following example, however,
suggests that anaphoric pronouns are usually used in this referential way. If John
says A man called me up yesterday, it would be odd for John to reply to Mary’s
question Did he have a gravel voice? by uttering That depends, if he called up in the

morning he did, if he called up in the afternoon, he did not if in fact two men called
John up yesterday. It is not easy to see how this phenomenon can be explained if it
is assumed that pronouns should simply be treated as variables bounded by dynamic
existential quantifiers. A natural explanation can be given if it is assumed that for
the use of the pronoun the speaker must have a specific object ‘in mind’.

Note that according to this account we don’t need to make use of existential
closure to account for the non-exhaustive interpretation of pronouns, although the
definiteness of pronouns can still be explained. A pronoun that takes the indefinite
in a sentence of the form Some S is/are P as antecedent need not be interpreted
exhaustively, i.e., need not refer to all the (relevant) S’s that have property P ,
because it only refers to the (all) speaker’s referent(s) of the antecedent indefinite.

Of course, when we account for the anaphor-indefinite relation in terms of the
notion of ‘speaker’s reference’, we can no longer give the usual explanation for the
asymmetry in acceptability between John owns a donkey. Mary beats it versus John

is a donkey owner. *Mary beats it. Proponents of dynamic semantics, starting with
Heim [9], explained the asymmetry solely in terms of the use of an explicit indefinite
in the first, and the lack thereof in the second. Though there are problems with this
view, a proponent of the alternative picture still has to explain the asymmetry.

According to Kripke [13] and Stalnaker [21], the speaker’s reference is relevant
to semantics, but only through pronominalisation. That is, it is irrelevant for what
is expressed by the sentence (or clause) in which the indefinite occurs, but is truth-
conditionally relevant for what is expressed by a later sentence with a pronoun that
takes an indefinite as its syntactic antecedent.

How can we account for the referential treatment of pronouns on the one hand,
and for the existential reading of indefinites on the other? One has to assume that
possibilities should contain more information than is assumed in standard dynamic
semantics, and that the dynamics is (relatively) independent of truth conditions (e.g.
van Rooy, [23]). In particular, it should be clear in a possibility what the speaker’s
referent is of (occurrences of) indefinite expressions. Because the above sketched
treatment of pronouns is exactly in line with [13] proposal, it is only to be expected
that such an analysis, just like Kripke’s, has problems to deal with donkey sentences

like If a farmer owns a donkey, he beats it. The problem is that in such a sentence
the indefinites don’t seem to be used specifically, while the pronouns can arguably
also not be treated as an abbreviation for definite descriptions, because it seems
that the sentence can also be true in case one farmer owns more than one donkey.
One way to solve the problem is to assume that a logical operator like negation

is treated as an intensional operator, in that it allows part of the context, i.e. the
choice function, to shift. One has to realize, however, that [11] would call such an
‘intensional’ treatment of negation a monster.
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Chapter 14

Indexicals

Philippe Schlenker

Abstract Indexicals are context-dependent expressions such as I, you, here and
now, whose semantic value depends on the context in which they are uttered. They
raise two kinds of questions. First, they are often thought to be scopeless – e.g.
with I rigidly referring to the speaker – and to give rise to non-trivial patterns of
inference – e.g. I exist seems to be a priori true despite the fact that I necessarily

exist isn’t. Second, indexicals may play a crucial role in the expression of irreducibly
De Se thoughts, and both the existence of such thoughts and the ways in which they
can be reported in indirect discourse must be elucidated. The Kaplanian picture
posits that indexicals take their value from a distinguished context parameter, whose
very nature is responsible for some entailments, and which remains fixed – hence
the apparent scopelessness of indexicals. It further posits that while indexicals may
serve to express irreducibly De Se thoughts, these may not be reported as such in
indirect discourse (no ‘De Se readings’). Both tenets have been criticized in recent
research: there are a variety of constructions across languages in which the context
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parameter appears to be shifted; and several types of indirect discourse (some of
them involving context shift) do give rise to De Se readings.

Indexicals are context-dependent expressions such as I, you, here and now, whose
semantic value depends on the context in which they are uttered (e.g. I denotes John
if uttered by John, and Mary if uttered by Mary).1 Indexicals in the strict sense (e.g.
I, here, now) can be interpreted on the sole basis of the spatio-temporal properties
of the speech act – in particular who is talking to whom, where and at what time.
Demonstratives (e.g. uses of he, she or that without antecedent in the discourse)
require in addition that one have access to the referential intentions of the speaker
and/or to a notion of salience. In this chapter, we will focus on indexicals in the
strict sense.

14.1 Foundational Questions

Indexicals raise several foundational questions for natural language semantics. For
the sake of concreteness, we will start from a modal analysis in which the meaning
of a sentence is assimilated to a function from world-time pairs to truth values.
Thus a sentence S is evaluated relative to a an interpretation function [[.]] which
takes as parameters a time t, a world w, and also an assignment function s (for
individual variables), with [[S]] s, t, w = 1 (for ‘true’) or 0 (for ‘false’). We will see
how this architecture must be modified to handle indexicals. But we start by stating
five foundational questions that are raised by indexical expressions (see for instance
[4, 40], Maier [19] and Schlenker [30] for other surveys, and [11] for a far-reaching
synthesis of recent theoretical and empirical insights into shifted indexicals across
languages).

14.1.1 Semantics and Logic: Context Dependency

and Scopelessness.

Intuitively, the semantic value of an indexical is determined relative to the context

of a speech act. But different speech acts – and hence different contexts – may
co-occur in the same world and at the same time, hence world-time parameters as
usually construed are insufficiently fine-grained to provide the value of indexicals.
This immediately leads to a question about the general format of our semantic
analysis:

1Here and throughout, italicization is used in the text for emphasis, or for quotation or quasi-
quotation (but italicization is not used within formulas).
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Q1. Which parameters should be added to the interpretation function to handle

indexicals?

There is another side to this problem. Whichever answer is given to Q1,
indexicals often seem to be special because they are ‘scopeless’, in the sense that
they fail to interact scopally with other operators. To make the point concrete, let us
compare the behavior of the word I to the apparently synonymous expression the

speaker:

(1) a. The speaker is always boring.
a’. I am always boring.
b. The speaker is necessarily boring.
b’. I am necessarily boring.

Uttered by myself (= PS) at a conference, (1)a and (1)b have, among others,
readings on which the speaker is semantically dependent on the operators always

and necessarily, and thus need not refer to me, PS. Things are entirely different
with (1)a’-b’: I denotes (‘rigidly’) the speaker of the actual speech act, rather than
whoever might be the speaker at other times or in other worlds. So our second
question is:

Q2. Why do indexicals seem to be scopeless?

Indexicals give rise to valid inferences which are non-trivial to explain in logic.
I exist or I am here now would seem to be a priori true, in the sense that whenever

these sentences are uttered they cannot fail to be true. But these validities differ
from ‘normal’ ones. In particular, it does not follow from their a priori status that
the corresponding sentences prefixed with necessarily are true: Necessarily, I exist

and Necessarily, I am here now are usually quite false (similar facts hold when
necessarily is replaced with always). Tautologies, by contrast, are a priori true and
remain so when they are prefixed with necessarily (e.g. Necessarily, p or not p).
This leads to our third question:

Q3. How can indexicals give rise to a priori true sentences which, when preceded

by ‘necessarily’, can become false?

14.1.2 Attitudes and Attitude Reports

What is the ‘cognitive significance’ of a sentence? Or to put it differently, what
is the contribution of a sentence to the belief state of an agent who holds it to be
true? A simple-minded view would take this cognitive significance to be given by
the information it provides about the world and time at which it is uttered. This
would make for an elegant connection with a semantic theory that countenances
world and times. Let us call the intension or content of a sentence S the function
given by:
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(2) Content(S) = λt, w [[S]] s, t, w

Here λt, w abbreviates λt λw, and thus Content(S) is a function which (given an
assignment function s) associates to times t and worlds w the value that S has at t
in w – namely [[S]] s, t, w (we abbreviate λt λw as λt, w when we want to think of
the arguments, which technically are taken ‘one at a time’, as pairs; here we think
of this function as taking a pair of arguments <t, w > and returning the value that S

has at t in w).
Here too, however, our initial picture is too simple. To take a well-known

example, if David sees himself through a mirror, the cognitive significance of the
sentence (A) My pants are on fire will be very different from that of (B) His pants

are on fire – despite the fact that both sentences are about him, David, and are
presumably true in the same world-time pairs (note that David is likely to take
immediate action in (A), but not necessarily in (B)). A simpler case to analyze
is provided by Perry’s amnesiac example [17, 23]. Rudolf Lingens, an amnesiac,
might have access to all available knowledge about the world (for instance because
he is in a very well-furnished library at Stanford). He might know lots of things
about Lingens, but he would still not be in a position to assert (A’) I am Rudolf

Lingens – though he would definitely be able to claim (B′) Rudolf Lingens is Rudolf

Lingens. Hence our fourth question:

Q4: What determines the cognitive significance of sentences with indexicals?

There is another side to this question. If we ask how thoughts are reported

in language, it often seems that the distinction between the two direct discourse
sentences (A) and (B) gets lost in the report. For instance, the report in (3) is made
equally true if David asserted (A) or if he asserted (B):

(3) David says that his pants are on fire.

It seems that the fine-grained semantic difference between (A) and (B) is not
preserved in the report (note that it will not do to report (A) by saying: David

says that my pants are on fire, which makes a claim about the speaker rather than
about David). This observation is particularly important from the standpoint of a
Fregean analysis of meaning. For Frege (1892), the same notion of Sense (or Sinn)
accounts for (i) the cognitive significance of a sentence and also for (ii) its truth-
conditional contribution in attitude reports (in possible worlds treatments, a Sense
is reinterpreted as an intension, or function from world-time pairs to truth values).
But in these examples the two roles ((i) and (ii)) seem to be fulfilled by different
objects: the cognitive significance of a sentence with indexicals is directly tied to
their context-dependency, whereas the truth-conditional contribution of a clause in
an attitude report seems not to report the precise contribution of the indexicals that
appeared in the original statement. This leads us to our fifth question:

Q5: Can the cognitive significance of thoughts expressed with indexicals be fully

captured in attitude reports? If not, why is this not the case?
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14.2 The Kaplanian Picture

14.2.1 Basic Analysis

Kaplan [15, 16] offered a unified answer to these questions, one that has proven
very influential in the last 40 years. Technically, the basic idea is that expressions
of a language are evaluated with respect to a context parameter in addition to
whatever other parameters are needed for semantic evaluation. Contexts may be
taken as primitive, in which case one must define various functions that output the
agent [= speaker], hearer [= addressee], location, time and world of a context c,
henceforth written as ca, ch, cl, ct and cw.2 Alternatively, contexts may be identified
with tuples of the form <speaker, (addressee), time of utterance, world of utterance,
etc>. The speaker, addressee, time and world of the context are sometimes called its
‘coordinates’.3

To make things concrete, we assume – following Kaplan – that the form of the
interpretation function is [[.]] c, s, t, w: given a context of utterance c, an assignment
function s, a time of evaluation t, and a world of evaluation w, an expression filling
the slot of . receives a certain value. Concretely, we can provide the reference rules
in (4) and the rules of composition in (5). The former indicate that when evaluated
under a context c the words I, you, and here respectively denote the agent, hearer
and location of c; the latter specify that now and actually have the effect of shifting
the time and world of evaluation to the time and world of the context.4

(4) a. [[I]] c, s, t, w = ca

b. [[you]] c, s, t, w=ch

c. [[here]] c, s, t, w = cl

2Here and throughout, we will make the simplifying assumption that all contexts are contexts of
utterance. As I. Stojanovic reminds us, Kaplan [15] was more careful and for this reason used the
term agent rather than speaker of a context.
3The two approaches – primitive contexts, or contexts qua tuples – are semantically equivalent
if there is an appropriate mapping between primitive contexts and the relevant tuples. For
concreteness, assume that (i) each context c determines an agent ca, a time ct and a world cw;
and that (ii) for every triple of the form <x, t, w> comprising an individual x, a time t, and world w,
there is at most one speech act that corresponds to it. Then we can equate the set {c: c is a context}
with the set {<x, t, w>: x is an individual who is the agent of a speech act at time t in world w}.
Note, however, that if the object language is endowed with context-denoting expressions, there
might be important syntactic differences between context-denoting variables (e.g. c1, c2, etc) and
syntactically represented triples (e.g. <x1, t1, w1>, <x2, t2, w2>, etc). See for instance Schlenker
[27, 28] and Stechow [35, 36] for different representational choices in the syntax (e.g. with context
variables in Schlenker [28], and triples in Schlenker [27] and Stechow [35, 36]).
4For readability, we give now and actually a syncategorematic treatment. Note that there are
arguments in the literature that show that actually is not a bona fide indexical [9]. In fact, we
do not know of a single case of a clear world indexical; we disregard this (potentially important)
fact in this chapter.
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(5) For any formula F,
a. [[now F]] c, s, t, w = [[F]] c, s, ct, w

b. [[actually F]] c, s, t, w = [[F]] c, s, t, cw

With these tools in hand, we can give the definition of truth in (6). It says
roughly that a sentence S uttered in a context c is true if S is true according to our
interpretation function, setting the context parameter to c and the time and world

parameters to the time and world of c respectively.

(6) Truth
If a root sentence F is uttered in a context c, and if the assignment function
s adequately represents the intentions of the speech act participants for the
demonstratively used pronouns that appear in F (treated as free variables),
then:

F is true in c just in case [[F]] c, s, ct, cw = 1 (where ct and cw are the time
and world of c respectively).

With this background in mind, we can proceed to answer the five questions we
raised at the outset.

Q1. Which parameter should be added to the interpretation function to handle

indexicals?

Clearly, this has to be a context parameter. In Kaplan’s analysis, contexts are
ontologically distinct from other parameters, and strictly more finely individuated
than times or worlds (because distinct contexts can exist at the same time and in the
same world).5

Q2. Why do indexicals seem to be scopeless?

There are two answers to this question in Kaplan’s analysis. On a technical

level, Kaplan’s idea was that we happen to find in natural language operators that
manipulate the various parameters, except the context parameter. In (7), we provide
by way of example semantic rules for the operators always and necessarily, which
shift the time and world parameters respectively.

5Other authors adopt frameworks in which at least one other parameter is of the same ontological
type as contexts. This happens in particular if worlds are replaced with situations or events; in
such a case, contexts can be taken to be situations or events of a particular sort, which blurs the
ontological distinction between the two parameters – but does not make it unnecessary: for reasons
discussed below, double indexing is crucial to obtain the right behavior for indexicals. As we
emphasize below, when such a move is made one must give independent criteria for what counts
as the context parameter, lest the discussion about ‘context shift’ should become rather confused.
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(7) Let F be a clause.
a. [[always F]] c, s, t, w = 1 iff for every time t’ accessible from t in w,
[[F]] c, s, t’, w = 1
b. [[necessarily F]] c, s, t, w = 1 iff for every world w’accessible from w at t,
[[F]] c, s, t, w’ = 1

The crucial observation is that in each case the context parameter remains
unchanged. Thus if the sentences in (1)a-a’ have the Logical Forms (i.e. the
abstract syntactic representations) in (8)a-b respectively, we will obtain different
truth conditions for them.

(8) a. Always [the speaker is boring]
b. Always [I am boring]

In both cases, we start by writing that [[always F]] c, s, ct, cw = 1 iff for
every time t’, [[F]] c, s, t’, cw = 1. In the case of (8)a, the latter condition
becomes: . . . [[the speaker is boring]] c, s, t’, cw = 1; in (8)b, it becomes: . . . [[I
am boring]] c, s, t’, cw = 1. Noun phrases may depend on the time of evaluation, which
is why [[the speaker]] c, s, t’, cw denotes in this case the person who is speaking at t’

in cw. By contrast, in accordance with (4)a, [[I]] c, s, t’, w always denotes the agent
of c (= ca), which is why the two claims end up making assertions about different
people.

This explains why always fails to affect the interpretation of the indexical I. But
couldn’t one define other operators that manipulate the context parameter? Kaplan
grants that his semantic framework makes it possible to define such operators, but
he claims that they are never found in natural language (see also Lewis [18]). For
this reason, he calls such operators ‘monsters’, and his empirical claim has come to
be known as the ‘Prohibition Against Monsters’:

(9) Prohibition Against Monsters: No natural language operator manipulates
the context parameter.

This empirical claim has been disputed in recent semantic research; we come
back to this point in Sect. 14.3.2. But as we have presented things, the stipulation in
(9) is needed to explain why indexicals fails to interact scopally with operators.

While the Prohibition Against Monsters is often taken as primitive (e.g. in
standard linguistic accounts of indexicals), for Kaplan it was a derived property. His
main philosophical claim was that indexicals display their unusual scopal behavior
because they are expressions of ‘direct reference’; it was direct reference, not the
Prohibition Against Monsters, which motivated his account. In Kaplan’s words,
“directly referential expressions are said to refer directly without the mediation of
a Fregean Sinn”, which means that “the relation between the linguistic expression
and the referent is not mediated by the corresponding propositional component, the
content or what-is-said” ([15], p. 568). Kaplan did not mean by this that nothing

mediates the relation between the linguistic expression and the individual. In fact,
indexicals come with rules of use that establish a dependency between contexts and
denotations. But these rules are, for him, quite different from semantic contents,
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which are just functions from world-time pairs (rather than contexts) to individuals
or truth values. On the assumption that various operators (e.g. necessarily and
always) only have access to the content of an expression, we derive the fact
that indexicals cannot interact scopally with them. Importantly, however, Kaplan’s
formal framework can be adopted without accepting his views on direct reference;
in such a case, the Prohibition Against Monsters needs to be taken as primitive if
one wishes to derive the same predictions as Kaplan – unless one just abandons the
Prohibition, as is now often done on empirical grounds – a point we will revisit in
Sect. 14.3.2.

Let us turn to the question of a priori true vs. necessarily true sentences:

Q3. How can indexicals give rise to a priori true sentences which, when preceded

by ‘necessarily’, can become false?

Given the definition of truth in (6), it seems natural to posit that a sentence is a

priori true just in case it is true in every conceivable context:

(10) A sentence F is a priori true iff for each context c, F is true in the context c,
i.e. (given (6)) iff [[F]] c, s, ct, cw = 1.

Let us apply this definition to I exist. We assume, as is standard, that exist

evaluated at a time t and a world w is true of precisely those individuals that exist at
t in w. So to determine whether I exist is a priori true, we ask whether:

(11) for each context c, [[I exist]] c, s, ct, cw = 1, i.e. ca exists at ct in cw

Kaplan claims that the condition in (11) is satisfied because of what contexts are.
Specifically, contexts obey (among others) the two conditions in (12):

(12) For any context c:
a. the agent ca of c exists at the time ct of c in the world cw of c.
b. the agent ca of c is at the location cl of c at the time ct of c and in the
world cw of c.

Thanks to (12)a, the condition in (11) is always met – which guarantees that I

exist is indeed a priori true.
To obtain this result, we considered the value of our sentence in different contexts

c – while setting the time and world parameters to the corresponding coordinates of
c. But when we consider the sentence Necessarily, I exist, we only vary the world
parameter. Thus (13) follows from the rule we posited for necessarily in (7)b.

(13) Uttered in a context c, Necessarily I exist is true iff [[necessarily
I exist]] c, s, ct, cw = 1, iff for every world w’ accessible from cw at ct,
[[I exist]] c, s, ct,w‘ = 1, iff for every world w’ accessible from cw at ct, ca
exists at ct in w’.
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The latter condition has no reason to be satisfied, because for most relevant values
of w’, w’ is not the world of the context c. Thus we have explained how a sentence
can be a priori true even though it becomes false when prefixed with necessarily.

Let us turn to our questions about attitudes and attitude reports.

Q4: What determines the cognitive significance of sentences with indexicals?

We will start with a perspective which is in part foreign to Kaplan’s analysis, but
is standard in the semantic literature (e.g. [13, 30, 40]). Under what conditions does
one believe that a sentence S is true? Just in case one believes that one is in a context
in which S is true. In standard epistemic logic, an individual x is taken to believe that
a sentence S is true just in case each world compatible with what x believes is one
in which S is true. It is easy to adapt this analysis to the present case by replacing
worlds with contexts:

(14) An individual x believes that a sentence S is true just in case each context
compatible with what x believes is one in which S is true.

Given our definition of truth in (6), this condition can be rewritten as (15):

(15) An individual x believes a sentence S is true just in case for each context c
compatible with what x believes, [[S]] c, s, ct, cw = 1.

With this definition in hand, it can be seen that a sentence S is a priori true just
in case it can be believed no matter what one’s beliefs are – which seems intuitively
reasonable. Thus there is both a conceptual and a technical connection between the
analysis of belief and the analysis of a priori knowledge.

The condition in (15) immediately explains why (16)a has a very different
cognitive significance from (16)b for the amnesiac Rudolf Lingens.

(16) a. I am Rudolf Lingens.
b. Rudolf Lingens is Rudolf Lingens.

According to our analysis, Lingens believes (16)a just in case each context c
compatible with what he believes is one for which ca = Rudolf Lingens – which
is precisely not the case here, since he does not know which individual he is. By
contrast, (16)b is trivial for him just as it is for everybody else, since for every such
context c, Rudolf Lingens = Rudolf Lingens.

Kaplan develops a slightly different analysis. As we saw, it is crucial that
expressions be evaluated with respect to a context parameter in addition to the
‘usual’ parameters – notably, the time and world parameters. Now Kaplan’s idea
is that an expression is first evaluated with respect to a context, which yields the
semantic content of that expression. The content is then fed a world and time of
evaluation to yield the denotation of the expression (for a referential expression,
its denotation is an individual; for a sentence, it is a truth value). In this façon de

parler, the meaning of an expression, called by Kaplan a ‘character’, is a function
from contexts to contents; and a ‘content’ is just a function from world-time pairs
to denotations (individuals or truth values).



306 P. Schlenker

(17)

Character
Content

Context Denotation

<world, time>

Character and Content

In this picture, what provides the cognitive significance of an expression is its
character: it is because ‘Lingens is at Stanford’ and ‘I am at Stanford’ have different
characters that Lingens can believe the former (because he has complete knowledge
of the world he is in) without thereby believing the latter (because he does not know
in which context he is located). By contrast, what provides the closest Kaplanian
equivalent of Frege’s notion of sense is the content of the sentence. The Prohibition
Against Monsters entails that modal operators may only be sensitive to the content
of an expression, not to its full character (more precisely: for any operator Op that
is not monstrous, if F and F′ have the same content but possibly different characters
in a context c, Op F and Op F′ must have the same value when evaluated in c). To
take an example, on the assumption that the proper name Lingens is rigid and thus
denotes the same individual in all possible worlds, the character of the sentence
S = I am Lingens can be characterized as follows (using the notation λc λt, w F in
the meta-language to define a function from contexts to a function from world and
times to truth values; as before, λt, w can be taken to abbreviate λt λw).

(18) Character(S) = λc λt, w [ca = Lingens]

On the assumption that c* is a context whose agent is Lingens, the content of S
in c* is:

(19) Contentc*(S) = Character(S)(c*) = [λc λt, w ca = Lingens](c*) = λt, w
[Lingens = Lingens]

Kaplan’s analysis is compatible with the analysis we developed in (15), but it
is not equivalent with it. It is compatible with it because it is possible to state (15)
within a Kaplanian framework. To this end, an auxiliary notion is helpful, that of
the diagonal δ(χ) of a character χ, defined as follows:

(20) δ(χ) = λc χ(c)(ct)(cw)

If χ is the character of a clause F, the diagonal of χ can be identified with the

set of contexts c such that F uttered in c is true according to the definition in (6). In
effect, δ(χ) is a proposition-like object – with the only difference that it corresponds
to a set of contexts rather than to a set of worlds or world-time pairs. So we can
refine Kaplan’s analysis by granting that the cognitive significance of a sentence is
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provided by its character, but that the only thing that matters is whether the agent
believes the diagonal of this character. Still, our initial theory is not equivalent to
Kaplan’s, because the latter does not provide a reductive analysis of what it means
for someone to ‘believe’ a character; it leaves open the possibility that an agent x
might believe a sentence F and disbelieve a sentence F’ as long as they have different
characters, even if their diagonals are identical. Our initial analysis precluded this
possibility.

In order to determine whether an individual believes a sentence S, we must have
access to the character (or at least to the diagonal of the character of S), rather than
just to its content. But as we noted at the outset, attitude reports often seem to ‘lose’
the precise indexical nature of the attitudes they report, hence the question:

Q5: Can the cognitive significance of thoughts expressed with indexicals be fully

captured in attitude reports? If not, why is this not the case?

As we had noted, there is an important difference between thinking My pants

are on fire or His pants are on fire, even in case both possessive pronouns refer to
the same individual. Still, in indirect discourse both situations can be reported by
saying: John thinks that his pants are on fire (where his refers to John):

(21) John says: ‘My pants are on fire’

John says that his pants are on fire
John says: ‘His pants are on fire’
(where 'his' refers to John)

Kaplan accounts for this observation by positing a semantics in which John thinks

that his pants are on fire is true just in case there is some character which John
asserts, and whose content in the context of John’s thought act is that John’s pants
are on fire:

(22) John says that his pants are on fire (where his denotes John) is true at c*,
t*, w* iff there is a character χ such that:
(i) the content of χ given the context of John’s speech act (call it c) is that
John’s pants are on fire: χ(c) = λt,w John’s pants are on fire at t,w [= the
content of the embedded clause], and
(ii) John asserts χ at t*, w*.

This analysis is of course compatible with Kaplan’s two main claims: (i) the
cognitive significance of sentences is given by their character; but (ii) attitude
operators, like all other natural language operators, are only sensitive to the content
of their argument. It immediately follows from (22) that two clauses that have the
same content at the context utterance can be substituted salva veritate under John

says that __.
There are two ways in which Kaplan’s analysis could be extended: first, it could

presumably be applied to other attitude verbs, such as believe, rather than just to
verbs of saying; second, one may wish to give a reductive analysis of what it means
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to ‘assert’ or to ‘believe’ a character, using the diagonal operator defined above.
Applied to belief reports, this extension leads to the following analysis:

(23) John believes that his pants are on fire (where his denotes John) is true c*,
t*, w* iff there is a character χ such that:
(i) the content of χ given the context of John’s thought act (call it c) is that
John’s pants are on fire: χ(c) = λt, w John’s pants are on fire at t in w, and
(ii) for each context c’ compatible with what John believes at t* in w*,
[δ(χ)](c’) = true, i.e. χ(c’)(c’t) (c’w) = 1.

Technical note. This analysis is not without problems. As Stechow and Zimmermann
[37] show (following Crimmins [10]), this semantics makes the unfortunate predic-
tion that John believes that his pants are on fire should be true as soon as John’s
pants really are on fire. Consider (24), calling its Character χ* (where actually has
the semantics defined in (5)b):

(24) It is either not so that John’s pants are actually on fire now, or else John’s
pants are on fire.

The problem is that any rational individual can realize that (24) uttered in a context
c and evaluated at the time ct and in the world cw of c is true. This is because
χ*(c)(ct)(cw) is true just in case: John’s pants are not on fire at ct in cw, or John’s
pants are on fire at ct in cw – which is a tautology. Thanks to the actually and now

operators, however, the content of χ* in c is χ*(c) = λt, w [John’s pants are not
on fire at ct in cw or John’s pants are on fire at t in w]. With the assumption that
John’s pants are in fact on fire at ct in cw, the first disjunct must be false, and thus
we get: χ*(c) = λt, w [John’s pants are on fire at t in w]. But this means that there
is a character whose content is that John’s pants are on fire, which is believed by
John – χ* is such a character. So the sentence John thinks that his pants are on fire

should be true. But to reach this conclusion, we did not make reference to any non-
trivial beliefs on John’s parts! The analysis has gone wrong (but see Sect. 14.3 for
an analysis of attitude reports that does not rely on quantification over characters).

14.2.2 Qualifications

While the technical picture we offered above is simple and appealing, not all of its
components are essential – or empirically correct, for that matter. There is at least
one important insight that should be preserved by any theory6:

6See Stojanovic [38] for a discussion of the minimal requirements on theories that aim to handle
Kaplan’s indexical examples.
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(25) Double indexing
The semantic procedure must make it possible to evaluate expressions
under at least two kinds of parameters: The context parameter, and
whatever time and world parameters are otherwise necessary to deal with
modal and temporal operators. Keeping the distinction is essential to
capture the fact that time and world operators need not shift the context of
evaluation of indexicals.

What about the other components of the Kaplanian picture? Their status is
considerably less clear.

14.2.2.1 Direct Reference

As we saw at the outset, Direct Reference has the advantage of explaining why
indexicals do not usually seem to interact scopally with other operators. But
the Prohibition Against Monsters can derive (or rather stipulate) this fact within
frameworks that accept Double Indexing but not Direct Reference. Furthermore, we
will see in Sect. 14.3.2 that there are cases in which indexicals do in fact interact
scopally with other operators, which casts doubt on a directly referential analysis.

14.2.2.2 Modal Logic

A relatively inessential property of the Kaplanian picture is that it involves
an intensional system with one world parameter, one time parameter, and an
assignment function that provides values to individual variables – with the crucial
addition of a context parameter. As it happens, there is considerable evidence in
semantics for the view that independently of issues of indexicality one needs to
have simultaneously access to several world and time parameters ([9]; note that
event/situation parameters could replace time or world parameters, but we would
still need to have several of them). One way to implement the resulting system is
to take the object language to include time and world variables, and to relativize
the interpretation function to an assignment function that provides values not just to
individual variables, but also to time and world (or situation/event) variables. When
this step is taken, and combined with Kaplan’s addition of a context parameter, the
interpretation function takes the form [[.]] c, s rather than [[.]] c, s, t, w – with the
important difference that in the first case the assignment function s provides values
to individual as well as time and world variables, whereas in the second case it is
only responsible for individual variables.

This technical refinement also opens a further technical possibility: we could
postulate that the object language contains a distinguished context variable – call
it c* – whose value is also provided by the assignment function s. In effect, the
interpretation function would then simply have the form [[.]] s, and the word I would
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be represented as Ic* to guarantee that its value depends on the context s(c*).7 In
order to obtain an adequate definition of truth, we would need to stipulate that s(c*)
denotes the context of the actual speech act. But stipulations of this sort are needed
in any event for demonstratively used pronouns – when we analyze the sentence He1

[pointing] is smart but he2 [pointing] is not, we need to stipulate that the pronouns
he1 and he2 refer to the ‘right’ individuals. This is the reason our definition of truth
in (6) made explicit reference to “the intentions of the speech act participants”; in
the case at hand, we would require that s(x1) and s(x2) be the individuals intended
by the speaker when he uttered he1 and he2.

Note that since assignment functions are just functions from variables (distin-
guished by integers) to objects, we can also write [[.]] s as in (26), where we have a
long sequence with the value of c*, followed by the values of the individual variables
x1, x2,..., time variables t1, t2,..., and world variables w1, w2, . . . .

(26) [[.]] s(c*), s(x1), s(x2), . . . , (t1), s(t2), . . . , s(w1), s(w2), . . .

Thus an assignment function essentially makes it possible to relativize the
interpretation function to an arbitrary number of individual, time, and world
parameters – in addition to a context parameter.

14.2.2.3 Contexts

In Kaplan’s analysis, contexts are primitive. This view contrasts with ‘index theory’,
according to which an arbitrary number of independently varying parameters might
become necessary when we analyze the semantics of more complex expressions
(this view originated in Scott 1970; see Kaplan [15] and [14] for discussion).
According to index theory, then, the interpretation function could take a form like
[[.]] x, x’, x”, . . . , t, t’, t”, . . . , w, w’, w”, . . . , which is immediately analogous to what we
had in (26), except that no context parameter is present. We could add parameters
for the agent, time and world of utterance, e.g. as x*, t*, w*, thus yielding:

(27) [[.]] x*, t*, w*, x, x’, x”, . . . , t, t’, t”, . . . , w, w’, w”, . . .

Kaplan’s objection against this implementation is that it misses some validities.
The argument is as follows:

(i) A sentence is valid just in case it is true under all values of the parameters.
(ii) If x*, t* and w* are treated as separate parameters, in order to determine

whether I exist is true we will have to evaluate it under values of these
parameters that do not guarantee that x* exists at t* in w*; hence the sentence
will not come out as valid.

7Alternatively, we could state a rule such as: [[I]] s = s(c*)a – which is the counterpart in this
system of the Kaplanian rule [[I]] c, s, t, w = ca.
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(iii) Treating contexts as primitive avoids this problem – as long as we stipulate
that: (a) for any context c*, the agent of c* exists at the time of c* in the world

of c* (in accordance with (12)a); (b) to determine whether a sentence is valid,
we only evaluate it at parameters that are coordinates of the context parameter
(in accordance with (6); this was precisely what we did for I exist in (11)).

A minimally different implementation of Kaplan’s ideas would reduce contexts
to triples of the form <x*, t*, w*>, with x* the agent of the speech act, t* its
time, and w* its world. The interpretation function would then take the form [[.]]
<x*, t*, w*>, x, x’, x”, . . . , t, t’, t”, . . . , w, w’, w”, . . . , which would avoid the problem faced
by ‘index theory’ if (a) only triples <x*, t*, w* > that correspond to possible
contexts are considered, and (b) we only evaluate the sentence at parameters that
are coordinates of <x*, t*, w* > .8

But this raises a further possibility, which is to stick to ‘index theory’, while

revising our notion of validity. Let us say that a sentence is Kaplan-valid for the
interpretation function represented in (27) just in case it is valid for all values of
the parameters for which (a) <x*, t*, w*> is a possible context, and (b) all other
parameters are coordinates of <x*, t*, w*>. It is immediate that this would yield
something equivalent to the preceding theory. In Kaplan’s original analysis, we
partly placed in the ontology – in what contexts are – the stipulations necessary
to ensure that the correct inferences come out as valid. In the present reformulation,
we directly define a notion of validity that captures the desired inferences.

Even within Kaplan’s original framework, a non-standard notion of validity
might be needed anyway. We already noted that when testing for validity, we must
restrict attention to time and worlds parameters that are coordinates of the context
(or else I exist and I am here now would not come out as valid). But there is a further
problem that concerns contexts themselves. The argument is in two steps. First, we
note with Predelli [26] that Kaplan’s original analysis incorrectly predicts that (28)
should be a contradiction.

(28) I am not here right now. (... Please leave a message after the tone.)

Since this sentence is perfectly coherent (e.g. as produced by an answering
machine), there must be ‘improper contexts’, ones whose author is not located at
the time of the context in the world of the context. We must thus enlarge Kaplan’s
original set to include improper contexts. Second, we note that once this step is
taken we are left with the task of deriving Kaplan’s original inferences: if there are
improper contexts, how can I am here now come out as being ‘normally’ valid?
The natural way to regain these inferences is to take (Kaplan-) valid sentences to be
those that are true with respect to the set of proper contexts. But once this move is
made, we can of course ask whether we couldn’t just as well have started with index
theory to define Kaplan-validity.

8See fn. 3. for further technical remarks.
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More generally, Kaplan sought to derive certain a priori inferences by devising
a system in which they came out as logical truths. But what counts as a logical
inference is by no means a clear or settled question. Distinguishing between those
inferences that are true by virtue of the meaning of the words from those that are true
by virtue of world knowledge is, in this case as in others, a very difficult question,
as Predelli’s example makes clear.

14.2.2.4 Character and Content

As we showed in our discussion in Sect. 14.2.1, it is not the full character of a
clause that is needed to assess its cognitive significance, but just its diagonal. But
it is also unclear whether the notion of content as defined serves a useful purpose.
As argued by various authors (see for instance Perry [24, 25], and also Stojanovic
[38, 39]), there are a variety of notions of ‘content’ that could be argued to play
a linguistic role, and Kaplan’s notion is just one of them (we will see in the next
section that Kaplanian contents are often inadequate to fulfill one of their main
roles, which was to account for attitude reports). Furthermore, as shown by Ninan
[21], a Kaplanian content can be defined on the basis of a semantics that is not
based on Kaplan’s parameters (for instance, within a semantics with time and world
variables one can abstract over these variables to obtain the appropriate notion of
content); and conversely, a semantics based on Kaplan’s parameters need not give
rise to Kaplan’s notion of content (some of these parameters may be given the same
status as the context parameter in Kaplan’s analysis, so that they are not abstracted
over in the computation of content).

14.3 De Se Reports and Shifted Indexicals

We will now show that there are quite a few cases across languages in which attitude
operators manipulate the context of evaluation of indexicals. For all theories, this
suggests that the Prohibition Against Monsters must be relaxed; in addition, these
data pose a serious problem for the claim that indexicals are ‘directly referential’.

14.3.1 De Se Reports

We start by showing that it is possible, contrary to the predictions of Kaplan’s theory
of indirect discourse, to preserve in indirect discourse the cognitive significance of
indexicals. This is just a prelude, however, because the construction we consider
does not use indexicals in the report; but in Sect. 14.3.2 we will show that the same
semantic effect can in some languages be obtained by using in the report indexicals
whose context of evaluation is ‘shifted’.
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The first observation is that what syntacticians call ‘PRO’, the unpronounced
subject of an infinitive, is always understood to report a first person (or in some cases
second person) thought when it is immediately embedded under an attitude verb [8,
20]. This is illustrated by the following scenario, in which PRO is inappropriate to
report a third-person thought – by contrast with he, which is acceptable whether the
thought to be reported was first- or third-personal.

(29) John is so drunk that he has forgotten that he is a candidate in the election.
He watches someone on TV and finds that this person is a terrific candidate,
and thinks: ‘This guy should be elected’. Unbeknownst to John, the
candidate he is watching on TV is John himself.
a. True: John hopes that he will be elected
b. False: John hopes PRO to be elected [28]
(by contrast, b. this is ok in a scenario in which the thought was: ‘I should
be elected’)

Following the terminology of Lewis [8, 17], semanticists say that (29)b is a
‘De Se’ report because it is true only in case the agent has a first person thought.
Interestingly, an artificial pronoun very much like PRO, called he*, was posited
by the philosopher Castañeda for purely conceptual reasons [5–7]. In effect, PRO

embedded under an attitude verb is an English realization of Catañeda’s he*.9

Since Kaplan’s analysis of indirect discourse was designed to predict that such
distinctions cannot be drawn in indirect discourse, it is ill-suited to account for
these contrasts. Inspired by Lewis [17], Chierchia [8] suggested that the semantics
of attitude reports is more fine-grained than usually thought in possible worlds
semantics. In essence, his idea was that the value of a clause embedded under an
attitude verb may be as fine-grained as a set of triples of the form <individual, time,
world>. It is immediate that such triples are homologous to contexts. Technically,
however, no syntactic or morphological connection to indexicality was posited in
Chierchia’s treatment. Rather, it was assumed that a λ-operator could appear at
the ‘top’ of the embedded clause to bind an individual variable. For simplicity, we
represent this operator above an empty complementizer C, though this is just for
notational convenience:

(30) John hopes λi C PROi to be elected

A crucial assumption is that, in attitude reports, PRO must always be bound by
the closest λ-operator. To obtain an interpretable structure, we must still say what
the role of the complementizer is. We will assume that it simply returns a proposition
when applied to a clause (the same measure can be applied to the word that).

9So-called ‘logophoric’ person markers can also be seen as natural language realizations of
Castañeda’s he*. See for Schlenker [30] for discussion, and [22] for a contrary view.
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(31) a. [[C F]] c, s, t, w = [[that F]] c, s, t, w = λt’ λw’ [[F]] c, s, t’, w’

b. From (a), it follows that
[[λi C PROi be-elected]] c, s, t, w = λx’ [[C PROi be-elected]] c, s[i→ x’]10, t, w

= λx’ λt’ λw’ [[PROi be-elected]] c, s[i→ x’], t’, w’ = λx’ λt’ λw’ x’ is
elected at t’ in w’.

We can think of the function defined in (31)b as associating truth values to
sets of triples of the form <individual, time, world>. Since the latter are context-
like objects, we can extend to the object-language operators believe, hope, etc., a
homologue of the rule we used in Sect. 14.2.1 to explicate under what conditions
an individual x believes that a sentence S is true. In (14)–(15), we had suggested
that this is the case precisely if each context compatible with x’s belief makes S

true. Similarly, we will say that an individual x stands in the ‘believe’ relation to
the denotation of an embedded clause just in case each context compatible with
what x believes satisfies the embedded clause. Given the kind of denotation we
have in (31)b, the rule must state that the coordinates of all such contexts make the
embedded clause true.

(32) a. [[believesDe Se]] c, s, t, w (F)(x) = true
iff for each context c’ compatible with what x believes at t in w,
F(c’a)(c’t)(c’w) = true
b. [[hopeDe Se]] c, s, t, w (F)(x) = true
iff for each context c’ compatible with what x hopes at t in w,
F(c’a)(c’t)(c’w) = true

The same semantics can be extended to the verb hope, as shown in (32)b.
An important consequence of this analysis is that John hopes to be elected is true

just in case each context compatible with John’s hope is one in which he could utter
truly: ‘I am elected’. Equivalently, John hopes to be elected is true just in case he
stands in the ‘hope’ relation to the diagonal � of the character of I am elected. This
result is just what is needed to account for the falsity of (29)b, since in our scenario
John does not have a first person hope. The equivalence between John hopes to

be elected and John stands in the ‘hope’ relation to the diagonal of ‘I am elected’

is stated in (33),11 where we have assumed for convenience that δ was part of the
object language.

10s[i → x’] is that assignment function which is identical to s, with the possible exception that it
assigns x’ to i.
11For simplicity, we consider a variant of (29) in which John’s first person hope is of the form ‘I
am elected’ rather than ‘I should be elected’.
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(33) a. [[John hopesDe Se λi C PROi to be elected]] c, s, t, w = true iff for each
context c’ compatible with what John hopes at t in w, c’a is elected at c’t in
c’w.
b. Suppose that δ is part of the object language, with
[[δ [I be-elected]]] c, s, t, w = λc’ [[I be-elected]] c’, s, c’t, c’w – which we call
�. Then John stands in the ‘hope’ relation to Δ iff for each context c’
compatible with what John hopes at t in w, �(c’) = 1, iff for each context c’
compatible with what John hopes at t in w, c’a is elected at c’t in c’w.

Of course in English δ does not seem to be part of the object language: John

hopes that I am elected clearly does not allow the word I to be shifted (for if so it
would intuively denote John). But things are different in other languages, as we will
now see.

14.3.2 Shifted Indexicals in Indirect Discourse

We now suggest that there are constructions in which the diagonal δ does in fact
appear in the object language. This will show that Kaplan’s analysis was not just
wrong about De Se readings, but also about monsters: sometimes attitude operators
are Kaplanian monsters (a conclusion anticipated in Israel and Perry [14]; see Deal
[11] for a distinct, and far more systematic, view of the cross-linguistic typology).

How can we establish the existence of monsters? We will discuss examples that
have the form of (34), where <I> and <here> are indexicals:

(34) John says that . . . <I> . . . <here> . . .

The argument has three steps.

(i) First, we argue that the presence of the diagonal operator in the embedded clause
is compatible with the semantics of the sentence – in particular <I> should
intuitively denote John, and <here> should intuitively denote John’s location.12

(ii) Second, we exclude the possibility that the embedded clause is quoted. This is
an essential step because on any theory it is unsurprising that John says: ‘I am a

hero’ should attribute to John a claim about John himself (because in this case
say establishes a relation between John and a string of words rather than with
a proposition). In English, the presence of the word that rules out a quotative
reading, but other languages could have quotative complementizers. Still, one
can block quotative readings by observing that grammatical dependencies
cannot normally ‘cross’ quotation marks. To illustrate, let us note that without
explicit quotation marks John says I like Mary is ambiguous between John says

that I like Mary and John says ‘I like Mary’. But the second reading disappears
in the more complex sentence This is the person who [John says I like _]: it

12It follows from the semantic analysis that both expressions are predicted to be read De Se.
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cannot be interpreted as this is the person who John says [‘I like _’], with a
dependency between who and the object position of the most deeply embedded
clause, marked as _. In technical syntax, who is said to be ‘extracted’ from this
object position; and we see here that extraction cannot cross quotation marks.
In this case, I behaves like a bona fide Kaplanian indexical: when quotation is
excluded, I unambiguously refers to the actual speaker. As we will see, the facts
are different in other languages.

(iii) Third, we want to exclude the possibility that the purported indexicals are in
fact anaphoric elements. This is no trivial matter: anaphoric expressions can
often have, among others, a deictic reading, whereby they pick their denotation
from the context. What distinguishes such anaphoric elements from bona fide

indexicals is that the latter can never have unambiguously anaphoric readings.
For instance, the word later in I will go for a walk later may appear to be
an indexical, because it can be understood to mean later than now. But other
examples suggest that it is anaphoric – e.g. in I met John yesterday morning;

later he went for a walk, later is understood as later than the salient time at
which I met him at which I met John.

Following precisely this logic, Anand and Nevins [1] and Anand [2] conclude
that there are clear cases of shifted indexicals in Zazaki. They show in particular that
Zazaki indexicals can optionally shift in some constructions that rule out quotation –
for instance (35), a Zazaki version of the English examples we just discussed.

(35) Extraction in Zazaki

Following the spirit of their proposal, we can handle these data within Kaplan’s
logic by postulating that the diagonal operator δ used in (33)b can optionally be
found in the embedded clause, as shown in (36).

(36) John say δ I be a hero.

When this operator is present, it establishes a relation between John and the
diagonal of the character of I am a hero, and thus attributes to him a claim that
every context c compatible with his claim is one in which ca is a hero at ct in cw.
This result is derived using the techniques we saw at work in (33)b.

Anand and Nevins’s analysis makes interesting fine-grained predictions. In
particular, they predict that in Zazaki indirect discourse, if one indexical is shifted

under an attitude reports, then all the other indexicals are shifted as well (‘Shift
Together’). The reason for this is that if one indexical gets shifted, then the δ operator
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must be present, and must thus shift the context parameter. Because there is a single
context parameter, once it is shifted, the value of the original context is lost, and thus
all indexicals in the same clause must be shifted as well. They show in detail that this
and related predictions are borne out in Zazaki (see Deal [11] for a cross-linguistic
analysis that makes systematic use of ‘Shift Together’).

Several other cases of shifting under attitude reports have been discussed in the
literature. For instance, it was suggested in Schlenker [28] that sentences very much
like (36) can be found in Amharic indirect discourse; and it was also claimed that
in English two days ago is a shiftable indexical, while the day before yesterday is
an unshiftable one (these data have been debated, however; see Anand [2] for a
contrary view). One salient question in the literature is whether Anand and Nevins’s
treatment with a single context parameter is sufficient. Several examples have been
discussed in which ‘Shift Together’ fails to hold (but see Deal [11] for a contrary
view); in fact, data of precisely this type led Schlenker [28] to adopt a more
expressive system in which there are context variables in the object language, which
makes it possible to analyze many more readings than are predicted by Anand and
Nevins. Such a system must still be able to account for the fact that in English I

cannot be shifted; this was done by having a distinguished variable c* which always
denotes the actual speech act (as was done above in Sect. 14.2.2). As things stand,
it would seem that ‘Shift Together’ holds true in some languages but not in others.
Clearly, however, more research is needed to obtain a deeper understanding of this
debate (see Schlenker [30] for further remarks, and Anand [2] and Deal [11] for an
in-depth discussion).

What is clear, however, is that these data on indexical shift suggest that Kaplan’s
Prohibition Against Monsters needs to be revisited, and that theories of direct
reference have serious challenges to address.

14.3.3 Shifted Indexicals in Free Indirect Discourse

Free Indirect Discourse is a type of reported speech, found primarily in literature,
in which different indexicals are evaluated with respect to different contexts, even

in the absence of any (overt) attitude operator (we use the sign # to mark semantic
infelicity).

(37) a. Tomorrow was Monday, Monday, the beginning of another school week!
(Lawrence, Women in Love; cited in Banfield [3])
b. #He thought: ‘Tomorrow was Monday, Monday, the beginning of another
school week!’
c. #He thought that tomorrow was Monday, Monday, the beginning of
another school week!

The thought expressed in (37) is attributed to the character whose attitude is
described rather than to the narrator; it can optionally be followed by a post-posed
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parenthetical, such as . . . , he thought or . . . , he said. Descriptively, Free Indirect
Discourse behaves as a mix of direct and of indirect discourse: tenses and pronouns
take the form that they would have in a standard attitude report (e.g. She wondered

where he was that morning), while everything else – including here, now, today,

yesterday and the demonstratives (e.g. this) – behaves as in direct discourse. In other
words, a passage in Free Indirect Discourse may be obtained by changing the person
and tense markers of a quotation to those of an indirect discourse embedded under
an attitude verb in the desired person and tense.

Importantly, the indexicals that ‘shift’ in Free Indirect Discourse in English do
not do so in standard indirect discourse. This fact alone shows that shifting in Free
Indirect Discourse is not entirely reducible to the issues discussed in Sect. 14.3.2.
There are two main types of extant analyses: some try to treat Free Indirect
Discourse as a non-standard form of direct discourse (e.g. Schlenker [29]); while
others treat it as a form of indirect discourse with a non-standard attitude operator
(e.g. Sharvit [31, 32]). As things stand, the debate is wide open (see Eckardt [12]
for a recent analysis).

14.4 Conclusion

We can now go back to the five questions we asked at the outset.

Q1 (Parameters). On most theories, indexicals are handled by relativizing semantic
interpretation to a context-like parameter in addition to the parameters that are
otherwise necessary to handle temporal and modal constructions. There are many
options in the implementation, however (contexts can be taken as primitive, as in
Kaplan’s work; or they can be seen as tuples of coordinates; and there are even
versions of ‘index theory’ that can emulate the results of context-based analyses).

Q2 (Scopelessness). The impression that indexicals are scopeless is in some cases
incorrect: there are natural language constructions in which indexicals can be
‘shifted’ in attitude reports. Why does this rarely or never happen in English?
For some theorists [1], this is simply because in English attitude verbs fail
to embed the diagonal operator. For other theorists [28], this is because most
English indexicals are specified as depending on a distinguished context variable
which never gets bound. In either case, scopelessness is not invariably a property
of expressions whose value is intuitively determined by a context of speech. We
could redefine the terms ‘indexical’ and ‘context’ to ensure that (i) a context is,
by definition, a parameter which is not manipulated by any operator; and (ii) an
indexical (i.e. an expression whose value is determined by the context) can by

definition never be monstrous (see Zimmermann [40] and Stalnaker [33, 34]).13

13Note that a consequence of this definitional move is that there is no context parameter, and hence
no indexicals, in Zazaki as studied by Anand and Nevins. The reason is that according to them all
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But Kaplan’s analysis should not be equated with this definitional move; it had
some empirical ‘bite’ – part of which seems to have been refuted.

Q3. (A priority and necessity). The fact that a sentence S can be a priori true while
Necessarily S is false becomes unsurprising once the two notions are adequately
explicated. The key is to ensure that S comes out as a priori true just in case
for any context c, S is true in c, i.e. true when evaluated with respect to c and
the corresponding coordinates of c. By contrast, Necessarily S is true at c just in
case it is true when evaluated with respect to c and different values of the world
parameter.

Q4 (Cognitive significance). The cognitive significance of a sentence S with
indexicals is determined by the information it contains about the context in
which it was uttered – it must be one of the contexts c such that S is true in
c. Within post-Kaplanian frameworks, the cognitive significance of a sentence is
given by the diagonal of its character, but here too there are many options for the
implementation.

Q5 (Attitude reports). Contrary to what was predicted by Kaplan’s theory of indirect
discourse, the precise cognitive significance of sentences with indexicals can in
some cases be faithfully reported in indirect discourse, thanks to expressions that
are unambiguously De Se. PRO, the unpronounced subject of English infinitives,
is a case in point. Shifted indexicals in constructions that allow them are another.
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Chapter 15

Necessity and Possibility

Melvin Fitting

Abstract We give a basic introduction to modal logic. This includes possible
world semantics, axiom systems, and quantification. Ideas and formal machinery
are discussed, but all proofs (and meta-proofs) are omitted. Recommendations are
given for those who want more.

15.1 Introduction

Modal operators qualify truth in some way: necessary truth, knowable truth,
provable truth, eventual truth, and so on. All these have many formal properties
in common while, of course, differing on others. One can abstract these properties
and study them for their own sake just as elementary algebra abstracts algebraic
equations from natural language problems about weights, measures, distances, and
ages. The idea in all cases is that abstraction should provide us with a simple setting
in which the formal manipulation of symbols according to precise rules will lead us
to results that can be applied back to the complex ‘real’ world in which the problems
arose.

If modal operators are many, what then formally constitutes a modal operator?
We do not want to get into the infinite regress of philosophical debate here. A good
working definition is, a modal operator is one we can investigate using the formal
tools that have been developed for this purpose. Of course this is a time-dependent
characterization—tools are human artifacts after all. Here we just consider the core
of the subject, normal modal logics. These are the best understood using the simplest
tools. They do not exhaust the subject.

Modal operators come in dual pairs. Dual to necessity is possibility: X is possibly
true if it is not necessary that not-X is true, and X is necessarily true if it is not
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possible that not-X is true. Similarly knowability and consistency (with knowledge)
are duals, and so on. Following custom we will use � for any necessity-like modal
operator and ♦ for its dual. It will not hurt if you read �X as necessarily X and ♦X

as possibly X as in the title of this chapter, though you should not think these are
the only readings.

(Propositional) formulas are built up from propositional letters using proposi-
tional connectives, just as in classical propositional logic, together with a rule of
formation saying: if X is a formula so are �X and ♦X. We will be informal about
what the propositional connectives are, but it generally is some subset of ∧ (and), ∨
(or), ¬ (not), ⊃ (material implication), ≡ (equivalence).

What sort of tools are available for formal modal investigation? Historically,
axiom systems came first in modern times, with natural deduction systems, tableau
systems, and such things following. Algebraic generalizations of truth tables came
along in the 1940s. But ever since possible world semantics (relational semantics,
Kripke semantics) was developed in the 1960s it has been the common starting
point, and it is where we begin.

15.2 Possible World Semantics

What are possible worlds? Don’t ask. This is generally a misleading question. One
does not need to know what truth is in order to use truth tables—one just needs to
know how it behaves with respect to the logical connectives. Likewise one does not
need to know what constitutes domains of classical first-order models. It’s whatever
you like. You get to specify, according to intended application. The logical truths of
first-order logic are those that hold no matter what the domain. Well, possible worlds
are like that. You get to specify what possible worlds are, according to intended
application, and the logical truths of modal logic are those that hold no matter what
your specification might have been. For instance, if I am interested in what can
be said about a coin flip there are plausibly two possible worlds, one in which the
outcome is heads, one in which it is tails. Nothing else matters for this purpose. If
I am interested in what is necessary given (our current understanding of) physical
laws, possible worlds might be all ways the real universe could be, consistent with
those laws. Or it could be all ways some particular experiment might come out. The
choice is yours. The question is, what are the laws that hold across all such choices.

Besides possible worlds there is one more essential piece of machinery: an
accessibility relation. For a particular intended application it may easily be that
not all possible worlds are equally possible under all circumstances. For instance
suppose the modal operator we have in mind is from now on. Then in evaluating the
truth of a formula today we must take tomorrow into account, but we can ignore
yesterday—tomorrow is accessible from today but yesterday is not. If the modal
operator is has always been the situation is reversed—yesterday is relevant to today
but tomorrow is not.
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Definition 2.1 A frame is a pair 〈G,R〉 in which G is a non-empty set and R is a
binary relation on G.

When working with a frame 〈G,R〉 the members of G are commonly called
possible worlds or states, and for x, y ∈ G, if xRy one says that y is accessible

from x or even x sees y. For the time being we will put no constraints on R, though
we will consider some later on.

When working with truth tables each line represents an assignment of truth values
to propositional letters. We can choose what line to work with—that is arbitrary—
but having made such a choice there are fixed rules for evaluating the truth or falsity
of more complex formulas. Modal models are like this too, except that truth values
for propositional letters can be different at different possible worlds.

Definition 2.2 A (possible world) model is a triple, M = 〈G,R,V〉 where 〈G,R〉
is a frame and V assigns a truth value to each propositional letter at each possible
world (a valuation). That is, if P is a propositional letter and w ∈ G then V(P,w) ∈
{true, false}. We say the model 〈G,R,V〉 is based on the frame 〈G,R〉.

Given a model, truth values for complex formulas are calculated, world by world,
according to certain set rules. At each possible world, propositional connectives
behave in their usual truth-table way. But also, �X is taken to be true at possible
world w if X is true at all possible worlds accessible from w. Similarly ♦X is taken
to be true at w if X is true at some possible world accessible from w. Thus necessary
truth is truth at all possible worlds that are relevant, while possible truth is truth
under at least one relevant alternative. Here are the evaluation rules stated precisely.
Assume M = 〈G,R,V〉 is a model—we write M, w � X to indicate that formula
X is true at possible world w of model M, and M, w �� X to indicate that it is not.
We give one representative propositional connective case—the others are similar.

M, w � P ⇐⇒ V(P,w) = true, for P a propositional letter

M, w � X ⊃ Y ⇐⇒M, w �� X or M, w � Y

M, w � �X ⇐⇒M, z � X for every z ∈ G with wRz

M, w � ♦X ⇐⇒M, z � X for some z ∈ G with wRz

Call a formula K-valid if it evaluates to true at every possible world of every
model. The ‘K’ refers to Kripke, since this is the logic that is given by all possible
world models (Kripke models), without any special conditions or restrictions.
Typical examples of validities of K are: �(A ∧ B) ≡ (�A ∧ �B), ♦(A ∨ B) ≡
(♦A ∨ ♦B), and (�A ∧ ♦B)⊃♦(A ∧ B). Typical examples of non-validities are:
�(A∨B)⊃(�A∨�B) and (♦A∧♦B)⊃♦(A∧B). Think about what these are saying
when the modal operators are interpreted in various ways (necessity, knowability,
and so on) and you will see that these validities and non-validities are as they ought
to be.
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15.3 Adding Conditions

Let P be a propositional letter and consider the formula �P ⊃ P . One would
naturally assume that whatever is necessary is certainly true, so this formula should
be valid. But recall that � represents many different modalities. Suppose we read
� as ‘is true starting tomorrow.’ For this we would not want �P ⊃ P , and in
fact it is not K-valid. Consider the model Mt = 〈G,R,V〉 in which G consists
of two possible worlds; let us call them today and tomorrow, and in which we
take todayR tomorrow, so that R represents the passage of time (in a narrow
way, of course). Let V(P, today) = false and V(P, tomorrow) = true. We
have Mt , today � �P because the only possible world accessible from today

is tomorrow, and we have Mt , tomorrow � P because V(P, tomorrow) = true.
On the other hand, Mt , today �� P because V(P, today) = false. It follows that
Mt , today �� �P ⊃ P , and so indeed �P ⊃ P is not K-valid. If we want �P ⊃ P

to hold throughout a model, additional restrictions must be imposed.
Suppose �P is read, ‘P is known’. One cannot know false things, so we would

expect P to be so if �P is. But if �P is read, ‘P is believed,’ we would not have
the same expectation. One way of thinking about knowledge and belief, involving
possible worlds, was explored in detail by Hintikka. We are ignorant in varying ways
about the actual state of the world—we may not know if it is snowing at the South
Pole, or if it is not, for instance. We may say that the actual world is just one among
several possible worlds; in some it is snowing at the South Pole and in others it is not,
and so we do not know whether it is or not. But in all of these possible worlds either
it is snowing or it is not snowing, and so we know that disjunctive fact. What we
know is what is true in all the possible worlds accessible to us. Roughly speaking,
the range of relevant possible worlds is a representation of our ignorance. Then
the difference between knowledge and belief is that for knowledge the actual world
must be among those that are accessible, while for belief it need not be. Beliefs need
not be tied to actual facts, merely to possible facts.

A binary relation R is called reflexive if xRx holds for every x for which the
relation is meaningful. Call a frame reflexive if its accessibility relation is reflexive,
and likewise for models based on reflexive frames. It would be a good exercise for
the reader to show that �P ⊃ P is true at every possible world of any reflexive
model. Conversely, if a frame is not reflexive, some model based on it will falsify
�P ⊃ P at some possible world. The argument goes as follows. Suppose 〈G,R〉 is
not reflexive; say for a particular w ∈ G we do not have wRw. Let V be the valuation
given by V(P,w) = false and V(P, x) = true for all x ∈ G where x �= w. In this
model, �P is true at w because P is only false at w, which is not accessible from w,
while p is true at all other possible worlds, which thus includes all possible worlds
accessible from w. But by construction, P is false at w and hence so is �P ⊃ P .

Call a model a T-model if it, or more properly its frame, is reflexive, and let us say
a formula is T-valid if it evaluates to true at every possible world of every T-model.
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Then �X ⊃ X is T-valid for all formulas X and not just for propositional letters.
T-validity is appropriate if � represents necessity, knowability, provability, being
true at every time, and many other modalities. It is not appropriate for believability,
obligatory, being true at some time, and so on.

The most commonly investigated propositional modal logics can be captured by
putting various conditions on the accessibility relation of frames, just as we did
above. These logics have names that are historical—do not look for a pattern. But
here are those that are most commonly considered.

R is serial if, for every x there is some y such that xRy. A formula is D-valid if it
is true at all possible worlds of every serial model. A typical D validity is �X ⊃ ♦X.
It is easy to see that every T-frame is also a D frame, and so this formula is also a
T-validity.

R is transitive if xRy and yRz implies xRz. A formula is K4-valid if it is true at
all possible worlds of every transitive model. Typical K4 validities are �X ⊃ ��X

and ♦♦X ⊃ ♦X.
A formula is S4-valid if it is true at all possible worlds of every model that is both

reflexive and transitive. Typical S4 validities are �X ≡ ��X and ♦♦X ≡ ♦X.
R is symmetric if xRy implies yRx. A formula is KB-valid if it is true at all

possible worlds of every symmetric model. Typical KB validities are X ⊃ �♦X

and ♦�X ⊃ X.
A formula is S5-valid if it is true at all possible worlds of every model that is

reflexive, symmetric, and transitive. Notice that with S4 validity, two consecutive �
occurrences are equivalent to one. S5 has the property that every string of mixed �

and ♦ operators collapses to its last member. For example, ♦�♦�X ≡ �X is an S5

validity. This is a very strong property and may or may not be desirable—it depends
on the application you have in mind. Investigators in game theory commonly assume
the knowledge possessed by agents meets the S5 conditions, for example.

These are hardly all the conditions that have been imposed on models. Further, it
is by no means the case that all modal logics that are of interest can be characterized
by imposing conditions on frames. Nonetheless, this works for the modal logics that
are most commonly used, and it provides a good entry point to a broader subject.

15.4 Axiomatics

Axiomatic formulations of modal logics were investigated long before possible
world semantics came along, but today it is common to reverse the historical order.
Among the first important results concerning modal semantics was Kripke’s proof
that several familiar axiomatically formulated modal logics corresponded to logics
that had simple semantic characterizations. Here is an outline, for the record. We
formulate our axiom systems using axiom schemes, without a rule of substitution.
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Basic Axiom Schemes

• all classical tautologies (or enough of them)
• �(X ⊃ Y ) ⊃ (�X ⊃ �Y )

• ♦X ≡ ¬�¬X

Rules of Inference

• X,X⊃Y
Y

(modus ponens)
• X

�X
(necessitation)

As usual, an axiomatic proof is a finite sequence of formulas each of which is
an instance of an axiom scheme or follows from earlier lines by one of the rules
of inference. A proof proves its last line. Call the axiom system above K. It can be
shown that the formulas provable in K are exactly the formulas that are K-valid, as
defined semantically. We omit the proof here, but it is not difficult.

The modal logics discussed in Sect. 15.3 can be axiomatized by adding schemes
to the system for K. We present this as a table. Many more logics can be handled in
a similar way—these are merely meant to be representative.

Validity Axiom Schemes
D �X ⊃ ♦X

T �X ⊃ X

K4 �X ⊃ ��X

S4 �X ⊃ X,�X ⊃ ��X

KD X ⊃ �♦X

S5 �X ⊃ X,�X ⊃ ��X,X ⊃ �♦X

In addition to axiom systems many modal logics (including most common ones)
have natural deduction systems, tableau (tree) proof systems, and Gentzen sequent
calculi. However, there are many modal logics that have axiom systems but not
(known) proof systems of these other kinds. Details can be tricky here.

15.5 Quantification

In classical logic, quantification is relatively straightforward. The language is
enhanced by adding individual variables and relation symbols (and perhaps also
constant and function symbols). Quantifiers, ∀ and ∃ are also added, along with rela-
tively uncomplicated rules of formation. Classical models are introduced consisting
of a non-empty domain and an interpretation of relation symbols by relations on that
domain. Then machinery is introduced that has the effect of making a universally
quantified formula true if every value from the domain makes the formula being
quantified true, and an existentially quantified formula true if some value from the
domain does so. There is basically only one way of doing all this.
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Modally things are not as simple. If one understands quantification from an
actualist point of view, quantifiers range over what actually exists (whatever
that means), while from a possibilist point of view quantifiers range over what
might exist. (Corresponding temporal versions are presentist and eternalist.) These
differing conceptions can be represented using possible world models in a rather
direct way. Of course non-empty domains are involved, and relation symbols are
interpreted by relations on domains, but the interpretation might vary from possible
world to possible world. For an actualist quantificational semantics we associate
with each possible world of a model a non-empty domain, where different worlds
can have different domains. These might be disjoint, overlap, or have some other
more complex relationship. When evaluating a quantified formula at a possible
world, the quantifier is understood to range over the things in the domain of that
world only. For a possibilist quantificational semantics, we can think of these
separate domains as being combined into one single set, with quantifiers ranging
over it no matter at what possible world the truth of a quantified statement is
being evaluated. Possibilist semantics validates (∀x)�A(x) ≡ �(∀x)A(x) while
actualist semantics does not; in fact it validates neither (∀x)�A(x) ⊃ �(∀x)A(x)

nor �(∀x)�A(x) ⊃ (∀x)�A(x).
The different semantic versions are commonly referred to as constant domain

(possibilist) and varying domain (actualist). It is not the case that one is right and
the other wrong, but rather each represents a distinct notion of what quantification
in a modal setting is about. In a sense, modal machinery does not dictate, but rather
it tells you the consequences of a choice which is made for reasons of philosophical
position, taste, or just convenience.

One can even have a formal language with both actualist and possibilist quan-
tifiers, and investigate interactions between the two of them and modal operators.
Alternately one could introduce an existence predicate, say E(x). Then one could
work with an underlying possibilist semantics, think of the things that E is true of at
a possible world as the actual existents there, and understand actualist quantification
as possibilist quantification relativized to E. The machinery is versatile.

A treatment of equality can be added to the formal machinery. This is closely
related to what one imagines the ‘things’ in quantifier domains to be. Suppose we
understand domains to consist of objects in some concrete sense, chairs, tables, beer
mugs. Objects do not, so to speak, split apart, so we would want the validity of
(x = y) ⊃ �(x = y). Likewise neither do they combine so we would also want the
validity of ¬(x = y) ⊃ �¬(x = y). It is rather straightforward to achieve this. On
the other hand, we might think of our ‘things’ more intensionally. Are “the tallest
tower in Paris” and “the tallest structure built by Eiffel” equal or not? They are in
the actual world, but one could certainly create alternate possible worlds in which
they are different, or even in which one but not the other is non-existent. These are
non-rigid designators and their behavior is more complex then that of the objects
mentioned earlier. It is possible to introduce quantification over such things too, but
it requires more care and nuance.
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The quantificational semantics described so far descends directly from the work
of Saul Kripke. There is an alternative version due to David Lewis. According to
Lewis things cannot exist in the domains of more than one possible world, but they
can have counterparts in other worlds. Indeed, something existing in one world can
have one, many, or no counterparts in an alternate world. Formally, models consist
of possible worlds, an alternativeness relation, and a counterpart relation relating
quantifier domains. Roughly speaking, something has a property necessarily at a
world if at all alternative worlds, all its counterparts have the property. This is an
extremely flexible semantics, with relationships to the Kripke-style version. Once
again, the machinery provides an array of tools, but it is up to the user to decide
what tools to make use of.

15.6 Concluding Comments

The formal machinery of possible worlds, and the accompanying proof procedures,
are remarkably plastic. Different conditions on necessity and possibility can be
accommodated. Different concepts of existence and quantification can be modeled.
Different approaches to identity can be investigated. One should not think of the
machinery as settling philosophical problems, but rather as clarifying them. A
philosophical hypothesis that can be formalized is coherent. A formalization makes
explicit the consequences of adopting that hypothesis. By itself no formalization
can say a philosophical position is correct, merely that it is understandable. But to
be understandable is almost as good as being true.
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Chapter 16

Bivalence and Future Contingency

Gabriel Sandu, Carlo Proietti, and François Rivenc

Abstract This work presents an overview of four different approaches to the
problem of future contingency and determinism in temporal logics. All of them
are bivalent, viz. they share the assumption that propositions concerning future
contingent facts have a determinate truth-value (true or false). We introduce
Ockhamism, Peirceanism, Actualism and T ×W semantics, the four most relevant
bivalent alternatives in this area, and compare them from the point of view of their
expressiveness and their underlying metaphysics of time.

16.1 Introduction

A major problem for schoolmen was to reconcile divine foreknowledge with future

contingency, the latter being a prerequisite for human free choice. In modern
times, when theological concerns have become less pressing, the so-called future

contingents problem has shifted back to the more mundane Aristotelian question of
how to accommodate the latter with the principle of bivalence, i.e. the thesis that all
propositions, including those concerning future contingent facts, are either true or
false. Both problems amount to the same if one assumes that only true propositions
may be known (nihil scitum nisi verum) and that God has a full science about the
future. But if one doesn’t care much about God’s omniscience, then this puzzle
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becomes less urgent and one may just solve the dilemma by discarding one of
its horns, i.e. the principle of bivalence. This is what most of the contemporary
approaches to future contingency do (see [2, 10, 18]).1

Nonetheless, there are many reasons for preserving bivalence. Logical simplicity
is perhaps the most instrumental of them. Others are related to language expressivity
and the fact that non-bivalent approaches seem mostly unable to distinguish simple

truths about the future from settled truths about it.
There are several bivalence-preserving solutions to the future contingents prob-

lem. Many of them were already known to the scholastics (see [13]). We will
present those which have preserved their relevance up to nowadays: Ockhamism,
Peirceanism (both formulated by Prior), Actualism and W × T semantics. All of
them (except maybe Peirceanism) have been inspired by the medieval tradition. The
advantage of contemporary tensed-logical approaches lies in their rigor and their
comparability, mostly due to the fact that they all have the same semantic format.

There are no shared desiderata for a best choice among these solutions. Meta-
physical considerations, tacit or explicit, about the “real” structure of time play
a major role in the discussion and may easily turn into an “ideological” debate.
Nonetheless, it is instructive to compare how the different approaches account not
only for the openness of the future, but also for some additional intuitions about
time and truth. One of these is retrogradation of truth. When one evaluates ex

post a sentence like “there will be a sea-battle tomorrow”, she is driven to assign
a determinate truth-value to it and say, for example, that this sentence was true
(in case a sea battle is actually taking place).2 Related to retrogradation is a more
general concern about expressivity: the formalism should account for the intuitive
meaning of different tensed constructions in natural language. This means that
the language and its semantics must be able to express the different truth-conditions
of propositions like the following.

(1) There will be a sea-battle tomorrow.
(2) Laws of physics will hold tomorrow.
(3) There is a sea-battle, so it was true yesterday (but not settled) that there would

be a sea-battle.
(4) The coin will come up heads. It is possible though, that it will come up tails,

and then later it will come up tails again (though at that moment it could come
up heads), and then, inevitably, still later it will come up tails yet again.3

(5) There is a sea-battle, but there could have been none.

In the next section we will present in detail Ockham’s analysis (reconstructed by
Prior) of the future contingents problem. In Sects. 16.3, 16.4, 16.5 and 16.6 we will

1The forerunner of all these solutions has been considered by many scholars (but not all of them)
to be Aristotle in chapter IX of On Interpretation.
2This is MacFarlane’s determinacy intuition (see [10], p. 322) as opposed to the indeterminacy
intuition (future contingent sentences are neither true nor false at the moment of utterance).
3This example is taken from Belnap and Green [2].
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introduce the four mentioned bivalent logical systems for solving it and discuss how
they fare with respect to retrogradation and sentences like (1)–(5). A. Prior deserves
the merit for having formulated two of them, in Chapter VII of his Past, Present

and Future. He also deserves huge credit for introducing, in the same place, their
common branching-time semantics, even though, as we will explain later, he did not
grant them a major philosophical relevance.

16.2 Ockham’s Argument

We freely adapt Ockham’s version of the argument leading from divine foreknowl-

edge to the necessity of the future as exposed in his Tractatus de Praedestinatione

(1320 ca.). Ockham carefully reconstructs the argument in order to isolate two
fundamental premises of it and to eventually reject one of them. The first premise is

(P1) Necessarily, if God knew in the past that p, then p.

which is on a par with the standard epistemic principle that knowledge implies truth,
formulated by the medievals as nihil scitum nisi verum. The second premise is

(P2) If it has been the case that p, then necessarily it has been the case that p,

that we can represent in a temporal language4 as

Pp → �Pp

and which goes under the name of the principle of necessitation of the past (PNP):
quod fuit, non potest non fuisse. The kind of necessity involved here is not logical

but historical necessity, or necessity per accidens as the medievals called it: what
has been the case is (historically) necessary, for it is not any longer possible for it
not to have been the case.

If we apply (P2) to divine foreknowledge we get as a first conclusion:

(C1) If God knew in the past that p, then necessarily God knew in the past that p.

A third premise is derived from the modal schema, �(p → q) → (�p →
�q), known as schema K, which states that “if a conditional and its antecedent are
necessary, then the consequent is also necessary”. A special instance of it is

4Our language consists of atomic formulas p, q, . . . (to be read as “pure” present-tense sentences
such as “there is a sea battle”) and recursively built on Boolean operators ¬ (“not”), ∧ (“and”), ∨
(“or”),→ (“if - then”), the temporal operators F (“it will be the case that”) and P (“it has been the
case that”) and an additional operator � to be read as “it is necessary that”. We will also make use
of dual operators like G := ¬F¬ (“it will always be the case that”), H := ¬P¬ (“it has always
been the case that”) and ♦ := ¬�¬ (“it is possible that”).
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(P3) If (necessarily, if God knew that p, then p), then (if necessarily God knew
that p then necessarily p).

By Modus Ponens from (P1) and (P3) we obtain

If necessarily God knew that p then necessarily p.

and finally, by (C1) and transitivity:

If God knew that p, then necessarily p.

If p is a future-tensed statement, such as “I will be sitting tomorrow” (or
Ockham’s favorite example “Peter will be chosen”), then future-tensed statements
are necessary and determinism follows – by assuming divine foreknowledge or
bivalence, which here amount to the same.

Ockham points out that this argument lies essentially on (PNP):

This argument is based on the proposition that a singular proposition true
about the past is necessary. Therefore if “this is white” is true now, “this will
be white was true” is necessary. Consequently, it is necessary that it happens,
and it cannot come about otherwise.5

Ockham’s solution touches precisely on this point: he does not reject the principle
but suggests a restriction of it. On the other hand, he maintains that God knows
already, or from the beginning of time, which future events are going to happen.
Again, since knowledge implies truth, saying that God knows that p will be the case
amounts to saying that it is true now that p will be the case. Thus, propositions about
the future already have a truth-value, even if we ignore which one, and the principle
of bivalence is preserved. Indeed, throughout his Tractatus Ockham maintains that
bivalence is the rationale of divine foreknowledge.

Ockham observes that one can block determinism and preserve the contingency
of the future by limiting the universality of (PNP). This principle should only hold
for the past and present tensed propositions which are not “equivalent” with any
future tensed ones.6 Formally speaking, we should not be allowed to derive, from
propositions like

Pp → �Pp

instances like

PFp → �PFp

by unrestricted substitution. Blocking such a free substitution and invalidating
formulas like the last one is precisely what qualifies a logical solution as Ockhamist.

5See Ockham [12, p. 99].
6Equivalence is to be understood in the same sense in which “it was the case yesterday that I will
quit smoking in two days” is equivalent with “I will quit smoking tomorrow”.
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16.3 Prior’s Ockhamism

Chapter VII of Prior [16] offers a first axiomatization of an Ockhamist temporal
logic. One of the axioms of this system is the formula p → �p, of which (PNP) is
an instance. But this schema does not allow substitution of formulas containing
the F operator, i.e. we may derive from it instances like Pp → �Pp but not
PFp → �PFp.7

In chapter VII we also find the first formulation of a sound semantics for this
system: the nowadays universally adopted tree-like models for branching time.
These models represent time as

. . . a line without beginning or end which may break up into branches as it
moves from left to right (i.e. from past to future), though not the other way;
so that from any point there is only one route to the left (into the past) but
possibly a number of alternative routes to the right.8

From Prior’s point of view this semantics is just a heuristic or pedagogical device
and was not intended to constitute an alternative representation of the Ockhamist
logic.9 On the contrary, the proof-theoretic approach was meant to replace and
absorb the fictional representation and reification of time which is carried by
a model-theoretic representation. Nonetheless, as we said, these structures have
nowadays become such a universal tool that, with the risk of being injust to Prior,
we will base our analysis on them. We therefore define the Ockhamist logic O as the
set of all formulas which are valid in the class of the Ockhamist models that we are
going to present.

Central to Prior’s definition is the notion of a tree-like structure T , like the one
depicted in Fig. 16.1, which is a pair 〈T ,<〉, where T is a set of moments m,m′ . . .
and < is a strict ordering relation (i.e. irreflexive, transitive and asymmetrical) over
T , where the <-predecessors of any point m are totally ordered by < and where the
intuitive meaning of m < m′ is “m precedes m′”. A history h is a maximal chain in
T for the relation <. The set of histories h1, h2, . . . in T will be denoted by H(T ).
Given a moment m, Hm will designate the set of all histories containing it. Note
already that if m < m′ then Hm′ ⊆ Hm.

A history h represents a specific and well determined course of events, relative
to which every proposition is true or false at m, including those about the future. We
can formally represent that by an evaluation function V , which assigns a subset of

7To be precise, Prior uses here a more expressive temporal language with metric operators Fn

(“it will be the case in n intervals of time”) and Pm (“it was the case m intervals ago”), where n

and m are two quantifiable variables to be interpreted with (rational or real) non-negative numbers
measuring intervals of time. For the sake of simplicity we will avoid using metric operators, since
F , P and � are sufficient for the points we need to make.
8See Prior [16, p. 126].
9This is probably one reason why Prior does not even face the question of completeness.
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Fig. 16.1 A model for
branching time
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T × H(T ) to every propositional variable p (see Fig. 16.1). A further requirement
is that, given a moment m, V does not varies with the different histories in Hm, i.e.
we have

(Uniqueness) 〈m,h〉 ∈ V (p) if and only if for all h′ ∈ Hm, 〈m,h′〉 ∈ V (p)

We can then define an Ockhamist model M = 〈T ,<, V 〉 for our tensed language
by extending V in the following way:

M, 〈m,h〉 |= p iff 〈m,h〉 ∈ V (p)

M, 〈m,h〉 |= ¬φ iff M, 〈m,h〉 �|= φ

M, 〈m,h〉 |= φ ∧ ψ iff M, 〈m,h〉 |= φandM, 〈m,h〉 |= ψ

M, 〈m,h〉 |= Pφ iff ∃m′ < m such that M, 〈m′, h〉 |= φ

M, 〈m,h〉 |= Fφ iff ∃m′ > m such that M, 〈m′, h〉 |= φ

M, 〈m,h〉 |= �φ iff ∀h′(h′ ∈ Hm ⇒M, 〈m,h′〉 |= φ)

Evaluating a future tensed proposition Fp w.r.t. a moment and a history amounts
to checking if p is satisfied “later on” in the same history. The general idea behind
this is that when we talk about the future we actually pick a prima facie course of
events h as being the most plausible candidate among all possible futures. Historical
necessity is instead equated with “truth in all histories” and, given the uniqueness

condition, it is easy to check that present and past-tensed propositions (e.g. p, Pp,
PPp etc.) are, if true, necessary.

O can easily distinguish among contingent and settled truths about the future.
Indeed, contingent sentences like Fp (“there will be a sea-battle”) may very well
be true but not necessary: in our model 〈m0, h0〉 |= Fp but 〈m0, h0〉 |= ¬�Fp.
Ockhamist semantics also respects the intuition that some sentences about the
future, like (2) (see introduction), can be true in a stronger sense, i.e. also necessary,
when they hold in all possible branches. This is a fortiori the case of logical
tautologies ⊤: both ⊤ and �⊤ are valid in Ockhamist models, for tautologies are
true at every pair 〈m,h〉.

It is easy to verify that (PNP) does not hold in general in this semantics and in
particular, as claimed by Ockham, it fails for sentences containing a reference to the
future. Indeed, as the reader may check, in the model of Fig. 16.1 at the moment m0
we have 〈m0, h0〉 |= PFp but 〈m0, h0〉 |= ¬�PFp. Nevertheless, in accordance
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with Ockham, (PNP) is valid for propositions which are “not equivalent to future-
tensed ones”, in our case those not containing any operator F .10

We may notice that retrogradation of truth is secured by the fact that p → PFp

is valid in the Ockhamist semantics. More generally, we can easily account for
sentences like (3) in Sect. 16.1, which can be translated as p ∧ PFp ∧ P¬�Fp

and which are true at 〈m2, h0〉 in our model.
Complex propositions like (4) make plural references to different possible futures

at different points in the tree. Here too, Ockhamism is powerful enough to express
its truth conditions. For example, (4) can be translated by the formula Fh∧♦F(t ∧
♦Fh∧F(t∧�F t)).11 This formula is satisfied at 〈m0, h2〉 by the model in Fig. 16.2.

The intuition behind (5) of Sect. 16.1 is that we should also be able to refer to this

precise moment in courses of events which are, properly speaking, no more possible:
this is the sense of a counterfactual with a false antecedent. In the Ockhamist
semantics this can be expressed in many cases by moving back and forth along
the branches. The truth conditions of (5) can be “mimicked” by p ∧ P♦F¬p,12

which is indeed satisfied in the model of Fig. 16.1 at 〈m2, h0〉. Nonetheless, not all
counterfactuals seem to be expressible, as (5), by simple combinations of F , P and
�. We will come back to this point in Sect. 16.6.

To resume, Prior’s Ockhamism is a very expressive framework that enables the
distinction between contingent and settled propositions about the future. But there
is a major philosophical objection against it, which concerns the notion of a prima

facie course of events. Since, at m, all histories in Hm are equally possible, it is not
clear how one should be able to single out any one of them. However, according to
many, when talking about future events, we need to refer to the actual future. But in

10Finer-grained distinctions are induced in Prior’s actual system by the use of metric operators.
11Where h means “the coin lands head” and t stands for “the money lands tail”.
12This translation is not completely faithful. A metric language can better express (5) with
p ∧ Pn♦Fnp.
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this semantics (and also in Prior’s view) there is no such a thing. The main problem
with it seems to be its neutrality between two opposite views: one according to
which there is no designated course of events, and the other which, on the contrary,
allows one to refer to the actual course of events. Peirceanism and Actualism are
meant to bear these opposite stands in a more radical way.

16.4 The Peircean System

Restricting (PNP) is not the only way to block arguments for determinism. As one
may evince from Ockham’s argument, it is also crucial that God is able to know in
the past what will happen later. This is only possible if we assume that p → PFp

is valid. The latter is an uncontroversial principle of minimal temporal logics, but
not of Prior’s Peircean logic.13 The Peircean system P was favored by Prior over O

as the only one which fleshes out the intuition that the future is not “real” until it
becomes present,14 the only exception being represented by that parcel of the future
which is already present in its causes.

Prior introduces the idea behind P as a variant of the traditional solution
(rejecting bivalence to save indeterminism), where a different interpretation of the
F operator plays, in some peculiar sense, the role usually ascribed to a third truth-
value or a truth-value gap. A Peircean model is easily obtained from an Ockhamist
one by modifying the clause for F as follows:

M, 〈m,h〉 |= Fφ iff ∀h′((h′ ∈ Hm)⇒ ∃m′(m < m′ ∧M, 〈m′, h′〉 |= φ))

Again, we identify P with the set of all formulas valid in the class of Peircean
models. Fp now means something like “given any course of events, it will be the
case that p”. The intuition is that, speaking about the future, it does not make sense
to pick up any prima facie designated history, since all possible futures stand on
a par from the present standpoint. F has now the same meaning as the expression
�F in O: indeed P can be seen as a fragment of it. Thereby, P is also bivalent
and the law of excluded middle holds also for future contingent propositions, i.e.
Fp ∨¬Fp is valid. But, contrary to the Ockhamist semantics, Fp ∨ F¬p can very
well fail as well as ¬Fp → F¬p (but its converse holds).15 The Peircean solution
has some counterintuitive backups: future “necessary” propositions like (2) are still
true, but future contingent ones like (1) are now simply false (consider the model

13See Prior [16] chap. VII p. 132.
14See Prior [15].
15It should also be noticed that the Peircean sense of “it will always be the case that” is no more
expressed by the combination ¬F¬, thus G has to be defined as a new primitive operator by the
following clause

M, 〈m,h〉 |= Gφ iff ∀h′∀m′((h′ ∈ Hm ∧m < m′)⇒M, 〈m′, h′〉 |= φ).
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in Fig. 16.1 as a Peircean model). Nonetheless, one may still distinguish between
necessarily false propositions, those φs for which both ¬Fφ and F¬φ are true, and
contingently false ones, those φs for which ¬Fφ is true but F¬φ is not.

It is easy to check that p → PFp is no more valid. Thus retrogradation of truth

is undermined. In general, propositions like (3), saying that something “was going
to be the case” are regarded simply as (bad) façons de parler to express the fact that
something is now the case. Similar problems arise for (4) and (5) and many other
examples. In general, since P is a proper fragment of O, it seems that the Peircean
is committed to a “deflationist” view about temporal truth, according to which
many sentences we commonly express in natural language are simply misleading
paraphrases.

16.5 Actualism and TRL Semantics

All along his Tractatus Ockham seems to presuppose that there is, among all
possible future courses of events, a designed actual future, a sort of thin red line

among all other branches,16 that God already knows from all eternity. This designed
history should be, contrary to Prior’s claims, not only a prima facie one. Adherence
to Ockham’s word is not the only reason to stipulate such a special history. It seems
that we often refer to this unique entity in order to make sense of peculiar sentences
such as “Tomorrow I will quit smoking, even if all evidence speaks against that”.17

The Actualist view has been encoded by means of the so-called T RL semantics
(from “thin red line”). There are different possible ways of defining a T RL

semantics in a branching structure (see Barcellan and Zanardo [1] and Braüner et al.
[3]), but all of them must fulfill some natural requirements. First of all, looking at
sentences like (4), it seems clear that a model should not only specify a designated
branch corresponding to “the true history”, but also many others: one for every
counterfactual moment t . Following Barcellan and Zanardo [1], we define a T RL

semantics on the basis of an Ockhamist model via a function A(t) from T to H(T ),
which picks the actual future at a moment m. Then we define an actual future
operator fA with the following clause:

M, 〈m,h〉 |= fAφ iff ∃m′ ∈ A(m)(m < m′ ∧M, 〈m′,A(m)〉 |= φ)

This function is supposed to respect some natural constraints, the most immediate
being

TRL1 m ∈ A(m)

and the second being the condition of “coherence”

TRL2 ∀m1,m2(m1 < m2 → A(m1) = A(m2))

16This famous expression was coined by Belnap and Green [2].
17For a more accurate discussion of this point see Hasle and Øhrstrom [6] and Øhrstrom et al. [14].
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Fig. 16.3 Failure of
φ → PfAφ. Double arrows
indicate each moment’s actual
future
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According to Belnap and Green [2], such conditions generate some serious
problems of inconsistency for the Actualist conception. If we put together TRL1

and TRL2 the order < is forced to be linear. On the other hand, they claim, if we
discard TRL2 we obtain “unreasonable results”, e.g. we invalidate many natural
principles such as (a) PPφ → Pφ, (b) fAfAφ → fAφ and (c) φ → PfAφ.18

TRL2 is actually a strong coherence condition; Barcellan and Zanardo [1]
showed that we can instead reasonably opt for the weaker

TRL2* ∀m1,m2(m1 < m2 ∧m2 ∈ A(m1) → A(m1) = A(m2))

and escape most of the “unreasonable results”. They also add the further condition

TRL3 there exists an m∗ such that for all m < m∗, A(m) = A(m∗)

where A(m∗) defines the unique “real” history of the model.19 It is possible to check
that this definition preserves many temporal laws such as (a) and (b). The formula (c)
φ → PfAφ is not valid instead – as an example, consider the failure of t → PfAt at
m1 in the model in Fig. 16.3 – but is nonetheless satisfied at any moment of A(m∗).
An additional problem for this semantics is that it cannot properly block (PNP) for,
as one may easily check,

fAφ → �fAφ

is a valid formula, as well as its converse. From this point of view, T RL semantics
are not completely Ockhamist. In order to make (PNP) fail and express (1)–(5) one
should enrich the language with other future tense operators.20

To summarize, the major “logical” inconvenience of the Actualist operator fA

is that when we combine it with P and � many “natural” principles seem to fail

18See Belnap and Green [2] p. 380.
19For a proof of uniqueness see Barcellan and Zanardo [1] p. 5.
20Barcellan and Zanardo use the peircean operators of Sect. 16.2 as primitives.
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and we have to recur to other future operators to adjust them. But it is fair to notice
that failures of “intuitive” principles are not specific of fA and that they at least do
not seem to lead to an “inconsistency” of the Actualist conception.21 From a more
metaphysical standpoint, the most common objection to Actualism, in this or other
forms, is that it involves a commitment to facts “that do not supervene upon any
physical, chemical or psychological states of affairs” [2].

16.6 T × W Semantics

Branching time semantics are not the only possible “technical” solution for pre-
serving future contingency and bivalence. Another option is represented by T ×W

semantics, introduced in Thomason [19].22 Whereas branching-time is based on
the idea of overlapping histories, T × W starts from the intuition of there being
a plurality of separated possible courses of events (or worlds) which may have
“equivalent” past histories up to a point and diverge afterwards.23 The models of
Fig. 16.4 represent this difference.

For a formal definition, we need a set T of moments, an irreflexive linear order <

on it, a set W of possible worlds and a family {∼t | t ∈ T } of equivalence relations
among them, intuitively denoting sameness up to a certain point in time t . A frame
is a tuple 〈T ×W,<, {∼t }t∈T 〉 where

• T ×W is the set of 〈t, w〉 such that t ∈ T and w ∈ W

• for all t ∈ T , ∼t is an equivalence relation
• for all t ′ ∈ T , if w ∼t w′ and t ′ < t then w ∼t ′ w′

h
2
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p

h
1

(a)

m

h
2

h
1
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Fig. 16.4 Ockhamist models. (a) A tree-like model. (b) A T ×W model

21For a more articulated defence of Actualism see Øhrstrom [13].
22Complete logical systems for this semantics have been formulated later by von Kutschera [20]
and Di Maio and Zanardo [5].
23For the notions of overlap and divergence see the famous Lewis [9] pp. 198–209.
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Given a valuation V , assigning to every p a subset of W ×T , a model is obtained
by expanding V to a satisfaction relation in the usual way for Boolean and temporal
operators (e.g. 〈t, w〉 |= Fφ iff for some t ′ > t , 〈t ′, w〉 |= φ) and defining the
�-clause as:

〈t, w〉 |= �φ iff for all w′ such that w ∼t w′, 〈t, w′〉 |= φ

Necessity at 〈t, w〉 means truth at the “same” moment in all other equivalent
histories. We get the Ockhamist notion of historical necessity by an adequate
specification of ∼t as “sharing the same past up to t” i.e.

w ∼t w′ iff for all t ′ ≤ t , 〈t ′, w′〉 and 〈t ′, w〉 satisfy the same propositional letters.

It is relevant to notice that under some specific conditions a branching Ockhamist

model can be tranformed into a T × W -model in a truth preserving way.24 This
happens when we have a synchronized tree, i.e. a tree whose branches are all
isomorphic.25 Under this condition the T ×W semantics is at least as expressive as
the Ockhamist semantics of Sect. 16.3, i.e. we can account in the same way for the
truth conditions of (1)–(5), and even more.26 Indeed, in T ×W necessity operators
are defined via a more arbitrary equivalence relation among histories, which does
not force the uniqueness condition (see Sect. 16.3). Therefore, one is free to define
new necessity and possibility operators by relaxing or making more accurate the
equivalence relations. Relaxing the equivalence relation allows to quantify over
histories that diverge even before a given moment m. By this means, it is possible
to handle propositions like “for all that I know it could have been raining last
night”, where the construction “for all that I know . . . ” is to be read as an epistemic

24Full equivalence between the logic of general Ockhamist structures and T ×W does not hold. A
famous counterexample is provided by the Burgess formula (see Burgess [4] and Reynolds [17]),
which is valid for the first class but not for the second.
25More precisely, a synchronized tree is a tree-like structure where it is possible to define a partition
I (the “instants”) of the set T that satisfies the following conditions (see also Wölfl [21]):

(a) For every i ∈ I and every h ∈ H(T ) there is exactly one mi,h ∈ T with mi,h ∈ i ∩ h

(b) For all i, i′ ∈ I and all h, h′ ∈ H(T ), from mi,h < mi′,h it follows that mi,h′ < mi′,h′

Given a synchronized Ockhamist model T = 〈T ,<, V 〉 we can define a T × W model T ′ =
〈T ′ ×W ′,<′, {∼t }t∈T , V ′〉 by taking:

• T ′ = I and W ′ = H(T )

• i <′ i′ iff mi,h < mi′,h for some h ∈ H(T )

• h ∼i h′ iff mi,h = mi,h′

• 〈i, h〉 ∈ V ′(p) iff 〈mi,h, h〉 ∈ V (p)

and it is straightforward to check that T , 〈m,h〉 |= φ if and only if T ′, 〈m,h〉 |= φ.
26The situation is more complex if the tree is not synchronized. For an accurate study of the
relationships between branching-time semantics and T ×W see Wölfl [21].
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possibility operator. Here, indeed, we are driven to consider as epistemic alternatives
more histories than those which share the same past.27 The case of counterfactuals

presents analogous features.28

16.7 Conclusions

We have presented four logical systems which deal with a perennial philosophical
problem: the problem of future contingents. Apart from tackling the problem in a
rigorous way, the four logical approaches have the same model-theoretical format.
This makes the solutions comparable and allows us to see what are the gains and
losses in terms of expressivity, the relation between future contingents and the
principle of bivalence, and the metaphysical commitments we make.

The system T × W has at least the same expressive power as the Ockhamist
semantics, but it has received scarce attention or has even been fiercely opposed.
Thomason himself dismissed it in the very same paper in which he introduced it
[19]. Most of the reasons for this attitude are grounded in metaphysical considera-
tions. Whereas branching time is regarded as an almost an adequate representation
of McTaggart’s A-series conception, T ×W is instead associated with the B-series
conception and seems to commit to a reification of time.29 Moreover, quantification
over non actual and non overlapping histories is seen by many as an additional
commitment to modal realism (i.e. the philosophical thesis that non actual worlds
are real or exist on a par with the actual one). To many, overlap seems more faithful
to an intuitive notion of causality: at any moment m there is just one past that we
cannot change or influence and many possible futures we can “act upon” and “decide
which one to take”. In T ×W , at any point, there is just one future; contingency and

27See also Iacona [7].
28The same “redefinitions” of necessity and possibility operators can of course be carried out,
in principle, also in an Ockhamist model. However, this goes against one of the philosophical
motivations behind the branching time semantics, according to which all tensed constructions
ought to be expressed with reference to points in time that are connected to the present point
of evaluation – by some (back and forth) path over the temporal tree. This requirement may be
too restrictive when we need to consider, e.g., fictional alternatives or histories diverging in the far
past.
29The notions of A-series and B-series were introduced by [11]. The A-series conception of time,
also called the dynamic view, resumes the way we experience time by being “in a flux” and opens
up to presentism – a view that McTaggart himself did not endorse – where only the (constantly
changing) “now” properly exists. According to this conception past, present, and future tenses are
primitive concepts for referring to events in time. Other temporal concepts such as instants in time
and the earlier-later relation between them, are to be derived from the formers. On the other hand,
according to the B-series conception – which accounts for a “bird-eye view” of time and according
to which the entire series of instants exists – instants and their earlier-later relation are the primitive
concepts and tenses are derived from them.
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causal influence on the future seem to be definable only in terms of a counterfactual
dependence,30 i.e. in terms of what would happen if the actual course of events were
different.

In response to the criticisms against T ×W one may point out that it is not clear
how the choice of a particular semantics should commit us to a certain ontology.
Additionally, it does not seem that other bivalent approaches like Ockhamism and
Actualism are safe from these problems: if bivalence holds and truth is relative to
a particular course of events then we are just one step far from admitting that other
courses of events are fictional ones, and that the metaphor of branching seems just an
unsuccessful compromise. T ×W keeps the order of truth and the order of causality
on two separate plans. Peirceanism, with a radically different definition of truth
for future tensed propositions, seems to be the only radical alternative. However,
defenders of Peirceanism face at least two burdens: they should deal with a less
expressive language and have to find a justification for the strange asymmetry which
makes it that future contingents are just false. Non-bivalent approaches admitting
truth-value gaps for future contingents, as the one defined in [18] and which Prior
hoped for,31 seem to be the only possible way to fully preserve symmetry between
truth and falsity.
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Chapter 17

Epistemic Logic and Epistemology

Wesley H. Holliday

Abstract This chapter provides a brief introduction to propositional epistemic
logic and its applications to epistemology. No previous exposure to epistemic logic
is assumed. Epistemic-logical topics discussed include the language and semantics
of basic epistemic logic, multi-agent epistemic logic, combined epistemic-doxastic
logic, and a glimpse of dynamic epistemic logic. Epistemological topics discussed
include Moore-paradoxical phenomena, the surprise exam paradox, logical omni-
science and epistemic closure, formalized theories of knowledge, debates about
higher-order knowledge, and issues of knowability raised by Fitch’s paradox. The
references and recommended readings provide gateways for further exploration.

17.1 Introduction

Once conceived as a single formal system, epistemic logic has become a general
formal approach to the study of the structure of knowledge, its limits and possibili-
ties, and its static and dynamic properties. In the twenty-first century there has been
a resurgence of interest in the relation between epistemic logic and epistemology
[6, 19, 34, 37, 41]. Some of the new applications of epistemic logic in epistemology
go beyond the traditional limits of the logic of knowledge, either by modeling the
dynamic process of knowledge acquisition or by modifying the representation of
epistemic states to reflect different theories of knowledge. In this chapter, we begin
with basic epistemic logic as it descends from Hintikka [22] (Sects. 17.2 and 17.3),
including multi-agent epistemic logic (Sect. 17.4) and doxastic logic (Sect. 17.5),
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followed by brief surveys of three topics at the interface of epistemic logic and
epistemology: epistemic closure (Sect. 17.6), higher-order knowledge (Sect. 17.7),
and knowability (Sect. 17.8).

17.2 Basic Models

Consider a simple formal language for describing the knowledge of an agent. The
sentences of the language, which include all sentences of propositional logic, are
generated from atomic sentences p, q, r, . . . using boolean connectives ¬ and ∧
(from which ∨, →, and ↔ are defined as usual) and a knowledge operator K .1 We
write that the agent knows that p as Kp, that she does not know that p and q as
¬K(p∧q), that she knows whether or not q as Kq ∨K¬q, that she knows that she
does not know that if p, then q as K¬K(p → q), and so on.

We interpret the language using a picture proposed by Hintikka [22], which has
since become familiar in philosophy. Lewis [27] describes a version of the picture
in terms of ways the world might be, compatible with one’s knowledge:

The content of someone’s knowledge of the world is given by his class of
epistemically accessible worlds. These are the worlds that might, for all he
knows, be his world; world W is one of them iff he knows nothing, either
explicitly of implicitly, to rule out the hypothesis that W is the world where
he lives. (27)

The first part of the picture is that whatever is true in at least one of the agent’s
epistemically accessible worlds might, for all the agent knows, be true in his world,
i.e., he does not know it to be false. The second part of the picture is that whatever
is true in all of the agent’s epistemically accessible worlds, the agent knows to be
true, perhaps only implicitly (see [27, §1.4]).

Here we talk of “scenarios” rather than worlds, taking w, v, u, . . . to be scenarios
and W to be a set of scenarios.2 For our official definition of epistemic accessibility,
call a scenario v epistemically accessible from a scenario w iff everything the agent
knows in w is true in v [41, §8.2].

Consider an example. A spymaster loses contact with one of his spies. In one
of the spymaster’s epistemically accessible scenarios, the spy has defected (d). In
another such scenario, the spy remains loyal (¬d). However, in all of the spymaster’s
epistemically accessible scenarios, the last message he received from the spy came
a month ago (m). Hence the spymaster knows that the last message he received from
the spy came a month ago, but he does not know whether or not the spy has defected,
which we write as Km ∧ ¬(Kd ∨K¬d).

1To reduce clutter, I will not put quote marks around symbols and sentences of the formal language,
trusting that no confusion will arise.
2In our formal models, “scenarios” will be unstructured points at which atomic sentences can be
true or false. We are not committed to thinking of them as Lewisian possible worlds.
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We assess the truth of such sentences in a model M = 〈W,RK , V 〉, representing
the epistemic state of an agent.3 W is a nonempty set, the set of scenarios. RK is
a binary relation on W , such that for any w and v in W , we take wRKv to mean
that scenario v is epistemically accessible from scenario w. Finally, V is a valuation
function assigning to each atomic sentence p a subset of W , V (p), which we take
to be the set of scenarios in which p holds.

Given our definition of epistemic accessibility, and the fact that everything an
agent knows is true, our intended models are ones in which RK is reflexive: wRKw

for all w in W . We call such models epistemic models.
Let ϕ and ψ be any sentences of the formal language. An atomic sentence p is

true in a scenario w in a model M = 〈W,RK , V 〉 iff w is in V (p); ¬ϕ is true in w

iff ϕ is not true in w; ϕ ∧ ψ is true in w iff ϕ and ψ are true in w; and finally, the
modal clause matches both parts of the picture described above:

(MC) Kϕ is true in w iff ϕ is true in every scenario v such that wRKv.

We say that a sentence is satisfiable iff it is true in some scenario in some model
(otherwise unsatisfiable) and valid iff it is true in all scenarios in all models. We
may also relativize these notions to a restricted class of models, such as the intended
class of epistemic models in which RK is reflexive. A sentence is satisfiable in the

class iff it is true in some scenario in some model in the class and valid over the

class iff it is true in all scenarios in all models in the class.
Figure 17.1 displays a simple epistemic model for the spymaster example, where

we draw a circle for each scenario (with all atomic sentences true in the scenario
indicated inside the circle), and we draw an arrow from a scenario w to a scenario
v iff wRKv. Observe that Km ∧ ¬(Kd ∨ K¬d) ∧ d is true in w1: d is true in
w1 by description; yet neither Kd nor K¬d is true in w1, because neither d nor
¬d is true in all scenarios epistemically accessible from w1, namely w2 and w1
itself; however, Km is true in w1, since m is true in all scenarios epistemically
accessible from w1. We could construct a more complicated epistemic model to
represent the spymaster’s knowledge and ignorance of other matters, but this simple
model suffices to show that Km ∧ ¬(Kd ∨K¬d) ∧ d is satisfiable.

Let us now consider a sentence that is unsatisfiable in epistemic models. In a
twist on Moore’s [29] paradox, Hintikka [22, §4.17] considers what happens if I tell
you something of the form you don’t know it, but the spy has defected, translated as
d ∧ ¬Kd. This may be true (as in w1), but as Hintikka observes, you can never
know it. You can never know that the spy has defected but you don’t know it.

m, d

w1

m

w2M

Fig. 17.1 A simple epistemic model

3Hintikka presented his original formal framework somewhat differently. Such details aside, we
use the now standard relational structure semantics for normal modal logics.
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Formally, K(d ∧ ¬Kd) cannot be true in any scenario in an epistemic model; it
is unsatisfiable, as we show in Sect. 17.3 below. It follows that ¬K(d ∧ ¬Kd) is
true in every scenario, so it is valid over epistemic models.

Since we take wRKv to mean that everything the agent knows in w is true in
v, one might sense in (MC) some circularity or triviality. As a technical matter,
there is no circularity, because RK is a primitive in the model, not defined in terms
of anything else. As a conceptual matter, we must be clear about the role of the
epistemic model when paired with (MC): its role is to represent the content of one’s
knowledge, what one knows, not to analyze what knowledge is in terms of something
else.4 (As we discuss in Sects. 17.6 and 17.7, with richer epistemic structures we can
also formalize such analyses of knowledge.) Finally, (MC) is not trivial because it
is not neutral with respect to all theories of knowledge.5

4It is important to draw a distinction between epistemic accessibility and other notions of
indistinguishability. Suppose that we replace RK by a binary relation E on W , where our intuitive
interpretation is that wEv holds “iff the subject’s perceptual experience and memory” in scenario v

“exactly match his perceptual experience and memory” in scenario w [28, 553]. Suppose we were
to then define the truth of Kϕ in w as in (MC), but with RK replaced by E. In other words, the
agent knows ϕ in w iff ϕ is true in all scenarios that are experientially indistinguishable from w for
the agent. (Of course, we could just as well reinterpret RK in this way, without the new E notation.)
There are two conceptual differences between the picture with E and the one with RK . First, given
the version of (MC) with E, the epistemic model with E does not simply represent the content
of one’s knowledge; rather, it commits us to a particular view of the conditions under which an
agent has knowledge, specified in terms of perceptual experience and memory. Second, given our
interpretation of E, it is plausible that E has certain properties, such as symmetry (wEv iff vEw),
which are questionable as properties of RK (see Sect. 17.7). Since the properties of the relation
determine the valid principles for the knowledge operator K (as explained in Sects. 17.3 and 17.7),
we must be clear about which interpretation of the relation we adopt: epistemic accessibility,
experiential indistinguishability, or something else. Here we adopt the accessibility interpretation.

Finally, note that while one may read wRKv as “for all the agent knows in w, scenario v

might be the scenario he is in,” one should not read wRKv as “in w, the agent considers scenario
v possible,” where the latter suggest a subjective psychological notion. The spymaster may not
subjectively consider it possible that his spy, whom he has regarded for years as his most trusted
agent, has defected. It obviously does not follow that he knows that his spy has not defected, as it
would according to the subjective reading of RK together with (MC).
5For any theory of knowledge that can be stated in terms of RK and (MC), the rule RK of Sect. 17.3
must be sound. Therefore, theories for which RK is not sound, such as those discussed in Sect. 17.6,
cannot be stated in this way. Given a formalization of such a theory, one can always define a
relation RK on scenarios such that wRKv holds iff everything the agent knows in w according to
the formalization is true in v. It is immediate from this definition that if ϕ is not true in some v

such that wRKv, then the agent does not know ϕ in w. However, it is not immediate that if ϕ is
true in all v such that wRKv, then the agent knows ϕ in w. It is the right-to-left direction of (MC)
that is not neutral with respect to all theories of knowledge.
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17.3 Valid Principles

The reflexivity of RK guarantees that the principle

T Kϕ → ϕ

is valid.6 For if Kϕ is true in a scenario w, then by (MC), ϕ is true in all epistem-
ically accessible scenarios, all v such that wRKv. Given wRKw by reflexivity, it
follows that ϕ is true in w. (Conversely, if a relation RK on a nonempty set W is not
reflexive, then one can construct a model M = 〈W,RK , V 〉 in which an instance of
T is false. Thus, T corresponds to reflexivity.) It is also easy to verify that

M K(ϕ ∧ ψ)→ (Kϕ ∧Kψ)

is valid over all models, simply by unpacking the truth definition. Using proposi-
tional logic (PL), we can now show why sentences of the Moorean form p ∧ ¬Kp

cannot be known:

(0) K(p ∧ ¬Kp) → (Kp ∧K¬Kp) instance of M;
(1) K¬Kp → ¬Kp instance of T;
(2) K(p ∧ ¬Kp) → (Kp ∧ ¬Kp) from (0)–(1) by PL;
(3) ¬K(p ∧ ¬Kp) from (2) by PL.

The historical importance of this demonstration, now standard fare in epistemology,
is that Hintikka explained a case of unknowability in terms of logical form. It
also prepared the way for later formal investigations of Moorean phenomena (see
[10] and refs. therein) in the framework of dynamic epistemic logic, discussed in
Sect. 17.8.

To obtain a deductive system (KT) from which all and only the sentences valid
over our reflexive epistemic models can be derived as theorems, it suffices to extend
propositional logic with T and the following rule of inference:

RK
(ϕ1 ∧ · · · ∧ ϕn)→ ψ

(Kϕ1 ∧ · · · ∧Kϕn) → Kψ
(n ≥ 0).

We interpret the rule to mean that if the sentence above the line is a theorem of the
system, then the sentence below the line is also a theorem. Intuitively, RK says that
the agent knows whatever follows logically from what she knows.

The soundness of RK shows that basic epistemic models involve a strong
idealization. One can interpret these models as representing either the idealized
(implicit, “virtual”) knowledge of ordinary agents, or the ordinary knowledge
of idealized agents (see [37] and refs. therein). There is now a large literature
on alternative models for representing the knowledge of agents with bounded

6Throughout we use the nomenclature of modal logic for schemas and rules.
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rationality, who do not always “put two and two together” and therefore lack the
logical omniscience reflected by RK (see [18] and refs. therein). As we discuss in
Sects. 17.6 and 17.7, however, the idealized nature of our mathematical models can
be beneficial in some philosophical applications.7

17.4 Multiple Agents

The formal language with which we began in Sect. 17.2 is the language of single-

agent epistemic logic. The language of multi-agent epistemic logic contains an
operator Ki for each agent i in a given set of agents. (We can also use these
operators for different time-slices of the same agent, as shown below.) To interpret
this language, we add to our models a relation RKi

for each i, defining the truth of
Kiϕ in a scenario w according to (MC) but with RKi

substituted for RK .
Suppose that the spymaster of Sect. 17.2, working for the KGB, is reasoning

about the knowledge of a CIA spymaster. Consider two cases. In the first, although
the KGB spymaster does not know whether his KGB spy has defected, he does
know that the CIA spymaster, who currently has the upper hand, knows whether
the KGB spy has defected. Model N in Fig. 17.2 represents such a case, where the
solid and dashed arrows are the epistemic accessibility relations for the KGB and
CIA spymasters, respectively. The solid arrows for the KGB spymaster between w1
and w2 indicate that his knowledge does not distinguish between these scenarios,
whereas the absence of dashed arrows for the CIA spymaster between w1 and w2
indicates that her knowledge does distinguish between these scenarios, as the KGB
spymaster knows. In the second case, by contrast, the KGB spymaster is uncertain
not only about whether his KGB spy has defected, but also about whether the
CIA spymaster knows whether the KGB spy has defected. Model N ′ in Fig. 17.2
represents such a case. The KGB spymaster does not know whether he is in one of
the upper scenarios, in which the CIA spymaster has no uncertainty, or one of the
lower scenarios, in which the CIA spymaster is also uncertain about whether the
KGB spy has defected. While KKGB(KCIAd ∨ KCIA¬d) is true in w1 in N , it is
false in w1 in N ′.

Let us now turn from the representation of what agents know about the world
and each other’s knowledge, using multi-agent epistemic models, to formalized
reasoning about such knowledge, using multi-agent epistemic logic.

For a sample application in epistemology, consider the surprise exam paradox

(see [33] and refs. therein). A tutor announces to her student that she will give him
a surprise exam at one of their daily tutoring sessions in the next n days, where an
exam on day k is a surprise iff the student does not know on the morning of day k

that there will be an exam that day. The student objects, “You can’t wait until the
last day, day n, to give the exam, because if you do, then I’ll know on the morning

7For additional ways of understanding idealization in epistemic logic, see [45].
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Fig. 17.2 Multi-agent epistemic models

of day n that the exam must be that day, so it won’t be a surprise; since I can thereby
eliminate day n, you also can’t wait until day n− 1 to give the exam, because if you
do, then I’ll know on the morning of day n − 1 that the exam must be that day, so
it won’t be a surprise. . . .” Repeating this reasoning, he concludes that the supposed
surprise exam cannot be on day n − 2, day n − 3, etc., or indeed on any day at all.
His reasoning appears convincing. But then, as the story goes, the tutor springs an
exam on him sometime before day n, and he is surprised. So what went wrong?

Consider the n = 2 case. For i ∈ {1, 2}, let ei mean that the exam is on day
i, and let Kiϕ mean that the student knows on the morning of day i that ϕ, so our
“multiple agents” are temporal stages of the student.8 The tutor’s announcement that
there will be a surprise exam can be formalized as (e1 ∧ ¬K1e1) ∨ (e2 ∧ ¬K2e2).
Now consider the following assumptions:

(A) K1((e1 ∧ ¬K1e1) ∨ (e2 ∧ ¬K2e2));
(B) K1(e2 → K2¬e1);
(C) K1K2(e1 ∨ e2).

Assumption (A) is that the student knows that the tutor’s announcement of a surprise
exam is true. Assumption (B) is that the student knows that he has a good memory:
if the tutor waits until day 2 to give the exam, then the student will remember that
it was not on day 1. Assumption (C) is that the student knows that he will also
remember on the morning of day 2 that there was or will be an exam on one of the
days (because, e.g., this is a school rule). The last assumption is that the student is a
perfect logician in the sense of RK from Sect. 17.3. Let RKi be the rule of inference

8A similar formalization applies to the designated student paradox [33, 317], a genuinely multi-
agent version of the surprise exam paradox.
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just like RK but for the operator Ki . Then we can derive a Moorean absurdity from
assumptions (A), (B), and (C)9:

(4)
(
K2(e1 ∨ e2) ∧K2¬e1

)
→ K2e2 using PL and RK2;

(5) K1
((

K2(e1 ∨ e2) ∧K2¬e1
)
→ K2e2

)
from (4) by RK1;

(6) K1(K2¬e1 → K2e2) from (C) and (5) using PL and RK1;
(7) K1¬(e2 ∧ ¬K2e2) from (B) and (6) using PL and RK1;
(8) K1(e1 ∧ ¬K1e1) from (A) and (7) using PL and RK1.

We saw in Sect. 17.3 that sentences of the form of (8) are unsatisfiable in epistemic
models, so we must give up either (A), (B), (C), or RKi .10 In this way, epistemic
logic sharpens our options. We leave it to the reader to contemplate these options.
There is much more to be said about the paradox (and the n > 2 case), but we have
seen enough to motivate the interest of multi-agent epistemic logic.

The multi-agent setting also leads to the study of new epistemic concepts, such
as common knowledge [39], but for the sake of space we return to the single-agent
setting in the following sections.

17.5 Knowledge and Belief

The type of model introduced in Sect. 17.2 can represent not only the content of
one’s knowledge, but also the content of one’s beliefs—and how these fit together.
Let us extend the language of Sect. 17.2 with sentences of the form Bϕ for belief
and add to the models of Sect. 17.2 a doxastic accessibility relation RB . We take
wRBv to mean that everything the agent believes in w is true in v, and the truth
clause for Bϕ is simply (MC) with Kϕ replaced by Bϕ and RK replaced by RB .
(For richer models representing conditional belief, see [8, 36].)

How do epistemic and doxastic accessibility differ? At the least, we should not
require that RB be reflexive, since it may not be that everything the agent believes

9We skip steps for the sake of space. E.g., we obtain (4) by applying RK2 to the tautology ((e1 ∨
e2) ∧ ¬e1) → e2. We then obtain (5) directly from (4) using the special case of RK1 where n = 0
in the premise (ϕ1 ∧ · · · ∧ ϕn) → ψ , known as Necessitation: if ψ is a theorem, so is K1ψ . It
is important to remember that RKi can only be applied to theorems of the logic, not to sentences
that we have derived using undischarged assumptions like (A), (B), and (C). To be careful, we
should keep track of the undischarged assumptions at each point in the derivation, but this is left
to the reader as an exercise. Clearly we have not derived (8) as a theorem of the logic, since the
assumptions (A), (B), and (C) are still undischarged. What we have derived as a theorem of the
logic is the sentence abbreviated by ((A) ∧ (B) ∧ (C)) → (8).
10We can derive (8) from (A), (B), and (C) in a doxastic logic (see Sect. 17.5) without the T axiom,
substituting Bi for Ki . Thus, insofar as B1(e1 ∧ ¬B1e1) is also problematic for an ideal agent, the
surprise exam paradox poses a problem about belief as well as knowledge.
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in a scenario w is true in w. Instead, it is often assumed that RB is serial: for all w,
there is some v such that wRBv, some scenario where everything the agent believes
is true. Given seriality, it is easy to see that the principle

D Bϕ → ¬B¬ϕ

is valid, in which case we are considering an agent with consistent beliefs. (Indeed,
D corresponds to seriality in the same way that T corresponds to reflexivity, as noted
in Sect. 17.3.) With or without seriality, the analogue of RK for belief,

RB
(ϕ1 ∧ · · · ∧ ϕn)→ ψ

(Bϕ1 ∧ · · · ∧ Bϕn)→ Bψ
(n ≥ 0),

is also sound, an idealization that can be interpreted in ways analogous to those
suggested for RK in Sect. 17.3, although RK raises additional questions (see
Sect. 17.6).

How are epistemic and doxastic accessibility related? At the least, if whatever
one knows one believes, then every scenario compatible with what one believes is
compatible with what one knows: wRBv implies wRKv. Assuming this condition,
Kϕ → Bϕ is valid; for if ϕ is true in all v such that wRKv, then by the condition, ϕ

is true in all v such that wRBv. Other conditions relating RB and RK are often
considered, reflecting assumptions about one’s knowledge of one’s beliefs and
beliefs about one’s knowledge (see [37]).

It is noteworthy in connection with Moore’s [29] paradox that if we make
no further assumptions about the relation RB , then B(p ∧ ¬Bp) is satisfiable,
in contrast to K(p ∧ ¬Kp) from Sect. 17.3. In Sect. 17.7, we will discuss an
assumption about RB that is sometimes made and is sufficient to render B(p∧¬Bp)

unsatisfiable.11

17.6 Epistemic Closure

The idealization that an agent knows whatever follows logically from what she
knows raises two problems. In addition to the logical omniscience problem with
RK noted in Sect. 17.3, there is a distinct objection to RK that comes from versions
of the relevant alternatives (RA) [11] and truth-tracking [30] theories of knowledge.
According to Dretske’s [11] theory, RK would fail even for “ideally astute logicians”
who are “fully appraised of all the necessary consequences. . . of every proposition”
(1010); even if RB were to hold for such an ideal logician, nonetheless RK would
not hold for her in general. Nozick’s [30] theory leads to the same result. The
reason is that one may satisfy the conditions for knowledge (ruling out the relevant
alternatives, tracking the truth, etc.) with respect to some propositions and yet not
with respect to all logical consequences of the set of those propositions, even if one

11In fact, the sentence ¬B(p ∧ ¬Bp) precisely corresponds to a condition on RB , namely that for
every w, there is a v such that wRBv and for every u, vRBu implies wRBu.
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has explicitly deduced all of the consequences. Hence the problem of epistemic
closure raised by Dretske and Nozick is distinct from the problem of logical
omniscience.

Dretske and Nozick famously welcomed the fact that their theories block appeals
to the closure of knowledge under known implication,

K (Kϕ ∧K(ϕ → ψ))→ Kψ,

in arguments for radical skepticism about knowledge.12 For example, according to
K, it is a necessary condition of an agent’s knowing some mundane proposition
p (Kp), e.g., that what she sees in the tree is a Goldfinch, that she knows that
all sorts of skeptical hypotheses do not obtain (K¬SH), e.g., that what she sees
in the tree is not an animatronic robot, a hologram, etc., assuming she knows that
these hypotheses are incompatible with p (K(p → ¬SH)). Yet it seems difficult or
impossible to rule out every remote possibility raised by the skeptic. From here the
skeptic reasons in reverse: since one has not ruled out every skeptical possibility,
K¬SH is false, so given K and the truth of K(p → ¬SH), it follows by PL that
Kp is false. Hence we do not know mundane propositions about birds in trees—or
almost anything else, as the argument clearly generalizes.

Rejecting the skeptical conclusion, Dretske and Nozick hold instead that K can
fail. However, K is only one closure principle among (infinitely) many. Although
Dretske [11] denied K, he accepted other closure principles, such as closure under
conjunction elimination, K(ϕ ∧ ψ) → (Kϕ ∧ Kψ), and disjunction introduction,
Kϕ → K(ϕ ∨ ψ). Nozick [30] was prepared to give up even closure under
conjunction elimination, but not closure under disjunction introduction. More
generally, one can consider any closure principle of the form (Kα1∧· · ·∧Kαn)→
(Kβ1∨· · ·∨Kβm), such as (Kp∧Kq) → K(p∧q), (K(p∨q)∧K(p → q)) →
Kq, K(p ∧ q) → K(p ∨ q), K(p ∧ q) → (Kp ∨Kq), etc.

To go beyond case-by-case assessments of closure principles, we can use an
epistemic-logical approach to formalize theories of knowledge like those of Dretske,
Nozick, and others, and then to obtain general characterizations of the valid closure
principles for the formalized theories. To the extent that the formalizations are
faithful, we can bring our results back to epistemology. For example, Holliday
[24] formalizes a family of RA and “subjunctivist” theories of knowledge using
richer structures than the epistemic models in Sect. 17.2. The main Closure Theorem
identifies exactly those closure principles of the form given above that are valid for
the chosen RA and subjunctivist theories, with consequences for the closure debate
in epistemology: on the one hand, the closure failures allowed by these theories
spread far beyond those endorsed by Dretske and Nozick; on the other hand, some
closure principles that look about as useful to skeptics as K turn out to be valid
according to these theories. While this result is negative for the theories in question,

12Note that the K axiom is derivable from the RK rule with the tautology (ϕ ∧ (ϕ → ψ))→ ψ .
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the formalization helps to identify the parameters of a theory of knowledge that
affect its closure properties, clarifying the theory choices available to avoid the
negative results.

As a methodological point, it is noteworthy that the results about epistemic
closure in [24], which tell us how RK fails for certain RA and subjunctivist theories
of knowledge, apply to an agent whose beliefs satisfy full doxastic closure in the
sense of RB. Thanks to this idealization, we can isolate failures of epistemic closure
due to special conditions on knowledge, posited by a given epistemological theory,
from failures of closure due to an agent’s simply not “putting two and two together.”
This is an example of the beneficial role that idealization can play in epistemic logic,
a point to which we return in Sect. 17.7.

17.7 Higher-Order Knowledge

Just as the T axiom Kϕ → ϕ corresponds to the reflexivity of RK , other epistemic
principles correspond to other conditions on RK . In this way, our models give us
another perspective on these principles via properties of accessibility.

First, consider symmetry: wRKv iff vRKw. Williamson [41, §8.2] observes that
this assumption plays a crucial role in some arguments for radical skepticism about
knowledge. Suppose that in scenario w, the agent has various true beliefs about the
external world. The skeptic describes a scenario v in which those beliefs are false,
but the agent is systematically deceived into holding them anyway. How does one
know that one is not in such a scenario? Uncontroversially, it is compatible with
everything the agent knows in the skeptical scenario v that she is in the ordinary
scenario w. Given this, the skeptic appeals to symmetry: it must then be compatible
with everything the agent knows in w that she is in v, which is to say that everything
she knows in w is true in v. But since everything the agent believes in w about the
external world is false in v, the skeptic concludes that such beliefs do not constitute
knowledge in w.

If we require with the skeptic that RK be symmetric, then the principle

B ¬ϕ → K¬Kϕ

is valid according to (MC).13 Although this is often assumed for convenience in
applications of epistemic logic in computer science and game theory, the validity of
B is clearly too strong as a matter of epistemology (see [41]).14

13Assume ¬ϕ is true in w, so ϕ is not true in w. Consider some v with wRKv. By symmetry,
vRKw. Then since ϕ is not true in w, Kϕ is not true in v by (MC), so ¬Kϕ is true in v. Since v

was arbitrary, ¬Kϕ is true in all v such that wRKv, so K¬Kϕ is true in w by (MC).
14Note that if we reject the requirement that RK be symmetric in every epistemic model, we
can still allow models in which RK is symmetric (such as the model in Fig. 17.1), when this is
appropriate to model an agent’s knowledge. The same applies for other properties.
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It is easy to check that symmetry follows if RK is both reflexive and Euclidean:
if wRKv and wRKu, then vRKu. The latter property guarantees that

5 ¬Kϕ → K¬Kϕ

is valid according to (MC). Hence if we reject the symmetry requirement and the
validity of the B axiom, which corresponds to symmetry, then we must also reject
the Euclidean requirement and the validity of the 5 axiom, which corresponds to
Euclideanness. Additional arguments against the 5 axiom come from considering
the interaction of knowledge and belief (recall Sect. 17.5).15

While the rejection of B and 5 is universal among epistemologists, there is
another principle of higher-order knowledge defended by some. Corresponding to
the condition that RK is transitive (if wRKv and vRKu, then wRKu) is the principle

4 Kϕ → KKϕ.16

Similarly, corresponding to the condition that RB is transitive is the principle Bϕ →
BBϕ. Assuming the latter, B(p∧¬Bp) is unsatisfiable, which is the fact at the heart
of Hintikka [22, §4.6–4.7] analysis of Moore’s paradox.17

Hintikka [22, §5.3] argued that 4 holds for a strong notion of knowledge, found in
philosophy from Aristotle to Schopenhauer. The principle has since become known
in epistemology as “KK” and in epistemic logic as “positive introspection.” Yet
Hintikka [22, §3.8–3.9, §5.3–5.4] rejected arguments for 4 based on claims about
agents’ introspective powers, or what he called “the myth of the self-illumination
of certain mental activities” (67). Instead, his claim was that for a strong notion
of knowledge, knowing that one knows “differs only in words” from knowing. His
arguments for this claim [22, §2.1–2.2] deserve further attention, but we cannot go
into them here (see [36, §1]).

As Hintikka assumed only reflexivity and transitivity for RK , his investigation
of epistemic logic settled on the modal logic of reflexive and transitive models,
S4, obtained by extending propositional logic with RK, T, and 4. Some objected
to this proposal on the grounds that given Kϕ → Bϕ, 4 implies Kϕ → BKϕ,

15Assuming Kϕ → Bϕ, D, and 5, the principle BKϕ → Kϕ is derivable (see [16, §2.4]). Given
the same assumptions, if an agent is a “stickler” [30, 246] who believes something only if she
believes that she knows it (Bϕ → BKϕ), then one can even derive Bϕ ↔ Kϕ (see [26] and [17]).
Given Kϕ → Bϕ, D, B, and Bϕ → BKϕ, one can still derive Bϕ → ϕ (see [17, 485]).
16To see that 4 is valid over the class of transitive models, assume that Kϕ is true in w in such
a model, so by (MC), ϕ is true in all v such that wRKv. Consider some u with wRKu. Toward
proving that Kϕ is true in u, consider some v with uRKv. By transitivity, wRKu and uRKv implies
wRKv. Hence by our initial assumption, ϕ is true in v. Since v was arbitrary, ϕ is true in all v such
that uRKv, so Kϕ is true in u by (MC). Finally, since u was arbitrary, Kϕ is true in all u such that
wRKu, so KKϕ is true in w by (MC).
17Assuming D, 4, and M for B, we have: (i) B(p∧¬Bp), assumption for reductio; (ii) Bp∧B¬Bp,
from (i) by M for B and PL; (iii) BBp∧B¬Bp, from (ii) by 4 for B and PL; (iv)¬B¬Bp∧B¬Bp,
from (iii) by D and PL; (v) ¬B(p ∧ ¬Bp), from (i)-(iv) by PL.
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which invites various counterexamples (see the articles in Synthese, Vol. 21, No. 2,
1970). Rejecting these objections, Lenzen [26, Ch. 4] argued from considerations
of the combined logic of knowledge and belief (and “conviction”) that the logic of
knowledge is at least as strong as a system extending S4 known as S4.2 and at most
as strong as one known as S4.4. Others implicated 4 in the surprise exam paradox,
while still others argued for 4’s innocence (see [41, Ch. 6] and [33, Ch. 7–8]).

In addition to approaching questions of higher-order knowledge via properties
of RK , we can approach these questions by formalizing substantive theories of
knowledge. While the relevant alternatives and subjunctivist theories mentioned in
Sect. 17.6 are generally hostile to 4, other theories are friendlier to 4. For example,
consider what Stalnaker [36] calls the defeasibility analysis: “define knowledge as
belief (or justified belief) that is stable under any potential revision by a piece of
information that is in fact true” (187). Like others, Stalnaker [37] finds such stability
too strong as a necessary condition for knowledge; yet he finds its sufficiency more
plausible. (Varieties of belief stability have since been studied for their independent
interest, e.g., in [4], without commitment to an analysis of knowledge.) Formalizing
the idea of stability under belief revision in models encoding agents’ conditional

beliefs, Stalnaker [36, 37] shows that under some assumptions about agents’ access
to their own conditional beliefs, the formalized defeasibility analysis validates 4.18

The most influential recent contribution to the debate over 4 is Williamson
[40, 41, Ch. 5] margin of error argument, which we will briefly sketch. Consider
a perfectly rational agent who satisfies the logical omniscience idealization of RK

and hence K, setting aside for now the additional worries about closure raised in
Sect. 17.6. Williamson argues that even for such an agent, 4 does not hold in general.
Suppose the agent is estimating the height of a faraway tree, which is in fact k inches.
Let hi stand for the height of the tree is i inches, so hk is true. While the agent’s
rationality is perfect, his eyesight is not. As Williamson [41, 115] explains, “anyone
who can tell by looking at the tree that it is not i inches tall, when in fact it is i + 1
inches tall, has much better eyesight and a much greater ability to judge heights”
than this agent. Hence for any i, we have hi+1 → ¬K¬hi . In contrapositive form,
this is equivalent to:

(9) ∀i(K¬hi → ¬hi+1).19

Now suppose that the agent reflects on the limitations of his visual discrimination
and comes to know every instance of (9), so that the following holds:

(10) ∀i(K(K¬hi → ¬hi+1)).

18Stalnaker shows that the epistemic logic of the defeasibility analysis as formalized is S4.3, which
is intermediate in strength between Lenzen’s lower and upper bounds of S4.2 and S4.4.
19Note that the universal quantifiers in (9), (10), (15), and (21) are not part of our formal language.
They are merely shorthand to indicate a schema of sentences.
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Given these assumptions, it follows that for any j , if the agent knows that the height
is not j inches, then he also knows that the height is not j + 1 inches:

(11) K¬hj assumption;
(12) KK¬hj from (11) using 4 and PL;
(13) K(K¬hj → ¬hj+1) instance of (10);
(14) K¬hj+1 from (12) and (13) using K and PL.

Assuming the agent knows that the tree’s height is not 0 inches, so K¬h0 holds, by
repeating the steps of (11)–(14), we reach the conclusion K¬hk by induction. (We
assume, of course, that the agent has the appropriate beliefs implied by (11)–(14), as
a result of following out the consequences of what he knows.) Finally, by T, K¬hk

implies ¬hk , contradicting our initial assumption of hk .
Williamson concludes that this derivation of a contradiction is a reductio ad

absurdum of 4. Rejecting the transitivity of epistemic accessibility, he proposes
formal models of knowledge with non-transitive accessibility to model limited dis-
crimination [40]. (For discussion, see Philosophy and Phenomenological Research,
Vol. 64, No. 1, 2002, and a number of recent papers by Bonnay and Egré, e.g., [9].
Williamson [43] goes further and argues that an agent can know a proposition p even
though the probability on her evidence that she knows p is as close to 0 as we like.)
Since Williamson’s argument assumes that the agent satisfies the idealization given
by RK in Sect. 17.2, if it is indeed a reductio of 4 in particular, then it shows that
4 fails for reasons other than bounded rationality. As Williamson suggests (see [21,
Ch. 25]), this shows how idealization in epistemic logic can play a role analogous
to that of idealization in science, allowing one to better discern the specific effects
of a particular phenomenon such as limited discrimination.

17.8 Knowability

We now turn from questions about epistemic closure and higher-order knowledge
to questions about the limits of what one may come to know. As we will see, these
questions lead naturally to a dynamic approach to epistemic logic.

Fitch [14] derived an unexpected consequence from the thesis, advocated by
some anti-realists, that every truth is knowable. Let us express this thesis as

(15) ∀q(q → ♦Kq),

where ♦ is a possibility operator. Fitch’s proof uses the two modest assumptions
about K used for (0)–(3) in Sect. 17.3, T and M, together with two modest
assumptions about ♦. First, ♦ is the dual of a necessity operator � such that ¬♦ϕ

follows from �¬ϕ. Second, � obeys the rule of Necessitation: if ϕ is a theorem,
then �ϕ is a theorem. For an arbitrary p, consider the following:

(16) (p ∧ ¬Kp) → ♦K(p ∧ ¬Kp) instance of (15).
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Since we demonstrated in Sect. 17.3 that ¬K(p ∧ ¬Kp) is a theorem, we have:

(17) �¬K(p ∧ ¬Kp) from (0)–(3) by Necessitation;
(18) ¬♦K(p ∧ ¬Kp) from (17) by duality of ♦ and �;
(19) ¬(p ∧ ¬Kp) from (16) and (18) by PL;
(20) p → Kp from (19) by (classical) PL;
(21) ∀p(p → Kp) from (16)–(20), since p was arbitrary.

From the original anti-realist assumption in (15) that every truth is knowable, it
follows in (21) that every truth is known, an absurd conclusion.

There is now a large literature devoted to this “knowability paradox” (see, e.g.,
[41, Ch. 12], [12], [33, Ch. 4] and [32]). There are proposals for blocking the
derivation of (21) at various places, e.g., in the step from (19) to (20), which is
not valid in intuitionistic logic, or in the universal instantiation step in (16), since
it allegedly involves an illegitimate substitution into an intensional context. Yet
another question raised by Fitch’s proof concerns how we should interpret the ♦

operator in (15).
van Benthem [5] proposes an interpretation of the ♦ in the framework of dynamic

epistemic logic (see [7] and the chapter of this Handbook by Baltag and Smets for
refs.). As we state more formally below, the idea is that ♦Kϕ is true iff there is a

possible change in one’s epistemic state after which one knows ϕ. Contrast this with
the metaphysical interpretation of ♦, according to which ♦Kϕ is true iff there is a
possible world where one knows ϕ.

In the simplest dynamic approach, we model a change in an agent’s epistemic
state as an elimination of epistemic possibilities. Recall the spymaster example
from Sect. 17.2. We start with an epistemic model M and an actual scenario w1,
representing the spymaster’s initial epistemic state. Although his spy has defected,
initially the spymaster does not know this, so d ∧¬Kd is true in w1 in M. Suppose
the spymaster then learns the news of his spy’s defection. To model this change
in his epistemic state, we eliminate from M all scenarios in which d is not true,
resulting in a new epistemic model M|d , displayed in Fig. 17.3, which represents
the spymaster’s new epistemic state. Note that Kd is true in w1 in M|d , reflecting
the spymaster’s new knowledge of his spy’s defection.

The acquisition of knowledge is not always as straightforward as just described.
Suppose that instead of learning d, the spymaster is informed that you don’t

know it, but the spy has defected, the familiar d ∧ ¬Kd. The resulting model
M|d∧¬Kd , obtained by eliminating from M all scenarios in which d ∧ ¬Kd is
false (namely w2) is the same as M|d in this case. However, while d ∧¬Kd is true

m, d

w1

m

w2M

m, d

w1

M|d

Fig. 17.3 Modeling knowledge acquisition by elimination of possibilities
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in w1 in M, it becomes false in w1 in M|d∧¬Kd , since Kd becomes true in w1 in
M|d∧¬Kd . As Hintikka [22] observes of a sentence like d ∧ ¬Kd, “If you know
that I am well informed and if I address the words . . . to you,” then you “may come
to know that what I say was true, but saying it in so many words has the effect of
making what is being said false” (68f).20 Since d∧¬Kd is false in w1 in M|d∧¬Kd ,
so is K(d ∧ ¬Kd).

Returning to the knowability paradox, van Benthem’s proposal, stated informally
above, is to interpret the ♦ in (15) such that ♦Kϕ is true in a scenario w in a model
M iff there exists some ψ true in w such that Kϕ is true in w in the model M|ψ ,
obtained by eliminating from M all scenarios in which ψ is false. For example, in
Fig. 17.3, ♦Kd is true in w1 in M, since we may take d itself for the sentence ψ ;
but ♦K(d ∧ ¬Kd) is false, since there is no ψ that will get the spymaster to know
d ∧¬Kd. As expected, (15) is not valid for all sentences on this interpretation of ♦.
Yet we now have a formal framework (see [3]) in which to investigate the sentences
for which (15) is valid. In addition, this dynamic epistemic logical approach has
inspired alternative frameworks for the analysis of knowability and other epistemic
paradoxes (see [25]).

A much-discussed proposal by Tennant (see [32, Ch. 14]) is to restrict (15)
to apply only to Cartesian sentences, those ϕ such that Kϕ is consistent, in the
sense that one cannot derive a contradiction from Kϕ. This restriction blocks the
substitution of p ∧ ¬Kp, given (0)–(3) in Sect. 17.3. However, van Benthem [5]
shows that (15) is not valid for all Cartesian sentences on the dynamic interpretation
of ♦, which imposes stricter constraints on knowability. Another conjecture is that
the sentences for which (15) is valid on the dynamic interpretation of ♦ are those
that one can always learn without self-refutation, in the sense of Hintikka’s remark
above. Surprisingly, this conjecture is false, as there are sentences ϕ such that
whenever ϕ is true, one can come to know ϕ by being informed of some true
ψ , but one cannot always come to know ϕ by being informed of ϕ itself [5]. A
syntactic characterization of the sentences for which (15) is valid on the dynamic
interpretation of ♦ is currently unknown, an open problem for future research (see
[10] for another sense of “everything is knowable”). We conclude by observing that
while Fitch’s proof may make trouble for anti-realism, reframing the issue in terms
of the dynamics of knowledge acquisition opens a study of positive lessons about
knowability (see [5, §8]; cf. [41, §12.1]).

20For discussion of such “unsuccessful” announcements in the context of the surprise exam
paradox, see [15].
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17.9 Conclusion

This survey has given only a glimpse of the intersection of epistemic logic and
epistemology. Beyond its scope were applications of epistemic logic to epistemic
paradoxes besides the surprise exam (see [35]), to debates about fallibilism and
contextualism in epistemology (see refs. in [24]), to Gettier cases [42], and to
social epistemology. Also beyond the scope of this survey were systems beyond
basic epistemic logic, including quantified epistemic logic,21 justification logic [2],
modal operator epistemology [19], and logics of group knowledge [39]. For a
sense of where leading figures in the intersection foresee progress, we refer the
reader to Hendricks and Roy [21] and Hendricks and Pritchard [20]. Given the
versatility of contemporary epistemic logic, the prospects for fruitful interactions
with epistemology are stronger than ever before.22
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Chapter 18

Knowledge Representation
for Philosophers

Richmond H. Thomason

Abstract This article provides an overview of the subfield of Artificial Intelli-
gence known as “Knowledge Representation and Reasoning.” This field uses the
techniques of philosophical logic, but aims at providing a theoretical basis for
the management of declarative information in automated reasoning systems. Three
topics are singled out here for attention: planning and reasoning about actions,
description logics, and nonmonotonic logics.

18.1 Philosophical Logic and Logical AI

Formal philosophy seeks to use formalized languages and their metatheory to
illuminate philosophical problems. In its earlier stages (roughly, until around 1960),
most work in this area relied on classical logics and philosophical analysis, and so is
difficult to distinguish from the broader area of analytic philosophy. But in its later
stages, many practitioners of formal philosophy became convinced that classical
logics were inadequate for some philosophical purposes, and the later work typically
involves the formalization of a language, the development of its logical properties,
and informal and philosophical discussion of its significance for philosophy.

A philosophical project of this sort uses what Alonzo Church ([13], pp. 47–58)
called the logistic method: that is, it selects a target domain—an area of inquiry
with characteristic forms of reasoning, and constructs a theory of the reasoning
by providing a formalized logical system, including an axiomatization and model
theory. Church had in mind mathematical domains and the sort of reasoning found
in mathematical proofs, but philosophical logicians have used the method to study
tense, modality, nondeclarative sentences, propositional attitudes such as knowledge
and belief, contrary-to-fact conditionals, and many other linguistic constructions of
philosophical interest.
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Artificial Intelligence is an eclectic field, and harbors many methodologies. But
since the publication of [42], and largely because of John McCarthy’s subsequent
influence, the logistic method has been used to understand the domains that AI seeks
to create. The targets include reasoning about time and action (and, in particular,
planning), reasoning about other agents, about space and material objects, and many
other topics.

Logical AI is continuous with earlier work in philosophical logic and makes
explicit use of it; it is, in fact, best to think of philosophical logic and logical AI as
a single field. Logical AI is now much larger and more active than its philosophical
parent discipline, and by now many of the most important trends are being pursued
by professional computer scientists. Nevertheless, most of this work is as relevant to
philosophy as the earlier work that was published in the philosophical journals, and
philosophers who value the usefulness of logic should be aware of the computational
literature.

18.2 The Emergence of Knowledge Representation in AI

The process that led to the emergence of Knowledge Representation as a subfield
of Artificial Intelligence should be of interest to philosophers. In both philosophy
and AI formal techniques are available, but their value and appropriateness can be
questioned. In AI, however, the foundational debate was limited to a few years, and
resulted in a clearcut outcome. There are subfields of AI that can avoid reasoning
about propositional attitudes and using formalisms that incorporate intensional
constructions. But in those that do consider this sort of reasoning, the value of
explicit representations, and of logical theory as a source of these representations,
is no longer at issue.

The recognition of Artificial Intelligence as a field goes back to a conference held
at Dartmouth College in 1956. (See [47].) A few years later, in [42], John McCarthy
explicitly proposed an approach to AI that would attempt to represent an agent’s
declarative knowledge explicitly, employing logical rules as an inference mecha-
nism. The need to formalize common-sense knowledge, and the appropriateness of
logic for this purpose, is a continuing theme in McCarthy’s later work; see the papers
collected in [45].

However, McCarthy’s early proposals were not very influential and, through the
1970s, much of the work in AI—and certainly, work that involved implemented
systems—either ignored declarative representations entirely or, in some cases,
developed ad hoc representation systems that had little or nothing to do with the
logical tradition. (Marvin Minsky’s “frame-based” representations are an example;
see [49].)

During the phase of AI (roughly, dating through the 1970s and well into the
1980s), when researchers were concentrating on small to medium-sized reasoning
problems, the role of logic was debated. See, for instance, [27, 48]; there is a
retrospective discussion of the issues in [37, Section 1.5]. A thorough history of
AI, and of the ideas in play during this period, remains to be written. But it is
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clear that during the latter part of the 1980s and the early 1990s, this conflict was
decided in favor of the logicians—not so much by explicit debate, but by widespread
recognition among AI practitioners of the importance and usefulness of logical
representations.

I believe that the following factors played an important part in these develop-
ments:

1. Software engineering considerations. Beyond a certain size, it is dif-
ficult or impossible to maintain software systems without a modular
design, and without a clear, explicit understanding of the meaning of the
representations. As reasoning systems became larger and more ambitious,
these considerations provided a powerful motivation for using logical
representations when possible. As programs become larger and more
complex, you need not only a comprehensive, detailed account of what the
program is supposed to do; even better, you want a proof that the algorithm
is correct.
You also need modularity. The software engineering reasons for modular
representation of declarative knowledge are well documented in [60,
Chapter 3]. Stefik is eclectic about representation systems, but that brings
me to my next point.

2. Universality of logic for declarative representations. Gradually, it
became realized that various alternatives to logical representations that
had been proposed could be formalized as logics, and that treating them as
such would deliver improved insights.1

3. Decoupling theories from implementations. Theorem proving is sel-
dom the best way to approach the reasoning problems that arise in AI.
But, as the AI community learned, logical modeling doesn’t commit an AI
researcher to a theorem-proving implementation. Theorem proving is not
the only algorithm associated with logic—for instance, model construction
is useful for many purposes—and the relationship between a logical theory
and an implementation informed by it can be tenuous. At one extreme,
logical modeling helps to understand the reasoning problem, and although
the implementation is inspired by the logic, it is hard to say what the
relationship is. At another extreme, it can be hard to distinguish the theory
from the implementation.

4. Computer science graduate education. Computer science began to
produce graduate students in large numbers in the 1980s. As these students
entered the AI research pool, the comfort level of AI researchers with
logic grew. Computer science departments provide training in theory, and

1In [26], Patrick Hayes argued that frame-based representations, which had widely been taken
to be an alternative to logical representations, could be reproduced in a first-order logic with a
mechanism for formalizing defaults. (Hayes used an epistemic operator for this purpose.) The
later history vindicated this idea, as ideas about frames and semantic nets were transformed into
description logics—representation services that can be embedded in first-order logic, or in well
understood extensions of first-order logic. See Sect. 18.4.2, below, for more about description
logics.
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theoretical computer science is almost entirely a branch of logic. Many of
the younger AI researchers at this time were accomplished logicians.

5. Small-scale successes. Some early special-purpose uses of logic were
successful and influential. Examples are James Allen’s interval logic for
reasoning about time [2], and McCarthy’s Situation Calculus for reasoning
about actions [43].

The first major collection devoted to knowledge representation, [9], appeared in
1985. At this point the field had begun to move rapidly, and many of the papers in
the collection were already outdated, although the volume covers ideas that were to
become important themes in the future. At this point, the area gained popularity: a
significant number of papers devoted to knowledge representation began to appear
at the major AI meetings.

A series of international conferences devoted entirely to knowledge representa-
tion began in Toronto in 1989; the twelfth in this series took place in 2010. By 1989,
the field was well-established, and from now on I’ll refer to it as “KRR”. As we’ll
see, the second ‘R’ is important.

18.3 The Scope and Subject Matter of KRR

18.3.1 The Importance of Reasoning

The title of the first KR proceedings, [3], is “Principles of Knowledge Representa-
tion and Reasoning.” The clause ‘and reasoning’ was added intentionally, and marks
a significant difference between KRR and the closely related field of philosophical
logic.

A typical project in philosophical logic will formalize some topic, hopefully
providing a model-theoretic semantics as well as good motivation for the formal-
ization. Usually, there are forms of reasoning associated with the domain that is
formalized, and a philosophical logician will recognize this by taking into account
examples of reasoning that intuitively are good or bad and using this to justify
the validities delivered by the theory. Presumably, the intuitions about validity are
closely associated with our expertise in the associated reasoning. But the connection
of the project to reasoning doesn’t go further than this. A philosophical logician will
hope that the structures that make formulas true and false will deliver new insights
into topics of traditional philosophical interest, and the philosophical impact of the
project will mostly depend on the quality of thes insights. Except for a sample of
valid and invalid inferences, reasoning is absent from these picture.

But many robust and complex forms of reasoning are associated with the domains
that philosophical logicians have explored. For instance, consider the problem of
reading a narrative and—if the narrative is temporally coherent—figuring out how
to order the events that are mentioned in the narration into a temporal sequence,
and maintaining this timeline as more of the narrative is read. Temporal logicians
working in the philosophical logic tradition hardly ever consider issues of this sort.
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But such questions are crucially important in knowledge representation, because
their answers may provide connections to useful, implementable reasoning services.

Also—and this is a new consideration—the design of the formal language may
be influenced by the intended reasoning application. In [35], Hector Levesque
and Ronald Brachman argue that there is a potential tradeoff between expressive
adequacy of the language and the computational complexity of the reasoning. A
formalized language that is ambitious expressively may be less useful when the
reasoning application is taken into account, because the reasoning associated with
it—for instance, theorem proving or satisfaction checking—is more complex.

In fact, some of the most successful projects in KRR involve the discovery
of useful compromises between the competing factors in the Brachman-Levesque
tradeoff. Edmund Clarke’s use in [14] of a restricted temporal language for software
validation is an example, as well as the temporal language of [2]. But good solutions
to the tradeoff are difficult to find. (The application to description logics that
Levesque and Brachman had in mind did not quite work out as they had hoped.)

18.3.2 Topics in KRR

The coverage of the 12 KRR proceedings that appeared by 20102 provide a useful
guide to the major topics, as well as an indication of their importance for the
field. Among these topics are: Planning, Description logics, Abduction, Multiagent
Systems, Nonmonotonic Logic, Planning Agents, Spatial Logics, Belief Revision,
Ontologies, and Preferences. Not so well represented at the KRR meetings, but
important for philosophers, is the work on formalizing common sense reasoning.

The next sections will go into more detail about a few of these topics; references
to the others can be found in the works cited in Sect. 18.5.

18.4 Details About Selected KRR Topics

18.4.1 Planning and Reasoning About Actions

By any measure, the most active area of research in KRR consists of logics for
planning. Planning itself, or means-end reasoning, was recognized quite early as
an important area of AI (see [59]), and in the earliest phases the paradigmatic
examples of planning were taken from gamelike domains. Simon’s paper contains
the fundamental idea that actions are available to the planning agent, which when
executed will change the state of the world (for instance, the state of a partially

2These are [1, 3, 4, 11, 15, 16, 19–21, 23, 40, 51].
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filled-in crossword puzzle), and the idea that planning is a matter of searching a
problem space for a series of operators that will achieve a given goal.

It is certainly possible to implement a planning system without a logical
formalization of the reasoning. (And many AI researchers did this, thinking only
of the problem of how, using heuristic search, to efficiently find a plan in the very
large search spaces that arise even in simple problems.) But some AI researchers,
following John McCarthy, took a logical approach. McCarthy’s Situation Calculus,
first presented in [43] and mentioned above in Sect. 18.2, was offered as a
formalization of means-end reasoning. The ideas in this paper (originally published
in 1963) are elaborated in [46], which is usually cited as the source of the Situation
Calculus.

There is a continuous history of research on the logic of action, within the
Situation Calculus, from the early 1970s to the present, through which insights
have deepened, and the theory has been generalized to more challenging planning
domains.

Here, I will concentrate only on the basic ideas of the Situation Calculus
formalism and on the immediate logical problems that it generates. For other
expositions of this topic, see [39, 58, 62].

The Situation Calculus is a many-sorted first-order theory, with designated sorts
for situations and for actions. (‘Situation’ is McCarthy’s term for ‘state’; actions are
taken to be individuals.) Many predicates of the Situation Calculus, then, will have
a single argument place of situational type: these are called fluent predicates, and
the values they take in models are called fluents. Actions are treated as primitives:
they are individuals, and there is a designated sort of actions.

There is a special 3-place predicate Result expressing a relation between situa-
tions, actions, and situations; the idea is that Result(s1, a, s2) is true iff performing
the action denoted by a in the situation denoted by s1 leads to the situation denoted
by s2. We will assume that the outcome of performing an action is unique:

∀s∀a∃s1∀s2[Result(s, a, s2) ↔ s2 = s1].

A causal theory in the Situation Calculus provides causal axioms for each action.
A causal axiom for an action a is supposed to say what will happen if the action is
performed in appropriate circumstances. At the very least, then, a causal axiom for
a will entail a conditional relating a precondition for the action to its effects. The
purpose of a causal theory is to characterize precisely what the result of performing
each action will be. Without this, it would be impossible to tell in general what
state would result from performing a series of actions, so it would be impossible to
produce a plan supported by a proof that the goal will be reached.

In the crossword puzzle domain, for instance, for each letter and cell of the puzzle
there is an action of putting that letter in the cell. We define an empty cell to be one
that contains nothing:

∀x∀s[Empty(x, s) ↔ ∀z¬In(z, x, s)].
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Consider the action of putting ‘t’ in a cell. This action’s precondition is that the cell
must be empty; its effect is that ‘t’ is the cell. The following simple causal axiom
captures these things nicely:

(SCA) ∀s∀x∀s′∀y[Result(s, PutIn-t, s′) → [Empty(x, s) → In(t, x, s′)]].

(Here, t is a constant denoting the letter ‘t’.)
This causal axiom allows too many models. The problem is that it doesn’t say

anything about what happens in cells other than the single cell that is affected. Of
course, nothing happens in these other cells. We want causal inertia to prevail—the
other cells stay put, but (SCA) doesn’t entail this.

The fact that causal inertia will in general call for many more axioms than are
required for causal change is, in its purest form, the Frame Problem. In a more
general form, the Frame Problem is the question of how to axiomatize causal
inertia.3

A monotonic approach to the Frame Problem states the inertial rules explicitly
as axioms. An economical way to do this is to write axioms giving necessary and
sufficient conditions under which a fluent holds in an arbitrary resultant situation. In
the crossword domain, the axiom for the letter ‘t’ would look like this:

(MCA) ∀s∀a∀s′∀x[ [Action(a) ∧ Result(s, a, s′) ∧ In(t, x, s′)] ↔
[ [a=PutIn-t ∧ Empty(x, s)] ∨ [a �=PutIn-t ∧ In(t, x, s)] ] ].

This axiom guarantees that ‘t’ appears in a cell of a noninitial situation if and only
if it was already there, or was just put there. It requires quantification over actions,
but this is unproblematic, since actions can (and probably should) be treated as
individuals.

It’s a bit disappointing that monotonic solutions to the Frame Problem are
perfectly workable (in [55], for instance, Ray Reiter hows how monotonic solutions
can be deployed in challenging and complex planning environments), because the
nonmonotonic solutions are so much more interesting from a logical standpoint.
These solutions require a logic that somehow supports exceptions to axioms. (See
Sect. 18.4.3, below.) Given such a logic, causal inertia can be expressed as a simple,
global default: “nothing changes.” Causal axioms then provide constraints that
override the inertial default.

The discovery of anomalies in the nonmonotonic solutions [25] led to increas-
ingly complex logical solutions which, since they appeal to causality, are of
considerable philosophical interest. See, for instance, [38, 63].

This is by no means the end of the logical challenges. The Ramification Problem

has to do with indirect effects of actions; the Qualification Problem has to do
with the difficulty of stating universally correct preconditions for actions. The

3Philosophers should take note. In the philosophical literature, the Frame Problem has been widely
misunderstood and wildly overgeneralized. See [58, Section 1.12].
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literature on both these problems is extensive, and contains much material that is
philosophically interesting; some entry points to the literature are [38, 41, 61].

Many other problems arise in the process of extending simple planning theories
to more noisy and challenging domains. What about multiple agents? What about
agents who are uncertain about the current state of the world? How can the discrete,
action-based accounts of change used in planning be combined with continuous
theories of natural change based on differential equations? Many authors have
discussed these issues, but [55] is perhaps the best beginning point.

Before turning to other matters, let’s consider how the logical approach to plan-
ning allows declarative information (knowledge) to be separated from the heuristics
and procedures that may be involved in reasoning with the knowledge. The causal
axioms, other domain axioms, and the causal theory constitute a declarative theory
that can be formalized in a logic with well understood properties. It can be validated
by checking it against intuitions and evidence about the domain. It is relatively
easy to update. And it is independent of any particular implementation. It can
be combined with any algorithm for finding a plan, and with any heuristics for
narrowing the search, that an implementer chooses to use. Each of these things is
an advantage, from a software engineering standpoint. Taken together, the case for
this modular approach, separating out the declarative knowledge and using a logic
to formalize it, is quite compelling.

18.4.2 Description Logics

Many AI applications, as well as planning, will need a separate representation of
the knowledge used by the system. This creates a need for a plug-in KR service that
is relatively easy to learn and to use, and that can reliably and efficiently deliver the
conclusions that are needed by the system. Description logics fill this niche better
than any other KR service.

There are many description logics, so I will confine myself here to the basic
recipe for a description logic: separate general from factual information. Insist that
general information takes the form of concept definitions, and include in the KR
language useful constructs for forming such definitions. Restrict the form of the
factual information; for instance, do not allow disjunctive formulas.

Definitions in a description logic might look like this:

Mother : HAS-AT-LEAST-1(child) AND Female.

Employed : HAS-AT-LEAST-1(employer).

Working-Mother : Mother AND Employed.

Orphan : HAS-0(parent).

parent : INVERSE(child).
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Given these definitions, a description logic would be able to infer that Agnes is a
working mother if it is told that Agnes is a mother and is self-employed. You would
hope that it would be able to infer an inconsistency if it is told that Bert is Agnes’
child and Bert is an orphan.

The reasoning algorithms for many description logics are well understood and
deliver reliable results, often with excellent efficiency. Good documentation is
available for many of these systems. Much work has been devoted to extending the
expressiveness of description logics, and many of these extensions—for instance,
attempts to include temporal reasoning—are philosophically interesting.

See [6] for a recent survey of this topic, with many references; [5] has many
details, including descriptions of some of the leading systems.

18.4.3 Nonmonotonic Logics and Nonmonotonic Reasoning

Nonmonotonic logic might well have been developed earlier, by philosophical
logicians, but in fact this topic emerged from logical AI. Monotonicity is a property
of the consequence relation ⊢ : if Ŵ ⊢ φ then Ŵ ∪ {ψ} ⊢ φ. This says that adding a
new axiom to an axiomatic system produces more theorems. A consequence relation
is nonmonotonic if it fails to have the monotonicity property.

Common-sense reasoning is full of examples of nonmonotonicity. For instance,
let Ŵ be the set of observations that assumptions that are in play for for a practical
agent—a person or a robot, and let � be the set of conclusions that the agent draws
from these observations. Suppose the agent observes, in situation s1, that a certain
cup is on a certain table. Then the formula

(A1) On(cup87, table15, s1)

will be in Ŵ. The agent has no reason to think the cup will be disturbed in the span of
time between s1 and, say, s2. Then our agent will suppose (A2), which will therefore
belong to �, because it is concluded from observations and the agent’s causal theory.

(A2) On(cup87, table15, s2)

Suppose the agent daydreams, receiving no new information between s1 and s2.
Observing the table, the agent learns that, contrary to expectations, the cup is gone;
the new observation (A3) is the negation of (A2).

(A3) ¬On(cup87, table15, s2)

In a monotonic logic, we get an inconsistent theory if we add (A3) to Ŵ. In a
nonmonotonic logic, the conclusion is retracted when the addition is made and
Ŵ∪{(A3)} is consistent. The generalization that produced the incorrect conclusion—
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in this case, a nonmonotonic axiom of causal inertia—is retained. The conclusion
that is withdrawn marks an exception to the axiom.

John McCarthy’s Circumscription Theory, proposed in [44], involves a relatively
simple modification of first-order logic. Since it can be fairly easily explained,
we will use it to illustrate the workings of a nonmonotonic logic. The language
of Circumscription Theory is first-order, but special abnormality predicates are
introduced to mark exceptions.

An exception-tolerant Causal Inertia axiom for the crossword puzzle domain
would be stated as follows.

(NMCI) ∀x∀y∀s∀a[[Cell(x) ∧ In(y, x, s) ∧ Result(s, a, s′) ∧ ¬Ab(x, y, s)] →
In(y, x, s′)

The axiom guarantees that what is in a cell stays put through a change unless there
is an abnormality involving the cell, its occupant, and the change. (Another inertia
axiom would be needed to ensure that empty cells stay empty unless there is an
exception.)

We obtain a nonmonotonic logic by taking account in the definition of logical
consequence only models of a theory Ŵ in which the extensions of the various
abnormality predicates are minimized. With just one abnormality predicate, say the
3-place predicate in (NMCI), the definition is simple. A model M is better than
a model M ′, M ≺ M ′, iff the extension Ab of Ab in M is a proper subset of the
extension Ab′ of Ab in M ′. A model M of Ŵ is minimal iff no model of Ŵ is better
than M . Finally Ŵ ⊢ φ iff every minimal model of Ŵ satisfies φ.

One advantage of Circumscription, from the standpoint of formalizing domains,
is that it is possible to write axioms about abnormalities—about what to expect when
things go wrong. These axioms themselves may involve abnormalities. See [36] for
details. This article is also an excellent introduction to Circumscription Theory; and
treatments can be found in any of the books on nonmonotonic logic cited in the
bibliography to this paper, as well as in [12].

A very large body of work on nonmonotonic logic and its applications has
accumulated over the last 30 years, most of it appearing in the AI journals, but
some in philosophical venues.

The two other leading approaches to nonmonotonic logic are Default Logic and
modal theories such as Autoepistemic Logic. Default Logic, originating in [54],
takes a more proof-theoretic approach to the topic. A default theory consists of two
components: the monotonic component is a set of ordinary first-order axioms, and
the nonmonotonic component is a set of default rules.

In the special case I’ll consider here,4 a (normal) default rule

φ / ψ

4I will ignore general default rules in this exposition, and only consider normal defaults.
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looks like an ordinary rule of inference, but has a different interpretation: the
conclusion ψ can be inferred from the premise φ as long as it is consistent to do so.

A default rule like

(DR1) TurnSwitch / LightOn

could be read “Infer that the light will go on if you turn the switch.”
If the monotonic axioms are {TurnSwitch} and the only default rule is (DR1), then

LightOn can be concluded. But if the monotonic axioms are {TurnSwitch,¬LightOn},
then LightOn cannot be concluded.

Just as the rules of first-order logic allow a theory to be derived from first-order
axioms, Reiter assumes that extensions can be derived from a default theory: an
extension is a set of formulas that a perfect reasoner might infer from the monotonic
axioms and default rules of the theory.

But defaults can conflict, and this makes things complicated. The standard exam-
ple is the Nixon Diamond: the monotonic theory is {Quaker(Nixon),Republican(Nixon)}
and there are two default rules:

Quaker(Nixon) / Pacifist(Nixon) and Republican(Nixon) / ¬Pacifist(Nixon).

Here, it is not clear what to say: both default rules can be consistently applied
separately to the monotonic axioms, but not both. Reiter associates two extensions
with the Nixon Diamond: one concludes that Nixon is a pacifist, the other that Nixon
is not a pacifist. Given the information in the default theory, and forgetting whatever
else we know about Nixon, there is no way to choose between these two extensions.

Theorists differ about how to think about this, but the most interesting interpreta-
tion, from a logical standpoint, is that the relation between premises and their logical
consequences is not unique in nonmonotonic logic: perfect reasoners can draw
different sets of conclusions from the same default theory. This idea is particularly
attractive in metaethical applications of nonmonotonic logic; see John F. Horty’s
work, cited in the bibliography.

Reiter’s main technical achievement in [54] consists of two definitions of the
extension relation, and a proof that the definitions are equivalent. For more about
default logic, see [7, 18, 32, 57], and any of the general treatments of nonmonotonic
logic listed in the bibliography.

The thought behind autoepistemic logic is that a default rule applies unless the
reasoning agent knows something to the contrary; this suggests that defaults can
be formalized using an epistemic modal operator. For more about this approach,
see [33] and (again) any of the general references to nonmonotonic logic in the
bibliography.

The field of Argumentation Theory is only tenuously connected to KR, but it
uses ideas from nonmonotonic logic and is potentially important for philosophy.
The idea is to treat arguments abstractly, constructing a theory of notions like the
relations of attack and defeat between arguments, and attempts to develop a notion
of extension for arguments analogous to Reiter’s extensions for default logic. The
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literature on Argumentation Theory is by now rather extensive. It has been applied
to many reasoning domains, including the law, but has not yet gotten the attention it
deserves from philosophers.5

For general discussions of Argumentation Theory. see [8, 53]. [22] is an early,
influential paper in the field. For applications to the law, see, [34, 56].

Although I will only mention the programming language PROLOG and its exten-
sions briefly here, there is a strong, continuous tradition of work in this area in KRR.
With its declarative programming style, PROLOG programming offers a distinctive
and important compromise between declarative transparency and implementability.
PROLOG’s negation-as-failure provides a connection to nonmonotonic reasoning.

And PROLOG can be extended in interesting ways. Some of these extensions
become large-scale projects that attract research groups, and offer KRR services for
important areas of reasoning. I have already mentioned Ray Reiter’s extension in
[55] of PROLOG into a language for cognitive robotics. Stable models and answer
sets are another area of this kind; see [24].

Horty’s work combining nonmonotonic logic and deontic logic provides a good
example of how ideas originating in KRR can be fruitfully applied in metaethics;
see [28–31]. Certainly, these ideas can be applied in many other areas of philosophy
as well.

18.5 How Can a Philosopher Access the Field?

Much of the literature in KRR is technical, but this should not be a problem for
formal philosophers—especially since so much of it overlaps with philosophical
logic. For those who want a systematic introduction, [10] is an excellent resource.
For those interested in specific topics, as well as references to the literature, [64] is a
very useful resource. For commonsense reasoning, see [17, 50]. If anyone wants to
get a comprehensive, detailed sense of the research in this field, there is nothing like
the KRR proceedings listed above in Footnote 2. There is a great deal of material
there, but the quality is very high.
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Chapter 19

Representing Uncertainty

Sven Ove Hansson

Abstract Our uncertainty about matters of fact can often be adequately represented
by probabilities, but there are also cases in which we, intuitively speaking, know
too little even to assign meaningful probabilities. In many of these cases, other
formal representations can be used to capture some of the prominent features of
our uncertainty. This is a non-technical overview of some of these representations,
including probability intervals, belief functions, fuzzy sets, credal sets, weighted
credal sets, and second order probabilities.

19.1 Uncertainty in Decisions

Many decisions are difficult because we do not know the effects of our alternatives.
Consider the following examples:

– You have been offered a free two-day hang-gliding course, but you partner is
worried, and says: “You must first find out how dangerous it is.”

– You are tempted to buy a lottery ticket. The top prize would solve all your
financial problems, but the ticket is quite expensive. Should you buy it?

– You are offered to bet on a horse but you do not know its chances.
– The authorities have to decide if a new chemical can be used, but they do not

know what effects it may have on human health and the environment.

In the first two cases it is likely that probabilities can be of some help (but the
decision may still be a very difficult one). In the last two cases it is not obvious that
probabilities can at all be used. Can formal methods nevertheless be used to throw
light on decision problems like these?

The formal representation of uncertainty has mostly been discussed in contexts
of decision-guidance, but the topic is interesting also apart from applications
to decision-making. Formal representations can be used to distinguish between
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different kinds of ignorance or lack of knowledge, and they can also contribute to
our understanding of phenomena such as belief change and conditional beliefs.

19.2 Possibility Sets and Weight Functions

You can be uncertain about various matters, for instance about the state of the world,
how to describe it, what options are available to you in a decision, your evaluation of
various outcomes, and your own moral and philosophical principles. This chapter
is devoted to uncertainty about the state of the world and about the correctness
of our descriptions of it.1 The simplest representation of such uncertainty is what
we may call a possibility set, a set consisting of the alternatives one is uncertain
between. Suppose that I know that either Ann, Bob, or Cai baked the cake, but I do
not know which of them. Then the cake was baked by a member of the possibility
set {Ann, Bob, Cai}.

In many cases, our uncertainty concerns a number, i.e. the value of a numerical
variable. Then the possibility set will be a set of numbers, a numerical possibility

set. In the most common applications, such sets have the form of intervals. Even if
you do not know how much money you have on your account, you may know that
you have between e500 and e1000. Then the number of euros on your account is
an element of [500, 1000], the set of real numbers not lower than 500 and not higher
than 1000. The common rules of arithmetic can be extended to intervals, as outlined
in Box 19.1 and illustrated in the following examples [22, pp. 11–14]:

She has between e1000 and e2000 and he has between e500 and e700.
Thus, together they have between e1500 and e2700, and she has between
e300 and e1500 more than he has.

There will be between 10 and 20 participants in the competition, and each
of them will use between 3 and 5 fishing-rods. Therefore, between 30 and 100
fishing-rods will be used.

Box 19.1 Some rules of interval arithmetic

[a, b] + [c, d] = [a + c, b + d]
[a, b] − [c, d] = [a − d, b − c]
[a, b] × [c, d] = [min(a × c, a × d, b × c, b × d),max(a × c,

a × d, b × c, b × d)]
[a, b] × [c, d] = [a× c, b× d] if a, b, c, and d are all non-negative.

1It is sometimes unclear whether an agent’s uncertainty in a particular matter concerning herself
is attributable to her lack of factual information or to the fact that she has not made some decision
that could have resolved the uncertainty. This type of “ambiguous” uncertainty underlies several
of the well-known decision-theoretical paradoxes [15].
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Possibility sets provide a simple but also very limited form of uncertainty represen-
tation. We often have reasons to differentiate between the elements, and put more
weight on some than on the others. If I know that Cai is very fond of baking, then I
may give more weight to the possibility of her being the baker than to Ann or Bob.
This can be expressed by assigning numbers to each of them. I may for instance
introduce a function f such that f (Ann) = 0.25, f (Bob) = 0.25, and f (Cai) = 0.50.
This is our second major form of uncertainty representation, a weighted possibility

set. It consists of a possibility set and a weight function that assigns a weight to each
of its elements. We will assume that the weights are non-negative and that they add
up to 1.

The weight function is often construed as a probability function. It is important
to recognize that the notion of probability has a precise mathematical definition.
A probability function is a function that satisfies the laws of probability, the laws
obeyed by random events in the real world, such as throws of dice and coins.
These laws are elegantly summarized in the Kolmogorov axioms that are given in
Box 19.2. A mathematical entity that does not satisfy these laws should not be called
“probability”.

There are two major interpretations of probabilities. First, as in Fig. 19.1, we
can think of them as mental entities. In that case, if you assign the probability
1/6 to the dice yielding a six, you make a report on your own state of mind, a
“subjective” probability. Alternatively, as in Fig. 19.2, we can think of probabilities
as properties of the physical world, existing independently of our minds. In that case
your report on the dice is a statement about (tendencies in) the world, an “objective”
probability. These two interpretations lead us to quite different developments in the
representation of uncertainties. Let us begin with the former.

19.3 The Subjective Interpretation

Many proponents of the subjective interpretation are Bayesians. They maintain that
in order to be rational, a person’s subjective degrees of belief have to comply with
the probability axioms. According to this view, rational uncertainty can always be
represented by a probability function. If you are uncertain about whether Bern is
the capital of Switzerland, then there must be some definite probability lower than
1 that you can assign to the statement “Bern is the capital of Switzerland”. For the
Bayesian, uncertainty is just another name of probability.

The major argument for this position is also an argument for the maximization
of expected (i.e. probability-weighted) utility. It can be shown that a person who
does not abide by this decision rule, or whose probability assignments violate the
probability axioms, can have a Dutch book made against her. By this is meant a bet
that she would be sure to lose whatever the outcome of the game would be. (See
Box 19.3.) Since this is irrational behaviour, it can then be concluded that in order
to be rational we should all make our decisions in accordance with a subjective
probability assignment that obeys the axioms [16, pp. 381–382].
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Box 19.2 Axioms for degree-of-belief representations

The Kolmogorov axioms for probability

Let � be the set of all events under consideration. A,B, . . . are sets of
events, i.e. subsets of �. Let p be a function from sets of events to real
numbers. Then p is a probability function if and only if it satisfies the
following three axioms:

1. p(A) ≥ 0 for all A⊆�. (non-negativity)
2. p(�) = 1 (normalization)
3. If A ∩ B = ∅, then p(A ∪ B) = p(A)+ p(B). (finite additivity)

The above formulation can only be used if the number of events (elements
of �) is finite. In the more general case, axiom 3 has to be reformulated,
and the following should hold for an infinite series A1, A2, . . . of events
such that no two of them have an element in common:

3’. p(A1 ∪ A2 ∪ . . . ) =
∞∑

n=1

An (additivity)

Axioms for other degree-of-belief representations

Alternative degree-of-belief representations usually satisfy the first two but
not the third of the Kolmogorov axioms. Instead of (3), the belief function
Bel of Dempster-Shafer theory satisfies the following:

4. If A ∩ B = ∅, then Bel(A ∪ B) ≥ Bel(A) + Bel(B). (finite
superadditivity)

In possibility theory, (3) is replaced by the following requirement on the
possibility measure Poss:

5. Poss(A ∪ B) = max(Poss(A), Poss(B))

Importantly, this argument refers to the requirements of rational decision-
making, not those of rational belief. The demands of rational action (practical
rationality) and those of rational belief (theoretical rationality) need not coincide.
Holding certain beliefs may be rational in the sense of furthering the achievement
of practical goals without being rational in the ratiocinative sense. The Dutch book
argument does not tell us what we should believe, only what we should act as
believing.

Apart from that, empirical studies have shown that human behaviour commonly
violates the Kolmogorov axioms [5, 10]. Therefore, if we are looking for a
representation of actual human uncertainty, then we may have good reasons to look
for one that does not satisfy the axioms. And of course, if we are not convinced
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Fig. 19.1 Subjective
probabilities

by the Dutch book argument, then we are free to choose rationality principles for
(decision-guiding) beliefs based on other criteria.

Several numerical representations of subjective degrees of belief have been
presented that are weaker, i.e. require less, than the Kolmogorov axioms. Among
the most important of these are the so-called belief functions of Dempster-Shafer
theory [2, 25]. The characteristic difference between probability functions and belief
functions is that the latter can assign more weight to a set than the sum of what it
assigns to its elements. For an example, consider the two mutually exclusive events
“The Nigerian team will defeat the South African one tomorrow” (N ) and “The
South African team will defeat the Nigerian team tomorrow” (S). First suppose
that your degrees of belief are represented by a probability function p that assigns
the value 0.1 to each of the two events, i.e. p(N) = p(S) = 0.1. It then follows
that p({N, S}) = 0.2, i.e. the probability of either team winning is the sum of the
probabilities of each of them winning. Next, suppose that instead, your degrees of
belief are represented by a belief function Bel, also such that Bel(N) = Bel(S) =
0.1. From this we cannot conclude what the value of Bel({N, S}) is. It may be
equal to 0.2, but it may also be higher, for instance 0.8. This is sensible under some
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Fig. 19.2 Objective
probabilities

interpretations of Bel, since you may have reasons to believe that either N or S will
happen, without having much evidence in favour of either of the two alternatives.

All this has been based on the assumption that the subjective uncertainty that
we intend to represent reflects our lack of knowledge about the physical world.
However, there are also other sources of uncertainty, in particular vagueness and
ambiguities in our language.

ADILAH: Look at him! How would you describe him? Is he bald or not?
MIAHUA: I am inclined to call him bald, but I do not know for sure.

Miahua is not uncertain about what the man’s head looks like, but she is uncertain
about how to use the word “bald”. She may assign weights to the two alternatives,
perhaps 0.6 to “bald” and 0.4 to “not bald”. However, these numbers need not be
interpretable as probabilities. Another option is to interpret them as indicating fuzzy

set membership.
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Box 19.3 An example of a Dutch book

Bob entertains the following beliefs about a dice:

The probability that it yields “1” is 1/6.
The probability that it yields “4” is 1/6.
The probability that it yields “6” is 1/6.
The probability that it yields a prime number is 4/6.

Martha offers Bob the following bets:

If you pay e2 you get e13 if it yields “1”.
If you pay e2 you get e13 if it yields “4”.
If you pay e2 you get e13 if it yields “6”.
If you pay e8 you get e13 if it yields a prime number.

Since Bob believes all these bets to be favourable he accepts them all. As a
result of this, he pays e14, and whatever the outcome of the throw he will
receive e13 back. This is a sure loss, in other words a Dutch book. The
reason for this failure is that his probability assignments do not satisfy the
Kolmogorov axioms. (See Box 19.2.)

In common (“crisp”) set theory, there is always a definite answer to whether or
not an object is an element of a given set. A set can be represented by an indicator
function (membership function, element function). Let μA be the indicator function
of a set A. Then for all x, μA(x) is equal to 1 if x is an element of A, and equal
to 0 if it is not. The function does not take any other value than 0 or 1. In contrast,
the indicator function of a fuzzy set can take any value in the interval [0, 1]. If
μA(x) = .5, then x is “half member” of A, and if μA(x) = .6, then it is somewhat
more member than non-member [28]. Fuzzy sets can be used to represent vagueness,
such as the vagueness that made Miahua uncertain whether the man was bald or not
[26, p. 27]. Fuzzy set membership does not satisfy Kolmogorov’s axiom system.

Possibility theory is a variant of fuzzy set theory in which a function Poss with
the properties of an indicator function replaces the probability function as a measure
of uncertainty [3, 29].

19.4 Credal Sets

Let us return to Fig. 19.2, and to the account of probabilities that treats them as
properties of the physical world. This is an interpretation with a strong intuitive
appeal. Suppose I tell you that the probability that a certain dice will yield a
six is 1/6. You investigate the dice and find that it is loaded and yields a six in
about 1 in 3 throws. When telling me this, you expect me to say “Oh, then I was
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wrong”, rather than “But what I said was right, since I reported a probability, and
probabilities are states of mind”. In cases like these we take probabilities to represent
the (counterfactual) frequency that would be recorded if a similar triggering event
were repeated under similar circumstances a large number of times. The probability
that an atom of Fermium-257 will decay within the next 100 days is close to 0.5.
This is a property of the natural world, not merely a subjective belief.

But things do not end here. If there are objective probabilities, then we can be
(subjectively) uncertain about which these probabilities are. Consider the following
example:

There are two urns in the room. One of them contains 5 red and 95 black balls.
The other contains 95 red and 5 black ones. Someone puts one of the urns −
you do not know which − in front of you and asks: “If you draw a ball from
this urn, what is the probability that it is red?”

A quite natural answer would be “It is either 0.05 or 0.95”. More precisely,
you hesitate between two probability functions, p1 and p2, which differ in the
probabilities they assign to the event (R) that the ball you draw is red. We have
p1(R) = 0.05 and p2(R) = 0.95. Your uncertainty can then be expressed with
the simplest uncertainty representation introduced above, namely a possibility set
{p1, p2}. A possibility set that has probability functions as its elements is called a
credal set ([20]; cf. [4]). This way of representing uncertainty has been favoured
by many philosophers, and also developed in considerable technical detail by
statisticians [1]. As one example of its use, climatologists studying the effects of
climate change on the probability of extreme weather events employ a range of
credible models that generate different probability functions. The outcome of their
calculations can then be expressed as a credal set, containing a range of probability
functions [9].

In many cases, uncertainty about a specific probability can be expressed as a
probability interval. Summarizing the outcomes of climate modelling, we may say
for instance: “Around 2050, the yearly probability of this whole valley being flooded
will be between 1% and 4%.” In general, if we have a credal set {p1, . . . , pn},
then for each event A we can find the minimal probability that it can assign to
an event A, i.e. the lowest value of pk(A) for any pk . This is the lower probability
generated by the credal set, often denoted p(A). The upper probability p(A) is
defined analogously, and together they form the probability interval.

Probability intervals are an intuitively accessible and often quite useful way to
express uncertainties [11]. However, it must be observed that information is lost
when we simplify a credal set {p1, . . . , pn} to the pair 〈p(A), p(A)〉 [27]. Consider
the following example:

A dollar coin has been found among the property of a deceased cardsharp. We
suspect that it may be unfair. We do not know in which direction it would then
be biased, but we know that the most biased coins available to him yield either
heads or tails with a frequency of 90%.

Here, the probability of heads in a single throw can be represented by a credal
set containing all the probability functions assigning probabilities between 0.1 and
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0.9 to heads in a single throw (H ). Therefore, p(H) = 0.1 and p(H) = 0.9. At
first sight it seems as if we can perform further calculations using just p(H) and
p(H). For example, the probability of three heads in a row (HHH ) is anywhere in
the interval [0.001, 0.729], so that the lower limit coincides with (p(H))3 and the

upper with (p(H))3. However, this pattern cannot be generalized. The probability
of getting heads in the first but not in the second throw (HT ) is anywhere in the
interval [0.09, 0.25]. This interval cannot be calculated from p(H) and p(H). In
fact it is not difficult to construct a credal set that has the same values of p(H)

and p(H) but a different value of p(HT ).2 As this example shows, the use of
probability intervals instead of the full credal set is as mathematically precarious
as it is intuitively accessible, and great care must therefore be exercised in the
calculative use of such intervals.

19.5 Weighted Credal Sets

The elements of a credal set may differ in their credibility. To represent these
differences we can assign weights to them, thus obtaining a weighted credal set.
Most commonly, these weights are probabilities, which leads to a model with
probabilities on two levels, as illustrated in Fig. 19.3.

The use of two levels of probabilities (first- and second-order probabilities) has
been put in doubt by philosophers since David Hume [17, pp. 182–183] who have
worried that if we allow for two levels, then there is no way to avert an infinite
regress of higher and higher orders of probability. However, since the two levels in
this model represent different types of entities, the process that took us from the first
to the second level cannot necessarily be repeated. If it cannot, then no such regress
gets started.

Another common criticism is that the two levels of probabilities are unnecessary
since they can always be reduced to one. The following variant of our cardsharp
example can be used to assess that argument:

Among the property of the deceased cardsharp we find a dime that may or
may not be biased. All biased dimes that have been made have either a 0.1 or
a 0.9 probability of heads. Our credal set is {p1, p2, p3}, where p1(H) = 0.1,
p2(H) = 0.5, and p3(H) = 0.9. Furthermore, our subjective probability
function p over the credal set is such that p(p1) = 0.25, p(p2) = 0.5, and
p(p3) = 0.25.

We are now going to throw the dime once. Given all this information, what
probability should we assign to it landing heads? The obvious answer is 0.5. We
obtain this answer by reducing the two levels to one [23, p. 58]. Letting p̂ denote the
resulting reductive probability function we have:

2Let the credal set consist of all probability functions that assign to p(H) a value in either of
the two intervals [0.1, 0.2] and [0.8, 0.9]. Then we still have p(H) = 0.1 and p(H) = 0.9, but
p(HT ) = 0.16.
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Fig. 19.3 Two-levelled
probabilities

p̂(H) = p(p1)× p1(H)+ p(p2)× p2(H)+ p(p3)× p3(H) = 0.5

At this point, a critic of the two-levelled model might well ask: “So what is the
point? Why all this trouble when you could instead, directly, have assigned the
subjective probability 0.5 to H?” But there is a good answer to that. Suppose that
we also want to know the probability of obtaining three heads in a row when the
coin is tossed thrice. That probability is:

p̂(HHH) = p(p1)×p1(HHH)+p(p2)×p2(HHH)+p(p3)×p3(HHH) = 0.245

which is different from (p̂(H))3 = 0.125. Thus, if we had followed the advice
of the critic we would have obtained the wrong answer to problems involving
iterated tosses of the coin. In order to get the right answer in a one-levelled model
we would have to give up the assumption that the different tosses in a series are
independent events, which is the precondition for deriving the probability of HHH

from that of H in the standard way [13]. Hence, the reduction of two-levelled to
one-levelled probabilities comes at a high price, namely that we cannot treat events
as independent which we intuitively perceive as such. In order to make sense of
the complex world that we live in we have to treat some events as similar but
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independent. This applies to both everyday and scientific reasoning. It is for instance
essential for the conceptualization of a repeatable scientific experiment. Although
two-levelled probabilities can in principle always be reduced to a single level, the
reduced account often has much less explanatory value.

The two-levelled model also has the advantage of providing a lucid account
of how empirical information makes us change our views on objective (physical)
probabilities. Suppose that we throw the above-mentioned coin five times, and get
a series of five heads (HHHHH or in short H 5). This makes us revise p and, in
particular, increase the value of p(p3), but how much? This we can find out with
standard conditionalization on the second level, i.e.

p(p3 | H 5) = p(H 5 | p3)× p(p3)

p(H 5 | p1)× p(p1)+ p(H 5 | p2)× p(p2)+ p(H 5 | p3)× p(p3)

≈ 0.90

and similarly p(p1 | H 5) ≈ 2 × 10−5 and p(p2 | H 5) ≈ 0.10. We now have
a revised second-level probability function, p( | H 5), which directly gives rise to
a new reductive probability function p̂( | H 5). With its help we can answer the
question “Given what we know after observing H 5, what is now our best estimate
of the probability that a toss of this coin yields heads?” The answer is p̂(H | H 5) ≈
0.86. This reductive conditionalization is of course very different from standard
conditionalization. An ordinary probability function p yields p(H | H 5) = 1 since
given that H 5 took place it is certain that H also took place [13].

The following example illustrates the practical importance of this type of
probability revision:

Two estimates have been made of the probability that a major explosion
will take place in the first year’s operation of a new explosives factory (E).
According to one estimate, that probability is p1(E) = 0.0001, and according
to the other it is p2(E) = 0.01. We believe the former estimate to be much
more reliable than the latter, and we have p(p1) = 0.999 and p(p2) = 0.001.
Hence the (reductive) probability of an explosion is p̂(E) ≈ 0.00011, which
means that we can almost disregard p2.

But after a couple of months a major explosion takes place. We therefore
update our second-level probability and obtain p(p1 | E) ≈ 0.91 and p(p2 |
E) ≈ 0.09. These estimates, rather than the original ones, should be used
for instance when we consider whether to open another factory of exactly the
same type.

Revisions of this type are an essential mechanism for learning from experience. The
change in an epistemic agent’s estimate of the (objective) probability of an event E

that ensues after learning that E has occurred can be used as a numerical measure
of the agent’s uncertainty concerning the probability of E [14].

We have focused in this section on the use of probability functions on the second
level in a two-levelled system. However, proposals have also been made to assign
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weights other than probabilities to credal sets, such as fuzzy sets or other measures
of “epistemic reliability” that do not satisfy the Kolmogorov axioms [7].

19.6 Decision-Making Under Uncertainty

Decision rules for uncertainty can be classified according to the information that
they require about the options that are available to be chosen between.3

Possibility sets. Suppose that for each of the options that we can choose between
we have a possibility set telling us what outcomes can follow, but we know nothing
about the comparative plausibility of these outcomes. In this case we have to base
the decision on the values of the outcomes. The most common decision rule for
this purpose is the maximin rule. It tells us to identify for each option its security
level, i.e. the value of the worst outcome that it can result in. We should then choose
one of the options with the highest security level. According to a variant of this
rule, the leximin rule (lexicographic maximin), if there is more than one alternative
with the highest security level, then the one with the highest second-worst outcome
should be chosen. If there is more than one alternative with the highest value of the
second-worst outcome, then the third-worst outcomes are compared, etc. [24].

The maximin rule is maximally cautious. The other extreme is represented by the
maximax rule according to which we should choose one of the alternatives with the
highest hope level (level of the best outcome). If the values of the outcomes can be
expressed in numbers, then a middle road can be chosen with the help of Hurwicz’s

index. This is a number α between 0 and 1 that expresses the degree of cautiousness
(not the degree of pessimism, although that is how it is usually described). The
recommendation is to choose an option that maximizes the value of

α ×min(A)+ (1− α)×max(A)

where min(A) is the security level and max(A) the hope value [18].

Credal set. Given a credal set, we can apply the maximin expected utility rule

(MMEU). Then for each option we have to find the probability function that
gives rise to the lowest expected utility (probability-weighted utility). This is
the probabilistic security level of the option in question. The rule requires that
we choose an option with the highest possible probabilistic security level [6].
An alternative would be to calculate both the probabilistic security level and
the analogous probabilistic hope level, and then apply Hurwicz’s index to find a
compromise between the two.

Weighted credal set. If we have a weighted credal set, then we can calculate
the weighted average of the probabilities, assigning the appropriate weight to each
probability. Each weighted average is then multiplied with the corresponding utility,
in the usual manner of expected utility calculations. If the weights are second-order

3For more information on decision rules, see Chap. 34.

34
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probabilities, then this amounts to using reductive probabilities to calculate expected
utilities. The same method can also be used for weights that do not satisfy the
probability axioms.

Daniel Ellsberg [4] proposed an adjustment of this rule to make it more cautious.
Suppose that we have a measure (such as p̂) that represents the best probability
estimate. We can then weigh it against the probabilistic security level, using an index
of the same type that was proposed by Hurwicz. The resulting value can be described
as a cautionized variant of expected utility.

Hence, even if we have limited information about probabilities, or none at all, formal
representations of uncertainty make it possible to consistently apply decision criteria
such as degrees of cautiousness. But of course, when more information is available,
it is mostly advisable to apply a decision procedure that makes use of it.
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Chapter 20

Belief Change

Sven Ove Hansson

Abstract All formal models of belief change involve choices between different
ways to accommodate new information. However, the models differ in their loci of
choice, i.e. in what formal entities the choice mechanism is applied to. Four models
of belief change with different loci of choice are investigated in terms of how they
satisfy a set of important properties of belief contraction and revision. It is concluded
that the locus of epistemic choice has a large impact on the properties of the resulting
belief change operation.

20.1 Requirements on Belief Change

The rationality of beliefs can be discussed either in a static or a dynamic perspective.
In a static perspective, we discuss what rationality requires of a person’s state of
beliefs, taken as a snapshot at a particular point in time. In a dynamic perspective,
the topic is instead how one should rationally change one’s state of belief in response
to new information. The logical investigation of belief change came to light in the
1980s and is therefore a comparatively new area of formal philosophy.

In the static approach to belief rationality we can distinguish between on the
one hand substantial requirements of rationality and on the other hand formal
(or structural) requirements. For instance, suppose that after his university studies in
biology, Donald still believe that dinosaurs and humans have once lived side by side.
Then we would consider his belief system to be irrational, for substantial rather than
formal (structural) reasons. If he believes that all snakes are poisonous, and he also
believes that the black-tailed python is a non-poisonous snake, then this provides
us with another, structural, type of reason to consider his current belief system to
be irrational. The crucial criterion why this is a structural rather than a substantial
failure of rationality is that we can discern the irrationality without even knowing
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the meaning of the three terms “snake”, “black-tailed python” and “poisonous”.
Structural rationality falls within the purview of logic and will therefore be at our
focus here.

Can structural requirements be made also in the dynamic approach to belief
rationality? More precisely, are there sensible rationality requirements on the
process of belief change? The following examples are intended to show that there
may indeed be such requirements, but also that these requirements may not be
uncontroversial:

Example 1 For many years, Derek was confident that his wife was faithful
to him. But one day a neighbour told him stories that convinced him that she
was cheating on him. When he confronted her, she could explain everything,
and he regained his previous strong belief in her faithfulness. But something
strange happened. He never regained his belief that she loved him. He could
not explain why. All misunderstandings had been cleared, and everything else
was as before, but still he was unable to believe in her love any more.

Derek’s pattern of belief change contradicts the following, seemingly quite com-
pelling requirement on rational belief change:

The recovery principle: If the agent first gives up and then fully regains a
belief, then she will also regain all the beliefs that she had before this sequence
of loss and regain took place.

But obvious as it may seem, the recovery principle is far from uncontroversial. The
following example has been put forward to show that it does not hold in general:

Example 2 [10] First I believed that Cleopatra had a son, and therefore of
course also that she had a child. But then a person whom I rely on told me
that the book in which I learned this was a historical novel. Accepting this,
I gave up my belief that Cleopatra had a child. But soon afterwards I heard
a highly respected scholar mention in passing that Cleopatra was a mother.
Then I again believed that Cleopatra had a child. However, I did not regain
my previous belief that she had a son.

The pattern exhibited in this example contradicts the principle of recovery. After
first losing and then taking back my belief that Cleopatra had a child, I still lack
one of the beliefs that I had originally, namely that she had a son. There has been a
considerable debate on whether examples like this disprove the recovery principle
or they are so untypical that the principle is still a useful idealization [8, 15].

Our next example concerns the acquisition of new beliefs:

Example 3

LOGICIAN: Yesterday you told me that you had no idea whatsoever whether
Mohammed has any children. Now you profess to be firmly convinced that he is
a father. What has happened?
JESSICA: Yesterday evening I saw him in the supermarket with baby food in his
shopping cart.
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LOGICIAN: I don’t see how that can prove him to be a father. He could for instance
be shopping for a friend or a relative. Is this all the new information that made you
change your mind?
JESSICA: Yes it is.
LOGICIAN: Is there any way in which you can logically derive that he is a father
from the fact that he bought baby food, perhaps in combination with something else
you knew before?
JESSICA: No, I don’t think so.
LOGICIAN: You disappoint me. You received new information that does not
contradict what you believed before. Then you can conclude whatever follows
logically from the new information in combination with your previous beliefs. But
that is all. If you go beyond that, how can you be trusted as a rational thinker?
JESSICA: I’m sorry if I disappoint you, but given what I saw, it seems so plausible
that he is a father that I can’t help believing it.

Our Logician advances the following guideline for rational belief change:

The principle of deductivism: If the agent adopts a new belief that does not
contradict her previous beliefs, then she comes to believe in everything that
follows logically from the combination of her old beliefs and the new belief,
but nothing beyond that.

As should be clear from the example, this is a contestable principle since it requires,
essentially, that we refrain from making any non-deductive inferences.

The theory of belief change is concerned with how human beings change their
beliefs. Since our brains (and minds) are finite, we should expect them only to have
room for a finite number of beliefs. However, since our language is unlimited, we
have to be careful about how we express the requirement of finitude. For instance, I
believe in each of the sentences on the following infinite list:

Beethoven completed less than 10 symphonies.
Beethoven completed less than 11 symphonies.
Beethoven completed less than 12 symphonies.
. . .

Beethoven completed less than 1.000 symphonies.
. . .

Each of these sentences differs in meaning from all the others, so it follows from my
assent to all of them that my set of beliefs contains infinitely many sentences that
are unique in terms of meaning. But obviously, this does not make my set of beliefs
infinite in any interesting way. All of these sentences follow from the first. Instead
of requiring that the set of beliefs be finite we should require it to be finite-based, i.e.
everything that it contains should follow logically from some finite set of beliefs.

Finite-basedness is of course a static requirement. The corresponding dynamic
requirement is that finite-basedness should be preserved under belief change. This
should apply both when we add a new belief and when we remove an old one. Thus
the following two principles should both apply:
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The principle of finite-based contraction: If an agent with a finite-based set
of beliefs gives up one of these beliefs, then her new set of beliefs is also
finite-based.

The principle of finite-based revision: If an agent with a finite-based set of
beliefs adopts a single new belief, then her new set of beliefs is also finite-
based.

We now have four principles of rationality for belief change that are all expressible
in natural language: Recovery, Deductivism, Finite-based contraction, and Finite-
based revision. In the remainder of this chapter, we will introduce some formal
approaches to belief change and use these four postulates to compare their
properties.

20.2 A Basic Framework for Belief Change

To begin with, we need a general framework in which we can express different
approaches to belief change. Following the well-established tradition in the field, we
will assume that the agent’s (static) belief state at each point in time is represented
by a set of sentences, called the belief set and denoted K. The belief set is logically
closed (closed under logical consequence), by which is meant that it contains
everything that it logically implies. This can be expressed with a consequence
relation Cn, such that for any set X of sentences, Cn(X) is the set of its logical
consequences. Our requirement that K is logically closed can then be expressed
with the simple formula K = Cn(K).

Logical closure is an idealization, and obviously not a realistic property of a
person’s set of beliefs. No one has sufficient logical and mathematical competence
to believe in everything that follows logically from what she believes. However, as
an idealization it is quite useful, since it allows us to work with much simpler formal
models than what we would otherwise have needed.

In the logic of belief change, all changes result from inputs. An input usually
consists in a sentence and an instruction saying what to do with that sentence.
Standardly there are three such instructions, namely “remove this sentence”, “add
this sentence”, and “add this sentence and retain consistency”.

The instruction “remove this sentence” is performed with an operation of
contraction, usually denoted ÷. Thus K ÷p is the outcome of removing p from K .
Contraction is assumed to satisfy the following postulates:

K ÷ p ⊆ K (inclusion)

K ÷ p = Cn(K ÷ p) (closure)

p /∈ K ÷ p, unless p is a logical truth (success)

The instruction “add this sentence” is performed with the operation of expansion,
denoted +. It is a simple set-theoretical operation, defined as follows:

K + p = Cn(K ∪ {p})
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Expansion has the virtue of simplicity, but it also has the damaging property
of bringing us to inconsistency whenever we assimilate some information that
contradicts what we believed before. (If ¬p ∈ K then K + p is inconsistent.)
Therefore we need the more sophisticated operation of revision that corresponds to
the instruction “add this sentence and retain consistency”. Revision is denoted ∗ and
assumed to have the following properties:

K ∗ p = Cn(K ∗ p) (closure)

p ∈ K ∗ p (success)

K ∗ p is consistent if p is consistent (consistency)

We now have sufficient notation to express the four conditions from Sect. 20.1 in
formal language:

K ⊆ K ÷ p + p (Recovery)
If ¬ p /∈ K then K ∗ p = K + p (Deductivism)
If K is finite-based, then so is K÷ p (Finite-based contraction)
If K is finite-based, then so is K ∗ p (Finite-based revision)

Let us now turn to the construction of belief change operations. Expansion is
set-theoretically defined, but how should contraction and revision be constructed?
Beginning with contraction, there are many ways to remove a sentence p from a
belief set K that contains it. Obviously, p itself has to be thrown out, but that is
not enough. We also have to make sure that we do not preserve elements of K that
together imply p. For instance, if q ∈ K , then we also have q → p ∈ K (since
p ∈ K and K is logically closed). Since q ∈ K and q → p ∈ K together imply p,
at least one of them has to go in the construction of K ÷ p.

Similar considerations apply to revision. If ¬p is in K , then it has to be removed
in the construction of K ∗p in order to achieve consistency. For every sentence q in
K we also have q → ¬p in K , and either q or q → ¬p has to be removed in the
construction of K ∗ p.

Thus, both contraction and revision involve choices. We can frame these choices
in various ways: as a choice which sentences to retain, a choice which sentences to
remove, a choice among possible outcomes, etc. In the next four sections we will
investigate four alternative frames for the choices involved in belief change. These
frames turn out to induce different properties in the operations, as we will see by
testing them against our four postulates from Sect. 20.1.

20.3 AGM: The Standard Approach

In 1985, Carlos Alchourrón (1931–1996), Peter Gärdenfors, and David Makinson
published a paper that became the starting-point of modern research on the logic
of belief change. The model they proposed is usually called “AGM” after their
initials. When constructing contraction, K ÷ p, they started with the observation



406 S. O. Hansson

that among the many subsets of K not implying p, some are inclusion-maximal, i.e.
they are as large as they can be without implying p. A set X is an inclusion-maximal
p-excluding subset of K (in short: a p-remainder of K) if and only if it is a subset
of K that does not imply p, but if we extend it with any additional element from K ,
then it will imply p. The set of p-remainders of K is denoted K⊥p.

Intuitively, we want to retain as much of K as we can without obtaining p. That
could lead us to take one of the elements of K⊥p as the contraction outcome.
However, it may be impossible to single out one of these elements as better than all
the others. If several p-remainders share the top position, then our post-contraction
beliefs should be those that are held in all these top remainders. Formally, this
is achieved by introducing a selection function γ that selects a subset γ (K⊥p)

of K⊥p that consists, intuitively speaking, of the “best” elements of K⊥p. The
outcome of contracting K by p is the intersection of all elements of γ (K⊥p), i.e.

K ÷ p =
⋂

γ (K⊥p).

This construction is called partial meet contraction. One way to construct γ is to
base it on a transitive relation covering all subsets of K that are x-remainders for
some sentence x. If γ selects the elements of K⊥p that are highest ranked according
to such a relation, then the resulting contraction is a transitively relational partial

meet contraction.
The AGM paper reported axiomatic characterizations of these operations. A

sentential operation on a belief set K is a partial meet contraction if and only if
it satisfies the following six axioms:

K ÷ p = Cn(K ÷ p) (closure)
K ÷ p ⊆ K (inclusion)
If p /∈ K then K ÷ p = K (vacuity)
p /∈ K ÷ p, unless p is a logical truth (success)
If p↔q is a logical truth then K ÷ p = K ÷ q (extensionality)
K ⊆ (K ÷ p)+ p (recovery)

Furthermore, such an operation is transitively relational if and only if, in addition, it
satisfies the following two axioms:

(K ÷ p) ∩ (K ÷ q) ⊆ K ÷ (p&q) (conjunctive overlap)
If p /∈ K ÷ (p&q) then K ÷ (p&q) ⊆ K ÷ p (conjunctive inclusion)

The construction of revision in AGM is based on the simple observation that if p

cannot be consistently added to K , then that is because ¬p is in K . (K + p is
inconsistent if and only if K implies ¬p.) Therefore, all we have to do to make p

consistently addable is to first remove ¬p. This line of reasoning (which can also
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be found in earlier work by Isaac Levi) gives rise to the following construction of
revision in terms of contraction and expansion:

K ∗ p = (K ÷¬p)+ p (the Levi identity)

It turns out that if revision is defined in this way, then the contraction operation on
which the revision operation ∗ was based can be regained as follows:

K ÷ p = K ∩ (K ∗ ¬p) (the Harper identity)

An operation is called a partial meet revision if and only if it is obtained via the Levi
identity from a partial meet contraction, and it is a transitively relational partial

meet revision if and only if it is obtained in that way from a transitively relational
partial meet contraction. The AGM trio showed that partial meet revision is exactly
characterized by the following six axioms:

K ∗ p = Cn(K ∗ p) (closure)
K ∗ p ⊆ K + p (inclusion)
If ¬p /∈ K then K + p ⊆ K ∗ p (vacuity)
p ∈ K ∗ p (success)
If p↔q is a logical truth then K ∗ p = K ∗ q (extensionality)
If p is consistent then so is K ∗ p (consistency)

In order to characterize transitively relational partial meet revision, the following
two axioms have to be added:

K ∗ (p&q) ⊆ (K ∗ p)+ q (superexpansion)

If¬q /∈ K ∗ p then (K ∗ p)+ q ⊆ K ∗ (p&q) (subexpansion)

Let us now return to the four principles that we introduced in Sect. 20.1 and
reformulated as formal postulates in Sect. 20.2. As we saw above, Recovery is
among the postulates for contraction, so it is satisfied. Deductivism is also satisfied;
it follows directly from two of the revision postulates (inclusion and vacuity).
However, both the remaining two postulates, Finite-based contraction and Finite-
based revision, fail for the AGM operations.1

1See [12] for a proof that Finite-based contraction does not hold. The proof that Finite-based
revision does not hold has not been published, and is therefore given here: Let S be an infinite
set of logical atoms in the language, let p be another such atom, and let K = Cn({¬p}). Then
{¬p ∨ s | s ∈ S} is a subset of K that does not imply ¬p. It follows from compactness and the
axiom of choice that there is some X such that {¬p ∨ s | s ∈ S} ⊆ X ∈ K⊥¬p [1]. Let γ

be a selection function such that γ (K⊥¬p) = {X} and let ∗ be the revision based on γ . Then
{¬p ∨ s | s ∈ S} ∪ {p} ⊆ K ∗ p, and since K ∗ p is logically closed we have S ⊆ K ∗ p and
consequently K ∗ p is not finite-based.



408 S. O. Hansson

20.4 Choosing Among Possible Worlds

A set of sentences is maximally consistent if and only if it is consistent but there is
no sentence in the language that can be added to it without making it inconsistent.
Maximally consistent sets are often called possible worlds since their structure is
considered suitable for a total description of a state of the world.

A belief set K is compatible with a possible world if and only if nothing in the
belief set contradicts it. Due to the special properties of possible worlds, this is
equivalent with the requirement that the belief set is a subset of the possible world.
It can also be shown that every belief set is equal to the intersection of all possible
worlds that includes it. We can therefore replace belief sets by sets of possible
worlds in our deliberations. The agent’s belief state is then represented by a set
of possible worlds (whose intersection is equal to the belief set).

A simple geometrical representation can be used to aid our intuitions [9]. In
Fig. 20.1, think of each point in the square as a possible world. The circle in the
middle contains exactly those possible worlds that are compatible with the current
belief state. The area covered by the parabola represents those possible worlds in
which p holds. This representation is quite intuitive, once you get accustomed to
the fact that a smaller area represents a larger belief set, not the other way around.

Belief revision has a remarkably simple representation in this framework. In our
example, consider the revision K ∗p. Its outcome should be a set of possible worlds
in which p is true. Since we want to change as little as possible, the obvious solution
is to let it consist of the intersection of the circle and the parabola, i.e. of those of
the currently unrejected worlds in which p is true.

But this was a simple case, in which the new information was compatible with
what was already believed. What should we do if the parabola (p) and the circle
(K) have an empty intersection? Well, since there are no p-worlds in K we will
then have to do with p-worlds that are as close, or similar, to K-worlds as possible.
For that purpose we can think of K as surrounded by a system of spheres, with the
worlds most similar to it in the sphere closest to K itself, those second-most similar

Fig. 20.1 Revision by a
sentence p that is compatible
with the present belief set

p
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Fig. 20.2 Revision by a
sentence p that is
incompatible with the present
belief set p

Fig. 20.3 Contraction by p

p

in the next sphere, etc., as in Fig. 20.2. The outcome of revision by p is then equal
to the set of p-worlds in the innermost sphere that contains some p-worlds. (Such a
system of spheres corresponds, of course, to an ordering of the possible worlds.)

Contraction is somewhat less intuitive than revision in possible world models.
To contract by p means to allow for the possibility that ¬p, i.e. to allow for
some possible worlds in which ¬p holds. In a spheres model, these should be the
¬p-worlds that are closest to the belief set, i.e. those that are situated in the closest
sphere that contains some ¬p-worlds. The contraction outcome will then be the
union of these ¬p-worlds and the original belief set, as shown in Fig. 20.3.

Although the possible worlds construction is quite different from the partial
meet construction, the two ways to construct contraction and revision turn out to
yield exactly the same result. In other words, an operation on a belief set K is a
transitively relational partial meet contraction if and only if it can be constructed in
the way indicated in Fig. 20.3, and it is a transitively relational partial meet revision
if and only if it can be constructed in the way indicated in Fig. 20.2. This surprising
result is based on a one-to-one correspondence called “Grove’s bijection” between
remainders and possible worlds [9], [11, pp. 53–55].
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Hence, it makes no difference for the belief change operations if we apply
a choice mechanism to remainders or to possible worlds.2 This might give the
impression that it makes no difference what we apply the choice mechanism to.
That, however, is an unjustified generalization, as we will see in the following two
sections.

20.5 Belief Bases

In an infinite language, belief sets are very large entities. Since they contain all
logical consequences of what the agent believes, they contain a lot of sentences that
provide logical connections between epistemically unrelated beliefs. This can have
rather strange consequences:

I believe that the earth is (approximately) spherical (e). I also believe that I
have my house key in my left trouser pocket (k). Consequently, I believe that
the earth is spherical if and only if my house key is in my left pocket (e ↔ k).
I put my hand in the pocket to pick up the key. It is not there! I have to give up
my belief in k. I cannot then, on pain of inconsistency, retain both my belief
in e and my belief in e ↔ k.

Both e and e ↔ k are elements of the belief set. Therefore, when I find out that k

is false, I have to choose between retaining e and retaining e ↔ k. The option of
keeping e ↔ k and giving up e is not excluded automatically, but has to be excluded
by the selection mechanism. This appears inappropriate, since e ↔ k is a merely
derived belief that should arguably disappear automatically when k is given up.

Considerations like this led to the construction of belief change operations in
which the actual choice takes place among “real” beliefs (like e and k), and the
“merely derived” beliefs (like e ↔ k) have no role in the selection process. The
crucial construction is a belief base consisting of the “real” beliefs, from which the
rest of the belief set can be derived. The belief base is denoted B. It satisfies the
criterion Cn(B) = K , and contrary to K it does not have to be logically closed. For
most purposes we assume that B is finite.

Partial meet contraction and revision can be performed on belief bases in the
same way as for belief sets: We define B⊥p as the set of inclusion-maximal subsets
of B that do not imply p and γ as a selection function that selects a non-empty
subset of each such remainder set. This gives rise to the partial meet contraction
B ÷ p =⋂

γ (B⊥p). Partial meet revision is defined as (B ÷¬p) ∪ {p}.
For any given belief set K , we obtain base-generated partial meet contraction

and revision (denoted ÷̂ and ∗̂ ) by assigning to it a belief base B and a selection
function for that belief set:

2AGM is also equivalent to a construction based on selection among the sentences in K , namely
epistemic entrenchment [6, 7, 16, 17]. It is also close to equivalent to another such construction,
safe contraction [2, 18].
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K ÷̂ p = Cn(B ÷ p)

K ∗̂ p = Cn(B ∗ p)

These operations have been rather carefully investigated and also axiomatically
characterized. It is easy to show that base-generated partial meet contraction does
not satisfy Recovery. Let p, q, and r be logically independent sentences, and let
K = Cn({p, q, r}). We can assign to it a belief base B = {p, q, r}. Any selection
function γ for B will yield γ (B⊥(q ∨ r)) = {{p}}, thus K ÷̂ (q ∨ r) = Cn({p}). It
follows that K ÷̂ (q ∨ r)+ (q ∨ r) = Cn({p, q ∨ r}), from which we can see that
Recovery does not hold.

It is equally easy to show that Deductivism is satisfied. If ¬p /∈ K then it holds
for any belief base B for K and any partial meet contraction÷ on B that B÷¬p =
B, and we can conclude that K ∗̂ p = Cn(B ∪ {p}) = K + p.

When we assign a belief base to a finite-based belief set, then we can always
choose a finite belief base, and it would indeed be difficult to justify doing otherwise.
Provided that we use finite belief bases when that is possible, both Finite-based
contraction and Finite-based revision hold for the base-generated partial meet
operations. We can conclude that in terms of these four postulates it makes a big
difference whether we apply selection functions to the remainders of a belief set or
to the remainders of a belief base for it.

20.6 Descriptor Revision

Since we now know that it is important what we apply the choice mechanism to,
we have reason to ponder what are the appropriate objects of choice. From the
viewpoint of cognitive realism, possible worlds seem unsuitable since they are large
structures beyond our grasp. Remainders of belief sets are problematic for much
the same reason. Even if the original belief set K is finite-based, if p is a non-
tautologous element of K , then the remainder set K⊥p has an infinite number
of elements, none of which is finite-based.3 Remainders of a finite belief base are
somewhat more plausible objects of choice, but there is an additional problem with
the partial meet construction that applies to belief sets and belief bases alike: It is
difficult to justify that we intersect the remainders chosen by the selection function.
If the remainders are the top candidates for being the contraction outcome, then their
intersection is not one of the top candidates.4 Then why should it be chosen? [19].

3Provided that the language has an infinite number of non-equivalent sentences. For a proof, see
[12].
4More precisely: if there is more than one top candidate and the top candidates are all p-remainders
for some sentence p, then their intersection is not itself a top candidate.
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Fig. 20.4 Descriptor revision. K ∗ p is the belief set closest to K among those that contain p.
Note that the circles denote belief sets, not possible worlds

Another alternative is to apply the selection mechanism directly to the set of
possible outcomes of change. Presumably, not all logically closed sets are suitable
contraction outcomes. We can therefore assume that there is an outcome set (X)
consisting of all the belief sets that can be reached by an operation of change.
Intuitively, we can think of X as consisting of all those belief sets that are coherent,
stable, and/or plausible enough to be suitable as outcomes of an operation of belief
change. In a cognitively realistic model, all elements of X should be finite-based.

In addition to this we need a selection mechanism that always singles out exactly
one element of the outcome set. One plausible such mechanism is a distance
measure. We can think of the elements of the outcome set X as dispersed in some
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kind of metric space, as illustrated in Fig. 20.4. K ∗ p is then found as the belief
set closest to K in which p holds. (We have to assume that distances are always
dissimilar, or that there is some other mechanism to arbitrate ties.)

Contraction can be obtained in the same way: We can identify K ÷ p as the
belief set that is closest to K among those elements of X that are subsets of K and
do not contain p. Furthermore, this model opens up for a more general approach to
belief change called descriptor revision [13, 14]. To introduce it we need a belief
operator B such that Bp denotes that p is believed. We can use this notation to
express a wide variety of success conditions for belief change. For instance, Bp ∨
Bq means that either p or q is believed and Bp ∨ ¬Bq means that either p is
believed or q disbelieved. (The expressions formed with B in this way are called
belief descriptors.)

Descriptor revision has a single operation of change, denoted ◦. It can be applied
to all types of descriptors. For instance, in a distance-based framework, the operation
K ◦ ¬Bp takes us from K to the belief set closest to K that does not contain p.5

Similarly, the operation K ◦ (Bp ∨ Bq) produces as outcome the closest belief
set in which Bp ∨ Bq is satisfied, i.e. the closest belief set containing either p

or q. Common revision (by sentences) is a special case of descriptor revision, since
we can identify K ∗ p with K ◦ Bp. Both general descriptor revision (◦) and its
restriction to sentential revision (∗) have been axiomatically characterized. One of
the advantages of descriptor revision is that it can easily be extended to iterated
change. Hence, in a distance-based framework we obtain K ◦ (Bp∨B¬p) ◦ (Bq ∨
B¬q) by going first from K to the closest belief set containing either p or ¬p, and
then from there to the closest belief set containing either q or ¬q. (This corresponds
to making up one’s mind first about p and then about q.)

It is a rather straight-forward exercise to show that neither Recovery nor
Deductivism holds in this framework. However, provided that the elements of X
are finite-based, both Finite-based contraction and Finite-based revision hold for
descriptor revision.

20.7 Conclusion

The outcome of this investigation is summarized in Table 20.1. We have found that
the properties of operations of change depend to a large degree on what formal
structures we use as objects of choice. Two important philosophical questions are
involved here: When we choose rationally what to believe, what are the objects
that our choices should be applied to? And what structural properties should a
rational agent’s choice patterns comply with? Both these are questions that can

5In the limiting case when the outcome set contains no element that satisfies the descriptor, nothing
is changed, i.e. the original belief set is the outcome of the operation.
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Table 20.1 Summary of how the application of the choice mechanism to different objects impacts
the satisfaction of four postulates of belief change

Satisfaction of postulates

Finite-based Finite-based
Objects of choice Recovery Deductivism contraction revision

Remainders of belief sets + + − −
Possible worlds + + − −
Remainders of belief bases − + + +
Potential outcomes − − + +

be asked in an informal language, but we need a formal language to perform
the logical analysis that shows how closely the two questions are connected with
each other.
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Chapter 21

Probability Theory

Darrell P. Rowbottom

Abstract This chapter covers the epistemic or information-based interpretations
of probability: logical, subjective, objective Bayesian, and group level. It explains
how these differ from aleatory or world-based interpretations of probability, presents
each in detail, and then discusses its strengths and weaknesses.

21.1 The Ubiquity of Probability Talk

Rarely does one get through a day without encountering a reference to probability
or one of its relatives. Meteorological reports purport to tell us the chance of rain,
and meteorologists take this to reflect a particular kind of probability. Bookies
offer betting odds, which we take up according to how probable we take particular
events to be. And when we’re asked whether we’ll attend an event, we often answer
“Probably!” or “Probably not!”

Probabilities are regularly appealed to in philosophy as well. For example, it’s
often taken for granted in informal philosophy that the more probable of two
mutually exclusive and jointly exhaustive events is the better one to bet on when
offered even odds (to further the end of winning). But this isn’t as obvious at it
may initially seem; in fact, I hold it to be wrong under some interpretations of
probability. And sometimes I encounter discussions in which it is boldly proclaimed
that inductive inferences have something to do with probabilities, although what
these probabilities are is never discussed. In fact, I have read several papers like
this. Whole arguments are constructed on probability claims, but the understanding
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of probability under discussion is never explained. Perhaps an intuitive notion is
supposed to be operating? My view is that this will not do for serious philosophy.

Let me try to convince you. Imagine a weather forecaster says that the chance
of rain tomorrow is zero, but that it nevertheless rains. Should we be angry
with the forecaster? Must her methods be fundamentally flawed? Against intuitive
expectations, the answer may lie in the negative if she is operating with a frequency

in the limit interpretation of probability. All that would be required, for her statement
to be correct, is that in identical meteorological circumstances, were these to be
repeated infinitely many times, rain would occur the next day with a frequency of
zero. To see that this is compatible with rain occurring, consider the following set,
with infinitely many members, in which R represents rain and N represents no rain:

{N,R,N,N,R,N,N,N,R,N,N,N,N,R, . . .}

The set continues in the same pattern, with five Ns to the next R, then six
after the subsequent N, and so on. Mathematically, the ratio of Rs to Ns is zero in
the limit.

I could spend more space trying to convince you that it’s important to understand
how probability talk may be interpreted, but this may be poorly spent given that
you’ve already made the effort to consult this piece. So I’ll move on to the meat.

21.2 Epistemic Versus Aleatory Interpretations

of Probability

Probability is a mathematical notion, and the issue of its interpretation typically
arises only when we seek to apply it. In fact, mathematicians have had interpretative
difficulties too, especially when it comes to understanding which kinds of arguments
for their successful predictions were more fundamental. You can read about this
elsewhere; see Hacking [15] and Shafer and Vovk [44]. The best place for us to start
is to recognize the most fundamental interpretative rift if we begin with a measure-
theoretic view of probability (based, for example, on Kolmogorov’s or Popper’s
axioms of probability).1 This is between aleatory and epistemic views.

The basic distinction is not so hard to grasp. Roughly, aleatory probabilities are
‘out there’ in the world; indeed ‘alea’ is the Latin word for ‘die’, although one
should not conclude that gambling concerns only aleatory probabilities. Epistemic

1Shafer and Vovk [44] argue that we should not begin by understanding probability in a measure-
theoretic way, but instead in a game-theoretic way. As such, their interpretative strategy is different
from those considered here (although the Dutch Book argument, which we will cover in due course,
is game-theoretic in nature).
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probabilities concern us more intimately, and roughly relate to our epistemic states.2

To give a flavour of how individuals thinking on either side of this divide might apply
probabilities, consider the following dialogue:

Philosopher: Here is a normal two-sided coin. What is the probability that it will
land on heads when I flip it?

Mr Epistemic: One half.
Ms Aleatory: I don’t know.
Mr E: What do you mean, you don’t know?
Ms A: It might be biased. We’d need to see the experiment repeated several times

before forming a reasonable opinion.
Mr E: Yes, it could be biased! But you’ve no reason to think it’s biased one

way, rather than another, so why not just assign the two possibilities the same
probability, namely one half?

Ms A: Well that’s just guessing.
Mr E: But isn’t that a reasonable betting strategy? What odds would you accept

on a ‘heads’ bet? That way we can work out how probable you think it is . . .

Ms A: If I did bet, I’d use my knowledge about similar circumstances, i.e. similar
coins being flipped by similar people, and the frequencies from those.

This should be enough to give a flavour of the disagreements that can occur in
this dimension. I experience such disagreements frequently, when I pose the same
question as the philosopher, in the dialogue, to students.

‘Objective’ is often used in place of ‘aleatory’. I avoid the former term because
probabilities might be thought to be ‘out there’ in the non-material world on some
epistemic views of probability. Most notably, probabilities may be construed as
logical relations between propositions, which might be taken to exist, qua abstracta,
even in possible worlds containing no beings capable of grasping them.

Now since this chapter appears in a section of the handbook on ‘Epistemology’,
I will cover only the epistemic interpretations of probability in what follows.
Although it is true that one of the aleatory interpretations has been used, in the past,
in epistemic contexts—specifically, inductive probabilities have been construed, e.g.
by Reichenbach, in terms of relative frequencies of truth of consequences given the
truth of the premises (in the limit)—this is now widely considered to have been
in error. I will not rehearse the arguments here, for lack of space. See Rowbottom
([31], pp. 39–41) for more discussion.

Each of the interpretations covered below has variants. So the interpretative
possibility space is much more complex than the normal philosophical taxonomy
makes apparent. The best I can do, in what follows, is to provide an overview of the
positions on the standard taxonomy and to flag any areas where there are subtleties
of interpretative difference that are easy to miss.

2I call the two kinds of probability ‘world-based’ and ‘information-based’ in Rowbottom [35]; I
think this is better terminology, but it’s non-standard.
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21.3 The Logical Interpretation

The basic idea behind the logical interpretation of probability is that there are
degrees of partial entailment, between propositions or groups thereof, in addition to
entailment relations.3 (The talk of ‘degrees of partial entailment’ is from Carnap [5];
Keynes [21], the architect of the logical interpretation, used ‘logical relations’.)
Consider a situation where p entails q. Then the probability of q given p, or the
conditional probability of q on p, is equal to unity; P(q, p) = 1. And similarly, if
p and q are logically inconsistent then P(p, q) = 0 and P(q, p) = 0. Now if we
allow for other kinds of logical links, of varying strengths, we can imagine that,
in general, P(p, q) = r where r is any real number between zero and one. It is
worth noting that Popper explained the logical interpretation—or more accurately
his variant thereof—rather differently, by appealing to the notion of logical content.
Specifically, he claimed that P(a, b), interpreted logically, measures: ‘the degree to
which the statement a contains information which is contained by b’ ([26], p. 292).
(A hint that this is problematic may be gleaned by thinking of the rule of ‘or
introduction’ in natural deduction. If a is not entailed by b, then a will have infinitely
many consequences that b does not. And vice versa.)

How about unconditional probabilities? Keynes ([21], pp. 6–7) declared that:
‘No proposition is in itself either probable or improbable, just as no place can
be intrinsically distant; and the probability of the same statement varies with the
evidence presented, which is, as it were, its origin of reference.’ So in general,
on the logical view, talk of unconditional probabilities is understood as elliptical.
When I talk of the probability of the next president of the USA being a Democrat,
for instance, I assume some things are true; that the Democratic Party is not a
figment of my imagination, that the USA is a real country, and so forth. But we
may nevertheless define unconditional probabilities in terms of a special class of
conditional probabilities, following the suggestion of Popper ([26], pp. 284–285).
The idea is that P(p) may be understood to represent P(p, T), where T represents
any tautology. This gives a probability that doesn’t depend on anything other than
the laws (or axioms) of logic being true.

So far I have mentioned only logical relations. But as this is an epistemic

interpretation of probability, the reader may be wondering how we come into the
picture. The short answer is that most advocates of the logical interpretation have
held that our personal degrees of belief—this is a technical term, about which I will
say more shortly—should map on to the equivalent logical relations in order to be
rational. Again, an analogy with entailment helps. If p entails q and I’m certain that
p, then I ought to be certain that q (subject to some other appropriate conditions

3There is also a ‘classical interpretation’, which predates the logical one. On the classical view,
probabilities are defined (roughly) in terms of the ratio of favourable outcomes to possible
outcomes. The problem with this view is that it appears to require that each outcome be
equipossible. So it could not handle a biased coin; e.g. in calculating the probability of heads
on one flip, we’d always arrive at one half. (And someone might very well take the coin landing
on its edge to be possible, and thereby be forced to conclude that the probability of heads was a
third.) For more on the classical interpretation, see Gillies [13] and Rowbottom [35].
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obtaining, e.g. that I desire to know whether q and recognise that p entails q).4 More
generally, let p entail q to a specific degree: P(q, p) = r. My degree of belief in
q given p—D(q, p)—will be rational only if it maps on to the appropriate logical
relation, i.e. only if D(q, p) = P(q, p) = r. This was the view of Keynes ([21], p.4):

What particular propositions we select as the premises of our argument
naturally depends on subjective factors peculiar to ourselves; but the relations,
in which other propositions stand to these, and which entitle us to probable
beliefs, are objective and logical.

I must reiterate, because it is a common error to think otherwise, that the logical

view does not say that probabilities are rational degrees of belief. As Keynes ([21],
p. 11) clearly stated, ‘probability’:

In its most fundamental sense . . . refers to the logical relation between two
sets of propositions . . . Derivative from this sense, we have the sense in
which . . . the term probable is applied to the degrees of rational belief.

I emphasise this issue because accepting a logical interpretation of probability
does not entail accepting that a degree of belief is rational if and only if it maps on
to the appropriate logical relation (in the way described above). Take Popper as a
case in point. One of his most striking theses was that the logical probability of any
synthetic universal statement is zero relative to any finite evidence, and plausibly any
evidence that we might possess; see Popper ([25], Appendix *vii) and Rowbottom
([31], Section 2.3; [32]). But he did not conclude that it is irrational to believe in
such laws.

The main problem with the logical interpretation is that it is hard to see how such
logical probabilities may be measured (or how to define them operationally).5 And
if they cannot be measured, then it seems reasonable to doubt that they exist. Keynes
[21] had a rather complicated position on this issue.6 Roughly—see O’Donnell [24]
and Rowbottom [30] for more—he thought that some relations can be grasped by
intuition, but that others can only be calculated by employing an a priori synthetic
principle, namely the principle of indifference.7 In essence, his idea was that this
principle is applicable when our intuition fails, as an extension of logical proof to
non-demonstrative cases:

4How to connect reasons for belief and entailment is much more complicated than it may first
appear. See, for example, Streumer [45].
5In the words of De Finetti ([7], p. 23): ‘For any proposed interpretation of Probability, a proper
operational definition must be worked out: that is, a device apt to measure it must be constructed.’
One could argue with this, of course, but it seems odd to want to posit a kind of probability that
isn’t generally measurable! What purpose would it serve?
6Keynes also believed in non-numerical probabilities, which complicates matters further, but we
can put this to one side for present purposes.
7This was earlier called ‘the principle of non-sufficient reason’, and goes back (although not under
the same name) to Bernoulli [2].
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If the truth of some propositions, and the validity of some arguments, could
not be recognised directly, we could make no progress . . . [T]he method
of logical proof . . . enables us to know propositions to be true, which are
altogether beyond the reach of our direct insight . . . ([21], p. 53, f.1).

So just arriving at the correct degree of belief in p given q, say as a result of
brainwashing, is not sufficient to have a rational degree of belief in p given q. (It is
only necessary, for any rational degree of belief, that D(q, p) = P(q, p) = r.) One
must have some suitable procedure for arriving at P(p, q). And this brings us to the
principle of indifference:

[T]hat equal probabilities must be assigned to each of several arguments, if
there is an absence of positive ground for assigning unequal ones ([21], p.
42).

The problem with the application of the principle is that it leads to paradoxical
results when there is more than one way to ‘carve up’ the space of possibilities.
The most famous and widely discussed of these are the water-wine paradox (see
van Fraassen [46], pp. 304–305 and Mikkelsson [23]) and Bertrand’s ([3], p. 4)
geometrical paradox (see Rowbottom [34]). But an even simpler example will
suffice.

“If I flip a coin twice, what is the probability of getting two heads?” One
respondent might take there to be three different possibilities—no heads, one head,
and two heads—and conclude, assigning each an equal probability by the principle
of indifference, that the answer is one third. Another might take there to be four
different possibilities—no heads, one head and one tail (in order), one tail and one
head (in order), and two heads—and instead conclude that the answer is a quarter.
Which is right?

Several readers may think that the latter is clearly correct, and indeed Keynes
([21], p. 60) introduced an indivisibility criterion in order to argue for this; in short,
the possibility of ‘one head’ is divisible into the possibilities of ‘one head and
one tail (in order)’ and ‘one tail and one head (in order)’. It might surprise those
readers to learn that Carnap ([5], pp. 562–565) instead argued that one should think
of possibilities in the first way in the coin flip example. His motivation was that
learning by Bayesian conditionalisation, on the basis of the behaviour of the coin
in repeats of the experiment, would otherwise not be possible. See Gillies ([13],
p. 45–46) for more discussion of this.

In any event, the whole point of paradoxes such as Bertrand’s is that they
concern continuous cases and hold even if one introduces an indivisibility criterion.
So despite occasional attempts to defend the principle of indifference or similar
strategies—see Jaynes [18], Marinoff [22]—the more widespread view—see van
Fraassen [46], Gillies ([13], p. 49), Shackel [43], and Rowbottom [34]—is that the
paradox is insoluble.8

8This said, some putative solutions have recently appeared. See Aerts and Sassoli de Bianchi [1],
and Gyenis and Rédei [14]. Both papers are rather technical in character.



21 Probability Theory 423

21.4 The Subjective Interpretation

The subjective interpretation eschews talk of logical relations, to focus instead on
personal degrees of belief.9 (We’ll come to the ontology of ‘degrees of belief’ a
little later.) Sometimes it is said that in the subjective interpretation, probabilities
just are degrees of belief. But this is a mistake, albeit one supported by a casual
reading of the likes of De Finetti.10 The reason is that not all degrees of belief
need satisfy the probability calculus; and as a matter of fact, even clever people
like logicians and mathematicians can have inconsistent beliefs. Thus the subjective
interpretation relies on the idea that it is necessary for a person’s degrees of belief to
satisfy the probability calculus in order for those degrees of belief to be rational. So
following Keynes ([21], p. 20), advocates of the subjective view hold that: ‘Belief,
whether rational or not, is capable of degree’. In addition, they hold that rational

degrees of belief do not violate the axioms of probability; they range between 0 and
1, and so on.

In fact, Ramsey and De Finetti hailed it as a virtue of the subjective interpretation
that the axioms of probability can be derived from a consideration of the rules that
degrees of belief ought to obey, via a consideration of rational betting behaviour.
This is usually known as the Dutch Book Argument, and sometimes as the Ramsey-
De Finetti theorem. The basic idea is simple. Put someone in a betting scenario. If
they bet in such a way as to be susceptible to losing whatever happens, then they
must have accepted bets with betting quotients—these will be explained below—
that fail to satisfy the axioms of probability. Now assume that those betting quotients
reflect the person’s degrees of belief and that being susceptible to losing whatever
happens is irrational. The conclusion is that rational degrees of belief satisfy the
axioms of probability.

One way to set up such a scenario is as follows. T (a tester) asks B (a bettor) to
choose a number q, her betting quotient on E, on the understanding that T will then
choose a stake S, that B will pay T the sum of qS, and that B will receive S if E
occurs. If E does not occur, T will keep the sum of qS. Note that T may choose a
positive of negative value for S. (Giving a sum of qS, in the event that S is positive,
is equivalent to receiving a sum of q|S| in the event that S is negative, and so forth.
So if S is negative, then T will pay B the sum of q|S|, in return for |S| if E occurs;
else, B will keep q|S|.) A final stipulation is that B does not know which way she
will be betting (i.e., whether T will choose a positive or negative value for S).

9In the words of Ramsey ([27], pp. 72–73): ‘the kind of measurement of belief with which
probability is concerned is . . . of belief qua basis of action . . . with beliefs like my belief that the
earth is round . . . which would guide my action in any case to which it was relevant.’ Ramsey’s
example seems somewhat odd, however, because it seems that all conceivable beliefs can be
relevant to action in appropriate cases. For example, I could be asked what I believe about some
obscure philosophical issue and desire to express the truth. An asseveration I made in response
would be guided by that belief.
10The following statement, for example, is misleading: ‘only subjective probabilities exist—i.e.
the degree of belief in the occurrence of an event attributed by a given person at a given instant
with a given set of information.’ (De Finetti [8], pp. 3–4)
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You may already have thought of several problems with this scenario. If the stake
is too small, such as $0.01, then B might give any old answer. Or B may fear paying
T the sum of qS in the event that T selects S positive if E concerns the far future
because she’ll then be out of pocket for a long time—and select a value of q with
the intent to entice B to select a negative value for S. These problems can solved by
refining the scenario; the magnitude of the stake can be set so that it’s significant,
the betting procedure can be altered such that money is always given to the tester
(or the bets can be on utilities rather than cash), and so forth. But there are other
problems that appear insoluble. For example, the fact that B does not know which
way T is going to bet does not mean that she should not have an opinion about how
T will bet. And recognising this leads to the rather remarkable result that a bettor
might rationally select a betting quotient of zero for an event that she is sure will
occur; see Rowbottom [28]. According to the axioms of probability, though, the
probability of such an event should be unity! Similar problems have been discussed
in considerable depth elsewhere, e.g. by Seidenfeld et al. [42] and Hájek [16].11

Given the problems with the Dutch book argument, it is surprising that a much
more promising alternative, proposed by De Finetti [7], is less well known. This is
to use a scoring rule. The idea is to put the bettor—or the person whose degrees
of belief you want to elicit—into a situation in which she believes that she will be
penalised by a particular loss, dependent on her forecast (which is a number similar
to a betting quotient in the gambling case above) and what happens. Now we can
proceed only by assuming that she wishes to minimise her expected loss, and need
not worry about how she anticipates that someone else—a tester (or bookie)—will
behave. For more on this strategy, see Schervish et al. [37].

It is crucial to note that there are several different understandings of degrees of
belief. De Finetti, for instance, thought of these in an operational and behavioural

manner, such that they are identical to betting quotients or forecasts. Most plausibly,
degrees of belief might be understood, in such a vein, as dispositions to bet or
forecast in particular ways. By contrast, the more popular view at present is that
degrees of belief are credences or degrees of confidence. Such credences may not
be reflected in betting behaviour, which is an advantage. One worry, however, is
how to measure them (as something above and beyond, say, forecast dispositions).
Perhaps the most obvious route is to appeal to some kind of personal awareness, like
strength of feeling. But this is a dubious move. As Ramsey ([27], p. 71) pointed out:

This view would be very inconvenient, for it is not easy to ascribe numbers
to the intensities of feelings; but apart from this it seems to me observably
false, for the beliefs which we hold most strongly are often accompanied by
practically no feeling at all; no one feels strongly about things he takes for
granted.12

11A good place to read more about Dutch Books is Hájek [17].
12Note, in particular, the comment about ascribing numbers to intensities of feeling. The idea
that people can have precise degrees of belief corresponding to any rational number between 0
and 1—or perhaps beyond, if we’re discussing degrees of belief that don’t satisfy the probability
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So just as there are different accounts of belief, in the philosophy of mind,
there are different accounts of degrees of belief in the philosophy of probability (or
formal epistemology). In fact, here is an area in which there is the potential for a
valuable exchange between these two areas of philosophy. This is suggested by my
recent debate with Eric Schwitzgebel—see Schwitzgebel [38–40] and Rowbottom
[29, 36]—on whether degrees of belief can explain cases of apparent ‘in-between
believing’. De Finetti’s behavioural approach seems to have an analogue in the
dispositional approach to belief (although De Finetti was concerned with only
a narrow range of dispositions, at best). So are credences typically construed as
mental representations, i.e. as beliefs are on a representational account in the
philosophy of mind? (And might they not instead be construed as dispositional but
not limited to betting and/or forecast scenarios?) For more on the nature of degrees
of belief, see the discussion of Eriksson and Hájek [10]. They suggest that degrees
of belief are primitive, and point to the success that decision theory has had without
providing an analysis of the notion. But they do not engage with contemporary
philosophy of mind.

21.5 Objective Bayesianism

The basic idea behind objective Bayesianism—which is championed by Jaynes [20]
and Williamson [47, 48], for example—is that one can start in the same way as an
advocate of the subjective view does, e.g. with a betting or forecast scenario, and
then show that there are constraints on rational degree of belief which subjectivists
do not consider. It is therefore unsurprising to find that Gillies ([12], Sect. 2)
characterises ‘objective Bayesianism’ as follows:

[The] approach could be called the ‘topping-up’ version of the logical
interpretation of probability. The idea is to start with purely subjective
degrees of belief. We then add one rationality constraint (coherence) to obtain
the axioms of probability. However, this might be ‘topped-up’ by further
rationality constraints derived from logical or inductive intuition. Thus the
choice of different probabilities allowed by the subjective theory would be
narrowed down, and eventually it might be possible to get back to a single
rational degree of belief as in the original logical theory.

To be more specific, objective Bayesians think that degrees of belief should (a) be
probabilities (in the sense of satisfying the calculus), (b) reflect the evidence of
their possessors, especially in so far as this concerns observed frequencies and/or
estimates of aleatory probabilities, and (c) otherwise be maximally non-committal.
Williamson [48] calls these the (a) probability, (b) calibration, and (c) equivocation

calculus—is clearly an idealisation. It’s more realistic to think that they lie in particular intervals.
There is a related literature on imprecise probabilities, and in fact the idea of working with intervals
was discussed at considerable length by Keynes [21]. For more on the notion, which is growing in
popularity, see http://www.sipta.org and Bradley [4].

http://www.sipta.org
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norms. With regard to (c), a principle called ‘the maximum entropy principle’ is
used in place of the principle of indifference. Jaynes ([19], p. 623) described this as
‘an extension of the principle of insufficient reason [i.e. indifference]’, and declared
‘that it can be asserted for the positive reason that it is uniquely determined as the
one which is maximally noncommittal with regard to missing information’. It is
superior to the principle of indifference at least in so far as it has greater generality.

How close the objective Bayesian view really is to the logical one is contested,
and the disagreement rests to some extent on how one reads Keynes; see Rowbottom
[30] and Williamson ([48], p. 23).13 One potential advantage is the avoidance of the
posit of logical relations ‘out there’; instead rational degrees of belief may be defined

in terms of degrees of belief that satisfy the aforementioned norms. But it is fair to
say that some of the strongest criticisms of objective Bayesianism have a similar
flavour to the strongest criticisms of the logical view. In particular, they focus on the
successor to the principle of indifference, namely the maximum entropy principle.
One suggestion is this is just as paradoxical as its forerunner; see Seidenfeld [41].

The phrase ‘objective Bayesian’ might also give the false impression that
(learning by) Bayesian conditionalisation plays a central role in the interpretation
of probability being proposed. But as Williamson [47, 48] makes clear, objective
Bayesians may hold that individuals should not update their degrees of belief by
Bayesian conditionalisation. This brings us on to the next section.

21.6 ‘Degree of Belief’ Interpretations

It might be preferable to oppose the logical interpretation of probability to degree of

belief interpretations of probability. (This is new terminology, but it seems fitting.)
Compare the subjective and objective Bayesian interpretations, or what we might
now call ‘subjectivism’ and ‘objectivism’. On a pure subjective view, having degrees
of belief that satisfy the axioms of probability is sufficient for rationality. But
some introduce further rationality requirements, e.g. that degrees of belief should
reflect observed frequencies where appropriate, as ‘top ups’. Ultimately, it is best to
understand this in terms of a spectrum; strong objectivists (like some ‘objective
Bayesians’) hold that personal probabilities should always have special unique
values, whereas pure subjectivists only require that they lie within a particular range.
Those in the middle of the spectrum think that personal probabilities should have
unique values in some contexts, but not in others, or think the range is narrower than
pure subjectivists do.

Williamson [48], for instance, holds that sometimes there are different permis-
sible ways to equivocate, or to be non-committal. And when this is the case, he

13For example, I argue that Keynes did hold that observed frequencies should constrain our degrees
of belief, or at least that his interpretation could easily accommodate this idea. I also dispute the
view that the principle of indifference is not as well motivated as the maximum entropy principle.
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thinks there’s a free choice about how to equivocate. As such, he holds that in some
circumstances there is no particular personal probability distribution that one ought
to adopt, although some distributions will nevertheless be wrong (in so far as they
don’t equivocate). Think back to the earlier example of the two flips of the coin. One
can opt to use a sample space of {no heads, one head, two heads} or instead of {no
heads, one head and one tail, one tail and one head, two heads}. If one equivocates
on the first space, the probability of no heads will be one third. If one equivocates
on the second space, the probability of no heads will be one quarter. So Williamson
might suggest that the probability one has for ‘no heads’ ought to be one of these
two values, other than anything else.14

21.7 Group Level Interpretations

One final kind of interpretative strategy is to consider group, rather than personal,
degrees of belief. The idea behind this approach, which was first proposed by Gillies
[11], is that a group can have a Dutch Book made against it if its members do
not have the same degree of belief assignments, i.e. reach consensus, and those
assignments do not satisfy the probability calculus. Imagine a married couple, with
pooled financial resources. Romeo bets £100 that it will rain tomorrow, at even odds.
Juliet simultaneously bets £150, at three to one on, that it will not rain. No matter
what happens, they will lose £50. (Note that this depends on the individuals having
degrees of belief too; so a group level interpretation is supplemental to a personal
level one.)

This idea has not really caught on, but it can be developed in several ways as
shown in Rowbottom ([33]; [35], Chapter 6). For example, group degrees of belief
may be interpreted differently from personal degrees of belief; the latter might be
understood as credences, while the former might be understood as agreed betting
quotients (along with the appropriate dispositions). So a group may be understood
to reach consensus about how to bet without sharing individual credences.

Furthermore, it is possible to consider a spectrum of group interpretations,
ranging from purely intersubjective to ‘interobjective’. On a pure intersubjective
account, it does not matter how consensus is reached; it is enough that it is present.
On an interobjective account, by contrast, particular procedures are also required
in order to form consensus, e.g. critical discussion with input from all members of
group who have relevant degrees of belief, and/or relevant expertise. There will
therefore be some scenarios, at least, in which group probabilities have unique
values.

14Williamson would presumably insist that the sample space in this case should be the latter.
However, when the sample spaces are continuous, e.g. in the paradox of Bertrand [3], he thinks
that it is allowable to equivocate on the basis of different sample spaces. In short, the idea is that
the sample space to use is not clearly specified in the way the problem is set up.
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Whatever else might be said about the merits of such approaches, it is sometimes
the case that group decisions are better than individual ones; and talk of probabilities
at the group level may therefore prove useful in the context of confirmation theory.
(Often we’re interested in the recommendation of a group, on the basis of the union
of the background knowledge of the members. And it seems natural to talk about
what the groups thinks, its degrees of confidence, and so forth.) But this research
programme is still in its infancy.

Recommended Further Reading

Rowbottom [35] is the most accessible introduction to the interpretation of proba-
bility, and requires no mathematical background. It also covers the significance
of the interpretation of probability in several contexts: philosophical, social
scientific, and natural scientific.

Childers [6] is an intermediate-level introduction. It is especially noteworthy for its
extended discussion of the maximum entropy principle, which lies at the heart of
objective Bayesianism.

Gillies [13] is the classic textbook on the interpretation of probability. It is more
advanced in character than the aforementioned books, and is a very rewarding
read for those with solid mathematical backgrounds.

Eagle [9] is a useful collection of classic work on the philosophy of probability
(rather than only ‘contemporary readings’, as its title unfortunately suggests). It
is at an advanced, research, level.
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Chapter 22

Bayesian Epistemology

Erik J. Olsson

Abstract Bayesian epistemology provides a formal framework within which con-
cepts in traditional epistemology, in particular concepts relating to the justification
of our beliefs, can be given precise definitions in terms of probability. The Bayesian
approach has contributed clarity and precision to a number of traditional issues.
A salient example is the recent embedding of the so-called coherentist theory
of epistemic justification in a Bayesian framework shedding light on the relation
between coherence and truth as well as on the concept of coherence itself. Starting
with the early work of Condorcet, the calculus of probability has proved to be a
useful tool in the study of social aspects of knowledge as it is pursued in social
epistemology.

22.1 Two Problems of Probabilistic Coherence

Let us start by examining the two concepts involved in the term “Bayesian
epistemology”.

First, we have the term “Bayesian” which in this context denotes a plethora
of theories and approaches that make use of probability in the elucidation of
phenomena having to do with our beliefs about the world. One aspect of the
Bayesian approach, also called Bayesianism, is the representation of a state of belief
as an assignment of probabilities to a set of propositions. Typically, Bayesians feel
uncomfortable in assigning any empirical proposition probability 0 or 1. Rather,
they recommend assigning probabilities strictly between 0 and 1. One reason for this
is the so-called betting interpretation of probabilities according to which assigning a
probability means that you are willing to accept certain bets. Assigning probability
1 to a proposition means then that you are willing to bet everything – your life, your
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family etc. – on p being true. Since we are rarely willing to bet everything on a given
(empirical) proposition being true, we should avoid assigning probability 1 to any
such proposition, the Bayesian concludes.

This is the static aspect of Bayesianism. There is also a dynamic aspect
enshrined in the recommendation that a rational inquirer should update her beliefs
by conditionalizing on the new evidence in accordance with Bayes’ rule. Let
us first define the conditional probability of the hypothesis h given evidence
e: P(h | e) = P(e | h)P(h)/P(e). This equation still does not state anything about
how the inquirer’s probabilities should change given new evidence. Bayes’ rule,
sometimes also referred to as the principle of conditionalization, states that the
inquirer should, upon receiving new evidence e, update her probability in h so that
the latter corresponds to the conditional probability of h given e. In other words,
P*(h)= P(h | e), where P*(h) is the new probability of h given evidence e. These two
fundamental assumptions of Bayesianism have inspired a huge debate in philosophy
of science and statistical theory, as well as in economics and decision theory. The
reader is referred to Talbott [28] for an overview.

Let us proceed now to the term “epistemology” or “theory of knowledge”.
Epistemology is concerned with various aspects of knowledge. What is the nature
of knowledge and how should the concept be defined? What sources give rise to
knowledge? How far does our knowledge extend – are there limits in principle?
Do we have knowledge at all – or do we have to accept some form of skepticism?
If we know, do we know that we do? And so on. Traditionally, the answer to the
first question – about the nature of knowledge – has been that knowledge amounts
to justified true belief. If you have a belief and you entertain that belief with
justification, then you know, provided of course that the proposition in question
is true. Believing means in this context being sure or fully convinced of the truth of
the proposition.

These standard characterizations of Bayesianism and epistemology reveal that it
is not unproblematic to coherently combine the two into “Bayesian epistemology”.
Just to raise one question: How does the fact that knowledge requires full conviction
square with the Bayesian recommendation not to assign 1 to any given empirical
proposition? Does not skepticism about empirical knowledge ensue? Perhaps
unsurprisingly, recent texts on “Bayesian epistemology” in fact do not address in any
great detail problems in traditional epistemology but rather use the term as roughly
synonymous with “Bayesianism” (e.g. Talbott [28]). Even though there are certain
tensions to be overcome, a Bayesian approach can in fact be very effective in the
elucidation of the justification part of the traditional concept of knowledge. This
holds in particular of so-called coherentist accounts of justification.

The Truth Conduciveness of Coherence Pre-systematically, coherence is a good
thing. If a set of beliefs is coherent, we tend to think that it is plausibly true, and
that a more coherent set is more likely to be true than a less coherent one. Consider
however the following example from Klein and Warfield ([18], 130–131):

A detective has gathered a large body of evidence that provides a good basis
for pinning a murder on Mr. Dunnit. In particular, the detective believes
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that Dunnit had a motive for the murder and that several credible witnesses
claim to have seen Dunnit do it. However, because the detective also believes
that a credible witness claims that she saw Dunnit two hundred miles away
from the crime scene at the time the murder was committed, her beliefs set
is incoherent (or at least somewhat incoherent). Upon further checking, the
detective discovers some good evidence that Dunnit has an identical twin
whom the witness providing the alibi mistook for Dunnit.

Let the original belief system of the detective contain the beliefs that (1) Dunnit
had a motive; (2) several credible witnesses report that they saw Dunnit commit
the murder; (3) a single credible witness reports that she saw Dunnit far away
from the crime scene at the time of the murder. Let the extended belief system
contain the same believes plus the additional beliefs that (4) Dunnit has an identical
twin and (5) Dunnit did it. Then we would say that the extended system is more
coherent than the original belief system. So we should expect the former to be more
likely to be true. However, the extended system contains more propositions than the
original system, and hence the probability of the conjunction of the propositions
in the extended system must be lower than the probability of the conjunction of
the propositions in the original system: disregarding some trivial special cases,
the probability of a bigger conjunction is lower than the probability of a smaller
conjunction. So, despite being more coherent, the extended system is actually less
likely to be true. So, coherence is after all not correlated with plausible truth.

Defining Coherence There have been few convincing proposals for how to define
coherence in traditional epistemology. The attempt to spell our coherence in purely
logical terms, e.g. by A. C. Ewing [9], was soon seen to be too restrictive. Most other
proposals suffer from serious incompleteness or imprecision. A case in point is the
account due to Laurence BonJour [3], who regards coherence to be a concept with
a multitude of different aspects, corresponding to the following coherence criteria

(ibid.: 97–99):

1. A system of beliefs is coherent only if it is logically consistent.
2. A system of beliefs is coherent in proportion to its degree of probabilistic

consistency.
3. The coherence of a system of beliefs is increased by the presence of inferential

connections between its component beliefs and increased in proportion to the
number and strength of such connections.

4. The coherence of a system of beliefs is diminished to the extent to which it is
divided into subsystems of beliefs which are relatively unconnected to each other
by inferential connections.

5. The coherence of a system of beliefs is decreased in proportion to the presence
of unexplained anomalies in the believed content of the system.

Now it could well happen that one system S is more coherent than another system
T in one respect, whereas T is more coherent than S in another. Perhaps S contains
more inferential connections than T, which is less anomalous than S. If so, which
system is more coherent in an overall sense? A difficulty pertaining to theories
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of coherence that construe coherence as a multifaceted concept is to specify how
the different aspects are to be amalgamated into one overall coherence judgment.
Bonjour’s theory remains silent on this important point and, as we shall see, in
several other regards as well.

22.2 A Bayesian Analysis of the Dunnit Example

Let us state the argument in more precise terms. A central claim in the coherence
theory which has strong intuitive backing is the following:

(A) The more coherent a set is, the more probable it is.

Let us say that an extension K´ of a set K is non-trivial if some of the beliefs that are
K´ but not in K neither follow logically from K, nor have a probability of 1. Klein
and Warfield’s argument against (A) rests on the following premises:

(B) Any non-trivial extension of a belief system is less probable then the original
system.

(C) There exist non-trivial extensions of belief systems that are more coherent than
the original system.

But, so the argument goes, (B) and (C) taken together contradict (A).
Let us look at the support for (B) and (C). While (B) is taken for granted, (C)

is supported by the above Dunnit example. It is difficult to question (C). Intuitively
the members of the extended set in the Dunnit example hang better together than
the elements of the original set. Also, the original set contains an anomaly which
is resolved through the introduction of the beliefs that Dunnit did it and has an
identical twin who the witness providing the alibi mistook for Dunnit. Because no
new anomaly is thereby introduced, it follows from Bonjour’s fifth criterion that the
extended set is more coherent.

But what about (B)? It derives support from its similarity with.

(B´) Any non-trivial extension of a set of propositions is less probable than the
original set.

That claim follows directly from the laws of probability and is therefore entirely
innocent. But notice that (B´) is about sets of propositions, whereas (B) is about
belief systems. What is the difference? A belief system is not any old set of
propositions but a set of propositions believed to be true by a subject. Hence,
whereas the probability of a set of propositions is the probability that these
propositions are all true, the probability of a belief system is the probability that
these propositions are true, given that they are believed by the person in question.
The former is an unconditional and the latter a conditional probability.

Let S = {p1, . . . , pm} and S´ = {p1, . . . ,pm, pm + 1, . . . , pn}. Moreover, let B be
a belief system corresponding to S and B´ be a belief system corresponding to S´.
Formally, (B´) can be expressed as follows:
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(B´*) If S´ is a non-trivial extension of S, then P(p1, . . . , pm, pm + 1, . . . ,
pn) < P(p1, . . . ,pm).

The claim (B) should rather be understood as follows:

(B*) If B´ is a non-trivial extension of B, then P(p1, . . . , pm, pm + 1, . . . , pn | belp1,
. . . , belpm, belpm + 1, . . . , belpn) < P(p1, . . . ,pm | belp1, . . . , belpn),

where belpi states that the subject believes proposition pi.
For the Dunnit argument it is (B*) that needs to hold, not (B´*). It can be

shown however that (B*) is false. There can be non-trivial extensions of a belief
system that are more probable than the original belief system. Suppose again that a
robbery has been committed. A detective wishing to find out whether Dunnit did it
(call that proposition r) consults independent witnesses that have a track-record of
being sufficiently reliable so that the detective can routinely trust their reports. This
reminds us of Bonjour’s “cognitively spontaneous beliefs” which play a crucial role
in his epistemology. We assume that the detective believes something just in case a
witness has said so.

Suppose that the first witness reports that Dunnit was driving his car away from
the crime scene at high speed (c) and the second that Dunnit is in the possession of
a gun of the relevant type (g). The original belief system contains the propositions
c and g. Now a new witness steps forward, claiming that Dunnit deposited a large
sum of money in his bank the day after the robbery (m). The extended belief system
contains the propositions c, g and m. The key notions of reliability and witness
independence can be expressed in probability theory. For instance, that a given
witness is a reliable belief producer can be expressed as follows:

P (beli|i) = p and P (beli|not− i) = 1− q for p, q ≈ 1 and i = c, g, m.

Hence, the probability that you form the belief, if it is true, should be high, and the
probability that you form the belief, if it is false should be low.

That the beliefs are independently held means that they there is no direct
influence between the testimonies upon which they were based. This can be captured
by saying that the detective’s routinely acquired belief about some item of evidence
is probabilistically independent of any other item of evidence or any other of his
routinely acquired beliefs, conditional on the that item of evidence. We express
this formally for two items of evidence using the notation of Dawid [7] for the
propositional variables c, g, r, belc and belg. (The values of the propositional
variable c are the propositions c and its negation not-c and similarly for the other
propositional variables.)

belc ⊥ g, belg | c and belg ⊥ c, belc | g

The first part of this statement is read belc is independent of g and belg given c,
which is sometimes expressed by saying that c “screens off” belc from g and belg.
This implies for instance that belc is independent of not-g and belg given not-c.
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With a few additional assumptions it can now be proved that the extended belief
system is more probable than the original system:

P (c, g|belc, belg) < P (c, g, m|belc, belg, belm)

For more details and a proof, see Bovens and Olsson [6].

22.3 Bayesian Accounts of Coherence

Let us now return to the problem of how to define coherence. Bonjour’s account
serves to illustrate another general difficulty. The third criterion stipulates that the
degree of coherence increases with the number of inferential connections between
different parts of the system. As a system grows larger the probability is increased
that there will be relatively many inferentially connected beliefs. For a smaller
system, this is less likely. Hence, there will be a positive correlation between system
size and the number of inferential connections. Taken literally, Bonjour’s third
criterion implies, therefore, that there will be a positive correlation between system
size and degree of coherence. But this is not obviously correct.

Here is another general challenge for those wishing to give a clear-cut account
of coherence. Suppose a number of eye witnesses are being questioned separately
concerning a robbery that has recently taken place. The first two witnesses, Robert
and Mary, give exactly the same detailed description of the robber as a red-headed
man in his forties of normal height wearing a blue leather jacket and green shoes.
The next two witnesses, Steve and Karen, also tell exactly the same story but only
succeed in giving a very general description of the robber as a man wearing a blue
leather jacket. So here we have two cases of exact agreement. In one case, the
agreement concerns something very specific and detailed, while in the other case
it concerns a more general proposition. This raises the question of which pair of
reports is more coherent. Should we say that agreement on something specific gives
rise to a higher degree of coherence, perhaps because such agreement seems more
“striking”? Or should we rather maintain that the degree of coherence is the same,
regardless of the specificity of the thing agreed upon?

The rich literature on Bayesian coherence measures provides various answers to
these questions. Here are the two most discussed measures:

C1 (p1, . . . , pn) = P (p1 ∧ · · · ∧ pn) /P (p1)× · · · × P (pn)

C2 (p1, . . . , pn) = P (p1 ∧ · · · ∧ pn) /P (p1 ∨ · · · ∨ pn)

C1 was put forward in Shogenji [27] while C2 was tentatively proposed in Olsson
[20] and, independently, in Glass [12]. As the reader can verify, C1 is sensitive to
size as well as to specificity, while this is not so for C2. It has been suggested,
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therefore, that these two measures actually measure two different things. While C2
captures the degree of agreement of the proposition in a set, C1 is more plausible
as a measure of how striking the agreement is. See Olsson [20] and also Bovens
and Olsson [5] for a discussion of agreement vs. striking agreement. Since the
appearance of these two measure, a large number of other alternative measures have
been proposed, many of which are considered in Olsson and Schubert [24].

One influential thought in traditional epistemology is that coherence is somehow
linked with “mutual support”. The Bayesian way of thinking of support is in terms
of a confirmation measure. Douven and Meijs [8] have proposed a general scheme
for defining coherence measures given a measure S of degree of confirmation. For
two propositions p and q, their suggestion takes the following form:

C3 (p, q) = 1

2
(S (p, q)+ S (q, p))

Thus, the degree of coherence of a set of two propositions depends on how much
they confirm each other on the average. In order to turn this scheme into a definite
measure of coherence, we have to specify a particular measure of confirmation, of
which there is no shortage in the Bayesian literature. Douven and Meijs’s preferred
choice is the difference measure advocated by Gillies [11] and others:

C4 (p, q) = P (p|q)− P (p)

Plugging in this measure in Douven and Meijs’s recipe yields the following formula:

C5 (p, q) = 1

2
(P (p|q)− P (p)+ P (q|p)− P (q))

But there are of course a whole range of other confirmation measures that could just
as well have been employed, e.g., the ratio measure preferred by Schlesinger [25]
and others:

C6 (p, q) = P (p|q) /P (p)

As is easily seen, the ratio measure of confirmation coincides with the Shogenji
measure of coherence for the case of two propositions.

22.4 Impossibility Results for Coherence and Truth

The paper by Klein and Warfield and also Michael Huemer [17] spurred an intense
debate on the relation between coherence and truth or high probability, a debate
which is still on-going. The most thought-provoking results concern the possibility
of finding a measure of coherence that is truth conducive in the following sense: if a
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set of beliefs A is more coherent than another set of beliefs B, then the probability of
A is higher than the probability of B. Here it is assumed that the beliefs in question
are somewhat reliable and independently held. Finding such a measure was first
stated as an open problem in Olsson [20]. An impossibility result to that effect was
first proved by Luc Bovens and Stephan Hartmann in their [4] book. A different
impossibility theorem was proved in Olsson [21].

These impossibility results give rise to a mind-boggling paradox. How can it
be that we trust and rely on coherence reasoning, in everyday life and in science,
when in fact coherence is not truth conducive? Since the impossibility results were
published a number of proposals have been made for how to avoid the anomaly they
present us with. Olsson and Schubert [24] observed that, while coherence falls short
of being truth conducive, it can still be “reliability conducive,” i.e. more coherence,
according to some measures, entail a higher probability that the sources are reliable,
at least in a paradigmatic case. For a further development of this idea, see Schubert
[26]. Staffan Angere [1, 2] has argued, based on the results of computer simulations,
that the fact that coherence fails to be truth conducive in the sense just referred
to does not prevent it from being connected with truth in a weaker, defeasible
sense: almost all coherence measures that have an independent standing in the
literature satisfy the condition that most cases of higher coherence are also cases
of higher likelihood. Other researchers have proposed other ways of reconciling
the impossibility results with our ordinary reliance on coherence. For an up-to-date
overview of the debate, see Olsson [23].

22.5 Bayesian Social Epistemology

Following C. I. Lewis [19], most Bayesian coherence theorists take as their
paradigm case a scenario involving a number of witnesses giving coherent testi-
monies. This is then taken to be analogous to the situation upon which traditional
coherence theorists have been most interested: the coherence of one person’s
beliefs. It is perfectly possible to by-pass the second issue so as to focus only on
witness scenarios, in which case the study falls under the area known as social
epistemology. Bovens and Hartmann [4] elaborate on witness coherence and their
book contains further references. A closely related topic is the Bayesian study of
voting and the famous Condorcet Jury Theorem which states, roughly, that if voters
are independent and somewhat reliable, the majority is more likely to have the right
answer than anyone in the minority. Moreover, the chance that the majority is right
approaches 1 as more voters are added. See for instance Goodin and List [14] for
more on this.

The Jury Theorem belongs, more generally, to what Alvin I. Goldman [13]
calls veritistic social epistemology which aims to evaluate social practices, jury
voting being but one case, in terms of their veritistic outputs, where veritistic
outputs includes states like knowledge, error and ignorance. Goldman focuses on
the tendency of practices to produce true belief in the participants, true belief
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representing in his view a weak form of knowledge. Thus, states of true belief
have fundamental veritistic value or disvalue, whereas practices have instrumental

veritistic value insofar as they promote or impede the acquisition of fundamental
veritistic value.

Let us now turn to the very concept of veritistic value. Goldman’s main proposal
is that degrees of belief (DB) have veritistic value relative to a question Q, so that
any DB in the true answer to Q has the same amount of V-value as the strength
of the DB. Goldman represents strength of belief as subjective probability. In
Goldman’s terminology, V-value of DBx(true)= x. Suppose, for example, that Mary
is interested in the question whether it will rain tomorrow. If the strength of Mary’s
belief that it will rain tomorrow is .8, and it will in fact rain tomorrow, then the
V-value of Mary’s state of belief vis-à-vis the rain issue is .8.

Suppose that a question begins to interest agent S at time t1, and S applies a
certain practice π in order to answer the question. The practice might consist, for
instance, in a certain perceptual investigation or in asking a friend. If the result
of applying π is to increase the V-value of the belief states from t1 to t2, then π

deserves positive credit. If it lowers the V-value it deserves negative credit. If it does
neither, it is neutral with respect to instrumental V-value. There is more complexity
to come, however. In evaluating the V-value of a practice, we usually cannot focus
merely on the one agent scenario. As Goldman notes, “[m]any social practices aim
to disseminate information to multiple agents, and their success should be judged
by their propensity to increase the V-value of many agents’ belief states, not just the
belief states of a single agent” ([13], 93). This is why we should be interested in the
aggregate level of knowledge, or true belief, of an entire community (or a subset
thereof).

Consider a small community of four agents: S1–S4. Suppose that the question of
interest is whether p or not-p is true, and that p is in fact true. At time t1, the several
agents have DBs vis-à-vis p as shown in the corresponding column (see Table 22.1).
Practice π is then applied, with the result that the agents acquire new DBs vis-à-vis
P at t2 as shown in the column under t2.

At t1 the group’s mean DB in p is .55, so that .55 is their aggregate V-value at t1.
At t2, the group’s mean DB in p is .75, so that this is their new aggregate V-value.
Thus the group displays an increase of .20 in its aggregate V-value. Hence the
practice π displays positive V-value in this application.

A further issue is that there is a need to consider not just one application of
a practice but many such applications. In evaluating a practice, we are interested
in its performance across a wide range of applications. In order to determine the

Table 22.1 Individual
degrees of belief for a
community of four inquirers
before and after applying a
practice

t1 t2

S1 DB(p) = .40 DB(p) = . 70
S2 DB(p) = .70 DB(p) = .90
S3 DB(p) = .90 DB(p) = .60
S4 DB(p) = .20 DB(p) = .80
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V-value of the practice π in our example we would have to study how well it fares
in other applications as well. This would presumably mean, among other things,
varying the size of the population of inquirers as well as allowing it to operate on
other initial degrees of belief. Once we have isolated the relevant set of applications
against which the practice is to be measured, we can take its average performance
as a measure of its V-value.

It follows from these considerations that, when assessing the V-value of a
practice, we need to “average” twice. For each application Ai of the practice, we
need to assess the average effect Ei it had on the degrees of belief of the members
of the society. The V-value of the practice is then computed as the average over all
the Eis.

As one can imagine, the task to compute the V-value of a social practice
can become quite complicated in practice. For that reason, researchers have been
interested in delegating it to computers. See Olsson [22] for a description of the
simulation framework Laputa which allows V-values to be computed automatically
for a variety of social practices.

22.6 The Value of Bayesian Epistemology

Pursuing Bayesian epistemology, as understood here and arguably in Bovens and
Hartmann [4], means translating concepts and ideas from epistemology into the
language of probability, especially concepts that relate to the way in which our
beliefs are justified. This brings with it a number of advantages, many of which
pertain to the use of formal methods generally. One has already been highlighted:
by means of formalization vague or ambiguous concepts can be made precise
and different senses distinguished. This was amply illustrated in our discussion
of various ways of defining the concept of coherence – the central concept in the
coherentist theory of justification – in probabilistic terms. Further, once a problem
has been translated into probability theory, it can be handled in a more objective
fashion than was previously possible. Our Bayesian treatment of the Dunnit example
due to Klein and Warfield illustrates this advantage allowing it to be rigorously
proved that one of their premises is false. The same example pinpoints another virtue
of formalization: the possibility of making and upholding delicate distinctions that
are difficult to express and sustain in ordinary language, i.e., the distinction between
any old propositions and propositions that are believed to be true by some inquirer,
and the implications of that difference for the probability of a set. See Hansson [16]
for an illuminating discussion of the value of formalization.

Finally, formalization in a standard formal framework, probability being no
exception, furthers the important scientific virtues of unity and integration. Thus, the
marriage between coherence and probability has led to a tighter connection between
epistemology and other areas of philosophy and science in which probability plays a
major role. As we saw, authors have explored the rather obvious connection to con-
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firmation theory, including Branden Fitelson [10]. Links to artificial intelligence –
Bayesian networks and fuzzy logic respectively – are established in Bovens and
Olsson [5] and Glass [15].
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Chapter 23

Coherence

Sven Ove Hansson

Abstract We encounter the notion of coherence in many branches of philosophy.
This overview introduces some basic distinctions that can be used to characterize
concepts of coherence. After that, two formal frameworks for the analysis of
coherence are introduced. The first of these is based on the logic of support relations.
It is used to show that coherentism and foundationalism may be combinable rather
than antithetical. The second framework assumes that coherence comes in degrees
and that it can be measured in probability-based units. The properties of such
measures is discussed, and so are the difficulties in constructing a measure of
coherence that satisfies intuitively reasonable constraints.

23.1 Coherence Is Everywhere

We encounter the notion of coherence in many branches of philosophy.

In the theory of knowledge, coherentists claim that our beliefs all justify each
other. Their adversaries, the foundationalists, maintain that a limited subset of
the beliefs, the basic beliefs, provide the justification for all the others.

According to Bayesian epistemologists, a rational subject’s beliefs must be
probabilistically coherent, that is, comply with the laws of probability.

In the philosophy of science, internal tensions (incoherence) in a scientific theory
or paradigm are seen as driving forces for its replacement by something better.

In metaphysics, coherentists about truth claim that the truth of a proposition
consists in its coherence with other propositions. According to its main rival,
correspondence theory, the truth of a proposition is constituted by its correspon-
dence to objective features of the world.
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Consistency in logic and mathematics is often described as a form of coherence.

Ethicists such as John Rawls have emphasized that our ethical principles and
our judgments in practical ethical issues should form a coherent system (be in a
“reflective equilibrium”).

In decision theory and action theory, it is usually assumed that a rational plan has
to be coherent [17].

In recent years, legal scholars have increasingly emphasized that the law and its
interpretation must form a coherent system, preferably based on some common
principles.

In spite of the ubiquity of coherence in philosophy, surprisingly few attempts have
been made to clarify the general meaning of this term in precise, formal terms.1

Most formal treatments of coherence have focused on only one application area
(usually epistemology), and consequently they lack in generality. The formalization
of coherence is still at an early stage, and no consensus has been reached on
what criteria a good model should satisfy, or how it should be constructed. In
the following section, some distinctions that are essential for the formalization of
coherence will be introduced. After that we will have a look at two formalizations,
one that is quite general and a more specialized one that is often referred to in
epistemology.

23.2 Distinctions That We Need

Some things come in degrees but are nevertheless often discussed in all-or-nothing
terms. Temperature is one of these. Although it (literally) comes in degrees we can
say: “Yesterday it was hot but today it is not.” Coherence is another:

“Her talk was more coherent than his.” (comparative coherence)
“Her talk was coherent. His was not.” (absolute coherence)

A model of coherence can treat it in either of these two ways. The absolute version
is simpler and may be more clear for some purposes, but of course the comparative
version has room for more nuances.

Another important distinction is that between, on the one hand, cohering with
something else, and on the other hand, being coherent in itself [3]:

“Her views on capital punishment do not cohere with her more general moral
views.” (relational coherence)
“Her moral standpoints are remarkably incoherent.” (systemic coherence)

1This has been pointed out repeatedly, for instance by Bender [3], Bonjour [5], Bartelborth [2],
Olsson [20, pp. 12–13] and Moretti and Akiba [18].
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Furthermore, systemic coherence can be treated in two different ways that it is
important to distinguish between, although the distinction is somewhat intricate. We
normally see the coherence of a system as a matter of how well its parts hang or hold
together. This interpretation is also recorded in dictionaries; to be coherent means
to “stick or cling firmly together” according to the Oxford English Dictionary. Thus
consider the following set of three sentences:

(1) {“Life is sacred”, “All murderers should be executed”, “It is soon five o’clock”}

This has the appearance of being an incoherent set, since the two first sentences do
not fit well together. But now consider the following set:

(2) {“Life is sacred and all murderers should be executed”, “It is soon five
o’clock”}

This set consists of only two sentences, and there is no conflict between the two.
If we consider the coherence of a set as something to be determined solely by
relations among its elements, then (2) must be deemed much more coherent than
(1). In similar fashion, any incoherent set could be made more coherent by merging
its most diverging elements into a single element. But presumably most of us would
see such an operation as a way to hide the incoherence rather than reduce it. The
reason for this is that when we see a set such as (2), we do not accept its elements
as representing the actual parts of that which the set represents.

When two sets, such as (1) and (2), have the same contents, we tend to assume
that they also have the same degree of coherence. The underlying assumption is
that coherence is a property of the contents of the set, rather than a property of the
collection of elements that is used to present the contents. In order to determine the
coherence of the contents, we identify its “actual” constituent parts (which may be
different from those that were presented to us). We then investigate to what extent
these “actual” constituents hang together. When thinking in this way we apply a
presentation-insensitive notion of systemic coherence.

But we should not exclude the possibility of evaluating the coherence of a
particular presentation of a set. I once listened to an exposition of a new legislation
that was correct but nevertheless confusing because of the disorganized order of pre-
sentation. I could then have said: “The material he presented in his talk was coherent,
but the presentation was incoherent.” Such a comparison would involve both a
presentation-insensitive and a presentation-sensitive notion of systemic coherence.

Finally, we have to distinguish between the different types of cohesive and

repulsive forces that operate in different systems whose coherence we want to
analyze. In logic and mathematics, coherence depends on the forces of logical
implication [7]. In other areas there is a wider variety of forces conferring or
constraining coherence. In epistemology, different types of inferential relations
(in a wide sense) can be at play, giving rise for instance to explanatory, evidential,
justificatory, or probabilistic coherence [22, p. 144 ], [4, p. 96]. Ethical coherence
can be construed for instance in terms of derivability from common underlying
principles, presence of redundant support from several moral principles, or absence
of conflicting statements.
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23.3 The Support Relations Model

In this section we are going to introduce a simple model of systemic coherence [11].
Its assumption is that we have a system to be evaluated with respect to its coherence,
and that this system is represented by a set. (If we are studying presentation-
insensitive coherence, then this set has to be composed of the “actual” components
of the system.) A support relation S represents the coherence-conferring forces in
the system. If a and b are elements of the set, then aSb denotes that a supports b.2

For illustration we can use diagrams in which the elements are represented by points
and S by arrows. An arrow from a to b denotes that a supports b. See Fig. 23.1.

This is in several respects a highly simplified representation of the forces that
make coherent systems stick together. First, support is treated as an all-or-nothing
affair although we know that support comes in degrees. Secondly, only positive
contributions to coherence are covered. In our example (1) above, what made
the set incoherent was not just the lack of coherence-conferring relations among
the elements but the presence of a conflictual relationship between the first two
elements. Thirdly, the model cannot deal adequately with cases where two or more
elements in combination provide a support that none of them confers alone, as the
first two sentences do to the third in the following example:

(3) {“Amy’s father is Chinese”, “Amy’s mother is British”, “Amy is bilingual”}

These limitations can easily be removed. We can replace the binary relation by a
function s on pairs of elements, such that s(a, b) is a number representing the degree
to which a supports b. Negative values can represent disconnecting forces. In this
way we get rid of the first two limitations. To get rid of the third we just need
to extend the function to cover expressions such as s({a, b}, c) in which the first
argument is a set of sentences.

However, simple binary all-or-nothing support relations are suitable for illus-
trating certain essential properties of support relations, and they will therefore be
used here. One of their major advantages is that they provide us with a convenient
representation not only of the interconnected relations in a coherent set but also of
the one-sided support relations from the base (basic beliefs) to the rest of the set

Fig. 23.1 Support relations
among the six elements of the
set {a, b, c, d, e, f }.
Universal supportedness and
Universal supportingness are
both satisfied

b c e f

a d

2S is irreflexive, i.e. ¬(xSx) holds for all x.
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that are assumed to hold in a foundationalist framework. We can therefore use this
simple model to clarify the relationship between coherentism and foundationalism.

Some more notation is needed. The set whose coherence or foundations we are
going to investigate needs a name. We can call it E. We also need quantifiers. Unless
otherwise specified, ∀x means “for all x ∈ E” and ∃x means “for some x ∈ E”.
We will also have use for the ancestral S ∗ of S. It denotes a chain of S-relations that
connects two elements of E, hence:

aS ∗b holds if and only if either aSb or there is a finite series of elements
x1, . . . , xn such that aSx1, xkSxk+1 for all 1 ≤ k < n, and xnSb.

Coherentism has been explicated by Ernest Sosa as meaning that “a body of
knowledge is a free-floating raft every plank of which helps directly or indirectly
to keep all the others in place, and no plank of which would retain its status with no
help from the others” [30, p. 24]. It follows from this that nothing is unsupported
and that everything supports something else. In the formal language, this means that
the following two conditions should be satisfied:

(∀x)(∃y)(ySx) (Universal supportedness)
(∀x)(∃y)(xSy) (Universal supportingness)

These are two reasonable conditions, but they are not sufficient to define even a
minimal notion of coherence. This can be seen from Fig. 23.1. In this diagram, both
conditions are satisfied, but it would be strange to claim that the set {a, b, c, d, e, f }
is coherent. As several authors have pointed out, a coherent system should not
have any isolated subsystem or part that is unconnected with the rest of the system
[4, p. 97], [31]. This is ensured by the following simple condition:

(∃x)(∀y)(xS ∗y) (Non-fragmentation)

Figure 23.2 shows a case in which Universal supportedness, Universal support-

ingness, and Non-fragmentation are all satisfied. The combination of these three
conditions ensures at least a minimal degree of coherence.3

Let us now turn to foundationalism. According to Ernest Sosa, it means that
“every piece of knowledge stands at the apex of a pyramid that rests on stable
and secure foundations whose stability and security does not derive from the upper
stories or sections” [30, p. 24]. This condition refers to a proper, non-empty subset
of E. Let us call it B. Then E \ B denotes the superstructure, i.e. the set of

Fig. 23.2 In this case
Universal supportedness,
Universal supportingness and
Non-fragmentation are all
satisfied

b

a

c d

e

f

3Alternative, stronger conditions are discussed in [11].
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elements of E that are not also elements of B. The quotation from Sosa provides us
with two conditions on B. First, it should not be supported by any element of the
superstructure, i.e. (∀y ∈ E \ B)(∀x ∈ B)¬(ySx). Secondly, it should support all
the elements of the superstructure. However, this support may be indirect. Therefore
we do not need to require that (∀y ∈ E \B)(∃x ∈ B)(xSy); it is sufficient to require
that (∀y ∈ E \ B)(∃x ∈ B)(xS ∗y). All this adds up to the following combined
requirement:

There is a set B with ∅ �= B⊂E such that
(∀y ∈ E \ B)(∀x ∈ B)¬(ySx) and
(∀y ∈ E \ B)(∃x ∈ B)(xS ∗y). (Base)

This is a reasonable definition of a base and therefore of foundationalism. It says,
essentially, that the base supports the rest of the system but is not supported by it.
See Fig. 23.3 in which this criterion is satisfied. This figure also illustrates that the
base will not in all cases be uniquely defined. There are in fact no less than eleven
alternative bases in this diagram, namely {a}, {a, d}, {a, d, e}, {a, d, e, f }, {a, b},
{a, b, d}, {a, b, d, e}, {a, b, d, e, f }, {a, b, c}, {a, b, c, d}, and {a, b, c, d, e}. This
may appear disturbing, since we presumably want the base to be well-defined. But
the problem can be solved fairly easily. One of the alternative bases, namely {a}, is
uniquely inclusion-minimal, i.e., it is a subset of all the others. We can take it to be
the genuine base, of which the other ten are mere extensions.

But now consider Fig. 23.4. Condition Base is satisfied here as well. But in this
case there is no uniquely inclusion-minimal base, i.e., no base that is a subset of all
the others. (To see this, just note that both {a, b} and {a, b, c} can serve as bases.)
From this example we can conclude that contrary to common assumptions, the base
of a foundationalist system need not be well-defined.

Fig. 23.3 A case in which
Base is satisfied

a

b

c

d

e

f
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Fig. 23.4 Universal
supportedness, Universal
supportingness,
Non-fragmentation, and Base
are all satisfied. The example
therefore has both coherentist
and foundationalist properties

a b

c

d e

f

Figure 23.4 has another, even more important property. We have already seen that
it satisfies Base. We can easily verify that it also satisfies our three conditions for
coherentism, namely Universal supportedness, Universal supportingness, and Non-

fragmentation. This example shows that the minimal conditions of coherentism and
those of foundationalism are compatible with each other. This opens up the possibil-
ity of considering structures of support that are intermediate between, or combine,
the classic notions of coherentism and foundationalism. The traditional dichotomy
can then be replaced by descriptive models that recognize a wider variety of types
of support structures. This more nuanced picture emerges, characteristically, from
endeavours to express these notions in formal language so that their implications
can be spelt out in full detail.

23.4 Probabilistic Measures of Coherence

Let us now turn to another formal representation of coherence that has attracted
much attention lately, namely probabilistic coherence measures. Just as in the
previous approach, it is assumed that we have a collection of objects, and that the
coherence we are looking for is a property of this collection. In this more specified
approach, it is assumed that the elements are propositions to which we can assign
probabilities. However, the collection is not represented in the formal language by
a set but by a sequence. The reason for this is that duplicates may be of interest.
The collection 〈a, a, b〉 contains two reports that a, whereas 〈a, b〉 only has one
such report. Consequently, these two collections may differ in their degrees of
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probabilistic coherence. Since the sets {a, a, b} and {a, b} are identical, they cannot
be used to represent such distinctions.

A probabilistic coherence measure is a numerical function that takes us from
such a sequence of propositions to a number that represents its degree of coherence.
The measure is supposed to depend only on the probabilities of the elements of the
sequence and of their Boolean combinations [20, p. 100].

Lewis [15, p. 338] proposed a definition of coherence in terms of probability.
Beginning in 1999, veritably dozens of probabilistic coherence measures have been
put forward. The following two are probably the ones most often referred to:

Shogenji’s [28] coherence measure:

CS(〈A1, . . . , An〉) =
P(A1& . . . &An)

P (A1)× . . .× P(An)

Olsson’s [19] coherence measure:

CO(〈A1, . . . , An〉) =
P(A1& . . . &An)

P (A1 ∨ . . . ∨ An)
.

Shogenji’s measure is the ratio between how probable it is that all the sentences
are true and how probable this would have been if they had been probabilistically
independent of each other. Olsson’s measure has been called a measure of overlap.
It is the ratio between the probability of all sentences being true and the probability
of at least one of them being so. Other measures have been proposed for instance
by Fitelson [9, 10], Meijs [16], Douven and Meijs [8], and Siebel and Wolff [29].
Bovens and Hartmann [6] have proposed an arguably somewhat more sophisticated
approach in which the numerical measure is replaced by an incomplete ordering.
Then sets can be incomparable in terms of their degrees of probabilistic coherence.
However, consideration of the two measures already mentioned is sufficient to give
a picture of the general nature of probabilistic coherence measures.

Shogenji’s measure has been criticized for yielding counter-intuitive results for
agreeing reports. Suppose that we initially have one report saying that a coin
that was thrown yesterday yielded heads. This is represented by a sequence 〈A〉
with only one element, namely the proposition A with probability 0.5. Shogenji’s
measure yields the coherence CS(〈A〉) = 1. But then we receive another report
saying the same thing. This increases the degree of coherence to CS(〈A,A〉) = 2.
A third report will yield CS(〈A,A,A〉) = 4, etc. According to Fitelson [9]
who pointed out this, the measure behaves counterintuitively since we should
expect coherence to remain constant when more and more agreeing reports are
received. Olsson’s measure fares much better here; indeed we have CO(〈A〉) = 1,
CO(〈A,A〉) = 1, etc. for any number for agreeing reports.

On the other hand, Olsson’s measure has another disputable feature. Based on
an insight first reported by Bovens and Hartmann [6], Koscholke and Schippers
[14] showed that according to this measure, a set’s degree of coherence cannot be
increased by adding another proposition to the set. Examples are easily found in
which this runs counter to intuition:
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m Haris and Rosarita are going to marry.
n Haris and Rosarita have no romantic relationship.
r Rosarita is a refugee for whom a marriage is the only chance not to be sent
back to a war zone.
h Haris is a pro-refugee activist.

It would seem plausible to claim in this case that the set {m, n, r, h} is more coherent
than its subset {m, n, r}, which is in its turn more coherent than {m, n}.

Shogenji’s and Olsson’s measures have a feature in common for which they have
been much criticized: They both yield different results for logically equivalent sets.
Akiba [1] said: “Obviously the coherence of two beliefs B1 and B2 should be no
different from the coherence of one conjunctive belief B1&B2.” Therefore, he said,
the two sets {B1, B2} and {B1&B2} should have the same degree of coherence. This,
however, is not the case. Let B1 denote that the next throw of a fair dice will yield
an odd number and B2 that it will yield a prime. Then we have CS({B1, B2}) = 4/3
and CS({B1&B2}) = 1. Similarly, CO({B1, B2}) = 1/2 and CO({B1&B2}) = 1.
Hence neither of these two measures satisfies Akiba’s criterion.

In reply, Olsson has questioned Akiba’s assumption that sets with the same
contents should always have the same degree of coherence, irrespective of how these
contents are distributed among sentences [20, p. 102]. Responding to this, Moretti
and Akiba [18] showed that a wide variety of probabilistic coherence measures
assign different degrees of coherence to logically equivalent sets of propositions.
They call this the “problem of belief individuation”. However, the seeming problem
can be resolved with help of the distinction between presentation-sensitive and
presentation-insensitive coherence that was introduced above. Different presenta-
tions of one and the same information can differ in their degrees of coherence,
even though the coherence of the respective information is the same. Shogenji’s and
Olsson’s coherence measures are presention-sensitive, and there is nothing wrong
in them being so.4 A presentation-insensitive measure would have to replace a
given presentation by some standard presentation of the same information before
measuring the probabilistic relations among the elements.

A considerable number of probabilistic coherence measures have been proposed.
For instance, Koscholke [13] reviewed eighteen of them. Schippers [24, 25] has
shown that it is impossible to construct a coherence measure that satisfies a small
set of intuitively plausible properties. Based on this, he proposed that a pluralist
approach to coherence measures may be appropriate [25, p. 972].

An issue of much interest for coherentist epistemology is whether a probabilistic
coherence measure can be truth-conducive. By this is meant that a more coherent
sequence is more likely to be true [12]. Several impossibility results have been
put forward, indicating that no informative coherence measure can be truth-
conducive [6, 12, 20, 21]. The debate is still on-going, and attempts to save

4Olsson introduced his measure in a framework where coherence is a property of reports, typically
coming from different sources. (Bovens and Hartmann did the same.) Presentation-sensitivity is
thus explicitly assumed.
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truth-conduciveness have been made [23, 26, 27]. However, it is difficult to see how
truth-conduciveness could be achieved with presentation-sensitive measures (like
the ones currently under discussion). Expectedly, a truth-conducive measure should
treat two sequences equally if they have the same relation to the truth, which they
have if they convey the same information.

As mentioned at the outstart, the formal treatment of coherence is still at a
surprisingly early stage, given the importance of this concept in several branches of
informal philosophy. There is a need for new and innovative measures and models.
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Chapter 24

Computational Models in Science
and Philosophy

Paul Thagard

Abstract Computer models provide formal techniques that are highly relevant to
philosophical issues in epistemology, metaphysics, and ethics. Such models can
help philosophers to address both descriptive issues about how people do think
and normative issues about how people can think better. The use of computer
models in ways similar to their scientific applications substantially extends philo-
sophical methodology beyond the techniques of thought experiments and abstract
reflection. For formal philosophy, computer models offer a much broader range of
representational techniques than are found in traditional logic, probability, and set
theory, taking into account the important roles of imagery, analogy, and emotion in
human thinking. Computer models make possible investigation of the dynamics of
inference, not just abstract formal relations.

Computer models are ubiquitous in the natural and social sciences, but are still
rare in philosophy. This chapter will discuss the valuable contributions that such
models make in the sciences and show how similar benefits can be gained in
philosophy. Formal methods in philosophy have been limited to a relatively small
set of tools such as predicate logic, set theory, and probability theory. But there
are other branches of mathematics that are at least as relevant to central concerns
in epistemology and metaphysics, including differential calculus, linear algebra,
dynamic systems theory, and theory of computation. Computational models that
draw on these kinds of mathematics can be highly valuable for understanding the
structure and growth of knowledge and for grasping the nature of mind and reality.
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24.1 Computer Models in Scientific Applications

The development of digital computers and programs in the 1940s transformed many
areas of science, starting with physics and later extending to biology, economics,
cognitive psychology, and other fields. Physicists began to use computers to model
the behavior of sub-atomic particles in nuclear fission and fusion ([13], ch. 8). To
build bombs, physicists needed to understand how neutrons fission and scatter,
but detailed experiments were not feasible and mathematical theory generated
unsolvable equations. Hence John von Neumann and others employed the new tool
of vacuum tube computers to recreate physical processes by modeling a sequence
of random scatterings using what came to be called Monte Carlo methods. The
differential equations in physical theory that assumed continuous quantities could be
approximated by difference equations expressed in computer instructions. The new
method replaced crude estimates of criticality by simulations that enable physicists
to determine how detonations occur. Even the very primitive early computers could
carry out calculations that would have taken humans hundreds of years. Now, some
computers can perform quadrillions of operations per second, providing enormous
capacity for simulating very complex systems.

Computer models are now widely used in fields of physics ranging from fluid
dynamics to quantum mechanics [56]. Computational biology began in the 1960s
and is now applied to many systems from cells to evolutionary development [23].
With the development of huge data bases in genomics and related fields, computers
are used for bioinformatic purposes such as determining the function of model genes
[18]. Computational chemistry is used to calculate the properties and changes of
molecules and solids, with applications to the design of new drugs and materials
[8]. Economists have long used computers to implement mathematical models of
financial phenomena and are now turning to more realistic systems that model the
interactions of somewhat intelligent agents (e.g. [4]). I will shortly give a more
detailed account of the nature of computational models in science based on my own
experience in developing models in cognitive psychology and neuroscience.

From the perspective of some traditional philosophical approaches, the use of
computer models may seem puzzling. Consider the classical hypothetic-deductive
method according to which theories consist of axiomatized hypotheses from which
observations can be deduced. Why not just use mathematics to state the hypotheses
and formal logic to deduce their consequences? There are many reasons why the
logic-based version of hypothetico-deductivism is impractical.

First, scientific theories are rarely formalized so rigorously that deductions of the
sort found in systems such as predicate logic can be made. Second, predicate logic is
undecidable in the sense that there is no effective procedure for determining whether
a formula is a consequence of a set of axioms. Third, more practically, theorists in
physics and other fields have long known that calculating the consequences of their
assumptions is mathematically very difficult. For example, it was already known in
the eighteenth century that determining the motions of three bodies was difficult for
Newtonian mechanics. Fourth, in the 1960s when computer models were newly used
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in meteorology, Edward Lorenz discovered that atmospheric systems are chaotic in
that small differences in initial conditions can have very large effects in long-range
predicted behavior. For these reasons, the logic-based view of hypothetico-deductive
systems used to generate predictions and explanations in science does not capture
well the actual practice of science. Computer models provide a powerful alternative
to human deductions, generating valuable extensions to scientific methods [21].

I now give a more detailed description of how computer models work in science,
drawing on my own experience building them for applications in psychology and
neuroscience [47]. The methods I will describe are very common in the cognitive
sciences, and are similar in many ways to how computer models operate in the
natural and social sciences. I will note the relevant differences shortly. All computer
models in science require ways of describing both conditions and changes. In
physics, the conditions are usually represented by the values of variables, and
the changes are represented by differential equations that describe how the values
transform over time.

The first prominent computer model in psychology was the rule-based account
of problem solving developed in the 1950s by Newell and Simon [26, 27], and this
methodology expanded rapidly through the 1970s when cognitive science emerged
as a recognized interdisciplinary field. I began building computer models in the
1980s in order to get a better understanding of analogical and other kinds of
inference relevant to the discovery and acceptance of scientific theories [19, 20, 36].
The aim of computer modeling in psychology is to develop and test theories about
how the mind works.

Since cognitive psychology supplanted behaviorism in the 1950s and 1960s, a
psychological theory is an account of the structures and processes that enable minds
to carry out such functions as perception, problem solving, learning, and language
use. Candidate structures include propositions, concepts, images, Bayesian graphs,
and neural networks [42]. Whereas many philosophers take propositions and
concepts to be abstract entities, in cognitive science such structures are assumed
naturalistically to be physical entities operating in brains and/or computers. Com-
puter models of mind are different from computer models in physics and biology
because of the fertile hypothesis developed in the 1950s that thinking is at least
analogous to computation and perhaps more strongly is even a kind of computation.
In contrast, computational models in physics and biology do not usually assume that
entities such as atoms and non-neural cells are actually performing computations
themselves.

Following the analogy between thinking and computing, mental structures
can be modeled in computer programs via data structures, which are ways in
which programming languages store and organize information for efficient use.
Programming languages include a variety of data structures such as numbers,
variables, strings, lists, and arrays. A high-level programming language such as
LISP or Prolog contains extended ways of representing more complex information
including propositions and concepts. Then a psychological theory about what kinds
of representations the mind uses can be translated into a computer model with
analogous kinds of data structures. A computer program is sometimes described just
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as a set of step-by-step instructions, but the instructions need to have data structures
on which to operate, just as an inference needs propositions as well as rules of
inference. Hence it is more accurate to describe computer programs and models
as combinations of data structures and algorithms, which are effective methods
expressed as finite steps of instructions.

It is surprisingly difficult to define more precisely what an algorithm is (see
the Wikipedia article “Algorithm Characterizations”). For scientific purposes, algo-
rithms are specified in order to capture changes taking place in the natural system
being modeled. In the cognitive sciences, the algorithms specified serve to model
the processes proposed in the psychological theory. For example, in rule-based
psychological theories such as those of Newell and Simon [27] and Anderson [1],
the algorithms specify how applying a rule to propositions can lead to inference to
new propositions. This process is similar to use of modus ponens in formal logic,
but much more complicated because many non-logical considerations such as past
usefulness influence the algorithms that select what rules to fire. The data structures
and algorithms of the computer program that implement the computational model
correspond to the representations and processes that the psychological theory
hypothesizes.

In computer modeling, it is important to distinguish between theories, models,
and programs. Theories are general accounts of things, relations, and interactions
that produce change. Computer models use data structures to characterize the
things and relations, and use algorithms to capture the changes that result from
the interactions. Computer programs are packages of code written in a specific
language that implement the model and thereby provide a way of testing the theory.
It is sometimes said that programs are theories, but programs contain myriad details
particular to the programming language used. More accurately, programs implement
models that approximate the claims made by theories. Cognitive scientists do not
always move from theories to models to programs, because thinking about how to
write a program in a familiar language can be a very useful way of developing ideas
that can be used to specify models and programs. Computer modeling is a method
for generating hypotheses as well as for testing them.

Psychological theories are not easy to test directly against experimental results,
because their deductive implications are often unclear. When a theory, however, is
specified in a model and implemented in a program, it becomes much easier to
determine the implications of the theory. Unless the theory, model, and program are
ridiculously simple, building a program and getting it to perform in psychologically
realistic ways are highly non-trivial tasks. As the field of artificial intelligence has
repeatedly found since its origin in the mid-1950s, computational implementation
of functions such as perception and inference reveals unexpected difficulties. Some
algorithms are computationally intractable in that the resources required increase
exponentially with the size of the problem to be solved. For example, using truth
tables to check for consistency in propositional logic is fine for very small numbers
of sentences, but since n sentences require 2n rows this method is not practical
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even on large computers for the millions of beliefs held by people and computer
data bases. Hence implementing a theory in a running computer program provides
preliminary evidence that the representations and processes postulated by the theory
are physically realizable.

Given realizability, a computer program provides a way of testing a theory by
examining whether the running program behaves in ways similar to how people
behave in psychological experiments. There should be at least a qualitative fit
between what the program does and what people do: the program performs roughly
the same tasks in roughly the same ways. Ideally, there will also be a quantitative fit
between program and human behavior, with statistics describing what the program
does matching closely statistics generated in human experiments. Of course, even
quantitative fit between program and experiments does not demonstrate that the
original psychological theory is true, but it does provide some support. As in
scientific theorizing in general, evaluation requires a full assessment of how well
a theory compares to alternative theories in its ability to explain the full range of
available evidence.

Computer modeling in the rule-based Newell and Simon tradition is still an
important part of cognitive science, but it has been supplemented by approaches
that more directly model the brain. In the 1980s neural networks models became
prominent, also known by the terms connectionist (because they represent informa-
tion by the connections between neurons) and parallel distributed processing [31].
These models are very different from rule-based and logic-based models in their data
structures and algorithms. Instead of viewing problem solving and other cognitive
tasks as a series of inferences applied to linguistic structures, neural network models
adopt simpler data structures - artificial neurons and the links between them -
and parallel algorithms that describe how activation (neural firing) spreads through
populations of neurons. Current models in computational neuroscience are much
more biologically realistic than connectionist models in employing much larger
numbers of spiking neurons organized into populations that correspond to actual
brain regions [7, 10–12, 28].

Although neural network models approach the mind very differently from the
views of psychological operations found in folk psychology, formal logic, and rule-
based systems, their use still fits with the general methodology I already described
for computer modeling. Programs still consist of data structures and algorithms,
although the structures are strange from the commonsense ones suggested by
introspection and examination of written texts. Speech and writing are serial
processes in which words, sentences, and inferences are generated one at a time
using large structures such as concepts and propositions. From the perspective of
computational neuroscience, concepts and propositions are patterns of activation in
populations of thousands or millions of neurons (defenses and illustrations include
[46, 47, 54]). For describing such patterns and exploring their operations, computer
modeling is indispensable.
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24.2 Philosophical Applications

Decades ago, Aaron Sloman [33] wrote that it was only a matter of time that any
philosophers unfamiliar with computational modeling would be deemed incompe-
tent! Currently, however, computer models are still rare in philosophy, although they
have been used to study such topics as logic, causal reasoning, social evolution,
ethical development, scientific reasoning and coherence. Specific examples will be
provided below.

The key question is how computer models can be relevant to philosophical
problems concerning the nature of knowledge, reality, and morality. On some
views of philosophy, there would be no relevance. If the main goal of philosophy
were to generate transcendent, a priori truths, then computer models would have
little to contribute. Or if the main goal of philosophy were to analyze people’s
everyday concepts, then attention to language would obviate computer models. I
think, however, that there are no significant a priori truths, and that philosophy
should be like science in aiming to improve concepts rather than to analyze existing
ones [45, 46, 48, 50]. Philosophy does not reduce to science, because its concerns
have a degree of generality and normativity not found in any scientific field. But a
naturalistic approach as pursued by Aristotle, Bacon, Locke, Hume, Mill, Peirce,
Quine and many other philosophers, sees scientific results as highly relevant to
philosophical issues, and hence opens the possibility that computational models
might provide a useful philosophical methodology.

First consider epistemology. If one abandons as hopeless the traditional empiri-
cist and rationalist goals to find an indubitable foundation for knowledge, then
epistemology can reorient toward the much more interesting and accomplishable
task of understanding the structure and development of knowledge. This task is
very similar to the goal of cognitive psychology to understand how the mind/brain
processes information about the world. Quine [30] also saw an alliance between
epistemology and psychology, but was hampered by the theoretical and experimen-
tal limitations of the behaviorist psychology of his day. Current psychology has the
intellectual resources to help address many key philosophical concerns about the
nature of knowledge and inference. Here are some illustrations.

The main alternative to foundationalist epistemology is coherentism, according
to which interlocking beliefs can be justified if they form a coherent set. Most
philosophical discussions of coherence have only vaguely suggested how it can
be objectively assessed. However, coherence can be made much more precisely
calculable by considering it as a kind of constraint satisfaction problem of the
sort naturally approached using neural network algorithms [37, 38, 40]. Moreover,
coherence from this perspective can be formalized to an extent that enables proof
that the problem of coherence is NP-hard, i.e. in a class of problems for which a
guaranteed solution is unlikely to be found [55]. However, computer experiments
show that connectionist and other algorithms can be used to model very large
examples of scientific reasoning. Such modeling does not “prove” that coherentism
is the best approach to epistemology, but it provides evidence that it can adequately
characterize important aspects of belief evaluation.
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The main alternative to coherentism in non-foundationalist epistemology is
Bayesianism, which uses the tools of probability theory to analyze the structure and
growth of knowledge. Merely assuming that probability theory provides answers
to epistemological problems does not take one very far, but highly sophisticated
computational tools for modeling Bayesian inference have been developed by
philosophers, psychologists, and computer scientists (e. g. [14–16, 29, 34]). These
computational tools have made possible the testing of Bayesian models as both
accounts of actual human inference and as means of making accurate probabilistic
inferences.

One advantage of formalizing philosophical ideas about inference in computa-
tional models is that it makes possible head-to-head comparison of their relative
merits. For example, Thagard [41] compared coherence and Bayesian accounts
of legal inference and argued that coherence is superior both descriptively and
normatively. Epistemology, obviously, is concerned not just with the descriptive
task concerning how people do think but also with the normative task of determining
how people can think better. Normative concerns are not alien to science, as there
are branches of applied science such as engineering and educational psychology
that are as much concerned with improving the world as describing it. Computer
models can contribute to normative deliberation by providing a means to explore
the consequences of different ways of understanding the nature of knowledge. They
are thus much more useful than thought experiments, in which philosophers’ own
intuitive reactions to stories they have made up are mysteriously used as evidence
for the philosophers’ preconceptions. As in science, computer models provide a link
between theory and data, where the data can be actual cases of human knowledge
development of the sort that occur in laboratory experiments and the history of
science.

Computer models have other kinds of epistemological applications. For example,
there is an old debate in the philosophy of science about whether there could be a
“logic of discovery” [17]. This debate has been enriched by the development of
various computer models of aspects of scientific discovery including generation of
concepts, hypotheses, and descriptions of mechanisms (e.g. [3, 24, 39, 54]). Peirce’s
still-influential idea of abduction as a kind of inference involving both the generation
and acceptance of explanatory hypotheses has been computationally explored using
many techniques ranging from formal logic to neural networks (e.g. [22, 52]).
Analogical inference can also be productively investigated using computational
models [20, 35]. More traditional philosophical approaches involving formal logic
can also be enhanced by computational modeling. In sum, computer modeling is as
valuable a tool for epistemology as it is for cognitive psychology and other areas of
science.

One might naturally suspect, however, that computer models are irrelevant to
metaphysical questions about the fundamental nature of reality. As for epistemol-
ogy, however, the potential arises within a naturalistic view of metaphysics that
views it as continuous with science. For example, metaphysical questions about the
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nature of space and time might be informed by physical theories that are tested via
computational models, although I do not know of any specific examples. But such
models are clearly relevant to another central metaphysical question, the relation of
mind and body.

Idealism, materialism, and dualism are the classic positions in the philosophy of
mind. I think that evidence is rapidly mounting for a materialist resolution of the
mind-body problem ([46, 48]; see also [2, 5, 6, 25]). Rather than pursuing inconclu-
sive and prejudicial thought experiments, philosophers can examine evidence both
for and against the hypothesis that mind events are brain events. This hypothesis is
no different from many identity hypotheses that have come to be supported by large
amounts of scientific evidence: water is H2O, air is a mixture of gases, combustion
is oxygenation, lightning is electricity, heat is motion of molecules, and so on.
Support for mind-brain identity requires consideration of how well brain processes
can explain the full range of psychological functions such as perception, inference,
language, emotion, and conscience.

As my earlier discussion of computational neuroscience indicated, computer
models are an important part of developing and testing neurocognitive theories.
Philosophers can of course wait and watch for models most relevant to metaphysical
concerns to be developed by scientists, but can accelerate progress by possessing the
skills to build models themselves. For example, I had been investigating emotional
thinking as a brain process [43], and was aware that conscious experience is a
key part of emotion that according to some philosophers requires a non-materialist
explanation. Hence I decided to develop a model of emotional consciousness,
parts of which have been implemented computationally [49]. This model integrates
two theories of emotion (cognitive appraisal and physiological perception) that
have been taken as competitors by both philosophers and psychologists. Without
computational tools that facilitate thinking of the brain as a parallel processor
interconnecting both cognitive and bodily information, it would have been difficult
to construct this model. By providing an evidence-based neural explanation of one
important kind of consciousness, the model is highly relevant to the philosophical
question of the relation between mind and body. Later work draws on new ideas
from computational neuroscience to develop an improved theory of emotion [53].

I predict that further progress in computational neuroscience, along with rapidly
growing evidence from brain scans and other experimental techniques, will provide
further evidence for materialist metaphysics. Of course, those who favor dualism or
idealism may see these developments as grounds for just ignoring scientific evidence
and the computational models that connect them with theory. Ignorance is bliss.

Besides epistemology and metaphysics, the third major area of philosophy is
ethics. Most computer modeling relevant to ethics has been performed by theorists
interested in questions concerning the evolution of ethical strategies as modeled by
game theory [9, 32]. I prefer a less abstract, more naturalistic approach to ethics
that attempts to reach moral conclusions by developing coherent judgments about
fundamental human needs [46, 48, 51]. From this perspective, moral intuitions are
not a priori judgments achieving transcendent truths, but rather are the result of
brain processes for emotional coherence. It follows that the model of emotional
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consciousness already described is highly relevant to understanding ethical judg-
ments. The model provides a way of seeing how such judgments can be both
cognitive and emotional, undercutting debates about emotivism that have exercised
ethicists since the 1930s. Hence computer models can be highly relevant to ethical
theory. Neuropsychological theories rooted in computational models can also be
relevant to explaining puzzling ethical lapses such as conflicts of interest and self-
deception [44].

In sum, computer models provide formal techniques that are highly relevant to
philosophical issues in epistemology, metaphysics, and ethics. Such models can
help philosophers to address both descriptive issues about how people do think and
normative issues about how people can think better. The use of computer models
substantially extends philosophical methodology beyond the timeworn techniques
of thought experiments and abstract reflection.

For formal philosophy, computer models offer a much broader range of represen-
tational techniques than are found in traditional logic, probability, and set theory,
allowing expansion to take into account the important roles of imagery, analogy,
and emotion in human thinking. Just as significant, computer models make possible
investigation of the dynamics of inference, not just abstract formal relations. Far
from being oxymoronic, computational philosophy offers powerful new tools for
investigating knowledge, reality, and morality.
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Chapter 25

Models of the Development of Scientific
Theories

Gerhard Schurz

Abstract The three basic kinds of theory development are expansion, contraction
and revision by empirical evidence (Sect. 25.1). Under empiricist assumptions,
the history of scientific evidence can be represented by a sequence of true and
cumulatively increasing evidence sets which in the limit determine the complete
structure of the world (Sect. 25.2). Under these assumptions it turns out that
purely universal hypotheses are falsifiable with certainty, but verifiable only in
the limit, ∀-∃-hypotheses are falsifiable in the limit but not verifiable in the limit,
and ∀-∃-∀-hypotheses are neither nor (Sect. 25.3). In the consequence, hypotheses
with complex quantification structure can only be confirmed probabilistically
(Sect. 25.4). While these results are based on “empiricist” assumptions, the revision
of theories which contain theoretical concepts requires either a given partition of
possible hypotheses out of which the most promising one is chosen (rational choice
paradigm), or it requires steps of abductive belief revision (construction paradigm)
(Sect. 25.5). Revision of scientific theories is based on a Lakatosian preference
structure, following the idea that in case of a conflict between theory and data, only
peripherical parts of the theory are revised, while the theory’s core is saved from
revision as long as possible (Sect. 25.6). Surprisingly, the revision of a false theory
by true empirical evidence does not necessarily increase the theory’s truthlikeness
(Sect. 25.7). Moreover, increase in empirical adequacy does not necessarily indicate
progress in theoretical truthlikeness; a well-known attempt to justify this inference
is Putnam’s no-miracles argument (Sect. 25.8).
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25.1 Basic Notions of Theory Development

Three different kinds of theory development are expansions, contractions and
revisions of theories (compare ch. 6/5 in this volume). These and other distinctions
require formal tools for their reconstruction. We assume the logical framework of a
1st order language with the standard logical symbols (¬,∧,∨,→,↔,∀,∃, =) and xi

(i = 1, 2, . . . ) for individual variables, ai for (individual constants), Pi, Ri . . . for
n-ary predicates. L is our language and S(L) the set of L-sentences. Small (arabic)
letters si ∈ S(L) denote arbitrary sentences, hi hypotheses, ei evidence statements,
Ti stands for theories which are sets of sentences, Ei for sets of evidence statements,
and Si for arbitrary sets of statements. ||— denotes logical inference and Cn logical
consequence, i.e. Cn(S):= {si∈S(L): S ||— si} (“:=” means “identity by definition”).
In this framework (which is widespread in formal philosophy of science) a theory Ti

is reconstructed as a consistent and logically closed set of sentences of a given set
of characteristic axioms Ai of Ti, i.e. Ti = Cn(Ai). Ai is also called the (axiomatic)
base of Ti.1

Within this formal background the (ordinary) expansion of a theory T by a new
and T-compatible piece of information s is denoted as T + s and defined as T + s:
= Cn(T ∪{s}). If T = Cn(A) an equivalent definition is T + s = Cn(A∪{s}). If
s contradicts T (T ||—¬s), then one must first contract T by ¬s before one can
expand T by s. The so-called contraction of T by s is denoted as T÷s and intended
to be some preferred T-subset which does no longer entail s. Different methods
of defining contraction operations have been suggested (e.g. via intersections
of maxichoice contractions, or via epistemic ordering or ranking functions over
sentences or over corresponding possible worlds (cf. e.g. [11, 33], and ch. 6/5 this

volume). Finally, the (ordinary) revision of T by a T-incompatible proposition s is
denoted as T*s and defined via the so-called Levi-identity as T*s: = (T÷¬s) + s

(so-called after Isaac Levi in [10]). In other words, one revises T by a new
piece of information s by first contracting T by ¬s and then expanding this
contraction by s. Note that for a T-compatible s, expansion coincides with revision
(T*s = T + s).

The information by which scientific theories are typically expanded or revised are
evidences, i.e. observations or measurement results; they are (typically) expressed
by so-called basic statements. These are unnegated or negated atomic statements
(also called “literals”) of an assumed empirical (or non-theoretical) sublanguage Le

of L whose concepts are directly observable or measurable (i.e. S(Le) ⊆ S(L)).

1An alternative to the sentential representation of a theory T as a logically closed set of sentences
is the model-theoretic (or “structuralist”) representation of T by the set of semantic models or
possible worlds which verify T (cf. e.g. [9, 17]).
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Important for philosophy of science is the distinction between AGM-contraction

after Alchourrón et al. [1] and base-contraction introduced by Hansson [13]. While
in AGM-contraction the contraction-operation is applied to the entire set of T’s
consequences, whether basic or derived, in base-contraction this operation is only
applied to T’s axioms A, i.e. T÷s is defined as Cn(A÷s). The difference is this.
If an axiom s∈A of a theory T = Cn(A) is removed, then in base-contraction
T-consequences whose justificational support depends on axiom s have to be
removed from T, too. In AGM-contraction this need not be so: one may retain
consequences from T even after their premises have been removed. While base-
revision is reasonable from a foundation-oriented viewpoint, AGM-revision makes
sense if one adopts a coherentistic position (cf. also [33], ch. 3).

Beyond these ordinary notions of expansion and revision (be it AGM- or base-)
we introduce in Sect. 25.5 the stronger notions of abductive expansion and revision.

25.2 Theory Development Under Empiricist Assumptions

The empiricist view of scientific theories has been defended by classical empiricists
(e.g. John Locke) and early logical empiricists (e.g. [4]). This view makes two
assumptions: (i) that evidences are certain, and (ii) that all non-logical concepts
of scientific theories can be defined by empirical concepts, or in other words, that
the scientific language contains no genuinely theoretical concepts, i.e. L = Le.
We let E(Le) stand for the set of all basic (i.e. evidence) statements of Le. Each
maximally consistent subset of E(Le) (a so-called “diagram”) is denoted by EWk and
represents a possible empirical world or “Le-world” over a given countably infinite
domain of named individuals (i.e. every individual has a standard name in Le). We
formalize the history of scientific evidences over a given Le-world EW in the form
of an evidence stream (e) = (e0, e1, . . . ), such that EW = {ei: i∈ω} and the ei are
pairwise distinct. Given the empiricist assumptions, EW determines the complete

true theory T(EW), which is semantically given as the set of all true Le-statements
in EW and syntactically as the uniquely determined maximally consistent and ω-
complete extension of EW in Le.2 Given this formal reconstruction, empiricist
theory-development has the following properties:

1. The accumulation of evidences is cumulative because evidences are true and are
never taken back. Formally, this means that the ei are mutually compatible.

2. At every finite time point n, only a finite subset of EW is known. Therefore
T(EW) is never known with certainty. As Popper [28] has stressed, no purely uni-

versal hypotheses (e.g. ∀xPx) is verifiable by finitely many evidences, although

2A sentence set S ⊆ S(L) is maximally consistent iff S is consistent and has no consistent proper
extension in S(L) and S is ω-complete iff whenever ϕ[ai] ∈ S for all individual constants ai, then
∀xϕ[x] ∈ S (for ϕ[ai] an arbitrary L-formula containing ai).
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it is falsifiable (namely by ¬Pa); and dually, no purely existential hypothesis

(e.g. ∃xPx) is falsifiable by finitely many evidences, although it is verifiable
(namely by Pa). Later it was discovered that quantificationally mixed hypotheses
such as ∀x∃xRxy are neither verifiable nor falsifiable by finitely many evidences.
It follows that even under empiricist assumptions it need not be that theory
development is cumulative at the level of hypotheses: false universal theories
may be held for an arbitrarily long time before they get falsified; and theories
with mixed quantifiers will never get verified or falsified.

25.3 Convergence in the Limit and Formal Learning Theory

The empiricist setting of Sect. 25.2 is the major framework of formal learning
theory (cf. ch. 6/6, this volume). Evidence streams are called data streams in Kelly
[15]. Formal learning theorists are aware that there exist theories with theoretical
terms to which this setting doesn’t apply. Still their setting may be regarded as a
legitimate idealization in all contexts in which one may assume an unproblematic
background knowledge (e.g. concerning measurement techniques) by which one
can determine the truth value of all basic statements of the language in which
theories are formulated. From now on we understand “Le” in this extended sense.
Verification and falsification with certainty (in the sense of Carnap [4] and Popper
[28]) are defined as follows:

(1) h ∈ S(Le) is verifiable (or falsifiable, respectively) with certainty over an Le-
world EW iff for every evidence stream (e) over EW there exists a time point n

at which en entails h (or entails ¬h, resp.).

Purely existential hypotheses are verifiable and purely universal hypothesis are
falsifiable with certainty; but quantificationally mixed hypotheses are neither nor.
In view of this negative results formal learning theorists suggest to use the weaker

epistemic standard of verifiability [viz. falsifiability] in the limit. Let SQ(Le) be the
set of all evidence sequences over Le-worlds; let (e1−n) denote the sequence of the
first n elements of (e); and let En:= {ei: 1≤i≤n} be the corresponding evidence set at
time n. An assessment function for the hypotheses h∈H in a given set of hypotheses
H is a function α: H×{(e1−n): (e)∈SQ(Le), n∈ω} → {true, false} which conjectures
at every time point n of any evidence stream (e) whether h is true or false. Then:

(2) A hypothesis h ∈ S(Le) is verifiable (or falsifiable, resp.) in the limit iff there
is an assessment function such that for every Le-world EW which verifies (or
falsifies, resp.) h and evidence stream (e) over EW there exists a time point
n after which α conjectures the correct truth value of h in EW forever (i.e.
α(h,(e1−m)) = true for all m≥n).

One of the major results of formal learning theory is the following:
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(3) An ∃-∀-hypothesis (e.g. ∃x∀yRxy) is verifiable but not falsifiable in the limit.
Dually a ∀-∃-hypotheses (e.g. ∀x∃yRxy) is not verifiable but falsifiable in the
limit.

In particular, a ∀-hypothesis (∀xFx) is verifiable in the limit and falsifiable with cer-
tainty (and dually for ∃-hypotheses, with “verifiable” and “falsifiable” exchanged).
Let us explain the basic idea underlying result (3). Define Dom(En) to be the
subdomain of those individuals which appear in En. Then an assessment method
α for ∃x∀yRxy can be defined as follows: conjecture “true” as long as the so
far observed evidence set En does not falsify ∃x∀yRxy over Dom(En); otherwise
conjecture “false”. Then if h is true in EW there exists an individual ak which
appears at some time t(ak) and for which ∀yRaky is true, whence after time t(ak) α

will conjecture “true” forever. However, if ∃x∀yRxy is false in a given EW, then for
every assessment method α one may construct a “demonic” evidence stream over
EW such that α’s conjectures don’t stabilize but switch endlessly between “true”
and “false” (for the detailed construction cf. [15], 51ff).

Although the method α for ∃x∀yRxy is guaranteed to stabilize to the conjecture
“true” after some finite time, one can never know when this time is reached, and
hence, one can never know whether one has achieved the truth or not. Even if this
intrinsic weakness of “verification in the limit” is accepted, the other bad news is that
already hypotheses with three alternating quantifiers (∃-∀-∃ or ∀-∃-∀) are neither
verifiable nor falsifiable in the limit. Kelly shows that these hypotheses are at least
gradually verifiable (or falsifiable) in the limit, which is a still weaker property
(whose definition is omitted here; cf. [ibid., 66ff]). However, for hypotheses with
four alternating quantifiers even gradual verification (or falsification) fails.

Most contemporary philosophers of science would argue that even evidence
statements may fail: perceptions may be erroneous and measurement devices may be
malfunctioning. If we drop the infallibility assumption for evidences, then evidence
statements in (e) may mutually contradict each other. It follows that evidence
streams are no longer cumulative: En ⊆ En + 1 does not always hold and we cannot
define En = {ei: 1≤i≤n}. We rather have to construct the evidence history (E) as
a sequence of evidence sets (E):= (E0, E1, E2, . . . ) that is defined by revision (or
expansion) operations: En + 1 = En*en + 1. The axiom of success, en ∈ En, is no
longer mandatory for revisions over contradicting evidence statements. To retain
the positive results concerning verifiability and falsifiability it is necessary to set
up the following constraint of stable error-correction: every false evidence in (e) is
corrected once-and-forever after some finite time. This implies that for every true
evidence e in EW (the given empirical world) there exists a time n such that for all
m≥n, e ∈ Em.3

3The constraint of error-correction in the limit would not be sufficient.



474 G. Schurz

25.4 Inductive Confirmation and Convergence

with Probability

The major conclusion of the previous section is this: even under empiricist idealiza-
tions and in regard to the weak “in-the-limit” notions of verification and falsification,
the range of those hypotheses which are verifiable or falsifiable is very restricted. As
soon as one assumes inductive confirmation as a legitimate justification principle,
things get better. A simple qualitative definition may run as follows:

(4) A hypothesis h is inductively confirmed by a finite evidence set En iff h is not
falsified by En over the subdomain Dom(En), and this the confirmation is the
stronger, the greater that part of Dom(En) which verifies h over Dom(En).4

However, since David Hume it is known that induction is not a generally reliable
inference: it may fail in worlds (or event sequences) which are non-uniform, i.e. in
which the future differs radically from the past. What one can only show is that
(under mild conditions) induction is an optimal strategy (cf. [35]).

Often confirmation principles are formalized in the framework of Bayesian

(subjective) probabilities, i.e. rational degrees of beliefs (cf. ch. 6/8 and 6/9, this

volume). If P:S(Le) → [0,1] is a Bayesian probability function over the total set of
statements, then the (posterior) probability of a hypothesis hk given evidence e is
given by the famous Bayes-formula as

(5) P(hk| e) = P(e| hk) · P(h)/�1≤i≤nP(e| hi) · P(hi)

where {h1, . . . ,hn} is a (pragmatically given) partition of possible hypotheses that
contains Pk, P(hi) is the prior probability of hi and P(e|hi) the probability (or
“likelihood”) of e on the assumption that hi. Formula (5) shows that the posterior
probability of a hypothesis depends not only on its relation to the evidence (the
likelihood), but also on its prior probability. Since most contemporary Bayesians
agree that prior probabilities are subjective,5 this dependency seems to constitute
a counterargument to Bayesian confirmation theory. Bayesians counter that the
dependency of the posterior probabilities of hypotheses on the priors becomes
smaller and smaller the more evidences come in. Bayesians cite here convergence

theorems ([8], 58), for example the following general convergence theorem:

(6) Gaifman and Snir [12]: Under the assumption that P is (not only finitely but)
countably additive it holds for every possible Le-hypothesis h and evidence
stream over a world EW with probability 1 that h’s posterior P(h|En) converges
to the truth value of h in EW for n→∞.

Probabilistic convergence theorems of this sort are restricted in three ways: (1.)
they hold only under the empiricist assumption that L = Le (Gaifman and Snir

4Example: If E2 = {Raa, Rab, Rbc}, then h = ∃x∀yRxy is neither falsified nor verified by E2 over
Dom(E2) = {a,b,c}, though it is verified over {a,b}.
5The older view of Carnap [5] on “logically given” prior probabilities is hardly tenable; cf.
Howson/Urbach ([14], 60); Earman ([8], 15).
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express this by their requirement that S(Le) “separates” the set of all possible worlds
over Le); (2.) they hold only with probability 1 − whence convergence may fail in
an uncountably infinite subset of the uncountably many Le-worlds, and (3.) they
hold only under the condition of countable additivity, which involves inductive
assumptions (this is demonstrated in ([15], 321ff) and [39]). Stronger convergence
properties require stronger inductive assumptions (cf. [8], 108, and Schurz [41],
ch. 4.7).

25.5 The Rational Choice and the Construction Paradigm

of Theory Discovery: Learning Sentences

and Abductive Theory Revision

In the previous sections we have studied the development of scientific assessments

of hypotheses in the face of an evidence stream, but not the discovery of hypotheses.
For Popperians theory discovery is a matter of psychology, not of logic − there are
no rules for theory discovery. Formal learning theory, however, provides also rules
for theory discovery. These rules assume that there exists a countably enumerable
set H of possible (not necessarily disjoint) hypotheses in Le which contains at least
one true hypothesis, and an infinitely repetitive ordering (h) = (h0, h1, . . . ,) of the
hypotheses in H, i.e. every hypothesis occurs in (h) infinitely many often ([15],
224f). With such an enumeration at hand, an assessment method α(hi,(e1−n)) can
be transformed into a discovery method γ that assigns to each initial subsequence
(e1−n) (n∈ω) a hypothesis in H, recursively defined as follows:

(7) γ ((e0)) = h0, and for each time n, if α(γ ((e1−n),(e1−n)) = “true”, then
γ ((e1−(n + 1)))= γ ((e1−n)), and otherwise γ ((e1−(n + 1))):= the next hypothesis
h* in (h) behind γ ((e1−n)) for which α(h*, (e1−(n + 1))) = “true”.

The so-defined discovery method γ stabilizes to conjecturing the first true hypothe-
sis in H for which α stabilizes to the assessment “true”.

This discovery rule of formal learning theory is an example of the rational choice

paradigm of theory discovery. Here one assumes that a list H which contains all
possible and interesting hypotheses is given in advance, i.e. before any evidences
have been received. Often this list H is assumed to form a partition, i.e. the
hypotheses in H are pairwise incompatible and exhaustive (at least in relation to
an assumed background knowledge K). Theory development consists in choosing
the optimal (e.g. best confirmed) hypotheses in the face of the received evidence
set En.

Although in some historical phases theory development proceeds according
to the rational choice paradigm, this paradigm has its limitation in the fact that
scientists rarely possess a list of all interesting hypotheses in advance from which
they choose. Usually new interesting hypotheses are constructed in science from
given evidence by inductive or abductive learning mechanisms and are then put to
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subsequent empirical tests ([34], §1; [37], §1.3). We call this view the construction

paradigm of theory development. To fill the construction paradigm with content we
need heuristics and/or algorithms which tell us how to construct and revise plausible
theories in the face of an ongoing evidence stream.

Neither the AGM- nor the base-version of ordinary belief revision contains such
learning mechanisms, although on different reasons. AGM-revision is extremely
liberal: it allows T*e to be any logically closed sentence set which lies between
Cn({e}) and some maximally consistent extension of {e} and which is “preferred”;
but the AGM-axioms for preferences don’t decide which one of these sets is
preferred. Belief base revision, on the other hand, is purely corrective in the sense
that here one cannot generate new quantified hypotheses from evidences (for details
cf. [37], §1.2). In scientific theory development, however, the revision process is
typically creative in the sense that it constructs new hypotheses.

In line with the two paradigms there have been suggested two ways of extending
the theory of belief (base) revision in order to cover theory discovery. One way is
based on the rational choice paradigm; it has been introduced by Levi (1980, 35f;
1991, 71ff, 146) and is further developed by Rott [33] and Olsson and Westlund
(2006). Besides input-driven (or “routine”) revisions, Levi introduces a second kind
of revisions, so-called deliberate revisions, which result from an act of will and
consist in choosing a hypothesis h from a given partition of possible hypotheses and
adding it to the accepted beliefs.

The second way is based on the construction paradigm and consists in enriching
the accepted beliefs by creative learning mechanisms. This idea has been imple-
mented in two ways, by learning sentences and by abductive revision operations.
The method of learning sentences has been introduced by Martin and Osherson
(1998) (the name “learning sentences” comes from me). Assume a cumulative
sequence of evidence sets (E) = (E0, E1, . . . ). Let (T): = (T0, T1, . . . ) be an
associated sequence of theories (you may also say “belief system” instead of
“theory”) which by definition arises from (E) and an initial theory T0 by revision

operations: Tn: = Tn−1*En. Note that we revise with En (instead with only the
new evidences in En) because (a) iterated revision is not always order-independent
and (b) this definition works also if (E) is not cumulative. Assume the underlying
empirical world EW makes the universal hypotheses ∀xFx true. The problem is that
ordinary belief base revision can never generate ∀xFx in the face of the evidence
stream (E) as long as T0 is empty or contains only singular statements (proof in [37],
§1.2). Martin and Osherson overcome this problem by adding a learning sentence of
the form Fai → ∀xFx to the initial theory T0 (for an arbitrary constant ai). If ∀xFx

is true, ∀xFx will enter the theory sequence at the first time n at which Fai occurs
in the evidence stream, and will remain there forever, while if ∀xFx is false, then
¬∀xFx will enter the theory sequence at the first time n at which a sentence of the
form ¬Faj has shown up in the evidence stream.

In the case of ∃-∀-hypotheses learning sentence are more complicated than
simple implications from evidences to hypotheses. More generally Martin and
Osherson prove the following theorem:
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(8) [Martin and Osherson 1998, (63), p. 153] For each problem of the form
“which of the hypotheses in partition {h1, . . . ,hn} is true in EW” that is
solvable by a discovery algorithm γ (in the explained sense) there exists a
set of learning sentences L such stringent belief base revision6 applied to
a cumulative evidence sequence (E) over EW and an initial belief set T0
containing {∨1≤i≤nhi} ∪ L will after some finite time n produce belief sets Tn,
Tn + 1, . . . which contain the true element h* of {h1, . . . ,hn} forever (i.e., h* ∈
Tm for all m≥n).

Martin and Osherson develop a fascinating combination of formal learning theory
and belief revision. However, their account has two problems. First, it is restricted
to the empiricist assumption Le = L. Second, learning sentences are somehow
unnatural: we do not literally believe “if this (and this . . . ) raven is black, then
all ravens are black”.

An alternative way of implementing learning mechanism is by closing the revi-
sion operation under non-deductive inferences. If these non-deductive inferences
include abductions to conclusions with theoretical concepts, hypothesis creation
transcends the empiricist assumption. Abductive belief revision has been elaborated,
among others, by Pagnucco [27], Aliseda [2], Schurz [37] (see also Langley et al.
[20]). Abductive belief expansion can be defined as follows (cf. [37], §3.2):

(9) Let T(L) be the set of all possible theories in the given total language L (which
may now contain theoretical terms; i.e. S(Le)⊂ S(L)). The abductive expansion

of a theory T ∈ T(L) by a T-compatible evidence e is denoted by T +a e and
defined as follows: (T +a e) = (T + e) + abd(T,e), where “+” is the ordinary
expansion function.

In this context, abd(T,e): T(L) × E(Le)→ S(L) is an abductive expansion function
that assigns to each theory T and evidence e a consistent sentence s: = abd(T,E)
which is either a tautology or explains E within K.

This definition allows for the case in which no explanatory hypothesis for E

is found; in that case abd(T,e) is identified with a tautology (and the abductive
expansion is called “improper”).

Abductive expansion can be broken up into an ordinary expansion and an
abductive inference step (this is in line with what ([33], 84) calls the “direct mode
of foundationalist base revisions”). The same is not always possible for abductive
revision. If an element h of belief set T explains a conjunction of evidences E, and
e is a new piece of evidence contradicting h, then it is inefficient to remove h and
generate an alternative hypothesis h* from scratch. Scientists rather try to obtain
the revised hypothesis h* by a direct revision of the old hypothesis h given E∪{e}
into some new hypothesis h* which explains e and at the same time preserves the
old explanations of the evidences in E. For example, assume h is a quantitative
hypothesis saying that gas pressure is proportional to the gas temperature, and new

6A base contraction function ÷ is stringent iff for each T and e, T÷e is a preferred maximal T-
subset not implying e.
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data tell us that for low temperatures, the gas pressure is lower than predicted by
h. Then scientists will not simply remove h from their belief set, but revise h by
adding a new non-linear term to the linear relationship predicted by h. This leads to
the following general definition of abductive belief revision “*a”:

(10) T*a e: = T*e + rev(h,e, T÷¬e) (where “*” is the ordinary revision operator).

Here h: = hT,e is the “explanatory loss” caused by the contraction by e, defined as
the conjunction of all explanatory hypotheses which are in T but not in T÷¬e.
Moreover, rev: T(L) × E(Le) × Pow(S(L)) → S(L) is an abductive revision
function which assigns to the “lost” hypothesis h, h-incompatible evidence e

and theory-contraction T÷¬e a revised hypothesis h*: = rev(h,e, T÷¬e) that is
consistent with T*e and is either a tautology or explains ET,h∪{e}, where ET,h is the
set of all evidences which were explained by h in T.

In the process of hypothesis-revision, the revised hypothesis h* is not only a
function of the contracted theory T÷¬e and the new evidence e − which it would
have to be according to Levi identity − but also a function of the old hypothesis h

which has been removed from T÷¬e. Schurz ([37], §3.2) concludes from this fact
that Levi-identity fails for abductive belief revision.

25.6 Theoretical Concepts, Lakatosian Research Programs

and Refined Falsificationism

Most scientific theories contain theoretical concepts such “electron” or “magnetic
force” which do not occur in the evidence stream but go beyond the observable.
For theoretical hypotheses − i.e. hypotheses containing theoretical terms − the
empiricist assumption fails: their truth value is not determined by the evidence
stream, even not in the limit; moreover, they are not obtainable from evidences by
inductive generalizations from finite evidence sets. How are theoretical hypotheses
confirmed at all?

Popper [28] has pointed out that usually scientific theories entail observational
consequences and are, though not being verifiable, at least falsifiable via the rule
of Modus tollens (if T ||— E then ¬E ||— ¬T). Popper’s falsificationist account
of theory development rests on the idea that theories which are falsified by the
actual evidences are laid aside. Popper’s account of “instantaneous rejection” was
criticized by Kuhn [16] and Lakatos [19]. Kuhn showed that in the history of
science theories which contradict data are not rejected or laid aside; scientists
rather introduce additional auxiliary assumptions which save the theory core or
theory “paradigm” from being falsified. It is well known that Kuhn’s criticism
involved some more radical points, for example concerning the theory-dependence
of evidence and the resulting irrationality of paradigm changes (so-called “scientific
revolutions”). Many (and probably most) contemporary philosophers of science did
not follow these radical aspects of Kuhn.
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The less radical part of Kuhn’s criticism was elaborated by Lakatos’ account
of refined falsificationism which significantly improved Popper’s “naive account”.
Scientific hypotheses are never assessed in isolation. They form theories, which
are systems of statements together with an epistemic ranking (preference ordering)
over them. This ordering decides which elements are to be given up when conflicts
between theory and data arise. Lakatos speaks of theories as consisting of a theory

core that is surrounded by a periphery which contains less and less important parts,
the more one moves from inside into outside layers of the theory. The outermost
layer of a theory contains auxiliary assumptions, which assert the existence or
non-existence of disturbing factors. They figure like a protective belt because by
introducing new disturbing factors the theory core can always be protected from
falsification. For example, in 1846, when J. Adams and U. Le Verrier discovered
a considerable discrepancy between the predicted and the actually observed orbit
of the planet Uranus, they postulated the existence of a yet undiscovered planet,
Neptune, whose gravitational effect on Uranus was assumed to be responsible for
its divergence from the predicted orbital path. Later on Neptune’s existence was
indeed independently confirmed by telescopic observations. But a similar scenario
happened around 1856 when Le Verrier observed a divergence of the planet Mercury
from its predicted orbit and postulated the existence of a yet smaller planet named
Vulcan, which despite tenacious attempts could never be found by telescopes.

Similar accounts of theory development had already been given by Duhem [7]
and Quine [32]. Duhem’s thesis of the holism of theory falsification says that if a
particular version T of a theory − consisting of T’s core plus a particular periphery
− contradicts a datum e, then all what one knows (by Modus Tollens) is that some
part of T is false, but logic alone doesn’t dictate which part of T should be given
up. Lakatos [19], however, provided an answer to this question: the theory-parts
which are given up should be as peripherical and unimportant as possible (this is a
version of “prioritized base contraction” in the sense of Rott ([33], 40ff). Although
it is logically speaking always possible to solve conflicts with data (“anomalies”)
by peripherical theory-revisions, Lakatos sets up an important rationality constraint
to steps of this sort: a theory-revision should be theoretically progressive, by which
Lakatos means that the new theory contains all the confirmed empirical content
of the old theory plus some additional new empirical “excess” content. Moreover,
Lakatos calls the new theory version empirically progressive if part of this excess
content has been independently confirmed. If, on the other hand, theory revisions
reduce the empirical content of a theory they are called degenerative.

In Lakatos’ account of research programmes a theory is a historical entity: if
it changes its periphery, it is merely another version of the same theory; only if it
changes its core, it is a new theory. Formally speaking, a theory history in the sense
of Lakatos is a sequence (T) = (T0, T1, . . . ) which is associated with a sequence
of evidence sets (E) = (E0, E1, . . . ) in the sense defined in the pervious section.
Each theory Ti = Cn(Ai) is now itself a ranked system of statements (Ti(0), Ti(1),
Ti(2), . . . ), where Ti(0) ⊂ Ai is the core of theory Ti and Ti(n) (n≥1) are less and
less important subsets of T-axioms. Building on the previous section we assume that
each Tn is given as the abductive revision of the background theory T0 by En (Tn: =
T0*En).
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In line with Popper and Lakatos we do not assume that evidence statements are
infallible, i.e. the evidence sequence (E) is not necessarily cumulative. Of course
we make the Lakatosian assumption that the evidence sequence − though not
being absolutely theory-neutral − is at least theory-neutral in regard to all those
theories whose success is being compared. Only under that assumption can one
have the same evidence sequence for all theories in (T), even for those with a
different core. This is the decisive difference to Kuhn’s relativistic account in which
different theories with different cores would have their own evidence sequences, and
rational comparisons of them were hardly possible. On the other hand, the decisive
difference of Lakatos’ account to neo-empiricist accounts is that the theories in (T)
contain theoretical concepts, whence their truth is not determined by an empirical
world EW over Le.

Theory-subsequences of (T) whose theories share the same theory core are
called (in line with Kuhn) normal periods of science; while theory-successions (or
pairs) in which the theory core changes are called scientific revolutions. We define
the following Lakatosian criteria for the rational evaluation of theory-development
(where “⊂” stands for proper and “⊆“ for proper-or-improper set-inclusion):

(11) We define E(T) = T∩S(Le) as the set of all (confirmed or unconfirmed)
empirical consequences of T, and ECn(T): = E(T) ∩ En as the set of T’s
confirmed empirical consequences at time n.

(12) A theory succession (Tn, Tn + 1) is called

– theoretically progressive iff E(Tn) ⊂ E(Tn + 1) and EC(Tn) ⊆ EC(Tn + 1);
– empirically progressive iff E(Tn) ⊂ E(Tn + 1) and EC(Tn) ⊂ EC(Tn + 1);
– stagnating iff E(Tn) = E(Tn + 1) and EC(Tn) = EC(Tn + 1), and finally
– degenerative iff either E(Tn) ⊃ E(Tn + 1) or EC(Tn) ⊃ EC(Tn + 1).

In conclusion, Lakatos’ model of theory development allows for the rational
evaluation of theory development and the rational assessment of theory progress
even if one allows for fallible evidences and for theories whose truth value is not
determined by the complete empirical truth.

25.7 Verisimilitude and Truth-Approximation

by Theory-Revision

Popper (1963, 233f) has argued that the main goal of science consist in progress
in verisimilitude or truthlikeness. For although most scientific theories involve
idealizations and hence are strictly speaking false, some of them are much closer

to the truth than others. According to Popper’s intuitive idea, a theory T1 is closer
to the truth than another theory T2 iff T1 has more true and less false consequences
than T2. It is well known that Popper’s original definition of verisimilitude turned
out to be inadequate (cf. ch. 7/2, this volume). In the following period two major
families of accounts to verisimilitude have been developed which cured the mistake
in Popper’s original definition; they have been called the disjunctive and the
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conjunctive approach to truthlikeness (cf. [6, 18, 40]). Without being able to explain
the precise definitions of verisimilitude in these accounts, we mentioned some major
results concerning the connection between verisimilitude and belief revision:

(12) Niiniluoto [25]: Neither the expansion nor the revision of a false theory T by
a true evidence leads always to an increase of T’s verisimilitude.

Schurz [38] demonstrates that this holds even if the evidence is a single true basic
statement (instead of a disjunction of a true and a false basic statement, as assumed
in Niiniluoto’s example). The following example makes this clear: assume the
hypothesis h: = b→ f1∧ . . .∧fn is an implication leading from a true but unknown
basic statement b to a conjunction of false basic statements, and the new input by
which the theory T: = {h} is expanded is b. Then T + b = Cn({b,f1, . . . ,fn}). Since
the verisimilitude-loss due to the addition of n false basic statements fi (1≤i≤n)
may be much greater than the verisimilitude-gain due to the addition of the true
b, the verisimilitude of T + b may be much smaller than that of T. However, the
volume Kuipers and Schurz [38] contains a lot of results which show that under
restricted conditions positive connections between increase in verisimilitude and
revision by true evidences can be obtained. In conclusion, truth-approximation can
still be upheld as a major goal of theory development, although the paths towards
this goal may have intermittent phases in which theories move away from the truth.

25.8 From Progress in Empirical Success to Progress

in Theoretical Truth: Instrumentalism Versus Realism

Scientific realism is the view that the empirical success of a theory is a reliable
indicator of the (approximate) truth of the theory, including the truth of its theoret-
ical superstructure. In contrast, scientific instrumentalism holds that the theoretical
superstructure of a theory has merely the instrumental purpose of entailing the
evidences in a most simple and unifying way, but there is no reason to assume
that this theoretical superstructure corresponds to an unobservable external reality.
While for scientific realists the decisive progress in theory development consists
in progress in truth approximation at the theoretical level, for instrumenalists or
empiricists such as [42] scientific progress is confined to progress in empirical

success (or empirical adequacy).
The standard justification of scientific realism is the no-miracles argument, which

goes back to Putnam (1975, 73) and has been used in various ways as a defense
of scientific realism (cf. Boyd 1984; [30]). This argument says that the empirical
success of contemporary scientific theories would be a sheer miracle if we would
not assume that their theoretical superstructure, or ontology, is approximately true
in the sense of scientific realism. However, the no-miracles argument is beset by two
strong counterarguments, an empirical and a theoretical counterargument.
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The empirical counterargument is the pessimistic meta-induction argument of
Laudan (1981). This argument points to the fact that in the history of scientific
theories one can recognize radical changes at the level of theoretical superstructures,
although there was continuous progress at the level of empirical success. On simple
inductive grounds one should expect therefore that the theoretical superstructures of
our presently accepted theories will also be overthrown in the future, and hence can
in no way be expected to be approximately true.

The theoretical counterargument to the no-miracles argument is the no-

speculation argument (cf. [34], §7.1). It points out that for every set of possible
observations E one may construct ex-post and ad-hoc some speculative theory T

which just entails (“explains”) E, but has no independent empirical consequences.
The empirical success of such speculative ad-hoc theories is in no way a reliable
indicator of their approximate truth.

In Schurz [36] a justification of the inference from empirical success to partial
theoretical truth has been suggested which does not presuppose the questionable
NMA. It is based on relations of correspondence between historically consecutive
theories T and T* with nondecreasing empirical success, which hold if the following
(simplified) conditions are satisfied:

(C1): The predecessor theory T speaks about a partition of circumstances
{A1, . . . ,An} and contains a theoretical expression ϕ for which it entails a set
of bilateral reduction sentences {Bi:1≤i≤n} of the form

(Bi): ∀x∀t(Aixt → (ϕ(x) ↔ Rixt)) − in words: for all systems x and times t, under
empirical circumstances Ai the presence of ϕ in system x is indicated by the
empirical phenomenon Ri.

(C2): Every empirical prediction of the form ∃t(Aixt∧Rixt) → ∀t(Ajxt → Rjxt)
which follows from {Bi:1≤i≤n} is entailed by the successor theory T* in a
T*-dependent way, which means by definition that there exists a theoretical
mediator description ϕ*i,jx in T* such that ∀x∃t(Aixt∧Rixt → ϕ*i,jx) as well
as ∀x(ϕ*i,jx→ ∀t(Ajxt → Rjxt)) follows from T*.

In addition it is required that the two theories T and T* are causally normal in
the sense that the circumstances Ai are described in terms of theory-independent
empirical parameters. While condition (C2) is mild, condition (C1) on the prede-
cessor theory T is a crucial constraint which requires that the theoretical concept
ϕ of T figures as a common cause of several empirical regularities. The collection
of the bilateral reduction sentences {Bi:1≤i≤n} entailed by T is denoted as B(T,ϕ).
(C1) excludes pre-scientific ad-hoc speculations from the application range of the
correspondence theorem. Given these conditions it is possible to infer that also a
part of the theoretical structure of T is preserved in T*:

(13) Correspondence theorem [36]: Let T be a causally normal predecessor theory
satisfying condition (C1) and T* a causally normal successor theory satisfying
condition (C2). Then T* contains a theoretical expression ϕ*(x) such that
B(T,ϕ)∪T* is consistent and implies a correspondence relation of the form
∀x∀t(A1xt∨ . . .∨Anxt → (ϕ(x) ↔ ϕ*(x)). In words: whenever a system x



25 Models of the Development of Scientific Theories 483

is exposed to one of the circumstances Ai, then x satisfies the T-theoretical
description ϕ iff x satisfies the T*-theoretical description ϕ*.

Based on the correspondence theorem (13) one can argue that ϕ(x) refers indirectly

to the theoretical state of affairs described by ϕ*(x) − provided one assumes that
ϕ*(x) refers and T* is at least partially true. An example which is extensively
discussed in Schurz [36] is the transition from the phlogiston theory to the modern
generalized oxidation theory of combustion and saltification. For this theory-
transition the correspondence theorem generates the following correspondence:
phlogistication of a substance x corresponds to the acceptance of electrons by
positively charged x-ions from their bonding partner, and dephlogistication of x

corresponds to the donation of electrons of x’s atoms to their electronegative
bonding partner.

The correspondence theorem allows that T and T* are mutually incompatible.
However, that part of T which is needed to derive the correspondence, namely
B(T,ϕ) is always compatible with T*. If one assumes that the observed phenomena
are caused by an external reality whose structure can possibly be represented by
an ideal but unknown “super-theory” T+ which is causally normal and satisfies
condition (C2), then (13) implies that also our presently accepted theories, as long
as they are causally normal and satisfy condition (C1), must have got something
right at their theoretical level. In conclusion, the correspondence theorem justifies a
weak kind of scientific realism which is not based on the questionable no-miracles
argument.
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Chapter 26

Space and Time

John Byron Manchak

Abstract Here, formal tools are used to pose and answer several philosophical
questions concerning space and time. The questions involve the properties of
possible worlds allowed by the general theory of relativity. In particular, attention is
given to various causal properties such as “determinism” and “time travel”.

26.1 Introduction

It is no surprise that formal methods have proven to be quite useful in the philosophy
of space and time. With them, great progress has been made on the question,
heavily debated since Newton and Leibniz, of whether space and time are absolute
or relational in character. And there is a related problem which has also been
clarified considerably: whether or not various geometrical properties and relations
are matters of convention [3, 6, 20].

These topics, interesting as they are, will not be considered here. Rather, the
focus will concern the “global structure” of space and time. General relativity (our
best large-scale physical theory) will be presupposed. But the investigation of global
structure will allow us to step away from the complex details of this theory and
instead examine space and time with an eye towards a number of fundamental
features (e.g. topology, causal structure) [9].

An elegant mathematical formalism is central to the subject. So too are the
associated space-time diagrams. Using these tools, questions of physical and
philosophical interest can be posed and answered. A small subset of these questions
are examined below. A number of others are discussed elsewhere [4].
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26.2 Possible Worlds

General relativity determines a class of cosmological models. Each model represents
a physically possible world which is compatible with the theory. We take such a
model (also called a spacetime) to be an ordered pair (M, g). Here, M is a connected
smooth, n-dimensional manifold (n ≥ 2) and g is a smooth, Lorentzian metric on
M . (Usually n is taken to be four, but possible worlds with other dimensions are
also considered. For ease of presentation, a number of two-dimensional models will
be examined here.)

The manifold M captures the shape (topology) of the universe and each point
in M represents a possible event. From our experience, it seems that any event (a
first kiss, for example) can be characterized by n numbers (one temporal and n −
1 spatial coordinates). So naturally, the local structure of M is characterized by
an n-dimensional Cartesian coordinate system. But globally, M need not have the
same structure. Indeed, M can have a variety of possible shapes. A number of two-
dimensional manifolds are familiar to us: the plane, the sphere, the cylinder, the
torus. Note too that any manifold with any closed set of points removed also counts
as a manifold. For example, the sphere with the “North pole” removed is a manifold.

A manifold does a fine job of representing the totality of possible events but
more structure is needed to capture exactly how these possible events are related.
The Lorentzian metric g provides this extra structure. We can think of g as a type
of function which assigns a length to any vector at any point in M . But it is crucial
that, at every point in M , the metric g not only assign some positive lengths but also
some zero and negative lengths as well. In this way, g partitions all vectors at a point
in M into three non-empty classes: the timelike (positive length), the lightlike (zero
length), and the spacelike (negative length). The result is a light cone structure at
each point in M (see Fig. 26.1). Physically, the light cone structure demarcates the
upper bound to the velocities of massive particles (it is central to relativity theory
that nothing can travel faster than light).

The light cone structure can certainly change smoothly from point to point. But
it need not. In fact, a number of interesting physically possible worlds, and all of
the examples considered below, have a light cone structure which remains constant
(a metric with this property is said to be flat).

Fig. 26.1 The
three-dimensional possible
world (M, g). A
representative light cone is
depicted. Timelike vectors are
inside the light cone;
spacelike vectors, outside.
Lightlike vectors are on the
boundary
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Now that we have given a characterization of physically possible worlds, we are
in a position to ask a somewhat interesting question.

Question Given any shape, is there a physically possible world with that shape?
(Answer: No.)

First we translate the question into the formalism: Given any n-dimensional
manifold M , can a Lorentzian metric g be put on M? Next, we can get a grip on
the question by noticing that a manifold admits a Lorentzian metric if and only if
it admits a (non-vanishing) timelike vector field [9]. But an n-dimensional sphere
does not admit a non-vanishing timelike vector field if n is even (this essentially
follows from the famous “hairy ball theorem” of Brouwer). So, the answer to our
question is negative. There is no physically possible world with an even number of
dimensions (including our own) shaped like a sphere.

26.3 Orientability

Consider a physically possible world (M, g). The light cone which g assigns to any
event in M has two lobes. And at any given event, we can certainly label one lobe
as “future” and the other as “past”. But can we do this for every event in M in a way
that involves no discontinuities? If such a labeling is not possible, there could be no
proper distinction between particles traveling “forward” and “backward” in time. If,
on the other hand, such a labeling is possible, then we could, in a globally consistent
way, give time a direction. A natural question arises here.

Question Can time be given a direction in all physically possible worlds?
(Answer: No.)

We know from the previous section that any spacetime (M, g) must admit a
timelike vector field on M . The question above amounts to whether any spacetime
(M, g) must admit a continuous timelike vector field as well. A bit of thought
produces a simple counterexample: a physically possible world shaped like the
Möbius strip with a flat metric (see Fig. 26.2). In such a world, global notions of
“past” and “future” are not meaningful.

Fig. 26.2 The
two-dimensional possible
world (M, g) which does not
admit a continuous
nonvanishing timelike vector
field. Here M is a Möbius
strip
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Let us say that a spacetime which does admit a continuous (non-vanishing)
timelike vector field is temporally orientable. Because many other global conditions
presuppose temporal orientability, it is customary to consider only spacetimes with
this property. In what follows, we adhere to the custom.

26.4 Chronology

Suppose some physically possible world (M, g) is temporally orientable and that an
orientation has been given. The next geometric object of study is the future directed

timelike curve (sometimes called a worldline). It is simply a smooth curve on the
manifold M such that all its tangent vectors are timelike and point to the future.
A future directed timelike curve represents the possible life history of a massive
particle; if there is a future directed timelike curve from some event p to some other
event q, it must be, in principle, possible for a massive particle to travel from the
one to the other.

(A future directed lightlike curve is defined analogously. A future directed causal

curve is a smooth curve on the manifold such that all its tangent vectors are either
timelike or lightlike and point to the future.)

We now are in a position to define a (two-place) relation ≪ on the events in
M . We write p ≪ q if there exists a future directed timelike curve from p to q.
(An analogous relation < can be defined using future directed causal curves.) It is
not difficult to prove that the relation ≪ is transitive: for any events p, q, and r , if
p ≪ q and q ≪ r , then p ≪ r . At first, it also seems as though the relation cannot
allow for distinct events p and q to be such that both p ≪ q and q ≪ p (which,
by transitivity, would imply that p ≪ p). In that case, a massive particle may travel
from one event to another and then back again undergoing “time travel” of a certain
kind. We ask the following question.

Question Is there a physically possible world which allows for time travel?
(Answer: Yes.)

Let M be a two-dimensional cylindrical manifold and let the metric g be flat and
such that timelike curves are permitted to loop around the cylinder (see Fig. 26.3).
Clearly time travel is permitted since the relation ≪ holds between any two points
in M . Due to their paradoxical time structures, physically possible worlds which
allow for time travel have received a great deal of attention from philosophers [10,
21]. In what follows, we will say that a spacetime (M, g) satisfies the chronology

condition if time travel is not permitted.
There is an interesting result concerning the shapes of physically possible worlds

which satisfy the chronology condition. We say a manifold is compact if every
sequence of its points has an accumulation point. (The sphere and torus are both
compact while the plane is not.) One can show that if a spacetime (M, g) is such
that M is compact, (M, g) must violate chronology [13]. However, the converse is
false: Gödel spacetime is one counterexample.
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Fig. 26.3 The
two-dimensional possible
world (M, g). Timelike
curves are permitted to loop
around the cylinder M so that
p ≪ q for all events p and q

p

q

26.5 Distinguishability

Given a physically possible world (M, g) and any event p in that world, we next can
consider the collection of events in M which could have possibly influenced p. We
call such a set the past (or past domain of influence) of p and formally it is defined
as I−(p) ≡ {q ∈ M : q ≪ p}. In words, an event is a member of the past of p

if there is a future directed timelike line from that event to p. Analogously, we can
consider the collection of events in M which p may possibly influence. We call this
set the future of p and define it as I+(p) ≡ {q ∈ M : p ≪ q}. (Analogous sets
J−(p) and J+(p) can be defined using the < relation.)

Are there physically possible worlds which allow distinct events to have identical
pasts? Futures? There are. The example considered in the previous section (recall
Fig. 26.3) is such that for any event p, I−(p) = I+(p) = M . So, clearly, we have
for any distinct events p and q, I−(p) = I−(q) and I+(p) = I+(q). Following
standard practice, let us say that any physically possible world which allows distinct
events to have identical pasts is not past distinguishing. Analogously, let us say that
any physically possible world which allows distinct events to have identical futures
is not future distinguishing [13].

The example in the previous section was neither past nor future distinguishing but
it also did not satisfy the chronology condition. Perhaps there is some connection.

Question If a physically possible world allows for time travel, must it allow
different events to have influence over precisely the same set of future events?
(Answer: Yes.)

To see the connection, assume that a spacetime (M, g) allows for time travel. So
there must be distinct events p and q in M such that p ≪ q and q ≪ p. From
p ≪ q, we know that I+(q) ⊆ I+(p). From q ≪ p, we know that I+(p) ⊆
I+(q). Thus, I+(q) = I+(p). So we conclude that every physically possible world
which violates chronology also must violate future distinguishability. (An analogous
result holds for past distinguishability.) Now, does the implication go in the other
direction?

Question Must a physically possible world allow for time travel if it allows
different events to have influence over precisely the same set of future events?
(Answer: No.)
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Fig. 26.4 The
two-dimensional possible
world (M, g). Chronology is
not violated but the distinct
events p and q have identical
futures (the region above the
dotted line) and also identical
pasts (the region below the
dotted line)

p q

A counterexample is not too hard to find. Let M be a two-dimensional cylindrical
manifold and let the metric g be flat and such that only lightlike curves are permitted
to loop around the cylinder (see Fig. 26.4). This allows for the spacetime to satisfy
chronology while allowing the points p and q to have the same futures (and also the
same pasts).

There is a notable theorem concerning physically possible worlds which are both
future and past distinguishing: Any two such worlds must have the same shape if
they have the same causal structure. Formally, if (M, g) and (M ′, g′) are past and
future distinguishing and if there is a bijection ϕ : M → M ′ such that, for all p

and q in M , p ≪ q if and only if ϕ(p) ≪ ϕ(q), then M and M ′ have the same
topology [16].

26.6 Stability

Although the example in the previous section (recall Fig. 26.4) did not allow for
time travel, it “almost” did. If the light cones were opened at each point, by even
the slightest amount, chronology would be violated. So, there is a sense in which
the example is (arbitrarily) “close” to worlds which allow for time travel. Physically
possible worlds with this property are said to be not stably causal. Spelling out with
precision the condition of stable causality requires a bit more formalism than we
have available to us here. But fortunately there is an equivalent condition which is
much easier to state.

We say a spacetime (M, g) admits a global time function if there is a smooth
function t : M → R such that, for any distinct events p and q, if p ∈ J−(q),
then t (p) < t(q). It is a fundamental result that this condition which guarantees the
existence of “cosmic time” is both necessary and sufficient for stable causality [11].
We are now in a position to investigate how stable causality is connected to past (or
future) distinguishability.

Question Is there a physically possible world which allows different events to have
influence over precisely the same set of future events and yet is not close to any
worlds which allow for time travel? (Answer: No.)



26 Space and Time 493

p

Fig. 26.5 The two-dimensional possible world (M, g). Because of the removed strips, the future
and past distinguishability conditions hold. But stable causality is violated; if the light cones were
to be opened by even the slightest amount at each point, it would be the case that p ≪ p

Although it is not immediate, a violation of future (or past) distinguishability
does indeed imply a violation of stable causality [13]. (The much weaker result, that
a violation of chronology implies a violation of stable causality, should be clear.)
Does the implication go in the other direction?

Question Is there a physically possible world in which different events always have
influence over different sets of future events and yet is close to a world which allows
for time travel? (Answer: Yes.)

To construct a spacetime which satisfies future (and past) distinguishability but
violates stable causality, begin with the two-dimensional cylindrical manifold and
let the metric be flat and such that timelike curves are permitted to loop around the
cylinder (recall Fig. 26.3). Next, remove two strips which just prevent causal curves
from connecting (see Fig. 26.5). The result is a spacetime, call it (M, g). One can
verify that for any distinct points p and q in M , I−(p) �= I−(q) and I+(p) �=
I+(q). But although there is a function t : M → R such that t increases along
every future directed causal curve, no such function exists which is also smooth. So,
the spacetime fails to be stably causal.

26.7 Determinism

What does it mean to say that a physically possibly world is deterministic? Roughly
the idea is that, in such a world, all events must depend upon the events at any one
time. Let us make this precise.

Consider a spacetime (M, g) and let S be any subset of M . We define the domain

of dependence of S, D(S), to be the set points p in M such that every causal curve
through p, without a past or future “end point”, intersects S. The set D(S) represents
those events in M which depend entirely upon the events in S. Next, we say that a
set S is achronal if, for any events p and q in S, it is not the case that p ≪ q. A set of
events which are thought to be happening at any one time must certainly be achronal.
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Finally, we say that a spacetime has a Cauchy surface if there is an achronal set S

in M such that D(S) = M . (In an n-dimensional spacetime, a Cauchy surface S

necessarily has n− 1 dimensions.)
There are a number of theorems which can be interpreted as stating that what

happens on a Cauchy surface fully determines what happens throughout the entire
spacetime [1]. And although there are subtleties involved, for our purposes a
physically possible world with a Cauchy surface (also called a globally hyperbolic

spacetime) will be considered deterministic [2]. With determinism clearly defined,
one might wonder about the following.

Question If a physically possible world is close to a world which allows for time
travel, must it be indeterministic? (Answer: Yes.)

That determinism implies stable causality is non-trivial. But the result can
even be strengthened: In any globally hyperbolic spacetime (M, g), a global time
function t : M → R can be found such that each surface of constant t is a Cauchy
surface. Also, the shape of the Cauchy surfaces are all the same [7]. Does the
implication go in the other direction?

Question If a physically possible world is indeterministic, must it be close to
another world which allows for time travel? (Answer: No.)

A counterexample is easy to construct. Let the manifold M be the two-
dimensional plane with one point removed. Let the metric g be flat. The resulting
spacetime (M, g) admits a global time function t : M → R but for any achronal set
of events S the set D(S) is not M (see Fig. 26.6). (If the point were not removed, the
spacetime would be globally hyperbolic.) With the answer to this question, we can
now note that chronology, future (or past) distinguishability, stable causality, and
global hyperbolicity form a hierarchy of causal conditions (see Table 26.1).

There is a sense in which determinism is connected to the absence of “holes”
in spacetime. We say a spacetime (M, g) is internally causally compact (i.e. it
has no holes) if, for all events p and q, J−(p) ∩ J+(q) is compact. Note that a
spacetime with a point removed is never internally causally compact since one can

S

Fig. 26.6 The two-dimensional possible world (M, g). Stable causality is not violated but because
of the removed point, any achronal surface S will be such that its domain of dependence (the region
below the dotted line) is not all of M
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Table 26.1 Causal Hierarchy

Chronology ⇐ Future (or Past) ⇐ Stable ⇐ Global

� Distinguishability � Causality � Hyperbolicity

find a sequence of points without accumulation point in J−(p) ∩ J+(q) if p and
q are chosen so that J−(p) ∩ J+(q) “contains” the missing point. Now one can
certainly show that global hyperbolicity implies internal causal compactness. What
is fascinating is that the converse is also true if future (or past) distinguishability is
assumed [7]. Thus, putting various results together, one can understand determinism
to be equivalent to the conjunction of a weak causal condition and the requirement
of no holes.

26.8 Reasonable Worlds

The discussion so far has concerned physically possible worlds. One is also
interested in a subset of these worlds: the reasonable ones. However, what counts
as a physically reasonable world is not always clear and often depends upon the
context. Here, we briefly mention two questions concerning physically reasonable
worlds.

The early results of global structure concerned “singularities” of a certain kind.
The idea was to show, using fairly conservative assumptions, that all physically
reasonable worlds must necessarily contain spacetime singularities. The project
culminated in a number of general theorems [14]. And these theorems eventually
led to serious worries concerning determinism. Indeed one natural question, still
investigated today, is the following [19].

Question Is every physically reasonable world deterministic?

The question has different answers depending on how it is interpreted for-
mally. And there is certainly much interpretive disagreement among physicists and
philosophers [4]. If we can agree, for the time being, that not every physically
reasonable spacetime is deterministic, then there is another question of interest.

Question Is there a physically reasonable world which allows for time travel?

Under some formal interpretations, the question has a negative answer [12].
Under others, the question is still open [5]. As before, the entire debate hinges on
the details concerning the meaning of a “physically reasonable” world [18]. And of
course, such details are best articulated and explored with the formalism.
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Value Theory and Moral Philosophy



Chapter 27

Formal Investigations of Value

Sven Ove Hansson

Abstract We can express values in three major ways: in terms of classification
(“good”, “bad”, “best”, etc.), comparison (“better”, “at least as good”, “equal
in value”), and quantity (numbers are assigned). The interrelations among these
three types of value expressions are surveyed, with a particular emphasis on
relations of interdefinability. Furthermore, interrelations between value terms and
terms expressing norms or choices are explored. Several of these connections have
been surprisingly little studied, and further investigations may possibly lead to the
discovery of additional connections among the different formal representations of
value and value-related concepts.

27.1 Introduction

Example 1

CUSTOMER: Can you say something about the quality of these two wines, the
Argentinian and the South-African one?
WAITER: Well the Argentinian wine is quite good but the South-African one is
better.
CUSTOMER: So the South-African wine is the best of the two?
WAITER: No, that is not what I said. The Argentian wine is best of the two.
CUSTOMER: I am sorry but I cannot make sense of what you are saying.

Example 2

“I need to buy a new car. There are three options that I choose between,
a Volkswagen, a Volvo, and a Peugot. I compared the first two and found
the Volkswagen to be better than the Volvo. Then I compared the Volkswagen
to the Peugot and concluded that the Peugot was better than the Volkswagen.
But then I started to think about the Volvo again, and I couldn’t avoid the
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conclusion that the Volvo is better than the Peugot. So which car should I buy? I
just can’t make up my mind.”

Example 3

UNHAPPY WIFE: Now that I have told you about all the problems in my marriage,
do you recommend me to divorce?
MARRIAGE COUNSELLOR: No, my advice is to stay with your husband in spite
of his faults.
UNHAPPY WIFE: So you think that it would be better for me to stay with him
than to apply for a divorce.
MARRIAGE COUNSELLOR: No, it would be worse. But I nevertheless think that
it is what you ought to do.

As these examples show, we have expectations that our value statements should
cohere with each other. The second example also shows that we expect a rational
person’s choices to cohere with her values, and the third that we expect her norms
and her values to form a coherent whole. These coherence issues are also important
in moral philosophy. As one example of this, utilitarians and deontologists have
different views on the exact nature of the required coherence between norms and
values.

Formal representation has turned out to be indispensable if we wish to account
in a precise way for coherence in issues such as these. However, it must be
emphasized that the values held by a human being are inseparably connected with
other components of her mind, such as her beliefs and her emotions. The very
process of isolating her values from the rest of her mind involves a considerable
idealization, and when these isolated values are expressed in a formal language
we take the idealization one step further. Therefore, we should not expect to find
a single, correct formalization. Instead, we should expect different formalizations
to be suitable for capturing various features of what may be called the value-
component of her state of mind.

This being said, there are a number of well-established representations, in
particular preference relations, value functions, and choice functions, that have
turned out to be useful for a wide variety of purposes. These devices are used
not only in philosophy but even more in economics, psychology, and the decision
sciences. Their most common use is to express what rationality demands of a
person’s values (and similarly of her norms and her choices). This chapter will
provide an overview of these and some other representations, with a strong emphasis
on how they relate to each other and in particular on whether they can be defined in
terms of each other.

27.2 Values, Facts, and Norms

The separation of facts from values, and the principle that no “ought” can be derived
from an “is”, belong to the standard messages of elementary philosophy teaching.
This exemplifies a general type of logical issues that can be raised for any two
categories of statements. We can ask whether two such categories are logically



27 Formal Investigations of Value 501

separable, so that no element of one of them can be logically derived from elements
of the other. Contrariwise, we may ask whether the two categories are interdefinable,
so that for any element of one of them there is a logically equivalent element of the
other. Obviously, it is also possible for such definability to go only in one direction.

Two categories for which rather subtle issues of this nature arise are those of
norms and values. A normative expression such as “You ought to exercise two hours
every day” prompts or commends some course of action. An evaluative expression
such as “The best you can do is to exercise two hours every day” does not prompt
or commend. Doing the best may for instance be a too demanding recommendation.
An evaluative sentence may contextually imply advice or requirements, but that is
not part of what it inherently means [11], [13, p. 143].

Terminological ambiguity often makes it difficult to uphold these distinctions.
The terms “norm” and “normative” are sometimes used to cover both types of moral
expressions. There is nothing wrong with such a terminological practice, as long as
the distinction is made by some other linguistic means.1

Once this distinction has been made, it will be seen that the fact−value and
is−ought delimitations do not coincide. Although “fact” and “is” denote the same
category, “ought” refers to norms which is a separate category from that denoted
by “value”. Interesting issues of logical relationships arise among all three of these
categories.

27.3 Varieties of Definability

George Edward Moore [20, pp. 172–173] pointed out that in spite of being different
in meaning, a normative and an evaluative expression may be extensionally equiv-
alent. In particular, a moral theory may imply a specific connection between values
and moral requirements. However, it is important to distinguish between those
relationships among concepts that hold according to a particular moral theory and
those that hold conceptually. Moral standpoints may be supported by different kinds
of arguments, but we should not expect substantial normative conclusions to follow
from the structure of our concepts. In this chapter, the focus will be on conceptual
connections that do not depend on the types of standpoints that tend to differ among
moral theories. However, even on that general level it is important to distinguish
between what we can call definability and determinability. The difference is that
definability requires intensional equivalence whereas determinability only requires
extensional equivalence. The word “bachelor” is definable in terms of “married” and
“man” since there is an expression with these two words whose meaning coincides
with that of “bachelor”. The word “Stockholm” is determinable, but not definable
in terms of “capital of Sweden” since these two expressions only have the same
reference (for contingent reasons) but not the same meaning.

1The notion of supererogation, i.e. doing more good than what is morally required, is a particularly
interesting case. It appears to be a composite concept that cannot be adequately explained without
reference to both values and norms [15].
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Unidirectional definability

Bidirectional definability

Unidirectional determinability

Bidirectional determinability

Fig. 27.1 The different types of definability and determinability referred to in the text

Since we are concerned with sets of expressions, such as value expressions,
normative expressions etc., this distinction will have to be explicated for such sets.
Let A and B be two sets of expressions. Then A is definable in B if and only if
for every expression in A there is some expression in B that has the same meaning.
Furthermore, A is determinable in B if and only if for every expression in A there
is some expression in B that has the same reference. Obviously, definability implies
determinability, but not the other way around.

For a simple example, let A be the English insect names and B the (scientific)
Latin insect names. Then (if we disregard some minor ambiguities) A is definable
in terms of B since for every English insect name there is a Latin insect name
with the same meaning. However, the relationship does not go in the other direction
since quite a few Latin insect names lack an English equivalent. This is a case of
unidirectional definability. By bidirectional definability is meant that each of two
sets of expressions is definable in terms of the other. A similar distinction can be
drawn between unidirectional and bidirectional determinability.

Obviously, interdefinability is the ideal, and one might well ask whether defi-
nitions not complying with that standard should at all be considered. However, a
connection between two categories of expressions (such as norms and values) can
be philosophically interesting and/or practically useful although it is not derivable
from purely conceptual knowledge, or works only in one direction. Therefore, all
the four types of relations of definability and determinability specified in Fig. 27.1
are useful in philosophical investigations.

This chapter has its focus on value statements. After some basic specifications
have been introduced in Sect. 27.4, three major types of value statements will
be introduced in Sect. 27.5 in the form of a “value triangle”. The three types
are discussed in somewhat more detail in Sects. 27.6, 27.7, 27.8 and their logical
interrelations are investigated in Sects. 27.9, 27.10, 27.11, and 27.12. After that, the
logical interrelations between value expressions (of all three types) and statements
about choice are studied in Sect. 27.13, and their interrelations with statements
about norms are treated in Sect. 27.14. The general picture that emerges from these
investigations will be briefly summarized in Sect. 27.15.
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27.4 Three Basic Specifications

Most of our value statements in everyday life are ambiguous or at least unspecified
in several ways. If I tell you that salmon is the best food fish, you may have to
ask several questions in order to find out what I mean: Best for whom? Best in
comparison to what? (Among the fish we can buy in our local store, or among those
that are available anywhere in the world?) Best from what point of view? (Taste,
nutritional value, etc.) Let us have a closer look at these three types of specifications.

The subject. Values can be related to persons in at least two ways. We may refer
either to what is good or better according to a person or to what is good or better
for that person. The distinction is not always made with sufficient clarity, but it is
crucial in many contexts. One example is medical ethics where increasing emphasis
on the patient’s autonomy has led to a shift from arguments based on what is good
for the patient to arguments based on what is good according to her. Both modes
of speaking can also be applied to collective agents. In addition, value terms can be
used in an impersonal way (that may at least sometimes be interpreted as “good for
everyone”).

Instead of saying “This is better according to him” we can say simply: “He
prefers this.” Logicians have often used the term “logic of betterness” when referring
to values that are impersonal or assumed to hold for a person. The more common
term “logic of preference” usually refers to values held by persons. However, no
logical or otherwise structural differences seem to have been detected between the
two types of connections between betterness and a person. A major reason for this
is that the logical discourse on preferences does not usually refer to the preferences
that actual people have but to the preferences of (idealized) rational agents. This is
also the type of preferences that is usually discussed for instance in economics and
decision theory.

This practice should be understood against the background that it would be
difficult to identify any structural properties of the preferences (or other values)
of agents who do not satisfy at least minimal requirements of rationality. We can
assume that a rational agent does not both claim that Wagner’s music is better
than Verdi’s and that the music of Verdi is better than that of Wagner. However,
irrational agents can be expected to violate this and presumably any other structural
requirement that we may wish to impose. This makes the values of (idealized)
rational agents much more interesting than those of actual agents. Of course, we
need not assume that agents are rational in all respects, only that they have reflected
enough on their value statements to avoid certain structural features that further
deliberation would show to be untenable.

The objects of evaluation. Most value statements have an (at least implicit)
comparison class. It is one thing to say that Emma is a very good sprinter when
you are discussing members of the local running club, but quite another thing to
say so when discussing who should represent her country in the upcoming Olympic
Games. Both in formal and informal accounts of values we need to keep track of the
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comparison class (also called alternative set). Quite a few pseudoparadoxes in value
theory have their background in unmentioned shifts in the comparison class [12].
But on the other hand, carefully performed and described such shifts can be used to
account for changes in values, and as we will see such shifts can also be used as a
mechanism for interdefinability between different types of value statements.

Comparison classes can have interesting structural properties. A particularly
important such property is mutual exclusivity. By this is meant that no two elements
can be combined. The comparison class:

{dog owner, cat owner}
does not satisfy mutual exclusivity since it is possible to have both a cat and a dog.
The more precisely described comparison class:

{dog owner but not cat owner, cat owner but not dog owner, both a dog owner
and a cat owner, neither a dog owner nor a cat owner}

satisfies mutual exclusivity. It also satisfies exhaustiveness, i.e. it covers all possi-
bilities. For most purposes, formal work is simplified by the use of exhaustive and
mutually exclusive comparison classes.

We also need to determine what types of entities the comparison class consists
of. Two approaches are common in the philosophical literature. One is to regard
the elements as primitive, which means that they have no structural connections
with each other. The other is to assume that they are sentences. This is often
convenient since sentences representing states of affairs provide a highly versatile
representation of both philosophical and mundane subject matter. In what follows,
the letters x, y, z will be used to represent elements of the comparison class if they
are taken as primitive. When these elements are assumed to be sentences they will
instead be denoted by the letters p, q, r .

The evaluative viewpoint. Value statements can be made from different points of
view, and they are therefore always ambiguous to the extent that the point of view
has not been specified. The best car on sale is not necessarily the best car for me to
buy. A good philosopher may be a bad mother, etc. There are at least three major
ways in which such standards can be specified.

Many such specifications can be interpreted as positing a goal, such that the value
terms refer to the achievement of that goal. We can for instance say that something
is good from an ethical, economical, environmental, or aesthetic point of view.
Something is “morally good” if it is good for satisfying our moral commitments
and aspirations, “economically good” if it is good for achieving economic goals,
etc. Such goals can be specified to different degrees and in different directions. The
best car from the viewpoint of fuel economy may not be best from the viewpoint of
total cost per kilometre.

Another way to disambiguate an evaluation is to mention one of the categories to
which the evaluated object belongs. I have a friend who can be described as a good
pianist but a bad driver. The two expressions refer to the same person, but evaluated
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according to our criteria for different categories that she belongs to, namely those
of pianists respectively drivers. Such, category-specified value statements are quite
common, and they are precise to the extent that we have determinate criteria for the
categories in question [14].

As a limiting case, value statements may be intended to include all aspects, i.e.,
represent an evaluation that takes everything into account (“synoptic” values). It
is contentious whether moral values and synoptic values coincide or whether the
synoptic values are a broader or more over-arching category that includes non-moral
values as well.

If vacillation between value criteria is allowed, then counter-examples can be
constructed against any structural condition for value terms that we may think
of. (“Rocky is the best saddle horse in the village, but not the best workhorse.”
Therefore, something may be both best and not best at the same time.) For formal
analysis to be meaningful, we have to assume criterial constancy, i.e. the viewpoint
of evaluation should be the same for all evaluations under consideration.

27.5 The Triangle of Value Concepts

In his book about the logic of probability, Rudolf Carnap distinguished between
three major types of empirical descriptive terms. A classificatory concept such as
“warm” divides objects into mutually exclusive classes. A comparative concept such
as “warmer” compares two objects to each other. Finally, a quantitative concept such
as “temperature” characterizes objects by assigning numerical values to them [3],
[cf. 17]. The same three categories can be used to classify the value terms.

Among the classificatory value expressions we find those articulated with terms
such as “good”, “very bad”, “almost worst”, “fairly good”, and “worst”, all of which
have a single referent that they identify as element of a class. In the formal language
they are represented by monadic (one-place) predicates, such as G for “good” and
B for “bad”. The formula Gx means “x is good”, and Bx means “x is bad”.

Comparative value expressions such as “better”, “worse”, and “equal in value
to” describe the relation between two referents. In the formal language they are
expressed with dyadic (two-place) predicates. In what follows we will use > for
“better”, ∼ for “equally good as”, and ≥ for “at least as good as”. Thus x > y

means that x is better than y, and y ∼ z that y and z are equally good. (A common
alternative notation uses P instead of >, I instead of ∼, and R instead of ≥.)

Quantitative value expressions represent a referent’s amount of value in numer-
ical terms, i.e. in numbers saying “how good” something is. Quantitative value is
expressed by a numerical function v that takes us from objects of evaluation to real
numbers. Thus v(x) = 3 means that x has the value represented by the number 3.

In everyday life, moral statements are usually expressed with classificatory or
comparative expressions. In moral theory, quantitative valuations are important,
primarily since they are required in utilitarianism.
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Table 27.1 The three major types of value expressions and their formal representations

Type of value expression Formal representation Examples

Classificatory Monadic predicate Good, bad, best

Comparative Dyadic predicate Better than, equally god as,

at least as good as

Quantitative Numerical function Utility

Fig. 27.2 The value triangle,
representing the three major
types of value statements

Pre-

ference

Good,

Bad

Numeric

value

The three types of value terms are summarized in Table 27.1 and in the value
triangle depicted in Fig. 27.2. The next three sections are devoted to the structural
properties of each of these three types. For expository reasons we will begin with
the comparative terms.

27.6 Comparative Value Concepts

Preference logic, the logic of the dyadic value predicates, is the most well-developed
part of the logic of value concepts.2 It has a long history. Aristotle discussed
structural properties of preferences in Book III of his Topics. Representations in
modern logical language were developed by Sören Halldén [9] and Georg Henrik
von Wright [28].

The two fundamental comparative value concepts are “better” (>, strict prefer-
ence) and “equal in value to” (∼, value equality). The former of these represents
both betterness and converse worseness, hence x > y is taken to mean both “x is
better than y” and “y is worse than x”.

The relation ≥, “at least as good as” (weak preference) can be defined in terms
of the two fundamental concepts:

x ≥ y if and only if either x > y or x ∼ y.

The three expressions “x is better than y”, “y is better than x”, and “x is equal in
value to y” are usually taken to be mutually exclusive, i.e. no two of them can hold
at the same time. It is also assumed that everything is equal in value to itself and

2For a more detailed exposition, see Chap. 29.
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that equality in value always works in both directions. These assumptions add up to
the following four constitutive properties of the comparative notions:

x > y → ¬(y > x) (asymmetry of preference)
x ∼ y → y ∼ x (symmetry of indifference)
x ∼ x (reflexivity of indifference)
x > y → ¬(x ∼ y) (incompatibility of preference and indifference)

A much more controversial principle is completeness, according to which it holds
for any two objects of the comparison class that either one of them is better than the
other, or else they are equal in value. This property can be expressed in either of the
following two equivalent ways:

x >y ∨ x∼y ∨ y >x (completeness)
x ≥y ∨ y≥x (completeness, alternative formulation)

By far the most discussed postulate for comparative value is transitivity, according
to which two steps of weak preference can be combined into one:

x≥y≥z → x ≥z (transitivity)

(To simplify the notation, we contract series of dyadic predicate expressions, thus
writing x≥y≥z for x ≥y & y≥z.)

Transitivity is often regarded as an essential rationality criterion.3 The same
applies to various weakened versions of it, such as:

x >y >z → x >z (quasi-transitivity)
x1 >x2 >... > xn → ¬(xn >x1) (acyclicity)

27.7 Classificatory Value Concepts

There is a wide variety of classifying value predicates: “good”, “best”, “bad”, “very
good” etc. Here, the focus will be on “good” and “bad” that are denoted by G

respectively B. “Good” and “bad” are usually taken to be mutually exclusive, i.e.
they cannot consistently both be applied to one and the same object of evaluation.
If someone says that a particular novel is both good and bad, then this is perceived
as paradoxical. We expect a resolution that typically assigns different evaluation
criteria to the two statements, for instance: “The plot is good, but the language is
bad”. Due to our assumption of criterial constancy we can presume that goodness
and badness are mutually exclusive:

¬(Gx & Bx) (mutual exclusiveness)

If the objects of evaluation (elements of the comparison class) are represented by
sentences, then additional logical principles can be introduced. In particular, we
can express the intuition that a state of affairs and its negation are not (from the

3See Chaps. 29 and 31.
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same point of view) both good or both bad. If you say “It is good to be married,
and it is also good to be unmarried”, then you typically mean that matrimony
and bachelorhood are good in different respects or according to different criteria.
Something similar can be said about the dismal pronouncement “It is bad to be
married, and it is also bad to be unmarried.” Such equivocations are excluded by the
following principles:

¬(Gp & G¬p) (non-duplicity of good)
¬(Bp & B¬p) (non-duplicity of bad)

Two other potential postulates are Gp → B¬p and (symmetrically) Bp → G¬p.
(For both of them to hold it is sufficient and necessary that B¬p ↔ Gp holds.)
However, it is easy to show that neither of them is a plausible postulate.

My uncle is a great music lover. It would be good if I give him a recording of
Das Wohltemperierte Klavier for his birthday. However, it would not be bad if
I do not give him such a recording. This is because not doing so is compatible
with giving him some other nice present that he will appreciate.

Maria is an alcoholic who consumes different brands of whiskey every
evening. It is bad that she drank Hazelburn whiskey yesterday. However, it
would not have been much of a good thing if she had not done so, since then
she would in all probability have taken some other whiskey instead.

Without further devices it seems difficult to obtain any plausible postulates for
“good” and “bad” in addition to mutual exclusiveness and non-duplicity. There
are at least two devices that we can use to obtain further postulates: shifts in the
comparison class and the insertion of “good” and “bad” into a language that also
contains a preference relation.

It is easy to find examples in which our usage of “good” and “bad” depends on
the context. Jennifer and Robert are both members of the local chess club. Jennifer is
one of its best players, but Robert seldom wins a game. When discussing members
of the club it would be reasonable to say “Jennifer is a good player, but Robert
is not”. Suppose that they both join a large competition with several thousand
participants, most of whom neither Jennifer nor Robert has much of a chance to
defeat. In such a context it would be more natural to count neither Jennifer nor
Robert as a good player.

To express this in the formal language we will use capital letters such as A and D

to denote comparison classes. These letters can be attached as indices to the monadic
value predicates G and B. Thus GAx means that x is good among the elements of
A and BAx that x is bad among the elements of A. Johan van Benthem [26] has
proposed the following postulates for such indexed monadic value predicates:

If GAx & ¬GAy, then there is no comparison class D such that
GDy & ¬GDx (non-reversal of good)
If BAx &¬BAy, then there is no comparison class D such that BDy &¬BDx

(non-reversal of bad)
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G differentiates between x and y in A if and only if either GAx & ¬GAy or
GAy & ¬GAx. Furthermore, G differentiates within A if and only if there are
x, y ∈ A such that G differentiates between x and y in A. The corresponding
definitions apply to the badness predicate B. With these definitions, the following
postulates, also proposed by van Benthem, can be introduced:

If G differentiates between x and y in D, and {x, y}⊆A⊆D, then G

differentiates between x and y in A. (downward difference of good)
If B differentiates between x and y in D, and {x, y}⊆A⊆D, then B

differentiates between x and y in A. (downward difference of bad)
If A⊆D and G differentiates within A, then it differentiates within D. (upward

difference of good)
If A⊆D and B differentiates within A, then it differentiates within D. (upward

difference of bad)

The other device for obtaining postulates for “good” and “bad” is to include the
dyadic and monadic value predicates in one and the same framework. This is
intuitively plausible, since our classificatory and comparative concepts appear to be
closely connected to each other. This was implicitly recognized already by Aristotle,
when he said that “if one thing exceeds while the other falls short of the same
standard of good, the one which exceeds is the more desirable” (Topics, III:3), which
can be interpreted as a statement that:

Gx & ¬Gy → x >y (negation-sensitivity of good)

Other, at least seemingly plausible, connections between the monadic and dyadic
predicates include:

¬Bx & By → x >y (negation-sensitivity of bad)
Gx & By → x >y (bivalent sensitivity)
x >y → Gx ∨ By (closeness)
Gx & y≥x → Gy (positivity of good)
Bx & x≥y → By (negativity of bad)
Gx & Gz & x≥y≥z → Gy (continuity of good)
Bx & Bz & x≥y≥z → By (continuity of bad)
Gx & x∼y → Gy (indifference-sensitivity of good)
Bx & x∼y → By (indifference-sensitivity of bad)

27.8 Quantitative Value Concepts

A numerical function is any function that takes us from some objects to real
numbers. In measurement theory, numerical functions are classified according to
how much information they carry. Football teams have shirts with numbers on them.
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A function that assigns to each football player the number on his or her shirt, for
instance v(Ronaldinho) = 10, carries no other information than any other label that
could be used for the same purpose. It is called a nominal function. Such functions
have no use in the representation of values.

Other numerical functions represent an order or rank, so that something can be
learnt from which of two objects is assigned the highest value. These are called
ordinal scales. The ranking of tennis players is an example. The player ranked
number 1 is presumably better than that ranked number 2, etc., but the differences
on the scale have no significance. Thus the difference between the 1st and the 2nd
player cannot be inferred, and it may be very different from that between the 200th
and the 201st.

An interval scale has uniform differences. A common temperature scale
(°C or °F) exemplifies this. The difference between 4 and 5 °C is the same as
that between 40 and 41 °C. However, 10 °C is not ten times hotter than 1 °C. Ratios
on an interval scale do not carry any meaningful information.4

Finally, on a ratio scale ratios are also meaningful. Length is measured on a ratio
scale. Thus, 10 mm is ten times longer than 1 mm. These lengths stand in the same
proportion to each other as 10 to 1 km (which is useful to know when reading a map
with the scale 1:1,000,000). The scientific temperature scale is also a ratio scale,
thus 300 °K (27 °C) is twice as hot as 150 °K (−123 °C).

The requirements on a numerical function that represents values depends on
its intended use. For the purposes of a utilitarian moral theory a ratio scale will
be necessary. This makes it possible to add values and to compare the values
of aggregated wholes to each other. Other types of moral theories may be less
demanding on the value function.

With these definitions in place we can now investigate interdefinabilities among
the three categories of value statements. We will begin with the left side of the
triangle of Fig. 27.2.

27.9 From Comparative to Classificatory Value

Several proposals have been put forward that define “good” and “bad” in terms
of the dyadic predicates. The first such proposal was made by Albert P. Brogan
[2], according to whom “good” means “better than its negation” and “bad” means
“worse than its negation”.

Gp ↔ p>¬p (negation-related good)
Bp ↔ ¬p>p (negation-related bad)

4More precisely: The information that we can extract from knowing the exact values of ratios
coincides with the information we can extract from just knowing for each ratio whether it is higher
than, equal to, or less than 1.
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This definition has a strong intuitive appeal, but of course it only works for relata
that have a sentential structure so that they can be negated. Another disadvantage is
that if G and B are defined in this way, then they do not always satisfy positivity,
respectively negativity. For an example, let ¬q∼q∼ p>¬p. Then Gp, q ≥ p and
¬Gq, contrary to positivity.

Another major tradition is based on the identification of some neutral object or
group of objects. Then “good” can be defined as “better than something neutral”
and “bad” as “worse than something neutral”. As a general recipe this works for
non-sentential as well as sentential objects of comparison:

Gx ↔ x >n (neutrality-related good)
Bx ↔ n>x (neutrality-related bad)

Several proposals have been made on how to specify the neutral object(s). Most of
these proposals require the objects to be represented by sentences. Some authors
have recommended that the neutral propositions should be tautologies [6, p. 37]
or contradictions [29, p. 164]. Writing ⊤ for an arbitrary tautology and ⊥ for an
arbitrary contradiction we then have:

Gp ↔ p> ⊤ (tautology-related good)
Bp ↔ ⊤ >p (tautology-related bad)
Gp ↔ p> ⊥ (contradiction-related good)
Bp ↔ ⊥ >p (contradiction-related bad)

However, it is difficult to make sense of a statement saying that something is better
or worse than a tautology or a contradiction. If we wish to base our identification of
the neutral elements on evaluative comparisons that we can actually make, then the
solution must be sought elsewhere.

The most influential identification of neutral elements was proposed by Roderick
Chisholm and Ernest Sosa [4]. They defined “good” as “better than something that
is equal in value to its negation” and “bad” as “worse than something that is equal
in value to its negation”. For instance, let us assume that it is (morally) neither good
nor bad for a person to read crime fiction. According to this definition, any action
that is (morally) better than reading crime novels is a good action. Since Chisholm
and Sosa used the term “indifferent” for “equal in value to its own negation”, these
can be called the “indifference-related” versions of “good” and “bad”:

Gp ↔ (∃q)(p>q∼¬q) (indifference-related good)
Bp ↔ (∃q)(¬q∼ q >p) (indifference-related bad)

Although this pair of definitions is conceptually related to Brogan’s negation-related
good and bad, the two pairs of definitions do not coincide unless rather strict
demands are put on the structure of the preference relation [10]. The two pairs of
definitions share the disadvantage of sometimes giving rise to predicates for “good”
and “bad” that do not satisfy positivity respectively negativity. The indifference-
related definitions also have the additional disadvantage of sometimes giving rise
to predicates for “good” and “bad” that do not satisfy the even more elementary
postulates mutual exclusiveness and non-duplicity [13, pp. 123–124].
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The following definitions were introduced in order to obtain predicates for
“good” and “bad” that satisfy these postulates for a wider category of preference
relations [10]:

Gp ↔ (∀q)(q≥⋆p → q >¬q) (canonical good)
Bp ↔ (∀q)(p≥⋆q → ¬q >q) (canonical bad)

Here, ≥⋆ stands for the ancestral of ≥. This means that p ≥⋆q holds if and only if
either p ≥ q or there is a series r1, . . . , rn of sentences such that p ≥ r1 ≥ . . . ≥
rn ≥ q.

Whenever ≥ satisfies reflexivity, canonical good and bad satisfy the required
postulates for a plausible interpretation of “good” and “bad” (including mutual
exclusivity, closeness, non-duplicity of both predicates, positivity of “good”, and
negativity of “bad”).5 Furthermore, this pair of predicates is a generalization of
negation-related good and bad in the following sense: If the preference relation is
such that negation-related good satisfies positivity and negation-related bad satisfies
negativity, then these negation-related predicates coincide with the canonical ones
[13, p. 123].

In summary, we have well-functioning methods for defining the classificatory
value terms “good” and “bad” from the comparative ones. We will now turn to the
much less discussed issue of defining the comparative terms from the classificatory
ones.

27.10 From Classificatory to Comparative Value

The philosophical significance of the above-mentioned definitions of classificatory
values in terms of comparative ones has sometimes been put to question. To the
extent that natural language can tell us anything about the structure of concepts,
it points in the direction of treating classificatory rather than comparative notions
as the primitive concepts from which others should be defined. There does not
seem to be any natural language in which the classificatory terms are derived from
the comparative ones. Instead, derivation in the opposite direction seems to be a
universal pattern. As examples of this, the English “better” is believed to originate
from a comparative form of a Proto-Indo-European adjective meaning “good”, and
the French “meilleur” from a comparative form of a Proto-Indo-European word
meaning “strong” [25].

According to Henry Kyburg [17, p. 382] “[t]o apply a classificatory term is often
to invoke an implicit comparison.” But this only holds subject to two important

5An even weaker property than reflexivity, namely ancestral reflexivity (p ≥⋆p), is sufficient for
this result.
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provisos. First, classifying statements have to be available about more than one
object. This is why only the second of the following two statements has comparative
implications:

The fish is good in this restaurant.
The fish is good in this restaurant but the meat is not.

Secondly, the comparative implications may depend on the context. Consider again
the example in Sect. 27.7 about the two chessplayers, Jennifer and Robert. In the
context of the large tournament it is reasonable to say that neither of them is a
good player. In the context of the local club we tend to describe Jennifer but not
Robert as a good player. If we want to derive a comparison between two objects
from classificatory statements about them, then we have to determine the context
of these classificatory statements. As the chess-player example illustrates, a smaller
context tends to yield more nuances than some of the larger contexts. This gives us
a reason to choose the smallest possible context in which classificatory statements
about both objects can be made, i.e. the context containing only these two objects.

Using this insight, Johan van Benthem [26] defined comparative concepts in
terms of the corresponding classificatory ones as follows:

x is α-er than y if and only if: In the context {x, y}, x is α while y is not α

[26, p. 195].

This is a general recipe that can be applied to concept pairs such as tall/taller,
rich/richer etc. In preference logic we take it for granted that worseness is nothing
else than converse betterness. Therefore, this recipe can be interpreted in two ways
depending on whether we read x >y as “x is better than y” or as “y is worse than x”:

x >y if and only if G{x,y}x & ¬G{x,y}y (goodness-based preference)
x >y if and only if B{x,y}y & ¬B{x,y}x (badness-based preference)

It is easy to see that these two definitions are not equivalent and also that neither of
them is plausible in all cases. Let x be good and not bad in the context {x, y}, and let
y be neither good nor bad in the same context. Then x > y holds according to first
definition but ¬(x > y) according to the second. This seems to be speak in favour
of the first definition since we would expect x > y to hold in this case. But next,
let x be neither good nor bad in the context {x, y}, and let y be bad but not good in
the same context. Then ¬(x > y) holds according to the first definition but x > y

according to the second, which seems to speak in favour of the second definition.
To solve this problem we can replace the goodness- and badness-based defini-

tions by the following one that takes both goodness and badness into account [16]:

x >y if and only if either G{x,y}x & ¬G{x,y}y or B{x,y}y & ¬B{x,y}x
(bivalently based preference)

Indifference and weak preference can be defined in the same vein:

x∼y if and only if G{x,y}x ↔ G{x,y}y and B{x,y}x ↔ B{x,y}y
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x ≥ y if and only if either: (i) G{x,y}x, (ii) B{x,y}y, or
(iii) ¬G{x,y}x & ¬G{x,y}y & ¬B{x,y}x & ¬B{x,y}y

With these definitions we obtain the standard relationship between weak preference,
strict preference, and indifference, i.e. x ≥ y ↔ x > y ∨ x ∼ y. Furthermore,
≥ satisfies completeness. If G and B satisfy five of the conditions mentioned in
Sect. 27.7, namely mutual exclusiveness, non-reversal of both good and bad, upward
difference, and downward difference, then ≥ satisfies transitivity [16].

In summary, with this focus on the minimal comparison class it is possible to
define comparative values in terms of classificatory ones. Since we have already
seen that definitions in the opposite direction are available, this means that the
two classes of value terms are definable in terms of each other. However, the two
directions of these definitions form a rather disharmonious pair. When we go from
the classificatory to the comparative terms we need to have context indices on the
classificatory predicates that we start with, but the comparative predicates that we
obtain do not come with such indices. When we go in the other direction, from
comparative to classificatory predicates, no context indices are obtained for the
latter. It remains an open question whether a framework can be constructed in which
comparative and classificatory value terms are fully interdefinable.

27.11 Between Quantitative and Comparative Values

We will now turn to the right-hand side of the value triangle, namely that which
connects comparative and quantitative value expressions. One direction, namely
that from quantitative to comparative values, is easily obtained. For any value
function v we can equate preference or betterness (>) with having higher value
and indifference (∼) with having the same value:

Exact numerical representation:
x >y if and only if v(x) > v(y)

x∼y if and only if v(x) = v(y)

It follows directly that the preference relation defined in this way will be complete
and transitive.

The derivation of quantitative from comparative value is a somewhat more
intricate matter. Suppose that we have an (admittedly strange) preference relation
≥ such that x > y, y > z, and z > x. A value function corresponding to this
relation would have to be such that v(x) > v(y), v(y) > v(z), and v(z) > v(x),
which is clearly impossible. It has in fact been shown that if the comparison class
is countable, then a preference relation ≥ is reconstructible in terms of a numerical
function if and only if it satisfies both completeness and transitivity [21].

One of the most discussed mechanisms for intransitivity is indiscernibility.
Consider John who prefers coffee with as little sugar as possible. However, his
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ability to taste the difference between cups of coffee with different amounts of
sugar is limited. He can only taste the difference if it is more than 0.15 grams. If
we present him with the three cups x, with 2 grams of sugar, y with 2.1 grams and
z with 2.2 grams, then he is able to taste the difference between x and z, but neither
that between x and y nor that between y and z. This will yield a preference relation
such that x ∼ y, y ∼ z, and x > z. Such a preference relation is not representable
with a numerical function if we use the exact value representation introduced above.
However, it can be represented if we include the limit of discrimination, in this case
0.15 grams, into the representation as follows:

Constant-threshold numerical representation:
x >y if and only if v(x)− v(y) > δ, where δ is a positive real number.

In other contexts, δ in this formula can be interpreted as a limit distinguishing those
differences in value that are worthy of consideration from those that are negligible
(even though they may be discernible). When interpreted as a discrimination limit,
δ is often called a “just noticable difference” (JND). It has been shown that a
preference relation over a finite comparison class can be numerically represented
with a constant threshold if and only if it satisfies completeness and the following
two properties [23]:

x >y >z → (x >w) ∨ (w>z) (semi-transitivity)
(x >y) & (z>w)→ (x >w) ∨ (z>y) (interval order property)

This construction can be generalized. The most general numerical structure that
is still intuitively reasonable is arguably that in which the threshold is allowed to
depend on both objects under comparison:

Doubly-variable-threshold numerical representation:
x > y if and only if v(x) − v(y) > σ(x, y), where σ is a function such that
σ(x, y) > 0 for all x and y.

It has been shown that a preference relation over a finite comparison class can be
numerically represented with a doubly variable threshold if and only if it satisfies
acyclicity [1].

In summary, we can easily go from numerical to comparative values, and we
can also go in the opposite direction, provided that the preference relation is acyclic
and that we use the extra device of a threshold that can be interpreted as a limit of
discrimination or of negligibility.

27.12 Between Quantitative and Classificatory Values

Let us now look at the bottom side of the value triangle, and begin with the right-
to-left direction, i.e. the issue whether classificatory values can be defined in terms
of quantitative ones. Such definitions can be modelled on the definitions in terms
of comparative values that were discussed in Sect. 27.8. Thus, the negation-related
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definition of “good” and “bad” can be transferred to a quantitative framework as
follows [18]:

Gp ↔ v(p) > v(¬p)

Bp ↔ v(¬p) > v(p)

These definitions have the advantage that G and B will always satisfy non-duplicity
and mutual exclusivity. However, without restrictions on v they will not in general
satisfy positivity respectively negativity.6 A further problem with this pair of
definitions, if unaided by restrictions on v, is that it allows violations of the postulate
bivalent sensitivity (Gp & Bq → p>q).7

The indifference-related definitions of “good” and “bad” can also be transferred
to a quantitative framework. We can gain in lucidity (without losing in generality)
by assuming that value assignments have been calibrated so that indifferent things
have the value zero. Then “good” and “bad” can be defined as follows:

Gx ↔ v(x) > 0
Bx ↔ 0 > v(x)

This definition is in even greater need than the negation-related one of support from
requirements on the structure of v. In particular, unless we disallow v from assigning
positive values to both a statement and its negation, or negative values to them both,
non-duplicity of G and B will not be satisfied.8

In the opposite direction, from classificatory to quantitative values, a simple
construction is available provided that G and B satisfy mutual exclusiveness
(¬(Gx & Bx)). We can then define the numerical function v as follows:

If Gx then v(x) = 1
If ¬Gx & ¬Bx then v(x) = 0
If Bx then v(x) = −1

The results of these deliberations are summarized in Fig. 27.3. We have found that
definitions are obtainable in both directions along all three sides in the value triangle,
although in some cases we needed “tricks” in the form of extensions of the formal
apparatus such as context indices. In the rest of this chapter we will consider the
connections between these value terms and two other categories of statements that
they have often been associated with.

6To see that positivity of G does not follow, let v(p) = v(q) = v(¬q) = 0 and v(¬p) = −1.
Then Gp and q ≥ p but ¬Gq.
7This can be seen from an example such that v(¬q) = 1, v(p) = v(q) = 0, and v(¬p) = −1.
8This can be seen from an example such that v(p) = v(¬p) = 1 and v(q) = v(¬q) = −1.
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Fig. 27.3 Definability
relations in the value triangle Pre-
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27.13 Choices and Values

Statements about choices refer to actions, whereas statements about values (such as
preferences) refer to states of mind. The difference comes out clearly if we consider
states of affairs that we cannot choose. I prefer winning e 10,000 in a fair lottery
to winning e 5,000 in the same fair lottery, but it is impossible for me to choose
winning e 10,000 in this lottery, since if I could make such a choice then the lottery
would not be fair.

Admittedly, if we adopt a behaviourist stance according to which states of mind
do not exist other than as propensities to act, then preferences can be equated
with hypothetical choices, and choices with actualized preferences. But this is a
problematic metaphysical standpoint that should not be taken for granted in a formal
analysis. Therefore it is advisable to treat choices as belonging to another category
than values, from which follows that they are not interdefinable.

But lack of interdefinability does not mean lack of interconnections. We expect
rational choices to be guided by preferences. There is something strange in choosing
¬p while preferring p to ¬p. Of course there may be reasons to do so, for instance
that the preferences in question do not include all the choice-relevant aspects of the
alternatives. But some kind of justification is needed in cases like these, and it is
certainly worth investigating what it means for choices to be guided by preferences.
We should expect preference-guided choices to be restricted by the preferences,
perhaps even derivable from them. We may ask what consequences it may have
for the structure of choices that they have such connections with preferences, and
conversely we may ask what structure preferences should have in order to ensure
that their guidance gives rise to choices with desirable structural properties. All
these are questions that we can (and should) ask without blurring the distinction
between the different categories that choices and preferences belong to.
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In order to perform such studies we need a formal representation of (hypotheti-
cal) choices.9 The standard approach is to use choice functions for that purpose:

C is a choice function for a set A if and only if it is a function such that for all
B:

(1) If ∅ �= B ⊆ A, then ∅ �= C(B) ⊆ B.
(2) Otherwise, C(B) is undefined.

Various rationality principles for choice functions have been proposed, such as the
following:

If B1 ⊆ B2 then B1 ∩ C(B2) ⊆ C(B1) (Property α, the Chernoff property)

The most obvious way to construct a choice function out of a preference relation
≥ is to have the function always choose those elements that are at least as good as
anything else that could have been chosen:

C(B) = {x ∈ B | (∀y ∈ B)(x ≥ y)}
Conversely, from a given choice function C we can construct a preference relation,
based on choices from two-member sets:

x≥y if and only if x ∈ C({x, y})
The interrelations between choices and preferences that can be obtained with these
two definitions have been studied in considerable detail. It turns out that if a
preference relation satisfies standard rationality criteria, then the choice function
that it gives rise to will satisfy the major rationality criteria for choices (such
as the above-mentioned Property α and others in the same style). Conversely,
if a choice function satisfies these principles, then the preference relation that it
gives rise to will in its turn satisfy the standard rationality criteria for preferences.
Furthermore, retrievability holds in both directions: If we use these definitions to
go from preferences to choices and then from choices back to preferences, then
we regain the preference relations that we started with. Similarly, if we go from
choices to preferences and then back to choices, then the original choice function
will be regained. We therefore have pathways yielding full interdeterminability
between preferences satisfying reasonable (but contestable) rationality criteria and
choices guided by these preferences. But as already indicated, it is important to
recognize that these are relations of interdeterminability, not interdefinability, since
choices and preferences belong to different conceptual categories between which
extensional but not intensional equivalence is possible.

9See Chap. 29 for additional information on choice functions and their connections with preference
relations.
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27.14 Norms and Values

In deontic logic, the logic of norms, it is generally recognized that there are three
major groups of normative expressions in ordinary language, namely prescriptive,
prohibitive, and permissive expressions.10 In the formal language, they are repre-
sented by the corresponding three types of predicates. Here, prescriptive predicates
such as “ought”, “obligatory”, and “morally required” will be denoted by O.
Permissive predicates such as “permitted” and “allowed” will be denoted by P , and
prohibitive ones such as “forbidden”, “prohibited”, and “morally wrong” by F . The
three types of predicates are standardly and sensibly assumed to be interdefinable in
the following way:

Pp ↔ ¬O¬p and Pp ↔ ¬Fp

Fp ↔ O¬p and Fp ↔ ¬Pp

Op ↔ ¬P¬p and Op ↔ F¬p

The three categories of normative statements form a “norm triangle” with much
more simple and direct definitions than those that we needed in our investigations
of the value triangle. (See Fig. 27.4.)

As we saw in Sect. 27.2, normative and evaluative expressions belong to different
categories in terms of their meanings, and therefore they cannot be interdefinable.
But they are nevertheless strongly connected, and we expect them to cohere in
some way or other. Therefore it is meaningful to search for possible relations of
determinability between the two categories.

The most common proposal for a connection between predicates for norms and
values is to identify what ought to be done with the best. This may be called the
best-ought connection. It has strong support in the utilitarian camp. G.E. Moore,
in a locus classicus, identified the assertion “I am morally bound to perform this

Fig. 27.4 The norm triangle
with its interdefinabilities Obli-

gation

Pro-

hibition

Per-

mission

Legend

Bidirectional definability

10See Chap. 32 for more information.
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action” with the assertion “This action will produce the greatest possible amount
of good in the Universe” [19, p. 147]. Another proposal, put forward by Gupta [8]
and von Kutschera [27], equates “ought” with “good”. This may be called the good-
ought connection. Both these proposals equate a prescriptive predicate with a value
predicate that satisfies positivity (i.e. a predicate H such that Hq & p≥q → Hp).
However, all proposals of this kind are highly problematic since they are threatened
by counter-examples with the following structure [12]:

(1) p and q are mutually exclusive.
(2) O(p ∨ q)

(3) ¬Op

(4) ¬Oq

(5) Either p ≥ (p ∨ q) or q ≥ (p ∨ q).

It follows straight-forwardly that if an example of this type can be found for a
prescriptive predicate O, then that predicate cannot be equivalent with any positive
value predicate. Such examples can indeed readily be found. One way to construct
them is to let p and q represent two jointly exhaustive ways to satisfy the same moral
requirement, and such that the difference between p and q is morally irrelevant. For
instance, p may signify that I pay my debt to Adam by letting Simone bring my
money to him, and q that I pay the debt in any other way.

Examples such as this, and others that can be constructed with the same structure,
make a negative conclusion inevitable: No prescriptive predicate is extensionally
equivalent with any value predicate that satisfies positivity. However, there are other
ways to connect norm and value predicates to each other. Two other interesting
options are to connect a permissive predicate P to a positive value predicate and to
connect a prohibitive predicate F to a negative predicate (i.e. a predicate H such that
Hp & p≥ q → Hq). Interestingly enough, these two options are equivalent. Let
O, P , and F be three norm predicates that are interdefinable as explained above.
It is easy to show that the following three properties of their connections with a
preference relation ≥ are equivalent:

(1) P satisfies positivity (Pq & p≥q → Pp),
(2) F satisfies negativity (Fp & p≥q → Fq), and
(3) O satisfies contranegativity (Op & (¬p≥¬q) → Oq).

One way to make this concrete is to connect a prohibitive term such as “forbidden”
or “wrong” with the negative value term “bad” (the bad-wrong connection). Then an
action is wrong if and only if it is bad. It ought to be performed if and only if it is bad
not to perform it, and it is allowed if and only if it is not bad not to perform it. This
definition assigns what seem to be suitable logical properties to the normative terms,
but the norm−value interface that it provides is not flawless. A major reason for this
is that the words “bad” and “wrong” do not necessarily have exactly the strengths
necessary for exact interdeterminability. As was pointed out in another context by
Chisholm and Sosa [5, p. 326], there are actions of “permissive ill-doing”, i.e.
“minor acts of discourtesy which most of us feel we have a right to perform (e.g.
taking too long in the restaurant when others are known to be waiting).” Such



27 Formal Investigations of Value 521

acts are arguably morally bad but not morally forbidden. Therefore the bad-wrong
connection should only be seen as a very rough approximation. It is, however, an
interesting approximation since it provides us with full interdeterminability (though
not interdefinability).

27.15 Conclusion

The major conclusions from these considerations are summarized in Fig. 27.5.
Interdefinability holds internally among the three different kinds of normative
predicates, and also − with some tailoring of the formal structure − among the
three types of value terms. There are also connections of interdeterminability
both between norms and values and between values and actions. Several of the
connections indicated in the diagram, in particular those involving monadic value
predicates, have been surprisingly little studied. Further investigations may possibly
lead to the discovery of improved definability relations among the different formal
representations of values and norms.

Obli-
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The Realm of Norms The Realm of Values The Realm of
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Fig. 27.5 Interdefinabilities and interdeterminabilities among statements belonging to the three
realms of norms, values, and actions
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Chapter 28

Value Theory (Axiology)

Erik Carlson

Abstract This chapter deals with an area of study sometimes called “formal
value theory” or “formal axiology”. Roughly characterized, this area investigates
the structural and logical properties of value properties and value relations, such
as goodness, badness, and betterness. There is a long-standing controversy about
whether goodness and badness can, in principle, be measured on a cardinal scale,
in a way similar to the measurement of well-understood quantitative concepts
like length. Sect. 28.1 investigates this issue, mainly by comparing the properties
of the relations “longer than” and “better than”. In Sect. 28.2, some attempts to
define goodness and badness in terms of the betterness relation are discussed, and
a novel suggestion is made. Sect. 28.3, finally, contains an attempt to define the
recently much discussed value relation “on a par with” in terms of the more familiar
betterness relation.

This chapter deals with an area of study sometimes called “formal value theory” or
“formal axiology”. Roughly characterized, this area investigates the structural and
logical properties of value properties and value relations, such as goodness, badness,
and betterness. In contrast, “substantial value theory” or “substantial axiology”
seeks to determine what is good and bad, and what is better than what. A third
branch of value theory, usually called “meta-ethics”, although “meta-axiology”
would perhaps be a more appropriate term, discusses the ontological status of
value properties, and the semantics of value terms and value judgements. Most
philosophers would agree that the demarcations between the three areas are not
sharp. Some of the issues to be discussed in this chapter arguably straddle the
distinction between formal and substantial axiology, in particular.

The main focus of most axiological investigations is intrinsic or final value; i.e.,
the value a thing has “in itself”, or “for its own sake”. There is not space here for
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trying to provide precise definitions of these concepts. [A helpful discussion and
overview of the literature on intrinsic value can be found in the “Introduction” to
Rønnow-Rasmussen and Zimmerman [29].]

28.1 “Longer than” and “Better than”

A useful way of introducing several central problems of formal axiology is to
ask to what extent value (i.e., goodness and badness) is similar to a familiar and
well-understood quantitative concept like length. Many philosophers have assumed
that value can, at least in principle, be measured additively, analogously to the
measurement of length. [An early example is Bentham [4]] Others have denied this.
Often, however, this discussion is conducted without much recognition of what it
takes for the additivity assumption to be true. Let us therefore state the conditions
necessary for standard extensive or additive measurement, and then ask whether
value can reasonably be thought to satisfy these conditions. Primarily, this will
amount to comparing the properties of the relations “longer than” and “better than”.

Letting � denote “at least as long as”, we can define “longer than” , denoted ≻,
and “equally long as”, denoted ∼ , as follows: a ≻ b iff (if and only if) a � b ∧
¬(b � a); a ∼ b iff a � b ∧ b � a. If X = {a, b, c . . . } is a set of items that have
length, the relational structure (X, � ) has the following properties:

Completeness. For any a and b in X, a � b ∨ b � a.
Transitivity. If a � b ∧ b � c, then a � c.
Concatenation. Any a and b in X can be put together, or “concatenated”, into an

item, denoted a ◦ b, that also has length.
Monotonicity. a � b iff a ◦ c � b ◦ c iff c ◦ a � c ◦ b.
Weak associativity. a ◦ (b ◦ c) ∼ (a ◦ b) ◦ c.
Archimedeanness. For any a and b in X, there is a positive integer n, such that na ≻

b, i.e., a concatenation of n copies of a is longer than b.

The last condition involves a certain amount of idealization, since there may not
actually exist a sufficient number of copies of a.

These properties together imply that (X, � , ◦) is a “closed extensive struc-
ture”. [This is a slight simplification. Actually, a somewhat more complicated
Archimedean condition is needed. See [21], 73.] This, in turn, means that there
is a function f with real numbers as values, such that (i) f (a) ≥ f (b) iff a � b, and
(ii) f (a ◦ b) = f (a) + f (b). Further, another function g satisfies properties (i) and
(ii) iff g is a “similarity transformation” of f ; i.e., iff there is a real number x > 0,
such that, for all a in X, g(a)= xf (a). This amounts to measurement on a ratio scale.
Thus, if f (a) = 4 and f (b) = 2, it follows that a is twice as long as b.

Now, let X be a set of value bearers, and let � , ≻ , and ∼ denote “at least
as good as”, “better than”, and “equally good as”, respectively. Which of the
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above conditions can be expected to hold? It appears that they are all more or less
controversial. Let us briefly consider each condition in turn.

Completeness Many substantial axiologies are pluralistic, recognizing value bear-
ers of different kinds. Suppose, for example, that friendship and pleasure both have
value. It then seems somewhat implausible that a � b ∨ b � a holds for every
instance a of friendship and every instance b of pleasure. Such appeals to intuition,
against completeness, are sometimes buttressed by the “small improvement argu-
ment”. Let a be an instance of friendship and let b be an instance of pleasure, such
that we are disinclined to claim either that a ≻ b, or that b ≻ a. Does it follow
that a ∼ b? If so, anything better than b must be better than a (given that ∼ is an
equivalence relation). Consider an instance of pleasure b+, which is just like b, only
slightly more intense. Although b+ ≻ b, we will probably not judge that b+ ≻ a.
Hence, the small improvement argument concludes, ¬(a ∼ b), implying that � is
not complete.

An objection to the small improvement argument is that our unwillingness to
judge that b+ ≻ a only proves that we, in the first comparison, did not (rationally)
judge that a∼b. It does not prove that we judged that ¬(a∼b). To refrain from
making a judgement of equality is not to make a judgement of nonequality. The
small improvement argument presupposes, however, a judgement of the latter
kind [27].

Transitivity The transitivity of � has been questioned by a number of philosophers.
An interesting type of alleged counterexample is due to Stuart Rachels [26] and
Larry Temkin [31]. Their examples can be seen as applications of the following
general assumptions:

(1) For any painful experience, no matter what its intensity and duration, it would
be better to have that experience than one that was only slightly less intense but
twice as long.

(2) There is a continuum of painful experiences ranging in intensity from extreme
forms of torture to the mild discomfort of, say, a hangnail.

(3) A mild discomfort for the duration of one’s life would be preferable to two
years of excruciating torture, no matter the length of one’s life.

Rachels and Temkin argue from assumptions 1 to 3 to the conclusion that ≻ is
not transitive. (If ≻ is not transitive, � cannot be transitive, either. For suppose that
� is transitive, while ≻ is not. There is then a case such that a ≻ b ∧ b ≻ c ∧ a ∼ c.
This implies that c � a ∧ a � b ∧ ¬(c � b), contradicting the assumption that � is
transitive.)

Other philosophers claim that we can know a priori that ≻ is always transitive,
since transitivity is part of the meaning of comparatives like “better than”. Thus,
John Broome finds it “self-evident” that any comparative relation is necessarily
transitive. Since this is a conceptual truth, “not much argument is available to
support it directly” ([6], 51). A defense of the transitivity assumption must then
consist mainly in responses to apparent counterexamples. Broome notes that many
such examples involve large numbers, and argues that our intuitions about large
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numbers are unreliable. We may, for example, be unable to grasp what it would
be like to have a hangnail for thousands of years. It is far from clear, though,
that intuitively plausible counterexamples to transitivity must involve large numbers
(see, e.g., [23]).

If Rachels and Temkin are right, ≻ is sometimes not only nontransitive, but
cyclical. That is, there are value bearers a, b, c, . . . , y, z, such that a ≻ b, b ≻
c, . . . , y ≻ z, and z ≻ a. Let us call a structure of this kind a “betterness cycle”.
Whether or not there are betterness cycles, certain structural restrictions apply to any
such case. For example, no betterness cycle can contain both good and bad options.
The following propositions are surely universal truths:

(4) No option is both good and bad (all things considered).
(5) If a is good and b ≻ a, then b is good.
(6) If a is bad and a ≻ b, then b is bad.

Let a be an arbitrary option in a betterness cycle. If a is good, iterated applications
of (5) entail that every option in the ordering is good. If a is bad, iterated applications
of (6) entail that every option is bad. It thus follows from (4) to (6) that no betterness
cycle contains both good and bad options. This is of some significance, since certain
putative examples of betterness cycles contain intuitively good as well as intuitively
bad options (see, e.g., [25]).

Concatenation Whether the concatenation condition is satisfied may depend on
what kinds of entities are bearers of value. If the value bearers are taken to be
propositional entities, concatenation is naturally identified with conjunction. This
immediately leads to a problem, however, since conjunction is idempotent; i.e., a ∧
a = a. Given reflexivity of ∼, this means that a ◦ a ∼ a. If monotonicity and weak
associativity hold, the assumption that a ◦ a ∼ a, for all a, implies that all value
bearers are equally good.

A possible solution to this problem is to define a ◦ a as the conjunction of a with
a numerically different but qualitatively identical propositional entity. For example,
if a is the state of affairs that Alf is happy to degree 10, a ◦ a could be identified
with the conjunction a ∧ a*, where a* is the state that Alf’s counterpart in some
other possible world is happy to degree 10. (a* ◦ a* then has to be identified with
the conjunction of a* and a third state a**.)

If other kinds of entities, for example material objects, are among the value
bearers, concatenation might be defined in terms of mereological fusion, rather than
conjunction. Since also mereological fusion is usually understood as idempotent,
the problem of how to understand self-concatenation remains. It should be noted,
though, that self-concatenation must be defined by means of identical “copies” also
in the context of length or mass measurement (See [21], 3f.)

Monotonicity The monotonicity condition is closely connected to G. E. Moore’s
famous principle of “organic unities”. Moore claimed that, in some cases, “the
intrinsic value of a whole is neither identical with nor proportional to the sum of
the values of its parts” ([22], 184). One of Moore’s examples of an organic unity is
the state of being conscious of a beautiful object. Moore took such a state to be of



28 Value Theory (Axiology) 527

great intrinsic value, containing as parts (in some sense) the object and the state of
being conscious. But neither of these parts has, according to Moore, much intrinsic
value considered in isolation.

However, Moore’s way of formulating the principle of organic unities is unfortu-
nate, since it is meaningful to add the values of two items only if value is measurable
on an additive ratio scale. Measurability on such a scale implies, in turn, that the
value of a whole is proportional to the sum of the values of its parts (see [12]). On a
literal interpretation, therefore, Moore’s claim does not make much sense. Arguably,
what Moore really meant to assert was simply that the monotonicity condition does
not hold. It is, indeed, easy to think of putative counterexamples to monotonicity.
To borrow a case from Roderick Chisholm ([16], 306) suppose that a and b are two
identical beautiful paintings, and that c is a beautiful piece of music. Suppose also
that the value of contemplating a, b or c is the same. It nevertheless seems that the
whole consisting in the contemplation of a and c is better than the whole consisting
in the contemplation of a and b. Some philosophers have suggested, however, that a
restricted version of the monotonicity assumption suffices for the purposes of value
measurement [18, 32].

Weak Associativity If concatenation is identified with conjunction or mereological
fusion, the weak associativity condition probably holds. As regards a concatenation
operation involving physical interaction between objects, on the other hand, weak
associativity may be questionable. As Fred Roberts notes, “combining a with b first
and then bringing in c might create a different object from that obtained when b and
c are combined first. To give an example, if a is a flame, b is some cloth, and c is a fire
retardant, then combining a and b first and then combining with c is quite different
from combining b and c first and then combining with a.” ([28], 125) Clearly, this
difference could be evaluatively relevant.

Archimedeanness The Archimedean condition has been denied by many philoso-
phers. To cite just two examples, Franz Brentano judged it “quite possible for there
to be a class of goods which could be increased ad indefinitum but without exceeding
a given finite good” [5], while W. D. Ross believed that, although virtue and pleasure
are both good, “no amount of pleasure is equal to any amount of virtue, [ . . . ] in fact
virtue belongs to a higher order of value, beginning at a point higher on the scale of
value than pleasure ever reaches [ . . . ]”. ([30], 150)

Gustaf Arrhenius has argued that the existence of such “superior goods” has
an implausible implication. Assuming a and b to be good, Arrhenius defines a as
“weakly superior” to b iff there is a positive integer m, such that ma ≻ nb, for every
positive integer n. Now let a1, . . . , ak be a finite sequence of items, such that a1 ≻
a2 ≻ . . . ≻ ak−1 ≻ ak, and a1 is weakly superior to ak. Arrhenius shows that
any such sequence must contain a pair ai, ai + 1, such that ai is weakly superior to
ai + 1. However, he believes that for most or all types of goods, the sequence a1,
. . . , ak can be chosen so that the difference in value between adjacent items is only
marginal. Hence, the assumption that a1 is weakly superior to ak implies that ai
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is only marginally better than, although weakly superior to ai + 1. This, Arrhenius
contends, is implausible ([1], 301).

The defender of superior goods can retort that since Arrhenius does not explain
what a “marginal” value difference is, he provides no ground for denying that
weak superiority is compatible with a merely marginal difference. As Arrhenius
acknowledges, there need not be a pair aj, aj + 1 in the above sequence, such that aj

is strongly superior to aj + 1, in the sense that aj ≻ naj + 1, for all positive integers n.
It might thus be claimed that strong, but not weak, superiority is incompatible with
a merely marginal difference ([1], 301; [2], 138). Another response to Arrhenius’
argument would be to deny the claim that any value difference can be spanned in a
finite number of steps, such that each step involves only a marginal difference. If we
share Ross’ view that any amount of virtue is better than any amount of pleasure,
why should we believe that a finite number of marginal worsenings could bridge
the value gap between an instance of virtue and an instance of pleasure? Indeed, it
could be argued that the claim of superiority essentially involves the denial of this
contention. If so, Arrhenius’ argument begs the question.

The most problematic of the conditions we have discussed are perhaps complete-
ness, Archimedeanness, and monotonicity. It can be shown, however, that if value
is represented by other mathematical entities than real numbers, measurement on a
kind of generalized ratio scale is possible even if the former two conditions do not
hold [7, 8, 10]. On the other hand, the truth of some version of the monotonicity
condition appears essential for any form of extensive measurement, and, in fact, for
measurement on any scale stronger than an ordinal scale.

28.2 Defining “Good” and “Bad” in Terms of “Better than”

On the face of it, there is another important difference between value, on the one
hand, and quantities like length, on the other. There are bad things, i.e., things with
negative value, but there are no things with negative length (speculative physics
aside). Moreover, the “zero point”, dividing the good from the bad things, appears to
be absolute, rather than dependent on the scale of measurement. (This is in contrast
to, e.g., temperature. Some temperatures are positive if measured on the Fahrenheit
scale, but negative if measured on the Celsius scale.) Many philosophers have
attempted to define goodness and badness in terms of betterness. Such definitions, if
possible, would arguably be desirable for reasons of theoretical simplicity. In a very
influential paper, Roderick Chisholm and Ernest Sosa [17] proposed the following
definitions, with “I”, “N”, “G”, and “B” standing for, respectively, “intrinsically
indifferent”, “intrinsically neutral”, “intrinsically good”, and “intrinsically bad”:

D1. a ∼ b iff ¬(a ≻ b) ∧ ¬(b ≻ a).
D2. Ia iff ¬(a ≻ ¬a) ∧ ¬(¬a ≻ a).
D3. Na iff ( ∃b) (Ib ∧ a ∼ b).
D4. Ga iff ( ∃b) (Ib ∧ a ≻ b).
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D5. Ba iff ( ∃b) (Ib ∧ b ≻ a).

Chisholm’s and Sosa’s theory assumes equivalents to the following axioms:

A1. If a ≻ b, then ¬(b ≻ a).
A2. If a ≻ c, then a ≻ b ∨ b ≻ c.
A3. If Ia ∧ Ib, then a ∼ b.
A4. If Ga or B¬a, then a ≻ ¬a.

An important feature of Chisholm’s and Sosa’s theory is that, unlike many
previous theories, it does not assume that a state of affairs is good if it is better than
its negation, and bad if it is worse than its negation. The state that there are happy
egrets is, they assume, intrinsically good, while the state that there are no happy
egrets is intrinsically neutral. (The latter state is not intrinsically bad, since the mere
absence of happiness does not “rate any possible universe a minus”.) Analogously,
the state that there are unhappy egrets is intrinsically bad, whereas the state that there
are no unhappy egrets is neutral. (The latter state is not intrinsically good, since the
mere absence of unhappiness does not “rate any possible universe a plus”.)

D1 excludes the possibility that a and b are incomparable with respect to intrinsic
value, in the sense that ¬(a ≻ b) ∧ ¬(b ≻ a) ∧ ¬ (a ∼ b). (Cf. the discussion
of completeness of �, in Sect. 28.1) If incomparability is possible, D1 is not an
appropriate definition of “is equal in intrinsic value to”. Furthermore, b may be
incomparable to each of a and c, although a ≻ c. This would mean that A2 is
violated.

Philip Quinn [24] has objected to Chisholm’s and Sosa’s logic on precisely the
grounds that it illegitimately rules out the possibility of incomparability. Even if we
assume a hedonistic axiology, Quinn remarks, it is far from obvious that the value of
Smith’s enjoying the taste of apples is comparable to the value of her enjoying the
sound of Beethoven’s Ninth Symphony. Quinn argues, nonetheless, that universal
comparability can be shown to be true. He retains Chisholm’s and Sosa’s axioms
A3 and A4, and proposes, in addition, the following axioms:

A5. Transitivity. If a � b ∧ b � c, then a � c.
A6. (a � (a∨b) ∨ b � (a∨b)) ∧ ((a∨b) � a ∨ (a∨b) � b).
A7. (a � (a∨b) ∨ (a∨b) � a) iff (b � (a∨b) ∨ (a∨b) � b).

Quinn shows that A5 to A7 entail that a � b or b � a holds for all a and b. In other
words, universal comparability (completeness) is true.

A6 is hardly unassailable, though. To use Quinn’s own example, what are the
grounds for assuming that either a = Smith enjoys apples, or b = Smith enjoys

Beethoven, is at least as good as a ∨ b? If it is intuitively plausible to judge
a and b incomparable, it appears equally plausible to judge each of these states
incomparable to their disjunction.

Sven Ove Hansson [20] has suggested a more general definition of goodness
and badness in terms of betterness. Hansson’s proposal assumes neither universal
comparability nor transitivity of betterness. However, his and, to the best of my
knowledge, every other extant proposal presuppose that the value bearers are
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propositional entities, which can be negated. Since many value theorists believe that
non-propositional entities, such as persons or material objects, can have intrinsic
or final value, a definition format that does not rely on negation or indifference
is desirable. Assuming that at least some value bearers can be concatenated, there
is a fairly simple way to construct such a format [Carlson [13] contains further
discussion of the proposal sketched below].

First, we define an item a as “universally null” iff, for all value bearers b, such
that a ◦ b is a value bearer: a ◦ b ∼ b. Thus, a universally null item does not affect
the intrinsic value of any whole of which it is a part. (In Chisholm’s and Sosa’s
parlance, such an item rates any possible universe a zero.)

Let us assume the following four axioms:

A8. � is a quasi-order; i.e., reflexive and transitive.
A9. There is at least one universally null item that is a value bearer.
A10. For any universally null value bearers a and b, whose coexistence is logically

possible, a ◦ b is a value bearer.
A11. For any complex value bearer a ◦ b, it holds that a ◦ b ∼ b ◦ a.

On the basis of these axioms, and letting “UN” abbreviate “universally null”, we
may propose the following definitions of “intrinsically good”, “intrinsically bad”,
and “intrinsically neutral”:

D6. Ga iff (∃b) (UNb ∧ a ≻ b).
D7. Ba iff (∃b) (UNb ∧ b ≻ a).
D8. Na iff (∃b) (UNb ∧ a ∼ b).

If some value bearers are incomparable, there may be reason to assume the
existence of a fourth value category, in addition to intrinsic goodness, badness,
and neutrality (See [11]). This category, which may be labelled “intrinsic indeter-
minacy”, is readily incorporated into our proposal. Defining “is incomparable in
intrinsic value to”, symbolized ||, as a || b iff ¬(a � b) ∧ ¬(b � a), we may define
“intrinsically indeterminate”, abbreviated “IND”, as follows:

D9. INDp iff (∃b) (UNb ∧ a || b).

The following twenty propositions can be derived from A8 to A11 and D6 to
D9:

(i) If UNa ∧ UNb, then a ∼ b.
(ii) For any a, exactly one of the following is true: Ga, Ba, Na, or INDa.

(iii) If Ga ∧ b � a, then Gb.
(iv) If Ga ∧ a || b, then Gb ∨ INDb.
(v) If Ba ∧ a � b, then Bb.

(vi) If Ba ∧ a || b, then Bb ∨ INDb.
(vii) If Na ∧ b ≻ a, then Gb.

(viii) If Na ∧ a ≻ b, then Bb.
(ix) If Na ∧ a ∼ b, then Nb.
(x) If Na ∧ a || b, then INDb.
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(xi) If INDa ∧ b ≻ a, then Gb ∨ INDb.
(xii) If INDa ∧ a ≻ b, then Bb ∨ INDb.

(xiii) If INDa ∧ a ∼ b, then INDb.
(xiv) If Ga ∧ Bb, then a ≻ b.
(xv) If Ga ∧ Nb, then a ≻ b.

(xvi) If Ga ∧ INDb, then a ≻ b ∨ a || b.
(xvii) If Ba ∧ Nb, then b ≻ a.

(xviii) If Ba ∧ INDb, then b ≻ a ∨ a || b.
(xix) If Na ∧ Nb, then a ∼ b.
(xx) If Na ∧ INDb, then a || b.

The proofs of these propositions are simple and will not be stated here.
Apart from being more generally applicable than earlier suggestions, D6 to D9

have the virtue of not prejudging questions in substantial axiology. Importantly,
they permit organic unities of various sorts. For example, it is consistent with these
definitions that a concatenation of intrinsically good items is intrinsically bad, or
that a concatenation of intrinsically bad items is intrinsically good.

28.3 Comparability and Parity

It has usually been taken for granted, in line with our definition of incomparability
in Sect. 28.2, that two value bearers, a and b, are comparable with respect to
value iff a ≻ b, or b ≻ a, or a ∼ b. If so, universal comparability just
means that � is complete. In recent years, however, this view has been questioned.
Ruth Chang has argued that there is a positive value relation, “on a par with”,
that is incompatible with the familiar relations. If two items are on a par, they are
comparable with respect to value, although neither item is better than the other, and
they are not equally good. As possible examples of parity Chang mentions the value
relationships between two artists, such as Mozart and Michelangelo, or between two
careers, such as one in accounting and one in skydiving, or between two Sunday
enjoyments, such as an afternoon at the museum and one hiking in the woods [15].

Chang’s characterization of the parity relation is sketchy and not very clear.
She does not, for example, discuss the logical properties of the relation. Symmetry
should surely hold. If a is on a par with b, then b is on a par with a. Further, since
parity is assumed to be incompatible with value equality, and since equality is a
reflexive relation, parity must be irreflexive. A symmetric and irreflexive relation
cannot be transitive. Since intransitivity is out of the question, parity, at least
as conceived by Chang, thus has to be nontransitive; i.e., neither transitive nor
intransitive. (Chang has confirmed, in personal communication, that she understands
the relation as symmetric, irreflexive, and nontransitive.)

Given that parity, as understood by Chang, has these logical properties, it can be
defined in terms of the standard value relations. We retain our assumption that �
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is a quasi-order on the relevant set X of value bearers, and introduce the following
definitions:

D10. An item a ∈ X is an “upper semibound” of a set S ⊆ X iff there is no b ∈ S,
such that b ≻ a.

D11. An item a ∈ X is a “minimal upper semibound” of a set S ⊆ X iff there is no
upper semibound b of S, such that a ≻ b.

D12. An item a ∈ X is a “lower semibound” of a set S ⊆ X iff there is no b ∈ S, such
that a ≻ b.

D13. An item a ∈ X is a “maximal lower semibound” of a set S ⊆ X iff there is no
lower semibound b of S, such that b ≻ a.

Next, we define a relation �, which we may call “almost better than”:

D14. a � b iff a is either (i) a minimal upper semibound of the set of c ∈ X, such
that ¬(c ≻ b), or (ii) a maximal lower semibound of the set of d ∈ X, such that
¬(b ≻ d).

Let us say that a is “almost worse than” b iff b � a. With the help of �, we define
“on a par with”, denoted by ≍ :

D15. a ≍ b iff (i) ¬(a � b) ∧ ¬(b � a), and (ii) (∃c) (c ≻ a ∧ c � b, or c ≻ b ∧ c

� a, or a ≻ c ∧ b � c, or b ≻ c ∧ a � c).

Less formally put, two items are on a par just in case neither is at least as good as
the other, but there is a third item that is either better than one of them and almost
better than the other, or worse than one of them and almost worse than the other.

Given the following four assumptions, of which (9) is the axiologically most
significant one, it can be shown that D15 yields a necessary condition for parity:

(7) If a and b are on a par, then ¬(a � b) ∧ ¬(b � a).
(8) If (∀c) (c ≻ a iff c ≻ b, and a ≻ c iff b ≻ c), then a and b are not on a par.
(9) If a and b are on a par, there is an item that is either (i) better than any item

that is better than exactly one of a and b (call such an item “superior” to a and
b), or (ii) worse than any item that is worse than exactly one of a and b (call
such an item “inferior” to a and b).

(10) Every nonempty set S ⊆ X with an upper (lower) semibound has a minimal
upper (maximal lower) semibound.

Assumptions (7) to (10) imply that if a and b are on a par, then a ≍ b. Suppose
that two items a and b are on a par. Hence, by (7), they are not standardly related.
By (9), there is a superior or an inferior item, relative to a and b. Suppose that there
is a superior item. By (8), there is an item that is better, or an item that is worse,
than exactly one of a and b. Assume, first, that the former possibility obtains; e.g.,
that there is an item that is better than a, but not better than b. Let S = {c: c ≻ a ∧
¬(c≻ b)}. Since there is a superior item, S has an upper semibound. Hence, by (10),
S has a minimal upper semibound, e. Let S* = {d: ¬(d ≻ b)}. We shall show, by
reductio, that e is a minimal upper semibound of S*, implying that e � b and a ≍ b.
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If e is not an upper semibound of S*, there is an f ∈ S*, such that f ≻ e. Since
e ≻ a, transitivity yields that f ≻ a. But then f ∈ S, contradicting the assumption
that e is an upper semibound of S. Hence, e is an upper semibound of S*. If e is not
a minimal upper semibound of S*, there is an upper semibound g of S*, such that
e ≻ g. But, since S ⊆ S*, if g is an upper semibound of S*, it is an upper semibound
of S. This contradicts the assumption that e is a minimal upper semibound of S.
Hence, e is a minimal upper semibound of S*. By D14, therefore, e � b. Since
e ≻ a, it follows that a ≍ b.

Now, suppose instead that there is no item that is better than exactly one of a

and b. By (8), there is then an item that is worse than exactly one of the two items.
Assume, thus, that a≻ c ∧ ¬(b ≻ c). Since there is a superior item, there is an item
better than b. Further, since by assumption, any item that is better than b is better
than a, and since a ≻ c, it holds, for all d, that d ≻ b implies d ≻ c. Hence, b is an
upper semibound of the set S = {d: ¬(d ≻ c)}. Moreover, since b ∈ S, b is a minimal

upper semibound of S. It follows that b � c. Since a ≻ c, we conclude that a ≍ b.
We have thereby shown that if a and b are on a par, assumptions (7), (8) and (10)

imply that a ≍ b, given the existence of an item superior to a and b. A similar
argument shows that a ≍ b follows from (7), (8) and (10), if there is an inferior
item. Hence, (7) to (10) imply that if a and b are on a par, then a ≍ b. That is, D15
states a necessary condition for parity.

Does D15 also state a sufficient condition? In other words, is it always the case
that if a ≍ b, then a and b are on a par? For this to hold, the following two claims
must be true:

(11) If a ≍ b, then a and b are comparable.
(12) If ¬(a � b) ∧ ¬(b � a), and a and b are comparable, then they are on a par.

Chang argues explicitly for (12), and (11) appears plausible given other assumptions
she makes. Hence, D15 seems to be a satisfactory definition of Chang’s notion of
parity. [Carlson [9] contains a discussion of the plausibility of assumptions (7), (8),
(9), (11) and (12), as well as of a different version of (10).]
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Chapter 29

Preference and Choice

Sven Ove Hansson

Abstract Preferences and choices have central roles in moral philosophy, eco-
nomics, and the decision sciences in general. In a formal language we can express
and explore the properties of preferences, choices, and their interrelations in a
precise way, and uncover connections that are inaccessible without formal tools.
In this chapter, the plausibility of different such properties is discussed, and it is
shown how close attention to the logical details can help dissolve some apparent
paradoxes in informal and semi-formal treatments.

29.1 Philosophical Problems of Preference

Comparative terms such as “better” and “equally good” have a prominent role both
in everyday discussions and in specialized treatments of value in philosophy and
economics. In spite of being understood by all of us, the meaning of these terms is
in much need of clarification, as can be seen from the following three examples:

The Paradox of the Outvoted Democrat, Wollheim’s Paradox (Wollheim [29])
Susan has worked hard in a campaign to save the regiment in her hometown
from a close-down. When Parliament finally decides to close it down, she is very
disappointed since she would very much prefer the regiment to be kept rather than
being closed down. But she is also a strong supporter of democratic decision-
making, and she would certainly not support the half-baked plans of some young
officers to defy the decision and carry on as usual. Hence, she prefers that the

S. O. Hansson (�)
Division of Philosophy, Royal Institute of Technology (KTH), Stockholm, Sweden
e-mail: soh@kth.se

© Springer International Publishing AG, part of Springer Nature 2018
S. O. Hansson, V. F. Hendricks (eds.), Introduction to Formal Philosophy, Springer
Undergraduate Texts in Philosophy, https://doi.org/10.1007/978-3-319-77434-3_29

535

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77434-3_29&domain=pdf
mailto:soh@kth.se
https://doi.org/10.1007/978-3-319-77434-3_29


536 S. O. Hansson

regiment be closed down rather than being kept. How can she at the same time
prefer the closing down of the regiment to its continued existence and the other way
around?

Preference Holism On the face of it, what we prefer and disprefer are small
components of the world. I may prefer a cup of tea to a cup of coffee, or listening
to Beethoven’s second rather than his first symphony. But preferences referring
to such small items presuppose that these items can be exchanged in isolation
from the rest of the world, which may not always be the case. In a sense, such
preferences are always conditional on what the rest of the world is like. I would
not prefer having tea to having coffee if I had a medical condition that made
tea poisonous to me. If, for some unknown reason, there will be more human
suffering in the world if I listen to the second symphony rather than the first, then
presumably I will prefer listening to the first. The only preferences that can hold
unconditionally would be preferences that refer to the complete state of the world.
But then, what can we mean by such holistic preferences and what is the relation
between them and the more ordinary types of preferences that we express in our
common lives?

Preferences and Choices

– Congratulations! You have won the lottery. You can now choose between a trip
to London and one to Paris. Which do you choose?

– I choose to go to Paris.
– Why do you prefer a trip to Paris rather than one to London?’
– I don’t.
– I’m sorry, I don’t understand. I thought you said you have chosen Paris.
– Yes I did. I choose Paris but I prefer London.
– What do you mean? How can you choose one and prefer the other? Are you sure

that Paris is your choice?
– Of course. What’s the problem?

We expect preferences and choices to cohere. But since preferences and choices are
quite different entities, it is not fully clear what it means for them to cohere. And
if they do, what are the effects of their mutual coherence on the structure of our
preferences, and on the structure of our choices?

With preference logic we can solve these and other problems of preference and
choice. As a bonus, preference logic opens up new philosophical issues and insights
that would not otherwise have been available to us.

29.2 The Basic Concepts of Preference Logic

Preference logic makes use of three comparative value concepts, namely “better”
(strict preference), “equal in value to” (indifference), and “at least as good as” (weak
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preference). They are usually denoted by the symbols >, ∼, respectively ≥ (or by
P , I , respectively R).

This formal language is idealized in several ways. In ordinary language we make
a distinction between the subjective notion of preference and the presumably more
objective notion of betterness. If you say that Falstaff is better than Aida, then you
indicate a more objective or at least more generally applicable standpoint than if
you say that you prefer Falstaff to Aida. In preference logic, no distinction is made
between these two notions since they are assumed to have the same formal structure.

Furthermore, A > B is taken to represent “B is worse than A” as well as “A is
better than B” [3]. This is not in exact accordance with ordinary English. I consider
the Magic Flute to be a better opera than Idomeneo, but it would be misleading
to say that I consider Idomeneo to be worse than the Magic Flute. We tend to use
“better” when focusing on the goodness of the higher-ranked of the two alternatives,
and “worse” when emphasizing the badness of the lower-ranked one [7, p. 13]. This
distinction is not made in preference logic.

Preference logic is devoted to the preferences of rational individuals. Therefore,
if a proposed principle for preference logic does not correspond to how we actually
think and react, then this may either be because the principle is wrong or because
we are not fully rational in some of the cases it covers.

29.3 The Set of Alternatives

The objects of preference are represented by the relata (alternatives) of the
preference relation, i.e. A and B in A > B. They can be taken to be primitive
objects with no further structure. However, in economics they are usually vectors
that represent bundles of goods. In philosophical logic, they are usually sentences
(or propositions) representing states of affairs. Sentences appear to be the best
general-purpose representation that we have for the objects of our preferences. If
Xiuxiu prefers fish to meat, then that can be expressed as a preference for (the
state of affairs expressed in) “Xiuxiu eats fish” over (that expressed in) “Xiuxiu
eats meat”. Sentences can also be combined to form composite relata. Hence, a
preference for drinking white wine (w) rather than red whine (r) when eating fish
(f ) can be expressed with conjunctive relata: (w ∧ f ) > (r ∧ f ).

In order to specify a system of preference logic it is necessary to state what
its relata are, in other words to identify its alternative set. Many problems in
informal discussions on preferences can only be clarified if a precisely defined set
of alternatives is introduced. (See Sect. 29.7.)
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29.4 Constitutive Logical Properties

The following properties of the three comparative relations are taken to be part of
the very meaning of preference and indifference:

(1) A > B → ¬(B > A) (asymmetry of strict preference)
(2) A ∼ B → B ∼ A (symmetry of indifference)
(3) A ∼ A (reflexivity of indifference)
(4) A > B → ¬(A ∼ B) (incompatibility of preference and indifference)
(5) A ≥ A (reflexivity of weak preference)
(6) (A ≥ B) ↔ (A > B) ∨ (A ∼ B)

(7) (A > B) ↔ (A ≥ B) ∧ ¬(B ≥ A)

(8) (A ∼ B) ↔ (A ≥ B) ∧ (B ≥ A)

Using these properties, we can simplify the formal structure in either of two ways.
One option is to use > and ∼ as primitive notions, i.e. notions not defined in terms
of any other notions. We can then define ≥ according to (6). The other option is to
use ≥ as a primitive notion and define > and ∼ according to (7) and (8). Formally,
this works out equally well in both directions. If we use > and ∼ as primitives,
assume that they satisfy (1)–(4) and define ≥ according to (6), then the remaining
properties (5), (7) and (8) all hold. Conversely, if we use ≥ as the sole primitive,
assume that it satisfies (5) and define > and ∼ according to (7) and (8), then the
remaining properties (1)–(4) and (6) can easily be shown to hold [23].

The choice between these two ways to simplify the logic is fairly inconsequential.
Using≥ as the sole connective is preferable from the viewpoint of formal simplicity,
but the use of > and ∼ seems more conducive to conceptual clarity.

When > and ∼ are defined from ≥ via (7) and (8) they are called the strict part,
respectively the symmetric part, of ≥.

29.5 Completeness

In most applications of preference logic, it is taken for granted that the following
property is satisfied:

(A ≥ B) ∨ (B ≥ A) (completeness or connectedness)

Given (2) and (6) it is equivalent with:

(A > B) ∨ (A ∼ B) ∨ (B > A)

The assumption of completeness is often convenient since it provides us with a
formal structure that is easier to work with. However, as shown in Box 29.1, in
many situations it seems perfectly rational to have incomplete preferences.
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Box 29.1 Incomplete preferences

1. Lack of information

Filomena does not know anything about Falstaff or Aida. Therefore she does
not consider one of them to be better than the other and neither does she
consider them to be of equal value.

2. Insufficiently specified alternatives

When asked which he prefers, £500 or that his daughter gets a better grade
in math, Ali has no answer to give. The reason is that the comparison is
insufficiently specified. Does he have an offer to bribe the teacher? Or is he
offered an extra course for his daughter that he only has to pay if she gets a
better grade?

3. Costliness of acquiring preferences

There are about 90 brands of cheese in the local grocery store. In order to
make her preference relation complete over all of these brands, Alice would
have to buy samples of all of them and engage in extensive comparative
testing. Since she is not very fond of cheese, making her preferences complete
would not be worth the effort or the costs.

4. Morally questionable preferences

José has a nightmare in which a terrorist forces him to choose which of his
three children will be killed. If he makes no choice, then all three of them will
be killed. When he wakes up, José realizes that in such a situation, he would
have to make a choice. However, he feels that he would be a worse person if
he knew beforehand what his preferences would then be.

29.6 Transitivity

By far the most discussed logical property of preferences is the following:

(A ≥ B) ∧ (B ≥ C)→ (A ≥ C) (transitivity of weak preference)

It logically implies a whole herd of similar but logically weaker properties such as
the following [23]:

(A ∼ B) ∧ (B ∼ C) → (A ∼ C) (transitivity of indifference)
(A > B) ∧ (B > C) → (A > C) (transitivity of strict preference)
(A ∼ B) ∧ (B > C) → (A > C) (IP-transitivity)
(A > B) ∧ (B ∼ C) → (A > C) (PI-transitivity)
There is no series A1, . . . , An of alternatives such that A1 > . . . > An > A1
(acyclicity).

Transitivity is often taken to be an obvious requirement of rationality. If I consider
A to be at least as good as B, and B at least as good as C, could there be any
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reason for me not to consider A to be at least as good as C? Well in fact there could.
Box 29.2 exhibits the major types of examples that have been used as arguments
against transitivity.1

Box 29.2 Intransitive preferences

1. Indistinguishable differences add up and become distinguishable

Aaron cannot taste the difference between wines A and B or between wines
B and C, but he is able to taste the difference between A and C, and he likes
A better [5, p. 34].

2. Negligible differences add up and become relevant

A self-torturer has a pain-inducing device implanted in her body. The device
has 1001 settings, from 0 (off) to 1000. Each increase leads to a noticeable
but negligible increase in pain. Each time that she advances the dial by one
setting she receives £10,000, but there is no way for her to retreat. In the end
the pain is so unendurable that she would gladly relinquish her fortune and
return to 0 [17].

3. A trifle does not affect comparisons between disparate objects

A boy is indifferent between receiving a bicycle or a pony, and he is also
indifferent between receiving a bicycle with a bell and a pony. However, he
prefers receiving a bicycle with a bell to receiving just a bicycle [13].

4. Diverging preferences over several dimensions are reduced to one dimen-

sion

In an experiment performed in the 1950s, 62 college students were asked
several questions about which of two potential marriage partners they pre-
ferred. The questions were so arranged that all three pairwise combinations
of the following three persons were covered: A who was described as very
intelligent, plain looking, and well off, B who was portrayed as intelligent,
very good looking, and poor, and C who was reported to be fairly intelligent,
good looking, and rich. 17 of the students exhibited the circular preference
pattern A > B > C > A. This can be explained by these students always
choosing the partner who was superior in two out of the three criteria [14].
This appears to be a mechanism at play in many situations where preferences
over several dimensions have to be reduced to a single dimension [15].

1On preference transitivity, see also Chap. 31.
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Sometimes preferences can be constructed from numerical values. Let u be a
function that assigns a real number u(A) to each element A of the alternative set.
Then u is a numerical representation of ≥ if and only if it holds for all A and B

that:

A ≥ B if and only if u(A) ≥ u(B)

It has been shown that a preference relation has a numerical representation if
and only if it is both complete and transitive. (This only holds under some rather
technical conditions, but these conditions are satisfied whenever the alternative set
is either finite or countably infinite. [6, pp. 27–29], [20, pp. 109–110])

29.7 The Outvoted Democrat

We are now equipped to deal with the paradox of the outvoted democrat that was
mentioned above. Let r denote that the regiment in Susan’s hometown stays in place
and¬r that it does not. Susan wants to keep the regiment, so she prefers r to¬r . But
a decision to the contrary has been made, and since she wants democratic decisions
to be implemented she also prefers ¬r to r .

In order to make sense of this we must observe that r and ¬r are insufficient
to describe the alternatives. Susan’s preferences also refer to the decision that has
been made. Let Dr denote that a democratic decision has been made in favour of r ,
and similarly D¬r that a democratic decision has been made in the other direction.
Then instead of merely r and ¬r we have to consider the four alternatives Dr ∧ r ,
Dr ∧ ¬r , D¬r ∧ r , and D¬r ∧ ¬r . We can expect her preferences to be as in
Fig. 29.1.

Our next task is to derive preferences for r and ¬r from these preferences
over composite states of affairs. It is reasonable to assume that these should be
preferences ceteris paribus or all things being equal.

What does it mean to prefer r to ¬r “everything else being equal”? Since D¬r

holds in the actual world, one interpretation is “when D¬r is not changed”. Susan
prefers D¬r ∧ ¬r to D¬r ∧ r , i.e. she prefers ¬r to r when D¬r is kept constant.
This accounts for her preference for ¬r over r .

But there is also another interpretation. Alternatively, the background factor to be
kept constant is whether or not the democratic decision is respected. Let us introduce
the predicate R such that Rr means that the democratic decision with respect to r

or ¬r is respected. We can now rewrite the four alternatives. Dr ∧ r is equivalent
with Rr ∧ r , D¬r ∧ r with ¬Rr ∧ r , etc. This gives rise to the reformulation of the
preference ordering that is shown in Fig. 29.2.
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Dr ∧ r

∨

D¬r ∧ ¬r

∨

D¬r ∧ r

∨

Dr ∧ ¬r

Fig. 29.1 The outvoted democrat’s prefer-
ences, as expressed with the predicate D for “A
democratic decision has been made to the effect
that. . . ”. ∨ denotes transitive strict preference

rR ∧ r

∨

rR ∧ ¬r

∨

¬Rr ∧ r

∨

¬Rr ∧ ¬r

Fig. 29.2 The same preferences, expressed
with the predicate R for “The democratic
decision concerning . . . is respected”

Since Susan prefers Rr∧r to Rr∧¬r , and she also prefers¬Rr∧r to¬Rr∧¬r ,
there can be no doubt that with this construction, she prefers r to ¬r . In this way,
the ambiguity of the phrase “everything else being equal” makes it possible for the
outvoted democrat to strictly prefer, at the same time, r to ¬r and ¬r to r , without
being inconsistent [8].

29.8 Preference Holism

In the example of the outvoted democrat, we had preferences over complete
alternatives (such as Dr ∧ ¬r) but also preferences over smaller units (such as r).
More generally speaking, what is the relation between preferences on these two
levels? In most philosophical discussions, the complete alternatives are much larger
entities than in the voting example. Usually, they are taken to be possible worlds,
i.e. sets of sentences that represent everything that can be said about the state of the
world [18].
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The most common approach is to assume that there is an underlying,
holistic preference relation over the complete alternatives (possible worlds)
from which preferences over smaller things are derivable as ceteris paribus

preferences. This should of course not be seen as a faithful representation
of actual deliberative or evaluative processes. Instead, the holistic preference
relation should preferably be conceived as a reconstruction used to describe a
coherence requirement on preferences. With this caveat, how can preferences over
sentences be reconstructed as derivable from underlying preferences over possible
worlds?

Georg Henrik von Wright, one of the pioneers of preference logic, attempted
to explain the notion of ceteris paribus by means of counting differences in
terms of logically independent atomic states of the world [28]. He assumed that
there are n logically independent states of affairs p1 . . . pn. It then holds for each
world w and each atom pk that w contains either pk or ¬pk . The similarity
between worlds is measured by counting the number of atoms about which
they agree.

Unfortunately, this simple construction does not work. Its major weakness is that
the choice of atomic states is logically arbitrary. Consider the following two ten-
atom worlds:

w1 = Cn({p1, p2, p3, p4, p5, p6, p7, p8, p9, p10})

w2 = Cn({¬p1, p2, p3, p4, p5, p6, p7, p8, p9, p10})

where Cn is the consequence operator that takes us from any set of sentences to
the set of all its logical consequences. w1 and w2 appear to be very similar, and it
seems as if a comparison between them can be used for a ceteris paribus comparison
between p1 and ¬p1. But now consider the sentences r2, . . . r10, so defined that for
each of them, rk ↔ (p1 ↔ pk). We can then rewrite w1 and w2 in the following
alternative way:

w1 = Cn({p1, r2, r3, r4, r5, r6, r7, r8, r9, r10})

w2 = Cn({¬p1,¬r2,¬r3,¬r4,¬r5,¬r6,¬r7,¬r8,¬r9,¬r10})

Written in this way, w1 and w2 seem to be quite dissimilar. Since there are no
objectively given logical atoms, logic cannot help us to choose between these
two ways to compare the two sets. A measure of similarity that can be used to
(re)construct ceteris paribus preferences will have to make use of more information
than what is inherent in the logic.
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29.9 Choice Functions

To investigate the relationship between preference and choice we need a formal
representation also of the latter concept. The standard representation is a choice

function. A choice function is defined over a set A of alternatives, and for each
subset of that set it chooses, intuitively speaking, the most choiceworthy alternatives.
Formally, C is a choice function for A if and only if it is a function such
that for each subset B of A, C(B) is a subset of B that is non-empty if B is
non-empty.

C(B) can have more than one element. Since the alternatives are taken to be
mutually exclusive, this does not mean that the agent chooses more than one
alternative, only that there is more than one alternative that she is willing to choose.
Which of these alternatives she ends up with is a matter of picking rather than
choosing [26]. Hence, if a, b, and c are three marriage partners, then C({a, b, c}) =
{a, b} does not indicate a bigamous proclivity but equal propensities to choose a

or b.2

Among the rationality properties that have been proposed for choice functions,
the following two are arguably the most important ones [22]:

Chernoff (property α) [4]
If B1 ⊆ B2 then B1 ∩ C(B2) ⊆ C(B1).

Property β

If B1 ⊆ B2 and X, Y ∈ C(B1), then: X ∈ C(B2) if and only if Y ∈ C(B2)

Suppose that we are choosing the best novelists from different categories. According
to Chernoff, if one of those chosen in the category of European novelists is French,
then (s)he is also one of those chosen in the category of French novelists. According
to property β, if one of those chosen in the category of European novelists is French,
then all those chosen in the category of French novelists must also be among those
chosen in the category of European novelists.

Although these choice principles hold in many cases, it is not difficult to find
examples in which they do not seem to hold, see Box 29.3.

2Obviously, choice functions can be defined so that picking is not needed: A monoselective choice
function [11] is one that selects a single element out of any non-empty set to which it can be
applied.
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Box 29.3 Violations of the choice axioms

1. A choice can aim at another position than the top position

If the host offers Hao to take a fruit from a bowl with a big apple, a small
apple, and an orange, then he will choose the big apple. However, if there is
only a small and a big apple then he will (out of politeness) choose the smaller
one [1] (This violates Chernoff.).

2. The alternative set carries information about the alternatives

An acquaintance whom Elena meets in the street offers her to come home to
him for tea. In the choice between having tea at his house and going home she
intends to opt for the former. But then he adds an additional option, namely
to have some cocaine at his house. Among the three alternatives that she now
has, she chooses to go home [25] (This violates Chernoff.).

In exactly the same situations, her friend Graciela would be indecisive in
the first case (i.e. both having tea and going home are in her choice set),
whereas she would choose to go home in the second case. (This violates
property β.)

29.10 Preference-Based Choice

Preferences often have the function of guiding our choices. Sometimes it is even
maintained that choice is nothing else than revealed preference [19, 21]. In order to
clarify what it means for choices to be determined by preferences we can consider
a choice function C that is derived from a preference relation ≥ as follows:

C(B) = {X ∈ B | (∀Y ∈ B)(X ≥ Y )}
A choice function C is relational if and only if it is based on some preference
relation ≥ in this way. The formal connections are quite neat. It is possible to
base a choice function on a given preference relation ≥ if and only if ≥ satisfies
completeness and acyclicity. All such choice functions (i.e. all relational choice
functions) satisfy Chernoff. A relational choice function satisfies property β if and
only if the underlying preference relation is transitive [22].

29.11 Choice-Based Preference

Conversely, we can take choice as primary and define preferences in terms of a
choice function. The obvious way to do this is to identify preference with “choice
from two-member sets” [2], as follows:

p ≥ q if and only if p ∈ C({p, q})
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If this construction is applied to a choice function that has in its turn been derived
from a preference relation in the way shown above, then the original preference
relation will be recovered [23].

The definition of preference as (hypothetical) choice is popular among
economists. This approach makes it possible to take an agnostic stance on mental
processes, and treat preference relations merely as technical means to express
well-organized propensities to choose.

From a philosophical point of view this interpretation of preferences is far from
unproblematic. We often entertain preferences in matters in which we have no
choice. Consider Vladimir who has bought a lottery ticket. He would prefer winning
a luxury cruise to the Bahamas rather than winning a gift voucher worth £20,000 in
his local grocery store. Since one cannot, by definition, choose to win, preferences
such as these cannot be choice-guiding. Indeed, if he were given a choice between
the cruise and the voucher, he would choose the voucher. The act of choosing
something may have negative characteristics (such as shame at choosing something
useless) that the event of winning it does not have [9, p. 22]. Furthermore, the
first example in Box 29.3 shows that even in matters where we have a choice, the
definition of preference as binary choice gives rise to difficulties in “interpreting
preference thus defined as preference in the usual sense with the property that if a
person prefers x to y then he must regard himself to be better off with x than with
y” [24, p. 15].

29.12 A Central Dilemma in Preference Logic

There are two properties that we have a strong tendency to ascribe to preferences,
and yet turn out to be difficult to reconcile [9, pp. 20–23]. One of these is
pairwiseness: Whether a preference statement such as A ≥ B, A > B, or A ∼ B

holds should depend exclusively on the properties of A and B, and not be influenced
by other elements of the set of alternatives. It should therefore make no difference
if we compare A and B when deliberating on the elements of the set {A,B} or
when deliberating on the elements of the set {A,B,C,D,E}. The other property
is choice-guidance, which means that the logical properties of preferences should
be compatible with their use as guides for choosing among the elements of the
alternative set.

In combination, these two principles imply the further principle of binary choice,
i.e. that comparisons of only two alternatives at a time are sufficient to determine a
choice among all the alternatives. The examples in Box 29.3 show that this principle
is not always plausible.

The tension between pairwiseness and choice-guidance is a central dilemma in
the theory of preference. It is also an example of a philosophical insight that could
only be gained with the help of formal representations of preferences.
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Chapter 30

Preference Change

Fenrong Liu

Abstract The notion of preference is important in philosophy, decision theory,
and many other disciplines. It is the interplay of information and preferences that
provides the driving force behind what we actually do. The chapter adds a new
focus and argues that preference is not static, instead, it changes dynamically when
triggered by various kinds of events. We show that how a wide variety of preference
changes can be modeled in logic, thereby providing the formal philosopher with a
natural extension of the scope of inquiry in the area of preference.

30.1 Introduction

The notion of preference is important in philosophy and many other disciplines. It is
the interplay of information and preferences that provides the driving force behind
what we actually do. Reasoning about preference to explain or predict behavior has
therefore been a long-standing interest of logicians, starting from [25, 75]. Initially
perhaps a marginal area, these are now a central part of studies of agency. More
generally, notions of preference, choice and utility have long been indispensable in
economics, decision theory, and game theory. And there are further philosophical
motivations, too. Due to its close relations with normative notions like “good” and
“bad”, preference is an important topic in deontic reasoning (see e.g., [26, 71]).

Against this background, the present chapter adds a new focus, though still
staying within the sphere of logic. The point is that preference is not static, given
once and for all. Instead, it changes dynamically when triggered by various kinds of
events, such as learning new facts or accepting new commands. What we really need
to understand then, is not just reasoning about given preferences, but also about the
various changes that these can undergo. Logical investigations of preference change
started in the 1990s, and by now there is a small, but growing body of literature:
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see [24, 27, 43, 70]. In this chapter, our focus will be on preference dynamics, and
how this can be captured by logical modeling. For reasons of unified exposition,
we will use the dynamic-epistemic paradigm of [44], but we do provide references
to other equally valid and attractive approaches. As usual, a formal logical analysis
helps us describe actual reasoning scenarios, but it can also clarify the philosophical
foundations of a field. Our aim is to show that logical models of preference change
can help with both.

30.2 A Budget of Preference Changes

Many authors have pointed out the importance and ubiquity of preference dynamics,
coming in several varieties. And if our preferences change, this also has implications
for related notions such as rationality viewed as choosing one’s ‘sufficiently good’
available actions. Changes in preference imply changes in rational actions. Or, in a
deontic setting, changes in the ‘betterness order’ of situations imposed by a moral
authority imply changes in our obligations: moral behavior is a dynamic process.

Intrinsic preference change While the general uses of preference are wide-ranging,
we follow the literature in citing small domestic examples. For a start, some
preference changes occur spontaneously, or at least, without a clear reason [27]:

Example 1 “I grow tired of my favorite brand of mustard A, and start to like brand
B better.”1

One might prefer a more lofty example here, such as suddenly repenting of
one’s criminal past and its evaluation of alternative situations. Preference changes
of this primitive kind are ubiquitous, and they also occur in economics and cognitive
science. But one can also think of deontic scenarios. Suppose that some moral
authority states a new norm, and I decide to obey it – perhaps just one command
“Pay your taxes”. This changes my evaluation ordering of the relevant situations:
earlier ties may now acquire a deontic preference order.2

Information driven preference change Other preference changes have more struc-
ture, with incoming information as a trigger. Van Benthem and Liu [69] give the
example of taking a trip, where preferences may change because of new information.
This example of [40] is in the same line:

Example 2 “Initially, I desire to eat sushi from this plate. Then I learn that this sushi
has been made with old fish. Now I desire not to eat this sushi.”

1One might argue that this preference change has a cause, if not a reason: ‘getting bored’ with
what we have. But we will not pursue this line.
2One might also say that this preference change is triggered by information that a moral authority
made the statement.
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This is close to von Wright’s example of preferring hock to claret, with a doctor
telling one that claret is better for one’s health.

Changes in belief and preference Clearly, then, receiving new information can lead
to new preferences. Often, there is an intermediary propositional attitude here: a
change in one’s beliefs, [30]:

Example 3 “The belief that fluoride prevents dental cavities can lead a person to
prefer fluoride toothpaste to others. If she comes to disbelieve this connection, she
may well abandon this preference.”

Belief changes are seldom spontaneous, they have triggers, [44]:

Example 4 Belief change through information change “Alice considers buying
a house, based on low cost (C) and a good neighborhood (N ), with the second
criterion more important than the first. There is a choice between two houses d1
and d2. First Alice prefers d2 over d1 because she believes that, though both houses
have equally good neighborhoods, d2 is cheaper. But then Alice reads in a reliable
newspaper that not N(d2), and accepting this information, she changes her beliefs –
while her preference switches to house d1.

Preference change involving time and world change But there are yet other triggers.
When the world changes, our preference may change along with it:

Example 5 [30] “Consider a person who prefers one apple today to two apples
tomorrow, yet prefers two apples in 51 days to one apple in 50 days.”

Here the passage of time is correlated with preference change.3 A more local
example of the same phenomenon appears in [40]:

Example 6 “It is a nice afternoon, and I would like to take a walk. Then it starts to
rain. I do not want to have a walk anymore.”

Here the change in preferences is triggered by a change in the world. These
scenarios can also involve reasons for one’s preference:

Example 7 [43] “Alice is going to buy a house. Her criteria are: low cost, high
quality, and good neighborhood, in that order. One day, Alice wins a lottery prize of
ten million dollars. Now she considers quality most important, then neighborhood,
then cost.”

This reason-based kind of preference change can be modeled in terms of
changing ‘priorities’ underpinning the preference – as we shall see later.

This survey is by no means complete, and the philosophical literature has many
further interesting scenarios of preference change, such as the “Sour Grapes” of
[33]. But our point will have been made: preference changes are natural. Moreover,
beyond the simple one-step examples that we have shown, preference changes can

3This raises delicate issues of consistency of agents’ preferences over time, that have been studied
in philosophy and economics, see [24].
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accumulate over time in the area of games, witness the discussion of rationalization
strategies in Chap. 12 of [44]. A more empirical example is behavior of players
in auctions, which often diverges from a priori equilibrium predictions since
preference changes in actual play change the structure of the game [47].

In what follows, we will show how preference change is accessible to techniques
from logical dynamics [66].Thus, reasoning about preference change can be added
to the existing circle of logics describing given preferences at some moment in time.
Next, we show how the varieties of preference change encountered in the above can
be defined and sorted out in this logical perspective, by bringing in further features.
First, we add reasons for preferences, in the form of a priority structure of relevant
criteria that can be modified dynamically. Next we discuss the entanglement of
preference with information, knowledge and belief, and analyze the resulting richer
dynamics of information and evaluation change.

In each case, we will emphasize main ideas, rather than technical theorems. Also,
we will take care to identify choice-points and open problems that become visible
in the lens of logical analysis.

30.3 Logical Dynamics of Preference Change

To make the above issues more precise, we will use the logician’s standard apparatus
of formal models and formal languages. With that in place, as we shall see, we can
then also define changes in preference, and investigate repertoires of what might be
considered natural preference changes.

Preference models Formal models embody a choice-point in conceptualizing a
given notion. In this chapter, we follow standard practice, and say that preferences
arise from a comparison between given alternatives, that one can think of as
‘worlds’ or ‘situations’. Thus, preference is typically associated with an ordering
of worlds, indicating that one alternative is ‘better’ than another. This is standard in
decision theory and game theory – where the ordering can of course depend on the
agent. Preference logics then study the abstract properties of different comparative
structures in suitable formal languages [28].

A natural starting point are modal preference models, being tuples M = (W,≤,

V ), where W is a set of possible worlds (‘situations’, ‘states’, ‘outcomes’), ≤ is
a reflexive and transitive relation,4 and V is a valuation assigning truth values to
proposition letters at worlds. We read the relation s ≤ t as ‘world t is at least as

4In this chapter, we use pre-orders since we want to allow for cases where different worlds are
incomparable. Total preference orders, the norm in areas like game theory, provide an interesting
specialization for our analysis.
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good as world s’. If s ≤ t but not t ≤ s, we call t strictly better than s, written
s < t . If s ≤ t and t ≤ s, then worlds s and t are indifferent.5

These models support modal languages that can analyze a good deal of the usual
reasoning about preference. We refer to the Chap. 29 by Sven Ove Hansson in this
Handbook for more on this.

Preference change as model change Modal preference models as such are not yet
dynamic. But now suppose an action or event takes place that affects the current
preference order. Say, a ‘public suggestion’ in favor of a proposition ϕ might cancel
any old preference for ¬ϕ-worlds over ϕ-worlds (cf. [69] on “open the door”). Here
is how this can be done:

The event changes the current model to one with a new preference order.

Here is how this works more precisely. Given any modal preference model
(M, s), with actual world s, the public suggestion action ♯ϕ changes the current
preference order ≤ as follows. The new preference relation becomes:

≤∗ = ≤ −{(s, t) | M, s |= ϕ andM, t |= ¬ϕ}.6

The philosophical reader may find this analysis a bit crude. A suggestion is a
speech act coming from one agent, the preference change is a subsequent voluntary
response by, presumably, another agent. Our analysis lumps these together – and
what we have really described is an act of taking a suggestion. More refined views
of speech acts are found in [58], while [77] gives a more structured analysis of
deontic actions. However, we can also simplify our reading of the event ♯ϕ. Perhaps,
it was just a spontaneous act, as in our first example of a pure preference change in
Sect. 30.2, with the agent suddenly acquiring an aversion to ¬ϕ-worlds.

Other forms of preference change Stronger preference changes occur as well.
Consider a ‘strong command’ telling us to make sure that ϕ is better regardless of
anything else. Incorporating this wish of some over-riding authority can be modeled
in the same style as before with a relation transformer ⇑ ϕ:

Given any modal preference model (M, s), the new preference relation ⇑ ϕ is
defined as: “make all ϕ-worlds become better than all ¬ϕ-worlds, whether or not
they were better before – but within these two zones, retain the old ordering.7

5These models are often called ‘betterness models’ since one may want to reserve the term
‘preference’ for an induced relation between propositions viewed as types of situations. We will
not discuss this propositional view of preference, though it is in harmony with our analysis.
6This very operation was proposed in the early source [70].
7An alternative notation for this and other preference transformations is in terms of ‘program
notation’ for the new relation created our of the old relation R. For radical upgrade, this would
be ⇑ ϕ(R) := (?ϕ;R; ?ϕ) ∪ (?¬ϕ;R; ?¬ϕ) ∪ (?¬ϕ;⊤; ?ϕ).
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The space of options Suggestions and radical commands are extremes on a
spectrum of preference changes. Many further options exist, often in analogy with
relational transformations from the theory of belief revision [23, 59, 64]. In fact,
our model transformation format allows for infinitely many varieties of preference
change, including many that make no intuitive sense. Getting a better grasp of
what are natural preference changes inside this class seems an open problem for
philosophical analysis.

What we have described here is a format for single acts or events of preference
change.8 This can be modified to deal with further intuitive aspects of such changes.
For instance, the force of changes may depend systematically on features ignored
here, such as relative authority of the issuers of commands, or tendencies toward
change of the agent whose preference is affected.

Dynamic logics of preference change We have now given a semantic update
mechanism for modeling changes in preference. But is there also a systematic logic
of such changes? We need a formalism that can do two things: (i) express the
relevant changes, and (ii) describe their effects in terms of what agents prefer after
the change has taken place. This can be achieved by a syntax in the style of dynamic-
epistemic logics.9 In addition to formulas, there are now action expressions ♯ϕ and
⇑ ϕ for any formula ϕ of the language, and also, there are dynamic modalities [A]ψ
for any action expression A. A typical example is the interpretation of the suggestion
modality:

[♯ϕ]ψ is true in a model M at world s iff, in the new model after ϕ has been
publicly suggested, ψ holds at s.

The resulting logic is completely axiomatizable over the static base logic of
preference [69]. In particular, one key principle is a ‘recursion axiom’ stating just
when a preference modality holds for the new ordering after a suggestion:

– 〈♯ϕ〉〈≤〉ψ ↔ (¬ϕ ∧ 〈≤〉〈♯ϕ〉ψ) ∨ (〈≤〉(ϕ ∧ 〈♯ϕ〉ψ)).

Details are not relevant here. But it is important to see what such axioms do.
They express the effect of a preference change on models in terms of what is true
in the language of preference, the preferred medium of analysis in the philosophical
literature. This dynamic recursion step may be compared with finding the key
difference equations that describe the progression of a dynamical system. Once this
recursive law is understood, it can also be used to analyze other changes, such as
those in derived preferences between propositions (cf. [44]). There is no need for
additional principles at this higher propositional level: the reasoning will follow
automatically.

8Hansson [29] looked at the changes caused by multiple or several sentences and showed its
relationship with single step change.
9We will not aim at full generality in our formulations. Readers can find technical details in [4, 66,
73].
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30.4 Other Logical Approaches to Preference Change

The dynamic-epistemic approach is not the only method for dealing with preference
change. Here is a quick review of other important approaches.

AGM-style preference revision An early in-depth analysis of preference change is
given in [27] using AGM-style belief revision theory. Key operations are preference

revision, preference contraction, but also ‘preference addition’ and ‘preference sub-
traction’, where preferences evolve as alternatives are added to, or removed from a
current set of worlds. Postulates were proposed for each of these dynamic operators,
including connections between revision and contraction. This has inspired many
follow-up studies in philosophy and decision theory, cf. [40, 48, 61], and the recent
collection [24].

Dynamic semantics The dynamic update semantics for conditionals proposed by
[74] takes the meaning of default conditionals to be systematic changes in a
language user’s current plausibility ordering among worlds, without eliminating any
alternatives, but changing their relative positions. Following this line, [72] study
relation changes in a deontic setting after new information comes in – arguing that
one knows the meaning of a normative sentence if ones knows the change it brings
about in the deontic betterness relation of its recipient. The authors also propose a
deontic logic for prescriptive obligations in update semantics.10

Agency in computer science and AI Another relevant strand comes from studies
of agency. Boutilier and Goldszmidt [11] model conditionals in terms of changes
of a current plausibility order that will make the conditional true. More generally,
dynamic changes of desires, intentions, and their relations with preference have been
studied in the context of planning and agent theory, cf. [14, 36].

These different strands are not in conflict, and they are often related from
a technical viewpoint. For instance, the AGM-style approach to change and the
dynamic-epistemic one touch at many points, [6, 59, 64] provide various compar-
isons and merges. Likewise, the first full-blown dynamic-epistemic treatment of
belief revision in [2, 3] was inspired by Spohn’s ‘ranking models’. And there are
many more instances of parallel developments and mutual influences.

We have shown how the dynamics of preference change can be modeled in a
systematic logical fashion, while also pointing out that there are several legitimate
and interconnected ways of doing this. We now turn to two further important aspects
of preference, which pose a challenge to our analysis of change so far: reasons for
preferences, and the entanglement of preference with information-driven epistemic
attitudes like knowledge and belief.

10An early source for the idea that conditionals effect model changes is [60], which explains
conditionals as changing current rankings among worlds.
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30.5 Reasons and Priorities

Reasons for preferences So far, we have analyzed preferences without looking at
further ‘reasons’. But as [75] pointed out, in contrast to ‘intrinsic preferences’ which
are just there, ‘extrinsic’ preferences often do have underlying considerations. Here
is a simple decision scenario:

Example 8 [44] “Alice is going to buy a house. For her, there are several things
to consider: the cost, the quality and the neighborhood, strictly in that order. All
these criteria are clear-cut for her. For instance, the cost is good if it is inside her
budget, otherwise it is bad. Her decision is then determined by the fact whether the
alternatives have the desirable properties, and also by the given order of importance
for the properties.”

Underlying structures of criteria occur in many places in philosophy. In epis-
temology, reasons for beliefs or even knowledge are an important feature [55],
and belief revision theory employs ‘belief bases’ for similar purposes (cf. [56],
which also elaborates analogies with the economic and decision-theoretic literature).
Likewise, deontic ‘ideality orderings’ of worlds often come with an underpinning in
terms of structured moral criteria [68]: the reasons for our current moral evaluation
of worlds. Gabbay [19], Grossi [22] also show how currently studied argumentation
networks are structures of interdependent reasons with varying priorities.

Priority graphs Criteria affecting preference can be diverse, ranging from general
principles to individual facts. Moreover, their ranking can have many patterns, from
total orders to pre-orders allowing for incomparable or conflicting considerations.
The following formal model allows for all of these.

We will extend the sparse modal preference modelsM = (W,≤, V ) of Sect. 30.3
with their primitive preference order ≤ among worlds to richer structures that bring
out reasons for this ordering. Our first important notion comes from the pioneering
paper [1]:

A priority graph G = 〈P,<〉 is a strictly partially ordered set of nodes,
labeled by propositions in some relevant language L.

The graph order represents the priorities among the given propositions. What
their language will be depends on the application. Often, it is a propositional
language describing simple properties of worlds (or objects) – but one may also
have priorities among epistemic or other intensional propositions.

Preference among worlds is now induced by the priority structure11:

Let G = 〈P,<〉 be a priority graph, and M a propositional model in which
the language L defines properties of worlds in the domain W of M. The induced

preference relation ≤G is defined as follows:

y ≤G x := ∀P ∈ P((Py → Px) ∨ ∃P ′ < P(P ′x ∧ ¬P ′y)).

11We will state only one way of deriving preferences, taken from [1].
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Here is an informal explanation. In principle, the preference relation y ≤G x

wants object x to have every property in the graph G that object y has. But there
can be ‘compensation’. In case y has P while x does not, this is still admissible,
provided there is some property P ′ with higher priority in the graph where x does
better: x has P ′ while y lacks it. In case the graph G is a total order, this reduces to
the well-known lexicographical ordering of objects.

Priority graphs have turned out useful in many areas. Andréka et al. [1], Girard
[20] and Liu [44] give further uses and technical theory. Here, we just note that,
given a priority graph G, the induced preference model MG = (W , ≤G, V ) is a
natural representation of a reason-based extrinsic preference.

Matters of representation But now a question arises. Given that priority-based
preference is a much richer structure than mere betterness order among worlds, have
we perhaps lost generality? The answer is negative. De Jongh and Liu [15], Liu [44]
prove representation theorems showing that every connected preference order on
worlds can be represented as induced by a total priority graph, while every pre-order
can be induced by some strictly partially-ordered graph. Thus, the usual modal logic
of preference models still applies fully. Liu [45] points out that these representations
undercut von Wright’s distinction between intrinsic and extrinsic preferences, since
we can construct a priority structure behind any intrinsic preference order – though
its ‘reasons’ may be artificial. Indeed, the present perspective suggests richer two-

level models of worlds with a preference order plus a priority graph inducing this
order. This offers a much richer way of describing preference reasoning.12

Dynamics of priority and calculus of reasons Now let us return to the topic of
change. Change in preference is often induced by change in priority structure: new
criteria may come in, old ones lose relative force, or may even be deleted entirely.
Recall the earlier Example 7, it shows vividly how changes in a priority graph can
happen, due to events that have taken place. This priority dynamics can be modeled
in terms of graph change. Given a priority graph G, there are obvious options for
placing a new proposition A. One can make it the highest priority, or the lowest,
or one may rank it just side by side with G. The background is a ‘calculus of
priority graphs’ developed algebraically in [1], and in modal logic in [20]. Its main
operations are two forms of composition. Given any two priority graphs G, G′,

– the sequential composition G;G′ adds the graph G on top of G′ in the order: all
nodes in the first come before all those in the second,

– the parallel composition G ‖ G′ is the disjoint union of the graphs G and G′,
without any order links between them.

The main conceptual point here is this. Once we have priority graphs encoding
reasons for preference, these structured reasons themselves become an explicit
object of study. Thus, reasons are a natural complement to preference, their structure

12van Benthem and Grossi [67] suggest that classic scenarios from meta-ethics provide systematic
cues for extracting, not just deontic inferences as is usually done, but also normative priority
structure, as well as relevant changes in both.
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deserves separate attention, and their dynamics of change is well within the reach
of formal methods.

Connecting changes at two levels How are our two accounts of preference change,
one at the level of betterness order, and one at the level of priority structure, related?
For our basic examples, a perfect harmony reigns:

Consider a preference model M whose relation ≤ is induced by a priority
graph G. Taking a suggestion A in M gives a new model whose relation
is induced by the priority graph G ‖ A, where A is the one-point priority
graph with just the proposition A. Next, consider a priority graph G = (P,<)

inducing a preference relation ≤ on a model M. Prefixing a new proposition
A to G induces the new preference relation ⇑ A(≤).

But this harmony is not always present. Liu [45] finds that natural syntactic
operations on priority graphs may lack matching betterness transformers.13 Thus,
in the end, priority graphs offering reasons for preference are the richer perspective
from which to understand preference change.

Preference is at the heart of decision and rational choice theories. In recent
work at the interface of preference logic, philosophy, and social science, themes
such as reason-based preference have come to the fore, with further lines of their
own. Dietrich and List [16] point out that, though existing decision theory gives
a good account of how agents make choices given their preferences, issues of
where these essential preferences come from and how they can change are rarely
studied.14 The authors propose a model in which agents’ preferences are based on
‘motivationally salient properties’ of alternatives, consistent sets of which can be
compared using a ‘weighing relation’. Two intuitive axioms are identified in this
setting that precisely characterize the property-based preference relations. Starting
from similar motivations, [51] studies reason-based preference in more complex
doxastic settings, drawing on ideas from similarity-based semantics for conditional
logic. Essentially, preference results here from agents’ comparing two worlds, one
having some property and the other lacking it, close to their actual world, and com-
paring these based on relevant aspects of utility. The framework supports extensive
analysis in modal logic, including illuminating results on frame correspondence and
axiomatization. Osherson and Weinstein [52] gives an extension to preference in the
presence of quantifiers, while [53] makes a link between these preference models
and deontic logic.

30.6 Preference, Knowledge and Belief

Entanglement of information and evaluation We have now dealt with several aspects
of our various examples of preference change in Sect. 30.2. But one important issue

13An example is deleting redundant double occurrences of the same proposition.
14These are the two main topics of [44].
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remains: the intuitive entanglement of an evaluative notion like preference with
information-driven epistemic notions like knowledge and belief. This entanglement
may take various forms. For instance, I may prefer a certain object to another right
now, because I do not yet know about some decisive flaw. Or I may prefer taking an
umbrella despite the inconvenience of carrying it, if I believe that it is going to rain.
This mixture of preference with knowledge and belief seems essential to agency.
It also emerges in more conceptual questions such as this: is preference subject to
epistemic introspection? If I have a preference, do I know that I have it? If the answer
is positive, the notion of preference must have enough epistemic content to support
this inference. In what follows, we will not resolve these issues, but merely show
how the models of this chapter can be extended to study such forms of entanglement.

Preference and knowledge Models for preference in the presence of knowledge have
been proposed by Fillion [18], Pacuit et al. [54] and other authors. A simple version
just merges our basic preference models with standard epistemic ones (cf. [69]):

Any modal preference model M = (W,≤, V ) and epistemic model M =
(W , ∼, V ) with ∼ an epistemic accessibility relation over worlds, yield an
epistemic preference modelM = (W,∼,≤, V ).

These models interpret a combined formal language with preference modalities
and epistemic knowledge operators, both interpreted as usual. Now entangled
statements become expressible mixing knowledge and preference. The following
illustrations represent (a) epistemic introspection on ‘preference’, and (b) a possible
tension between preference and knowledge:

(a) 〈≤〉ϕ → K〈≤〉ϕ: Positive betterness introspection
(b) 〈≤〉ϕ ∧K¬ϕ: Regret about things that we know cannot be.15

Epistemic accessibility models are just one way of modeling knowledge, and
alternatives exist, cf. [17, 32, 34, 49]. Our claim is that entanglement with preference
makes sense throughout, while the methodology of preference change as model
change in this chapter works across a wide variety of such models. The same points
can be made about our next topic:

Preference and belief A similar approach works for belief. A convenient format uses
plausibility models, where worlds in epistemic equivalence classes are ordered by
some binary relation of greater plausibility (cf. [5]). This yields finer qualitative
distinctions inside epistemic ranges, where belief is truth in all most plausible
worlds only. One advantage of this setting is its easy treatment of conditional beliefs,
a basic notion not reducible to absolute belief. This time, the simplest merged
models are of the form M = (W,�,≤, V ), with W a set of worlds, � a doxastic
relation ‘at least as plausible as’, and ≤ our earlier relation of ‘at least as good as’,
with V again a valuation for proposition letters. Again, many entangled kinds of

15Such statements are crucial to analyzing off-equilibrium play in games.



560 F. Liu

statement can be expressed in the matching bi-modal language of preference and
belief, cf. [44].

A similar model with two relations was also proposed in [10], reading plausibility
as ‘being as normal as’. As for entangled notions, Boutilier defines conditional

ideal goal (IG) as saying that φ is an ideal goal with condition ψ if and only if
the best of the most normal ψ worlds satisfy φ. Still deeper forms of entanglement
of preference and belief and their formal properties are studied in [39], where
preference between propositions refers only to their most plausible worlds.

Changes in knowledge and belief Let us first state briefly how these models for
knowledge and belief support changes in both. We start with an action that changes
the domain of the model, modeling incoming new ‘hard information’, which has
been the inspiration for much of the dynamic-epistemic literature.

Public announcement logic (PAL) studies the logical rules of knowledge change
under public announcements. Given an epistemic model M = (W,∼, V ), public
announcements !ϕ of true propositions φ change the model into a submodel:

Consider any modelMwhere formula φ is true at world s. The updated model
(M|φ, s) (“M relativized to φ at s′′) is the submodel of M whose domain is
the set {t ∈ M | M, t |= φ}.

Complete logics for this kind of information change can be found in the
literature (cf. [44, 73] on adding preference.) Here is the typical recursion axiom
for knowledge after update:

〈!ϕ〉〈K〉ψ ↔ ϕ ∧ 〈K〉〈!ϕ〉ψ.

However, if we want to model the realistic phenomenon of ‘regret’ about worlds
that are no longer epistemic options, epistemic updates for !ϕ should not remove
the ¬ϕ-worlds, since we might still want to refer to them. One way of doing this is
by changing public announcement !ϕ to a milder relation-changing operation †ϕ of
‘link-cutting’. The new model M†ϕ is the original M with its worlds and valuation
unchanged, but with accessibility relations ∼ replaced by this subrelation:

keep only those ∼-links that do not cross between the ϕ- and ¬ϕ-zones ofM.

Again, recursion axioms and complete dynamic logics for this operation can be
found in a number of places in the literature. Here is the axiom for new knowledge
as an illustration:

〈†ϕ〉〈K〉ψ ↔ (ϕ ∧ 〈K〉(ϕ ∧ 〈†ϕ〉ψ)) ∨ (¬ϕ ∧ 〈K〉(¬ϕ ∧ 〈†ϕ〉ψ)).

Now let us turn from knowledge change to the dynamics of belief. As with
preference change, the relevant events change a current order, viz. the plausibility
relation. Van Benthem [64] studies two sorts of belief change, radical revision ⇑ ϕ

and conservative revision, and gives complete dynamic-epistemic axiomatizations.
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As before, the effect of these relation transformers on key modalities is stated in
recursion axioms describing new belief after the event. As an illustration, here is the
recursion axiom for new beliefs under radical upgrade from [64]:

[⇑ ϕ]Bψ ↔ (Eϕ ∧ B([⇑ ϕ]ψ |ϕ)) ∨ B[⇑ ϕ]ψ.16

Preference change and changes in knowledge and belief Now we are in a position to
deal with the mixture of informational and preference dynamics noted in Sect. 30.2.
If an entangled notion of preference has both betterness and epistemic modalities,
its truth value may be affected by both information and betterness changes. To
see how this works, we also need ‘mixed recursion axioms’, telling us how an
information change affects a betterness modality, or vice versa. These tend to be
simple commutations.17 However, we can also merge preference with beliefs in
more intimate ways, intersecting plausibility and betterness relations in the model.
Liu [44] has a systematic study of entanglement phenomena and their dynamic
logics.

With these things in place, the reader has all the equipment needed to analyze
all scenarios given in Sect. 30.2. Even so, the above analysis is just a ‘proof of
concept’ leaving many questions. We assumed that the basic relations for betterness,
epistemic accessibility, and plausibility are independent. Things change when we
impose philosophically motivated mutual constraints on these. One must then check
that proposed model transformations for preference change respect these constraints
– for which there is no general guarantee. Another conceptual issue behind the
scenes in Sect. 30.2, and in much of the literature, is this. To which extent are direct
changes in a given preference ordering of worlds encodable alternatively as results
of pure information changes? In other words, do we really need a separate notion of
preference change if we can already analyze information changes? We must leave
these issues open here.

30.7 Conclusion and Further Directions

This chapter has shown how a wide variety of preference changes can be modeled
in logic, thereby providing the formal philosopher with a natural extension of the
scope of inquiry in the area of preference, while also providing new tools for dealing
with these and related phenomena. Our main emphasis has been on the modeling
of change by updating current models, thereby adding a ‘dynamic dimension’ to
existing semantics in the area of philosophical logic. In doing so, we have not

16A complete dynamic logic of belief change also needs recursion axioms for conditional beliefs
and for the existential modality.
17Here are two illustrations, with link-cutting operation as our knowledge update and ‘suggestion’
as our betterness upgrade: (i) 〈†ϕ〉〈≤〉ψ ↔ 〈≤〉〈†ϕ〉ψ., (ii) 〈♯ϕ〉〈K〉ψ ↔ 〈K〉〈♯ϕ〉ψ.
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exhausted the state of the art in the field, and we have skimmed over some challenges
that lie ahead for this style of analysis. Here are a few that should be of interest
beyond the narrower circle of logicians.
Social settings and groups This chapter has emphasized preference changes for
single agents. But natural scenarios are often social, involving more than one agent.
In particular, agents are connected to each other by various social relations. An agent
often changes her preferences and beliefs because of peer pressure from friends
or neighbours or yet other social sources. These phenomena have been studied
extensively by logicians in recent years, cf. [7, 13, 21, 31, 41, 46, 76]. Beyond
this multi-agent interaction, there is also formation of groups as actors in their own
right with information and preferences, a key topic in social epistemology or social
choice theory. A fundamental issue here is to understand the tension, or ideally: the
cooperation, between individual and group attitudes. There are various proposals
to this effect. For instance, voting is a way of creating group preferences attuned
with individual preferences [63], deliberation is another, involving informational
communication in the process [42], and recently, models of group belief have been
proposed based on the evolutionary dynamics of trust and social influence, see [8].

Long-term temporal perspective Preference changes as discussed here were single
steps. But ‘one at a time’ is not enough to understand the essential process nature
of many topics important to philosophers, such as the structure of conversation, the
functioning of a system of norms, or scientific inquiry. This long-term character is
not just a matter of iterating single steps. As has been argued in Bovens and Ferreira
[12], Hansson [29], Hoshi [35] ‘procedural information’ about possible trajectories
of the current process may be essential, too. Thus the dynamic logics presented here
need to interface with temporal logics of the sort studied in the philosophy of action,
for instance those of [9, 62].

Other areas of philosophy We have noted several times that preference change
also occurs in normative reasoning, of a moral nature or in terms of practical ‘best
action’. These are areas where our analysis makes good sense, but much remains to
be done in connecting up. Dastani [68] have illustrations in deontic logic, [44, 65]
in game theory.

Likewise, the ideas of this chapter make sense in the semantics of natural
language, enriching standard accounts of ‘dynamic meaning’: cf. [38] for a case
study of imperatives. A much richer set of examples can be found in [77, 78].

Utility and probability. Entanglement of information and preference is standard in
quantitative disciplines using utility and probability, in particular, in decision theory
and game theory (cf. for instance, [37, 50, 57]). Our analysis of preference change
can be extended to these areas, but it will have to deal with more sophisticated
entangled static notions like ‘expected value’, while the space of dynamic operations
on quantitative models is also much vaster. Interfacing logic and probability is
natural in many fields, and preference change is definitely one of them.
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Chapter 31

Money-Pumps

Sven Ove Hansson

Abstract A money-pump is a thought experiment involving a person whose
preferences form a circle. Repeatedly, she pays some money to go from one
alternative to another that she likes better. When she has paid her way around the full
circle she is back at the starting-point, but with less money. Money-pumps have been
used to show that certain preference patterns are irrational since they make a person
exploitable. Formal tools can be used to analyze money-pumps in a precise manner,
distinguish between different types of money-pumps, and investigate decision
strategies to avoid their pernicious effects. Although money-pumps are rather
contrived constructions, these investigations have practical relevance since there
seem to be decision situations in the real world with the same structure.

31.1 Introduction

Joan is a dedicated stamp-collector with a strong urge to own the stamps she
likes the most. There are three stamps – we can call them a, b, and c – that
she has quite determined but perhaps also somewhat unusual attitudes to: She
prefers a to b, b to c, and c to a.

One day she enters a stamp shop with stamp a. The stamp-dealer offers her
to trade in a for c, if she pays 1 euro. She willingly accepts the deal.

Next, the stamp-dealer takes out stamp b from a drawer, offering her to
swap c for b, against another payment of 1 euro. She accepts. But when she
is on her way out of the shop, the dealer calls her back and advises her that
it only costs 1 euro to change back to a, the very stamp that she had in her
pocket when she entered the shop. Since she prefers it to b, she pulls out a
third euro coin. She walks out of the shop with the same stamp as when she
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entered, 3 euros poorer and presumably content to have made three good deals
in just a few minutes.

No explanation is needed why this is called a money-pump. Presumably, if Joan
had stayed in the shop the dealer could have repeated the procedure indefinitely,
pumping all the money she had away from her. Nor can there be any doubt that it
is the unusual structure of her preferences (cyclic strict preferences) that made her
susceptible to this form of exploitation. Money-pumps were invented by Frank P.
Ramsey [20, p. 182] as a thought experiment intended to show the irrationality of
intransitive preferences.1 In a classical formulation:

“Suppose an individual prefers y to x, z to y, and x to z. It is reasonable to
assume that he is willing to pay a sum of money to replace x by y. Similarly,
he should be willing to pay some amount of money to replace y by z and still a
third amount to replace z by x. Thus, he ends up with the alternative he started
with but with less money.” [23, p. 45]

The standard use of money-pumps is to show that certain preference patterns are
irrational since they can make you lose money. This is a pragmatic argument, i.e.
an argument concerning some principle that “appeals to the desirable/undesirable
consequences of [that principle’s] satisfaction/violation” [19, p. 289].2 Money-
pumps are useful examples in discussions of the status of pragmatic arguments,
but in this chapter the focus will instead be on how we can use formal language to
investigate their structure.

31.2 The Major Types of Money-Pumps

Joan’s transactions with the stamp dealer exemplify the classical form of a money-
pump, also called a money-pump of the first kind [8]. Such money-pumps are based
on cycles of strict preferences. Money-pumps of the first kind have often been
invoked to show that it is imprudent to act upon cyclic strict preferences. The
mechanism at hand is illustrated in Fig. 31.1. Obviously, it is not crucial that the
cycle has three elements; a longer cycle could produce the same effect. (The same
applies to cycles with one or two elements, but such cycles are much less credible
than those with at least three elements.)

But there are also other types of money-pumps.

Half an hour later, Joan’s friend Kahil, who is also a philatelist, pays a visit to
the shop. He is indifferent between stamps a and b, and also between stamps

1Let ≥ denote “at least at good as” (weak preference) and > “better than”. Then preferences are
transitive if and only if it holds for all x, y, and z that if x ≥ y and y ≥ z, then x ≥ z. Transitive
preferences can easily be shown not to have >-cycles, i.e. cycles of strict preference.
2On pragmatic arguments, see also [3, 10]. Another important example of pragmatic arguments are
Dutch books, see Box 19.3 in Chapter 19.
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a

c b

1.00

1.00 1.00

Fig. 31.1 Joan’s deal. She prefers a to b, c to a, and b to c, and is willing to pay e1.00 for each
move from a less to a more preferred option. This is a money-pump of the first kind

a

c b

0.10

1.00 0.10

Fig. 31.2 Kahil’s deal. He is indifferent between a and b, and also between b and c, but he prefers
c to a. He is willing to pay e 1.00 for a move from a less to a more preferred option. Against a
compensation of e 0.10 he will move between options that he is indifferent between. This is an
accumulating money-pump of the second kind

b and c, but he prefers c to a. Strangely enough, just like Joan he enters the
shop carrying stamp a.

Can the stamp-dealer extract money from Kahil as well? In fact he can, but now he
must apply a modified strategy. The first move is identical:

The dealer offers Kahil to exchange stamp a for stamp c against a modest fee
of e 1.00. Kahil accepts. Next, the dealer offers to pay him 10c (e 0.10) if he
is willing to take stamp b instead of stamp c. Since he is indifferent between
b and c, he accepts the bid. After that the dealer proposes yet another deal:
e 0.10 for changing from b to a. Since he is indifferent between these two
stamps as well, Kahil accepts. A few minutes later he leaves the shop with a,
the same stamp that he came with, e 0.80 euros less in his purse and the relish
of having completed three favourable deals in just a few minutes.

Kahil’s experience in the stamp shop exemplifies a money-pump of the second kind.
It differs from the first kind in having not only preference steps but also indifference
steps. The dealer has to use some of the money he gains in the preference steps in
order to pass through the indifference steps. Since the pump collects money in each
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a

c b

0.50

1.00 0.50

Fig. 31.3 Li Mei’s deal. She is indifferent between a and b, and also between b and c, but she
prefers c to a. She is willing to pay e 1.00 for a move from a less to a more preferred option.
Against a compensation of e 0.50, she moves between options that she is different between. This
is a non-accumulating money-pump of the second kind

round that the customer abides, it is an accumulating money-pump of the second

kind (Fig. 31.2).
This is a busy day for the shopkeeper.

About an hour after Kahil left, Li Mei enters the shop. Her preferences are
just the same as Kahil’s, i.e. she is indifferent between stamps a and b, and
also between b and c, but prefers c to a. By a most remarkable coincidence
she also has a copy of stamp a with her.

She is an unusally charming lady, and the stamp-dealer takes a liking to
her. He does not want to extract money from her but he likes having her in
the shop. Being the kind of person he is, the only way to entertain her that he
knows of is to buy and sell stamps with her. First he lets her exchange stamp
a for stamp c against 1 euro. Then he pays her 50 cents to make her change to
stamp b, and after that another 50 cents to change back to a. Then he lets her
change back to c against 1 euro. She is quite amused, so he goes on to repeat
the procedure quite a few times. Almost half an hour later she leaves the shop,
with stamp a in her pocket and a friendly smile on her face that makes him
hope intensely that she will come back soon to deal with him again.

This is also a money-pump of the second kind. It is illustrated in Fig. 31.3. Li Mei
loses no money, but nevertheless her engagement in this procedure has a smack of
irrationality. Since she leaves with the same possessions as when she entered (in
terms of both stamp and money) this is a non-accumulating money-pump of the

second kind.
As already mentioned, money-pumps of the first kind operate with cycles of strict

preferences. Using P to denote strict preferences, such cycles are called PPP -
cycles or P 3-cycles if they have three elements, PPPP -cycles or P 4-cycles if they
have four elements, etc. Money-pumps of the second kind can be built on any cycle
of indifference and strict preference that has at least one step of strict preference
[2]. Using R to denote a step that is either indifference or strict preference, these are
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Fig. 31.4 The first steps in
the three money-pumps in the
stamp shop

called RnP -cycles, where n is any number of steps that may be either indifference
or strict preference.

But in addition to the objects that the cyclic preferences refer to, money-pumps
also operate with money. All the deals that Joan, Kahil, and Li Mei made with the
shop keeper involved both the exchange of stamps and the exchange of different
sums of money. Therefore, a precise description of the preferences involved has to
picture them as preferences over two-dimensional states, where the two dimensions
are possessions of stamps and money. Strictly speaking, Joan, Kahil and Li Mei did
not choose among the stamps a, b, and c. Instead, they chose among combinations
of these stamps and various sums of money. To clarify this, a vectorized notation
is appropriate [8]. Let 〈x, v〉 denote that the costumer owns stamp x and has a net
outcome of v euros from her dealings with the shopkeeper. Figure 31.4 shows, in
this notation, the stages that the three customers went through in the shop.

31.3 Money-Pumps in Disguise

Although money has an essential role in the money-pumps, it can be replaced by
other media of compensation. Bearing this in mind, it is easy to see that quite a few
of the examples put forward in the literature on preference rationality turn out to be
money-pumps in disguise – the disguise consisting in something else taking the role
that money has in the classical money-pumps. In particular, the non-accumulating
money-pump of the second kind appears to have been repeatedly invented and
reinvented.

Michael Dummett [6, p. 34] has provided us with an example in which a person
cannot distinguish between wines a and b or between wines b and c, but is perfectly
capable of distinguishing between a and c and likes c better. Thus her preferences
over these wines can be summarized as c > a ∼ b ∼ c. The wine-vendor sells
wine b only with a bottle of a new beer that he is trying to popularize, and he sells
wine a only with two bottles of that same beer. The price of a bottle of wine c is
the same as that of wine b plus one beer and also the same as that of wine a plus
two beers. The customer puts more weight on the difference in taste between wines
c and a than on the free beer. We should therefore expect her preferences over the
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Fig. 31.5 The preferences
involved in the lawn-crossing
example

composite alternatives to conform with the following cyclic pattern:

〈wine c, 0 beer〉 > 〈wine a, 2 beers〉 > 〈wine b, 1 beer〉 > 〈wine c, 0 beer〉

This corresponds exactly to Li Mei’s preference pattern from above: just replace
the three stamps with the equally named wines and exchange the money for beer
bottles (at e 0.50 per bottle). We can easily imagine Dummett’s customer at the
store counter with a bottle of wine c, replacing it by a bottle of wine b and a beer
(since she tastes no difference between the wines), then by a bottle of wine a and two
beers (again, she tastes no difference between the two wines), and then by a bottle
of wine c and no beer (since this wine tastes better), and then (if she is irresolute
enough) again switching to wine b and a beer, etc.

The “lawn-crossing example” has been much discussed in the literature on
utilitarianism ([9, p. 107], [15]). Each time you cross a particular lawn, you make
a perceptible time gain. No single crossing makes a (perceptible) difference in the
condition of the lawn, but a large number of crossings may completely destroy it. Let
t denote the gain in time from each crossing and ln the condition of the lawn after n

crossings. This gives rise to the multi-stage cyclic pattern of combined preferences
shown in Fig. 31.5. This is a non-accumulating money-pump of the second kind, and
here “time is money”, i.e. time-gain takes the role of money in the money-pump.

In an ingenious thought experiment by Warren S. Quinn, a medical device has
been implanted into the body of a person (the self-torturer). The device has 1001
settings, from 0 (off) to 1000. Each step upwards on the scale leads to a negligible
increase in pain. Each week, the self-torturer “has only two options – to stay put or
to advance the dial one setting. But he may advance only one step each week, and he
may never retreat. At each advance he gets $10,000.” In this way he may “eventually
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Fig. 31.6 The preferences
involved in Quinn’s
self-torturer example

reach settings that will be so painful that he would then gladly relinquish his fortune
and return to 0” [16, p. 79]. The cycle that this gives rise to is shown in Fig. 31.6. Just
like the lawn-crossing example, this is a variant of the non-accumulating money-
pump of the second kind.

A somewhat more complex type of money-pump has been proposed in order to
show that if an agent has intransitive indifferences (x ∼ y and y ∼ z but not x ∼ z)
then that agent is also prone to have cyclic preferences (x > y, y > z and x > z).
This is of course interesting since the latter pattern is usually conceived as more
severely irrational than the former. The first version of this argument is due to Yew-
Kweng Ng [14] but we will use an elegant example put forward by George Schumm
[22].

Schumm invites us to consider a Mr. Smith who chooses between three boxes of
Christmas tree ornaments. Each box contains one red, one blue, and one green ball.
The balls of box 1 are denoted r1, b1, and g1, those of box 2 r2, b2, and g2, and
those of box 3 r3, b3, and g3. Mr. Smith cannot see any difference between r1 and
r3 or between r3 and r2, but he sees a difference between r1 and r2, and he prefers
the former. Hence his evaluation of the red balls follows the following pattern:

r1 > r2 ∼ r3 ∼ r1

His preference patterns for the blue and green balls are as follows:

b3 > b1 ∼ b2 ∼ b3

g2 > g3 ∼ g1 ∼ g2
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When comparing the three boxes, he prefers Box 1 to Box 2 since, to his eye,
they contain equally attractive blue balls and green balls, while Box 1 contains the
prettier red ball. Analogously, he prefers Box 2 to Box 3 since the only noticeable
difference is the more beautiful green ball of the former, and Box 3 to Box 1
due to its superior blue ball. Thus his preferences over the boxes exhibit cyclic
strict preferences (PPP ) although the underlying preferences over balls were only
subject to a less damaging form of cycle (IIP , where I denotes indifference). From
this Schumm drew the following conclusion:

“The case of Smith shows, I think, that one cannot plausibly abandon the
transitivity of indifference without giving up that of preference as well. To be
sure, the two principles are logically independent in the sense that neither
one, when taken together with uncontroversial axioms, implies the other.
But given any proposed counterexample to the transitivity of indifference. . .
one can always construct, on the foregoing model, an equally compelling
counterexample to the transitivity of strict preference” [22, p. 437].

31.4 The Solution: Should We Be Resolute or Sophisticated?

It is fairly obvious that money-pumps only work if the person to be pumped makes
her decisions rather short-sightedly. If Joan came to the shop with a good plan for
what to achieve there, or if she had fully understood what was going on, she would
not have ended up with 〈a,−3.00〉. As Frederick Schick pointed out, if the agent
sees the full picture, “he may well reject the offer and thus stop the pump.. . . He
need not act as if he wore blinders.” [21, pp. 117–118]

Currently there are two major, competing proposals for how best to behave in
order to avoid being money-pumped. Edward McClennen [11, 12] argues that the
right solution is to be a resolute decision-maker. This means that one makes long-
term plans and sticks to them. If Joan were a resolute decision-maker, then she
would have decided from the beginning what to buy in the shop, and she would
have stuck to that plan. Such a plan would certainly not have had 〈a,−3.00〉 as its
goal state. A resolute decision-maker does not have much reason to ponder how
she may react and behave in various future situations. To the contrary: “Rather
than regimenting present choice of a plan to projected future choice, the required
alignment can be secured, in principle, in just the reverse manner, by regimenting
future choice to the originally adopted plan” [12, p. 231].

The other proposal, championed by Wlodek Rabinowicz, is to be a sophisticated

decision-maker. This means that you foresee how you would act in various future
decision situations, and adjust your current choices according to that. If Joan were
a sophisticated decision-maker, then she would have thought through beforehand
the various offers that the stamp-dealer could make. She would have discovered the
path leading to 〈a,−3.00〉, and knowing where it leads she would certainly have
refrained from following it. In the common types of money-pumps, as presented
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above, both the resolute and the sophisticated strategy protect against exploitation.
However, other decision problems have been constructed in which the sophisticated
decision-maker can be exploited with a money-pump, whereas the resolute decision-
maker is still protected [17, 18].

31.5 Money-Pumps in Real Life?

Although we seldom find money-pumps in the real world, they may be useful tools
of thought for analyzing what rationality demands, not only in scholarly contexts
but also on a more personal level. As noted by Peter Fishburn, “the mere possibility
of a money pump could encourage people to reexamine expressed preferences. This
would likely lead to transitive revisions in some cases.” [7, p. 118] Such preference
revisions have been shown to take place in experimental settings [4].

Money-pumps can also serve to show the relevance of agenda-setting and
agenda-shifts in decision-making. The importance of agenda-setting has been
confirmed by results from social choice theory showing how a clever and well-
informed agenda-setter can “design an agenda to reach virtually any point in the
alternative space” [13, p. 1087]. Arguably, agents in real life cannot plan how to act
under all possible future circumstances; when subject to “surprise choices” we may
all be vulnerable to money-pumping [5]. And even in the absence of surprises, we
often make our decisions based on a smaller decision horizon than what would have
been possible. A typical example would be a smoker’s multiply repeated decision to
smoke one more cigarette.

Chrisoula Andreou has argued that important environmental decisions have
the structural properties of money-pumps. Environmental damage is often the
accumulated effect of actions each of which has no noticeable detrimental effect
on the environment. We may therefore be collectively in the same position as a
smoker or as Quinn’s self-torturer, whose problems are caused by the fact that “if he
is going to quit, he is better off, relative to his concerns, quitting at the next setting
rather than at the current setting” and who will therefore “end up in excruciating
pain” [1, p. 102]. This may be one of the reasons why we so often fail to take the
measures necessary to avoid environmental damage.

This is a fine illustration of how careful investigations of philosophical and
logical issues with no apparent practical relevance may end up having direct
implications for the conduct of human affairs. We need to break stalemates that
impede progress in climate policies. Which is the best strategy? Should we be
resolute or sophisticated?
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Chapter 32

Deontic Logic

Sven Ove Hansson

Abstract Deontic logic is the logic of normative concepts such as obligation,
permission, and prohibition. This non-technical overview of the area has a strong
emphasis on the connections between deontic logic and problems discussed in moral
philosophy. Major issues treated are the distinction between ought-to-be and ought-
to-do, the various meanings of permissive expressions, the logical relations among
norms, the paradoxes of deontic logic, and the nature of moral conflicts and moral
dilemmas. It is concluded that deontic logic has resources for precise treatment
of important issues in moral philosophy, but in order to make full use of these
resources, more co-operation between logicians and moral philosophers is needed.

32.1 Introduction

Example 1

HOST: Please, don’t take the apple!
GUEST: But you told me I could have an apple or an orange. Have you
changed your mind?
HOST: No, I haven’t changed my mind. I gave you permission to take an apple
or an orange. You are still permitted to do so. But I haven’t allowed you to take
an apple.
GUEST: Can I have an orange?
HOST: But of course!

Example 2

MR. WEISENHEIMER: You are not allowed to enter this garden.
MS. WRIGHT: But I promised the owner to mow her lawn when she is away,
and I am obliged to fulfil my promise.
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MR. WEISENHEIMER: So what?
MS. WRIGHT: In order to do so I have to enter her garden. Since I am under
an obligation to mow her lawn I have a permission to enter her garden to do
so.
MR. WEISENHEIMER: You are rushing to conclusions. I do not see how a
permission can follow from an obligation. Permissions and obligations are
very different things.

Example 3

ADULTERER: I have put myself in a terrible situation. I have promised Anne
to get a divorce and then marry her. She has waited for me more than five
years. Now she is pregnant with my child and she entreats me to take the
decisive step. But I also still love my wife, and I have promised never to leave
her. What should I do?
MORALIST: Since you can only be married to one person you should not have
promised two persons to be married to them. That is what is wrong.
ADULTERER: I know that. But please tell me what I should do.
MORALIST: I have already told you.

In discussions on moral norms, we tend to assume that they have certain structural
properties. Obligations should be consistent, and certain norms imply other norms.
Deontic logic is the discipline that attempts to uncover the logical laws of our
normative concepts and systematize their structural properties.

The logic of norms is complex and has been difficult to unveil. Furthermore,
the contacts between deontic logic and informal moral philosophy have not been
sufficiently close and sometimes not even sufficiently friendly. According to one
moral philosopher, “deontic logic has so far created more problems than it has
solved” [25]. But recent developments in deontic logic seem to bring the two
disciplines closer to each other.

Some philosophers have claimed that deontic logic is an oxymoron since it
applies (truth-valued) logic to subject-matter that does not refer to truth or falsehood.
But this is criticism that can easily be answered, provided that we use the logical
apparatus as a model of normative concepts. A model need not share all the
properties of that which is modelled. An economist can use a model in which
monetary value is infinitely divisible, although real money comes in discrete units.
Similarly, we can use a model expressed in truth-valued logic for subject matter that
is not truth-functional.

32.2 The Basic Parallel with Modal Logic

There are three major types of normative expressions: prescriptive, prohibitive, and
permissive expressions. In the formal language, they are represented by logical
expressions containing the predicates O (obligation, ought), P (permission), and
F (prohibition, f orbiddance).
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There is a striking analogy between the logical relations in the following two
triads:

necessary – impossible – possible
obligatory – forbidden – permitted

Something x is impossible if and only if not-x is necessary. Similarly, x is forbidden
if and only if not-x is obligatory. Furthermore, it is possible that x if and only if it
is not necessary that not-x. In the same way, x is permitted if and only if not-x
is not obligatory, etc. These analogies were known already in the twelfth century
[18]. Deontic logicians still adhere to them. But of course, there are other principles
of modal logic that cannot be transferred to deontic logic. In particular, what is
necessary is true, but what is morally obligatory is (unfortunately) often untrue.

32.3 Forming the Deontic Language

The sentences of a deontic language are formed recursively in three steps, as
shown in Fig. 32.1. Atomic sentences devoid of normative content (p, q, . . . ) are
the starting material. In the first step, truth-functional combinations such as p ∨ q

and r → (q & s) are formed from the atomic sentences. In the second step, deontic
operators such as O, P , or F are prefixed to the outcomes of the first step. This
gives rise to (atomic) deontic sentences such as Op, P(q ∨ r), and F(p → r).
The third step consists in forming truth-functional combinations of the outcomes
from the second step. This gives rise to expressions such as Op → P(p ∨ q),
Fp ∨ P(p&¬r), etc. The expressions obtained in this third step form the common
core of deontic languages. It is important to observe that the elements formed in the
second step (such as O(p∨q)) are retained in the third step, whereas the expressions
from the first step (such as ¬p → q ∨ r) have been lost.

Fig. 32.1 The formation of a
deontic language. Atomic
sentences (upper left) go
through a process of
truth-functional combination.
Then operators are affixed,
and finally a new process of
truth-functional combination
takes place
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Three types of extensions of this common core of deontic languages are common.
First, formulas from the first step can be included directly in the third, giving
rise to “mixed” formulas such as p & Op and p → Oq. Secondly, the second
and third step can be cyclically repeated, giving rise to sentences with nested
deontic operators, i.e. deontic operators within the scope of other such operators:
OOp, FPFp, O(Pp ∨ O¬p), O¬(Op & O¬p), etc. Thirdly, we can include,
at the second stage, operators representing other non-truthfunctional concepts than
deontic ones, most commonly operators for necessity (�), possibility (♦), and
conditionality (⇒).

32.4 Interpreting the Deontic Language

Some of the normative terms in natural language are also used for non-normative
purposes.1 As one example of this, the word “must” can denote either obligation
or necessity. (“You must help her.” – “You must be wrong.”) In a somewhat similar
way, the word “ought” is ambiguous between two meanings:

You ought to help your destitute brother. (ought-to-do, Tunsollen)
There ought to be no injustice in the world. (ought-to-be, Seinsollen)

In the first of these sentences, “ought” is prescriptive, and a synonym of “oblig-
atory”, “duty”, and “morally required”. The second sentence is an example of
ought-sentences that “are not prescriptive at all, either prudentially or morally, but
express valuations. Such is ‘Everybody ought to be happy’. This is not a prescription
or command to anybody to act or to refrain.” [27, p. 195]

Most other prescriptive predicates do not have the particular ambiguity that
“ought” has. It would not make much sense to say that there is a duty for the world
to contain no injustice or that it is obligatory that everyone be happy. Since deontic
logic represents norms it should only be concerned with the prescriptive sense of
“ought”. The non-prescriptive meanings of that word have to be left out, just like
the non-prescriptive meanings of “must”.

The meaning of expressions for permission differs between deontic logic and
natural language. When we say that an action is permitted we usually imply that its
omission is also permitted. Therefore it would be strange to say to a convict serving
life sentence: “You may stay in prison tomorrow.” Generally speaking, “when saying
that an action is permitted we mean that one is at liberty to perform it, that one
may either perform the action or refrain from performing it”. [26, p. 161] (bilateral
permission). In deontic logic, however, “being permitted to perform an action is
compatible with having to perform it”. (ibid.) (unilateral permission) Hence Pp

says that p is permitted but it does not tell us whether or not ¬p is also permitted.
A major reason why unilateral permission is preferred in deontic logic is that it

is related to obligation in the same way as possibility to necessity, so that the above-
mentioned parallel with modal logic can be upheld. Another reason is that bilateral

1For more details, see Chap. 1.
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permission can be straightforwardly defined in terms of unilateral permission (as
Pq & P¬q, “q is permitted and not-q is also permitted”).

Prescriptions, permissions, and prohibitions all come in different degrees of

stringency (strength). Every child understands the difference in stringency between
the two instructions “do not speak with food in your mouth” and “do not erase the
hard disk on mom’s computer”. Natural language contains resources for expressing
such differences. “Must” is more stringent than “ought”, and “ought” is more
stringent than “should” [6]. In the formal language we can express the difference
by including operators representing different strengths of moral requirement, but
this has only seldom been done [2, 10, 22].

32.5 Standard Deontic Logic

Although he had many forerunners, Georg Henrik von Wright can rightly be said to
have founded modern deontic logic. In his famous 1951 paper, he set forth a number
of axioms that in his view characterize rational reasoning about norms. This was
just before the advent of possible world semantics. The pioneers of that area were
all aware of von Wright’s work, and discussed deontic logic in their early writings.
They also all spotted the crucial difference between modal and deontic possible
worlds semantics, namely that the accessibility relation should be reflexive in the
former but not in the latter type of semantics, so that �p → p holds but not Op →
p [30]. Stig Kanger [17], Jaakko Hintikka [14, p. 12], and Saul Ktipke [19, p. 95] all
realized what it takes to create a deontic semantics, but William Hanson [7] seems
to have been the first to write out a full construction of possible world semantics for
deontic logic.

William Hanson constructed deontic semantics so that it differs from modal
semantics only in the respect already mentioned, namely that the accessiblity
relation was not reflexive. This elegant construction yields the logical principles
that von Wright had proposed for deontic logic, but with one exception: In his
1951 paper, von Wright had proclaimed a principle of “deontic contingency” for
tautologies, namely: “A tautologous act is not necessarily obligatory”,¬O(p∨¬p).
Possible world semantics instead validated the opposite principle:

O(p ∨ ¬p) (the axiom of the empty duty)

In spite of its intuitive implausibility ([15, p. 191], [20, p. 31]) this postulate was
rapidly accepted as a tribute to logical elegance.

Most deontic logicians were primarily interested in unnested deontic sentences,
i.e. sentences in which no deontic operator is positioned within the scope of another
such operator. (This is sensible, due to the difficulties in interpreting expressions
such as OOp and P(Op ∨ q).) With this limitation, the accessibility relation
of modal-style deontic logic can be replaced by a strikingly simple semantic
construction:
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Ideal Worlds Intersection (IWI)

There is a subset I of the set W of possible worlds, such that:
For all p, Op holds if and only if p ∈ w for all w ∈ I.

I is called the set of “ideal” worlds (or “deontically ideal” or “(deontically) perfect”
worlds). It is easy to show that the sentences that are valid in this simple model
coincide with those that are derivable from the following three axioms:

Op → ¬O¬p,
Op & Oq↔O(p&q), and
O(p ∨ ¬p)

The first two of these axioms were present in von Wright’s 1951 paper, whereas
the third is the axiom of the empty duty that had to replace its negation in order
to fit into the semantics. The second axiom is equivalent to the combination of the
following two:

Op & Oq → O(p&q) (agglomeration)
If Op, and p logically implies q, then Oq. (necessitation)

In 1969 Bengt Hansson introduced the term “standard deontic logic” (SDL) to
denote the deontic logic that can be characterized either by these axioms or by the
semantic principle of Ideal Worlds Intersection.

It was realized at an early stage that SDL in its original form lacks a credible
account of conditional obligation. A sentence such as “If you insult her then you
ought to apologize to her” can be semi-formalized in the format “If p then Oq”,
but what should a full formalization look like? The two obvious options in the SDL
language, namely O(p → q) and p → Oq, could easily be shown to give rise
to absurd conclusions. To solve this problem Bengt Hansson [8] introduced a two-
place predicate O(q|p) (“If p then q is obligatory”).2 He also proposed a simple
semantic principle for conditional obligation. Instead of just dividing the possible
worlds into ideal and non-ideal worlds, we can order them in more than two grades.
Immediately beneath the ideal worlds we have the second-best worlds, beneath them
the third-best worlds, etc. In order to determine the conditional obligations relative
to some statement p, we restrict our attention to worlds in which p is true. Then
O(q | p) (“If p then q is obligatory”) holds if and only if q holds in all those worlds
that are best among the worlds in which p is true.3

However, in spite of its formal elegance, SDL has been under constant attack
due to the implausible results that have been derived from it. In the following two
sections we are going to have a look at some of that criticism, before turning to more
constructive developments.

2The dyadic predicate can replace the monadic one, since we can define Op as O(p | ⊤), where ⊤
is a tautology.
3Important results on dyadic SDL can be found for instance in [23, 24, 29].
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32.6 Free Choice Permission

Recently when a neighbour asked me if he could borrow a crowbar, I showed him
my crowbars and said:

You may borrow either the big or the small crowbar.

In saying so I offered him a choice between the two tools. However, in another
context the same sentence could have another meaning. Suppose that the tools
belonged to someone else who had authorized me to lend one of them to the
neighbour. However, I had forgotten which of the two he could borrow. Then I could
have said:

You may borrow either the big or the small crowbar, but I do not know which.

The first case illustrates free choice permission. In natural language, this is by far
the most common meaning of permissive expressions that refer to a disjunction. A
formal permission operator that represents it should expectedly satisfy the postulate

P(a ∨ b) → Pa & Pb.

However, this principle does not hold in SDL. This seems to have been first noted
by von Wright [32, pp. 21–22]. His discovery gave rise to an extensive search for a
plausible operator of free choice permission.

The most obvious solution would be to just add the axiom P(a∨b) → Pa & Pb

to the SDL axioms. However, it was soon realized that the combination of this axiom
with the original postulates would give rise to a whole series of implausible results.
([32, p. 21], [16, p. 61], [21, p. 140]) We can take David Makinson’s derivation as
an example:

O(¬a&¬b) → O¬a (Holds in SDL.)
O¬(a ∨ b) → O¬a (Equivalent sentences are exchangeable in SDL.)
¬O¬a → ¬O¬(a ∨ b) (Due to sentential logic.)
Pa → P(a ∨ b) (Definition of P .)
Pa → Pb (Since P(a ∨ b) → Pb, due to the added postulate.)

What this means is that if something is permitted (Pa) then so is everything else
(Pb). This is obviously an intolerable result. Therefore we cannot solve the “free
choice problem” by just turning the SDL permission operator into an operator of
free choice permission. Having realized this, deontic logicians tried instead to add a
second permission operator Pc to supplement rather than replace the SDL operator
P . Arguably, this could most naturally be done with the definition

Pc(a ∨ b)↔ Pa & Pb.
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However, this definition has implausible consequences, as shown for instance in the
following derivation:

Pa → (Pa & P(a ∨ b)) (Due to Pa → P(a ∨ b) that holds in SDL.)
Pa → Pc(a ∨ (a ∨ b)) (The definition of Pc.)
Pa → Pc(a ∨ b) (Exchangeability of logical equivalents in SDL.)

Hence, if you are permitted to borrow a book from the library (Pa), then you have
a free choice to either borrow or steal the book (Pc(a∨b)). (More morbid examples
are not difficult to construct.)

Several other, more complex constructions of free choice operators have been
tried out, but they have all been shown to have absurd consequences. [12] The
underlying reason for this is that they all rely on the following assumption that has
usually been taken for granted:

The single sentence assumption: Free choice between a and b can be
represented as a property of a single sentence, namely a ∨ b.

Provided that logically equivalent sentences are interchangeable, the single sentence
assumption has the following implication:

If a∨b is equivalent with c∨d, then there is a free choice permission between
a and b if and only if there is a free choice permission between c and d.

It is not difficult to find examples showing that this leads to absurd conclusions:

The vegetarian’s free lunch [12]4

In this restaurant I may have a meal with meat or a meal without meat.
Therefore I may either have a meal and pay for it or have a meal and not
pay for it.
Proof: Let m denote that you have a meal with meat, v that you have a meal
without meat, and p that you pay. P(m∨v) is equivalent with P(((m∨v)&p)∨
((m∨v)&¬p)).

To sum up, (free choice) permission is a permission to perform either the action
represented by the sentence a or that represented by the sentence b. We have found
that it is not a function of a single sentence a∨ b but a function of the two sentences
a and b. It must be represented as a function of two variables, not one. Similarly,
(free choice) permission to perform either a, b, or c is a function of three variables,
etc. Therefore, free choice permission should be represented as a property of a set of
action-describing sentences ({a, b} respectively {a, b, c}), rather than a property of
the disjunction of these sentences (a ∨ b, respectively a ∨ b ∨ c) [10, pp. 130–131].

4Also discussed in the Chap. 1.
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32.7 The Deontic Paradoxes

The problem with free choice permission is that the following deontic principle does
not hold in SDL, although it is intuitively plausible:

P(p ∨ q) → Pp & Pq (“If p-or-q is permitted, then so is p, and so is q.”)

There are also many cases in which the difference goes the other way around:
A property holds in SDL but it is not intuitively plausible. Such divergences are
called “deontic paradoxes”. The best-known of them is Ross’s paradox. It is a
counterexample to the following SDL theorem:

Op → O(p ∨ q): (If p is obligatory then so is p-or-q.)

Ross [28] proposed the following counter-example:

“If you ought to mail the letter, then you ought to either mail or burn it.” [28,
p. 62]

Several other deontic paradoxes have been proposed. One of the most ingenious is
Åqvist’s [1] knower paradox:

“If the police officer ought to know that Smith robbed Jones, then Smith ought
to rob Jones.”

This is a counterexample to the SDL principle of necessitation. (If Op holds and
p logically implies q, then Oq holds as well.) The paradox also makes use of the
epistemic principle that only that which is true can be known.

As was pointed out by von Wright [33], all the major deontic paradoxes rely on
necessitation. Necessitation in its turn follows from the basic construction of the
possible worlds semantics for SDL, namely that a sentence is valid if and only if
it holds in all elements of a certain set of possible worlds. The paradoxes put this
construction in doubt.

This construction has also been criticized on more fundamental ethical grounds.
Important types of moral obligations that are recognized and much discussed in
moral philosophy are difficult to account for in SDL semantics. This applies for
instance to obligations of compensation and reparation. Suppose that John sees a
small child fall into the pool in front of him. It would be easy for him to save
the child’s life. Does he have an obligation to do so? According to SDL semantics
we have to consider what his actions would have been in an ideal world. In an
ideal world, the child would presumably not have fallen into the water. (This may
apply even if we consider the ideal worlds to be ideal only in terms of obligation-
fulfilment. If the child’s parents had fulfilled their obligations, then the accident
would not have happened.) Hence, in the ideal worlds the child would not have been
in danger, and John could not have saved it. It follows that John is under no moral
obligation to save the child. This example is due to Holly Goldman, according to
whom SDL “ignores the fact that particular obligations flow from abstract principles



586 S. O. Hansson

together with contingent features of the world”, and these features “do not appear in
all the morally best worlds” [5, p. 244].

Preventive actions are almost as difficult as compensatory ones to account for in
SDL semantics. In an ideal world there will be no acts of violence or racism, and
consequently no one will act to prevent such misdeeds. Therefore, if our obligations
in the actual world consist in doing what we would have done in the ideal worlds,
then there can be no obligation in the actual world to act against violence or racism.

In summary, it does not seem appropriate to identify our obligations with
how we would act in an ideal world. Such an identification would amount to a
recommendation to act as if we lived in an ideal world. But that is bad advice.
Acting as one would have done in an ideal world is the behaviour that is expected
to follow from wishful thinking, not from well-considered moral deliberation [11].

32.8 Alternative Semantics

Instead of judging the obligatoriness of actions according to the value (ideality)
of the worlds in which these actions take place, we can relate obligatoriness to the
value of these actions themselves. This can be done by relating normative predicates
to an underlying preference relation ≥ (“is better than or equal in value to”). The
following definition will then have a central role:

A predicate H is positive with respect to a preference relation ≥ if and only
if it holds for all p and q that if Hp and q ≥ p, then Hq (i.e., if p has the
H -property and q is at least as good as p, then q has the H -property).

A plausible preference-based deontic logic can be founded on the simple principle
that the permissive predicate P is positive with respect to some underlying
preference relation ≥ [10]. In other words, if p is permitted, and q is at least
as good as p, then q is also permitted. In contrast, the prescriptive predicate O

cannot reasonably be assumed to satisfy positivity. To see this, suppose that you
have an unexpected, hungry visitor. Let p denote that you give your hungry visitor
something to eat and q that you serve her a gourmet meal. It is quite plausible to
value q at least as highly as p. But even if we do so we can hold p to be morally
required without also holding q to be morally required. In other words, we can have
Op, q ≥ p and ¬Oq, which shows that the obligation predicate O does not satisfy
positivity.5

In a framework based on the positivity of permission, the validity of postulates
in deontic logic will depend on the properties of the underlying preference relation.
Standard preference relations give rise to a deontic logic in which the necessitation
postulate (the source of the deontic paradoxes) does not hold, but several other, more
plausible postulates hold, such as the following: [10]

5However, if P satisfies positivity, and O is definable from P in the usual way (Op ↔ ¬P¬p),
then O satisfies contranegativity: If Op and ¬p ≥ ¬q then Oq.
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Op & Oq → O(p&q)

(“If each of p and q is by itself obligatory, then so is p-and-q.”)

O(p&q) → Op ∨Oq

(“If p-and-q is obligatory, then so is either p or q, or both.”)

P(p&q) & P(p&¬q) → Pp

(“If each of p-and-q and p-and-not-q is permitted, then so is p.”)

32.9 Deontic Inconsistencies and Moral Conflicts

The structure of moral dilemmas is readily expressible in deontic logic. If both Op

(“p is obligatory”) and O¬p (“not-p is obligatory”), then the dictates of the O

operator cannot be completely complied with, and no fully acceptable course of
action is available. The view that moral dilemmas are impossible implies that such
combinations of obligations should be excluded from the logic, and then Op & Oq

cannot hold if p&q is logically false. The competing view that moral dilemmas are
possible does not impose that restriction on deontic logic. It can be explicated in a
formal framework that distinguishes among obligations of different strengths, and
uses these distinctions to account for the resolution of moral dilemmas [9]. To see
how this works, let us first consider the following example:

MORALIST: You have a large debt that is due today. You should pay it.
SPENDTHRIFT: It is impossible for me to do so. I don’t have the money.
MORALIST: I know that.
SPENDTHRIFT: Yes, and I already know what my obligations are. Please, as a
moralist, tell me instead what I should do.
MORALIST: I have already told you. You should pay your debt.

Our Moralist is unhelpful, since she refuses to accept the shift in perspective
demanded by Spendthrift when asking what she should do. With this phrase,
Spendthrift calls for action-guidance. The “should” of “You should pay your debt” is
not suitable for action-guidance, since it requires something that Spendthrift cannot
do. The shift in focus demanded by Spendthrift can be described as a shift from a
morally adequate prescriptive predicate OM to a predicate OA that is suitable for
action-guidance. Let p designate that she pays off her debts. Then OMp (“p is
morally required”) holds, but so does ¬OAp (“p is not required by proper moral
action guidance”). Furthermore, let q denote that she pays her creditors at least as
much as she can without losing her means of subsistence. Then both OMq and OAq

hold, i.e. q is both morally required and required by proper moral action guidance.
We can now apply this distinction to a typical example of a moral dilemma.

Suppose that you can either save A’s life (p) or B’s life (q), but not both. You are
equally morally required to perform each of these incompatible actions, but your
obligation to perform at least one of them (p ∨ q) is still stronger. From a moral
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point of view, arguably the most adequate deontic operator will be one that requires
both that you save A and that you save B. Hence OMp and OMq hold, and so
does OM(p ∨ q). Since p and q cannot both be realized, we then have a moral
dilemma in terms of OM . From the viewpoint of action-guidance, since p and q

are incompatible, OAp and OAq cannot both hold, and since we have no reason to
prefer one of them to the other, neither of them holds. However, p ∨ q is morally
required to a higher degree than either p or q, and we therefore have good reasons
to assume that OA(p ∨ q) holds. Hence, from the action-guiding point of view, it
is obligatory to perform at least one of the two actions, and permissible to perform
either to the exclusion of the other.

The case of the Adulterer, as presented above in Sect. 32.1, illustrates the same
point. In the dialogue our Moralist stuck to standards of moral requirement that were
rather unhelpful since they made all courses of action impermissible. The Adulterer
needs a weaker notion of moral requirement that does not require the impossible.
This weaker notion must be such that staying with his wife (w) and marrying his
mistress (m) are not both prescribed (but for our present purpose we can leave it
unsettled whether OAw & ¬OAm, ¬OAw & OAm, or ¬OAw & ¬OAm holds for
such a notion of moral requirement in this case).

Thus applied, the distinction between moral and action-guiding deontic predi-
cates provides a formal account of how moral dilemmas can exist, yet be resolvable
in terms of a weaker notion of moral requirement that is suitable for action-guidance.
It should be observed that the moral “ought” is not eliminated, only supplemented
by an obeyable “ought” that is suitable for action-guidance.

Hopefully, these examples can illustrate that deontic logic has resources for
precise treatment of important moral issues. In order to develop this potential, co-
operation between logicians and moral philosophers is needed.
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Chapter 33

Action Theories

Andreas Herzig, Emiliano Lorini, and Nicolas Troquard

Abstract We present the main logical theories of action. We distinguish theories
identifying an action with its result from theories studying actions in terms of both
their results and the means that result is obtained. The first family includes most
prominently the logic of seeing-to-it-that and the logic of bringing-it-about-that.
The second includes propositional dynamic logic and its variants. For all these
logics we overview their extensions by other modalities such as modal operators
of knowledge, belief, and obligation.

33.1 Introduction

Actions such as raising one’s arm, switching on a computer, jumping a traffic light,
killing somebody, or waltzing are investigated in several areas of philosophy, among
others in philosophy of action, philosophy of language and philosophy of law.
Through the analogy between actions and programs the concept is also relevant
in computer science, in particular in artificial intelligence, multi-agent systems and
theoretical computer science. Several other concepts are intimately related to action.
One that is directly related is that of the ability to act. Mental attitudes and norms
also play an essential role in the study of action.

It has been attempted since Aristotle to systematise the analysis of action. Taking
advantage of the mathematical advances in predicate logic, ontological perspectives
on action were proposed in the form of first-order theories in the mid-twentieth
century and have been very influential in philosophy. Concurrently, various research
programs investigated the logic of action as such, trying to uncover the grand
principles. These approaches are dominated by a modal view of action, and a first
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survey of this field is in a 1992 special issue of Studia Logica [44]. The present
chapter overviews the resulting logics of action. We start by introducing the main
issues at stake.

33.1.1 Actions as Events Brought About by Agents

It is generally considered that an action can be identified with an event that is
brought about by an agent [14, 48], as exemplified by Belnap talking about “an
agent as a wart on the skin of an action” [5]. The dedicated term in the literature
is that an agent is agentive for an event. Examples of events are that an arm goes
up, that a computer starts, that somebody dies, etc. So my action of switching the
computer on is identified with me bringing about the event that the computer starts.

Essentially, there exist two different semantical accounts of events: the first
account identifies an event with a set of possible worlds, also called a proposition;
the second account identifies an event with a binary relation between possible

worlds, also called a transition relation. In the first view, events are facts of the
world, identified with propositions: subsets of the set of possible worlds where the
event occurs. To these propositions the usual set-theoretic operations can be applied.
We thus obtain a way to interpret complex events and actions that are built with
the logical connectives of propositional logic, such as negation, conjunction, and
material implication. In the second view, the transition relations of atomic events
are a given, and the transition relation of a complex event is built up from them.

33.1.2 Action as Result vs. Action as ‘Means+Result’

The two views on the semantics of events yielded two traditions of logics of action.
The difference is reflected by two different logical forms of action sentences they
consider: the first family is about sentences such as “I bring it about that the
computer is on” and focuses on the result of an action; the second family is about
sentences such as “I bring it about that the computer is on by pushing the power
button” and focuses on both the result and the means by which it is obtained.

The first family are the so-called logics of agency. The logic of seeing-to-it-that
(STIT) [4, 6] and the logic of bringing-it-about-that (BIAT) [18, 19, 40] are two sub-
families. These logics are studied in philosophy of action and more recently in multi-
agent systems. The second family contains variants and extensions of propositional
dynamic logic (PDL). These latter logics were introduced and studied in theoretical
computer science, but were also investigated by philosophers.
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33.1.3 Potential Action

A notion that is often studied along with actual agency is the mere existence of a
potential action. “He could have done otherwise”; “She can win this match”; “The
Democrats have a strategy to undermine the influence of the Senate whatever the
rest of the electorate does”; “I can switch on the light if you want”; “He can! But he
would be lucky!” Loaded with many distinct but somewhat overlapping meanings,
this notion has been called ability, capability, opportunity, power, etc. In this chapter
we will simply use ability as an umbrella term for potential action.

Some meanings of the term ability have not yet been satisfyingly formalised in
logic. One in particular is Kenny’s sense of ability [28]: I am able to do an action if
when I try to do that action under normal conditions then I usually succeed. Kenny’s
example is that of an expert dart player who is able to hit the bullseye while a
layman is not. Although very close to our real world experience, one difficulty is
to meaningfully capture in a formalism that ability is not a sufficient condition for
actual agency and that actual agency is not evidence of ability à la Kenny.

Yet, possible action has been studied alongside actual action in some logical
formalisms. All of the logics presented in this chapter that deal with both actual and
potential agency subscribe the principle ‘actual agency implies potential agency’,
for short: ‘do implies can’.

• BIAT logic is about actual agency. Elgesem has added a notion of ability to bring
about a proposition. In his logic an ability still can exist without actual agency: a
lion in a zoo can catch a zebra. Both agency and ability are primitive concepts in
his logic (although they are defined by means of the same semantic structure).

• STIT logic is primarily about actual agency and potential agency. It is equipped
with quantification over possible unrolling of events. Potential agency for a
proposition is then reduced to the existence of an unrolling of events where actual
agency for that proposition is expressed.

• Coalition logic CL [37] and alternating-time temporal logic ATL [1] are about
the ability of an agent to ensure something whatever the other agents do. There
is no notion of actual agency, and the language does not explicitly refer to action
terms.

• The standard version of PDL [21] enables to talk about the possibility of the
occurrence of an event and about what is true afterwards. Linear versions of
PDL also allows one to capture actual agency. Furthermore, there are variants of
PDL which allow one to represent both actual action and potential action such
as PDL with actual actions [31] and DLA [23].

Table 33.1 classifies the logics that we are going to overview in this chapter
according to the distinctions ‘potential and/or actual agency’ and ‘result vs.
result+means’.
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Table 33.1 Logical form and concepts of the logics of this chapter

Result Means + result

Potential only CL, ATL PDL

Actual only BIAT Linear PDL

Potential + actual STIT, Elgesem’s BIAT PDL with actual actions, DLA

33.1.4 Actions and Mental Attitudes

Our actions are determined by our beliefs and desires: I switch my computer on
because I want to know the weather forecast and believe I can find it on the Internet,
or because I believe I got email and want to read it, or because I want to send an
email and believe my Internet connection is not down.

According to an influential view due to Bratman, desires do not directly lead
to actions, but it is rather the intermediate mental attitude of intention that triggers
actions [7]. Cohen and Levesque designed a logic adding modal operators of belief
and choice to PDL within which intention can be defined [17].

33.1.5 Actions and Deontic Concepts

What we do is not only influenced by our mental attitudes, but also by obligations
and prohibitions. Indeed, there are cases where agents perform actions indepen-
dently of their beliefs and desires merely because they are obliged to do so; think
e.g. of soldiers blindly obeying their commander.

Meyer gave a logical account of obligation and action that is based on PDL [34],
while Horty based his account on STIT [24, 25].

33.1.6 The Rest of This Chapter

We are now going to present the main logics of action and discuss their basic logical
principles. In the next section we introduce the family of those logics allowing us to
talk about actions in terms of their results: BIAT and STIT. Thereafter we present
the family of logics allowing us to talk about actions in terms of results and means
to achieve these results: PDL and its linear variants. For each family we discuss the
interplay with ability, mental attitudes and norms.

Throughout this chapter φ,ψ, . . . denote formulas and i, j, . . . denote agents
(individuals) that populate the world.
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33.2 Action as Result

According to Belnap and Perloff’s ‘stit-thesis’ every agentive sentence can be
transformed into a sentence of the form “i sees to it that φ”, where i is an agent and φ

is a proposition. In other words, an action is identified with the result it brings about.
The sentence “agent i sees to it that φ” itself can then be viewed as a proposition.
This allows for a purely logical analysis of agentive sentences.

Let us start by formulating several principles that all of the logics in this section
satisfy.

First, if we view agentive sentences as propositions then it is natural to require
that the set of worlds where φ is true contains the set of worlds where i is agentive
for φ. This is a principle of success: the proposition “i sees to it that φ” should imply
the proposition φ. In other words, it should be valid that if i sees to it that φ then φ

is true. Note that it follows from this principle that an agent can never see to it that
φ ∧ ¬φ.

Second, the different approaches agree about the principle of aggregation: “if i

sees to it that φ and i sees to it that ψ then i sees to it that φ ∧ ψ”.
Third and as already discussed in the introduction, action implies ability. This is

a do implies can principle: “if i sees to it that φ then i is able to achieve φ”.
Fourth, a bringing about of a proposition is not sensitive to the syntactical

formulation of that proposition. For example, if Zorro and Don Diego Vega are
the same person and one considers that their being dead is the same proposition,
then Sgt. Gonzales bringing about that Zorro is dead is equivalent to Sgt. Gonzales
bringing about that Don Diego Vega is dead. This is the principle of equivalents for

actual agency. A similar principle can be formulated for potential agency.
All variants of STIT and of BIAT satisfy the principles of success, of aggregation,

‘do implies can’, and equivalents for agency. Beyond these standard principles there
are quite some differences that have been captured by quite different semantics. We
therefore present the two families separately.

The main difference between BIAT logic and STIT logic is that the latter satisfies
a principle of independence of agents while the former does not: in STIT it is
assumed that each combination of the agents’ individual actions can be chosen

jointly, while this is not required in BIAT. It may be argued that while the principle
of independence of agents is acceptable in the case of choice (or trying), it is less so
in the case of action. Suppose two agents are standing in front of a room door and
intend to enter the room. The door is too narrow to allow them to successfully enter
at the same time, even though each agent can successfully enter if the other agent
does nothing. While the two agents can simultaneously decide/try to enter the room,
their attempts will fail to be performed successfully.

After the presentation of each family of logics we briefly mention extensions by
concepts such as knowledge, belief, intention, and obligation.
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33.2.1 The Logic of Bringing-it-About-That BIAT

BIAT logic, the logic of bringing-it-about-that, dates back to Kanger and Pörn [27,
40].1 We here present Elgesem’s semantics [19] whose validities were axiomatised
by Governatori and Rotolo [20]. The semantics is in terms of selection function
models 〈W, {f }i, V 〉 where W is some set of possible worlds, V : P −→ 2W is a
valuation function mapping propositional variables to subsets of W , and for every
agent i, fi : W × 2W → 2W is a selection function associating a proposition to
every possible world and proposition. The object fi(w,X) is the set of those worlds
where i realises the ability he has in w to bring about his goal X. Therefore i is
able to bring about X at w if fi(w,X) is nonempty; and i brings about X at w if w

belongs to fi(w,X).
The functions fi have to satisfy the following additional constraints:

• fi(w,X) ⊆ X, for every X ⊆ W and w ∈ W ;
• fi(w,X1) ∩ fi(w,X2) ⊆ fi(w,X1 ∩X2), for every X1, X2 ⊆ W and w ∈ W ;
• fi(w,W) = ∅, for every w ∈ W .

The first two constraints correspond to the principle of success and to the
principle of aggregation. The third constraint says that an agent cannot be agentive
for a tautology.

The language of BIAT logic has modal operators of agency Biati and modal
operators of ability Cani , one of each for every agent i. The formula Biatiφ reads
“i brings it about that φ”, and the formula Caniφ reads “i can achieve φ”.2

The truth conditions are as follows:

M,w |= p iff w ∈ V (p);
M,w |= Biatiφ iff w ∈ fi(w, ||φ||M);
M,w |= Caniφ iff fi(w, ||φ||M) �= ∅.

In the last two conditions the set ||φ||M is the extension of φ in M , i.e. the set of

possible worlds where φ is true: ||φ||M def= {w ∈ W : M,w |= φ}.
Alternative semantic characterisations of the operators Biati exist in the

literature: Pörn proposed to simulate it by combining two more elementary modal
operators that are normal [40]; Carmo et col. have used neighborhood semantics
[42]. However, there are no completeness results for these alternative semantics.

So, what are the axioms of BIAT, i.e., what are the formulas of the language that
are true in every model? As announced above, the axioms of success, aggregation,
and ‘do implies can’ are all valid in BIAT logic, and the rule of equivalents preserves
BIAT validity:

1There is no well-established name in the literature, we therefore opted for the acronym BIAT, justs
as the well-established STIT stands for ‘seeing-to-it-that’.
2Instead of Biati Jones and Pörn use Ei and Elgesem uses Doesi . Instead of Cani Elgesem uses
Abilityi .
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Biatiφ → φ (33.1)

(Biatiφ ∧ Biatiψ) → Biati(φ ∧ ψ) (33.2)

Biatiφ → Caniφ (33.3)

φ ↔ ψ

Biatiφ ↔ Biatiψ
(33.4)

φ ↔ ψ

Caniφ ↔ Caniψ
(33.5)

A subject that has been a source of disagreement in the literature is whether an
agent can bring about a logical tautology. Can John bring it about that 2 + 2 = 4?
BIAT rules it out:

¬Cani⊤ (33.6)

is an axiom. Together with the ‘do implies can’ axiom of Eq. (33.3), it entails that
¬Biati⊤ is valid. That is, no agent is agentive for a tautology.

The principle that is maybe most surprisingly absent is the axiom of monotony
Biati(φ ∧ ψ)→ (Biatiφ ∧ Biatiψ): i may bring it about that φ ∧ ψ without
necessarily bringing it about that φ. Biati is therefore not a normal modal ‘box’
operator. The same is the case for the logic of the ability operators Cani . Moreover,
they do not satisfy the principle Cani(φ∨ψ) → (Caniφ∨Caniψ); to see this take
ψ = ¬φ. Therefore the latter cannot be modal ‘diamond’ operators either. Moreover
they do not satisfy φ → Caniφ. Due to these last two properties Elgesem’s ability
operators satisfy what Brown calls Kenny’s constraint [11].

In presence of several agents, these operators can be combined to express
interesting properties of interaction. One can say for instance that an agent i makes
(resp. can make) another agent j bring it about that φ, in formula: BiatiBiatjφ
(resp. CaniBiatjφ). Following the common law maxim “quid facit per alium
facit per se”, some authors consider that when i makes another agent bring about
something then i himself brings about that something [13]. Others disagree [19].
Troquard [46], in a group extension of BIAT suggests a principle BiatiBiatjφ →
Biat{i,j}φ, where Biat{i,j}φ indicates that the group composed of i and j

brings about φ together. Aiming at another kind of compromise, Santos et al. have
proposed a logic with two kinds of agency operators: one of indirect agency (noted
Gi) satisfying the above principle and another one of direct agency (noted Ei) which
does not (and instead satisfies EiEjφ → ¬Eiφ) [41, 42].

Our next family of logics will validate this principle, and much more.
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33.2.2 The Logic of Seeing-to-it-That STIT

While the temporal aspects were kept abstract in BIAT logics, the semantics of STIT

logics inherits the Ockhamist conception of time [50] where the truth of statements
is evaluated with respect to a moment that is situated on a particular history through
time (that is identified with a sequence of moments). This is one of the reasons
why the models of STIT logics that we are going to present now [4, 24, 25] are
more intricate. A systematic comparison between Belnap et al.’s semantics for STIT

and other semantics for STIT such as the Kripke-style semantics by [30] and the
bundled-tree semantics by [16] has been recently proposed by [15].

A STIT model is based on a tree of moments which are the possible states of
the world. Every moment occurs at an instant, a mere time-stamp. A history is a
maximal path in the tree. When a moment belongs to a history we say that the history
passes through the moment. Time is therefore indeterministic, and indeterminism is
due mainly to agents making choices where they could have chosen otherwise: at
every moment m, each of the agents has a repertoire of choices, and each of these
choices consists in selecting a subset of the histories passing through m. The future
is understood to be on one of the selected histories. Then the future lies among the
histories at the intersection of the choices taken by all agents. Whatever each of the
agents chooses, the intersection of all the agents’ choices must be non-empty. This
is the independence constraint.

Formulas are evaluated in a STIT model M with respect to moment-history pairs
(m, h) such that m is on h. A significant variety of modalities of agency have been
studied within STIT logic, with sometimes only little differences. We are going to
mainly talk about two of them that are rather different: the achievement stit and
the Chellas stit. Both have in common with the BIAT modality the principles of
Eqs. (33.1), (33.2), (33.3), (33.4), and (33.5) of the section “The Logic of Bringing-
it-About-That BIAT”. The achievement stit moreover satisfies the principle of
Eq. (33.6), while the Chellas stit does not.

The theories are also equipped with an operator of historical possibility ♦. The
formula ♦φ reads “there is a possible history passing through the current moment
such that φ”. Formally speaking, given a history h and a moment m passing through
h (i.e., such that misonh), the formula ♦φ is interpreted as follows:

M,h,m |= ♦φ iff M,h′,m |= φ for some history h′ such that m is on h′.

We can define the dual modal operator � by stipulating �φ
def= ¬♦¬φ and thereby

express the fact that “φ is settled true at the current moment”.
The original stit modality proposed by Belnap and Perloff [6] is the achievement

stit. Let us write AStiti for that modal operator. An agent i sees to it that φ if a
previous choice of i made sure that φ is true at the current instant, and φ could have
been false at this instant had i done otherwise.
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M,h,m |= AStitiφ iff there is a moment m0 preceding m on h such that
(1) M, h′,m′ |= φ for every h′ and m′ such that
(1)(i) h and h′ are in the same choice of i at m0,

(1)(ii) m′ is on h′ and at the same instant as m;
(2) there is a history h′′ and a moment m′′ at the
(2)same instant as m with M,h′′,m′′ �|= φ.

Just as in BIAT logic, the idea of achievement is conveyed by validity of the
principle of success (AStitiφ → φ) and by the principle that no agent sees to a
tautology (¬AStiti⊤).

Now comes a rather fascinating insight from such a complex modality. If
AStitiφ is i doing φ, one can capture that agent i refrains from doing φ by the
formula AStiti¬AStitiφ. What the logic tells us is that doing is equivalent to
refraining from refraining from doing:

AStitiφ ↔ AStiti¬(AStiti¬AStitiφ).

(Precisely, this holds under the assumption that an agent does not perform an infinite
number of non-vacuous choices during a finite interval of time.)

Horty and Belnap [25] simplified the achievement stit into the deliberative stit

where the decisive choice of the action is at the current moment. The idea of
deliberativeness resides in that an agent is currently seeing to something but could
as well see to something else. The logic of the Chellas stit further simplifies the
deliberative stit by removing the negative part from the truth condition. Let us write
CStiti for Chellas’s stit operator. Its semantics is as follows:

M,h,m |= CStitiφ iff M,h′,m |= φ for every h′ such that h and h′

are in the same choice of i at m.

Hence the Chellas stit operator is a simple quantification over the histories that the
current choice of the agent allows. A trained logician may observe that ‘being in
the same choice cell’ is an equivalence relation and that every operator CStiti
therefore obeys the principles of modal logic S5.

While the axiom of monotony is invalid in BIAT logic, the corresponding formula
is valid for the Chellas stit:

CStiti(φ ∧ ψ)→ (CStitiφ ∧ CStitiψ). (33.7)

The striking principle of the Chellas stit that earned it its name (because Chellas
has been a strong advocate, see [44]) is:

�φ → CStitiφ. (33.8)

In words, an agent cannot avoid what is settled; in particular he can and does bring
about every tautology.
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Just as the achievement stit, both the Chellas stit operator and the deliberative stit
operator satisfy that refraining from refraining from doing is doing (even without
the assumption that an agent does not perform an infinite number of non-vacuous
choices during a finite interval of time).

A common feature of all STIT logics is that the agents’ choices are constrained to
be independent, while they are not necessarily so in BIAT logic. This can be nicely
characterised in the logic of the Chellas stit by the principle

(♦CStitiφ ∧ ♦CStitjψ) → ♦(CStitiφ ∧ CStitjψ), for i �= j. (33.9)

It follows that when i and j are different then ♦CStitiφ ∧ ♦CStitj¬φ is
unsatisfiable (because CStitiφ → φ is valid and because ♦ is a normal modal
operator). This principle can straightforwardly be extended from two agents i and j

to any finite number of agents and is central in Xu’s axiomatisation of the Chellas
stit ([4, Chap. 17]). In contrast, there is no BIAT formula corresponding to Eq. (33.9),
simply because the right hand side of the implication cannot be expressed (due to
the absence of an operator of historic possibility in the existing BIAT logics).

A somewhat surprising consequence of the independence of agents is the validity
of the following ‘make do implies settled’ principle:

CStitiCStitjφ → �φ, for i �= j. (33.10)

In words, i can make j see to it that φ only if φ is settled. This highlights that
unlike in BIAT, in STIT logics we cannot reason about the power of agents over
others. While this principle may be felt to be unfortunate from the point of view of
common sense, it accommodates well with social choice theory and game theory.
In [3] it is shown that the schema of Eq. (33.10) is actually equivalent to the schema
of Eq. (33.9) and that its generalisation to any finite number of agents can substitute
Xu’s axiom of independence in the axiomatisation of STIT.

We just mention that when combined with the operator of historical possibility,
the Chellas stit operator can express the deliberative stit operator DStiti as
follows:

DStitiφ
def= CStitiφ ∧ ♦¬φ.

The other way round, the Chellas stit operator can be expressed by DStiti as:

CStitiφ
def= DStitiφ ∨�¬φ.

The Chellas stit operator together with historical possibility also allows to
express by ♦CStitiφ that an agent has the ability to see to it that φ. The schema
CStitiφ → ♦CStitiφ is valid and provides a ‘do implies can’ principle.
While the aggregation principle is clearly invalid for that ability operator, it satisfies
monotony and the principle ♦CStiti⊤. Hence every CStiti is a normal modal
diamond operator (violating therefore Kenny’s constraint for ability operators).



33 Action Theories 601

33.2.3 Extensions

33.2.3.1 Temporal Operators

Broersen et al. [10] have added the temporal operators of linear-time temporal logic
LTL to the stit language. In that language they introduce another modality of ability
different from the above as ♦CStitiXφ, where X is the temporal ‘next’ operator.
They show that this definition of ability matches the ability operator of Pauly’s
coalition logic CL [37]. They also show that the further addition of the ‘eventually’
modality of LTL allows one to reduce alternating-time temporal logic ATL [1] to
that temporal extension of STIT.

Lorini recently extended the stit language by future tense and past tense operators
and provided a complete axiomatization for this temporal extension of stit [30].
The semantics for temporal stit used by Lorini is based on the concept of temporal
Kripke stit model which extends Zanardo’s concept of Ockhamist model [50] with
a choice component.

Ciuni and Zanardo extended the stit language by (restricted) branching-time
operators of computational tree logic CTL and proved a completeness result [16].

33.2.3.2 Mental Attitudes and Deontic Concepts

Starting with Kanger and Lindahl [29], many researchers working on logics of
agency were interested in deontic concepts such as the obligation or the permission
to act. Starting from the neighbourhood semantics for BIAT logic, Santos et al.

added a modal operator of obligation Obl to the language [12, 41, 42]. Then the
formula OblBiatiφ expresses that agent i is obliged to bring it about that φ.

Horty proposed to integrate obligation into branching-time structures by means
of a function idl which for every moment m selects the ideal histories among all the
histories running through m: those where all the obligations are fulfilled [24].

M,h,m |= Oblφ iff M,h′,m |= φ for every h′ such that h′ ∈ idl(m).

Much less work was done on the integration of mental attitudes into logics
of agency. For some first attempts see [9, 49]. More recently, some authors have
worked on the combination of epistemic logic and STIT logic by enriching the STIT

semantics with names for choices and action tokens [26, 33].

33.2.3.3 Resource-Sensitive Agency

In [38, 39], Porello and Troquard have proposed a variant of BIAT logic, where the
modality of agency is used to formalise agents using, transforming, and producing
consumable resources. Using Linear Logic in place of classical logic, one can write
sentences like

(egg⊗ egg⊗ Biati(egg⊗ egg ⊸ omelet)) ⊸ omelet,
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saying that if agent i transforms two eggs into one omelet, and two eggs are
available, then one omelet can be produced. On the other hand, omelet does not
follow from egg⊗ Biati(egg⊗ egg ⊸ omelet) as the resources are too few.

33.3 Action as ‘means+result’

The preceding analysis of actions was merely in terms of their results. Another
tradition studies not only the result, but also the means the agent employs to attain
that result. The logical form of such sentences is “i brings it about that φ by
doing α”.

If we identify “i does α” as “i brings it about that ψ”, for some appropriate
proposition ψ , then we end up with an analysis of a dyadic agency operator, as
studied by Segerberg [45].

We will not present that view in more detail here and just note that Segerberg’s
logic turns out to be an instance of the action theory that we are going to present
now. Instead of identifying events and actions with propositions, that theory views
them as ‘things that happen’, coming with some change in the world. It is then
natural to interpret events and actions as transitions between possible worlds, just
as computer programs running from an initial state to an end state. This view is taken
by propositional dynamic logic PDL, which has names to identify these transitions.
It is a view of action whose development has benefited from the synergies between
philosophy and the formal science of computer programming.

The availability of names for actions allows us to build complex actions from
atomic actions. The latter may then be identified with basic actions: actions that
make up an agent’s repertoire. In practice, the choice of granularity for the set of
these actions depends on the application at hand. While raising an arm could be
taken as a basic action when modeling a voting procedure, a choreographer might
want to decompose the raising of an arm into more basic performances of bodily
movements.

In the interpretation of actions, an edge between two possible worlds may stand
for two different things, depending on how the events of the world will unroll: first,
it might be an actual transition corresponding to the event actually taking place;
second, it might be a possible transition that does not actually occur. The logic that
we are going to present now mainly adopts the latter perspective.

33.3.1 Propositional Dynamic Logic PDL

Standard PDL has names for events. In this section we describe an agentive version

of PDL as used in several places in the artificial intelligence literature (e.g., [22, 35].
In that version, atomic actions take the form i:α where i is an agent and α is an
atomic event. Complex actions—alias programs—are then built recursively from



33 Action Theories 603

these atomic actions by means of the PDL connectives “;” (sequential composition),
“∪” (nondeterministic composition), “∗” (iteration), and “?” (test). For instance, the
complex event

π1 = (¬treeDown?; i:chop)∗; treeDown?

describes i’s felling a tree by performing the atomic ‘chop’ action until the tree is
down.

The language of PDL has modal operators Possπ where i is an agent and π is an
action. The formula Possπφ reads “there is a possible execution of π after which
φ is true”.3 Due to indeterminism, there might be several possible executions of π .
While Possπ quantifies existentially over these executions, the dual modal operator

Afterπ quantifies universally. It is definable from the former by Afterπφ
def=

¬Possπ¬φ.
While in the ‘action-as-result’ view of BIAT and STIT logics actions are

interpreted as propositions, in PDL an atomic action i:α is interpreted as a set of
edges of the transition relation: there is an edge from world w1 to world w2 that is
labeled i:α if it is possible to execute i:α in w1 and w2 is a possible outcome world.
The set of all these edges makes up the accessibility relation Ri:α associated to i:α.
Complex actions are then interpreted by operations such as relation composition in
the case of sequential composition “;” or set union in the case of nondeterministic
composition “∪”. For instance, our example action π1 is interpreted by the set of
couples (w,w′) such that one can go from w through finite chop-paths running
through possible worlds satisfying ¬treeDown and whose last possible world w′

satisfies treeDown.
The formula Possπφ is true at a world w if there is a couple (w,w′) in Rπ such

that φ is true at world w′:

M,w |= Possπφ iff M,w′ |= φ for some w′ such that wRπw′.

The formula Possπφ therefore expresses a weak notion of ability: the action π

might occur and φ could be true afterwards. The modal operators Possπ are normal
modal diamond operators. Hence the axiom Possπ (φ∨ψ)→ Possπφ∨Possπψ

is valid (violating therefore Kenny’s principle for ability operators).
As we have announced above, Segerberg’s dyadic agency operator can be viewed

as an instantiation of PDL. His atomic events α take the form δiψ where ψ is a
proposition. In that framework he argues for principles such as transitivity: when
i brings about φ2 by bringing about φ1 and i brings about φ3 by bringing about
φ2, does i bring about φ3 by bringing about φ1? This can formally be written as
(Afterδiφ1φ1 ∧ Afterδiφ2φ3)→ Afterδiφ1φ3.

3The standard notation is 〈π〉φ; we here deviate in order to be able to distinguish actual action
from potential action.
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33.3.2 Linear-Time Propositional Dynamic Logic PDL

Probably Cohen and Levesque were the first to adapt PDL in order to model actual
agency [17]. The modalities are interpreted in linear-time PDL models: every world
w has a unique history running through it. We distinguish modal operators of actual
action by writing them as Happπφ, read “π is performed, and φ is true afterwards”.
Then the following principle for basic actions characterises linear PDL models:

(Happi:α⊤ ∧ Happj :α′φ)→ Happi:αφ (33.11)

Cohen and Levesque’s linear PDL being only about actual action, Lorini and
Demolombe [31] proposed a logic combining PDL operators of potential action
Possi:α with linear PDL operators of actual action Happi:α . In this logic, that we
call here PDL with actual actions, the ‘do implies can’ principle takes the form of
the valid schema for atomic actions:

Happi:αφ → Possi:αφ. (33.12)

Another logic which allows us to represent both actual action and potential action is
the Dynamic Logic of Agency (DLA) [23]. That logic combines linear PDL operators
of actual action Happi:α with the historical possibility operator of STIT logic:
potential action is expressed by the formula ♦Happi:αφ which has to be read “there
is a possible history passing through the current moment such that agent i performs
α, and φ is true afterwards”.

An extension of DLA with program constructions of PDL, called Ockhamist
PDL (OPDL), has been recently proposed in [2]. It is shown that both PDL and
Full Computation Tree Logic CTL∗ can be polynomially embedded into OPDL.

33.3.3 Extensions

33.3.3.1 PDL Plus Knowledge and Belief

The first to add a modal operator of knowledge to a PDL-like logic was Moore [36].
This allowed him to formulate and study a principle of perfect recall (aka ‘no
forgetting’) KnowiAfterαφ → AfterαKnowiφ, as well as the converse principle
of ‘no miracles’ (aka ‘no learning’). Similar axioms for belief have also been
studied in the literature, in particular under the ‘denomination successor state
axiom for knowledge’ in artificial intelligence [43]. Principles of perfect recall
and ‘no miracles’ play a central role in public announcement logic and more
generally dynamic epistemic logics. These logics consider particular atomic events:
announcements of (the truth of) formulas. Such events do not change the world, but
only the agents’ epistemic states. An overview of dynamic epistemic logics can be
found in [47].
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33.3.3.2 PDL Plus Obligations

Meyer’s account extends PDL by a violation constant V that was first proposed by
Anderson. Agent i’s being forbidden to do basic action α is then reduced to all
possible executions of α by i resulting in possible worlds where V is true; and i’s
permission to do α is reduced to some execution of α resulting in a possible world
where V is false. In formulas:

Perm(i:α)
def= Possi:α¬V

Forb(i:α)
def= ¬Perm(i:α)

def= ¬Possi:α¬V def= Afteri:αV

One may account for the obligation to perform an action by stipulating that every
non-performance of α by i results in a violation state. It is however subject to debate
how the complement of an action should be defined (see e.g. the discussion in [8]).

33.3.3.3 Linear PDL Plus Belief and Intentions

Cohen and Levesque have analysed intention in linear PDL [17]. In their account
intentions are defined in several steps from the concept of strongly realistic

preference: among the worlds that are possible for an agent there is a subset the
agent prefers. There is a modal operator Prefi for each agent i, and Prefiφ reads
“i chooses φ to be true”.4 Such a notion of preference is strongly realistic in the
sense that belief logically implies preference. Furthermore, there are the temporal
operators “eventually” (noted F), “henceforth” (noted G), and “until” (noted U) that
are interpreted on histories of linear PDL models just as in linear-time temporal
logic LTL.

The incremental construction is then as follows. (1) Agent i has the goal

that φ if i prefers that φ is eventually true, formally Goaliφ
def= PrefiFφ.

(2) i has the achievement goal that φ if i has the goal that φ and believes that

φ is currently false, formally AGoaliφ
def= Goaliφ ∧ Beli¬φ. (3) i has the

persistent goal that φ if i has the achievement goal that φ and will keep that goal

until it is either fulfilled or believed to be out of reach, formally PGoaliφ
def=

AGoaliφ ∧ (AGoaliφ)U (Beliφ ∨ BeliG¬φ). (4) i has the intention that φ if i

has the persistent goal that φ and believes he can achieve that goal by an action of
his. The formal definition requires quantification over i’s actions; we do not go in
the details here.

Lorini and Herzig [32] complemented Cohen and Levesque’s approach by
integrating the concept of an attempt to perform an action. The central principle
there is “can and attempts implies does”: if i intends to (attempt to) perform α and
α is feasible then α will indeed take place. This principle is a sort of converse to the
‘do implies can’ principle.

4The original notation is Choicei instead of Prefi , but we preferred to avoid any confusion with
the concept of choice in stit theory.
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Part VII

Decision Theory and Social Philosophy



Chapter 34

Decision Theory: A Formal Philosophical
Introduction

Richard Bradley

Abstract Decision theory is the study of how choices are and should be made.in a
variety of different contexts. Here we look at the topic from a formal-philosophical
point of view with a focus on normative and conceptual issues. After considering
the question of how decision problems should be framed, we look at the both the
standard theories of chance under conditions of certainty, risk and uncertainty and
some of the current debates about how uncertainty should be measured and how
agents should respond to it.

34.1 Introduction: Making Decisions

Decision problems abound. Consumers have to decide what products to buy,
doctors what treatments to prescribe, hiring committees what candidates to appoint,
juries whether to convict or acquit a defendant, aid organisations what projects
to fund, and legislatures what laws to make. Descriptive decision theory aims to
provide explanations for, and predictions of, the choices that are actually made by
individuals and groups facing choices such as these. Normative decision theory, on
the other hand, addresses the question of what decisions they should make and how
they should make them: how they should evaluate the alternatives before them, what
criteria they should employ, and what procedures they should follow. Our focus will
be on the latter.

Decision problems arise for agents – entities with the resources to coherently
represent, evaluate and change their environments in various possible ways –
typically within the context of ongoing personal and institutional projects, activities
or responsibilities. These projects together with the environment, both natural and
social, provide the givens for the decision problems the agent faces: her resources
for acting, her information and often her standards for evaluating outcomes, as well
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as the source of the problems she must respond to. Lastly, for agents to face a
genuine decision problem they must have options: actions that they are capable of
performing and equally of foregoing if they so choose. Some examples will illustrate
the variety of forms such problems can take.

1. Take a bus? You have an appointment that you don’t want to miss. If you walk
you will arrive a little late. If you take the bus and the traffic is light, you should
arrive a little ahead of time. On the other hand if the traffic is heavy then you
will arrive very late, perhaps so late that the appointment will be lost. Is it worth
risking it?

2. Another slice of cake. I have a weakness for chocolate cake which is contributing
to a weight problem. My host offers me another slice of cake. Should I accept? I
don’t want to end up with diabetes or some other obesity related health problem,
but one slice of cake will make very little difference and bring pleasure to both
me and my host.

3. Free condoms. By supplying condoms free, rates of transmission of venereal
disease can be considerably reduced. But there is the possibility that it will
also encourage sexual activity thereby partially or even completely offsetting the
benefits of a decreased transmission rate by virtue of the increase in the number
of sexual liaisons.

4. Road Building. A new motorway linking two cities will reduce travelling time
between the two of them and increase trade, with benefits for inhabitants of both
cities. But those living close to the road will suffer from increased pollution and
noise, as well as a fall in the value of their houses. Should it be built?

Many decision problems of the kind displayed in these examples can be described
in the following way. A decision maker or decision making body has a number
of options before them: the actions they can take or policies they can adopt. The
exercise of each option is associated with a number of possible consequences, some
of which are desirable from the perspective of the decision maker’s goals, others
are not. Which consequences will result from the exercise of an option depends on
the prevailing features of the environment: whether traffic is light or heavy, how
overweight I am, whether land prices are falling, and so on.

Let us call the set of environmental features relevant to the determination of the
consequence of the exercise of any of the options, a state of the world. Then a
decision problem can be represented by a matrix showing, for each available option,
the consequence that follows from its exercise in each relevant state of the world.
In our first example, for instance, taking the bus has the consequence of having to
buy a ticket and arriving late in the event of heavy traffic and paying for a ticket and
arriving early in the event of light traffic. This decision problem can be represented
by a simple table such as the following:
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More generally if A1 through Am are the m options open to the decision maker,
s1 through sn are n possible states of the world (these must be mutually exclusive
and exhaust all the possibilities), and C1

1 through Cm
n are the m × n consequences

that might follow from the choice, then a decision problem can be represented by a
state-consequence matrix of the following kind:

Heavy traffic Light traffic

Take a bus
Arrive late

Pay for a ticket

Arrive early

Pay for a ticket

Walk
Arrive a little late

No ticket needed

Arrive a little late

No ticket needed

What choices should be made when facing a decision problem of this kind
will depend on the circumstances the agent faces and in particular the amount of
information she holds about its various features. Standard presentations distinguish
between conditions of certainty, when the true state of the world, and hence the
outcome of the action, is known; risk or uncertainty, when either the probabilities
of the outcomes associated with an option are known (risk) or the agent can
reach a judgement as to how probable they are on the basis of the information
she holds (uncertainty); and ignorance, when nothing is known about the states.
There are however many ways of butchering the beast and expositors draw the line
between these conditions in different places (and indeed sometimes use these terms
differently). Intermediate cases are important too, most notably when the decision
maker is partially ignorant of the relevant probabilities – a situation commonly
termed ambiguity.

When the decision maker knows the true state of the world, decision theory says
that she should pick the option she considers best. When she is uncertain as to
the actual state of the world, she must make a judgement as to how probable it
is that each of the possible states is actually the case and pick the option whose
expected benefit is greatest relative to these probability judgements. For instance
suppose that I consider the probability of heavy traffic to be one-half and the benefit
or desirability of the various possible consequences to be as below:

Heavy traffic Light traffic

Take a bus −2 1

Walk −1 −1

Then the expected benefit of taking the bus is a probability weighted average of
the benefits of its possible consequences, i.e. (−2 × 0.5) + (1 × 0.5) = −0.5. On
the other hand, walking has a certain benefit of −1. So in this case I should take the
bus. But had the probability of heavy traffic been a lot greater, then walking would
have been the better action.

More formally, let P be a probability measure on the states of the world and u

a utility measure on consequences (we will say more about what these measures
are and where they come from in due course). Then a state-consequence matrix,
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Table 34.1

State-consequence matrix
States of the world

Options s1 s2 . . . sn

A1 C1
1 C1

2 . . . C1
n

. . . . . . . . . . . . . . .

Am Cm
1 Cm

2 . . . Cm
n

such as that of Table 34.1, induces a probability-utility matrix in which options are
represented as random variables that assign a utility value to each state of the world
(intuitively, the utility of the consequence of exercising the option in question in that
state).
So represented, each option has an expected value that is jointly determined by
the functions u and P . The expected value of option A1, denoted by E(A1) is, for
instance, u(C11) · P(s1) + . . . + u(C1n) · P(sn). More generally, if the number of
possible states of the world is finite1:

E(Ai) =
n∑

j=1

u(Ci
j ) · P(sj )

Now what standard decision theory recommends is choosing the option with the
highest expected value. This is known as the maximisation of expected utility
hypothesis.

We will examine the maximisation hypothesis in greater detail later on. First,
however, we look at a number of issues regarding the formulation and representation
of decision problems. In the subsequent sections we look at the relation between
preference and choice on the one hand and preference and utility on the other,
setting aside complications arising from uncertainty. In the third section we return to
decision making under uncertainty. In the final section we look at decision making
under ignorance.

34.2 Framing Decision Problems

Decision theory makes a claim about what option(s) it is rational to choose, when
the decision problem faced by the agent can be represented by a state-consequence
matrix of the kind exemplified by Table 34.1. It is very important to stress that the
theory does not say that you must frame decision problems in this way. Nor does it
say that agents will always do so. It just says that if they are framed in this way, then
only options which maximise expected benefit should be chosen. Nothing precludes
the possibility that the same decision situation can or must be framed in different
ways. This is true in more than one sense.

1The restriction to a finite number of states of the world is made for simplicity, but the expected
value will still be well defined even if we drop it.
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Firstly, it may be that the problem is not naturally represented by a state-
consequence matrix. When I consider whether or not to have another slice of cake,
for instance, it is not so much my uncertainty about the consequences of doing
so that makes the choice difficult for me, but the contrast between desirability of
the short term consequences (good) and the long-term ones (bad). So this problem
should be given a different representation. We discuss this issue below in Sect. 34.2.

Secondly, the problem may not be representable by any kind of decision matrix
at all because we are unable to identify the various elements of it: what our options
are, what the relevant factors are that determine the outcome of each option, or what
the consequences are of exercising one or another of the identified options when
these factors are present. We discuss this problem in Sect. 34.4.

Thirdly, sometimes no structuring at all may be required; for instance, when
certain actions are morally or legally obligatory or when habit dictates the course
you take. These cases don’t disprove the principle of maximising expected benefit.
The point is rather that when the outcome of an action is certain, deliberation is
redundant: the high probability of particular events or the great desirability (or
otherwise) of particular consequences swamp the contribution that other factors
might make.

34.2.1 Locations of Benefit

A two-dimensional decision matrix gives a two factor representation of a choice
problem; in Table 34.1, for instance, these are just the states of the world and the
consequences that follow from exercising an option in that world. But the state of
the world in which a consequence is realised is not the only factor that matters to our
assessment of its significance: this can also depend on who is affected by the actions
and at what time and place. As John Broome [10] puts it, the good associated with
an outcome of the exercise of an option has a number of different locations: people,
places, times, qualities and states of the world. The desirability of being served cold
beer, for instance, depends on the location of this service: it’s good if the beer is
served to me, in the evening, with a smile and when I have not had a few too many
already; bad when it’s for my children, or first thing in the morning, or during a
philosophy lecture.

Locations of benefit are easily confused with perspectives on benefit, because
many of the sorts of things that serve as the former, also serve as the latter.
A perspective is a standpoint from which a judgement is made. You and I may
reach different judgements because our standpoint differs: we might have different
evidence and reasoning skills, perhaps different interests and biases, that lead us
see things differently. Our standpoint also varies with time – as we get older, for
instance, our aesthetic standards ‘mature’ – and sometimes with place and social
role. But the way in which benefit varies with perspective need not be the same
as the way it varies with location. I might now judge that it would be good if I
were seen by a dentist next week. On the other hand, next week I might judge that
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the dentist is best avoided. Thus what I judge now to be the benefit next week of
making an appointment now to see the dentist will be judged next week as anything
but a benefit (even though the benefit, as judged from any temporal standpoint, does
not depend when it obtains).

A consequence, in this more refined picture, is something that happens at a multi-
dimensional location. Any one of these dimensions may be used to construct a two-
factor matrix representation of a decision problem. For instance, when the problem
is like the cake-eating one we can work with a time-consequence decision matrix
like the following, in which the consequences of the relevant options (having or
foregoing another slice of cake) at each relevant point in time are displayed.

Times

Actions Now Future

Another slice of cake
Pleasure from eating

Host will be pleased
Risk of obesity and ill-health

Forego more cake
Forego pleasure

Disappoint host
Likelihood of good health

A table of this kind makes it easy for the decision maker to focus on the question
of how to weigh up present and future costs and benefits. Similar tables can be
drawn up to assist reasoning with other locations, having different columns for the
different people affected by the actions or the places at which the consequences
occur, for instance. In the road building example for instance the salient locations
are the people affected by the possible policy decisions. A person-consequence table
helps the decision maker focus on the issue of the distribution of the benefits and
costs to different people associated with each policy.

How decisions depend on the distribution of benefit across different dimensions
of locations has been studied in different branches of decision theory: across states
in the theory of decision making under uncertainty, across people in social choice
theory, across time in intertemporal decision theory, across different qualities in
multicriteria decision theory and so on. Moreover, the formal similarities between
decision problems involving different locations has been a rich source of inspiration
for decision theorists and has encouraged abstract examination of assumptions about
the relationship between evaluations of consequences, locations and options. For the
rest of this essay however I will focus on the decision problems in which uncertainty
about the state of the world is the central feature. In fact the focus will be even more
narrow than this, for I will say nothing about the very important case in which the
events of which we are uncertain are the actions of other agents, leaving treatment
of this to the chapter on game theory. Nonetheless many of the basic lessons drawn
from the discussion here will apply in these other fields as well.
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34.2.2 Choosing a Frame

It is typically possible to represent the decision problem one faces in more than one
way: for instance, by location-consequence matrices that differ with respect to the
locations they pick out or with regard to how finely the locations and consequences
are individuated. In particular, they may be specified more or less finely or precisely,
with the implication that a decision problem can always be refined (or coarsened)
by adding detail to (or removing detail from) the description of the states and the
consequence. This raises the question as to whether there are better and worse
ways of representing a decision problem and if so, what these are. There are two
claims that I want to make in this regard: firstly that not all representations of a
decision problem are equally good and, secondly, that many representations are
nonetheless permissible. This latter point is of some importance because it follows
that an adequate decision theory must be ‘tolerant’ to some degree of the manner in
which the problem is represented and that the solution it gives to a decision problem
should be independent of how the problem is represented.

Let us start with the first claim, that some representations of a problem are
better than others. A representation of a decision problem should help us arrive
at a decision by highlighting certain features of the problem and in particular those
upon which the decision depends. There are at least two considerations that need to
be traded off when talking about the usefulness of a representation: the quality of the
decisions likely to be obtained and the efficiency of obtaining them. To make a good
decision, a decision maker must give appropriate weight to the factors upon which
the decision depends. In deciding whether to take an umbrella or not, for instance,
I need to identify both the features of the possible outcomes of doing so that matter
to me (e.g. getting wet versus staying dry) and the features of the environment upon
which these outcomes depend (e.g. the eventuality of rain). Furthermore I need to
determine how significant these features are: how desirable staying dry is relative to
getting wet, how probable it is that it will rain, and so on. If my representation of the
decision problem is too sparse I risk omitting features that are relevant to the quality
of the decision. If I omit possible weather states from my representation of the
umbrella-taking decision, then I will fail to take into account factors – in particular
the probability of rain – upon which the correctness of the decision depends. So,
ceteris paribus, a representation that includes more relevant features will be better
than one that does not.

One way of ensuring that no relevant features are omitted is simply to list all the
features of possible outcomes and states of the world. But drawing up and making
use of such a list is clearly beyond our human capabilities and those of any real
agents. Reaching judgements costs in terms of time and effort. Representations that
include too many features will result in inefficient decision making requiring more
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resources than is justified.2 So, ceteris paribus, a simpler representation will be
better than a more complicated one.

Achieving a good trade-off between accuracy and efficiency is not just a matter of
getting the level of complexity right. It is also a matter of identifying the most useful
features to represent explicitly. It is useful to represent a feature if it is (sufficiently)
relevant to the decision and if we can determine what significance to attach to it. A
feature of the state of the world or of a consequence is relevant to a decision problem
if the choice of action is sensitive to values that we might reasonably assign to these
features. For instance, whether it is desirable to take an umbrella with me or not will
be sensitive to the probability of rain, but not sensitive at all to the probability of a
dust storm on Mars.

The second aspect of usefulness is equally important. A representation should
be appropriate to our informational resources and our cognitive capabilities in
specifying features of the environment that we are capable of tracking and features
of consequences that we are capable of evaluating. If the weather is relevant to my
decision as to whether to take an umbrella or not, but I am incapable of reaching a
judgement on the likelihood of rain or (perhaps I have no information relevant to the
question or I don’t understand the information I have been given) then there is little
point in framing the decision problem in terms of weather contingencies. A good
representation of a problem helps us to bring the judgements we are able to make to
bear on the decision problem.

It follows of course that whether a framing is a useful one or not will depend on
properties of the decision maker (and in more than one way). Firstly whether the
features of the problem it represents are relevant depends on what matters to the
decision maker and hence what sort of considerations her decisions will be sensitive
to. And secondly whether a representation facilitates decision making will depend
on the cognitive abilities and resources of the decision maker. Both of these will vary
from decision maker to decision maker and from one time and context to another.
It is clearly desirable therefore that a decision theory be ‘representation tolerant’ to
as great a degree as possible, in the sense of being applicable to a decision problem
irrespective of how it turns out to be useful for the decision maker to represent it.

34.3 Modelling Uncertainty

The modern theory of decision making under uncertainty has its roots in eighteenth
century debates over the value of gambles, with Daniel Bernouilli (in [4]) giving
the earliest precise statement of something akin to the principle of maximising
expected utility. The first axiomatic derivation of an expected utility representation
of preferences is due to Frank Ramsey [27] whose treatment in many way surpasses
those of later authors. But modern decision theory descends from Savage, not

2What level of resources is justified will of course depend on what is at stake.
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Ramsey, and it is in his book ‘The Foundations of Statistics’ that we find the first
rigorous simultaneous derivation of subjective probabilities and utilities from what
are clearly rationality conditions on preference.

It is to Savage too that we owe the representation of the decision problem faced
by agents under conditions of uncertainty that is now standard in decision theory.
Savage distinguishes three types of object: states, consequences and actions. States
of the world completely capture all the possible facts that might prevail in the
decision situation that affect the outcome of acting. Consequences, on the other
hand, are the features of the world that matter to the decision maker, such as that he
is in good health or wins first prize in a beauty contest or is allowed to sleep late
on a Sunday morning. Actions are the link between the two, the means by which
different consequences are brought about in different states of the world. Formally,
for Savage, they are just functions from states to consequences.

Although this tripartite distinction is natural and useful, Savage imposes some
quite stringent conditions on these objects and the relationships between our
attitudes to them. Firstly, states are required to be causally independent of the action
the agent performs, while consequences are causally dependent on both the action
and the state of the world. Secondly, the desirability of each consequence is required
by Savage to be independent of the state of the world in which they are realised and
of our beliefs about them, and vice versa (Binmore [5] calls this Aesop’s principle).
Both these conditions must hold if the representation of a decision problem by the
kind of state-consequence matrix given in Table 34.1 can be transformed into a
probability-utility matrix of the kind given by Table 34.2. The first ensures that the
same probabilities can be applied to the states in comparing acts and the second that
the utilities attached to consequences are state-independent.

The upshot is that Savage’s theory is not partition independent in the way that I
argued was desirable. Decision makers must represent the problems they face in
a way which respects the conditions of probabilistic independence of the states
from the acts and desirabilistic independence of the consequences from both the
states and the acts. It is not always natural for us to do so. For instance in our
earlier example of a decision as to whether to walk or take a bus we considered
consequences such as paying for a ticket. But the desirability of such consequences
are not state-independent. In particular they depend on all the possible contingencies
that might arise, such as a medical emergency or an unexpected credit card bill, that

Table 34.2

Utility-probability matrix
States of the world

Options P(s1) . . . P(sn)

A1 u(C1
1 ) . . . u(C1

n)

. . . . . . . . . . . .

Am u(Cm
1 ) . . . u(Cm

n )
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require me to spend money. If too many of them arise a ticket would simply be
unaffordable, if not many do it may be a trivial expense.3

34.3.1 State Uncertainty

A second feature of the representation of decision problems by a probability-utility
matrices requires discussion. For Savage, an agent’s uncertainty about what to do
derives entirely from her uncertainty about what the state of the world is. This
‘fundamental’ uncertainty is captured by a probability function on the states of the
world, measuring the degrees to which the agent judges or believes each state to be
the actual one. There are two criticisms of this view of uncertainty that should be
considered.

Firstly, the Savage model seems to ignore other forms of uncertainty and
in particular the uncertainty that we might have regarding what value to attach
to consequences and the uncertainty we might have regarding what actions are
available. Both will be examined in more detail below

Secondly, there seems to be a significant difference between being unsure about
when someone will arrive because one lacks precise information about their time
of departure, traffic conditions, the route they have taken, and so on, and having
absolutely no idea when they will arrive because you don’t know when or whether
they have left, whether they are walking or driving or indeed whether they even
intend to come. In the former case, the information one holds is such as to make
it possible to assign reasonable probabilities to the person arriving within various
time intervals. In the latter, one has no basis at all for assigning probabilities, a
situation of radical uncertainty that we previously termed ignorance. It may be rare
for us to be totally ignorant, but situations of partial ignorance (or ambiguity), in
which the decision maker is unable to assign determinate probabilities to all relevant
contingencies, are both common and important.

More generally, according to some critics Savage’s representation fails to
distinguish between the different levels of confidence we might have, or have
reason to have, in our probability judgements. Compare a situation in which we
are presented with a coin about which we know nothing and one in which we
are allowed to conduct lengthy trials with it. In both situations we might ascribe
probability one-half to it landing heads on the next toss: in the first case for reasons
of symmetry, in the second because the frequency of heads in the trials was roughly
50%. It seems reasonable however to say that our probability ascriptions are more
reliable in the second case than the first and hence that we should feel more confident

3Savage was perfectly aware of this objection and drew an important distinction between small-
world and grand-world decision problems. But he never produced a theory which, to his own
and others satisfaction, explained how to convert grand-world problems into small-world ones
satisfying the two requirements.
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in them. To take this into account our state of uncertainty might be represented
not by a probability function but by a set of reliability judgements over possible
probabilities, or more formally, by a function R : � → [0, 1], defined on a set
� = {pi} of probability functions on the set of events, and such that

∑
i R(pi) = 1.

These reliabilities could be incorporated into decision making in various ways, but
the most natural perhaps is to prescribe choice that maximises reliability weighted
expected utility. It is not difficult to see that such a rule is formally equivalent to
maximising expected utility relative to the probability function p̄ = ∑

i pi .R(pi).
This is not an objection to introducing second-order probabilities, but merely to
point out that use of reliabilities is more natural in the context of belief formation,
than in decision making.

34.3.2 Evaluative Uncertainty

The distinctions between certainty, risk and uncertainty are standardly used only to
characterise the agent’s state of knowledge of the world. But it is equally important
to distinguish cases in which consequences have known, or given, objective values
and those in which these values are either unknown and the decision maker must
rely on subjective evaluations of them, or do not exist and the decision maker
must construct them. The possibility of evaluative uncertainty is typically ignored
by decision theorists, because of their (often unconscious) attachment to the view
that what makes a consequence valuable or otherwise (to the agent) is just that she
desires it to some degree, or that she prefers it to a greater or lesser extent to other
consequences. If this view were correct, talk of evaluative uncertainty would be
misleading as one is not normally uncertain about what one’s own judgement on
something is (just what it should be).

There are however at least two ways in which one can be uncertain about
the value to attach to a particular consequence or, more generally, whether one
consequence is preferable to another. Firstly one may be uncertain about the factual
properties of the consequence in question. If possession of the latest Porsche model
is the prize in a lottery one is considering entering, one may be unsure as to how fast
it goes, how safe it is, how comfortable and so on. This is uncertainty of the ordinary
kind and, if one wishes, it can be ‘transferred’ (subject to some qualifications
discussed in the next section) from the consequence to the state of the world by
making the description of the consequence more detailed. For example, the outcome
of the lottery may be regarded as having one of several possible consequences,
each an instantiation of the schema ‘Win a car with such and such speed, such and
such safety features and of such and such comfort’, with the actual consequence of
winning depending on the uncertain state of the world.

Secondly one can be unsure as to the value of a consequence, not because of
uncertainty about its factual properties, but because of uncertainty about whether
these properties are valuable or as to how valuable they are. One may know all the
specifications, technical or otherwise, of the latest Porsche and Ferrari models, so
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that they can be compared on every dimension, but be unsure whether speed matters
more than safety or comfort. Once all factual uncertainty has been stripped from
a consequence by detailed description of its features, one is left with pure value
uncertainty of this kind.

When we assume that values are given, we take this uncertainty to have been
resolved in some way. This could be because we assume that there is a fact of the
matter as to how good a consequence is or as to whether one outcome is better
than another, a fact that would be detailed by the true axiology. But it could also be
because the description of the decision problem itself comes with values ‘built-in’.
For instance, in a problem involving a decision between two courses of medical
treatment, it may be that a limited number of value considerations apply in the
assessment of these treatments: number of patients saved, amount of discomfort
caused, and so on. The decision theorist will be expected in such circumstances to
apply only the relevant values to the assessment of the options, and to set aside any
other considerations that he or she might ‘subjectively’ consider to be of importance.
A large number of applications of expected utility theory take place in this sort of
environment, when the issue of what values to apply have been settled by prior
public policy debate.

In many situations, however, values are not given in any of these ways and the
agent may be uncertain as to the value she should attach to the relevant prospects.
In these circumstances the utility that the agent assigns to a consequence will reflect
a subjective value judgement expressing her evaluative uncertainty. What kind
of judgement this is a matter of considerable controversy, in particular regarding
whether it expresses beliefs about factual properties of the consequences on which
its desirability depends, beliefs about the objective normative properties instantiated
by the consequences, or a judgement of a different kind to a belief. Formally, on the
other hand, the only matter of concern is whether such judgements are adequately
captured by utility ascriptions. If they are (as I believe), then considerations of
evaluative uncertainty will have interpretative, but not formal, implications for
expected utility theory. If not, new formal tools will need to be developed.

34.3.3 Option Uncertainty

In the state-consequence representation of a decision problem that we started
with, actions were associated with definite consequences, one for each state of the
world. But in real decision problems we are often unsure about the relationship
between actions, worlds and consequences in essence because we do not know what
consequence follows in each possible state of the world from a choice of action. For
instance, we may be uncertain as to whether taking an umbrella will certainly have
the consequence of keeping us dry in the event of rain. Perhaps the umbrella has
holes, or the wind will blow it inside out or the rain will be blown in from the
sides. We can put this difficulty in slightly different terms. If an action is defined

as a particular mapping from states to consequences, then no uncertainty can arise
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about its consequences. But what we will then be unsure about is which actions are
actually available to us i.e. which of the various hypothetical actions are real options.
Whether we describe the problem as uncertainty about what options we have or as
uncertainty about the consequences, in each state of the world, of exercising any of
the options we know we have, is of little substance, and I shall use the same term –
option uncertainty – to denote both.

Decision theorists tend to ‘push’ this uncertainty into the states of the world, by
refining their description until all such contingencies are taken care of. They will
regard a state of the world as insufficiently described by the absence or presence
of rain, and argue that one needs to specify the wind speed and direction, the
quality of the umbrella, etc. There are two reasons why this strategy will not
work on all occasions. Firstly because, according to our best scientific theories,
the world is not purely deterministic. When the conditions under which a coin is
tossed do not determine whether a coin will land heads or tails, for instance, the
act of tossing the coin does not have a predictable consequence in each state of
the world. And secondly, even if we are in a purely deterministic set-up, it may be
subjectively impossible for the decision maker to conceive of and then weigh up all
the relevant contingencies or to provide descriptions of the states of the worlds that
are sufficiently fine-grained as to ensure that a particular consequence is certain to
follow, in each state, from the choice of any of the options open to them.

There are three strategies for handling this problem. One way is to use descrip-
tions of the states of the world that identify the set of the conditions sufficient for
the determination of the consequence, given the performance of the action, without
actually enumerating the conditions. For instance, instead of defining actions in
terms of states and consequences, we could take actions and consequences as our
primitives and then define states of the world as consequence-valued functions
ranging over actions. Similar strategies are advocated in the philosophical literature.
Lewis [25], for instance, treats states as ‘dependency hypotheses’, which are just
maximally specific propositions about how consequences depend causally on acts,
while Stalnaker’s [32] suggests that a state of the world be denoted by a conjunction
of conditional sentences of the form ‘If action A were performed then consequence
C would follow; if action A’ were performed then consequence C’ would follow;
if . . . ’. By pursuit of any version of this strategy, option uncertainty is transformed
into a particular kind of state uncertainty, namely uncertainty as to the true mapping
from actions to consequences or as to the truth of the conjunction of conditionals
that describes it.

A second strategy is to coarsen the description of the consequences to the degree
necessary to ensure that we can be certain it will follow from the exercise of an
option in a particular state. As Richard Jeffrey [18] points out, consequences may
be identified by nothing more than act-state pairs, such as taking an umbrella in the
rain and taking it in the snow. In his approach the outcomes of acts are taken to be
logical consequences of act-state descriptions, but the coarsening of consequence-
descriptions necessary to ensure option certainty need not be as radical as this.

Pursuit of this strategy converts option uncertainty, not into ordinary uncertainty
about the state of the world, but into uncertainty about the desirability of the
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consequence as described – one part of what I previously called value uncertainty.
We may be sure that the act of taking an umbrella will have the consequence in
a rainy state of being able to protect ourselves against the rain by opening the
umbrella. But whether this is a good thing or not depends on contingencies that
by assumption we are unable to enumerate or identify. How bad it is to get soaked,
for instance, depends on how cold the rainwater is. And rain temperature may be a
variable about whose determinants we know very little. Whatever utility value we
assign to the coarse-grained consequence of having an umbrella as rain-protection
will embody this uncertainty and hence should be susceptible to revision.

The last strategy to consider, also originating in Richard Jeffrey’s work, is the
most radical and involves embracing option uncertainty rather than trying to reduce
it to some other kind of uncertainty. This requires to think of actions not as functions
from states to consequences, but as probability distributions over consequences. We
will discuss this strategy in greater detail later on when presenting Jeffrey’s theory.

34.4 Choice and Preference

Earlier we claimed that when a decision maker faces no uncertainty she should
choose the option with the best consequences. There are two basic assumptions
involved here. The first is Consequentialism: the idea that the only thing relevant
to choice in these circumstances is the outcome or consequence of so choosing
and not any feature of the means or process by which this outcome is achieved.4

The second assumption is that there exists some value standard applicable to the
outcomes which licenses talk of one or more of them being best. Jointly they entail
that the decision maker ought to choose the action with the best consequence.

The value standard can have different interpretations, which in turn will imply
different readings of the ought expressed by the choice principle. When the relevant
standard is a subjective one, such as that based on the decision maker’s preferences,
the ought expresses a requirement of rationality, namely that she make a choice that
is consistent with her subjective evaluation of its outcome. When the standard is an
objective one, the prescription is to choose the action that has the outcome that is
objectively best.

4It should be noted that the assumption of Consequentialism does not rule out a role for non-
consequentialist considerations, in particular in determining the composition of the set of options.
For instance if some actions are not permissable because they would violate someone’s rights then
they would be excluded from the option set. What it does assume is that such non-consequentialist
considerations do not enter beyond this point.
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34.4.1 Preference Relations

Let us try and make these claims more exact. First, some basic vocabulary. Let
X = {α, β, . . .} be a set of objects and let R be a binary relation on X. We say that
R is:

1. Transitive iff for all α, β, γ ∈ X, αRβ and βRγ implies that αRγ (and
intransitive otherwise)

2. Complete iff for all α, β ∈ X, αRβ or βRα (and incomplete otherwise)
3. Reflexive iff for all α ∈ X, αRα (and irreflexive otherwise)
4. Symmetric iff for all α, β ∈ X, αRβ implies βRα

5. Antisymmetric iff for all α, β ∈ X, αRβ and βRα implies that α = β

6. Acyclic iff for all α1, α2, . . . , αn ∈ X, α1Rα2, α2Rα3, . . . , αn−1Rαn implies
that not αnRα1.

In conditions of certainty, the assumption of Consequentialism implies that an
option may be identified with the consequence of choosing to exercise it. So we
can let the same set of alternatives represent both the options amongst which the
agent must choose and the outcome of doing so. (A note of caution: to say that
the consequence is certain is not to say that it is fully specified, so there may be
disguised uncertainty.)

The decision maker’s value standard is represented by a binary relation 5 on this
set. Intuitively ‘α 5 β’ means, on a subjective interpretation, that β is not preferred
to α; on an objective one, that β is not better than α . In accordance with standard
terminology I will call 5 a weak preference relation, without meaning thereby to
impose a subjective interpretation. The strict preference relation ≻, indifference
relation ≈, and comparability relation ⊲⊳, all on the set of alternatives X, are then
defined by:

1. α ≻ β iff α 5 β and not β 5 α

2. α ≈ β iff α 5 β and β 5 α

3. α ⊲⊳ β iff α 5 β or β 5 α.

It will be assumed throughout that 5, ≈ and ⊲⊳ are all reflexive, that ≈ and ⊲⊳
are also symmetric, and that ≻ is a symmetric. It is common to assume that these
relations are weak orders, i.e. that they are both transitive and complete. But the
status of these two properties is very different. There are compelling grounds, on
both subjective and objective interpretations, for assuming transitivity. Some authors
have even argued that it belongs to the logic of comparative relations that they should
respect it (e.g. Broome [10]). Completeness on the other hand cannot plausibly be
said to be a requirement of rationality. Not only are we often unable to reach a
judgement or don’t need to, but on occasion it would be wrong of us to do so,
e.g. when we expect to receive decisive information in the near future. Nor are there
compelling grounds for supposing that objective betterness is complete: some goods
may simply be incommensurable.
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Why then do decision theorists so often assume completeness? One reason is that
it makes the business of proving representation theorems for decision principles
a lot easier mathematically speaking. A second reason lies in the influence of
the Revealed Preference interpretation of decision theory. On this view having a
preference for one alternative over another just is to be disposed to choose the former
over the latter when both are available. Since agents are plausibly disposed one way
or another in any choice situation (some choice is made after all), it follows that
revealed preferences must be complete. But this interpretation has little to offer
decision theory construed as either an explanatory or a normative theory. For if
preferences are simply choice dispositions then citing someone’s preferences cannot
provide either an explanation or a justification of what they choose.5

The third argument, that completeness should be regarded as a requirement of
coherent extendability, is the most cogent. The idea is this: although it is not a
requirement of rationality that we should have reached a preference judgement
regarding all prospects, it should nonetheless be possible to extend our current set
of preferences to one which is both complete and consistent by reaching judgements
about new prospects. If our current judgements are coherently extendible, then
we can be sure that reaching new ones will not require a revision of our current
preferences in order to retain consistency. Or to put it the other way round, if our
preferences are not coherently extendible then as we reach judgements on prospects
about which we formerly had no opinion, we run the risk of finding ourselves with
an inconsistent set of preferences. Indeed we are sure to if we make enough new
judgements. This does not give us a decisive reason to conform to the requirement
of coherent extendability, as inconsistency can be avoided by revising some of our
old judgements when we make new ones. But it does suggest that, ceteris paribus,
it is pragmatically desirable to do so.

Suppose we accept the case for conformity with the requirement of coherent
extendability. Then by studying the case of complete preferences we can derive a
set of constraints on our beliefs and desires that must be fulfilled in order that they
too be coherently extendible. For instance, if we can show that the rationality of
a complete set of preferences implies that our beliefs must have some particular
property P, then we can conclude that our (incomplete) beliefs must have the
property of being extendible to a set of beliefs having P.

34.4.2 Choice

Let X be a finite set of alternatives and C be a choice function on ℘(X): a mapping
from subsets A ⊆ X to subsets ∅ ⊂ C(A) ⊆ A. The choice function C will
be said to be specific iff its range is restricted to singleton sets. Intuitively C(A)

5To be clear, it is the ontological doctrine just described that should be rejected, not the
associated epistemological doctrine according to which knowledge of preferences ultimately rests
on observations of choice. The latter, in contrast to the former, has much to recommend it.
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is the set of objects from the set A that could be chosen: could permissibly be so
in normative interpretations, could factually be so in descriptive ones. When C is
specific a further interpretation is possible, namely that C(A) is the object observed
to be chosen from the set A.

We are especially interested in the case when a choice function C can be said to
be based on, or determined by, a weak preference relation 5. A natural condition
for this being the case is that an object is chosen from a set if and only if no other
object in the set is strictly preferred to it. Formally:

(PBC) α ∈ C(A)⇔ ¬∃β ∈ A : β ≻ α

PBC is sometimes called the Maximality condition. With a qualification that will
be made a little later on, PBC seems necessary for preference based choice. But
is it sufficient? Sen [30] suggests to the contrary that it is not enough that nothing
be (comparably) better than what is chosen, it must also be the case that what is
chosen is (comparably) no worse than any alternative. More formally, preference-
based choice should satisfy Strong PBC or as it is more commonly called:

(Optimality) α ∈ C(A) ⇔ ∀β ∈ A, α 5 β

To examine these proposals let us use the weaker criterion of maximality to derive
a set-valued function on ℘(X) from the agent’s preferences by defining, for all
A ∈ ℘(X) :

C5(A) := {α ∈ A : ¬∃β ∈ A, β ≻ α}

Then:

Theorem 1

(a) C5 is a choice function iff 5 is acyclic

(b) Choice function C5 satisfies Optimality⇔5 is complete.

(c) Choice function C5 is specific⇔≻ is complete.

The proof of (a) and (b) can be found in Sen [30], (c) follows immediately.
Two comments. Firstly, Theorem 1(b) shows that to require satisfaction of Strong

PBC is to make completeness of an agent’s preferences a condition for their
choices to be preference-based. But this seems unreasonable. As we have seen,
completeness has little normative appeal as a preference condition and someone
with incomplete preferences whose choices satisfy PBC can be said to be making
these choices in the light of their preferences to the maximum extent possible. On
the other hand, as Theorem 1(c) shows, neither satisfaction of PBC nor of Strong
PBC is sufficient for preference to determine the choice of a specific alternative.
For when two alternatives are incomparable or indifferent then both are permissible
choices. The upshot is that we should regard satisfaction of PBC as the mark of
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preference-based choice, noting that only when an agent’s strict preferences are
complete will this condition suffice for preference to determine choice completely.

Secondly, there are various ways of giving substance to the notion of being
preference-based. On an explanatory reading, it means that the decision maker’s
preferences explain the choices that she makes by providing the reasons for them.
On the other hand, on a normative reading, it means that the decision maker’s
preferences rationalise or justify the choices that she makes. Revealed Preference
theorists regard neither of these interpretations as warranted and advocate a third,
purely descriptive reading, according to which ‘preference-based’ means no more
than that a choice function can be represented by a preference relation. The first two
interpretations give primacy to preferences, with PBC doing service as a principle
by which we infer properties of choice from properties of preferences. The last
interpretation, on the other hand, gives primacy to the properties of choices and to
the problem of deriving properties of preferences from them.

The main condition of Revealed Preference theory is the Weak Axiom of
Revealed Preference (WARP), which says that if α should be chosen from a set
containing β, then whenever β should be chosen and α is available, α should also
be chosen. Formally, we follow Sen [30] in breaking this down into two conditions:

Axiom 2

(WARP) Suppose α, β ∈ B ⊆ A. Then:

(Condition Alpha) If α ∈ C(A), then α ∈ C(B)

(Condition Beta) If α, β ∈ C(B) and β ∈ C(A), then α ∈ C(A)

Theorem 3 Let C be a choice function on ℘(X). Then:

(a) C satisfies Alpha if there exists a relation 5 on X such that C = C5
(b) C satisfies WARP iff there exists a weak order 5 on X such that C = C5.

Proof (a) Suppose that there exists a relation 5 on X such that C = C5, that α ∈
B ⊆ A and that α ∈ C(A). By definition ∀β ∈ A, α 5 β or β �5 α. Hence ∀β ∈ B,
α 5 β or β �5 α. Then by definition, α ∈ C(B). (Note that the converse is not true:
it does not follow that if C satisfies Alpha that C5 is a choice function.) The proof
of (b) can be found in Sen [30]. �

Theorem 3(b) seems to give Revealed Preference theory what it needs, namely
a characterisation of both the conditions under which the agent’s preferences are
‘revealed’ by her choices and of the properties of these preferences. In particular if
her choices respect WARP then a transitive and complete weak preference relation
can be imputed to her which, together with PBC, determines these choices. But
this observation is of very little normative significance in the absence of a reason
for thinking that choices should satisfy the WARP axiom. The problem is that,
unless 5 is complete, a preference-based choice function need not satisfy condition
Beta. Suppose, for example, that the agent cannot compare α and β, but that no
object in B is preferred to either. So both are permissible choices. Now suppose
that A = B ∪ {γ } and that γ is preferred to α but not comparable with β. Then
β is a permissible choice but not α. Since it is no requirement of rationality that
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preferences be complete, I take it that WARP is not normatively compelling. Hence
preferences are not fully revealed by the choices they determine.

Condition Alpha is sometimes called the Independence of Irrelevant Alternatives
condition in view of the fact that it implies that the framing of the choice set
shouldn’t influence an agent’s preferences. The fact that it is implied by PBC, in
the sense given by Theorem 3(a), is grounds for thinking it should be respected by
choices. But as Sen has pointed out, the composition of the choice set itself can
matter. When offered the choice between staying for another drink or leaving the
party, I might choose to stay. But if offered the choice between leaving the party,
staying for a drink or staying to participate in a satanic ritual I may well choose to
leave.

It seems therefore that what preference-based choice requires is something
more subtle than picking non-dominated alternatives relative to a given preference
relation. It is this: that we should not choose any alternative from a set, when there is
another in that set that it strictly preferred to it, given the set of alternatives on offer.
Making this criterion for preference-based choice formal is tricky. Nonetheless, as
we shall see later on, it has important conceptual implications.

34.5 Utility Representations

Preference relations that are weak orders can be represented numerically, thereby
allowing for an alternative characterisation of rational choice. More exactly, let us
call a function U : X → R, a utility representation of the weak order 5, iff for all
α, β ∈ X:

α 5 β ⇔ U(α) ≥ U(β)

Then:

Theorem 4 Suppose that the preference relation 5 is a weak order on a countable

set X. Then there exists a function U that is a utility representation of 5.

Furthermore U ′ is another such a utility representation iff U ′ is a positive monotone

transformation of U i.e. there exists a strictly increasing function f : R→ R such

that U ′ = f ◦ U .

See Kranz et al. [23, Section 2.1] for a proof of this theorem. In case X is not
countable, numerical representability is not assured for weak orders unless X has
a ‘dense’ subset – one containing elements lying (in the weak order) between any
two prospects in X. When the preference order is lexicographic for instance this
condition will be violated. In contrast, any continuous weak relation on a connected
topological space is numerically representable by a continuous function (see Kreps
[24] for details), where the continuity of a relation is defined as follows:
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Continuity: For any subset {αi} such that α1 |= α2 |= . . . |= αn and β � αn � γ ,
β � αi � γ , for all large i.

These representation results have an obvious weakness: the assumption that
preferences are complete. But it is in fact simple enough to generalise the result
to all transitive preference relations, complete or otherwise, by defining a utility
representation of the transitive relation 5 to be a set U of utility functions such
that for all α, β ∈ X, α 5 β iff for all U ∈ U , U(α) ≥ U(β). Such a set U
may be constructed by placing in it, for each possible ‘completion’ of 5, a utility
function that represents the resultant weak order. It follows that the set will inherit
the uniqueness properties of its elements i.e. that U will be unique up to positive
monotone transformation. More formally, let us say that a preference relation 5
on a set X is represented by a set of real-valued functions � just in case for all
α, β ∈ X,

α � β ⇔ F ∈ ∀F ∈ �,F(α) ≥ F(β)

Then:

Theorem 5 (Evren and OK [14, p. 5]) Let � be a weak order on a set X. Then

there exists a set � of real-valued functions that represents 5.

Theorem 4, together with the discussion in the previous section, implies that
choices that are preference-based, in the sense of satisfying Optimality, are utility
maximising. But one must be careful not to attach too much significance to this
characterisation of utility maximisation. The mere existence of the function U

that represents preferences does not in itself explain the agent’s preferences, nor
does it justify them. It merely describes them numerically. The contrast with
belief is instructive. Under certain conditions (which will be described later on),
a correspondence can be established between beliefs and preferences over specific
alternatives, namely those whose desirability depends on the truth of the contents of
the beliefs in question. In this case we are inclined to speak of the beliefs being the
cause or reason for the preference. This is because we have independent scientific
grounds for attributing causal powers to beliefs. Similarly for preferences. But we
have no such grounds for attributing causal or justificatory powers to the utilities
of alternatives distinct from the agent’s preferences for them. We might speak, as I
will do, of a utility judgement and the considerations upon which it is based. But
this is no more than shorthand for talk of preferences, in which transitivity and
completeness are taken for granted. Such talk has its dangers: in particular it can
encourage one to read more into the numbers than is allowed by the representation.
But it is also convenient; hence our interest in being clear about their content.

Theorem 4 is rather weak, as the uniqueness properties of the utility represen-
tation it establishes make manifest. With stronger assumptions about the set of
alternatives and preferences over them, more interesting properties of the utility
representation can be derived and its uniqueness increased. In the next couple of
sections we will characterise the conditions on weak orders under which there
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exists an additive utility representation of it. Since our primary interest is in the
normatively significant properties of preference relations and corresponding utility
representations, and not with problem of numerical representation itself, I will be
somewhat cavalier in my statement of the more technical conditions on preference
orders. For example, to obtain a cardinal representation of a weak order it is typically
necessary to assume an Archimedean condition; to ensure, in effect, that any two
objects in the domain of the weak order are comparable, no matter how far apart
they lie in that order. The exact condition required will depend on the nature of the
set of alternatives being assumed, and for this reason I will not spell it out each time.
For the details on these, the most comprehensive source is Krantz et al. [23].

34.5.1 Conjoint Additive Structures

For a first extension we return to our initial representation of a decision problem as
a matrix of locations and consequences. The objects of choice here are ordered sets
of outcomes, one for each possible state of the world or, more generally, location.
Consequently the set of alternatives forms a product set of the form X = X1×X2×
. . .×Xn, where each Xi is the set of possible outcomes at the ith location. A profile
(x1, x2, . . . , xn) ∈ X could be a set of attributes of a good, for instance, or a set of
allocations to individuals, or a set of events at different times.

This structure allows for stronger assumptions about rational preference and a
correspondingly richer utility representation of them. For any subset K of the set
of possible locations, let XK := ∏

j∈K Xj . For any partitions {K,L} of the set of
locations, let (a, c) be the member of X where a ∈ XK denotes the values of the
locations in K and c ∈ XL denotes the values of the locations in L. Then consider:

Axiom 6 (Strong Separability) For all partitions {K,L} of the set of locations and

for all a, b ∈ XK and c, d ∈ XL :

(a, c) 5 (b, c) ⇔ (a, d) 5 (b, d)

The axiom of strong separability appears in different contexts under a wide
variety of names, most notably Joint Independence [23] and the Sure-thing Principle
[29] for the case where locations are states. It has a strong claim to be the
most interesting and important of the conditions regularly invoked by decision
theorists. On the one hand, it does not have the same normative scope as the
transitivity condition. For instance, consider its application to allocations to different
individuals. In this context Strong Separability rules out a direct sensitivity to
inequality, such as might be manifested in a preference for (a, a) over (b, a) and for
(b, b) over (a, b). Similarly in applications to decisions with outcomes at different
temporal locations it rules out a preference for novelty over repetition, such as might
be manifested in a preference for (a, b) over (b, b) and for (b, a) over (a, a). On
the other hand, in many applications and when outcomes are carefully described,
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the axiom does seem normatively compelling. We return to this in the discussion of
decision making under uncertainty.

Let us say that a location l is essential just in case there exist xl and yl such
that (x1, .., xl, . . . , xn) ≻ (x1, .., yl, . . . , xn) for all x1, . . . , xn ∈ XN−l . And let us
say that 5 is solvable on X just in case (x1, .., x̄l, . . . , xn) ≻ (y1, .., yl, . . . , yn) ≻
(x1, .., xl, . . . , xn) implies that there exists an xl such that (x1, .., xl, . . . , xn) ≈
(y1, .., yl, . . . , yn). If the preference relation 5 is Archimedean and solvable on X,
then we call the pair 〈X,5〉 an additive conjoint structure. Then:

Theorem 7 Let 〈X,5〉 be an additive conjoint structure with at least three essential

locations. Assume that 5 satisfies Strong Separability. Then there exists a utility

representation U of 5 on X such that for all (x1, x2, . . . , xn) ∈ X:

U(x1, x2, . . . , xn) =
n∑

j=1

uj (xj )

for some family of functions uj : Xj → R. Furthermore if U ′ and the u′j are another

such a family of utility representations, then there exists constants a, b, aj , bj ∈ R
such that U ′ = aU + b and u′j = aj .uj + bj .

The proof of this theorem involves three main steps (see Krantz et al. [23] for
details). First, we observe that by application of Theorem 4, there exists a utility
representation U of 5 on X, unique up to positive monotone transformation. The
second step is to derive location-relative preference relations from 5, in which
essential use is made of Strong Separability. In the light of Theorem 4 this implies
the existence of location-relative utility functions – the uj – also unique up to
positive monotone transformation. The final step is to show that judicious choice
of scales for the uj permits U to be expressed as a sum of them.6

Theorem 7 has many applications. For a historically important example suppose
that the Xj are different individuals and the xj allocations that are made to them.
Then Theorem 7 asserts the existence of an additive utility representation of any set
of strongly separable preferences over allocations to individuals. This is typically
called a utilitarian representation of social decisions.

34.5.2 Linear Utility

We now consider an even richer structure on the objects and a stronger restriction
on preferences sufficient to ensure the existence of a linear representation of them.

6It is important to note that it’s essential to the possibility of an additive representation that no
cross-locational comparisons are possible. For such comparisons would constrain the co-scaling of
the uj and there would then be no guarantee that the permitted co-scaling allowed for an additive
representation.
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A set of objects X is said to be a mixture set iff for all α, β ∈ X and any 0 ≤ k ≤ 1,
there exists an element in X, denoted by kα + (1− k)β, such that:

1. If k = 1 then kα + (1− k)β = α

2. kα + (1− k)β = (1− k)β + kα

3. For all 0 ≤ l ≤ 1, l(kα + (1− k)β)+ (1− l)β = lkα + (1− lk)β

Axiom 8 (Linearity) For all α, β, γ ∈ X and any 0 ≤ k ≤ 1:

α ≈ β ⇔ kα + (1− k)γ ≈ kβ + (1− k)γ

Axiom 9 (Archimedean) For all α, β, γ ∈ X, if α ≻ γ ≻ β then there exist k and

l such that:

kα + (1− k)β ≻ γ ≻ lα + (1− l)β

Theorem 10 (Herstein and Milnor [17]) Assume that X is a mixture set and that

5 is an Archimedean weak order on X that satisfies the Linearity axiom. Then there

exists a utility representation U of 5 on X such that for all α, β ∈ X:

U(kα + (1− k)β) = kU(α)+ (1− k)U(β)

Furthermore U ′ is another such a utility representation iff U ′ is a positive linear

transformation of U i.e. there exists constants a, b ∈ R such that U ′ = aU + b.

One very important application of the idea of a mixture space is to lotteries. Let
Z be a (finite) set of outcomes or ‘prizes’ and let the set of lotteries � = {pi} be a
set of a probability mass functions on these outcomes i.e. each pi ∈ � is a function
from the z ∈ Z to the interval [0, 1] such that

∑
z pi(z) = 1. For any pi, pj ∈ �,

let kpi + (1− k)pj , called the k-compound of pi and pj , denote the member of �

defined by:

(kpi + (1− k)pj )(z) := kpi(z)+ (1− k)pj (z)

It follows that � is a mixture set of lotteries.
When applied to lotteries the Linearity axiom is typically called the Indepen-

dence axiom: it says that if two lotteries pi and pj are equally preferred then a
k-compound of pi and pk is equally preferred to a k-compound of pj and pk . The
Archimedean condition amounts to saying that no matter how good pi is (how bad
pj is) there is some compound lottery of pi and pj which gives pi such small
(large) weight that pk is strictly preferred to it (it is strictly preferred to it pk). Or
more pithily, everything can be traded off if the probabilities are right.

Theorem 11 (Von Neumann and Morgenstern) Let 5 be an Archimedean weak

preference order on � that satisfies the Independence (Linearity) axiom. Then there

exists a utility representation U of 5 on � and a function u : Z → R such that for

all pi ∈ �:
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U(pi) =
∑

z∈Z

pi(z).u(z)

See Kreps [24] for an instructive proof of this result. Von Neumann and
Morgenstern’s theorem is usually considered to belong to the theory of decision
making under uncertainty and its appearance here bears out my earlier claim that
the distinction between certainty and risk is a matter of perspective. When making
decisions under risk we know what situation we face, even if we don’t know what
the final outcome will be. This makes it a convenient bridgehead to the topic of
uncertainty.

34.6 Decisions Under Uncertainty

It is now time to make more precise the claim that in situations of uncertainty,
choices should maximise expected utility. Although this prescription is still con-
sequentialist in spirit the explicit introduction of uncertainty requires a more
nuanced expression of what Consequentialism entails in these circumstances. More
specifically, in these circumstances, the choice-worthiness of an action depends
not only on the consequences of the action but also on the relative likelihood of
the possible states of the world in which the consequences might be realised. The
prescription to maximise expected utility is made relative to a specification of the
probabilities of states of the world and utilities of the consequences. There are thus
two relations that need to be examined: the value relation that we discussed before
and a possibility or probability relation on the states of the world expressing the
decision maker’s state of uncertainty. Both the properties of these relations and of
the quantitative representations of them are relevant to the derivation of the expected
utility principle.

Like the value ordering, the possibility ordering can be given both a subjective
and objective interpretation, as can the numerical probabilities based on it. This
means that in principle the prescription to maximise expected utility is amenable
to four different readings with quite different normative implications. If both are
construed objectively (as in, for instance, Broome [10]) then the principle prescribes
action which maximises the objective expectation of goodness. If preferences are
subjective but probabilities are objective (as they are in Von Neumann-Morgenstern
decision theory [35]) then the principle prescribes maximisation of the objective
expectation of subjective preference. If both are construed subjectively (as in Savage
[29]) then the prescription is to maximise the subjective expectation of subjective
preference and so on.

As the normative claims of these different interpretations of expected utility
theory are rather different, one should not expect that one type of argument will
serve to justify all of them. What we can do however is to build a common platform
for such arguments by identifying the properties of the two ordering relations that
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are necessary and sufficient for the existence of an expected utility representation
that justifies (either by rationalising or by normatively validating) the decision
maker’s choice. By an expected utility representation, I mean an assignment of
utilities to consequences and probabilities to states of the world such that the agent’s
preferences over options cohere with their expected utility.

More formally, let � be a set of consequences, S = {s1,s2, . . .} be a set of states
of the world and F = {A,B,C, . . .} be the set of subsets of S, called events. Finally
let Ŵ = {α, β, γ , . . .} be the set of actions, where an act is function from S to �.
In the light of an earlier remark that the difference between states and consequences
is pragmatic rather than ontological, it makes sense to treat the latter as a type of
event, rather than following Savage in treating them as logically distinct. Formally
this means that � ⊆ F .

Let 5 be a preference relation on the set of actions. A function V : Ŵ → R
is called an expected utility representation of 5 iff V is a utility representation of
5 and there exists a real valued function u : � → R and a probability function
P : F → R such that for all α ∈ Ŵ:

V (α) =
∑

si∈S

P({si}).u(α(si))

Our examination will be conducted in two steps. In the first we apply the Von
Neumann and Morgenstern theory to decision making under risk, i.e. to conditions
in which probabilities are given. And in the second we present Savage’s derivation
of such a probability from the agent’s preferences.

34.6.1 Expected Utility Theory

Suppose that our decision problem takes the form given by Table 34.1. We want to
know under which conditions a preference relation over the available options has an
expected utility representation. Consider first a situation in which the probabilities
of the states of the world are known, a circumstance to which Von Neumann-
Morgenstern utility theory is usually applied. It is important to note that to do so
we must assume that the decision problem we face can be adequately represented as
a choice between lotteries over outcomes. For this it is not enough that we know the
probabilities of the states, we must also assume that the only feature of these states
which matters for our choice of action is their probability. In particular, the fact that
an outcome is realised in one state or another must not influence its desirability. This
is known as the assumption of state-independence. It appears in an explicit form in
the axiomatisations of expected utility theory given by Savage and by Anscombe and
Aumann, but is merely implicit in the adoption of the Von Neumann-Morgenstern
theory in situations of risk.

Let us call an act that satisfies these assumptions a lottery act. Then, on the basis
of Theorem 11, we can make the following claim:



636 R. Bradley

Proposition 12 If preferences over lottery acts are linear and Archimedean then

they have an expected utility representation.

Normatively the implication is that, given a value relation on outcomes and
a probability on states of the world, the only permissible actions are those that
maximise the expectation of a utility measure of the value relation. Note that the
utility representation is itself constrained by the assumption that preferences are
linear because these imply that the manner in which outcomes are weighed against
each other is sensitive in a particular way to their probabilities i.e. the assumption
encodes a view about how value articulates with probability. This will be reflected,
for instance, in the fact that if a preferred outcome has half the probability of a less
preferred one, then its value (as measured by utility) must be twice that of the latter
if the decision maker is to remain indifferent between the two.

The manner in which utility is cardinalised imposes significant constraints
on how utility is interpreted. Suppose for instance that an agent is risk averse
with respect to money in the sense that she prefers £50 for certain to a gamble
yielding £100 with 50% probability and £0 with 50% probability. Then an expected
utility representation of her preferences requires that the utility difference between
receiving £50 and receiving £100 will be less than the utility difference between
receiving nothing and receiving £50.

Both Arrow [3] and Sen [30] make the following objection. This way of
cardinalising utility mixes up the intrinsic value to the agent of the money received
with her attitude to risk taking. For it doesn’t allow us to distinguish cases in which
the agent prefers the £50 for certain to the gamble because of the diminishing
marginal value of money from the case in which she does because she dislikes
taking risks and is not willing to endanger the £50 for an even chance of doubling
her money. Defendants retort that the notion of the intrinsic value being invoked
in this argument lacks clear meaning. To give it a content we must be able to say
how, at least in principle, we could separate the value component of preferences
from the risk component that distorts it, leading to a decomposition of utility into a
risk and a value component. There are several recent attempts to do so (see [11, 36]
and [34]) and although it remains to be seen whether any are fully adequate, the
basic conceptual point remains valid: there may be more than one type of factor
contributing to an agent’s preferences (apart from her beliefs).

A quite different line of criticism concerns not the interpretation of the expected
utility representation, but the claims about rational preference upon which it sits.
The main focus of attention in this regard has been the axiom of Independence and
its violation in the so-called Allais’ paradox. To illustrate the paradox, consider two
pairs of lotteries yielding monetary outcomes with the probabilities given in the
following table (Table 34.3).

Allais [1] hypothesised that many people, if presented with a choice between
lotteries I and II would choose I, but if presented with a choice between III and
IV, would choose IV. Such a pattern of choice is, on the face of it, in violation of
the Independence axiom since the choice between each pair should be independent
of the common consequences appearing in the third column of possible outcomes.
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Table 34.3 Allais’ paradox Lottery Probability 0.01 0.1 0.89

I $1000,000 $1000,000 $1000,000

II $0 $5000,000 $1000,000

III $1000,000 $1000,000 $0

IV $0 $5000,000 $0

Nonetheless Allais’ conjecture has been confirmed in numerous choice experiments.
Moreover many subjects are not inclined to revise their choices even after the
conflict with the requirement of the Independence axiom is pointed out to them. So
the ‘refutation’ seems to extend beyond the descriptive interpretation of the axiom
to include its normative pretensions.

There are two lines of defense that are worth exploring. The first is to argue that
the choice problem is under-described, especially with regard to the specification
of the consequences. One common explanation for subjects’ choices in these
experiments is that they choose I over II because of the regret they would feel if
they chose II and landed up with nothing (albeit quite unlikely), but IV over III
because in this case the fact that it is quite likely that they will not win anything
whatever they choose diminishes the force of regret. If this explanation is correct
then we should modify the representation of the choice problem faced by agents so
that it incorporates regret as one possible outcome of making a choice. The same
would hold for any other explanation of the observed pattern of preferences that
refers to additional non-monetary outcomes of choices.

The second line of defensive argument points to the gap between preference and
choice. As we noted before, the specification of the choice set can influence the
agent’s attitudes. This is just such a case. In general the attitude we take to having
or receiving a certain amount of money depends on our expectations. If we expect
$100, for instance, then $10 is a disappointment. Now the expectation created by
presenting the agent with two lotteries to choose from is quite different in the case
where the choice is between lotteries I and II and the one in which the choice is
between lotteries III and IV. In the first case they are being placed in a situation in
which they can expect to gain a considerable amount of wealth, while in the second
they are not. In the first they can think of themselves as being given $1000,000 and
then having the opportunity to exchange it for lottery II. In the second case they can
think of themselves as being handed some much lesser amount (say, whatever they
would pay for lottery III) and then being given the opportunity to exchange it for
lottery IV. Seen this way it is clear why landing up with nothing is far worse in the
first case than in the second. It is because of what one has given up for it. In the
first case landing up with nothing as a result of choosing II is equivalent to losing
$1000,000 relative to one’s expectations, whereas in the second case it is equivalent
to losing some much smaller amount.

Both of these defences are unattractive from the point of view of constructing a
testable descriptive theory of decision making under uncertainty. The first approach
makes it very hard to tell what choice situation the agents face, since the description
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of the outcomes of the options may contain subjective elements. The second
approach makes it difficult to use choices in one situation as a guide to those that
will be made in another, since all preferences are in principle choice-set relative.
But from a normative point of view they go some way to defending the claim that
the Independence axiom is a genuine requirement of rationality.7

If we accept the normative validity of the Independence axiom, then we can
draw the following conclusion. When the choices that we face can be represented
by lotteries over a set of outcomes then rationality requires that we choose the
options with maximum expected utility relative to the given probabilities of their
outcomes and a given value/preference relation. What this leaves unanswered is
why we should think that decision making under uncertainty can be so represented.
To answer it we must return to Savage.

34.6.2 Savage’ Theory

Savage [29] proves the existence of an expected utility representation of preference
in two steps. First he postulates a set of axioms that are sufficient to establish the
existence of a unique probability representation of the agent’s beliefs. He then shows
that probabilities can be used to construct a utility measure on consequences such
that preferences amongst gambles cohere with their expected utilities, first on the
assumption that the set of consequences is finite and then for the more general case
of infinite consequences. Since the second step is essentially an application of Von
Neumann and Morgenstern’s theory, we will focus on the first and in particular on
his derivation of a qualitative probability relation over events.

Savage takes the preference relation to be defined over a very rich set of acts,
namely all functions from states to consequences. Because of its importance, I
have ‘promoted’ the definition of the domain of the preference relation to being
an additional postulate.

P0 (Rectangular field assumption8): Ŵ = �S

P1 (Ordering) 5 is (a) complete and (b) transitive.

For any events F,G ∈ F , let acts ᾱ and β̄ be the corresponding constant acts
such that for all states s, ᾱ(s) = F and β̄(s) = G. Given this definition it is
straightforward to induce preferences over consequences from the preferences over
acts by requiring that F 5 G iff ᾱ 5 β̄.

Savage’s next step is to assume that the preference relation is separable across
events i.e. that the desirability of a consequence of an act in one state of the world is
independent of its consequences in other states. He does so by means of his famous
Sure-thing principle. Consider the actions displayed in the table below.

7For arguments that it is not a requirement of rationality see [11] and [33].
8I take this term from Broome [10].
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Events

Actions E E′

α X Y

β X∗ Y

Then action α should be preferred to action β iff consequence X is preferred to
consequence X∗. This is because α and β have the same consequence whenever E

is not the case, and so should be evaluated solely in terms of their consequences
when E is the case. Consequently any other actions α′ and β ′ having the same
consequence as α and β respectively whenever E is the case, and identical
consequences when E is not, should be ranked in the same order as α and β. More
formally:

P2 (Sure-thing Principle) Suppose that actions α, β, α′ and β ′ are such that for
all states s ∈ E, α(s) = α′(s) and β(s) = β ′(s) while for all states s /∈ E,
α(s) = β(s) and α′(s) = β ′(s). Then α 5 β iff α′ 5 β ′

In view of P2 we can coherently define the conditional preference relation ‘is not
preferred to, given B’, denoted 5B , by α 5B β iff α′ 5 β ′, where the acts α′ and
β ′ are as defined in P2. Given P2, it follows from this definition that the conditional
preference relation is complete and transitive. This puts us into territory familiar
from the discussion of conjoint additive structures. Given P0–P2, Theorem 7 implies
that there exists an additive utility representation of preferences over acts that is
unique up to positive affine transformation, i.e. such that the value of each act is the
sum of the state-dependent utilities of its consequences.

This representation does not disentangle the contributions of the probabilities of
states from the desirabilities of the consequences. To go further, assumptions that
ensure the comparability of the state-dependent utilities are needed. Let us call an
event E ∈ F a null event iff α ≈E β, for all α, β ∈ Ŵ. Then Savage postulates:

P3 (State Independence) Let B ∈ F be non-null. Then if α(s) = F and α′(s) =
G for every s ∈ B, then α 5B α′ ⇔ F 5 G

The state independence assumption ensures the ordinal uniformity of preferences
across states, but is not strong enough to ensure the cardinal comparability of the
state-dependent utilities. The next step is the crucial one for ensuring this as well
as for obtaining a probability representation of the agent’s attitudes to events. First
Savage defines a ‘more probable than’ relation, �, on the set of events. Consider the
following pair of actions:
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Events

Action E E′

α X Y

Events

Action F F ′

β X Y

Actions α and β have the same two possible consequences, but α has the
preferred consequence whenever E is the case and β has it whenever F is the case.
Now suppose that consequence X is preferred to consequence Y . Then α should
be preferred to β iff E is more probable than F because the action which yields
the better consequence with the higher probability should be preferred to one which
yields it with lower probability. More formally:

Definition 13 (Qualitative probability) Suppose E,F ∈ F . Then E � F iff α 5
β for all actions α and β and consequences X and Y such that:

(i) α(s) = X for all s ∈ E, α(s) = Y for all s /∈ E,
(ii) β(s) = X for all s ∈ F , β(s) = Y for all s /∈ F ,

(iii) X 5 Y

In effect the circumstances postulated by this definition provides a ‘test’ for
when one event is more probable than another. A further postulate is required to
ensure that this test can be used to compare any two events in terms of their relative
probability.

P4 (Probability Principle) � is complete

To apply Theorem 7, our earlier representation theorem for additive conjoint
structures, we need to confirm that the derived ‘more probable than’ relation is
not only complete, but transitive and quasi-additive. In fact this follows straight-
forwardly from P0 to P4 and the definition of the ‘more probable than’ relation.
Two further structural axioms are required to ensure that the qualitative probability
relation defined by P4 can be represented numerically.

P5 (Non-Triviality) There exists actions α and β such that α ≻ β.
P6 (Non-Atomicity) Suppose α ≻ β. Then for all X ∈ F , there is a finite

partition of S such that for all s ∈ S :
(i) (α′(s) = X for all s ∈ A, α′(s) = α(s) for all s /∈ A) implies α′ ≻ β.

(ii) (β ′(s) = X for all s ∈ B, β ′(s) = β(s) for all s /∈ B) implies α ≻ β ′.

P6 is quite powerful and implies that there are no consequences which are so
good or bad, that they swamp the improbability of any given event A. Nonetheless
neither it nor P5 raises any pressing philosophical issues. And using them Savage
proves:

Theorem 14 There exists a unique probability function P on F such that for all

E,F ∈ F :
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P(E) ≥ P(F)⇔ E � F

It is not difficult to see how in principle this theorem can serve as the basis for
deriving an expected utility representation. In essence what needs to be established
is a correspondence between each act α and a lottery which yields each possible
consequence C ∈ � with probability, P( α−1(C)). Then since Savage’s postulates
for preferences over acts with a finite number of consequences imply that the
induced preferences over the corresponding lotteries satisfy the Von Neumann and
Morgenstern axioms, the utility of each such act can be equated with that of the
expected utility of the corresponding lottery. The proof of this is far from trivial and
we won’t examine it here – see Savage [29] or Kreps [24] for details.9

34.6.3 The Status of Savage’s Axioms

34.6.3.1 The Sure-Thing Principle

The most controversial of Savage’s axioms is undoubtedly the Sure-thing Principle,
Savage’s version of the separability condition that appears with different names
in different contexts. Although the Independence axiom of Von Neumann and
Morgenstern’s decision theory is not implied by the Sure-thing principle alone (P3
in particular is also required), the criticism based on Allais’ paradox is clearly
applicable here as well as are the lines of defence previously sketched. We will
not repeat this discussion. But it is worth drawing attention to one further issue.
As is evident from the informal presentation of the Sure-thing principle, it is
essentially a principle of dominance. That is to say that its intuitive appeal rests
on the thought that since only the consequences of an action matter to its evaluation,
if the consequences of one act are as least as good as those of another, and are
better in at least one event, then this act is better overall. But this application of
Consequentialism is mistaken. For it matters not just what consequences an action
has, but how probable these outcomes are and in particular how probable it makes
them. Two actions can have identical consequences but if one of them brings about
the better consequences with a higher probability than the other then it should be
preferred.

The upshot of this is that the Sure-thing is not unconditionally valid as a principle
of rationality. It is binding only if the states of the world are probabilistically inde-
pendent of the acts being compared by reference to these states. But this presents
Savage with a very significant problem. Amongst other things, his representation
theorem is supposed to establish conditions under which a probability measure of
belief can be attributed to the decision maker. But it now seems that the attribution

9Savage in fact introduces one further postulate necessary for the extension of the expected utility
representation to infinite consequences sets. This final postulate is very much in the spirit of the
Sure-thing principle and as it does not raise any additional conceptual issues, I will not state it here.
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process depends on being able to establish what the decision maker’s beliefs are in
order to determine whether the Sure-thing principle is applicable. So Savage needs
to assume precisely that which he hopes to deduce. Remarkably this fundamental
difficulty has been all but ignored in the wide ranging decision-theoretic literature
on belief identification.

State-Independence

The axiom of State-Independence requires that if constant act α is preferred to
constant act β, given some non-null event E, then α is preferred to β, for any
other non-null event F . It is not hard to produce counterexamples. Consider an act
which has the constant consequence that I receive £100 and suppose I prefer it to
an act with the constant consequence that I receive a case of wine. Would I prefer
receiving the £100 to the case of wine given any event? Surely not: in the event of
high inflation for instance, I would prefer the case of wine. One could retort that
receiving £100 is not a genuine consequence since its description fails to specify
features relevant to its evaluation. Perhaps ‘receiving £100 when inflation is low’
might be closer to the mark. But then the rectangular field assumption forces us to
countenance actions which have this consequence, namely my receiving £100 when
inflation is low, in states of the world in which inflation is high. Such acts seems
nonsensical however and it is hard to see how anyone could express a reasonable
preference regarding them.

An objection of this kind was famously made by Robert Aumann in a letter to
Savage in 1971.10 Savage’s reply is interesting. He suggests that “a consequence
is in the last analysis an experience” [12, p. 79], the implication being that
experiences screen out the features of the world causing them and hence have state-
independent desirabilities. This is unpersuasive. Even the desirability of experiences
are contingent on the state of the world. On the whole I prefer that I be amused than
saddened (or experience amusement to experiencing sadness), but I surely do not
prefer it, given that a close friend has died. A second objection is more fundamental.
To identify consequences with subjective experiences is to risk confusing the
outcome of an action with one’s evaluation of it. When I want to make a decision,
say about whether to go for a swim, I need to know first what the outcome of this
decision will be in the various possible states of the world. Then I try and evaluate
these outcomes.

To the objection that his theory countenances nonsensical or impossible acts,
Savage retorts that it is not necessary that the such acts “. . . serve something like
construction lines in geometry” [12, p. 79], and that they need not be available in
order for one to say whether they would be attractive or not. But he seems to under-
appreciate the problem. Consider the decision whether or not to buy a life insurance
policy that pays out some sum of money in the event of one’s death. Now the pay-out

10Printed, along with Savage’s letter in reply, in Drèze [12, pp. 76–81].
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is not a state-independent consequence in Savage’s sense, for I am not indifferent
between being paid while alive and being paid while dead. However the natural
refinement gives us the consequence of ‘pay-out and dead’ which patently cannot
be achieved in any state of the world in which I am alive.

State-Dependent Utility

Although the assumption of state-independence is essential to Savage’s represen-
tation theorem (and many others, including the widely used Anscombe-Aumann
theory [2]), it is not intrinsic to the principle that rationality requires picking the
option whose exercise has greatest expected benefit. Indeed Savage’s theory can be
generalised to a state-dependent version in the following way. For each state of the
world sj let vj be a real-valued (utility) function on consequences measuring their
desirability in that state of the world. Then the probability-utility matrix induced by
the decision problem takes the form:

States of the world
Options P({s1}) . . . P ({sn})

A1 v1(C
1
1) . . . vn(C

1
n)

. . . . . . . . . . . .

Am v1(C
m
1 ) . . . vn(C

m
n )

The expected benefit on any option is given, as before, by the expected value of the
random variable which specifies its consequences. In this case this is defined by:

EU(Ai) =
n∑

j=1

vj (C
i
j ).P (sj )

Proving the existence of such a representation is straightforward: as we observed
earlier, given P0, P1 and P2 we can apply Theorem 7 to establish the existence of
uj such that U(Ai) = ∑n

j=1 uj (C
i
j ) and then for any probability mass function

P on the states of the worlds define vj := uj

P(sj ).
. The problem is that the choice

of probability function P here is arbitrary and there is no reason to think that it
measures the decision maker’s degrees of belief.11

11See, for instance, Drèze [12], Karni et al. [21] and Karni and Mongin [20] for a discussion of
this issue.
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34.7 Decision Theory: Evidential and Causal

This discussion of Savage’s axioms reveals that three conditions must be satisfied
for the maximisation of expected utility to be a rational basis for choice (assuming
the absence of option uncertainty). Firstly, there must be no option uncertainty.
Secondly, the desirability of each of the consequences must be independent both
of the state of the world in which it obtains and the action that brings it about. And
thirdly, the states of world must be probabilistically independent of the choice of
action. Taken separately it is often possible to ensure that for all practical purposes
these conditions are met by taking care about how the decision problem is framed.
But ensuring that all three are satisfied at the same time is very difficult indeed
since the demands they impose on the description of the decision problem pull in
different directions. For instance option uncertainty can be tamed by coarsening the
description of outcomes, but eliminating state-dependence requires refining them.

This problem provides strong grounds for turning our attention to a rival version
of subjective expected utility theory that is due to Richard Jeffrey and Ethan Bolker.
Jeffrey [18] makes two modifications to the Savage framework. First, instead of
distinguishing between the objects of preference (actions), those of belief (events)
and those of desire (consequences), Jeffrey takes the contents of all of the decision
maker’s attitudes to be propositions. And secondly, he restricts the set of actions to
those propositions that the agent believes he can make true at will.

The first of these modifications we have already in effect endorsed by arguing
that the difference between states and consequences is pragmatic rather than logical.
Furthermore, if the contents of propositions are given by the set of worlds in which it
is true, then Jeffrey’s set of propositions will simply be Savage’s set F of events, the
only difference between the two being that there is no restriction of consequences
to maximally specific propositions in Jeffrey’s framework. This small modification
has a very important implication however. Since states/events and consequences are
logically interrelated in virtue of being the same kind of object, consequences are
necessarily state-dependent. This means that Jeffrey’s theory is not subject to the
second of the restrictions required for Savage’s theory.

The second modification that Jeffrey makes is more contentious and requires a
bit of explanation. If he followed Savage in defining actions as arbitrary functions
from partitions of events to consequences, the enrichment of the set of consequences
would lead to an explosion in the size of the set of actions. But Jeffrey argues that
many of the actions so defined would be inconsistent with the causal beliefs of the
decision maker. Someone may think they have the option (which we previously
named ‘taking the car’) of making it true that if the traffic is light they arrive on
time, and if it’s heavy they arrive late, but not believe that they have the option of
making it true that if the traffic is light they arrive late, and if it’s heavy they arrive
on time. Yet Savage’s rectangular field assumption requires that such options exist
and that the agent takes an attitude to them. But if the agent doesn’t believe that such
options are causally possible, then any attitudes we elicit with regard to them may
be purely artifactual.
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We can look at this issue in a slightly different way. As we noted in the discussion
of option uncertainty, an agent may be uncertain as to what consequences its
performance yields in each state of the world. So they may not know what actions
qua mappings from states to consequences are available to them. Jeffrey’s solution
is to conceive of an action, not as a mapping from states to consequences, but as a
subjective probability distribution over consequences that measures how probable
each consequence would be if the action were performed. This means that when
evaluating the act of taking an umbrella for instance, instead of trying to enumerate
the features of the state of the world that will ensure that I stay dry if I take an
umbrella, I simply assess the probability that I will stay dry if I take the umbrella and
the probability that I will get wet anyhow (even if I take it). I should then perform
the act which has the greatest conditional expected utility given its performance

Two features of this treatment are noteworthy. Firstly, it is no longer required that
the states of the world be probabilistically independent of the available actions. On
the contrary, actions matter because they shape probabilities. This dispenses with
the third constraint on the applicability of Savage’s theory. Secondly, agents are not
able to choose between arbitrary probability distributions over consequences but
are restricted to those probability distributions that they consider themselves able to
induce through their actions. To put it somewhat differently, we may think of both
Savage’s and Jeffrey’s actions as inducing Von Neumann and Morgenstern lotteries
over consequences. But Jeffrey only countenances preferences over lotteries which
conform with the agent’s beliefs. This solves the problem of option uncertainty by
endogenising it. The agent is not option uncertain about an action because what
action it is (what probability distribution it induces) is defined subjectively i.e. in
terms of the agent’s beliefs.

34.7.1 Desirability Representations

Let us now turn to the representation of preferences in the Bolker-Jeffrey theory.
Recall that for Jeffrey the content of both beliefs and desires are propositions. To
emphasise the contrast with Savage, let us model propositions as sets of possible
worlds or states of the world. Then an agent’s beliefs are measured, as in Savage,
by a probability measure P on F , the set of all propositions, while her degrees of
desire are represented by a real valued (desirability) function V on F − {⊥}, the set
of non-contradictory propositions, that satisfies:

Axiom 15 (Desirability) If X ∩ Y = ∅, and P(X ∪ Y ) �= 0, then:

V (X ∪ Y ) = V (X).P (X)+ V (Y ).P (Y )

P (X ∪ Y )

The notion of a desirability function on the set of propositions extends the quan-
titative representation of the agent’s evaluative attitudes from just the maximally
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specific ones (that play the role of consequences in Savage’s theory) to the full set
of them. The basic intuition behind the extension encoded in the desirability axiom
is the following. How desirable some coarse grained proposition is depends both on
the various ways it could be realised and on the relative probability of each such
realisation, given the truth of the proposition. For instance, how desirable a trip to
beach is depends on how desirable the beach is in sunny weather and how desirable
it is in rainy weather, as well as how likely it is to rain or to be sunny, given the trip.

What properties must preferences on prospects satisfy if preferences are to have
a desirability representation i.e. such that X 5 Y ⇔ V (X) 5 V (Y )? There are two:

Axiom 16 (Averaging) If X ∩ Y = ∅, then:

X 5 Y ⇔ X 5 X ∪ Y 5 Y

Axiom 17 (Impartiality) If X∩Z = Y ∩Z = ∅, X ≈ Y �≈ Z and X∪Z ≈ Y ∪Z,

then for all Z′ ∈ � such that X∩Z′ = Y∩Z′ = ∅, it is the case that X∪Z′ ≈ Y∪Z′.

The Averaging axiom say that if X is preferred to Y then X should be preferred
to the prospect that either X or Y is the case, since the latter is consistent with Y

being the case while the former is not. It has a somewhat similar motivation to the
Sure-thing principle, but is much weaker. In particular it is not directly vulnerable
to the Allais’ paradox.

The impartiality axiom allows for a partial separation of beliefs and desires. The
idea is as follows. Suppose propositions X and Y are equally preferred and that Z is
some proposition disjoint from and preferred to both. Then the disjunction of X and
Z will be equally preferred to the disjunction of Y and Z iff X and Y are equally
probable. If X were more probable than Y then the probability of Z conditional on
X ∪ Z would be less than the probability of Z conditional on X ∪ Y . And so the
prospect of X ∪ Z would be less desirable that than of Y ∪ Z since it would yield
the more desirable prospect (Z) with lower probability.

Theorem 18 ((Bolker [6])) Let F be an atomless Boolean algebra of propositions.

Let 5 be a continuous weak preference order on F . Then there exists a probability

measure P and signed measure U on �, such that for all X, Y ∈ F−{F }, such that

P(X) �= 0 �= P(Y ):

X ≥ Y ⇔ U(X)

P (X)
≥ U(Y )

P (Y )

Furthermore P
′

and U ′ are another such pair of measures on � iff there exists

real numbers a, b, c and d such that (i) ad − bc > 0, (ii) cU(T ) + d = 1, (iii)

cU + dP > 0, and:

P
′ = cU + dP

U ′ = aU + bP
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It follows that the desirability function V defined by for all X ∈ F such that
P(X) �= 0, V (X) = U(X)

P (X)
, represents the preference relation 5 but only up to

fractional linear transformation. The uniqueness properties here are considerably
weaker than in Savage’s framework and this is perhaps the reason for the unpopu-
larity of Jeffrey’s theory amongst economists and applied decision theorists. It is not
an insurmountable problem however for there are ways of strengthening Bolker’s
representation theorem, either by postulating direct probability comparisons (see
Joyce [19]) or by enriching the set of propositions by conditionals (see Bradley [9]
and [7]).

34.7.2 Causal Decision Theory

Jeffrey’s decision theory recommends choosing the action with maximum desirabil-
ity. Two closely related questions arise. Firstly, is this the same recommendation
as given by Savage’s theory? And secondly, if not, which is correct? The answer
to the first question is less clear cut than might be hoped. On the face of it
the prescriptions are different: Jeffrey requires maximisation of the conditional
expectation of utility, given the performance of the action, while Savage requires
maximisation of unconditional expectation of utility. But since they represent
actions differently these two prescriptions are not directly in conflict. In fact, there is
a way of making them perfectly compatible. The trick is to represent a Savage-type
action within the Jeffrey framework by an indicative conditional of the form ‘If the
state of the world is s1, then the consequence is C1; if the state of the world is s2,
then the consequence is C2; . . . ’. Then, given some reasonable assumptions about
the logic of conditionals and rational preferences for their truth, the desirability
of action-conditionals will just be the expected desirability of the consequence to
which it refers, relative to the probability of the states with which the consequences
are associated. (See Bradley [7] for details.)

On this interpretation, Savage and Jeffrey’s theories are both special cases of
a larger Bayesian decision theory. Most causal decision theorist reject this view
and regard Savage’s theory as a precursor to modern causal decision theory, which
prescribes not maximisation of desirability but maximisation of causal expected
utility. The distinction is brought out rather dramatically by the famous Newcomb’s
paradox, but since this example raises issues tangential to the main one, let us use a
more banal example. Suppose that I am deliberating as to whether to eat out at Chez
Posh next week. Chez Posh is very expensive, so not surprisingly the probability of
being rich given that one eats there is high. I now apply Jeffrey’s theory as follows.
There are three prospects of interest: A: I have a good meal, B: I will be rich and C:
I eat at Chez Posh. Then assuming that eating at Chez Posh guarantees a good meal:

V (C) = V (A ∩ B ∩ C).P (B|C)+ V (A ∩ ¬B ∩ C).P (¬B|C)
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Since both P(B|C) and V (A∩B∩C) are high, Jeffrey’s theory recommends going.
But if I cannot afford to go, this will be very bad advice!

The problem is easy to spot. Although the probability of being rich given that one
eats at Chez Posh is high, deciding to eat there won’t make one rich. On the contrary
it will considerably aggravate one’s penury. So desirability is a poor guide to choice-
worthiness in this case and indeed in any case when the performance of an action
is evidence for a good (or bad) consequence but not a cause of it. Causal decision
theory proposes therefore that actions be evaluated, not in terms of desirability, but
in terms of the efficacy of actions in bringing about desired consequences.

More formally for each option Ai let P be a probability mass function on states
of the world with pi

j being the probability that sj would be the state of the world

were option Ai exercised. Let ui
j be the utility of the consequence that results from

the exercise of option Ai in state sj . Then a decision problem can be represented by
the following probability-utility matrix.

States of the world
Options s1 . . . sn

A1 (p1
1, u

1
1) . . . (p1

n, u
1
n)

. . . . . . . . . . . .

Am (pm
1 , um

1 ) . . . (pm
n , um

n )

In this general case, the requirement of rationality to pick the option whose
exercise has greatest expected benefit is made precise by causal decision theory, as
the requirement to choose the option with maximum causal expected utility (CU ),
where this is defined as follows:

CU(Ai) =
n∑

j=1

ui
j .p

i
j

In the special case when pi
j equals P({sj }|Ai) then the value of an option is given

by its conditional expectation of utility, V , where this is defined by:

V (Ai) =
n∑

j=1

ui
j .P ({sj }|Ai)

This is just Jeffrey’s desirability measure. So on this interpretation Jeffrey’s theory
is special case of causal decision theory, applicable in cases where the probability of
a consequence on the supposition that an action is performed is just the conditional
probability of the consequence given the action.
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34.8 Ignorance and Ambiguity

The agents modelled in the decision theories described in the previous two sections
are not only rational, but logically omniscient and maximally opinionated. Rational
in that their attitudes – beliefs, desires and preferences – are consistent both in
themselves and with respect to one another; logically omniscient because they
believe all logical truths and endorse all the logical consequences of their attitudes;
and opinionated because they have determinate belief, desire and preference
attitudes to all prospects under consideration either because they possess full
information or because they are willing and able to reach judgements on every
possible contingency.

Relaxations of all of these assumptions have been studied both within empirical
and normative decision theory. Firstly there is a growing literature on bounded
rationality which looks at the decision making of agents who follow procedural
rules or heuristics. Most of this work has descriptive intent, but some of it retains
a normative element in that it seeks to show how bounded agents, with limited
computational resources, should make decisions given their limitations.12 Secondly,
the problem of logical omniscience has been tackled in different ways by either
modelling agents’ reasoning syntactically and restricting their ability to perform
inferences or by introducing possible states of the world that are subjectively
possible, but objectively not.13 Finally, there has been a long standing debate
about how agents should make decisions when they lack the information necessary
to arrive at precise probabilistic judgements, which we look at below. More
recently this has been supplemented by a growing literature on the requirements
on rationality in the absence of the completeness assumption. With some notable
exceptions this literature is almost entirely focused on incomplete probabilistic
information.

34.8.1 Decisions Under Ignorance

Let us consider the extreme case first when the decision maker knows what decision
problem she faces but holds no information at all regarding the relative likelihood of
the states of the world: a situation termed ignorance in the literature. There are four
historically salient proposals as to how to make decisions under these circumstances
which we can illustrate with reference to our earlier simple example of the decision
as to whether to take a bus or walk to the appointment. Recall that the decision
problem was represented by the following matrix.

12See for instance, Simon [31], Gigerenzer and Selten [15, 37] and Rubinstein [28].
13See for instance, Halpern [16] and Lipman [26].
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Heavy traffic Light traffic

Take a bus −2 1
Walk −1 −1

1. Maximin: This rule recommends picking the option with the best worst outcome.
For instance, taking the bus has a worst outcome of −2, while walking has a
worst outcome of −1. So the rule recommends walking.

2. MaxMean: This rule recommends picking the option with the greatest average
or mean utility. For instance, taking the bus has a mean utility of −0.5, while
walking has a mean utility of −1. So on this rule taking the bus is better.

3. Hurwicz Criterion: Let Maxi and Mini respectively be the maximum and
minimum utilities of the possible outcomes of action αi . The Hurwicz criterion
recommends choosing the option which maximises the value of h.Maxi + (1−
h)Mini where 0 ≤ h ≤ 1 is a constant that measures the decision maker’s
optimism. In our example, for instance, the rule recommends taking the bus for
any values of h such that h > 1

3 : roughly as long as you are not too pessimistic.
4. Minimax Regret: Let the regret in a state of the world associated with an action

α be the difference between the maximum utility that could be obtained in that
state of the world, given the available actions, and the utility of the consequence
of exercising α. The minimax regret rule recommends picking the action with
the lowest maximum regret. For instance, in our example the regret associated
with taking a bus is 1 if the traffic is heavy and 0 if its light, while that associated
with walking is 0 if the traffic is heavy but 2 if it is light. So the rule recommends
taking the bus.

Each of these criteria faces serious objections. Minimax Regret violates the
aforementioned Independence of Irrelevant Alternatives condition and for that
reason is widely regarded as normatively unacceptable (but note that we criticised
this condition on the grounds that the composition of the choice set can be relevant).
With the exception of Maximin, none of the rules give recommendations that are
invariant under all positive monotone transformations of utilities. But in the absence
of probabilistic information how are the utilities to be cardinalised? The Maximin
rule seems unduly pessimistic. For instance, even if taking a bus has utility of
1000 in case of light traffic it recommends walking. The Hurwicz criterion seems
more reasonable in this regard. But both it and Maximin face the objection that
refinements of the decision problem produce no reassessment in situations in which
it should. Consider for instance the following modified version of our decision
matrix in which we have added both a new possible state of the world – medium
traffic – and a new option.
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Heavy traffic Medium traffic Light traffic

Take a bus −2 −2 1
Walk −1 −1 −1
Car −2 1 1

On both the Hurwicz criterion and the Maximin rule, taking a bus and driving
a car are equally good, even though taking a car weakly dominates taking the bus.
So they seem to give the wrong prescription. It is possible to modify these two
rules so that they deal with this objection. For instance, the Leximin rule adds to
Maximin the condition that if two options have equally bad worst outcomes then
they should be compared on the basis of their second worst outcomes, and if these
are equal on the basis of their third worst, and so on. A lexicographic version of
the Hurwicz criterion is also conceivable. But the possibility of ties amongst worst
and best outcomes pushes us in the direction of considering all outcomes. In which
case we need to consider what weights to attach to them. The answer implicitly
assumed by the Maxmean rule is that we should give equal weights in the absence of
any information by which they can be distinguished (this is known as the Principle
of Indifference). Unfortunately this procedure delivers different recommendations
under different partitionings of the event space, so Maxmean too is not invariant in
the face of refinements of the decision problem.

The fact that all these proposals face serious objections suggests that we are
asking too much from a theory of decision making under ignorance. In such
circumstances it is quite plausible that many choices will be permissible and indeed
that rationality does not completely determine even a weak ordering of options in
every decision problem. If this is right we should look for necessary, rather than
sufficient, conditions for rational choice. I have already implicitly helped myself
to an obvious candidate for such a condition – Weak Dominance – in arguing
against the Hurwicz criterion. Weak Dominance says that we should not choose
action α when there exists another action β such that in every state of the world s,
β(s) � α(s) and in at least one state of the world s̄, β(s̄) ≻ α(s̄). But however
reasonable Weak Dominance may look at first sight, it is only valid as a principle
in circumstances in which states of the world are probabilistically independent of
the acts. And by assumption in conditions of complete ignorance we have no idea
whether this condition is met or not. It is not that we cannot therefore use dominance
reasoning, but rather that it cannot be a requirement of rationality that we do. The
same applies to every kind of dominance principle. And I know of no other plausible
candidates for necessary conditions on rational evaluation of options other than
transitivity. Since no consistent set of beliefs is ruled out in conditions of complete
ignorance, it is possible that there are no further constraints on preference either.
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34.8.2 Decisions Under Ambiguity

We use the term ambiguity to describe cases intermediate between uncertainty and
ignorance i.e. in which the decision maker holds some information relevant to the
assessment of the probabilities of the various possible contingencies but not enough
to determine a unique one. Cases of this kind provided early counterexamples to
expected utility theory. Consider the following example due to Daniel Ellsberg [13]
in which subjects must choose between lotteries that yield monetary outcomes that
depend on the colour of the ball drawn from an urn. The urn is known to contain 30
red balls and 60 balls that are either black or yellow, but in unknown proportions.

When asked to choose between lotteries I and II and between III and IV, many
people pick I and IV. This pair of choices violates the Sure-thing principle, which
requires choices between the pairs to be independent of the prizes consequent on the
draw of a yellow ball. They are also inconsistent with the way in which Savage uses
the Probability Principle to elicit subjective probabilities. For it follows from his
definition of the qualitative probability relation that lottery I is preferred to lottery
II iff Red is more probable than Black and that IV is preferred to III iff not-Red (i.e.
Black or Yellow) is more probable than not-Black (i.e. Red or Yellow). But this is
inconsistent with the laws of probability. It is this latter feature that distinguishes
Ellsberg’s paradox from Allais’.

One plausible explanation for the observed pattern of choices is an attitude that
has since been termed ‘ambiguity aversion’. The thought is that when choosing
between I and II, people pick the former because this gives them $100 with a
known probability (namely one-third) while lottery II yields the $100 with unknown
probability or, more precisely, with a probability that could lie between zero and
two-thirds. Similarly when asked to choose between III and IV they choose the one
that yields the $100 with a known probability, namely IV. They make these choices
because they are unable to assign probabilities to Black or to Yellow and because,
ceteris paribus, they prefer gambles in which they know what they can expect to get
over gambles that are ambiguous in the sense that they don’t know what they can
expect from them.

So much is largely common ground amongst decision theorists. What is much
less settled are the normative and explanatory implications of the paradox. There
are three views one might adopt on this question. The first is that the Ellsberg
paradox shows that expected utility theory is descriptively false but not normatively
so and that the observed pattern of choices is simply irrational. The second view
is that a preference for betting on known probabilities over unknown ones is
perfectly reasonable and hence that the paradox shows that expected utility theory
is both descriptively and normatively inadequate. The third is that it shows neither
inadequacy because the decision problem has not been properly represented in
Table 34.4. In particular if subjects care about the range of chances of winning
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Table 34.4 Ellsberg’s
paradox

Ball colour

Lottery Red Black Yellow

I $100 $0 $0

II $0 $100 $0

III $100 $0 $100

IV $0 $100 $100

yielded by their choice then this property of outcomes, and not just the final
winnings, should be represented.14

The second of these views has inspired a number of different proposals for
decision rules rivalling that of maximisation of expected utility, but this literature
is growing so fast that any survey is likely to find itself out of date very quickly and
so I will confine myself to mentioning a few of the more salient ones. Most proposals
start from the observation that the information subjects hold in Ellsberg’s problem
constrains them to a family of admissible probability functions on states, each
assigning 1

3 to Red, some value p in the interval [0, 2
3 ] to Black and a corresponding

value 1 − p to Yellow. This family of probabilities, together with a utility function
on the monetary prizes, then induces a corresponding family of admissible expected
utilities for the alternatives under consideration. What distinguishes the various
proposals is how they see subjects as using this set of expected utilities as a basis
for choice.

Perhaps the predominant proposal is the Maximin EU rule (or MEU), which
requires choice of the alternative with the greatest minimum expected utility.
For instance, while lottery I has expected utility 1

3 × U($100) + 2
3 × U($0),

lottery II has expected utility in the range [U($0), 2
3 × U($100) + 1

3 × U($0)].
The minimum value for the latter is U($0) (assuming that utility is a positive
function of money), so lottery I is better according to the MEU criterion. On the
other hand lottery IV is better than lottery III since it has a guaranteed expected
utility of 2

3 × U($100) + 1
3 × U($0) while III has minimum expected utility of

1
3 × U($100) + 2

3 × U($0). So MEU prescribes just the choices observed in the
Ellsberg paradox. On the other hand it also prescribes indifference between lotteries
I and III, since both have minimum expected utilities of 1

3×U($100), whereas most
people would strictly prefer lottery III.

MEU, like the Maximin rule we looked at in the previous section, seems too
extreme and there are other popular rules that allow for caution in the face of
uncertainty about the probabilities which are less so. For instance the α-MEU rule
prescribes choice of the alternative that maximises the α-weighted average of its
minimum and maximum expected utility, where α ∈ [0, 1] is interpreted as index of
the agent’s pessimism. A rather different proposal is the ‘smooth’ ambiguity model
of Klibanoff, Marinacci and Mukerji [22] which values actions in accordance with

14See for instance [8].
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a weighted average of a concave transformation of the expected utilities, where the
weights are thought of as the agent’s degrees of belief for the possible probability
distributions over states and the concave transformation expresses their level of
aversion to ambiguity. These models are more compelling than MEU and raise
interesting philosophical questions about the parameters that they introduce but have
yet to receive much discussion in the philosophical literature.

Ellsberg’s paradox also raises an important methodological issue. Should we
regard the choices the agent makes in situations of ambiguity as expressions of her
preferences or as expressions of some other non-preference reason for choice? If
we take the former view then we may regard her attitudes to ambiguity as a further
psychological constituent of her preferences, but leave intact the standard theory
of the relation between preference and choice with its implication that preferences
are complete. If we take the latter view, then we can leave in place the standard
view about the relation between preference, belief and desire and treat ambiguity
attitudes as additional determinants of choice. The former view is the one taken
by the majority of decision theorists working in the field, perhaps because of a
deep commitment to revealed preference theory. But it seems philosophically more
satisfactory to regard preferences themselves as potentially incomplete whenever
beliefs are less than fully determinate. But which view it is best to take depends
in part on what is discovered about ambiguity attitudes: how stable they are, how
responsive are they to information, as so on. So it is premature to draw any strong
conclusions.
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Chapter 35

Dynamic Decision Theory

Katie Steele

Abstract This chapter considers the controversial relationship between dynamic

choice models, which depict a series of choices over time, and the more familiar
static choice models, which depict a single ‘one-shot-only’ decision. An initial
issue concerns how to reconcile the normative advice of these two models: Should
an agent take account of the broader dynamic context when making a decision,
and if so, in a sophisticated manner (the orthodox backwards induction approach),
or rather in a resolute manner (which takes the past as well as the future to be
significant)? Further controversies concern what the dynamic implications of an
agent’s preferences reveal about the (ir)rationality of these preferences.

35.1 ‘Dynamic’ Versus ‘Static’ Decision Theory

On paper, at least, dynamic (otherwise known as sequential) and static decision
models look very different. The static model has familiar tabular or normal form,
with each row representing an available act/option, and columns representing the
different possible states of the world, yielding different outcomes for each act. Such
models apparently depict a single ‘one shot only’ decision. Dynamic models, on the
other hand, have tree or extensive form—they depict a series of anticipated choice
points, the later choices often following the resolution of some uncertainty.

These basic differences between the two types of models raise a number of
questions about how, in fact, they relate to each other:

• Do dynamic and static decision models depict the same kind of decision
problem?

• If so, what is the static counterpart of a dynamic decision model? Ultimately:
How should one initiate a sequence of choices?
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Fig. 35.1 Ulysses’ dynamic decision problem

• Do dynamic decision models shed light on old normative questions concerning
learning and choice rules?

These issues turn out to be rather controversial; this chapter will consider them in
turn. Firstly, however, it is helpful to set the scene with a couple of examples.

A well-known dynamic decision problem is the one facing Ulysses on his journey
home to Ithaca in Homer’s great tale from antiquity. Ulysses must make a choice
about the manner in which he will sail past an island inhabited by sweet-singing
sirens, knowing that once he reaches the island, he must then choose whether to
stop there indefinitely or to keep sailing. Ulysses’ initial choice concerns whether
to order the crew to tie him to the mast when nearing the island. If he makes the
order, he will later have no further choices and the ship will sail onwards to Ithaca.
If he does not make the order, he will later have the choice mentioned above. The
final outcome depends on what sequence of choices Ulysses makes. The problem
can be depicted in extensive form, as per Fig. 35.1. The square nodes represent the
two choice points.

The second problem will be described only in abstract form: It is given in
Fig. 35.2.1 The model illustrates a dynamic decision involving some uncertainty.
(This particular problem will also be useful for our discussion in later sections.)
Circle nodes indicate points of uncertainty, where all of the branches have some
probability of occurring, as per the beliefs of the agent in question. Square nodes
represent choice points, as before, where the branches are the options the agent
perceives as available at that choice point. In this particular decision problem,
the first uncertainty to be resolved concerns whether some event E, or else its
complement ∼E turns out to be the case. The later uncertainty concerns whether
event F or ∼F is true. O1, O2, and O3 refer to possible outcomes of the agent’s
sequence of choices, and delta is some small positive amount such that, say, O3 − δ

is slightly less preferable than O3.

1This decision problem is from Rabinowicz [21, 599].
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Fig. 35.2 Dynamic decision problem with uncertainty

35.2 Was Ulysses Rational?

It has been argued (e.g., [20], 202) that Ulysses’ plight, while interesting from a
dynamic perspective, is not in fact the appropriate topic for dynamic decision theory,
because Ulysses is a flawed agent: he expects a change in attitude towards the sirens,
for no good reason. According to Homer’s story, Ulysses suffers a kind of weakness
of will when he hears the sirens singing, and spontaneously changes his preferences,
despite there being no new information available. This is an imperfect agent with
problematic belief and desire changes, and not the appropriate subject for dynamic
decision theory, or so the argument might go.

There is something to this line, but it introduces an uncomfortable rift: Dynamic
and static decision theory must then deal with different subject matter. Ulysses is
deemed irrational from the dynamic perspective, and thus not worthy of attention.
On the other hand, surely decision theory has something to offer agents facing
predicaments like Ulysses’. This is presumably the job of static decision theory.

One may certainly approach the relationship between dynamic and static decision
theory in this way, namely that the former is the yardstick for assessing an agent
like Ulysses’ rationality over some period of time, perhaps his whole lifetime, while
static decision theory assesses his rationality only at the ‘present’ time. In this way,
Ulysses may be rational in the static sense when he orders the crew to tie him to the
mast, while falling short of rationality in the more demanding, dynamic sense.

The worry is that the latter demanding notion of rationality—one that concerns
an agent over an extended period of time—is of mere intellectual interest. If the aim
is to offer pertinent practical guidance to an agent, it seems more fruitful to regard
dynamic and static decision theory as concerned with the same decision problem,
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namely: What constitutes rational choice at the ‘present’ live point of decision? The
dynamic model can be understood simply as a nice way of visualising the temporal
series of choices and learning events that an agent predicts she will confront. On this
reading, the key question, then, is: How should an agent choose her initial move in
light of her predicted decision tree? To answer this, we need to determine how the
future nodes of the decision tree should bear on the initial choice. How should the
agent conceive, in static terms, of her choice problem?

35.3 How Should One Initiate a Sequence of Choices?

The questions left dangling in the previous section have generated a surprising
amount of controversy. Three major approaches to dynamic choice have appeared
in the literature. These are the naive or myopic approach, the resolute approach and
the sophisticated approach. I join a number of others (e.g. [16, 18, 23]) in defending
the latter, but there are also steadfast supporters of resolute choice (notably [20]
and [17]). Myopic choice is best conceived as a useful contrast for the other two
approaches.

Let us begin with the contrast case. A naive agent assumes that any path through
the decision tree is possible, and so sets off in pursuit of whichever path they
calculate to be optimal, given their present attitudes. For instance, a naive Ulysses
would simply presume that he has three overall strategies to choose from: Either
ordering the crew to tie him to the mast, or issuing no such order and later stopping
at the sirens’ island, or issuing no such order and later sticking his course. Ulysses
prefers the outcome associated with the latter combination, and so he initiates this
strategy by not ordering the crew to restrain him. Table 35.1 presents naive Ulysses’
static decision problem. In effect, this decision model does not take into account
Ulysses’ present predictions regarding his future preferences.

There is no need to labour the point that the naive approach to dynamic choice
is aptly named. Ulysses chooses to ‘sail unconstrained and then go home to Ithaca’,
but, by his own lights, this combination of choices would not be realised; initiating
the act would inevitably lead Ulysses to stay on the island of the sirens. The hallmark
of the sophisticated approach, by contrast, is its emphasis on backwards planning:
The sophisticated chooser does not assume that all paths through the decision tree,
or in other words, all possible combinations of choices at the various choice nodes,
are genuine options. The agent considers, rather, what they would be inclined to
choose at later choice nodes if they were to arrive at the node in question. Indeed,
the agent starts with the final choice nodes in the tree, and considers what would be

Table 35.1 Naive Ulysses

Act Outcome

Sail unconstrained then stay with sirens Life with sirens

Sail unconstrained then home to Ithaca Reach home, no humiliation

Order tying to mast Reach home, some humiliation
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Table 35.2 Sophisticated Ulysses I

Act Outcome

Sail unconstrained then stay with sirens Life with sirens

Order tying to mast Reach home, some humiliation

Table 35.3 Sophisticated Ulysses II

Act Later prefer sirens (p = 1) Later prefer Ithaca (p = 0)

Sail unconstrained Life with sirens Home, no humiliation

Order tying to mast Home, some humiliation Home, some humiliation

chosen at these nodes, given their predicted preferences at each of these positions.
These predicted choices would presumably affect what the agent would choose at
the second-last choice nodes. Once the second-last choices have been determined,
the agent moves to the third-last choice nodes, and so on back to the initial choice
node. The result is that only certain paths through the decision tree would ever be
realised, if initiated.

Sophisticated Ulysses would take note of the fact that, if he reaches the island
of the sirens unrestrained, he will want to stop there indefinitely, due to the
transformative effect of the sirens’ song on his preferences. He acknowledges the
implications of this prediction and so deems the choice combination of ‘not issuing
an order for his crew to restrain him and then sticking to his course’ to be an
impossibility. Table 35.2 presents sophisticated Ulysses’ static representation of
his decision problem in terms of the combinations of choices that he predicts
would arise. Note that there are only two feasible combinations of choices here.
Table 35.3 gives an alternative static representation, whereby Ulysses’ future
preferences/choices are part of the state space; this static representation is, in a
sense, more general, because it can easily be modified to incorporate probabilistic,
as opposed to certain, predictions about future preferences/choices, (In Table 35.3,
the later preference for staying with the sirens is certain; we see that the probability
for this state, p, is equal to one.) Moreover, in Table 35.3, the ‘acts’ are limited to
those things the agent can initiate at the moment of decision. This is in keeping with,
for instance, Joyce’s [11, 57–61] interpretation of acts in a static decision model.

Defenders of the resolute approach to dynamic choice dismiss problems like
Ulysses’, claiming that Ulysses cannot serve as a model agent for dynamic
rationality, for the reason given in Sect. 35.2. Indeed, the resolute approach is
particularly unconvincing in the context of Ulysses’ decision problem. The key
point of difference between the sophisticated and resolute approaches concerns how
a rational agent may be expected to choose at future nodes of a decision tree. While
the sophisticated approach assumes that an agent always chooses in accordance
with their preferences at the time, the resolute approach holds that an agent may
sometimes defer to their previous preferences or strategy—they may honour a
previous commitment, despite present misgivings. The reason this recommendation
is not very convincing in Ulysses’ case is that there is no apparent reason why
Ulysses, upon reaching the island of the sirens and not restrained by his crew,



662 K. Steele

would ignore his current preferences and instead sail straight on. Indeed, depending
how one understands the relationship between preference and choice, it is arguably
contradictory to depict an agent choosing according to preferences other than their
own preferences at the time.

Agents like Ulysses cannot appeal to the resolute approach to dynamic choice.
Defenders of the resolute approach rather appeal to decision problems like the one
in Fig. 35.2. Their aim is to defend both the resolute approach to dynamic choice
and preferences that violate the independence axiom.2 The agent’s preferences, with
respect to Fig. 35.2, are thus stipulated as follows (so as to violate independence):
at all times she prefers O1 to O2, but she prefers the lottery that gives O2 if E and
O3 if ¬E to the lottery that gives O1 if E and O3 if ¬E. We can refer to the former
lottery as L2 and the latter as L1. There is another lottery in Fig. 35.2, L2−δ, where
the value of δ is selected such that L2 > L2 − δ > L1.

Some examination reveals that a sophisticated agent with preferences as specified
above (or more accurately, who predicts that her preferences will be as specified
above) initially chooses ‘down’ in the problem in Fig. 35.2, which effectively
amounts to the lottery L2 − δ. Note that this strategy is dominated by the one
that amounts to L2: ‘up’ at the initial choice node, and then ‘down’ at the second.
According to McClennen [20], this is precisely the kind of situation in which the
resolute, as opposed to the sophisticated, approach to the problem is more apt. At
all times the agent prefers L2 to L2 − δ, so it is in her best all-round interests to
pursue the L2 lottery and stick firmly to this plan, despite the fact that O1 will look
better than O2 at the second choice node (i.e., ‘up’ rather than ‘down’), should the
agent reach this position.

We need not get sidetracked here by questions about the (ir)rationality of
preferences that violate independence. The agent’s preferences can simply be taken
as given. The question is: Can such an agent reasonably expect to be a resolute
chooser? That is: Would an agent with preferences as stipulated reasonably choose
‘down’ rather than ‘up’, were she to reach the second choice node in Fig. 35.2?
Defenders of resolute choice say that the rational agent would indeed vindicate her
previous decision to pursue the lottery L2. In this author’s opinion, that proposal
defies the very meaning of preference. Of course, an agent may place considerable
importance on honouring previous commitments. Any such integrity concerns,
however, should be reflected in the description of final outcomes and thus in the
agent’s actual preferences at the time in question. Conceiving an agent’s preferences
as concerning more complex outcomes than initially supposed, is quite different
from conceiving an agent’s preferences to be out of step with her supposed choices
at the time in question, which is what the resolute approach to sequential choice is
committed to.

2Joyce [11, 86] gives the following informal statement of the independence axiom: ‘a rational
agent’s preferences between (acts) A and A∗ should not depend on circumstances where the two
yield identical outcomes.’
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What this discussion highlights is that controversies surrounding dynamic/
sequential choice are essentially controversies about how an agent’s decision at a
time should be informed by her predicted future preferences/choices (in addition
to predictions about future states of affairs). The naive approach recommends
that an agent simply ignore predictions about her future attitudes. This is clearly
problematic as it amounts to not taking into account all the available evidence
when making a decision. The dispute between the resolute and sophisticated
approaches is more fine-grained; it concerns how predicted future preferences
inform corresponding future choices, in the context of the greater dynamic decision
problem at hand.

While not orthodox, the most general translation of a dynamic decision problem
to static form is to include future preferences/choices in the state space (see [29],
Sect. 35.2). Table 35.3 employs this representation. The available acts are simply
the options at the initial choice node. The outcomes of these acts depend not only
on how things turn out in the external world, but also on what decisions the agent
confronts later and the strategies she would then choose. These may all be aspects
of the future that the agent is unsure about, and thus assigns probabilities between
zero and one. (Note that the examples in this chapter, as per much of the discussion
of sequential choice, are special cases where future preferences are known for sure,
or in other words, as in Table 35.3, are assigned probability one.)

35.4 Normative Questions: Can Dynamic Decision Models

Help?

We have seen how dynamic decision trees can help an agent like Ulysses take
stock of his static decision problem, so that he can work out what to do ‘now’.
The literature on dynamic decision theory has more ambitious aims than this,
however. Much discussion is devoted to more general normative questions: Must
rational preferences conform to expected utility theory? What constitutes ratio-
nal belief and preference change? Indeed, the work of a number of authors,
including Hammond [6–10], Seidenfeld [23–27], McClennen [19, 20], Machina
[17], Rabinowicz [21, 22], Skyrms [28], Steele [29], Bradley and Steele [3], and
Buchak [4, 5] demonstrates that dynamic decision models provide a rich setting for
investigating these familiar normative questions. As one might guess, the findings
are controversial.

Our earlier discussion of the resolute approach to dynamic choice gave a glimpse
of how dynamic-choice problems shed light on normative issues. Refer back to the
problem in Fig. 35.2. This problem is useful for evaluating preferences that violate
independence (as per cumulative prospect theory (see [17]) and the associated risk-
weighted expected utility theory defended by Buchak [5]). The preferences specified
in Sect. 35.3 violate independence, by design:
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O1 > O2
L2 : (O2 if E; O3 if ¬E) > L2 − δ > L1 : (O1 if E; O3 if ¬E)

The dynamic choice problem in Fig. 35.2 can serve as a controlled experiment, so
to speak, to test preferences of this sort. The experiment is ‘controlled’ because the
agent has stable or constant preferences; she does not predict any rogue changes
in belief or desire, as per Ulysses. Indeed, the agent predicts her preferences will
change only due to learning new information that leads to a belief update in
accordance with Bayes’ rule. The question is whether these preferences are shown
to be in some sense self-defeating, suggesting they are irrational.

Recall that the sophisticated agent with preferences as specified above will
choose ‘down’ in Fig. 35.2, effectively selecting a strategy that amounts to L2 − δ.
The embarrassment here is that there is another strategy in the dynamic tree—‘up’
initially and then ‘down’—that effectively amounts to L2, which clearly dominates
L2 − δ. Of course, our agent is not guilty of choosing an option that is dominated
by another available option. The problem, however, is that it is the agent’s own
preferences that make the dominating L2 strategy unavailable to her. And for this
reason, we might judge the preferences to be self-defeating or irrational.

A number of the authors mentioned above discuss this potential criterion for
rational preferences, namely that dominating strategies in the dynamic setting
should not be unavailable to an agent on account of her own (stable) preferences.
Refer to this as the ‘dominating-strategies’ criterion. McClennen [20] upholds
the criterion, and Rabinowicz [21] and Steele [29] express some support for it.
Hammond [6, 7, 9, 10] defends an even stronger criterion that effectively requires
all strategies in an extensive-form model, i.e., all combinations of choices, to be
available to an agent. In other words, the agent’s own preferences should not prevent
her from pursuing what she ‘now’, i.e., at the outset, considers to be the best
strategy. Hammond refers to this criterion as consequentialism, but this label is
rather misleading.

Assuming sophisticated (rather than resolute) choice, the ‘dominating-strategies’
criterion rules out preferences that violate independence.3 It is worth noting that
this same criterion is the cornerstone of the well-known ‘diachronic Dutch book
argument’, or at least the version in Skyrms [28]. In this case, the ‘controlled
experiment’ takes a slightly different form: The agent at all times has preferences
that conform to expected utility theory, and her basic desires are stable. It is the
agent’s learning or belief-update rule that is under scrutiny. Skyrms shows that a
sophisticated agent whose belief-update rule is something other than Bayesian con-

ditioning, may, in some cases, choose a dominated option because the dominating
option is unavailable to her. Conversely, this is never the case for an agent who plans
to update by Bayes’ rule. On this basis, we are supposed to conclude that Bayesian
conditioning is the uniquely rational belief-update rule.

3We thus see why McClennan [20] defends the resolute approach to dynamic choice. For similar
reasons, Buchak [5] is also sympathetic to resolute choice.
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Seidenfeld notably rejects both Hammond’s consequentialism and the
‘dominating-strategies’ criterion just outlined. Seidenfeld seeks to defend decision
theories that violate ordering (and only secondarily, independence); an example
of such a theory is Levi’s [15] E-admissability choice rule.4 Like cumulative
prospect theory (for instance), Levi’s theory, in its general form, does not satisfy
the ‘dominating strategies’ criterion (see [29]). Unlike cumulative prospect theory,
however, Levi’s theory does satisfy an alternative criterion for rational preference
that concerns future choices between ‘indifferents’, or options the agent is
indifferent between; Seidenfeld articulates and defends this criterion in a series
of interchanges with other authors (i.e., in [23, 24, 26, 27]); the debate is discussed
in detail in Steele [29].

We might label Seidenfeld’s criterion the ‘future indifferents’ criterion. It holds
that, in the controlled setting where preferences remain stable, if the agent will be
indifferent between options at a later choice node, then she should be indifferent
now between strategies that terminate in these options, and are otherwise identical
prior to the choice node in question. If this criterion is not satisfied, as per theories
that violate independence like cumulative prospect theory [23], there is no ‘natural’
way to evaluate the aforementioned strategies. The strategies have differing utilities,
but either one may eventuate if the agent makes the appropriate initial choices. The
obvious move here is to acknowledge only one strategy, with a final tie-breaking
step. Steele [29] pursues this line of argument against Seidenfeld’s criterion. There
remain problems, however, if the evaluation of the single strategy depends on which
tie-breaker is selected, as per preferences that violate independence.

Whether or not one affirms Seidenfeld’s ‘future indifferents’ criterion for rational
preference, the issues it raises demand consideration. Choice in the face of
indifference has always been puzzling, but the problems take on new significance
in the dynamic setting—in this setting there is a need to explicitly model predicted
future choices, including choices between indifferents, in order to evaluate current
options.

35.5 Concluding Remarks

The previous section gave a tour of the prominent dynamic-choice arguments
concerning rational preference (and learning) that have been discussed in the
literature. As indicated, there is persistent disagreement. Some of the disagreement
concerns the sophisticated/resolute distinction discussed in Sect. 35.3. This is best
considered a dispute about the meaning of the terms in a dynamic-choice model, in

4This is a lexical choice rule that can handle indeterminate belief and/or desire, represented by
a set of probability-utility function pairs. The ‘E-admissible’ options are those that have maximal
expected utility for at least one probability-utility representation in the set; these are the options that
a rational agent may permissibly choose. The agent discriminates between ‘E-admissible’ options
on the basis of her ‘security’ attitudes.
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particular, future preference and its relationship to future choice. Beyond that, there
is disagreement about what are reasonable features of choice in the dynamic setting,
as discussed in Sect. 35.4.

A further topic of debate in the more recent literature concerns what rival decision
theories say about the value of ‘information’ or evidence retrieval. This implicates
dynamic choice as it concerns whether to choose one of a given set of options ‘now’
or rather wait to collect evidence that may be pertinent to the choice in question.
A candidate rationality criterion is that one should always wait to retrieve further
evidence if the evidence is ‘free’ and may influence one’s choice; call this the
‘free evidence’ criterion. The criterion is discussed in Kadane et al. [12], Buchak
[4], and Bradley and Steele [3] in relation to varying generalisations of expected
utility theory. These authors reject the standard version of the ‘free evidence’
criterion, but arguably, the issues are not fully settled. Another topic deserving
of further investigation is the possibilities for rational preference change; Bradley
[2], for instance, considers cases beyond preference change in response to new
information. The relationship between present uncertainty about future preferences
and a ‘preference for flexibility’ with respect to available options in the future is a
related issue that also deserves further investigation; for early works on this topic,
see Koopmans [13], Kreps and Porteus [14], and Arrow [1].
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Chapter 36

Causal Decision Theory

Brad Armendt

Abstract Causal decision theory (CDT) is a general theory of rational decision,
appropriate for simple or complex decision problems. It is an expected utility theory
distinguished by its explicit attention to causal features of decision problems, and
by the significance it attaches to those features. When the causal structure of a
decision problem is uncomplicated, the recommendations of CDT and other theories
generally agree. In more complex cases, however, CDT identifies rational decisions
where other theories do not. Several varieties of CDT have been offered; they differ
in their ways of representing beliefs about causal influence, but as decision theories
they are very similar. Each of them was developed as a subjective expected utility
theory, and that approach will be assumed here.
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36.1 A Basic Idea

The point of a deliberate action is to intervene in the world so as to bring about

desirable results and/or to prevent undesirable results. Our motives for choosing
among our available actions are rooted in a comparison of their expected results.
Such results may be direct and obvious, or indirect and difficult to ascertain (think
of effects on one’s reputation, or on one’s future habits). This consequentialist idea
is that the values of actions lie in the values of their causal consequences. The idea is
compatible with the fact that we often exercise our agency in ways that differ from
deliberate, reasoned choice. When we improvise, explore, or do what seems fitting,
at some level we may not foresee the causal consequences of our actions. But it is
arguable that when we judge the value of what we do in such settings, we attend to
effects of what we do.

Since we have limited information about what causes what in the world, our
ability to foresee an action’s causal consequences has limits. The decision-making
value of an action is an expected value, where the expectation reflects the values of
its various possible causal consequences, weighted by our assessments of how likely
those consequences are to result from the action. (This assumes that the possible
consequences, as we distinguish them, are incompatible with each other, and that
the full list of possible consequences is a partition.)

Causal consequences abound. For any action A, if we care to, we can find a
myriad of possible causal consequences traceable to A (for example, sunbathing on
the beach might rearrange the grains of sand in many possible ways). A decision-
maker will consider and be motivated by relatively few of these. Let us say, then,
that our Basic Idea is:

BI: The values of actions are expectations of the values of their causal consequences

that matter to the decision-maker.

This idea underlies causal decision theory (CDT).
What if acts have no causal consequences? The theory is about what the decision-

maker takes to be causal influences, even if she is wrong about them. In a situation
where a decision-maker believes that her alternatives have no causal consequences,
BI has little to offer. CDT will then say that all such alternatives get no value from
their (nonexistent) consequences, and they are equally choiceworthy. In a given
utility assignment their utilities may be nonzero, but they will be equal.

Causal influences often occur in complex combinations; might there be situations
to which BI is not easily applied? Yes. Can there be situations in which BI and CDT

recommend actions that are less valuable than one would like? Again, yes. But a
deficiency that arises when one’s best option is disappointing is not a failure of
CDT, if the theory recommends the best of the options that are available.
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36.2 Historical Background

The decision theory developed by L.J. Savage [27] provided an elegant, rigorous,
and influential account of personalist (subjective) probability and decision-making
utility. The theory treats actions as functions from states of the world to conse-
quences, and states as independent of actions. If the state of the world is known, the
value of an action is the value of the consequence to which, in that state, the action
leads. More generally, when the actual state is not certain, the value of an action is
the weighted average, or expectation, of the values of the consequence it has in each
possible state, where the weights are the unconditional probabilities of each state:

U(A) =
∑

j
pr

(
Sj

)
U

(
CA & Sj

)
(S1)

Since each act-state combination determines a consequence, and the states form
a partition, we can also express Savage’s utility rule in terms of the conjunctions of
the action with the various states:

U(A) =
∑

j
pr

(
Sj

)
U

(
A & Sj

)
(S2)

(Here and throughout this article, we use finite forms of such rules.) Savage’s
theory was a remarkable achievement, but for some purposes and applications that
interest philosophers, its formal structure seems too rigid. In the framework of the
theory, there is no doubt, given a state of the world, about what the precise outcome
of a particular action will be; the decision-maker is supposed to deliberate about
states and actions that are so finely specified as to make that so. But, as Savage knew,
sometimes we find ourselves in situations that do not directly fit this structure, and
the formal theory appears to require that we regiment our decision problems to an
extent that sometimes exceeds what we can manage. We consider adding an egg to
five others to make an omelet (Savage’s example). It might be a good egg or a bad
one (different possible states). Will adding one bad egg to five good ones yield a
spoiled omelet? If we are not sure, then we do not know which consequence will
result from the state of five good eggs and one bad one. Savage suggested that we
handle this by using an expanded set of finer-grained states, each specifying the
condition of the egg together with facts about adding a bad egg to good ones. But
sometimes we may have little idea which sets of fine-grained facts will determine a
given action’s outcomes.

In the 1960s an appealing alternative was developed by Richard Jeffrey, relying
on a theorem due to Ethan Bolker (Jeffrey [12]), and it came to be known as evi-

dential decision theory (EDT). EDT allows the decision-maker to deliberate using
states in which an action’s outcome is not certain, as in the example of the omelet.
Like the theories of Savage, Ramsey, and de Finetti, Jeffrey’s EDT is a theory of
subjective probability; probabilities measure the degrees of belief of the (rational)
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decision-maker. The theory has many virtues and was attractively packaged with
other important ideas, and it became widely used among philosophers. Causal
considerations are absent from the structure and principles of EDT.1 That might
be, and at times was, seen as one of its virtues, should EDT provide a satisfactory
account of rational decision without them. But doubts arose that it could do so, and
the doubts led to proposals for CDT, in several versions.

The expected utility (or desirability des) rule in Jeffrey’s EDT applies to any
proposition p and partition {qj} for which the pr(qj/p)s are well defined. When
applied to action A and a partition of possible states that matter to the decision-
maker, it is

des(A) =
∑

j
pr

(
Sj/A

)
des

(
A & Sj

)
. (J1)

Note the role of the conditional probabilities pr(Sj/A) of the state, given the act.
States may be probabilistically independent of the act, but they need not be. When
they are not, the probabilistic association influences how the values of the various
states are weighted in the overall value of the action A. Jeffrey suggested that des(A)

be interpreted as the value of the news that A is true.2 Jeffrey’s suggestion applies
to any element of the decision-maker’s preference ranking; here it is applied to the
action A.

In Jeffrey’s theory, there can be more than one possible consequence that a
given combination of state and action might yield, and if the set of all the possible
consequences of A is a partition {Ci}, we have

des(A) =
∑

j
pr

(
Sj/A

) ∑
j
pr

(
Ci/A & Sj

)
des

(
Ci & A & Sj

)
. (J2)

Again we see that probabilistic associations between actions and states will affect
the way that values of the various states and consequences are weighted in the
overall value of the action A. If such associations arise because actions (are believed
to) causally influence the states, this is compatible with BI. But if a probabilistic
dependence of states on acts arises in some other way, there is room for conflict
between EDT and BI.

1Though perhaps not always from its intended interpretation (of actions, e.g.), about which
Jeffrey’s views shifted over time. The noncausal character of the theory was pointed out by Jeffrey
from its inception (Jeffrey [12], chapter 10), but see Jeffrey [13] and Joyce [15] for Jeffrey’s later
view.
2Think of how the policy of conditionalization recommends that your conditional probabilities
pr(−/p) guide your new prn(−) probabilities, after p is learned for sure—that is, after you get the
news that p.
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36.3 Difficult Problems for Evidential Theory

When do probabilistic dependence of states on acts and direct causal dependence
come apart? Suppose you believe that a common cause exerts influence over (a)
your action, and also over (b) possible states of the world that matter to the values
of the possible outcomes of your action. In such a context, probabilistic dependence
and direct causal dependence diverge; one striking case is when your actions are
probabilistic indicators of the actual state, but your actions exert no direct causal
influence on the state. In other words, pr(Si/A) �= pr(Si), yet A neither promotes nor
prevents Si. Notice that you need not know what the common cause is; the situation
could arise as long as you regard a relevant state Si as probabilistically dependent on
your action, yet at the same time reject the idea that your action causally influences
the state. Jeffrey’s expected utility (des) rule applies to any partition, so if the states
{Sj} form a partition, EDT endorses an evaluation of A using {Sj}, as in (J1) or (J2).
The evaluation will then use probability weights that are at odds with what you
believe A’s causal influences to be. As we will see, CDT is designed to avoid that.

Call decisions that fit the preceding sketch, where members of a partition
of significant states are probabilistically dependent on the available acts, yet no
direct causal influence from acts to the states is believed to be present, (causally)
confounded decisions (CDs).3 EDT uses the conditional probabilities pr(Si/A) as
weights in its utility rule, and sometimes EDT does so in CDs where causal
influence from action to state is absent. The difficulty is that this sometimes leads
to incorrect recommendations. The best known example of a CD is Newcomb’s

Problem, introduced to philosophers by Robert Nozick [21].

A being in whose power to predict your choices correctly you have great
confidence is going to predict your choice in the following situation. There
are two boxes, B1 and B2. Box B1 contains $1,000; box B2 contains either
$1,000,000 ($M) or nothing. You have a choice between two actions: (1)
taking what is in both boxes; (2) taking only what is in the second box.
Furthermore, you know, and the being knows you know, and so on, that if
the being predicts you will take what is in both boxes, he does not put the
$M in the second box; if the being predicts you will take only what is in the
second box he does put the $M in the second box. First the being makes his
prediction; then he puts the $M in the second box or not, according to his
prediction; then you make your choice [22].

Some presentations specify that box B1 is transparent, so you can see that it
contains $1000. The basis of the prediction is unspecified, but it is assumed to be
something that obtains prior to or at the time the prediction is made; the predictor
does not somehow observe your future act. (If you believe that he did, it is a different
problem that need not be trouble for EDT.) A natural gloss on the story is that the

3More generally, in CDs there are significant state-partitions such that pr(Si/A) does not reflect
the extent to which A is believed to have direct causal influence on Si. CDT makes use of state-
partitions for which direct causal influence is believed entirely absent.



674 B. Armendt

basis of the prediction is a common causal influence on your choice and, through
the predictor’s actions, on the contents of box B2. Statements of the problem often
specify that you believe the predictor is very reliable, but the challenge for EDT

theory can arise even if you believe that the predictor’s success rate is only slightly
better than 50% (or a little better than that, if you give declining marginal utility to
dollars).

Nozick [21] presented Newcomb’s Problem as an illustration of a clash between
two principles of choice, maximizing expected utility vs. dominance reasoning.
Since the expected utility principle he used agrees with the treatment of an act’s
expected utility in Jeffrey’s EDT, the clash is between EDT and dominance
reasoning.

Evidential reasoning:
Suppose, to pick a number, you believe that the predictions are 90%

reliable in the sense that the probability is .9 that the action chosen was
correctly predicted. Also suppose that the possibility that the predictor misfills
B2 is negligible. Then we can regard ‘$M in B2’ and ‘$0 in B2’ as states, ‘take

B2’ and ‘take B1 & B2’ as acts, with

pr ($M in B2/take B2) = .9 pr ($0 in B2/take B1 & B2) = .9
pr ($0 in B2/take B2) = .1 pr ($M in B2/take B1 & B2) = .1

Supposing that $ measure the des of an outcome, EDT says

des (take B2) = pr ($M in B2/take B2) des ($M in B2 & take B2)

+ pr ($0 in B2/take B2) des ($0 in B2 & take B2)

= .9 ($M)+ .1 ($0) = $900, 000, while

des (take B1&B2)

= pr ($M in B2/take B1 & B2) des ($M in B2 & take B1 & B2)

+pr ($0 in B2/take B1 & B2) des ($0 in B2 & take B1 & B2)

= .1 ($M+ $T)+ .9 ($T) = $101, 000

So if you maximize expected utility using EDT, you choose to take only
what is in B2.

Dominance reasoning:
At the moment of decision, the contents of B2 are already fixed. Either it

contains $M or it doesn’t. Suppose it contains $M; then taking both B1 and
B2 is a better choice than taking B2 alone and thereby leaving $T on the table.
Suppose it does not contain $M; again, taking the contents of both boxes is
the better choice. So either way, taking both boxes is better, you should take
both boxes, and the recommendation by EDT is mistaken.
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Now, as Jeffrey [12]) pointed out, it is easy to see that dominance reasoning is
not generally reliable in the context of EDT when states are not probabilistically
independent of acts. But in the Newcomb case, where you believe that the state is
fixed before you act, and is not causally influenced by the act, dominance reasoning
for the two-box answer is hard to dismiss. To follow EDT’s guidance would be to
choose to generate evidence for a desired outcome while believing that the choice in
no way promotes that outcome, and doing so at the cost of $T. Developers of causal
decision theory took the two-box answer to be correct, and they proposed revisions
of the expected utility calculation that a) agree with EDT in the many cases where
probabilistic dependence is (believed) an accurate guide to causal influence, while
b) correcting EDT in cases where probabilistic dependence and causal dependence
(are believed to) come apart.

A second CD that appeared in the earliest discussions of CDT is the Smoking

Gene example. The story given by Stalnaker [33] includes a hypothesis that was
once considered by R.A. Fisher:

Imagine a man deliberating about whether or not to smoke. There are
two, equally likely hypotheses (according to his beliefs) for explaining the
statistical correlation between smoking and cancer: (1) a genetic disposition to
cancer is correlated with a genetic tendency to the sort of nervous disposition
which often inclines one to smoke. (2) Smoking, more or less, causes cancer
in some cases. If hypothesis (1) is true, he has no independent way to find out
whether or not he has the right sort of nervous disposition.

An important point that Stalnaker makes with this example is that we may be
uncertain about which causal structure is true, and that a good decision theory
should be able to guide us in such cases. We will return to that point soon. Focus
for the moment on the smoking gene hypothesis (1). If the hypothesis is correct,
cancer is probabilistically dependent on smoking, because of the common influence
of the disposition. EDT picks up on that, and drastically reduces the value given to
smoking, even when the smoking gene hypothesis says (let us suppose) that smoking
has no influence on one’s genes, or on getting cancer. So if, contrary to Stalnaker’s
version of the example, the man knows that the smoking gene hypothesis (1) is
correct, his decision problem resembles a Newcomb problem in which you know
about the predictor’s role in determining the contents of the opaque box. EDT will
then recommend that the man refrain from smoking, even though its only relevant
causal consequence is (let us suppose) a pleasure having positive value.

36.4 Causal Conditionals and the Gibbard-Harper Theory

A consequentialist expected utility theory expresses the utility of my action A in
terms of the utilities of its possible consequences Ci, weighted by their probabilities.
It is a natural idea to think of those weights as probabilities of conditionals if I were

to do A, then the result would be Ci. As we have seen, Jeffrey’s evidential theory
does not do this, instead using conditional probabilities pr(Ci/A) as the weights.
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Do the conditional probabilities and the probabilities of the conditionals agree?
In 1972, David Lewis presented a trivialization result undermining the idea that
the probability of a conditional if p then q is always the same as the conditional
probability of q given p [20]. With the Newcomb problem in mind, Robert Stalnaker
[33] suggested that the generally correct way to evaluate the expected utility of A

is to weight the value of each consequence Ci by the probability of the subjunctive
causal conditional, A �→ Ci, whose probability need not agree with pr(Ci/A).

Allan Gibbard and William Harper developed Stalnaker’s idea into a CDT; it
was presented in 1975 and published in their [9]. They characterized two accounts
of expected utility: one is essentially Jeffrey’s evidential theory, calculated using
conditional probabilities and denoted V; the other, denoted U , is calculated using
probabilities of conditionals. What makes U a form of CDT is the interpretation
Gibbard and Harper give to the conditionals. The conditionals are understood as
causal and nonbacktracking; A �→ Sj expresses the idea that Sj would causally
result from doing A (the idea that either Sj is inevitable, or that A would bring it
about). When A in no way promotes or prevents Sj, the probability of the conditional,
pr(A �→ Sj) is no different from the unconditional probability pr(Sj). They
explicitly make the working assumption that the conditionals satisfy a Conditional
Excluded Middle principle so that, in the presence of other less controversial
principles, partitions of possible consequences {Ci}, or of possible states {Sj} can
be counted on to generate partitions of conditionals {A �→ Ci}, or {A �→ Sj}.

So, in a CD where acts have no direct causal influence over states Sj, U weights
the value of Ci = (Sj & A) by the unconditional probability pr(Sj), and does so for
each of the available actions, while V uses the different weights pr(Sj/A). In such
cases, though dominance reasoning may conflict with V-theory, it is endorsed by
U -theory:

Newcomb’s problem: Since neither choice of B2 alone nor choice of B1 & B2

influences the contents of the boxes, both pr(take B2 �→ Sj) and pr(take B1

& B2 �→ Sj) are equal to pr(Sj), where the Sj are the possible arrangements
of money in the boxes. So

U (take B2) = pr (take B2 �→ $M in B2)U ($M)

+pr (take B2 �→ $0 in B2)U ($0)

= pr ($M in B2)U ($M)+ pr ($0 in B2)U ($0)

U (take B1 & B2) = pr (take B1 & B2 �→ $M in B2)U ($M + T )

+pr (take B1 & B2 �→ $0 in B2)U ($T )

= pr ($M in B2)U ($M + T )+ pr ($0 in B2)U ($T )

and whatever the probabilities are, the U of taking both boxes exceeds the U

of taking only B2, by the $T in B1.

In ordinary situations, actions do not carry information about which causal
conditional is true, but in CDs that is not so: pr(take B2 �→ $M in B2 / take B2)
is greater than pr(take B2 �→ $M in B2 / take B1 & B2), since taking only B2 is
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correlated with the predictor’s filling B2. But we may still expect that actions do not
exert causal influence over which conditionals are true; that is, over which of the
possible causal structures that underpin the conditionals is the actual one.

In Gibbard and Harper’s treatment, a single causal conditional A �→C expresses
the deterministic causation of C by A. A fuller representation of the relevant causal
structure is given by a conjunction that specifies what each of the available actions
would bring about: (A1 �→ Cj) & (A2 �→ Ck) & . . . & (An �→ Cm), for all of the
possible actions Aj, where the consequences are members of {Ci}. Following Lewis
[19], call such a conjunction a dependency hypothesis, DH. Just as the decision-
maker will typically be unsure which individual causal conditional holds, he will be
unsure about which of the many possible dependency hypotheses in {DHk} is true.
In a CD, individual conditionals may be probabilistically correlated with actions yet
causally independent of them, and the same is so for dependency hypotheses. In the
Gibbard-Harper theory, a conjunction DH & A of a dependency hypothesis and an
action specifies a definite outcome Ci, and there is agreement between calculations
of (A) in terms of a partition of individual conditionals:

U(A) =
∑

i
pr (A�→ Ci)U (Ci) (GH1)

and calculations in terms of unconditional probabilities of a partition of dependency
hypotheses:

U(A) =∑
jpr

(
j thconjunction of conditionals

)
×

U
(
consequence of A according to DH j

)

U(A) =
∑

j
pr

(
DH j

)
U

(
A & DH j

)
. (GH2)

Recall that Stalnaker’s presentation of the smoking gene hypothesis envisions a
man who is unsure whether the world fits that hypothesis, or a more usual story
about the causes of cancer. In the Gibbard-Harper treatment, such uncertainty will
be reflected in the probabilities he gives to dependency hypotheses that fit one
possibility or the other. His choice will depend, as it should, on the relative weights
he gives to the hypotheses.

36.5 K-Expectation and Other Theories

Other versions of CDT were developed soon after Gibbard and Harper’s account.
Brian Skyrms [29], David Lewis [19], and Howard Sobel [32] each replaced
Gibbard and Harper’s deterministic causal conditionals with ways of representing
probabilistic causal influence. Detailed comparisons of the versions can be found in
Lewis [19], Skyrms [28], and Joyce [14].
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Lewis’ theory, like Gibbard and Harper’s, treats dependency hypotheses as
conjunctions of causal conditionals, one conjunct for each available act. But Lewis’
conditionals have chancy consequents, taking the general form A �→ [P(Sj) = p],
where [P(Sj) = p] asserts that the objective chances of the states Sj are given
by the probability distribution p. Lewis rejected Conditional Excluded Middle
for deterministic causal conditionals, mainly for the reason that worlds may be
indeterministic, but he was willing to assume it for his dependency hypotheses.
Sobel’s theory, on the other hand, used what he called practical chance conditionals

A ⋄x→C, which are understood to say ‘if it were the case that A, then it might—with
a chance of x—be the case that C.’

In contrast to the other theories, Skyrms’ K-expectation theory has roots in
accounts of probabilistic causation, and it omits conditionals entirely. Its depen-
dency hypotheses are members of certain partitions of states, K-partitions, that
satisfy conditions of richness and independence. The idea is that the decision-maker
assessing the value of A entertains various hypotheses about ways the world might
be that are a) not something he can influence by his action, and b) significant for
the possible outcomes of A that he cares about. In a standard Newcomb problem,
for example, {B2 contains $M, B2 contains $0} is a K-partition. A is evaluated this
way: for each of the hypotheses, determine the value of A if that hypothesis is true;
the overall value of A is the weighted average of those values, where the weights
are the unconditional probabilities of the hypotheses. For this method to be reliable,
the hypotheses must be sufficiently fine-grained; Skyrms [28] requires that the Kjs
be ‘maximally specific specifications of factors outside our influence at the time
of decision which are causally relevant to the outcome of our actions.’ So the K-
expected value of A is

U(A) =
∑

j
pr

(
Kj

)
U

(
A & Kj

)
, (S1)

which agrees with (GH2) except for the different characterizations of the depen-
dency hypotheses. What are the values U(A & Kj)? Since each Kj settles which
states outside the decision-maker’s influence obtain, an evidential calculation of the
value of A & Kj will not go astray due to confounding states. So if the members
of partition {Ci} describe the possible causal consequences of actions in sufficient
detail to capture what the decision-maker cares about,

U
(
A & Kj

)
=

∑
i
pr

(
Ci/A & Kj

)
U

(
Ci & A & Kj

)
.

By substitution into (S1), then, we get the utility rule for K-expectation CDT:

U(A) =
∑

j
pr

(
Kj

) ∑
i
pr

(
Ci/A & Kj

)
U

(
Ci & A & Kj

)
. (S2)
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The Smoking Gene example: Suppose I am convinced of the smoking gene
hypothesis. Let Kg be ‘I have the gene,’ and let K∼g be ‘I do not have the
gene;’ they form a K-partition. Let As and Ar be the actions of smoking
and refraining, respectively. Let C be getting cancer, and P be enjoying
the pleasure of smoking; then CP, ∼CP, C∼P, ∼C∼P describe possible
outcomes of As and Ar. Suppose their values are −999, 1, −1000, and 0,
respectively. Suppose also that I enjoy the pleasure iff I smoke, and that
pr(Kg) = x. Finally, suppose that the probability of C is .6 if I have the gene,
whether or not I smoke, and that the probability of C is .1 if I do not have the
gene, whether or not I smoke.

U (As) =
∑

jpr
(
Kj

) ∑
ipr

(
Ci/As & Kj

)
U

(
Ci & As & Kj

)

= x
[
pr

(
CP/As & Kg

)
(−999)+ pr

(
∼ CP/As & Kg

)
(1)

]
+

(1− x)
[
pr

(
CP/As & K∼g

)
(−999)+ pr

(
∼ CP/As & K∼g

)
(1)

]

= x [.6 (−999)+ .4(1)]+ (1− x) [.1 (−999)+ .9(1)] = −500x − 99

U (Ar) = x
[
pr

(
C∼P/Ar & Kg

)
(−1000)+ pr

(
∼C∼P/Ar & Kg

)
(0)

]
+

(1−x)
[
pr

(
C∼P/Ar & K∼g

)
(−1000)+pr

(
∼C∼P/Ar & K∼g

)
(0)

]

= x [.6 (−1000)+.4(0)]+ (1−x) [.1 (−1000)+.9(0)] = −500x−100

So whatever the value of x, U(As) exceeds U(Ar) by 1, the value of the
pleasure of smoking.

The states Kj are outside of the influence of the actions. Notice that in ordinary
decision problems when they are also probabilistically independent of the actions,
pr(Kj) = pr(Kj/A), and substitution of the conditional probabilities into (S2) brings
it into agreement with EDT, as expressed by (J2). So K-expectation theory and EDT

agree in situations that are not CDs.
What if, as in Stalnaker’s original presentation, I am unsure whether smoking

causes cancer (H2), or the smoking gene hypothesis (H1) is true? Expand the K-
partition. Assuming that whether or not I smoke in no way brings about one causal
structure or the other, the elements of {H1 & Kg, H1 & K∼g, H2} are outside my
influence and sufficiently specific to form an adequate K-partition for this case.

36.6 If You’re So Smart, Why Ain’t You Rich?

A strong and persistent source of doubts about CDT is this fact: CDT leads to a
recommendation to take both boxes in the Newcomb Problem, but it is entirely
reasonable to expect that the average payout to decision-makers who take one box
will exceed the average payout to those who take two boxes. Indeed, a good way
to drive home the attraction of evidential reasoning is to imagine a line of people,
each with an opportunity to play the Newcomb Problem once. Given a very reliable
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predictor, the vast majority of those who take one box receive $M, while the vast
majority of those who take two boxes receive $T. How, we wonder, can taking two
boxes be the rational act? The question was raised and answered by Gibbard and
Harper [9], and the gist of their answer is this: The vast majority of one-boxers
faced a significantly different situation than did the vast majority of two-boxers.
Recall that the content of the opaque box is settled before the choice is made; some
players are offered more fortunate alternatives than others. If and when you are
given an opportunity to play, the outcomes of your alternatives are already defined.
They may be the more favorable ones, or the less, but what you do won’t change
them. The question to ask about those who preceded you is, why are the one-boxers
less rich than they could have been?

Correct as Gibbard and Harper’s answer may be, the objection recurs in many
later discussions of the Newcomb Problem and CDT. Defenders of CDT point out
that resurrected versions of the objection usually fail to distinguish between two
different decision problems: a) the problem you face in the midst of the Newcomb
Problem, after the prediction is made, and b) a different problem that you might have
faced, if you had anticipated an opportunity to play the Newcomb Problem, and
you could have sought, before a prediction was made, to influence what it would
be. But (b) is not the Newcomb Problem, and its options are no longer available
when you are in the midst of the Newcomb Problem, after the prediction has been
made. What CDT advises in (b) depends on a variety of factors (including, among
others, the permanence of the state that would lead to a one-box prediction, and your
expectations about other future decision situations that might arise while you are in
that state). CDT might well recommend that, were you in (b), you should act so as to
provide a basis for the predictor’s making a one-box prediction, while it continues
to recommend that you take two boxes in the Newcomb Problem.

The why-ain’t-you-rich? objection need not be confined to the Newcomb
Problem; in the Smoking Gene problem, more smokers contract cancer than do non-
smokers, suggesting a why-ain’t-you-well? objection. Perhaps that response is rarely
heard because it is less tempting to think that choosing your genes is an available
option in the midst of the Smoking Gene problem, than it is to think that influencing
the past prediction is an available option in the Newcomb Problem.

36.7 Early Responses to CDT; Ratifiability and Deliberation

Dynamics

Some early defenders of EDT responded to CDT by agreeing that the choices CDT

recommends are correct, and by striving to show that users of EDT can arrive at
those choices, too. Early efforts to rescue EDT as a general account of rational
decision-making did not completely succeed, but important ideas grew out of them.

CDs occur when you believe that a confounding state exerts causal influence on
your action, as well as on its outcome. Its path of influence might be something you
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notice. If some experience, some tickle will reliably indicate the influence of the
smoking gene, then you can use the presence or absence of the tickle to ascertain
whether the gene is present, and which dependency hypothesis DH is true. Further,
if you know the correct DH, your problem is not a CD after all, and EDT will
yield the correct recommendation. So goes the tickle defense of EDT. But why
expect that such a convenient and reliable tickle will always be available? So the
tickle defense as just stated does not establish that EDT will always make correct
recommendations in CDs. A sophisticated variant of the defense was developed by
Ellery Eells [7]; it involves not a tickle experience, but your beliefs and desires,
which arguably are always present in rational deliberation, and your self-awareness
of them. Eells argued that, when you are certain about what your beliefs and desires
are, and certain that your beliefs and desires fully determine your action, it follows
that your decision in the light of such knowledge is not a confounded one after all,
and that EDT will guide you to the correct action.

Elements of Eells’ treatment of CDs inspired another response to CDT, devel-
oped by Richard Jeffrey [12]. A decision-maker who is just at the point of carrying
out her decision to do A can reflect on that fact, and she can incorporate the self-
observation in an updated set of beliefs. Normally we do not expect the new beliefs
to affect her evaluations of her options, but in CDs, they often will. A forward-
looking version of this idea is to suppose that A is your final choice, and under that
hypothesis, to reevaluate A and your other options. A is ratifiable iff under your
hypothesis that A is your final choice, no other option has a value that exceeds A’s.
Let VchA(x) be the utility of x under the supposition that you choose A. Then A is
ratifiable iff for every alternative choice B, VchA(A) ≥ VchA(B). So, in the Newcomb
problem, under the hypothesis that both boxes are chosen, it is likely that box B2

is empty, but choosing both boxes has greater value than choosing B2 alone. So
taking both boxes is ratifiable. On the other hand, under the hypothesis that only
B2 is chosen, it is likely that it contains $M. But under that hypothesis, choosing
both boxes has greater value than choosing B2 alone. So taking B2 alone is not a
ratifiable choice.

Jeffrey advocated ratificationism, which recommends choosing acts that are
ratifiable; he regarded this as an addition to EDT. As Jeffrey himself pointed out,
decisions may have one, more than one, or no ratifiable choices, so he did not
claim that it was a completely general solution to decision-making. But EDT plus
ratificationism yields better treatments of many CDs than does EDT alone.

Jeffrey also pointed out that in order to judge whether, under the hypothesis that
A is the final choice, the desirability of doing A is greater than that of doing B, the
decision-maker must find it conceivable that she chooses A, yet does B.4 The gap
between choice and performance is what makes this conceivable; choices are not
always perfectly executed, slips ‘twixt cup and lip’ may occur. It turns out that this

4Ratifiability evaluations are based on beliefs and probabilities conditional on choosing A, yet
doing B; such beliefs do not face the difficulties that would be faced by beliefs conditional on the
contradiction that you do both of the incompatible acts A and B.



682 B. Armendt

gap is what ultimately limits the success of efforts to rescue the general adequacy of
EDT in CDs by Eells’ appeal to strong self-knowledge of inputs to deliberation, or
by ratificationism. Jeffrey himself presented Bas van Fraassen’s example, in which
a causally independent state is correlated with the direction in which the decision-
maker may slip in the execution of her choice. Neither Eells’ ‘metatickle defense’
nor ratificationism can guarantee that EDT will make the correct recommendation
in such decision problems [4].

While ratificationism did not entirely save EDT’s claim to general adequacy,
ratifiability is an important idea for rational decision-making in its own right [31].
Jeffrey’s development of the idea used EDT to evaluate the choices (VchA(A) vs.
VchA(B)), but nothing bars us from using CDT to do so (UchA(A) vs. UchA(B)).

Discussions of the merits of EDT and CDT also stimulated important philosophi-
cal work on deliberation dynamics, involving the idea, also present in some analyses
of game-theoretic interactions, that your beliefs can evolve through self-awareness
and learning during the course of your deliberation [29, 30]; also [5, 16]. More about
this below.

36.8 Foundations for CDT

For any formal decision theory that offers quantitative evaluations of choiceworthy
actions, it is appropriate to ask how the relevant quantities—utilities, probabilities,
and others, if any—are fixed. A standard response is to provide an account
of systems of rational preferences, and a demonstration that the quantities are
associated with a decision-maker’s system of preferences in a non-arbitrary way.
EDT was given a beautiful foundation by Jeffrey and Bolker. CDT, like any decision
theory, wanted a foundation too. Since CDT and EDT are in agreement when no
CDs are involved, a good foundation for CDT should support the use of EDT in
cases where it works, and should display those cases in an enlightening way. Skyrms
[29] discussed the issue: for a given partition {Kj}, he suggested using Jeffrey-
Bolker theory to construct utilities and probabilities for preferences conditional on
each Kj, and then sketched a way of combining those conditional functions into
an overall utility scale and a single unconditional probability distribution. Gibbard
(1984, reported in [14]) took a different approach that provided conditions, relating
states and causal counterfactuals, under which Savage’s utility theory can accurately
assess causal expected utility.

Brad Armendt [2, 3] provided a foundation for K-expectation CDT that does
not rely on a prior specification of the K-partition. States that form appropriate K-
partitions are identified by their behavior in the decision-maker’s set of conditional
preferences. The idea is that, in a CD, the unconditional ranking of action A will
not agree with the ranking of A under the hypothesis that A is performed. (This
is reminiscent of what is involved in judging whether A is ratifiable, but here the
hypothesis is about the performance of A, rather than the choice of A.) But an
unconditional ranking of A & Kj agrees with its conditional ranking under the
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hypothesis that A is done. The conditional preferences actually range over mixtures
of propositions, i.e. lotteries, and the formal foundation relies on utility theorems by
Fishburn and Herstein-Milnor. The mixing coefficients are a commonly employed
device in formal utility theories, but they differ from the structure of the Jeffrey-
Bolker foundation for EDT, which does not use them.

Jim Joyce [14] developed a foundation for CDT in the context of a general setting
for theories of conditional preference and conditional belief. The conditioning
involved may be either subjunctive supposition that captures causal relationships, or
indicative supposition that captures evidential relationships via standard conditional
probabilities. We have seen that, conditional on a dependency hypothesis K, EDT’s
evidential values VK and CDT’s causal values UK agree. Joyce emphasized the
point: he asserted that all value is news value, and that the difference between EDT

and CDT lies in the epistemic perspective of the decision-maker. In deliberation
about A, the right perspective comes from subjunctively supposing the performance
of A; beliefs under that supposition guide the assessment of A.

Joyce’s foundation is built on Jeffrey-Bolker axioms governing rational con-
ditional preference, supplemented with axioms governing measures of rational
conditional belief, that is, axioms for comparative conditional probability. No
special partition is assumed; the set of conditions {C} is taken to include at least
the set of actions available to the decision-maker. The axioms guarantee, for each
condition C, a utility function for preferences conditional on C, and a conditional
supposition function P(−||C). Further axioms unite the conditional functions into
comprehensive utility and probability pair. The nature of the probabilities captured
by the supposition function depends upon which additional principle(s) are assumed
to govern suppositions; the foundation captures CDT, as intended, when a probabil-
ity conditional on A is arrived at by subjunctively supposing that A.

36.9 Decision Instability and Deliberation Dynamics

At the end of their 1978 paper, Gibbard and Harper considered the issue of stability

in rational choice, illustrated by the example of the man who met death in Damascus:

Consider the story of the man who met death in Damascus. Death looked
surprised, but then recovered his ghastly composure and said, ‘I am coming
for you tomorrow’. The terrified man that night bought a camel and rode to
Aleppo. The next day, death knocked on the door of the room where he was
hiding and said, ‘I have come for you’.

‘But I thought you would be looking for me in Damascus,’ said the man.
‘Not at all,’ said death “that is why I was surprised to see you yesterday. I

knew that today I was to find you in Aleppo.”
Now suppose the man knows the following. Death works from an appoint-

ment book which states the time and place; a person dies if and only if the
book correctly states in what city he will be at the stated time. The book is
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made up weeks in advance on the basis of highly reliable predictions. An
appointment on the next day has been inscribed for him. Suppose, on this
basis, the man would take his being in Damascus the next day as strong
evidence that his appointment with death is in Damascus, and would take
his being in Aleppo the next day as strong evidence that his appointment is in
Aleppo.

Let KD and KA be ‘Damascus is inscribed’ and ‘Aleppo is inscribed’; they form
a K-partition. If, for example, pr(KD) > ½ then CDT recommends going to Aleppo.
But that choice seems unstable: when the man believes he is about to make it, he has
new information that influences his beliefs, including his beliefs about KD and KA.
The anticipation that he will choose Aleppo leads to a new belief prn(KA) > ½, and
prn(KD) < ½, which makes Damascus the better option. But when the man believes
he is about to choose Damascus, that new information again influences his beliefs,
leading to prnn(KD) > ½, . . . and so on. Unlike the CDs we previously considered,
where dominance reasoning worked and shifting pr(Kj)‘s would not change which
act is recommended, here a decision-maker with self-awareness will have difficulty
arriving at a decision.

What should the man do? One plausible answer: toss a coin, or adopt some
internal method of randomizing his choice, thereby pursuing a mixed strategy [10].
Neither pure act (remain in Damascus, go to Aleppo) is ratifiable, but a 50-50
mixture of those acts is. A good idea, but suppose that mixed strategies are ruled
out as viable options—if the man were to use one, Death would know, and would
interrupt his appointment-keeping to find the man wherever he is [34]. Fanciful
examples aside, notice that problems that forbid or penalize mixed acts thereby
impose a fairly restrictive exogenous constraint on the decision-maker’s options.
Having said that, however, we should be careful about ‘solving’ a decision problem
by altering it with additional options, and offering a solution to the revised problem.

The sense of instability in problems like Death in Damascus arises from the
possibility of reevaluating your options in light of information arising from your
deliberations. This is a good setting for the theory of deliberation dynamics,
mentioned earlier, where iterated or continuous updates of your beliefs inform
your continuing deliberations, which in turn provide reasons for further belief
updating. The theory applies to deliberation in general; other interesting settings
include noncooperative games among Bayesian players [29, 30]. Under deliberation
dynamics, your changing beliefs and evaluations follow trajectories that can behave
in various ways, depending upon the problem that confronts you. When CDT is used
to evaluate the options in a Newcomb Problem, deliberation yields straightforward
convergence to high confidence that you will take both boxes, and that box B2 will
be empty, since an increasing confidence that you will take both boxes does not lead
you to think it would be better to do otherwise.

The precise features of the trajectories of your beliefs will depend on the details
of the dynamics: how much does the recognition that one action A looks better than
another B, that Ut1(A) > Ut1(B), lead you to increase your belief that you will do
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A, prt2(A)? Various dynamics can be considered; for present purposes, the key idea
is that they seek the good, raising the probabilities of actions exactly when you
currently see those actions as better than others, or more precisely, as better than the
status quo, which is your current expectation of the outcome of the problem you are
deliberating about.

Returning to Death in Damascus, then, take seriously the idea that, during his
deliberation, the man is attentive to his evaluations of his options, and that what he
learns about them informs his beliefs about what he will soon do, and about what is
inscribed in Death’s appointment book. If at some time t1 during his deliberation,
he regards going to Aleppo to be the better action, so that Ut1(A) > Ut1(D), and
he realizes that he does, then he raises his belief that he will go to Aleppo,
prt1(A) > prt1(D), and also that Death is more likely to be there, prt1(KA) > prt1(KD).
Then, when he reevaluates his options at t2 with those new beliefs, he sees Damascus
as the better action, Ut2(D) > Ut2(A), which gives him reason to revise his beliefs
again. Under plausible dynamics for a rational agent, the oscillations in beliefs will
dampen over time, and the man’s beliefs prtn(KA) and prtn(KD) will converge to a
stable equilibrium, where neither act is seen as better than the other. At that point, his
tied evaluations give him no reason to further adjust the beliefs that underlie them.
In the original Death in Damascus problem, at the equilibrium state, preq(KA) and
preq(KD) are both ½, as are preq(A) and preq(D). His choice will be the outcome of
some way of breaking the tie [5, 16]. A general feature of equilibrium states to which
deliberation leads is that you see your available options as equally choiceworthy, as
having equal expected utility. It may also happen that you then believe that you are
as likely to do one act as the other, but that need not be so in problems that lack the
symmetry of Death in Damascus.

Why should the man embark on this deliberative journey? There is at least this
reason: a rational choice should be based on all of your relevant beliefs at the time
you make it. So, if you believe at time t that Death is more likely to go to Aleppo
than to Damascus, prt(KA) > prt(KD), your evaluations at t of your options, Ut(A)
and Ut(D), must use those beliefs. Or, to put it another way, a rational decision
theory such as CDT is properly used only when those evaluations do so. Is it
incumbent upon you to possess such beliefs in the midst of deliberation? We will
return to that question.

The original version of Death in Damascus is a symmetric problem, but
asymmetric versions are easily constructed; just add an incentive against travel that
makes the outcomes of staying in Damascus a little better than the corresponding
outcomes of traveling to Aleppo [26]. Or imagine that Death’s appointment book
more reliably predicts the traveler’s presence when he is in one city than when he is
in the other.

Discussions of unstable decision problems have become prominent in recent
work on CDT. One reason is that they widen the scope of the theory beyond the
problems where causal dominance reasoning applies. Another is that problems
displaying instability have been offered as counterexamples to CDT.
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36.10 Recent Debates

Andy Egan [8] challenged CDT with a set of examples that he judged to be
counterexamples to the theory, and his challenge has received wide attention. One
of the examples is the Murder Lesion problem:

Mary is debating whether to shoot her rival, Alfred. If she shoots and hits [S &
H], things will be very good for her. If she shoots and misses [S & M], things
will be very bad. (Alfred always finds out about unsuccessful assassination
attempts, and he is sensitive about such things.) If she doesn’t shoot [∼S],
things will go on in the usual, okay-but-not-great kind of way. Though Mary
is fairly confident that she will not actually shoot . . . she thinks that it is very
likely that if she were to shoot, then she would hit [S �→ H]. So far, so good.
But Mary also knows that there is a certain sort of brain lesion [L] that tends
to cause both murder attempts and bad aim at the critical moment. If she has
this lesion, all of her training will do her no good—her hand is almost certain
to shake as she squeezes the trigger. Happily for most of us, but not so happily
for Mary, most shooters have this lesion, and so most shooters miss. Should
Mary shoot?5

Following Egan, let U(S & H) = 10, U(S & M) = −10, and U(∼S) = 0
throughout.6 Mary’s initial beliefs are that she is unlikely to shoot, pri(S) < .5. She
also thinks that if she did, she would hit, pri(S �→ H) > .5. Her belief in that causal
conditional is dependent on whether or not she shoots, since shooting is correlated
with having the lesion; so pri(S �→ H/ S) < .5. However, her initial unconditional
belief in that conditional is high, as just specified, since she initially thinks S is
unlikely.

With those initial beliefs, a CDT calculation will yield Ui(S) > Ui(∼S) = 0,
since the better outcome of S, namely S & H, is weighted by the high probability
pri(S �→ H), while the worse outcome S & M is weighted by the low probability
pri(S �→M). So CDT recommends that Mary shoot. Egan regards that as a flawed
recommendation:

It’s irrational for Mary to shoot. . . . In general, when you are faced with a
choice of two options, it’s irrational to choose the one that you confidently
expect will cause the worse outcome. Causal decision theory endorses shoot-
ing ... In general, causal decision theory endorses, . . . , an irrational policy
of performing the action that one confidently expects will cause the worse
outcome. The correct theory of rational decision will not endorse irrational
actions or policies. So causal decision theory is not the correct theory of
rational decision.

5All quotes are from [8].
6There is symmetry in these payoffs, but perhaps not in the beliefs: most shooters have the lesion,
but whether the same proportion of non-shooters lack it is unsaid; it’s nearly certain that those with
the lesion miss; in light of her training, Mary thinks it’s very likely that she would hit. Nothing in
what follows depends upon the problem being as symmetric as Death in Damascus is.
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The act of shooting is intuitively irrational, Egan says, and widely judged to
be so.

. . . we have (or at least my informants and I have) clear intuitions that it’s
irrational to shoot or to press, and rational to refrain in The Murder Lesion . . .

There is a response to Egan’s view of the example. Egan’s case for the irra-
tionality of CDT’s recommendation (that Mary shoot) is the intuitive irrationality of
shooting. No basis for the intuition is offered, but it is not hard to feel, nor hard to
explain. What is happening? Mary begins with the beliefs that she lacks the lesion,
and that shooting would be effective; based on those beliefs CDT recommends she
shoot.7 That’s the right recommendation given her beliefs and values at that time.
But in preferring shooting, she probably has the lesion and will very likely miss.
So Mary comes to confidently expect, and we who contemplate her problem come
to confidently expect, that shooting will cause the worse outcome. That’s what the
first step in the deliberative process tells her. What is Egan’s intuition, if not the
result of taking that step? At that point, however, when Mary has that belief, CDT

recommends that Mary refrain; that’s what her current utilities will tell her. Egan
applies the recommendation that CDT makes at one time (shoot) to a decision at a
later time, after Mary’s beliefs have changed, and he sees a flaw where none exists.
The error is in the supposition that CDT is forever committed to its recommendation
under Mary’s initial beliefs.

The resulting theory enjoins us to do whatever has the best expected outcome,

holding fixed our initial views about the likely causal structure of the world.
The following examples show that these two principles come apart, and that
where they do, causal decision theory endorses irrational courses of action.
(emphasis Egan)

The correct idea is that CDT enjoins us to do what has the best expected outcome,
given our current views about the likely causal structure of the world.8 This applies
to us in the first person, as deliberators (use our current beliefs), and in the third
person, as judges of what CDT recommends to others (use their current beliefs). So
Egan’s argument suffers from a mistake about what CDT recommends.

A second issue is that an intuition that refraining is uniquely rational has doubtful
reliability. We are invited to deliberate a little bit, but not very far, about what to
do, and to stop the deliberation at an arbitrary point, with no motivation given for
stopping there. If Mary correctly assesses her options at that point, refraining is

7It’s worth remarking that users of CDT are no more prone to murder, premature death, disease, or
psycho-killing than anyone else. The window-dressing of commonly used examples should be
more varied; outcomes might be small prizes or fines, rather than death. Many games exhibit
instability: Battle-of-the-Sexes-with-a-twin, for example. The theoretical issues apply to small
stakes as well as large, a point worth remembering when deliberation carries a cost.
8Egan actually states the requirement correctly, later in his paper in a different context (p.102),
but it is clear that he relies on the incorrect version throughout the paper. Without it, what is the
purported counterexample?
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better, which provides her reason to think that, as a refrainer, she likely lacks the
lesion, making shooting the better option after all (according to her) . . . , and so on.
Even if the mistake about CDT’s recommendations were absent, the example would
at best indicate a problem with joining CDT to a special unmotivated assumption
about when deliberation must end. It establishes no problem for CDT, which is
consistently a good guide to rational action. So says this line of response; let us call
it the Simple response.

What, then, does CDT recommend in the Murder Lesion problem? If you have
Mary’s initial beliefs and deliberate no farther, it recommends shooting. If you have
a different initial belief, that you probably have the lesion, it recommends refraining.
If you have access to and appreciation of your deliberative states, CDT makes
a succession of recommendations at each stage of your self-reflecting dynamical
deliberation. The recommendations may change, but each one is correct for your
beliefs and values at the moment it is made. Your dynamic deliberation may end in
a variety of ways: you may get tired, you may have other things to do, the world
may interrupt, or you may reach equilibrium. If your deliberation ends in action, the
rational action to perform is the one recommended by your current beliefs, when
deliberation ended. Recall that if you reach equilibrium, you see your options as
equally worthy, and you shoot or refrain by breaking the tie. There is no single
action, for every deliberator, that use of CDT insists upon in this, or in other unstable
decision problems.

Arntzenius [5] and Joyce [16] develop a further, stronger response to Egan’s
Murder Lesion problem. Both argue that the uniquely rational outcome of your
dynamical deliberation is to arrive at the equilibrium state to which it leads. You then
regard shooting and refraining as equally good acts, and doing either one, through
some way of breaking the tie, is rational. Arntzenius focuses more on the beliefs
at equilibrium than on the selection of the act. Joyce gives more details: what CDT

recommends all along are its evaluations at equilibrium, which rank each option
equally. Why is that so? Consider the deliberations of a rational agent who has
easy access to her beliefs and preferences during deliberation. Joyce argues that
when information relevant to your choice is cost-free, it is rational to obtain and
use it before making your decision final. The rational decision-maker should base
her evaluations, we might say, on all of the current evidence in her reach. So the
proper use of CDT incorporates all of the cost-free new information that deliberation
provides, and in unstable problems, new information is always available until you
reach equilibrium. CDT’s recommendation in an unstable decision problem like
those we have considered is to ‘pick’ (choose via a tie-break) one of the acts that
remains viable in equilibrium. In decision problems with more available actions, it
may happen that some acts are excluded at equilibrium as sub-optimal, compared to
others that are tied with maximum expected utility.
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There is no great tension between the Arntzenius-Joyce response and the Simple
response that preceded it above.9 It is a good idea to make use of cost-free
information. Both responses can agree that the deliberational equilibrium is a good
state in which to make your decision. It may be debated whether you misapply
CDT if you act before reaching it, but we do not pursue that here. It is surely an
idealization that continued deliberation is cost-free (think of opportunity costs), and
when it is not, it would seem that truncated deliberation can be rational. But in
this context, it is worth keeping in mind that subjective rational decision theory
interests us from both third-person and first-person points of view: as a theory that
explains the choice-worthiness of actions for a decision-maker in light of her beliefs
and desires, and as a tool that can help us ascertain what to do, as we reflect on
our own relevant beliefs and desires. When we think of deliberation as a dynamic
process in which utility assessments produce new evidence, and so on, the first-
person perspective is in the foreground. But from the third-person perspective, it is
an informative idea that a rational action is one that is endorsed in the equilibrium
state.10 Indeed, recall that the first-person use of heuristics can often help us see
what, from the third-person perspective, is rational for us. Once we understand the
path to equilibrium in an unstable problem, and realize that the recommendation
at equilibrium is to ‘pick,’ we seem to have an excellent method for deciding the
problem: forego the extended deliberation and pick. An illustration of the value of
studying rational decision theory!

36.11 Further Topics and Conclusion

Challenges to CDT, and responses to challenges, continue to appear. Ahmed [1]
presents sustained and interesting arguments that CDT is flawed, and that EDT is
after all correct. Responses to Ahmed are found in Joyce [17, 18]. Unfortunately,
we cannot adequately address these and other exchanges here.

Our Basic Idea points to the importance of understanding causal influence in
deliberating about action. We might suspect, however, that our understanding of
causation is partly rooted in our deliberative practices, and in an understanding

9In one respect, there is a difference. When you eventually do act A in an unstable decision
problem, you will have grounds for regretting you did so. Arntzenius counts foresight, if you
have it, of such regret against the rationality of the act; such foresight is avoided in the dynamical
equilibrium state. If the foresight is possible in a deliberation truncated at t when CDT is correctly
applied, the Simple response is more sanguine about the foreseen regret, and regards correct
maximization of Ut as the criterion of rational action.
10Arntzenius [5] suggests that this is the way to think about the dynamical story: ‘So, as long as
we are idealizing, let us simply say that a rational person must always be in a state of deliberational
equilibrium.’ Whether that means that one must hold the specific beliefs that make the equilibrium
is unclear. Whether it does or not, it amounts to an additional constraint on the use of CDT, if the
person is not driven by rationality to get there, as he is by Joyce’s epistemic norm that one must
acquire cost-free information during deliberation.



690 B. Armendt

of our agency. This is a thought with a long history; one person who explored
it was Frank Ramsey [25]. More recently, discussions that explicitly focus on
CDT and consider connections between our understanding of causation on one
hand, and our decision-making and agency on the other, were given by Nancy
Cartwright [6], Christopher Hitchcock [11], and Huw Price [23, 24]. Cartwright and
Hitchcock generally favor CDT; Price argues for an understanding of causation that
undermines the usual accounts of what the decision-maker rationally believes in the
Newcomb Problem and other CDs, and so undermines CDT’s recommendations.
One focal point in recent discussions is a question about what a deliberator can
reasonably think, while deliberating, about the dependence of her impending act on
states in the past such as the presence of the gene, or the basis of the Predictor’s
forecast. A view that is often attributed to Ramsey is that a deliberator must see
her impending act as beyond the influence of past states other than her own, and as
a bearer of no information about such past states. There is disagreement about its
implications for CDT [1, 16, 24]. Here we just offer two inconclusive ideas. One
is that causal influence is a matter of degree; a decision-maker who thinks she has
any influence over her act, however small, has reason to deliberate about how to
exercise the influence she wields. That thought by itself does not settle how she
represents her influence in her deliberations. Another concerns the plausible idea
that our understanding of causation is partly based on our experience of agency. If
that is so, confounded decisions and their complexities are unlikely to have played
a large role in such experiences, and it need not be entirely straightforward how
we use the idea of causation, or how immediately our intuitive judgments fit, in
confounded decisions.

The development of CDT has led to ideas and topics that extend far beyond the
CD problems that provoked the theory. More than 40 years after its beginnings,
CDT is now the preeminent rational decision theory that captures the essential role
of causal beliefs in deliberation and decision. CDT is now both a starting point and
a target for those engaged in further work.
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Chapter 37

Social Choice and Voting

Prasanta K. Pattanaik

Abstract When individuals in a society have different preferences over the options
available to the society, how should social decisions be taken so as to achieve a
reasonable compromise? What are the principles that one should use in one’s ethical
evaluation of different states of the society? These ethical issues are at the centre of
the theory of social choice and welfare. While they have been discussed and debated
for centuries, what the modern theory of social choice and welfare has done is to
bring to bear formal reasoning in exploring them. The literature that has developed
in this area over the last 70 years or so is vast and it is not possible to give in this
short review even a list of the major developments. What I seek to do here is to focus
on a few of the most conspicuous landmarks in this literature.

37.1 Introduction

When individuals in a society have different preferences over the options available
to the society, how should social decisions be taken so as to achieve a reasonable
compromise? What are the principles that one should use in one’s ethical evaluation
of different states of the society? These ethical issues are at the centre of the theory
of social choice and welfare. While they have been discussed and debated for
centuries, what the modern theory of social choice and welfare has done is to bring
to bear formal reasoning in exploring them. The literature that has developed in this
area over the last 70 years or so is vast and it is not possible to give in this short
review even a list of the major developments. What I seek to do here is to focus on
a few of the most conspicuous landmarks in this literature.
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37.2 Two Aspects of Social Choice: Aggregation

of Individual Preferences to Achieve Compromise vs.

Social Welfare Judgments of an Ethical Observer

Consider the following exchange between two persons, i and j (where j is an Indian):

i: “Should India abolish death penalty altogether?”
j: “No, since 90 % of Indians believe that death penalty should be retained for very

serious crimes such as premeditated murder.”
i: “But what do you think India should do? Should India abolish death penalty?
j: “Yes, definitely. In my opinion, death penalty has no place in any civilized society

because . . . ”

This exchange illustrates the two very different senses in which one can interpret
the ethical problem of social choice or evaluation of social options. Implicit in j’s
answer to i’s first question is the interpretation of the problem of social choice or
evaluation of social options as a problem of aggregating the (possibly conflicting)
opinions or preferences of the individuals in a given society so as to arrive
at a reasonable compromise. Under this interpretation, typically the individuals’
opinions or preferences are taken as given and the problem is simply one of
aggregating these given opinions. In this context, an appeal to the fact that 90%
of the population shares a particular preference can be a convincing reason for the
society to do or not to do something. The second interpretation implicit in i’s second
question and j’s answer to it is the interpretation of the social evaluation of options
or the prescription for social choice as reflecting an individual’s own ethical beliefs.
An appeal to the shared opinion of an overwhelming majority of the society does
not seem to be particularly relevant here; the individual evaluating the social options
needs to provide independent justifications for her ethical beliefs.

The modern theory of social choice and welfare explores problems of social
choice and social evaluation in both the senses mentioned above. In assessing the
intuitive significance of many of the contributions to this theory, however, it is
important to keep in mind the distinction, introduced by Little [8], Bergson [2],
and Sen [15], between the two interpretations. In this essay, I concentrate on the
literature that is concerned primarily with the first intuitive problem mentioned
above, namely, the problem of arriving at a compromise in the presence of
conflicting individual preferences or opinions.

37.3 Some Basic Notation and Definitions

Let N = {1, 2, . . . , n} denote a society. 1, 2, . . . , and n (∞ > n > 1) denote
the individuals in the society. I use the society in the usual sense of the term,
though, for many purposes, the society can be interpreted in a flexible fashion to
indicate any group of individuals (e.g., a committee). Let X denote the set of all
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conceivable social alternatives or options. X can be interpreted in different ways
depending on the context. In welfare economics, the elements of X are often taken
to be alternative complete description of the affairs in the society, though there is
sometimes ambiguity about what exactly constitutes such a complete description.
The elements of X are denoted by x, y, z, etc. Let T be the set of all binary weak
preference relations (“at least as good as”) R* defined over X, such that R* satisfies
reflexivity over X (i.e., for all x ∈ X, xR*x). Given x, y ∈ X and R∗ ∈ T , xR*y

denotes that x is at least as good as y in terms of the binary weak preference
relation R*. For all R∗ ∈ T and all x, y ∈ X, [xP*y iff (xR*y and not yR*x)]
and [xI*y iff (xR*y and yR*x)]. P* and I* are to be interpreted, respectively, as the
strict preference relation (“preferred to”) and indifference relation (“indifferent to”)
corresponding to R*.

Let R be the set of all R∗ ∈ T such that R* is an ordering over X, i.e., R* satisfies
the following three properties: (i) reflexivity over X; (ii) connectedness over X (for
all distinct x, y ∈ X, xR*y or yR*x; and (iii) transitivity over X (for all x, y, z ∈ X,
if xR*y and yR*z, then xR*z). Let L be the set of all R* in R, such that R* is linear,
i.e., for all distinct x, y ∈ X, not [xR*y and yR*x]. Thus, L is the set of all preference
orderings which do not permit indifference between distinct options.

Much in the theory of social choice can be formulated either in terms of a social
ranking of options or in terms of the society’s choices from different possible sets
of feasible social options. I use the former formulation here.

Definition 37.1 A social ranking rule is a function f : Sn −→ T , where ∅ �=S⊆ R.

S is to be interpreted as the set of all binary weak preference relations that an
individual may have. The elements of Sn will be denoted by (R1, . . . , Rn), (R′1,
. . . , R′n), etc., and will be interpreted as profiles of individual weak preference
relations. Ri, R′i , etc., denote weak preference relations of individual i (i ∈ N). Thus,
a social ranking rule f : Sn −→ T is a function, which, for every profile of individual
preferences in Sn, specifies exactly one binary weak preference relation R in T ,
R being interpreted as a social weak preference relation, or ranking, over X. xRy

denotes that x is at least as good as y for the society. Typically, it is assumed that
S=R, i.e., the set of all admissible preferences for an individual is the set of all
orderings over X.

A social ranking R over X, has intuitive, though not logical, implications for
social choice. For example, it will be intuitively rather odd to say that x is better for
the society than y, but, given the choice between x and y, the society should choose
y and reject x. Given the social ranking R and given a non-empty subset A of X, we
say that C(A, R) ≡ {x ∈ A : xRy for all y ∈ A} is the choice set generated by R for A.
Intuitively, C(A, R) is the set of best alternatives in A, “best” being defined in terms
of R. If A is the set of all feasible options before the society, then the society can
choose any option in C(A, R). It is possible to have an empty C(A, R). For example,
if xPy and yPz and zPx, then C({x, y, z}, R) is empty. In this case, R does not give
much guidance about what the society should choose from {x, y, z}.
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37.4 Arrow’s Impossibility Theorem for Social Ranking

Rules

What restrictions should one postulate for social ranking rules? This is the issue that
Arrow ([1], 1963) addressed. He introduced four such restrictions.

Definition 37.2 Let f : Sn −→ T be a social ranking rule. f satisfies:

(i) Collective Rationality iff S=R and, for every (R1, . . . , Rn) in Sn,
R = f (R1, . . . , Rn) is an ordering;

(ii) Weak Pareto Principle iff, for every (R1, . . . , Rn) in Sn and for all x, y ∈ X, if
xPiy for all i ∈ N, then xPy.

(iii) Independence of Irrelevant Alternatives iff, for all (R1, . . . , Rn),
(
R′1, . . . , R

′
n

)

∈ Sn, and for all x, y ∈ X, if for all i ∈ N, [xRiy iff xR′iy] and [yRix iff yR′ix],
then [xRy iff xR

′
y] and [yRx iff yR

′
x].

(iv) Non-dictatorship iff there does not exist i ∈ N, such that, for all x, y ∈ X and all
(R1, . . . , Rn) in Sn, if xPiy, then xPy.

Collective rationality requires that, for every possible profile of individual
preference orderings, the social ranking rule should specify an ordering as the social
binary weak preference relation. Collective rationality can have two distinct types
of justification. First, if the social weak preference relation, R, is to be used as the
basis for social choice from a given set, A, of feasible social options, then R should
generate a non-empty choice set for A. The restriction that R be an ordering is suffi-
cient, though not necessary, to ensure that C(A, R) will be non-empty for every finite
non-empty subset A of X. A second justification for collective rationality can be that
social choices from different possible sets of feasible options should be “rational”,
rational choices being conceived as choices that could be induced by an ordering
(this is the conception of rational choice that economists typically use). The Weak
Pareto Principle, embodying respect for unanimity, has been almost universally
accepted in welfare economics. Independence of Irrelevant Alternatives requires
that if the profile of individual orderings changes but every individual’s ranking
of two options, x and y, remains the same before and after the change, then the
society’s ranking of x and y must remain the same. This is sometimes justified by the
pragmatic consideration that it leads to an economy of information needed for the
social ranking over pairs of options: in the absence of this property, for the society
to rank two alternatives, not only will it need information about how all individuals
rank those two options, but it may also need information about the individuals’
rankings with respect to other (“irrelevant”) options. Another pragmatic justification
for the condition is that violation of Independence of Irrelevant Alternatives gives
individuals the opportunity to “misreveal” their preferences so as to change the
social decision to their advantage (see Plott [12]). Finally, Non-dictatorship seems
to be a reasonable condition: it simply requires that the society should not have a
dictator, i.e., an individual such that whenever she strictly prefers any option x to
any other option y, the society must rank x strictly above y irrespective of other
individuals’ preferences.
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The following result due to Arrow constitutes one of the foundational results in
the theory of social choice.

Theorem 37.1 (Arrow [1]): If #X ≥ 3, then there does not exist any social

ranking rule which simultaneously satisfies Collective Rationality, the Weak Pareto

Principle, Independence of Irrelevant Alternatives, and Non-dictatorship.

Given the apparent plausibility of the four conditions, the impossibility of
satisfying all of them simultaneously (given the mild restriction that #X ≥ 3) has
the flavor of a paradox. It is not, therefore, surprising that a significant part of the
literature on the theory of social choice has been devoted to finding ways of escape
from the dilemma posed by Arrow’s result.

I would like to make two comments relating to the interpretation of Arrow’s
[1] theorem. First, since Arrow’s framework makes the social ranking exclusively
dependent on the profile of individual preference orderings, the question arises about
the intuitive content of these preference orderings. One response to this question
may be to say that an individual’s preference ordering reflects all that the individual
considers to be relevant in assessing the options, including, possibly, her ethical
values (e.g., “ a social state that involves excessive social and economic inequality
is abhorrent” and “tigers have a right to survive and policies which will lead to
their extinction are ethically unacceptable”) as well as her self interest (“I shall
be better off in x as compared to y”). This answer is adequate if the social choice
problem is one of arriving at a compromise in the face of conflicting preferences,
assumed to be given. It is not, however, adequate when one interprets the social
ranking of options as reflecting an individual’s judgments about social welfare. If I
am giving my ethical assessment of alternative social options, then it is reasonable to
expect that I should take into account all the individuals’ personal well-being (it is
possible that the survival of tigers and the extent of social inequality directly affects
an individual’s personal well-being), but it is not at all clear why I should take into
account their ethical views about social and economic inequality or the survival of
tigers in making my ethical assessment of social options (see Broome [3], p.12).

What happens if we interpret Arrow’s theorem as a theorem about arriving
at social welfare judgments on the basis of the different individuals’ well-being
corresponding to different social options? In this case, the individual orderings need
to be interpreted as the orderings of social options in terms of the individuals’
respective well-being. But note that, in this case, the very definition of a social
ranking rule will make the social ranking of options dependent exclusively on the
individual well-being orderings and will not allow us to take into account any
cardinal information about individual well-being (e.g., information that the switch
from x to y increases i

′
s well-being more than the switch from z to w). Even if we

relax the definition of a social ranking rule to permit cardinal information about the
well-being of individuals, Independence of Irrelevant Alternatives with its focus on
the individuals’ rankings over pairs of options will have the effect of making all such
cardinal information irrelevant for the social ranking. When the problem is one of
aggregating the judgments or opinions of individuals, there may be some plausibility
in ignoring how intensely an individual feels about one option being better than
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another, but ignoring cardinal information about the individuals’ well-being would
seem to be ethically unacceptable when the problem is one of discussing social
welfare judgments. The framework of Arrow would seem to be more suitable for
discussing how the society should arrive at a compromise given differing individual
preferences than for discussing social welfare judgments.

37.5 The Impossibility of Paretian Liberalism

The literature inspired by Arrow [1] has given us numerous results demonstrating
that a social ranking rule cannot satisfy certain apparently plausible conditions. I
now take up one of these results, namely, the famous paradox of the Paretian liberal
due to Sen [13, 14], which has had far-reaching influence on the theory of social
choice and welfare.

Definition 37.3 Let f : Sn −→ T be a social ranking rule. f satisfies:

(i) Weak Collective Rationality iff S = R and, for every (R1, . . . , Rn) in Sn, R

is reflexive and connected and P is acyclic, i.e., there do not exist x1, x2, . . . ,
xm ∈ X, such that [x1Px2 and x2Px3 and . . . and xm − 1Pxm and xmPx1];

(ii) Minimal Liberalism iff there exist distinct i, j ∈ N and x, y, z, w ∈ X, such that
(x �= y and z �= w), and

(5.1) for every (R1, . . . , Rn) in Sn, (if xPiy, then xPy) and (if yPix, then yPx),

and

(5.2) for every (R1, . . . , Rn) in Sn, (if zPjw, then zPw) and (if wPjz, then wPz).

Acyclicity of P is much weaker than transitivity of R, and, hence Weak
Collective Rationality is much weaker than Collective Rationality. Reflexivity and
connectedness of R and acyclicity of P, together, are necessary and sufficient to
ensure that C(A, R) will be non-empty for every non-empty and finite subset A of X

(see Sen [14], p.16). Minimal Liberalism was originally interpreted in terms of what
might be called an individual’s right to liberty in her “private” affairs. Under this
interpretation, x and y figuring in the statement of Minimal Liberalism are visualized
as two social states which are identical in all respects except for something (e.g., i’s
religion or the color of his shirt) that is considered to be in the personal or private
sphere of individual i, and, similarly for z and w in the case of individual j. Thus, the
condition stipulates that there are at least two distinct individuals in the society, each
of whom enjoys decisiveness (or the “right” to decide) over some pair of distinct
alternatives differing only with respect to her private life.
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Theorem 37.2 (Sen [13, 14]): There does not exist any social ranking rule

which satisfies Weak Collective Rationality, Weak Pareto Principle, and Minimal

Liberalism simultaneously.

The condition of Minimal Liberalism constituted the first major departure from
the dominant tradition of welfare economics, which considered information about
people’s preferences (or their utility) to be the only information relevant for the
evaluation of social options.1 If a social ranking rule satisfies Minimal Liberalism,
then, not only do individual preferences matter for the social ranking of those two
alternatives, but it also matters which two alternatives are under consideration: tak-
ing the interpretation of Minimal Liberalism in terms of an individual’s decisiveness
in matters relating to her private life, to invoke Minimal Liberalism one needs
to know, besides the individual preferences, whether the options differ only with
respect to somebody’s private life.

If one accepts the interpretation of the condition in terms of individuals’ rights to
liberty in their private affairs, then Theorem 37.2 can be thought of as revealing
a deep tension between such individual rights and the Weak Pareto Principle,
which has been traditionally regarded as sacrosanct in economics. Many scholars
(see, among others, Nozick [11], Gärdenfors [7], Sugden [16], and Gaertner et
al. [6]) have argued that the interpretation of Minimal Liberalism in terms of
individual rights is not quite compatible with our intuition about rights. Most of
these scholars, however, acknowledge that Sen’s intuitive insight into the tension
between individual rights and the Weak Pareto Principle survives even under other
formulations of individual rights suggested in the literature.

37.6 Two Voting Rules

In addition to exploring the implications of axioms regarding social choice/ social
evaluation, which have a priori ethical appeal, the literature on the formal theory
of social choice has also analyzed the structure of a large number of voting rules,
which are basically different methods of reaching a compromise in the presence of
differing preferences of individuals and many of which are often used in practice.
Two of these voting rules, which have been studied over more than two centuries,
stand out. The first is the majority voting rule, the formal structure of which was
analyzed in detail by M. de Condorcet [5]. The second is Borda’s rule advocated by
J.-C. de Borda [4].

1This ethical position has been called “welfarism”, which may not be an entirely felicitous term.
Note that one can define welfarism more formally, but it is not necessary for my purpose here.
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The Majority Ranking Rule

The first voting rule that I consider is the well-known majority ranking rule.

Definition 37.4 The majority ranking rule (MRR) is the social ranking rule f with
domain Rn, such that, for all x, y ∈ X and all (R1, . . . , Rn) in Rn, xRy if and only if
#{i ∈ N : xPiy} ≥ # {i ∈ N : yPix}.

It is easy to see that the MRR satisfies the Weak Pareto Principle, Independence
of Irrelevant Alternatives, and Non-dictatorship, and that, under it, the social weak
preference relation R is reflexive and connected for all (R1, . . . , Rn) in Rn. It
is, however, well-known that, not only can the social weak preference relation R

yielded by the MRR violate transitivity for some profiles of individual preference
orderings, but even P can violate acyclicity under the MRR so that the choice set
generated by R can be empty for some finite set of options and some profile of
individual orderings. An example of this is the well-known voting paradox, where
we have N = {1, 2, 3} and (R1, R2, R3) ∈ Rn is such that xP1yP1z, yP2zP2x, and
zP3xP3y, so that the MRR yields xPy and yPz and zPx and C({x, y, z}, R) is empty.
This is a major problem with the MRR. But how appealing is it to say that, if, at all,
a majority winner exists in a set options, then the society should choose it from that
set of options? To see this, it is helpful to see the properties of the MRR. One of
the earliest studies of the properties of the MRR in the modern literature on social
choice is to be found in May [9], who provided a characterization of the MRR in
terms of a set of quite appealing properties.

While May’s theorem clarifies the structure of the MRR and, in the process,
demonstrates its several highly attractive properties, a very different justification
for the MRR came from Condorcet [5] himself (for a lucid exposition of this
perspective, see Young [19]). Suppose the number of individuals in the society is
odd, we have a profile of linear individual orderings, and we have exactly two
options, x and y, which have to be socially ranked and the society’s ranking has
to be either xPy or yPx. Further, suppose one of these two strict rankings is the
“true” or “correct” ranking but it is not known which of them is the correct ranking
and, a priori, the two rankings are equally likely to be correct. It does seem a little
strange to characterize the ranking of options arrived at by aggregating individual
preferences as “correct” or “incorrect”. In some situations, however, it makes sense
to talk about the correct ranking of x and y for the group. Consider the case of a
trial by a jury, which Condorcet [5] discussed. A person is accused of a particular
crime and the jury has to decide whether to convict him or not to convict him. All
members of the jury share the same objective, namely, that the person should be
convicted if and only if he is guilty. Let x denote that the person is convicted and
let y denote that the person is not convicted. Given that all members of the jury
have the shared objective of convicting the person if and only if he is guilty, and
given that the person is either guilty or not guilty, in a very plausible sense exactly
one of the two alternative strict rankings, xPy and yPx, is the correct ranking for
the group, but it is not known which of them is correct. One can think of many
other examples, where the two options are alternative policies for achieving a shared
objective, and it seems plausible to talk about the “correct” group ranking of the
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two policies though it may not be known what exactly the correct ranking may be.
Assume that n is odd and each individual’s strict ranking of x and y has the same

probability, q
(

1 > q > 1
2

)
, of being the correct ranking. Condorcet [5] showed

that, given the assumptions stated above, the probability that the social ranking of x

and y under the MRR will be correct is

p =
∑n

k= n+1
2

qk(1− q)n−k

[
n!

k! (n− k)!

]

and that p approaches 1 as n becomes indefinitely large. Condorcet’s remarkable
result provides a strong justification for the MRR when there are exactly two
alternatives. For an extension of Condorcet’s probabilistic reasoning to the case of
more than two alternatives, the reader may refer to Young [18, 19].

Borda’s Ranking Rule

Our second voting rule is due to Borda [4], who was a contemporary of Condorcet
and his intellectual rival.

Let R* be a linear ordering over X. For all x ∈ X, let s(x, R*) denote
#{a ∈ X : xP*a} + 1. Thus, if X = {x, y, z, w) and we have xP*yP*zP*w, then
s(x, R*) = 4, s(w, R*) = 1, and so on.

Definition 37.5 Borda’s ranking rule (BRR) is the social ranking rule with
domain Ln, such that, for all (R1, . . . , Rn) ∈ Ln and all x, y ∈ X, xRy if and only
if

∑
i∈N s (x, Ri) ≥

∑
i∈N s (y, Ri).

Note that, to avoid some details not important for our purpose, I have defined
Borda’s ranking rule only for the case where the individual orderings are constrained
to be linear. Given a profile of linear individual orderings, BRR proceeds as follows.
For each option x and each individual ordering Ri, it specifies for x its “Ri − based
score” denoted by s(x, Ri). If x occupies the first position in the ordering Ri over X,
then the Ri-based score of x is #X; if x occupies the second position in the ordering,
then its Ri-based score is #X-1, and so on. Next, for every option in X, it sums up
the Ri-based scores for x over all individuals i to get the “total score” of x. Finally,
it ranks all the options on the basis of their respective total scores.

Several points may be noted here. First, for every profile of linear individual
orderings, BRR yields a social ordering, and BRR satisfies the Weak Pareto Princi-
ple and non-dictatorship. But it can be easily shown that it violates Independence
of Irrelevant Alternatives. Second, if X has exactly two alternatives, then it is clear
that, for every profile of linear individual orderings2 over X, BRR will yield the
same social ranking as the MRR. Third, it is possible that, for some profile of
linear orderings and some non-empty subset A of X, the social ranking yielded
by MRR can define a unique best alternative in A, which is different from the

2Recall that in defining BRR, we have assumed that only linear individual orderings are
permissible.
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unique best alternative in A defined by the social ranking under BRR. To see this, let
N = {1, 2, . . . , 9} and X = {x, y, z, w}, and let (R1, . . . , R9) be as follows (the options
in a column are in a descending order of preference)

R1, R2, R3, R4 R5, R6, R7 R8 R9

x y w x

y z x y

z w y w

w x z z

It can be checked that, given this profile, the choice set defined for X by the social
ranking under MRR is {x} while the choice set specified for X by the social ranking
under BRR is {y}.

Like MRR, BRR has also been characterized in terms of highly plausible
properties (see Nitzan and Rubinstein [10]3; see also Young’s [17] characterization
of Borda’s rule formulated in terms of social choice rather than in terms of a social
ranking). Also, for Borda’s rule formulated in terms of social choice (rather than in
terms of a social ranking), Young [18, 19] provides a striking justification based on
probabilistic reasoning analogous to, but different from, the probabilistic reasoning
that Condorcet [5] used to justify the MRR.

37.7 Concluding Remarks

This essay has considered only a few contributions to the formal theory of social
choice and welfare, which has emerged as an exceptionally rich and diverse area
of study. These contributions, however, illustrate how the application of formal
reasoning has yielded fresh insights into some very old issues in political and social
philosophy.
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Chapter 38

Judgment Aggregation

Philippe Mongin

Abstract Judgment aggregation theory generalizes social choice theory by having
the aggregation rule bear on judgments of all kinds instead of barely judgments
of preference. The theory derives from Kornhauser and Sager’s doctrinal paradox
and Pettit’s discursive dilemma, which List and Pettit turned into an impossibility
theorem – the first of a long list to come. After mentioning this formative stage,
the paper restates what is now regarded as the “canonical theorem” of judgment
aggregation theory (in three versions due to Nehring and Puppe, Dokow and
Holzman, and Dietrich and Mongin, respectively). The last part of paper discusses
how judgment aggregation theory connects with social choice theory and can
contribute to it; it singles out two representative applications, one to Arrow’s
impossibility theorem and the other to the group identification problem.

38.1 A New Brand of Aggregation Theory

It is a commonplace idea that collegial institutions generally make better decisions
than those in which a single individual is in charge. This optimistic view can
be traced back to Enlighment theorists, such as Rousseau and Condorcet, and it
permeates today’s western judiciary organization, which is heir to this philosophical
tradition. The more important a legal case, the more likely it is to be entrusted
to a collegial court; appeal courts are typically collegial, and at the top of the
legal organization, constitutional courts always are. However, the following, by now
classic example from legal theory challenges the Enlightment view.
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A plaintiff has brought a civil suit against a defendant, alleging a breach of
contract between them. The court is composed of three judges A, B and C, who will
determine whether or not the defendant must pay damages to the plaintiff (d or ¬d).
The case brings up two issues, i.e., whether the contract was valid or not (v or ¬v),
and whether the defendant was or was not in breach of it (b and ¬b). Contract law
stipulates that the defendant must pay damages if, and only if, the contract was valid
and he was in breach of it. Suppose that the judges have the following views of the
two issues, and accordingly of the case:

A v ¬b ¬d

B ¬v b ¬d

C v b d

In order to rule on the case, the court can either directly collect the judges’
recommendations on it, or collect the judges’ views of the issues and then solve
the case by applying contract law to these data. If the court uses majority voting,
the former, case-based method delivers ¬d, whereas the latter, issue-based method
returns first v and b, and then d. This elegant example is due to legal theorists
Kornhauser and Sager [21]. They describe as a doctrinal paradox any similar
occurrence in which the two methods give conflicting answers. What makes the
discrepancy paradoxical is that each method is commendable on some ground, i.e.,
the former respects the judges’ final views, while the latter provides the court with
a rationale, so one would wish them always to be compatible. The legal literature
has not come up with a clear-cut solution (see Nash [32]). This persisting difficulty
casts doubt on the belief that collegial courts would be wiser than individual ones.
Clearly, with a single judge, the two methods coincide unproblematically.

An entire body of work, now referred to as judgment aggregation theory, has
grown out of Kornhauser and Sager’s doctrinal paradox. As an intermediary step,
their problem was rephrased by political philosopher Pettit [39], who wanted
to make it both more widely applicable and more analytically tractable. What
he calls the discursive dilemma is, first of all, the generalized version of the
doctrinal paradox in which a group, whatever it is, can base its decision on either
the conclusion-based or the premiss-based method, whatever the substance of
conclusions and premisses may be. What holds of the court equally holds of a
political assembly, an expert committee, and many other deliberating groups; as one
of the promoters of the concept of deliberative democracy, Pettit would speculatively
add political society as a whole. Second, and more importantly for our purposes,
the discursive dilemma shifts the stress away from the conflict of methods to the

logical contradiction within the total set of propositions that the group accepts. In
the previous example, with d ←→ v∧b representing contract law, the contradictory
set is

{v, b, d ←→ v ∧ b,¬d} .
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Trivial as this shift seems, it has far-reaching consequences, because all propo-
sitions are now being treated alike; indeed, the very distinction between premisses
and conclusions vanishes. This may be a questionable simplification to make in the
legal context, but if one is concerned with developing a general theory, the move
has clear analytical advantages. It may be tricky to classify the propositions into
two groups, and it is definitely simpler to pay attention to whole sets of accepted
propositions – briefly judgment sets – and inquire when and why the collective ones
turn out to be inconsistent, given that the individual ones are taken to be consistent.
This is already the problem of judgment aggregation.

In a further step, List and Pettit [24] introduce an aggregation mapping F , which
takes profiles of individual judgment sets (A1, . . . , An) to collective judgment sets
A, and subject F to axiomatic conditions which they demonstrate are logically
incompatible. Both the proposed formalism and impossibility conclusion are in
the vein of social choice theory, but they are directed at the discursive dilemma,
which the latter theory cannot explain in terms of its usual preference apparatus.
At this stage, the new theory exists in full, having defined its object of study – the
F mapping, or collective judgment function – as well as its method of analysis -
it consists in axiomatizing F and investigating subsets of axioms to decide which
result in an impossibility and which, to the contrary, support well-behaved rules
(such as majority voting).

List and Pettit’s impossibility theorem was shortly succeeded, and actually
superseded, by others of growing sophistication, due to Pauly and van Hees [38],
Dietrich [3], Dietrich and List [6], Mongin [29], Nehring and Puppe [35, 36], [10–
12], and Dietrich and Mongin [9]. This lengthy, but still incomplete list, should
be complemented by two papers that contributed differently to the progress of
the field. Elaborating on earlier work in social choice theory by Wilson [45] and
Rubinstein and Fishburn [42], and in a formalism that still belongs to that theory,
Nehring and Puppe [33] inquired about which agendas of propositions turn the
axiomatic conditions into a logical impossibility. Agendas are the rough analogue
of preference domains in social choice theory. This concept raised to prominence
in mature judgment aggregation theory, and Nehring and Puppe’s characterization
of impossibility agendas was eventually generalized by Dokow and Holzman [11],
whose formulation has become the received one. On a different score, Dietrich [4]
showed that the whole formalism of the theory could be deployed without making
reference to any specific logical calculus. Only a few elementary properties of the
formal language and the logic need assuming for the theorems to carry through.
The so-called general logic states these requisites (see Dietrich and Mongin [9],
for an up-to-date version). The first papers relied on propositional calculi, which
turns out to be unnecessary. This major generalization underlies the theory as it is
presented here, as well as in the more extensive overviews by Mongin and Dietrich
[31] or Mongin [30]. (These two papers actually use the tag “logical aggregation
theory” instead of the standard one “judgment aggregation theory” to emphasize the
particular angle they adopt.)
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The next section “A Logical Framework for Judgment Aggregation Theory”
provides a syntactical, framework for the F function, using the general logic as
a background. It states the axiomatic conditions on F that have attracted most
attention, i.e., systematicity, independence, monotonicity and unanimity preser-
vation. The issue of agendas arises in the ensuing Sect. 38.3, which presents an
impossibility theorem in three variant forms, due to Nehring and Puppe, Dokow and
Holzman, and Dietrich and Mongin, respectively. This is the central achievement of
the theory by common consent – hence the label “canonical theorem” adopted here
– but many other results are well deserving attention. For them, the reader is referred
to the two reviews just mentioned, or at a more introductory level, those of List and
Puppe [25] and Grossi and Pigozzi [17]. The final Sect. 38.4 sketches a comparison
with social choice theory and discusses how judgment aggregation theory relates
and contributes to the latter.

Several topics are omitted here. One is probability aggregation, which gave rise
to a specialized literature already long ago (see Genest and Zidekh’s [15] survey of
the main results). Both commonsense and traditional philosophy classify judgments
into certain and uncertain ones, so probability aggregation theoretically belongs to
the topic of this chapter. However, we will comply here with the current practice
of taking judgments in the restricted sense of judgments passed under conditions
of certainty. Another, no doubt more questionable omission concerns those logics
which the general logic excludes despite its flexibility; prominent among which are
the multi-valued logics investigated by Pauly and van Hees [38], van Hees [43],
and Duddy and Piggins [14], and the non-monotonic logics investigated by Wen
[44]. Finally, we have omitted the topic of belief merging, or fusion, which emerged
in theoretical computer science independently of judgment aggregation theory, but
is now often associated with it. Although they represent the information stored in
databases rather then by human agents, the computer scientists’ “belief sets” or
“knowledge bases” are analogous to judgment sets, and the problem of “merging”
or “fusing” these items is analogous to the problem of defining a collective judgment
function. Pigozzi [40] was one of the first to make this connection, and the reader can
consult one of her up-to-date surveys (e.g., Pigozzi [41]). The computer scientists’
solutions are particular cases of distance-based judgment aggregation, i.e., they
depend on defining what it means for a judgment set to be closer to one judgment set
than another. Miller and Osherson [28] thoroughly explore the abstract properties of
distance metrics, while Lang et al. [22] provide a classification.

38.2 A Logical Framework for Judgment Aggregation

Theory

By definition, a language L for judgment aggregation theory is any set of formulas
ϕ,ψ, χ, . . . that is constructed from a set of logical symbols S containing ¬,
the Boolean negation symbol, and that is closed for this symbol (i.e., if ϕ ∈ L,
then ¬ϕ ∈ L). In case S contains other elements, such as symbols for the
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remaining Boolean connectives or modal operators, they satisfy the appropriate
closure properties. A logic for judgment aggregation theory is any set of axioms and
rules that regulates the inference relation ⊢ on L and associated technical notions –
logical truth and contradiction, consistent and inconsistent sets – while satisfying the
general logic. Informally, the main requisites are that ⊢ be monotonic and compact,
and that any consistent set of formulas can be extended to a complete consistent set.
(S ⊂ L is complete if, for all ϕ ∈ L, either ϕ ∈ S or ¬ϕ ∈ S.) Monotonicity means
that inductive logics are excluded from consideration, and compactness (which is
needed only in specific proofs) that some deductive logics are. The last requisite is
the standard Lindenbaum extendability property.

Among the many calculi that enter this framework, propositional examples stand
out. They need not be classical, i.e., S may contain modal operators, like those
of deontic, epistemic and conditional logics, each of them leading to a potentially
relevant application. Each of these extensions should be double-checked, because
some fail compactness. Although this may not be so obvious, first-order calculi
are also permitted. When it comes to them, L is the set of closed formulas – those
without free variables – and the only question is whether ⊢ on L complies with the
general logic.

In L, a subset X is fixed to represent the propositions that are in question for
the group; this is the agenda, one of the novel concepts of the theory and one of its
main focuses of attention. In all generality, X needs only to be non-empty, with at
least one contingent formula, and to be closed for negation. The discursive dilemma
reconstruction of the court example leads to the agenda

X = {v, b, d, d ↔ v ∧ b,¬v,¬b,¬d,¬(d ↔ v ∧ b)}.
The theory represents judgments in terms of subsets B ⊂ X, which are initially
unrestricted. These judgment sets – another notion specific to the theory – will be
denoted by Ai, A

′
i, . . . when they belong to the individuals i = 1, . . . n, and by

A,A′, . . . when they belong to the group as such. A formula ϕ from one of these sets
represents a proposition, in the ordinary sense of a semantic object endowed with
a truth value. If ϕ is used also to represent a judgment, in the sense of a cognitive
operation, this is in virtue of the natural interpretive rule:

(R) i judges that ϕ iff ϕ ∈ Ai , and the group judges that ϕ iff ϕ ∈ A.

Standard logical properties may be applied to judgment sets. For simplicity, we
only consider two cases represented by two sets of judgments sets:

• the unrestricted set 2X;
• the set D of consistent and complete judgment sets (consistency is defined by the

logic and completeness is as above, but relative to X).

Thus far, the theory has been able to relax completeness, but not consistency (see,
e.g., Dietrich and List [8]).

The last specific concept is the collective judgment function F , which associates
a collective judgment set to each profile of judgment sets for the n individuals:

A = F(A1, . . . , An).
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The domain and range of F can be defined variously, but we restrict attention to
F : Dn → 2X, our baseline case, and F : Dn → D, our target case, in which
the collective sets obey the same stringent logical constraints as the individual ones.
The present framework captures the simple voting rule of the court example, as
well as less familiar examples. Formally, define formula-wise majority voting as
the collective judgment function Fmaj : Dn → 2X such that, for every profile
(A1, . . . , An) ∈ Dn,

Fmaj (A1, . . . , An) = {ϕ ∈ X : |{i : ϕ ∈ Ai}| ≥ q} ,

with q = n+ 1

2
if n is odd and q = n

2
+ 1 if n is even.

Here, the range is not D because there can be unbroken ties, and so incomplete
collective judgment sets, when n is even. More strikingly, for many agendas, the
range is not D even when n is odd, because there are inconsistent collective
judgment sets, as the court example neatly shows. By varying the value of q between
1 and n in the definition, one gets specific quota rules F

q
maj . One would expect

inconsistency to occur with low q, and incompleteness with large q. Nehring and
Puppe [33, 35] and Dietrich and List [7] investigate the F

q
maj in detail.

Having defined and exemplified F functions, we introduce some axiomatic
properties they may satisfy.

Systematicity. For all formulas ϕ,ψ ∈ X and all profiles (A1, . . . , An),
(A′1, . . . , A

′
n), if ϕ ∈ Ai ⇔ ψ ∈ A′i for every i = 1, . . . , n, then

ϕ ∈ F(A1, . . . , An)⇔ ψ ∈ F(A′1, . . . , A
′
n).

Independence. For every formula ϕ ∈ X and all profiles (A1, . . . , An),
(A′1, . . . , A

′
n), if ϕ ∈ Ai ⇔ ϕ ∈ A′i for every i = 1, . . . , n, then

ϕ ∈ F(A1, . . . , An)⇔ ϕ ∈ F(A′1, . . . , A
′
n).

Monotonicity. For every formula ϕ ∈ X and all profiles (A1, . . . , An),
(A′1, . . . , A

′
n), if ϕ ∈ Ai ⇒ ϕ ∈ A′i for every i = 1, . . . , n, with ϕ /∈ Aj and

ϕ ∈ A′j for at least one j , then

ϕ ∈ F(A1, . . . , An)⇒ ϕ ∈ F(A′1, . . . , A
′
n).

Unanimity preservation. For every formula ϕ ∈ X and every profile
(A1, . . . , An), if ϕ ∈ Ai for every i = 1, . . . , n, then ϕ ∈ F(A1, . . . , An).

By definition, F is a dictatorship if there is a j such that, for every profile
(A1, . . . , An),

F(A1, . . . , An) = Aj .

Given the unrestricted domain, there can only be one such j , to be called the dictator.

The last property is
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Non-dictatorship. F is not a dictatorship
It is routine to check that Fmaj satisfies all the list. Systematicity means that the

group, when faced with a profile of individual judgment sets, gives the same answer
concerning a formula as it would give concerning a possibly different formula, when
faced with a possibly different profile, supposing that the individual judgments
concerning the first formula in the first profile are the same as those concerning
the second formula in the second profile. Independence amounts to restricting this
requirement to ϕ = ψ . Thus, it eliminates one claim made by Systematicity – i.e.,
that the identity of the formula does not matter – while preserving another – i.e.,
that the collective judgment of ϕ depends only on individual judgments of ϕ. That
is, by Independence, the collective set A is defined formula-wise from the individual
sets A1, . . . , An. By contrast, for any concept of distance envisaged in the distance-
based literature (e.g., [22, 28]), if F is defined by minimizing the total distance
of A to A1, . . . , An, F violates Independence. The collective judgment sets in this
class of solutions are constructed from the individual sets taken as a whole and not
formula-wise.

Systematicity was the condition List and Pettit’s [24] impossibility theorem, but
henceforth, the focus of attention shifted to Independence. The former has little to
say for itself except that many voting rules satisfy it, but the latter can be defended
as a non-manipulability condition. If someone is in charge of defining the agenda X,
Independence will prevent this agent to upset the collective judgment on a formula
by adding or withdrawing other formulas in X; this argument appears in Dietrich
[3]. However, Independence does not block all and every form of manipulability,
as Cariani, Pauly and Snyder [2] illustrate; they show that a suitable choice of the
language L can influence the collective judgment.

Some writers take Monotonicity to be a natural addition to Independence. This
condition requires that, when a collective result favours a subgroup’s judgment,
the same holds if more individuals join the subgroup. It can be defended in terms
of democratic responsiveness, though perhaps not so obviously as the last two
conditions, i.e., Unanimity preservation and Non-dictatorship.

The problem that has gradually raised to the fore is to characterize – in the sense
of necessary and sufficient conditions – the agendas X such that no F : Dn → D

satisfies Non-dictatorship, Independence, and Unanimity preservation. There is a
variation of this problem with Monotonicity as a further axiomatic condition. The
next section provides the answers.

38.3 The Canonical Theorem in Three Forms

The promised answers depend on further technical notions. First, a set of formulas
S ⊂ L is called minimally inconsistent if it is inconsistent and all its proper subsets
are consistent. With a classical propositional calculus, this is the case for

{v, b, d ↔ v ∧ b,¬d},
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but not for

{¬v,¬b, d ↔ v ∧ b, d}.

Second, for ϕ,ψ ∈ X, it is said that ϕ conditionally entails ψ – denoted by ϕ ⊢∗ ψ

– if ϕ �= ¬ψ and there is some minimally inconsistent Y ⊂ X with ϕ,¬ψ ∈ Y .
This is trivially equivalent to requiring that {ϕ} ∪ Y ′ ⊢ ψ holds for some minimal
auxiliary set of premisses Y ′ that is contradictory neither with ϕ, nor with ¬ψ .

Now, an agenda X is said to be path-connected (another common expression
is totally blocked) if, for every pair of formulas ϕ,ψ ∈ X, there are formulas
ϕ1, . . . , ϕk ∈ X such that

ϕ = ϕ1 ⊢∗ ϕ2 ⊢∗ . . . ⊢∗ ϕk = ψ.

Loosely speaking, agendas with this property have many, possibly roundabout
logical connections. Finite agendas can be represented by directed graphs: the
formulas ϕ,ψ are the nodes and there is an arrow pointing from ϕ to ψ for each
conditional entailment ϕ ⊢∗ ψ . The court agenda X is path-connected, as the
picture below of conditional entailments illustrates (it does not represent all existing
conditional entailments, but sufficiently many for the reader to check the claim)
(Fig. 38.1).

(Here and in the next figures, an arrow pointing from one formula to another
means that the former conditionally entails the latter, and the small print formulas
near the head of the arrow are a choice of auxiliary premisses; d ↔ v∧b is abridged
as q.)

Now, we are in a position to state a version of the canonical theorem (see Dokow
and Holzman [11], and Nehring and Puppe [36]; it originates in Nehring and Puppe
[33]). From now on, we assume that n ≥ 2.

Theorem (first form) If X is path-connected, then no F : Dn → D satisfies Non-

dictatorship, Unanimity preservation, Monotonicity and Independence. The agenda

condition is also necessary for this conclusion.

v b q d

¬v ¬b ¬q

¬d

d

v, q

¬v

q

q

b, q

d

v, q

q

q

b, q

v, d

v, d

¬d

Fig. 38.1 The court agenda in the discursive dilemma version
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To illustrate the sufficiency part, let us take X and Fmaj , assuming that n is
odd, so that Fmaj has range D if and only if Fmaj (A1, . . . , An) is consistent for
all profiles (A1, . . . , An). The court example in the discursive dilemma version
exhibits a profile contradicting consistency, and this shows that D is not the range of
Fmaj . The theorem leads to the same conclusion by a more general reasoning: since
Fmaj satisfies the four axioms and X is path-connected, D cannot be the range.
By a converse to this entailment, when the agenda is not path-connected, there is
no collective inconsistency even if the axiomatic conditions hold. This important
addition is the necessity part of the theorem, which we do not illustrate here.

As it turns out, Monotonicity can be dropped from the list of axioms if the agenda
is required to satisfy a further condition. Let us say that X is even-number negatable

if there is a minimally inconsistent set of formulas Y ⊆ X and there are distinct
ϕ,ψ ∈ Y such that Y¬{ϕ,ψ} is consistent, where the set Y¬{ϕ,ψ}is obtained from
Y by replacing ϕ,ψ by ¬ϕ,¬ψ and keeping the other formulas unchanged. This
seems to be an unpalatable condition, but it is not demanding, as X illustrates: take

Y = {v, b, d,¬(d ↔ v ∧ b)} and ϕ = v,ψ = b,

and there are alternative choices of Y . The next result was proved by Dokow and
Holzman [11] as well as, for the sufficiency part, by Dietrich and List [6].

Theorem (second form) If X is path-connected and even-number negatable,

then no F : Dn → D satisfies Non-dictatorship, Unanimity preservation, and

Independence. If n ≥ 3, the agenda conditions are also necessary for this

conclusion.

A further step of generalization is available. Unlike the work reviewed so far, it
is motivated not by the discursive dilemma, but by the doctrinal paradox, and it is
specially devised to clarify the premiss-based method, which is often proposed as a
solution to this paradox (see Pettit [39], and some of the legal theorists reviewed by
Nash [32]). Formally, we define the set of premisses to be a subset P ⊆ X, requiring
only that it be non-empty and closed for negation, and reconsider the framework
to account for the difference between P and its complement X \ P . Adapting the
axioms, we define

Independence on premisses: same statement as for Independence, but holding
only for every p ∈ P .

Non-dictatorship on premisses: there is no j ∈ {1, . . . , n} such that
F(A1, . . . , An) ∩ P = Aj ∩ P for every (A1, . . . , An) ∈ Dn.

Now revising the agenda conditions, we say that X is path-connected in P if, for
every pair p, p′ ∈ P , there are p1, . . . , pk ∈ P such that

p = p1 ⊢∗ p2 ⊢∗ . . . ⊢∗ pk = p′.

Note that formulas in X\P may enter this condition via the definition of conditional
entailment ⊢∗. We also say that X is even-number negatable in P if there are Y ⊆
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X and ϕ,ψ ∈ Y as in the above definition for being even-number negatable, except
that “ϕ,ψ ∈ Y ∩ P ” replaces “ϕ,ψ ∈ Y ” (i.e., the negatable pair consists of
premisses). The two conditions can be illustrated by court agendas in the doctrinal
paradox style.

If we stick to the agenda X, the subset

P = {v, b, d ↔ v ∧ b,¬v,¬b,¬(d ↔ v ∧ b)}

best captures the judges’ sense of what premisses are. However, the following
construal may be more to the point. Suppose that judges do not vote on the law,
but rather take it for granted and apply it – a realistic case from legal theory (see
[21]). We model this, first by reducing the agenda to

X = {v, b, d,¬v,¬b,¬d},

and second by including the formula d ↔ v ∧ b into the inference relation, now
defined by

S ⊢d↔v∧b ψ if and only if S ∪ {ϕ, d ↔ v ∧ b} ⊢ ψ.

In this alternative model, the set of premisses reads as

P = {v, b,¬v,¬b}.

Technically, the two construals are wide apart: X is both path-connected and even-

number negatable in P , whereas X is even-number negatable but not path-connected

in P , thus failing the more important agenda condition. The next two pictures – the

first for P and the second for P – illustrate the stark contrast (Fig. 38.2).

v b q

¬v ¬b ¬q

d

d

b, q

v, d

v, d

¬d

b, dd

b, d ¬d

d

v b

¬v ¬b

¬d

¬d

Fig. 38.2 Two sets of premisses P (left) and P (right) for the court agenda in the doctrinal paradox
version
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(The first picture represents sufficiently many conditional entailments in P

for the conclusion that X is path-connected in P , and the second represents all

conditional entailments in P , which are too few for X to be path-connected in P .)
Having illustrated the new definitions, we state the result by Dietrich and Mongin

[9] that puts them to use.

Theorem (third form) If X is path-connected and even-number negatable in P ,

there is no F : Dn → D that satisfies Non-dictatorship on premisses, Independence

on premisses and Unanimity preservation. If n ≥ 3, the agenda conditions are also

necessary for this conclusion.

Note carefully that Unanimity preservation retains its initial form, unlike the
other two conditions. If it were also restricted to premisses, one would check that
no impossibility follows. Thus, the statement is best interpreted as an impossibility
theorem for the premiss-based method, granting the normatively defensible con-
straint that unanimity should be preserved on all formulas. Anyone who accepts
this addition – in effect, a whiff of the conclusion-based method – is committed
to the unpleasant result that the premiss-based method is, like its rival, fraught
with difficulties. As with the previous forms of the canonical theorem, solutions
can be sought on the agenda’s side by relaxing the even-number negatibility or –

more relevantly – the path-connectedness condition. The X,P reconstruction of the
doctrinal paradox illustrates this way out; observe that Fmaj is well-behaved in this
case.

Legal interpretations aside, the third form of the theorem is more assertive
than the second one. This is seen by considering P = X, a permitted limiting
case. Having explored the canonical theorem in full generality, we move to the
comparative topic of this paper.

38.4 A Comparison with Social Choice Theory

Judgment aggregation theory has clearly been inspired by social choice theory, and
two legitimate questions are, how it formally relates, and what it eventually adds,
to its predecessor. The F mapping resembles the collective preference function G,
which takes profiles of individual preference relations to preference relations for
the group. (Incidentally, the official terminology for G, i.e., the “social welfare
function”, is misleading since it jumbles up the concepts of preference and welfare.)
The normative properties posited on judgment sets are evocative of those, like
transitivity and completeness, which one encounters with preference relations, and
the axiomatic conditions on F are most clearly related to those usually put on G.
Systematicity corresponds to neutrality, Independence to independence of irrelevant
alternatives, Monotonicity to positive responsiveness, and Unanimity preservation
to the Pareto principle, not to mention the similar requisite of Non-dictatorship.
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Conceptually, a major difference lies in the objects of the two aggregative
processes. A judgment, as the acceptance or rejection of a proposition, is more
general than a preference between two things. According to a plausible account,
an agent, whether individual or collective, prefers x to y if and only if it judges
that x is preferable to y, i.e., accepts the proposition that x is preferable to y. This
clarifies the claim that one concept is more general than the other, but how does this
claim translate into the respective formalisms?

We answer this question by following Dietrich and List’s [6] footsteps. They
derive a version of Arrow’s [1] impossibility theorem in which the individuals
and the group express strict preferences on the set of alternatives Z, and these
preferences are assumed to be not only transitive, but also complete. Although these
assumptions are restrictive from the viewpoint of social choice theory, the logical
derivation elegantly shows how judgment aggregation theory can be linked to that
theory. The first step is to turn the G mappings defined on the domain of preferences
into particular cases of F . To do so, one takes a first-order language L whose
elementary formulas xPy express “x is strictly preferable to y”, for all x, y ∈ Z,
and defines a logic for L by enriching the inference relation ⊢ of first-order logics
with the axioms expressing the asymmetry, transitivity and completeness of P . The
conditions for general logic hold. Now, if one takes X to be the set of elementary
formulas of L and defines the set of judgment sets D from this agenda, it is possible
to associate with each given G an F : Dn → D having the same informal content.
The next step is to make good the results of judgment aggregation theory. Dietrich
and List show that X satisfies the agenda conditions of the canonical theorem
(second form). To finish the proof that Arrow’s axiomatic conditions on G are
incompatible, it is enough to check that they translate into those put on F in the
theorem, so that the sufficiency part of the theorem applies.

Although social choice theory is primarily concerned with aggregating prefer-
ences, or related individual characteristics such as utility functions, it also extends
in other directions, as illustrated by the work on group identification. Kasher and
Rubinstein [19] consider a finite population N , each member of which is requested
to partition N into two categories, conventionally labelled J and not-J. The question
is to associate a collective partition with this process, and Kasher and Rubinstein
answer it along social-choice-theoretic lines, i.e., by introducing a mapping H

from profiles of individual partitions to collective partitions and submitting H to
axiomatic conditions. Among other results, they show that if H determines the
collective classification of i as J or not-J only from the individual classifications
of i as J or not-J, and if H respects unanimous individual classifications of i

as J or not-J, then H is a dictatorship. As List [23] suggests, this impossibility
theorem can easily be derived from judgment aggregation theory by taking L to
be a propositional language whose elementary formulas express “i is a J”, for all
i ∈ N . Then a reasoning paralleling that made for the Arrovian case leads to the
dictatorship conclusion. The canonical theorem (second form) is again put to use,
and just as in the earlier case, an important step is to check that the agenda conditions
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for this theorem hold. What turns out to be crucial in this respect is the assumption
made by Kasher and Rubinstein that both individual and collective partitions are
non-trivial (i.e., each partition classifies at least one individual as J and at least one
individual as non-J).

There are other derivations of social choice results, most of them based on
the canonical theorem or variants of it. For instance, Dokow and Holzman [12]
recover a theorem by Gibbard [16] on quasi-transitive social preferences and
oligarchies, and Herzberg and Eckert [18] explain how the infinite population
variants of Arrow’s theorem, as in Kirman and Sondermann [20], relate to infinite
population extensions of the canonical theorem. Moreover, some of the derived
social choice results are novel. Thus, Dokow and Holzman [12] obtain unnoticed
variants of Gibbard’s theorem. More strikingly, Dokow and Holzman’s [13] analysis
of collective judgment aggregation functions in the non-binary case delivers entirely
new results concerning assignment problems (such as the problem of assigning a
given number of jobs to a given number of candidates), and these problems arguably
belong to social choice theory, although taken broadly.

Against this reassuring evidence, two reservations are in order. For one thing,
the derivations from judgment aggregation theorems are often complex, which
may discourage social choice theorists to use them despite the powerful generality
of these theorems. A basic example is Arrow’s theorem, which the canonical
theorem permits recovering only in the version singled out by Dietrich and List
[6]. To obtain the theorem in full, i.e., with weak preferences instead of strict ones,
one way, due to Dokow and Holzman [12], is to derive first Gibbard’s oligarchy
theorem and then reinforce the assumptions, and another way, due to Dietrich
[5], requires one to move to a richer judgment aggregation framework in which
“relevance” constraints are put on the formulas of the agenda X. Either way is
subtle, but perhaps disappointingly roundabout for social choice theorists. Another,
less standard example concerns the generalization of Kasher and Rubinstein’s [19]
impossibility theorem to more than two categories. This turns out to be a non-trivial
problem, and it can be solved using Dokow and Holzman’s [13] apparatus of non-
binary evaluations (see Maniquet and Mongin [26]). However, this resolution may
seem to be exceedingly complex, given that a direct proof can be offered using
standard tools in social choice theory (compare with Maniquet and Mongin [27]).

For another thing, the canonical theorem is an impossibility theorem, and so are
other results we did not review here, like the theorems on oligarchy that generalize
the canonical theorem. Admittedly, all these results fully characterize the agenda
conditions for impossibility, so that they should not be interpreted only negatively;
any failure of the necessary conditions corresponds to a possibility. However,
there is no way to infer the precise form of the possibility in question, so these
results should clearly be complemented with others, which will directly axiomatize
judgment aggregation rules that are neither dictatorial nor oligarchical. The theory
has actively followed this direct approach for voting rules, especially majority voting
and its refinements [7, 34, 35, 37], but it should be applied more systematically
elsewhere. The literature on belief merging may provide heuristic keys, although
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not every procedure for fusing databases delivers a plausible way of aggregating
human judgments, and help resolve the legal and political issues that are at the core
of judgment aggregation theory.
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Chapter 39

Logical Approaches to Law

John Woods

Abstract On the face of it, we might think that logic and the law were made for
each other. Their intellectual identities are grounded in a shared stock of concepts:
argument, proof, evidence, inference, probability, relevance, presumption, precedent

or analogy, plausibility, reasonability and explanation. Provided that we understand
logic broadly enough to include not only mathematical theories of deduction and
induction, but also more recent attempts by computer scientists to investigate
defeasible and default reasoning, there is not an item on this list that escapes the
attention of logicians. If we also take note of brisk developments in dialogue logic
and formal argumentation theory, the list of shared concepts enlarges accordingly,
including among others, leading questions and cross-examination.

39.1 Conceptual Commonalities?

On the face of it, we might think that logic and the law were made for each
other. Their intellectual identities are grounded in a shared stock of concepts:
argument, proof, evidence, inference, probability, relevance, presumption, precedent

or analogy, plausibility, reasonability and explanation. Provided that we understand
logic broadly enough to include not only mathematical theories of deduction and
induction, but also more recent attempts by computer scientists to investigate
defeasible and default reasoning, there is not an item on this list that escapes the
attention of logicians. If we also take note of brisk developments in dialogue logic
and formal argumentation theory,1 the list of shared concepts enlarges accordingly,
including among others, leading questions and cross-examination.

1See, for example, Barth and Krabbe [1].
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It would not be wrong to say that we have had a golden age in logic, concerning
whose beginnings it is an acceptable convenience to mention Frege’s Begriffschrift

of 1879. Logic has had a formal character ever since Aristotle. Golden age
logic is formal, but in ways never envisaged by Aristotle. Golden age logic is
also mathematical. There are at least three different but compossible ways in
which this can be so − one having to do with motivation, another having to do
with methods, and the third having to do with matter. Concerning motivation,
sometimes a logic is purpose-built to accommodate a philosophical thesis about
the foundations of mathematics. Thus classical logic – think here of Principia

Mathematica – was built to accommodate logicism, that is, the thesis that arithmetic
can be re-expressed without relevant loss in a purely logical notation. Intuitionist
logic was likewise motivated. It was put together to accommodate mathematical
constructivism, according to which only constructive proofs can be allowed.2

The second way in which a logic is mathematical is when its characteristic
methods are mathematical. For example, the semantics of classical and modal
logic, and virtually all the others in the deductive orbit, are set-theoretic through
and through, and their meta-theories are structured in ways that permit proofs by
mathematical induction. Inductive logics, in turn, are dominantly probabilistic, and
the probabilities involved are those studied by the applied mathematics of games of
chance.

Logic is mathematical in the third sense by virtue of its matter− that is to say, its
subject-matter. Although some logicians draw a firm distinction between logic and
mathematics, the majority view – certainly majority practice – is otherwise inclined,
especially as relates to set theory. Accordingly, logic itself has come to be regarded
as part of pure mathematics, as evidenced by virtually any page of the leading logic
journals of the day.

There are those who think that the mathematicization of logic puts the common-
ality of concepts thesis in serious doubt. Everyone accepts that the intellectually
foundational concepts of logic and the law are denoted by a shared lexicon of
names – “argument”, “proof”, “evidence”, “inference”, and so on. But, say the
commonality sceptics, if these names did in fact have the same referents, then the
intellectually defining concepts of law would be open to mathematical articulation,
which many critics think is too much for serious belief. On the contrary, they
say, the concepts denoted by these common names are, in their legal contexts,
sui generis. These reservations receive further support from methodological and
procedural differences between the two disciplines. Logic expresses much of its
formal character in the precision of its language, and the certainty, rigour and
explicitness of its proofs, abetted by such linguistic artificialities and stipulations
as may be needed to achieve those ends. It is conspicuously otherwise with the
law. The medium in which legal reasoning is transacted is natural, not formal,
language. Its proofs never rise to the standards of rigour demanded of logic, and the

2Roughly speaking, a constructive proof is one whose purported objects are expressly specifiable.
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epistemological character of the law is largely one of implicitness.3 For example,
we will look in vain to the writings of theoretical jurisprudence for a definition that
completes the biconditional schema, “A prosecutor’s case constitutes proof of guilt
beyond a reasonable doubt if and only if . . . .”.

Broadly speaking, the commonality thesis asserts that the identically named
foundational concepts of logic and law are the same concepts, whereas the − as
I shall say − two solitudes thesis is that they are different concepts with shared
names. This leaves the legally-minded logician with a number of options, in which
we find varying answers to the question, “Assuming there were one, what would a
logic of legal concept K look like?”

1. Accept the commonality thesis, and press on with the application of a received
logic to concept K in legal contexts.

2. Accept the two solitudes thesis, and cease and desist. That is, take the position
that there is no logic for K, that K is not a logic-worthy concept.

3. Accept the two solitudes thesis, but press on with adaptations of an existing logic
to the peculiarities of K in legal contexts.

4. Accept the two solitudes thesis and originate a formalization better-suited to
peculiarities of K in legal contexts.

Here are some examples to consider: Application of the probability calculus to
the concept of probability in legal reasoning is sometimes thought to exemplify
option one. Of course, for logicians, number two is the null option. Adjusting a
plausibility logic4 to the particular features of legal plausibility could be taken
to exercise option three, and producing a built-from-the-ground-up logic for the
concept(s) of legal presumption5 would be an instance of option four.6

Excluding the null option, the present three give varying characterizations of
the influence of legal concepts on the orthodoxies of formal philosophy. Option
one presupposes the availability of an orthodox solution. Option three is a qualified
challenge of the orthodox, and option four a repudiation of it.

We should note that these same options are also available to legal theorists, in
the reverse direction, so to speak. As we have it now, it would appear that the
dominant position of legal theorists is the two-solitudes scepticism of option two,
whereas most of the activity of legally-minded logicians hovers in the vicinity of
two-solitudes adaptations of option three.

Options three and four offer the would-be formalizer greatest creative potential.
Faced with concepts sui generis to law, option three allows for the retrofitting of
a technical apparatus already in service. Option four goes further. It envisages
the prospect of a new logic for the concepts that resist accommodation in even a

3In this respect, among others, there are notable differences between common law and legal code
traditions – between, for example, criminal law in England and France. In the interests of space, I
shall confine my remarks to the common law tradition. A highly readable effort to bring to the fore
the epistemological orientation of criminal procedures at common law is Laudan [9].
4In the manner, say, of Rescher [15].
5Although light on the formal side, see for example, Walton [17].
6For another variation of option four, see Horty [6]



724 J. Woods

reconfiguration of a standing formalism. It reflects the idea that concepts peculiar
to the law, even when denoted by terms that also name concepts central to orthodox
logical theory, require a sui generis logic rather than the adaptation of some existing
system. This we might call the sui generis-sui generis thesis. One of the more
interesting open questions of present-day logical theory is whether the logical
requirements of legal reasoning are best served by accepting

The sui generis-sui generis thesis: Sui generis concepts require sui generis logics.
In what follows I shall focus on cases which suggest an affirmative answer to this

question.
Throughout logic’s golden age, option two has been by far the dominant position.

It is said that the first logicians were Greek lawyers. Leibniz (1646–1716) was a
lawyer, and Łukasiewicz (1878–1956) too, and Mill (1806–1873) might as well have
been one. But the fact remains that, for well over a century, logic and the law have
plied their respective trades unemcumbered by the slightest notice of one another.
However, in the latter two decades of the twentieth century and into the present
one, there have been stirrings of the other two options. In 1980, Chaim Perelman
argued, in the manner of option three, for a restricted role for logic in the analysis
of legal reasoning.7 In this same spirit, Horn clause logics of logic programming
were applied to the analysis of the British Nationality Act.8 Important contributions
from computer scientists also include Trevor Bench-Capon’s [2] survey for an
encyclopedia of computer science and technology9 and Henry Prakken’s legal
modelling paper of 1997.10 Also valuable is a recent collection of papers edited
by Marilyn MacCrimmon and Peter Tellers, covering a number of approaches –
e.g. fuzzy logics, and logics of uncertainty and probability,11 and a 2003 paper by
Prakken and his colleagues in which argument schemes are applied to the notion
of legal evidence.12 A recent volume of note is a book edited by Dov Gabbay and
others on legal rationality.13 Not to be overlooked is the much earlier engagement
of legal issues by inductive logicians and probability theorists. An important
and contentious contribution was Jonathan Cohen’s [3] book,14 which urged a
distinction between two concepts of probability, only one of which Cohen thought
was germane to the analysis of probabilistic and evidence-weighing reasoning in
legal contexts. This latter he called inductive (or Baconian) probability, and the
former aleatory (or Pascalian) probability. (The English word “aleatory” comes from
the Latin word for dice-games.) Another earlier influence was deontic logic, part of

7Perelman [12].
8Sergot et al. [16].
9Bench-Capon [2].
10Prakken [13].
11MacCrimmon and Tellers [11].
12Prakken et al. [14].
13Gabbay et al. [5].
14Cohen [3].
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whose motivation was an interest in deontological concepts of legal procedure −
obligation, permission, and so on.15

When formal methods are applied to a concept, let us say that it constitutes
a formalization of it. When speaking of a concept’s meaning in pre-formalized
linguistic practice, let us say that we are speaking of its intuitive meaning or,
equivalently, of the intuitive concept. Consider now the question, “What is achieved
by the formalization of a concept; for example, what do we learn about proof from
a formalization of the concept knowledge?” There are four different answers to this
concept-engagement question.

• Analysis An analysis of an intuitive concept K it makes its intuitive meaning
explicit.16

• Explication An explication of an intuitive concept K preserves its pre-
formalization meaning but does so in ways that make the intuitive meaning
precise.

• Rational reconstruction A rationalization of a concept K involves the ascription
to K of features not present in pre-formalized linguistic usage, but in a way that
retains enough of the intuitive concept to make it intelligible to say that the
rational construction at hand is a formalization of it. Rational reconstructions
are semantic make-overs.

• Stipulation Here the formalization provides a nominal definition of a concept-
lacking a prior presence in pre-formalized linguistic practice, while retaining
meanings of the name of the original intuitive concept. Stipulations make up

meanings.

The distinction between analysis and stipulation is roughly Kant’s contrast
between analysis and synthesis. Analysis, says Kant, is the business of making
concepts clear, and synthesis the business of making clear concepts. Analysis is the
purview of philosophy and synthesis the province of mathematics. In our schema,
explication and rational reconstruction are hybrids, with explication more analysis-
like and rational reconstruction trending rather more towards stipulation.17 It is also
important to note that the fourfold concept-engagement space is orthogonal to the
fourfold-option space.

There are, of course, grey areas at each of these borders, but here are some
quick examples. Some probability theorists think that to the extent that the intuitive
meaning of probability resides in how prior probabilities are compounded, that
aspect of its meaning is captured analytically by the axioms of the probability
calculus. Some mathematicians take the view that the axioms of number theory

15The Deon Conferences are a good source. See, for example, http://www.doc.ic.ac.uk.deon02
16For lack of space, I pass over two important variations of the definitional notion of formalization,
namely, implicit definitions and contextually eliminating definitions. For the first, think of the
definition of the concept of number afforded by the axioms of number theory. For the second,
think of the reduction of number theory to logic and set theory by contextual elimination.
17Kant [7, 8].

http://www.doc.ic.ac.uk.deon02
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offer an explication of the intuitive concept of number. The notion of rational recon-
struction we associate with Carnap. Its presence may be felt in Carnap’s attempt
to formalize physical objects as logical constructions of sense-data. Stipulation is
the stock and trade of mathematics, as Kant noted. But it is also solidly at work
in all of model-based science. For example, in population biology it is stipulated
that populations are infinitely large; in neoclassical economics it is stipulated that
utilities are infinitely divisible; in classical belief-change theories it is stipulated
that belief is closed under logical consequence; and in rational decision theory it
is stipulated that deciders have perfect information. Space doesn’t permit further
discussion of this fourfold distinction, except to say again that its partitions are not
strict. As Quine famously quipped, one person’s explication is another’s stipulation.

39.2 Rationality

Model-based theories harbour a philosophically crucial distinction. It is the distinc-
tion between descriptively adequate theories and normatively binding theories. It
is widely supposed that descriptively adequate theories successfully negotiate the
relevant observational checkpoints, whereas normatively binding theories typically
do not and need not. Consider, for example, mainstream formal theories of belief-
change, in which it is stipulated that an agent proceeds rationally to the extent,
among other things, that she closes her beliefs under consequence and, therefore,
believes all logical truths. Since no human agent comes in any finite degree
anywhere close to meeting these conditions, the theories that embody them are
descriptive failures. Even so, it is commonly said that what such theories lack
descriptively they more than make up for normatively; for they lay down conditions
for the exercise of human reasoning at its ideal best.

If this were actually so, it would matter for both the moral and intellectual
integrity of the law. Jurors have a duty to perform their functions rationally,
including their own transitions from a required state of agnosticism about the
accused’s guilt to a state of belief capable of sustaining a verdict about it. Any theory
of belief-change which, on pain of irrationality, mandates conditions infinitely
beyond a juror’s reach, triggers a further pair of options. One is that the law is
an irrational disgrace. The other is that the orthodox approaches are wrong for the
law, which, in turn, puts some (not much discussed) pressure on their normative
presumptions.

The analysis of a concept presupposes its intuitive presence in preanalytic
practice. An analysis may be said to be conceptually faithful to the degree that it
preserves the presence of its intuitive analysandum. At the other end of the spectrum,
synthesis, or the stipulation of new concepts, places a premium on the clarity
that can be got from an inventive mathematical virtuosity. Concerning the option-
space noted above, I have already mentioned the tendency of logicians to favour
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something like item three, in which the logical treatment of legal concepts is by way
of existing logics reconfigured to accommodate the law’s contextual peculiarities.
As regards the present concept-engagement possibilities, it would appear that the
formalizations effected by retrofitted logics fall oftener than not in the ambit of
partial reconceptualizations. It is well to emphasize, however, that option four –
the most creative of our four options – will in principle tolerate each of the four
grades of conceptual engagement. But here, too, I am inclined to think that when
the preferred approach to a legal concept is by way of a new logic, it is advisable to
try for a conceptual explication, rather than a rational reconstruction. If the concept
is sui generis to law, and its meaning is implicit in established legal usage, the first
order of business should be as much clarification as the intuitive concept will bear.
That is, the logic of the law should be careful not to give mathematical virtuosity
too much sway over conceptual fidelity. It serves neither the lawyer nor the logician
to produce formalizations of concepts of central importance to law that no lawyer
could recognize as such without a crash course in a department of mathematics or
computer science or technical philosophy. Similarly, in reaching their verdicts, the
law presupposes (approvingly) that jurors have untutored access to these concepts,
hence apply them in their intuitive senses.

39.3 Probability in the Law

It is widely agreed that a verdict of guilty in a criminal proceeding at common law
is both unjust and epistemically untenable if, on the evidence presented at trial,
the probability of guilt is insufficiently high. Thus high probability of guilt on the
evidence heard at trial is, on this view, a necessary though not sufficient condition
of a correctly arrived at decision to convict. One of the quite standard ways in
which logicians seek to interact with the law is to apply the calculus of probability
to this notion of probability. Seen this way, when a juror reaches his decision he
calculates the probability of the accused’s guilt based on the trial’s evidence, and
in so doing conforms his reasoning, albeit tacitly, to the conditions mandated by
Bayes’ Theorem, a standard formulation of which is:

P (G/E) = P (E/G)× P (E/G)

[P(G)× P (E/G)+( P (∼ G)× P (E/ ∼ G)
]

Here ‘G’ denotes guilt, ‘E’ evidence, and ‘P’ probability. Accordingly, we may read
the present instance of the theorem as asserting that the probability of guilt on the
evidence presented (P(G/E)) is the prior probability that the accused is guilty (P(G))
times the likelihood accorded to the evidence by the hypothesis of guilt (P(E/G))
DIVIDED BY the prior probability of guilt (P(G)) times the guilt of the accused
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(P(E/G)) plus the prior possibility of innocence (P( G)) times the likelihood of the
evidence given the innocence of the accused (P(E/ G)).18

Upon reflection, it appears that implementation of Bayes’ theorem is precluded
by a juror’s other duties, of which none is more important than the presumption
of innocence. What this means in concrete terms is that in determining whether
to convict the accused, at no time in this process can the hypothesis of guilt be
given any probative consideration. In particular, in trying to make up their minds
about a given piece of testimony, jurors may not use the hypothesis of guilt to
determine or recompute the credibility of the evidence they have heard. Accordingly,
the presumption of innocence precludes jurors from binding their reasoning to the
P(E/G)-clause of the theorem. This leaves us with the following upshot-space:

• What legal procedure requires is a violation of Bayesian rectitude, and yet jurors
on the whole manage to do what the law requires. In which case, jurors are
probabilistic misfits.

• What legal procedure requires is a violation of Bayesian rectitude, and (if only
tacitly) jurors manage to honour the Bayesian requirements. In which case, jurors
are legal misfits.

• What legal procedure requires has nothing to do with what Bayes’ theorem
requires. In legal contexts, determining P(G/E) is not a Bayesian enterprise.

The present example lays down a valuable restriction on how to proceed. To the
extent that any concept of probability is implicated in the determination of guilt or
innocence, do not give it a Bayesian formalization. This is not a trivial conclusion.
The probability calculus is a triumph of mathematical virtuosity. To date no mature
and settled formalization of a non-Bayesian notion of legal probability has taken
hold. Repairing this omission offers to logicians of the law the prospect of gainful
employment.

39.4 Proof in the Law

At the criminal bar, conviction requires evidence that proves guilt beyond a
reasonable doubt. Evidence presented at trial is entirely by way of testimony, of
what witnesses say under oath. A witness can testify to a matter of fact or, if sworn
as an expert, to a matter of opinion. Triers of fact (typically a jury) and triers of
law (always a judge) are held to a strict duty of agnosticism both prior to the
trial and at each of its phases, until the cessation of testimony, the presentation
of closing arguments of counsel and the instruction of the jury by the judge.
Neither do the triers have any independent means of confirming or disconfirming the
propositions avowed by witnesses. Still less is the general epistemological question
of the probativity of information gathered in this way an arguable matter in criminal

18It would be well to note that Bayes’ theorem is not a definition of conditional probability. If it
were, it would be viciously circular. It is in fact a rule for calculating a large class of conditional
probabilities.
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proceedings. The law’s implicit epistemology makes it a non-negotiable assumption
that sayso can be a reliable generator of proof beyond a reasonable doubt.

This creates an obvious problem for the criminal proof standard, especially
when witnesses give conflicting testimony and the evidence is circumstantial in any
significant degree. Is there a formal epistemologist who would allow as a general

proposition that contradictory circumstantial testimony meets any standard of proof
that he would antecendently have recognized? If the answer is No, the logician now
has two more options to consider. One is to reject the law’s concept of proof as
epistemologically untenable. Another is to concede its epistemological legitimacy,
and seek for the adaptation of an existing logic for its formalization or a purpose-
built logic for it.

It is typical of cases in which defendents enter a plea of not guilty that witnesses
will give conflicting testimony, thus confronting the juror with a critical pair of
evidential duties to perform (or so it would appear). He must try to find a maximal
consistent subset of the evidence that is most worthy of his belief. He must also
determine whether that subset meets the requirement of proof of guilt beyond a
reasonable doubt. An utterly natural question for a logician is, “What are the criteria
for the correct performance of these tasks?” It is striking that jurisprudence does not
answer this question. Indeed, it hardly even formulates it. This is not to say that
the law gives no instruction on how to perform these duties. But what it doesn’t do
is specify those criteria in whose fulfillment dutiful compliance consists. Although
there are occasional exceptions, the standard instruction to jurors from the bench
runs along the following lines (again simplified):

• If you believe witness W in regard to matter M, you must convict. If you believe

witness W′ with respect to matter M, you must acquit. In regard to the rest of the

testimony, if you find that what you believe of it merits conviction, then you must

convict. If not, you must acquit.

Concerning how to go about determining whether to believe a witness, the instruc-
tion is:

• Pay attention. Try to understand the witness. Do not prejudice the issue or rush

to judgement. Use your common sense.

The last incorporates the venerable paradigm of the reasonable man (sic):

• Form your judgement in the manner of the reasonable man, that is, by reasoning

in the way of ordinary persons about ordinary things.

It has long been recognized that jury deliberation is an exercise in practical, not
theoretical, reasoning. The doctrine of the reasonable person carries an important
suggestion about the logic of practical reasoning:

• If there are criteria for the goodness of practical reasoning, their fulfillment in

actual practice is inadvertent.

All of this is crucial for a correct understanding of the epistemic status of the proof
standard.
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• The criminal proof standard is not particularly high, and is attainable without

tutelage by any reasonable layperson reasoning in the ordinary way of things.

It would not be going too far to say that here is a concept of proof-determination
that cuts sharply against the grain of orthodox epistemologies. In so doing, it raises
obvious questions: Are there existing formal orthodoxies that can do the job for
this notion of proof and of the decision consequent upon its positive application? It
is notable that rational choice theory won’t do. Its concept of the rational decider
is one who seeks to maximize personal advantage. But the law’s concept of the
rational person is the intuitive concept: a rational agent is thoughtful and clear-
headed, and by no means always selfish. Any theory of human performance that ties
rationality to the pursuit of personal utilities are broadly utilitarian in character. But
a juror’s world is a deontological world in which preference is suppressed in favour
of duty. So it is natural to wonder whether there is a mathematically virtuosic formal
epistemology that could be contrived for this concept of proof. We may think that,
to date, the most promising candidates are to be found in the proliferating literatures
of defeasible, default and abductive reasoning. But even here, it is early days for
definitive application to the law.19

As we begin to see, the criminal proof standard is less a matter of proof than of
intellectually conscientious belief. If we used Woods [19] as our guide, a competent
judge would instruct the jurors as follows:

• “With due regard for the instructions I have given you so far, and mindful of
your duty to pay close attention to everything you’ve seen and heard at trial
open-mindedly and without bias, if you find that you cannot in all intellectual
conscientiousness convict the accused on that basis, then you must acquit.
Equally, if you find that in all intellectual conscientiousness you cannot acquit
the accused on that basis, then you must convict. Period.”

It bears repeating that the criminal law’s concept of proof is sui generis. It is not
proof in the mathematical sense, and it is not proof in the information-theoretic
sense. In a recent interview with Athanasios Christacopulous John Corcoran offers
wise counsel to anyone eager to dive into the choppy waters of criminal proof:

Before wrapping up my answer, I would like to remind myself and your
readers of the points I have made several times. First, belief can be an obstacle
to a proof because one of the marks of proof is its ability to resolve doubt.
Second, we don’t usually try to prove propositions we don’t believe or at least
suspect to be true. Third, the attempt to find a proof of something leads to
doubts we never would have had. If you have a treasured belief you would
hate to be without, do not try to prove it.20

Mind you, Corcoran is not speaking here of proof of criminal guilt, but his remarks
serve to reinforce its sui generis conceptual character.

19See Woods [18] and [19], chapter 21. For a more thorough-going discussion, see also Woods
[20], especially parts E and F.
20Corcoran and Christacopulous [4].
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39.5 Inconsistency

It is typical that accusations of serious crimes are tried by juries, normally twelve
in number. It is also typical that decisions to acquit or convict be unanimous,
achieved by a bi-modal vote.21 A jury’s verdict is the product of twelve individual
findings. Provided that they remain attentive and wide-awake, all twelve hear the
same testimony. In what can only be regarded as a lexical misfortune, testimony
is also referred to as evidence. In inductive settings, it is natural to suppose
that propositions are evidential only if they are true, and there is no shortage of
formal acknowledgement of this connection. But it is not a tenable connection
for testimony, hence not a connection for evidence in the law’s testimonial sense.
This vitiates a suggestion of the previous section, namely, that the evidence on
which a juror must base his finding is a maximal consistent subset of the total
evidence heard. Since such subsets can contain elements which a juror disbelieves,
the condition must be reformulated as calling for maximal consistent subsets of
believed testimony.

The requirement that jurors not act on inconsistent evidence may strike one as
a reasonable ideal for individual triers of fact, but it is not a condition that stands
any realistic chance of realization in the aggregate. It is in principle possible that
each juror bases his finding on different subsets of the total evidence, not all of them
pairwise compatible. This is deeply consequential. It shows that the verdict in a
criminal trial is not a unanimous finding on some aggregation of the total evidence,
but rather is the sum of individual findings, each predicated on its own readings of
the evidence.

Philosophical intuitions tug here in different directions. On the one hand, it is
awkward that an accused can be opportuned by a verdict made by people who
collectively give an inconsistent reading of the evidence. On the other hand, it
might strike us as epistemically and morally promising that different, though non-
compossible, readings of the evidence should lead twelve times out of twelve to the
same finding across the board. As we have it now, there is no settled formal theory
of inconsistency-management or collective agency that confronts this issue directly.
Notwithstanding, it is possible to see in outline assumptions that a purpose-built
logic should try to preserve and clarify. For simplicity, consider the extreme case in
which each juror’s consistent subset of the total evidence is incompatible with every
other. We may suppose that the finding of an individual juror is both rational and
legally permissible if and only if, consistent with the judge’s instructions,

• It is arrived at from a reading of the total testimony which a reasonable person,

proceeding in the ordinary way about ordinary things, might reasonably have

given;

and

21In Scottish jurisprudence, a third option is allowed – “not proven”.
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• The reasoning from his reading to his finding is that of a reasonable person

reasoning in the ordinary way about ordinary things.

We may now put it that a jury’s verdict is both rational and legally permissible to
the extent that the individual jurors’ findings, each rational and legally permissible,
in the sense at hand, sum to 12. For these conditions to be met, it is neither required
nor desirable that individual readings − and individual findings – be aggregated.
Equally it is neither required nor desirable that the jury’s verdict be represented
as the negotiated settlement of the jurors’ competing theories of the case. A jury’s
verdict is not, therefore, the solution of a conflict resolution exercise.22 In so saying,
a number of theoretical paradigms – ranging from game theory in all its principal
forms to voting preference theory – seem wrong for jury deliberation.

39.6 A Concluding Remark

As noted at the beginning, the law brims with concepts of considerable interest to
logic. This presents the logician with a quite general methodological question. Is it
best to press existing methods of formal representation into service – with or without
some tweaking as needs be – or would these epistemologically laden concepts be
better handled by formalizations purpose-built for them? There are advantages and
tensions either way. Staying with the tried-and-true has the attractions of the familiar
dab-hand, possibly at the expense of conceptual distortion. Purpose-built logics can
be expected to do better on the score of conceptual fidelity, but for the most part they
are not yet well-developed and are certainly not tried-and-true. So that is a cost. It is
significant that these approaches do not exclude one another. It is perfectly possible
for the logic of law to operate on each of these tracks, in the spirit of “let’s see what
works best.” The law is a waiting feast for logicians. We should greet it with an
experimental openness appropriate to its promise.
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