Springer Undergraduate Texts in Philosophy

Sven Ove Hansson - Vincent F. Hendricks
Editors

Introduction
to Formal
Philosophy

Esther Michelsen Kjeldahl
Assistant Editor

@ Springer



Springer Undergraduate Texts in Philosophy



The Springer Undergraduate Texts in Philosophy offers a series of self-contained
textbooks aimed towards the undergraduate level that covers all areas of philosophy
ranging from classical philosophy to contemporary topics in the field. The texts will
include teaching aids (such as exercises and summaries) and will be aimed mainly
towards more advanced undergraduate students of philosophy.

The series publishes:

» All of the philosophical traditions

e Introduction books with a focus on including introduction books for specific
topics such as logic, epistemology, German philosophy etc.

¢ Interdisciplinary introductions — where philosophy overlaps with other scientific
or practical areas

This series covers textbooks for all undergraduate levels in philosophy particu-
larly those interested in introductions to specific philosophy topics.

We aim to make a first decision within 1 month of submission. In case of a
positive first decision the work will be provisionally contracted: the final decision
about publication will depend upon the result of the anonymous peer review of the
complete manuscript. We aim to have the complete work peer-reviewed within 3
months of submission.

Proposals should include:

* A short synopsis of the work or the introduction chapter
e The proposed Table of Contents

¢ CV of the lead author(s)

* List of courses for possible course adoption

The series discourages the submission of manuscripts that are below 65,000
words in length.

For inquiries and submissions of proposals, authors can contact Ties.Nijssen@
Springer.com

More information about this series at http://www.springer.com/series/13798


http://www.springer.com/series/13798

Sven Ove Hansson ¢ Vincent F. Hendricks
Editors

Esther Michelsen Kjeldahl
Assistant Editor

Introduction to Formal
Philosophy

@ Springer



Editors

Sven Ove Hansson Vincent F. Hendricks

Division of Philosophy Center for Information and Bubble Studies
Royal Institute of Technology (KTH) University of Copenhagen

Stockholm, Sweden Copenhagen, Denmark

ISSN 2569-8737 ISSN 2569-8753  (electronic)

Springer Undergraduate Texts in Philosophy

ISBN 978-3-319-77433-6 ISBN 978-3-319-77434-3  (eBook)

https://doi.org/10.1007/978-3-319-77434-3
Library of Congress Control Number: 2018945477

© Springer International Publishing AG, part of Springer Nature 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by the registered company Springer International Publishing AG part

of Springer Nature.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland


https://doi.org/10.1007/978-3-319-77434-3

Preface

In 1974, a wonderful little book came out entitled Formal Philosophy: Selected
Papers of Richard Montague, edited by Richmond H. Thomason. The book was a
beautiful testimony to the fact that formal methods may indeed clarify, sharpen and
solve philosophical problems, defusing airy philosophical intuitions in clear, crisp
and concise ways while at the same time turning philosophical wonder into scientific
inquiry.

Today, formal philosophy is a thoroughly interdisciplinary package. Methods
from logic, mathematics, computer science, linguistics, physics, biology, eco-
nomics, game theory, political theory, psychology, etc. all chip in and have their
place in the methodological toolbox of formal philosophy. Thus, formal philosophy
is not yet another puristic philosophical province but rather a discipline gaining its
momentum and content from its close shaves with the methods of science in general.

Introduction to Formal Philosophy intends to present the formal philosophy
landscape in all its splendour. In self-contained entries written by experts in the field,
the book introduces the methods of formal philosophy and provides an overview
over the major areas of philosophy in which formal methods play crucial roles.
The presentations are comparatively non-technical in the sense that definitions and
theorems are stated with standard formal rigour, but much emphasis is placed on
clarifying the relationships between formal constructions and the informal notions
that they represent. Proofs and derivations are normally not presented. The main
focus is on showing how formal treatments of philosophical problems may help us
understand them better, solve some of them and even present new philosophical
problems that would never have seen the light of day without the use of a formal
apparatus.

Introduction to Formal Philosophy has a pedagogical but also an unabashed
propagandistic purpose. While in no way denigrating other methodologies, we
hope to show the versatility, forcefulness and efficiency of treating philosophical
problems with formal methods. Hopefully, this will serve to increase the self-
consciousness of formal philosophy for the benefit of scientific inquiry in general.
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We express our gratitude to Ties Nijssen and his colleagues at Springer for taking
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Chapter 1 ®
Formalization Cheek for

Sven Ove Hansson

Abstract This introduction to formal philosophy has its focus on the basic method-
ology of formalization: the selection of concepts for formalization, appropriate
splittings and merges of concepts to be formalized, the idealization that is necessary
prior to formalization, the identification of variables and their domains, and the
construction of a formal language. Other topics covered in this chapter are the
advantages and pitfalls of formal philosophy, the relationships between formal
models and that which they represent, and the use of non-logical models in
philosophy.

1.1 Introduction

Few issues in philosophical style and methodology are as controversial among
philosophers as formalization. Some philosophers are anti-formalists who consider
texts making use of logical or mathematical notation as non-philosophical and not
worth reading. Others are pan-formalists who consider non-formal treatments as —
at best — useful preparations for the real work to be done in a formal language. But
discussions on the pros and cons of formalization are more common at the coffee
tables of philosophy departments than in scholarly books and journal articles. That
is unfortunate since formalization has important methodological issues in need of
systematic treatment.

This chapter is devoted to the use of formal methods in philosophy. It has a (non-
exclusive) emphasis on logic which is the most commonly used formal language
in philosophical investigations. We will have a close look at what formal logic is
(Sect. 1.2) and how it can contribute to philosophical clarification (Sect. 1.3), the
process that takes us from natural to logical language (Sect. 1.4), the construction
of a logical language (Sect.1.5), some philosophical uses of logical inference
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(Sect. 1.6), and the philosophical use of non-logical formal models (Sect.1.7).
Finally, we will summarize some of the dangers and difficulties in the philosophical
use of formal methods (Sect. 1.8).

1.2 Formal Logic as a Tool for Philosophy

Formal philosophy began with logic, and logic is still its dominating formal
language. A good case can be made for increased use of non-logical formal methods,
but in a general exposition of formal philosophy, logic is still the best starting-point.

1.2.1 The Origins of Logic

Logic is concerned with how we draw conclusions. Its systematic study begins with
the observation that some inferences fall into general patterns. These patterns are
characterized by being insensitive to the meaning of certain elements of that which
we say or think, and even unaffected by the uniform substitution of these elements.
Following Gottfried Wilhelm Leibniz (1646-1716), we can use the term “formal
arguments” for arguments in which “the form of reasoning has been demonstrated
in advance so that one is sure of not going wrong with it” [49, p. 479].! Consider
the following argument:

Rich men are condescending.
Therefore: Non-condescending men are not rich.

The changeable elements here are of course “rich men” and “condescending men”.
We will call them variables. The example exhibits three important features of
variables in a logical argument. First, the validity of an argument is unaffected by
vagueness in its variables. In most other contexts, the use of vague terms makes it
difficult to determine whether that which is said is valid or not. Thus, the sentence
“He is rich” is vague because the term “rich” is vague, and for a similar reason so
is the sentence “He has condescending manners”. But the inclusion of both these
vague terms into the above argument does not affect its validity.

Secondly, the validity of an argument does not depend on whether that which is
said about the variables is true or false. Suppose that you meet the richest man in
the world and he turns out to be a friendly and respectful person. Then the premise
of the argument is not true, but the argument is still valid, i.e. it is still true that the
conclusion follows from the premise.

1« . des argumens en forme; parce que leur forme de raisonner a esté prédemontrée, en sorte qu’on
est seur de ne s’y point tromper” [48, 478-479].
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Thirdly, we can freely substitute the variables for something else, if we do so
uniformly. By uniformity is meant that all instances of a variable are substituted by
the same new element. We can for instance make the following substitution in the
above argument:

Baroque music is beautiful.
Therefore: Non-beautiful music is not Baroque music.

We know that this argument is valid since the previous one is valid. They are
instances of the same argument form. When analyzing an inference, it is useful
to express it in such an argument form.

The above examples represent an argument form with one premise and one
conclusion. In Aristotle’s (384-322 BCE) logic, such arguments are called conver-
sion rules. Aristotle referred for instance to the argument form exemplified by the
conclusion from “No pleasure is good” to “No good is a pleasure” ([2], L:ii, 25a).
However, the major focus in Aristotelian logic was on arguments with two premises
and one conclusion, called syllogisms. The following is an example of a syllogism:

All logicians are philosophers.
Some logicians are cacographers.
Therefore: Some philosophers are cacographers.

The validity of this syllogism is not disturbed by the vagueness of the terms
“logician” and “philosopher”. Even more importantly, to confirm the validity of
this argument one need not know what a cacographer is — or for that matter what a
philosopher or a logician is.

Archimedes (c.287-c.212 BCE) is reported to have said: “Give me a place to
stand on, and I will move the Earth” [16]. For a lever to work properly, we need
a rigid and reliable pivot. Similarly in logic, in order for some terms, namely
the variables, to be flexible in meaning and indeed exchangeable, we need other
terms that provide a rigid and immutable platform on which the movements and
exchanges of variables can take place. The terms that have this function are called
logical constants. In the above examples, “all”, “some”, and “not” have the role
of logical constants. Syllogistic logic, which held sway from Aristotle’s time until
the late nineteenth century, was devoted to these three logical constants and the
argument forms that could be constructed with them. But there were also three
parallel traditions in logic that employed other logical constants.

One of these was sentential logic, the logic of sentences, first developed by
Chrysippus (¢.279-¢.206 BCE) and other Stoics. In sentential logic, the variables
are sentences or propositions, rather than parts of sentences as in syllogistic logic.
Chrysippus accurately identified a proposition as “that which is capable of being
denied or affirmed as it is in itself” [21, pp. 69-70]. The logical constants are words
like “and”, “or”, “if”, and “not”. An argument in sentential logic can be as follows:

Either I laugh or you cry.
1 do not laugh.
Therefore: You cry.
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Here, the variables are the sentences “I laugh” and “You cry”, and the logical
constants are “not” and “and”.> Sentential logic lived a marginal existence in the
shadow of syllogistic logic but gained in importance through the work of George
Boole (1815-1864) and others in the nineteenth century.

The second of these traditions was modal logic, the logic of necessity, possibility,
and related concepts. Its two most important logical constants are “necessarily”
and “possibly”. The oldest texts on modal logic are by Aristotle himself. Just like
sentential logic, modal logic was overshadowed by standard syllogistic logic. It was
revived in the early twentieth century by C.I. Lewis (1883—-1964).

The third tradition is somewhat more difficult to pinpoint. It has its origin in what
Aristotle called the fopoi, or topics. These were valid arguments in which the role of
logical constants was played by a wider range of concepts. These include “good”,
“better”, and “child”. Studies of the topics continued through the ages, although
usually with somewhat less precision than in the dominant logical pursuit, namely
syllogistic logic [23]. The importance of such argumentation was emphasized by
Leibniz when he wrote:

“It should also be realized that there are valid non-syllogistic inferences which
cannot be rigorously demonstrated in any syllogism unless the terms are
changed a little, and this altering of the terms is the non-syllogistic inference.
There are several of these, including arguments from the direct to the oblique
— e.g. ‘If Jesus Christ is God, then the mother of Jesus Christ is the mother
of God’. And again, the argument-form which some good logicians have
called relation-conversion, as illustrated by the inference: ‘If David is the
father of Solomon, then certainly Solomon is the son of David.” ([48], p. 479;
translation from [49], p. 479)

1.2.2 The “Newtonian’ Revolution in Logic

These traditions in logic — studies of syllogisms as well as the other, subsidiary
subject areas — had one important limitation in common: They were devoted to
single argumentative steps. Actual argumentation usually proceeds by a whole series
of steps. This restriction to single steps, taken one at time, turns out to be a serious
limitation since some arguments cannot be fully understood unless one takes a
more comprehensive approach. Clear examples of this can be found in mathematical
reasoning. In his Elements, Euclid (f.300 BCE) often introduced an assumption only
in order to refute it. After making the assumption he presented a multi-step argument
based on it. Many steps later he arrived at an inconsistent conclusion, based on
which he inferred that the assumption was false (“reductio ad absurdum”, reduction
to absurdity) This is a type of argumentation that logicians had great difficulties in
accounting for since they dealt with each step separately [45, p. 597].

In the middle of the nineteenth century, logic was still a particularistic discipline,
dealing with small argumentative steps in isolation, and lacking a unifying theory

2This is the argument form later known as Modus tollendo ponens or the disjunctive syllogism [5].
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for the various types of argumentative steps. We can compare its status to that of
mechanics two hundred years earlier. Before Isaac Newton’s (1642—1727) Principia
(1687), there were two branches of mechanics: terrestrial mechanics that dealt
with the movements of objects on earth and celestial mechanics that dealt with
the movements of heavenly bodies. Newton managed to unite the two disciplines
by providing a mathematical model that was sufficiently general to cover the
movements of both earthly and heavenly bodies. His new framework covered not
only single events, but also complex interactions among a large number of objects,
such as the bodies of the solar system.

In 1879 Gottlob Frege (1848-1925) published his Begriffsschrift which did to
logic what the Principia had done to mechanics [19]. Frege’s major invention was
a notation (quantifiers) that could express the logical constants “all” and “some”
in a much more versatile manner, and made them easily combinable with sentential
constants such as “and” and “or”. His new framework was a general logical calculus
lacking the limitation to small steps that was inherent in the Aristotelian system of
syllogisms. Instead of considering just two premises it was now possible to consider
any set of premises, however large. This made it possible to ask questions that did
not even arise in the logic of syllogisms. For any given a set of premises, one could
ask whether a particular conclusion follows from it. Sometimes that question could
be answered affirmatively by providing a step-by-step proof. In other cases it could
be answered negatively by showing that no combination of valid argumentative steps
can lead to the conclusion. With Frege, logic took the giant leap from an atomistic
study of the smallest parts of arguments to a holistic analysis of what can and cannot
be inferred from given premises.

Frege’s system was limited to the logical constants that had been studied for
more than two millennia in syllogistic and sentential logic: “all”, “some”, “not”,
“and”, “or”, “if”, and “if and only if”. Including them all in one and the same
system was a major achievement, not least since arguments using these logical
constants cover a large part of mathematical reasoning. But for philosophy this
was still not enough. In philosophical argumentation the structural properties of
other terms than these have crucial roles. For instance, if we wish to scrutinize
Kant’s views on whether ought implies can, then we do not have much use for the
logical principles governing words like “all” or “and”. Instead, our focus will have
to be on properties of the concepts expressed by the words “ought” and “can” [75].
In the twentieth and twenty-first centuries, philosophical logicians fully realized
this, and developed logical systems in which the role of logical constants is played

LLINNT3

by terms representing a wide variety of notions such as “necessary”, “possible”,
“know”, “believe”, “do”, “try”, “after”, “permit”, “decide”, “will”, “right”, “good”,
“blameworthy”, “duty”, “better”, “cause”, “freedom”, “vague”, and a wealth of
others. Many of these had been studied by logicians in previous centuries, as part
of the modal or the topics tradition. However, after Frege they could be included
in holistic systems of argumentation, rather than being used in rules referring to a
single, isolated step of reasoning. Through all these extensions, formal logic has
expanded its territory most substantially, and this expansion is still an on-going
process. We can see it as the second step of the “Newtonian” revolution in logic,

after the first step for which Gottlob Frege was himself responsible.
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1.2.3 The Actual Truth or a Model of the Truth?

The remarkable achievements of Frege’s system of logic inspired many philoso-
phers, and some believed that logical analysis could now replace other, more
uncertain methods used by philosophers. Bertrand Russell (1872-1970) maintained
that “every philosophical problem, when it is subjected to the necessary analysis
and purification, is found either to be not really philosophical at all, or else to be,
in the sense in which we are using the word, logical” [71, p. 14]. He and many
others believed that logic would make it possible to reach a more fundamental level
of philosophical insight, thereby resolving philosophical problems that could not be
solved in natural language due to its lack of precision.

It was soon discovered, however, that philosophers can disagree about a problem
expressed in logical terms just as they can disagree about one expressed in natural
language. Russell’s own analysis of definite descriptions provides a clear example
of this. By a definite description is meant one that applies to exactly one object.
In English, definite descriptions are often expressed with the definite article “the”
followed by a singular: “the teapot on the lowest shelf”, “the current president of
South Africa”, etc. The problematic cases are those in which there is either no object
or more than one object answering to the description. If I ask you to take out the
teapot on the lowest shelf, you will have problems in following the instruction if
there is either no teapot or two or more teapots on that shelf. The following standard
example has been used in the discussion:

The king of France is wise.

According to Russell [69], this should be interpreted as follows in predicate logic,
with K standing for “is the king of France” and W for “is wise”:

@AxX)(Kx & (Vy)(Ky — x =y) & Wx)

This can be paraphrased as follows: “There is (3) someone (x) who is king of France
(K). Everyone (Vy) who is king of France is identical to him. He is wise (W).” It
follows directly from this analysis that (as long as France remains a republic) the
quoted sentence is false.

In a criticism of Russell’s account, P.F. Strawson (1919-2006) contended that
if someone uttered the sentence “The king of France is wise”, then the question
whether that sentence was true or false “simply didn’t arise, because there was no
such person as the king of France” [76, p. 330]. In Strawson’s view, our sentence
can be formalized in the simple way

Wk

where W denotes “is wise” and k denotes “the king of France”. According to
Strawson, this sentence expressed a true statement when uttered in the reign of Louis
X1V, and a false statement when pronounced in the reign of Louis XV. But when
asserted during the time of a French republic it expresses no statement at all, and
consequently the question whether it expresses a true or a false statement does not



1 Formalization 9

even arise. Russell [70] disagreed and defended his original standpoint. The debate
has continued since then [17].

This and many other examples show that merely translating a philosophical
problem into logical language cannot be expected to solve it. Philosophical dispute
can continue, now referring to the logical formulation. What logic can do, however,
is to provide more precise statements of the problem and of alternative standpoints
pertaining to its solution or dissolution. This, as we will see, can be an important
enough achievement.

1.2.4 A Guarded Defence of Formalization

In a larger perspective, the rise of modern symbolic logic can be seen as part
of a more general, long-term, trend: More and more scientific and scholarly
disciplines have become dependant on mathematical modelling. Astronomy is the
only empirical branch of learning that has been thoroughly mathematized ever
since antiquity. Physics became gradually more and more mathematized from
the late Middle Ages onwards, and chemistry since the late eighteenth century.
But the great rush came in the twentieth century, when discipline after discipline
adopted mathematical methods. One of the best examples is economics, which
has gone from almost no use of mathematics to being dominated by theories
expressed in mathematical language [14]. In the last few decades, formal models, in
particular game theory, have had a strong and increasing influence throughout the
social sciences. At the same time, the mathematization of the natural sciences has
accelerated. Today, large parts of biology and the earth sciences, such as ecology,
population genetics, and climatology, are thoroughly mathematized.

The reason why mathematical tools were adopted in these and many other areas
is of course that they have proven efficient; they have improved the predictive and
explanatory capacities of the disciplines in question. The increased role of formal
methods in philosophy has a similar explanation: we have introduced formal tools
in order to express problems more precisely and obtain solutions in new ways.
But there is a caveat: The usefulness of formal tools is not quite as overwhelming
in philosophy as in the empirical disciplines. The difference can be seen from a
comparison between philosophy and early physics.

We usually think of mathematical physics as beginning with Galilei Galileo
(1564-1642), but mathematical methods were used in physics already in the
fourteenth century. When medieval physicists (the so-called calculatores) developed
mathematical models of physical phenomena, they proceeded in much the same
way as Euclidean geometers. A geometer used “pure thought” to determine the
laws that govern lines, surfaces, and three-dimensional bodies. In much the same
way, physicists used their intuition when attempting to find the laws that govern
the movement of bodies. And importantly, intuition had a double role: Not only
was the development of these mathematical models guided by intuition, it was
also against intuition that they were tested. This was before the great revolution in
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physics led by Galileo. Although Galileo used his intuition as a starting-point when
developing mathematical models of physical phenomena, he went on to test these
models against experiments and exact observations. Since our mechanical intuitions
are rather consistently wrong, this reality check was necessary to correct errors in
the previous models [54, 74, 83].

Today, this is the standard approach to mathematical models in the empirical
sciences. Mathematical models are tested against measurements whose values are
expected to correspond to the variables of these models. Obviously, this can only
be done if accurate measurement methods are in place. Before the thermometer
was invented (in the seventeenth century), physicists had no better means to assess
theories about heat than to compare them with everyday experiences of heat and
cold. Exact measurement of temperature was a necessary condition for developing
accurate mathematical theories of heat (thermodynamics). Today, no physicist
would argue in favour of a thermodynamic principle by referring to our vague
everyday experiences of heat and cold.

This is a general pattern in science. Measurement is our bridge between theories
and observations. Mathematics is the medium in which we can transport information
across that bridge, a medium unsurpassed in its information-carrying capacity.
Today the bridge of measurement is quite crowded, carrying loads of information
back and forth that are used on one side for the improvement of theories, and on the
other side for the construction of new experiments and observations.

As we saw, physics had access to the mathematical medium long before it
learnt how to avail itself of the bridge. Unfortunately, philosophy is in a situation
comparable to that of pre-Galilean physics: we have the mathematical medium,
but we do not have the bridge of measurement. And this is not a deficiency
that can easily be mended within the confines of philosophy as we conceive it
today. Philosophers studying concepts such as knowledge, truth, goodness, and
permission are operating with constructs of the human mind that do not necessarily
have exact empirical correlates. Our situation can to some extent be compared to
that of mathematicians, who have all of their foundations on the theoretical side.
Their research can improve the theories that are used in empirical work, but the
information received back from empirical investigations does not normally lead to
corrections of the mathematics. Similarly, philosophy can sometimes be used to
improve theories in other disciplines, and the exactness of formal philosophy is
often needed to match the precision required in these disciplines. But at least in
most philosophical subject areas, empirical observations cannot support or disprove
a theoretical statement in the same clear-cut way as in the empirical sciences.

Therefore, the claims that can be made for formalization are weaker in philos-
ophy than in the natural and social sciences. In philosophy, the major virtue of
formalization is the same as that of idealization in informal languages: By isolating
important aspects it helps to bring them to light. In philosophical discussions
we usually deviate from the general-language meanings of key terms such as
“knowledge” or “value”, giving them meanings that are more streamlined and
more accessible to exact definition. This does not necessarily mean that we have
access to a true philosophical meaning that these concepts should be adjusted to. A
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much more credible justification is that such simplifications are necessary in order
to obtain the precision needed for philosophical analysis. However, this is a sail
between Scylla and Charybdis (on the bridgeless waters just referred to). We have
to deviate from general language in order to make a sufficiently precise analysis.
But if we deviate so far as to lose contact with general-language meanings, then
the rationale for the whole undertaking may well be lost. This precarious situation
applies, of course, to formal and informal philosophy alike.

All this boils down to a rather guarded defence of formalization in philosophy. It
is a language in which we can build more precise models of philosophical subject
matter, and as we will see, there are philosophical topics for which this increased
precision is indispensable. However, formalization is no panacea. Mistaken ideas
can be as easily formalized as valid ones. But although formalization is no safe
road to philosophical truth, it is one of the best tools that we have for expressing,
criticizing, and improving philosophical standpoints. It is an obvious but important
corollary of this line of defence that we should not expect to find a uniquely
“correct” formal analysis of philosophical subject matter. Different formalizations
may capture different properties of our concepts [33, 38, 39].

1.3 Formalization as Clarification

The use of formalization in philosophy is part of our general strivings for clarity and
precision in philosophical discussions. In this sense, formalization is continuous
with the development of specialized (non-formal) philosophical language. Since
antiquity, philosophers have spent much effort on clarifying the central concepts
of the discussions they have taken part in, and almost invariably such clarifications
have led to new distinctions and opened up for the formulation of new standpoints
and new questions. We find such linguistic analysis in Plato’s Socratic dialogues,
for instance the discussions on virtue in Meno and knowledge in Theaetetus. We
also find it in ancient texts from other civilizations, for instance in writings in the
Mohist tradition in China that in many ways anticipated modern developments in
the philosophy of language [52, 53].

1.3.1 The Need for Clarity

Clarity is still a major criterion of philosophical quality. We need precise concepts
in order to develop and criticize philosophical arguments, and therefore careful
analysis and development of our own terminology is an essential part of modern
philosophy. This type of work is also an important part of philosophy’s contributions
to other disciplines. In interdisciplinary co-operations, it is often the role of
philosophers to work out precise definitions and distinctions [34]. The importance
of precision has been pointed out by many of the great philosophers, for instance by
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Aristotle and (arguably with some amount of rhetorical exaggeration) by Ludwig
Wittgenstein (1889—1951):

“Our discussion will be adequate if it has as much clearness as the subject-
matter admits of, for precision is not to be sought for alike in all discussions,
any more than in all the products of the crafts.” (Aristotle, Nicomachean
Ethics L:iii, 1094b [3])

“Everything that can be said can be said clearly.” (Wittgenstein, Tractatus
logico-philosophicus 4.116 [85])

So why should we strive for clarity and exactness? To begin with, we do so in order
to facilitate communication. In everyday life we appreciate exactness whenever
information is important for us. When listening to my stories about what I have
seen in the streets of Berlin you probably do not worry much about how accurately
I describe the geographical relations between the different streets, but if I give you
directions to your hotel you will expect me to be quite precise about such details.
If someone tells you about the medicine her aunt took against arthritis you may
even prefer not to hear all the details about dosage and the like, but if your doctor
recommends you to take a drug you want her to be very clear about doses and
timing. As philosophers we are professionally interested in issues and details that
most people seldom worry about, and therefore we often strive for exactness and
clarity in respects that are usually disregarded in other contexts.

In addition to facilitating communication, exactness also facilitates investigation.
If it is unclear to you exactly what I have said, how can you verify or repudiate my
statement? As noted by Karl Popper (1902-1994), a statement has to be precise
in order to be accessible to falsification or corroboration [47, 66]. This applies, of
course, not only to philosophy but to science in general. One of the major virtues of
mathematical theories in the natural and social sciences is that they provide us with
predictions that are precise enough for testing.

In philosophy, as well as other disciplines, we often have to extend our language
in order to express new thoughts and talk about that which we have not spoken of
before. This is taken for self-evident in most academic disciplines. No one would
expect a natural language to contain beforehand all the terms and distinctions needed
to express new developments in chemistry, mathematics, or economics. In philos-
ophy as well, new terms have been introduced along with new ideas and concepts.
“Supervene”, “induction”, “modality”, “consequentialism”, and ‘“‘prioritarianism”
are examples of this.

Unfortunately, though, some philosophers seem to have believed that philo-
sophical insights are in some way hidden in the language (mostly their own
mother tongue). They have attempted to do philosophy by looking for meanings
or connotations that only a person with an accurate feeling for the finest nuances of
the language can pick up. But very few insights of lasting or general philosophical
interest have been obtained in that way. The so-called ordinary language philosophy
was a cul-de-sac. In order to develop philosophical terminology, we need to
carefully construct and delimit new distinctions that have no obvious counterparts
in non-philosophical language, and assign terms to them.
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Since antiquity onwards, philosophy and poetry have been each other’s antithesis
in terms of their approaches to language. This may seem paradoxical since
philosophy and poetry are closely related in another important respect: They both
deal with “big issues” such as existence, meaning, knowability, and morality. But the
two pursuits deal with these issues in different ways — ways that are complementary
rather than competing. These differences have large effects on their respective
linguistic ideals. In poetry, elegance usually has precedence over precision. In
philosophy the reverse is usually the case, as keenly pointed out by C.S. Peirce
when advocating
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. a suitable technical nomenclature, whose every term has a single definite
meaning universally accepted among students of the subject, and whose
vocables have no such sweetness or charms as might tempt loose writers
to abuse them — which is a virtue of scientific nomenclature too little
appreciated.” [65, pp. 163—-164]”

In poetry, and in belles lettres in general, disambiguation is no goal. To the contrary,
ambiguity and imprecision are often necessary means to achieve the desired
literary effect [46]. Philosophy does the very contrary: It tries to achieve as much
precision as possible, even though its subject matter often makes this particularly
difficult [77].

1.3.2 What is Exactness?

Clarity is a wider concept that exactness. In order for a statement to be clear it is
not sufficient for it to be exact. It also has to be expressed in a way that makes it
reasonably easy to understand. Something that is clear should, in Descartes’ words,
be “open to the attending mind”3 ([15, p. 22], [20]). For our present purposes we
can focus on the somewhat narrower concept of exactness. (“Exact” can be taken to
be synonymous with “precise”.) This is a concept with two clearly distinguishable
meanings. The following examples serve to show the difference:

(a) The colour of that laser beam is green.

(b) The colour of that laser beam is yellowish green.

(c) The colour of that laser beam lies somewhere in the wavelength interval 495—
570 nanometres.

(d) She is in the centre of Paris.

(e) She is close to Notre Dame.

(f) She is in one of the first six arrondissements of Paris.

When going from (a) to (b) we restrict the scope of colours. Fewer colours answer
to the latter than the former description. If we instead go from (a) to (c), we do not
reduce the number of possible colours, or at least we are not sure to do so since
“green” corresponds approximately to the stated wavelength interval. However,

3“Claram voco illam, quae menti attenditi praesens et aperta est.”
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(c) is considerably less vague than (a) since we have in practice eliminated the
borderline cases that might be classified as either green or not green. Both the move
from (a) to (b) and that from (a) to (c) can be described as moves in the direction
of exactness, but these are different types of exactness. We can describe (b) as more
restricted than (a), and (c) as more definite than (a). Similarly, (e) is more restricted
than (d) and (f) more definite than (d). Restrictedness and definiteness are the two
major forms of exactness.

It turns out that philosophically speaking, not even exactness itself is a suffi-
ciently exact concept! [47, 77, 84] This can be seen clearly if we ask the simple
question which of (b) and (c) is the more exact statement. The best answer to that
question is to refuse answering it, and instead distinguish between the two notions
of exactness, restrictedness and definiteness.

In philosophy, both types of exactness are important, but lack of definiteness
tends to be more detrimental than lack of restrictedness. We can for instance use
a wide concept of “action” that includes omissions (refraining from acting) and
various non-intentional behaviour. Such a wide concept may be impractical for some
purposes, but if its boundaries are sharp enough it will not create communicative
hurdles that we cannot deal with. A concept of action that lacks in definiteness will
be much more problematic, in particular if the undetermined borderline cases are
among those that we need to attend to. Needless to say, the importation of such
indefiniteness into a formal model will make the latter just as loose and ill-defined
as its informal counterpart, and perhaps even more dangerously so if its vagueness
is obscured by the seemingly exact paraphernalia of a mathematical language.

1.3.3 Can Inexactness Be Described Exactly?

We have to be realistic. Using the tools of philosophical analysis, we can make
our concepts more specific and, in particular, more definite. But this is one of the
many human activities in which perfection is in practice unattainable. Even after
considerable efforts, many of our concepts will remain imprecise. Furthermore,
some of the concepts that we wish to include in our analysis may be “essentially
inexact”, i.e. inexactness is part of what they express, and therefore their meaning
cannot be mirrored by a definition from which the vagueness has been removed
[34]. The relational concept “near” may be a case in point. Any precise definition of
that concept, for instance as “within a distance smaller than 5.3 km” can be accused
of missing essential features of nearness, namely that it comes in degrees and that
it is judged differently in different contexts. (For instance, 5.3 km is near if you
are driving on the motorway, but not if you are travelling by foot on an arduous
mountain trail.) The same applies to concepts such as “bald” and “tall”.

In such cases, instead of a vagueness-resolving definition we may opt for a
vagueness-preserving one. The question then arises: Can we provide a formal
representation that preserves the vagueness? The most obvious way to do so would
be to construct a model in which the concept in question comes in degrees. We



1 Formalization 15

can for instance construct a model in which I am tall to the degree 0.45 and the late
basketball player Manute Bol (who was 46 cm taller than me) tall to the degree 0.99.
But if the notion of tallness is essentially imprecise, as we have supposed, then it
cannot be captured by such exact numbers. Perhaps we should make the numbers
less precise, and assign to me tallness to the degree 0.40-0.55? But then both the
lower and the upper limit appear to be artificially precise. Perhaps we should replace
each of them by something less precise, such as an interval? In this way we are
caught in an infinite regress of dissolving boundaries that seems very difficult to
stop. Arguments like these have led some philosophers to question whether vague
concepts can at all be adequately represented in a formal language [72, 78].

But there is a way out, for which we have already prepared the ground. A model
should not be expected to correspond exactly to that which it is a model of. All that
we can expect is that some features of the model should be structurally interrelated
in the same way as some important features of the original. The grass mats used
in a model railway may consist of plastic, but they represent lawns and meadows,
not plastic mats. Similarly, the exact numbers in our model of degrees of tallness do
not represent precise degrees. Instead, they represent the vagueness of our intuitive
concept of tallness. They do this remarkably better than a model with all-or-nothing
tallness, but they do not correspond perfectly to the intuitive concept. This should
not be a problem, once we have realized that our formal construction is a model
of our intuitive notion, not the “real truth” behind it. “[W]e can have mathematical
precision in the semantics without attributing it to the natural language being studied
by making use of the logic as modelling picture” [12, p. 246].*

1.4 From Natural Language to Logical Representation

Any representation of a concept in logic or some other formal language is the
outcome of a streamlining of the concept, a simplification for the sake of clarity,
in other words an idealization. In this section we are first going to have a close
look at philosophical idealization, and in particular the relationship between formal
and informal idealizations. After that we will turn to some of the major problems
that have to be solved in the process of formalization, or idealization into a formal
language as it can also be called. Throughout this section, the examples will concern
logical formalization although most of the principles discussed are also relevant for
formalization into other formal languages.

4Cf. Williamson’s [84, pp. 270-275] notion of a “variable margin model”.
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1.4.1 The Nature of Idealization

Formal models are ideals in the sense of “[s]Jomething existing only as a mental
conception”. (OED) To idealize in this sense means to perform a “deliberate
simplifying of something complicated (a situation, a concept, etc.) with a view to
achieving at least a partial understanding of that thing. It may involve a distortion of
the original or it can simply mean a leaving aside of some components in a complex
in order to focus the better on the remaining ones” [61, p. 248].

This sense of idealization must be distinguished from the more common sense
of expressing a (too) high opinion of something. Formal models may or may
not represent something as “perfect or supremely excellent in its kind”. (OED)
In (formal and informal) philosophy, both types of idealization are common. In
particular, the concepts that we use when philosophizing on human behaviour tend
to be both (1) idealizing—simplifying, i.e. they leave out many of the complexities of
real life, and (2) idealizing—perfecting, usually by representing patterns that satisfy
higher standards of rationality than what most humans live up to [37]. Since formal
philosophy has its starting-points in informal philosophy, it tends to inherit both
types of idealization.

The reason why we idealize—simplify is that philosophical subject-matter is
typically so complex that an attempt to cover all aspects will entangle the model to
the point of making it useless. A reasonably simple model has to leave out some
philosophically relevant features. For a simple example of this we can consider
philosophical usage of the term “better”. In ordinary language, “A is better than
B’ and “B is worse than A” are not always exchangeable. It would for instance be
strange to say: “Zubin Mehta and Daniel Nazareth are two excellent conductors.
Nazareth is worse than Mehta.” Given the first sentence, the second should be:
“Mehta is better than Nazareth.” Generally speaking, we only use “worse” when
emphasizing the badness of the lower-ranked alternative ([25, p. 13]; [80, p. 10]; [11,
p. 244]). There may also be other psychological or linguistic asymmetries between
betterness and worseness [79, p. 1060]. However, a long-standing philosophical
tradition persists in not making this distinction in regimented philosophical language
[7, p. 97]. The reason for this is that the distinction does not seem to have enough
philosophical significance to be worth the complications that it would give rise to.
The logic of preference adheres to this tradition from informal philosophy, and
A > B is taken to represent “B is worse than A” as well as “A is better than B”.

Idealization—simplifying — be it formal or informal — always involves devia-
tions from that which we model. Therefore, counter-arguments can always be made
against an idealized account of philosophical subject matter. It is for instance easy to
find examples in which betterness and worseness are not interdefinable in the way
described above. Such deviations will always have to be judged in relation to the
purpose of the model and how it is used. Does the deviation show that an important
aspect of the subject matter has been “lost in idealization”? If it does, then we have
to consider how much we would lose in simplicity by including it. Sometimes, the
best strategy is to replace the idealization by a richer account. On other occasions,
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it may be better to continue its use while keeping in mind how it deviates from
that which it is intended to capture. In this respect idealizations are like maps: They
always require a compromise between overview and detail, and it is often advisable
to use different maps for different purposes.

The reason why we idealize—perfect is that as philosophers we are at least
as interested in what should be as in what is. Throughout the long history of
our discipline, philosophers have tried to answer questions about how to think
and how to behave. Requirements of rationality are usually important parts of
the answers to such questions, and therefore idealization—perfection is commonly
concerned with the ideal of rationality. Philosophical investigations of inferences,
beliefs, decisions, and moral behaviour usually expound on the behaviour of rational
thinkers, believers, decision makers and moral agents. We idealize—perfect in order
to get a grip on what rationality demands of us, and sometimes also in order to gain
insights on other normative demands such as those of morality.

It is important to keep track of one’s idealizations and the reasons for them.
Unfortunately, that is often not done. A particularly problematic confusion is that
between the two forms of idealization. As one example of this, most accounts
of human preferences depict them as transitive, i.e. someone who prefers a to b
and b to c is assumed to also prefer a to c. That is not always the case for real-
life preferences.” The reason why transitivity is assumed may be that the concept
has been idealized—simplified, idealized—perfected, or both. In a discussion of
divergences between the model and actual human behaviour it is important to
know why the model assumes transitivity. Our analysis of such divergences may
differ depending on whether transitivity was assumed for perfecting or simplifying
reasons.

1.4.2 An Ildealization in Two Steps

Formalization in philosophy typically results from an idealization in two steps,
first from common language to a regimented philosophical language, and then
from regimented into mathematical or logical language. For example, consider
the derivation of the permission predicate (P) of deontic logic from the non-
philosophical concept of a permission. We can use the following example from
non-regimented language:

(1) Li-Hua is permitted to drive the forklift.

Here, the permission refers to an action. In regimented philosophical language,
it is common to represent each action by a sentence denoting the state of affairs
consisting in that action taking place. Hence:

3See Chap. 29.
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(2) Itis permittedpp; that Li-Hua drives the forklift.

where “permittedpni;” is the philosophical idealization of the “permitted” of ordinary
language. “Permittedph;)” differs from “permitted” in referring exclusively to what
conscious agents do. It also differs in other ways. In non-philosophical usage,
“when saying that an action is permitted we mean that one is at liberty to perform
it, that one may either perform the action or refrain from performing it”” In
regimented philosophical language, however, “being permitted to perform an action
is compatible with having to perform it” [67, p. 161].

The difference is perhaps best illustrated by the fact that in ordinary language we
do not call something “permitted” that is in fact obligatory. Suppose that someone
pays you in advance for cleaning their house. It would seem strange to say that you
are then “permitted” to clean the house, since that would give the impression that
you have a choice to do otherwise. However, according to philosophical usage of
the term, it would be correct to say that you are permitted to do the cleaning. More
generally, in philosophical language a permission is assumed to hold whenever the
corresponding obligation holds ([67, p. 161]; [1, p. 55]; [10, p. 76]).

The second step of idealization takes us from “permittedphi” to the deontic
predicate P. This means that we go from (2) to

(3) Pa,

where P is a predicate expressing permission and a the sentence (or the proposition
represented by the sentence) “Li-Hua drives the forklift”. There are major differ-
ences in meaning between “permitted” and P. It should be noted, though, that in
terms of most of the more philosophically significant differences, “permittedpnii”
is closer to P than to “permitted”. This applies for instance to the property of
“permittedpn;)” that we focused on above, namely that it holds for whatever is
obligatory. This corresponds rather exactly the property of P that for all actions
a, Oa implies Pa, where Oa is the corresponding predicate of obligation.

Intuitively speaking, most of the idealization in this example took place in the
first step (from ordinary language to regimented philosophical language) rather than
in the second (from regimented to formal language). And this is not untypical.
Informal idealizations can sometimes be quite far-reaching. For instance, the
concept of a person used in some philosophical discussions on personal identity
is remarkably remote from the concept of a person in everyday language.

As all this should make clear, the difference between logical treatments of
philosophical subject matter and treatments of the same matter in regimented natural
language is not their distance to everyday concepts. The major differences are
instead the mathematical skills that the formal models require and the characteristic
types of questions that can be asked and answered with their help. Some philoso-
phers who complain about the lacking realism of formal representations may to
some extent confuse unfamiliarity in appearance with dissimilarity in meaning.
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1.4.3 Selecting Concepts for Formal Representation

Logic is concerned with reasoning, but not all types of reasoning are included in
the subject matter of logic. When discussing the pros and cons of different cars, we
use arguments couched in terms such as “safe”, “comfortable”, “easy to drive”, etc.
These terms and their interrelations are not part of logic. Similarly, the terms used
in wine tasting, such as “earthy” and “fruity” do not seem to have been subject to
logical (or other formal) analysis. The same applies, of course, to the vast majority
of terms that we use in different types of arguments. Logic is only concerned with
a small fraction of the concepts and thought patterns employed in argumentation
and reasoning. Whereas virtually every concept with some role in philosophy has
been subject to some degree of informal idealization, only few of them have been
formalized. Those that have been formalized are characterized by having wide usage
and a role in inferences that is largely independent of context.

The core concepts of logic are the truth-functional concepts “and”, “or”, “not”,
“if. .. then”, “if and only if”, “some”, and “all”. These are concepts that we assume,
for good reason, to have the same role in inferences in widely different contexts.
They are often called the logical constants. (However, the definition of a logical
constant is controversial [56].) But very few of the issues about valid argumentation
that arise in philosophy (or outside of philosophy) concern the properties of words
like these. It is more common for such issues to be concerned with the rules
governing our usage of terms such as “know”, “believe”, “try”, “do”, “good”,
“better”, “ought”, “forbidden”, and “permitted”. These are also concepts with
interesting structural interrelations that are fairly constant across contexts, and they
have all been subject to logical formalization.

The choice of concepts for formalization should ultimately depend on whether
the resulting models will be useful for philosophical and other worthwhile purposes.
Since the shaping of new formal models is a creative rather than a rule-bound
process, the following five critera for what to formalize should be read as tentative
suggestions and nothing more.

First, the promising candidates usually have a meaning that is reasonably
constant across contexts. This applies for instance to the words “good” and “bad”.
The meaning of these terms is presumably the same if we isolate them from a
discussion on good and bad teachers as if we isolate them from a discussion on good
and bad refrigerators [29]. This makes “good” and “bad” more promising candidates
than, say, “earthy” or “sweet”.

Secondly, the promising candidates usually provide a structure into which other,
more context-specific, concepts can be inserted. This applies pre-eminently to the
truth-functional concepts, but also to many others, such as our examples “good”
and “bad”. We can for, instance, talk about a collection containing both good and
bad books, or an organ having both good and bad registers. Other examples are the
action-theoretical concepts “do”, “try”, “refrain from”, and “see to it that”, to which
we can affix more context-specific expressions denoting various types of actions.
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Thirdly, it is usually a positive sign if we can combine the concept with some
kind of logical or other mathematical operations. The most common examples are
truth-functional and set-theoretical operations. As an example of the former, the
concept “see to it that” can be combined with sentences describing states of affairs,
and such sentences can be negated, combined into conjunctions and disjunctions,
etc. As an example of the latter, in discussions about collective action we can talk
about different groups of people, and one such group may for instance be a subset
of another.

Fourthly, promising candidates tend to come with interesting issues about
potential structural properties that seem to be generalizable across contexts. We
can for instance ask whether something can be at the same time both good and bad.
We can also ask whether someone who sees to it that a thereby also sees to that
a-or-b.

Fifthly and finally, it is also a good sign if connections with previous formaliza-
tions are in sight. For instance, a logic of “good” and “bad” has obvious connections
with the logic of “better”. (If a is good and b bad, can we conclude that a is better
than b?) Similarly, a logic of collective action can be connected with previously
developed logics of individual action.

1.4.4 Structuralizing

After we have chosen a concept for formalization, we have to idealize it to make it
suitable for formal treatment. As noted above, much of that idealization has often
already been performed in informal philosophy. But for the purpose of formalization
we may need to streamline the structural properties of the concept somewhat further.
We can call this form of idealization structuralizing. In practice it often consists of
the unification or splitting of concepts and the search for definability relations.

The unification of concepts is usually advisable when we are dealing with
conceptually closely related terms in the informal language that have important
structural properties in common. Such terms often differ in fine details that we can-
not capture in the formal language without losing too much in simplicity. We have
already seen one example that answers to this description, namely the unification of
betterness and (converse) worseness. Another example is the collection of words
used in ordinary language to denote obligatoriness: “must”, “should”, “ought”,
“have to”, etc. These words are not exact synonyms. Typically, “obligations”
originate from promises or agreements, whereas “duties” are associated with roles
and offices in organizations and institutions [6, 18, 62]. Already in informal moral
philosophy it is nevertheless common to regard “Yasmin ought to ...”, “It is a
duty for Yasmin to ...”, and “Yasmin has an obligation to ...” as synonymous.
The reason for this is that the differences in meaning between these expressions
have little or no relevance in most philosophical discussions. In deontic logic this
simplification is even more useful. Therefore deontic logic standardly contains
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only a single prescriptive predicate (denoted O) rather than several predicates
corresponding to different prescriptive natural-language terms. The prescriptive
predicate of the formal language can be seen as representing the common core
of the various prescriptive expressions in natural language. Arguably, this core is
more streamlined and more suitable for formal treatment than each of the natural-
language predicates that were the starting-points of the formalization.

The opposite operation of splitting concepts is useful, sometimes necessary,
when the concept we wish to formalize has meanings that differ in their structural
properties. The splitting of concepts is, of course, quite common also in informal
philosophy, but in preparing for formalization we have to pay particular attention to
structural properties when deciding whether or not to split a concept.

Again, we can use prescriptive terms from moral philosophy as examples.
Consider the following two sentences:

(a) “You must help her.”
(b) “You must be wrong.”

(a) expresses an obligation. (b) does not. Instead it expresses necessity. This is
reason enough for the informal philosopher to distinguish between the two meanings
of the word. For the formal philosopher there is an additional reason, namely that
the two senses have different structural (logical) properties. To see this, consider the
following property:

If Must(X) then X.

This property holds for the “must” of our second example. If I am right in saying
that you must be wrong, then surely you are wrong. We can easily verify that the
property also holds in other cases where “must” is used in the same sense. But it
does not hold in the first example. Even if I am right in saying that you must help
the person referred to, it certainly does not follow that you actually do so. Again,
we can verify that the same applies to other sentences where “must” has the same
meaning. Such a consistent difference in terms of (logical) structure is a sure sign
that for the purposes of formalization, “must” has to be split into two concepts. It is
only obligation—must that can be unified with the other prescriptive predicates into
the deontic operator O. Necessity—must can instead be unified with “necessary”,
“unavoidable” and the like.
Next, consider the following two uses of the word “ought”:

(c) “You ought to help your destitute brother.”
(d) “There ought to be no suffering in the world.”

(c) expresses a prescription, something that someone should do. Alternatively, we
could express the same statement with some other such term, saying for instance
“You have a duty to help your destitute brother”. In this respect, (d) is quite different.
It expresses a wish about the state of the world, or an evaluation of such a state.
It does not directly prescribe or recommend any action. This is a well-known
distinction. The “ought” of (c) is called ought-to-do (Tunsollen) and that of (d)
ought-to-be (Seinsollen or ideal ought) ([68, p. 195]; [13]).



22 S. O. Hansson

This double usage is specific for “ought”, and does not apply to prescriptive
predicates in general. It would not make much sense to say that there is a duty for the
world not to contain any suffering. Since deontic logic is concerned with prescrip-
tions in general, not only those expressed by the English word “ought”, ought-to-be
and ought-to-do have to be split. Only the latter should be unified with the other
prescriptive predicates into the deontic O operator. Just like necessity —must, ought-
to-be should be treated as a separate concept, not to be merged or confused with the
prescriptive ones.

Unfortunately, this has not always been realized. (Perhaps one of the reasons
for this is that the O operator is usually read “ought”, and we are not sufficiently
often reminded that in spite of this, it represents the common core of several
natural language expressions.) A considerable amount of confusion has been
created by attempts to unify ought-to-do with ought-to-be. This is usually done
by reconstructing ought-to-do as ought-to-be referring to actions, in the way shown
in the following two examples:

Person i ought to do x. = It ought to be the case that person i does x.
Person i ought to do x. = The world ought to be such that person i does x.

But this does not work. “You ought to sing in tune” means something quite different
from “The world ought to be such that you sing in tune.” And more generally
speaking, that which we ought to do does not coincide with that which the world
ought to be such that we do. The world ought to be free of racism, and in such a
world no one would help victims of racism (since there would be none). Recently, a
newly wed woman was killed by a robber. It certainly ought not to be the case that
her husband went to her funeral less than a month after they married. But of course
he ought to go to the funeral. The distinction between ought-to-do and ought-to-be
is fundamental, and the two notions should be kept apart in both formal or informal
moral discourse [35].

If one concept is definable in terms of another, then we can focus on the latter,
and treat the defined concept as a mere abbreviation in the formal language. It is
not uncommon for philosophically important concepts to be definable in terms of
each other. One example is the interdefinability among the three modal concepts of
necessity, possibility and impossibility. To be impossible means not to be possible,
and something is necessary if and only if it is not possible that it is not the case.
Letting [ stand for necessity, ¢ for possibility, and ¢ for impossibility, we can
express these relationships as follows:

Oa< $—a
Oa<—=0—a

Pa<+—-0a
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It follows, of course, that in a modal logic we can take any of these three concepts
as primitive (undefined), and define the others in terms of it. It is unimportant which
of them we select to be the primitive notion.

In other cases, definability comes only in one direction. We can for instance
define “best” in terms of “better” in the following way:

x is (uniquely) best if and only if for all y other than x: x is better than y.

However, there is no corresponding way to define “better” directly in terms of
“best”.% Therefore, “best” is in practice always treated as a defined concept in formal
languages.

In general, logical languages with fewer primitive (undefined) concepts tend
to be more manageable. The aim to have as few primitives as possible is called
definitional economy. In order to achieve it we have to investigate carefully if some
of the concepts on our agenda for formalization can be defined in terms of some of
the others.

1.4.5 Introducing Formulas

As we have already seen, the concepts that are subject to formalization tend to owe
much of their usefulness to the ways in which they can be connected to various more
specific expressions. The common truth-functional connectives can be combined
with any sentences carrying truth-values. To the deontic operators P and O we
attach action-describing sentences. To a “stit” (see-to-it-that) operator we connect
a name representing a person and a sentence describing a potential outcome of an
action by that person, for instance:

stitia

where i is a person and a the outcome of that person’s action. These attachments
are called “variables”.

Variables are essential components of formal languages; without them non-trivial
formalization would not be possible. Historically, they are an important invention. In
medieval times, names (such as “Socrates’) were used to denote arbitrary persons.
That practice is still frequent in philosophical texts, but it is also common to use
single letters to denote persons. (“If A borrows money from B and then gives it
to C,....”) Informal philosophical discourse also contains symbols representing
objects that do not have proper names in other contexts. (“If the state of affairs a
obtains at time ¢,....”) In logic, we do more of the same. The following series of
synonymous statements illustrates the different degrees of compactness of notation:

SWe can do so if we manipulate the sets of alternatives, see Chap. 27.
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Ordinary language:
The first cause took place either before or at the same time as the second
cause, and the second cause took place before the effect.

Informal philosophical language:
c1 preceded or was simultaneous with c;, and ¢; preceded e.

Logical language:
ci1<cp & <e.

The following series of restatements of a definition illustrates the pros and cons of
the more compact notation that formalization makes available.

Ordinary language:
A cousin is a person with whom one has at least one grandparent in common
but no parent in common.

Semi-formal language 1:

Person i is a cousin of person j if and only if (1) there is a person who is a
grandparent of both i and j, but (2) there is no person who is a parent of both
iand j.

Semi-formal language 2:

Person i is a cousin of person j if and only if (1) there is a person x who is
a grandparent of both i and j, but (2) there is no person v who is a parent of
both i and j.

Semi-formal language 3:

Person i is a cousin of person j if and only if (1) there are persons x, y, and z
such that x is a parent of y who is a parent of i and x is also a parent of z who
is a parent of j, but (2) there is no person v who is a parent of both i and j.

Logical language:
iCj if and only if :
Fx)@y)32)(xPyPi & xPzPj) & —=(Fv)(vPi & vPj)

The first of these statements is clearly the most easily readable one, and the last is
the most precise and compact one. For many purposes, some compromise between
readability and precision may be desirable; then one of the intermediate, semi-
formal options may be optimal. The cases when logical notation is most useful are
those in which we want to prove some property of the concepts we are working
with. Box 1.1 on page 25 shows how the compactness of formal notation makes a
proof easier to follow.
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Box 1.1 Two versions of the same argument

Consider the two relations on points in time: “precedes or is equal to” (<) and
“precedes” (<). We are going to show that if the former of these is transitive,
then so is the latter.

In natural language

Consider three points in time such that the first precedes the second and the
second precedes the third. Then clearly the first precedes or is equal to the
second, and the second precedes or is equal to the third. Since the relation
“precedes or is equal to” is transitive, we can conclude that the first precedes
or is equal to the third. Now suppose that the first does not precede the third.
Since the first precedes or is equal to third, we can conclude that the third
is equal to the first. Thus the third precedes or is equal to the second. But
this is impossible since the second precedes the third. We have derived a
contradiction from the assumption that the first does not precede the third.
Thus the first precedes the third. This shows that the relation “precedes” is
transitive.

In formal language

Let #1, 1, and #3 be three points in time such that #{ < #; and #, < #3. Then
11 < tp and fp < 13, and transitivity yields #; < 3. Now suppose that 7| < 73 is
not the case. It then follows from #; < t3 that #; = #3. We can then substitute
13 for ¢ in | < 1, and obtain #3 < ;. But that is impossible since #, < 3. It
follows from this contradiction that #; < #3. [36]

1.4.6 Determining the Number of Variables

In ordinary language, one and the same concept can be associated with different
numbers of variables:

Cynthia is a mother.
Cynthia is Peter’s mother.

It would be tempting to follow the same pattern in formal language, and (with the
predicate M denoting motherhood) translate the sentences as follows:

Mc
Mcp

This would require that we allow one and the same predicate to appear with different
numbers of variables. However, the introduction of such flexible predicates would
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Table 1.1 Four usages of the term “free” that differ with respect to the variables

Example Schema

She is free now. i is free.

She is free from all those debts now. i is free from the obstacle x.
Finally she was free to take up her i is free to perform the action y.

studies again.
She is now free from any legal i is free from the obstacle x to perform the action y.
obstacles to leave the country.

leave the exact relationship between formulas such as Mc¢ and Mcp unclear. There
is a much better way to deal with this, namely to introduce M as a two-place
predicate, which means that an expression containing M can only be well-defined if
each instance of M has two variables. The single-variable expression “Cynthia is a
mother” is synonymous with “Cynthia is someone’s mother”, which we can express
with the existential quantifier 3 as follows:

(Ix)Mcx

When introducing a predicate or a relation into the formal language, it is important
to choose the right number and type(s) of variables. It is often preferable to
include representations of all the variables that can be attached to the corresponding
informal expressions, and then define uses with a reduced number of variables in
the way we just did for motherhood.

The term “free” as used in political philosophy is an interesting example of
this. If we classify uses of “free” in informal language according to the variables,
then we will find at least four variants. Table 1.1 gives examples of these, and it
also provides general schemata for each of the variants. These variants represent
different notions of freedom, notions that are controversial in political philosophy.
Some political thinkers have claimed that all true freedoms can be fully expressed
by statements of the second type, “freedom from” (negative freedom). Others have
put much emphasis on freedoms representable by the third type of expressions,
“freedom to” (positive freedom). They see freedom largely as ability to make and
implement one’s own choices [4]. The fourth variant is less common, but it is quite
useful since all the others can be defined in terms of it [55]. In formal analysis it
would take the form of a three-place predicate

F@, x,y)

where i is an individual, x an obstacle, and y some action that the individual can
potentially perform. In this case it is much more difficult than for motherhood to
determine how the three-place predicate should be used to define the two-place and
one-place ones. As a first attempt we could define “freedom to” as (Vx) F (i, x, y),
i.e. one is free to y if and only if one is free from all obstacles that might prevent the
attainment of y. However, that may seem somewhat extreme. Arguably I am free
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Table 1.2 Two usages of the term “duty” that differ in terms of the variables

Example Schema

It is his duty to answer the phone on Person i has a duty to do x.
all times of the day.

The lawyer has a duty towards the Person i has a duty towards person j to do x.
client to defend her interests.

to read the morning newspaper even if a snowdrift makes it impossible for me to
get hold of it. A distinction between different classes of obstacles may have to be
introduced. Similar problems arise for the reduction of the three-place predicate to
the two-place “freedom from”. However, these difficulties should not be counted
against the three-place predicate. To the contrary, these are real philosophical
difficulties in the analysis of political freedom. The three-place predicate is a tool
to present these difficulties more clearly, thereby making them more amenable to
precise analysis.

But this is a controversial area. Traditionally, the negative notion of freedom
is associated with right-leaning and the positive notion with left-oriented political
ideas. Not surprisingly, the three-place predicate has been accused of both a left-
wing and a right-wing bias ([22]; [64, p. 253]). Nevertheless, it has the advantage
of allowing us to represent “freedom from” and “freedom to” in one and the same
format, rather than just treating them as mutually incompatible notions.

In doubtful cases it is usually better to include than to exclude a variable when
introducing a formal predicate. But of course, there are cases when one or other of
the variables has such a small role that it can for most purposes be excluded. For a
possible example, let us consider the notion of a duty, as shown in the examples and
schemas of Table 1.2. Common usage of the term “duty” is dominated by the first
variant mentioned in the table, two-place duty. The second variant, the three-place
notion of a duty, is more uncommon. The two-place notion has the advantage that it
can be unified with other prescriptive notions in the way discussed above. (Some of
these, such as “morally required”, do not have a three-place variant.) It is indeed
common practice in philosophy to treat duty as a two-place concept. There are
good reasons for this practice, but it has a price: We lose the ability to express that
someone owes something to a specific person. Such relationships will then have to
be treated in separate investigations, using a different formal representation [30, 58].
As noted above, there is nothing wrong with using different formal representations
of a concept for different purposes.

But something more can be learned from this example. Even the two-place
format “Person i has a duty to do x” does not correspond to the standard deontic
operator for obligations, namely Ox which only has place for one variable. How
is that possible? Obligations are normally tied to persons, and surely it makes a
difference who is subject to an obligation? The explanation is that x in Ox is
normally taken to refer to an action by a specified agent. If x represents the action
consisting in me paying my rent, then we can take it for granted that I am the duty-
holder in Ox. However, this is a rather precarious principle since information that is
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not stated explicitly runs a risk of being forgotten or misunderstood. The suppression
of the person variable can make us forget about its existence, so that we treat moral
prescriptions as impersonal although they are not. This may be one of the sources
of the confusion about ought-to-be that was referred to above.

1.4.7 Specifying the Domains of the Variables

For each variable-place attached to a predicate we need a well-defined domain
(source), i.e. a set whose elements represent the objects that variables in that place
can stand for. In some cases the same domain can be used for more than one
variable-place. This applies to the two-place predicate of motherhood. Here we can
use the same domain, namely the set of all human beings, for both variable-places.
For the three-place predicate of freedom the situation is quite different. We need
three sets of variables, representing persons, obstacles, and actions.

In a formal treatment it is important to assign well-defined domains to all
variable-places, and to be careful not to transgress them. There are two ways to
deal with the complication that different variable-places refer to different groups of
objects. To exemplify this, consider a simple logic of parenthood relationships with
the predicates F' and M, such that Fxy means that x is father of y and Mxy that x
is mother of y. We can assume that fathers are men, mothers are women, and their
children can be either. One way to express this is to use two sets of variables, W
representing women and M representing men, and then introduce the distinction in
the requirements for formulas to be well-formed, as follows:

Mxy is a well-formed formula if and only if x € Wand y e MU W.
Fxy is a well-formed formula if and only if x € Mland y € MU W.

The other alternative is to have only one domain, namely the domain H consisting of
human beings, and include the restrictions in the logic rather than in the formation
rules for the language. This can be done with one-place predicates denoting “is
male” and “is female”:

Each of Mxy and Fxy is a well-formed formula if and only if x € H and y € H.
From Mxy it follows logically that Lx, where L denotes “is female”.
From Fxy it follows logically that Gx, where G denotes “is male”.

The two approaches are equivalent, and the choice between them is a matter of
taste and convenience. The latter approach places the restrictions in the logic
rather than in the language. This can be seen as an advantage since it makes
the restrictions somewhat more accessible to modifications and adjustments. For
instance, if (Vx)(Lx Vv Gx) holds in our original statement of the logic, then we can
easily remove this principle in order to include people who are neither female or
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male. It may be an advantage to be able to do this without changing the language,
which is considered to be a more drastic change of the framework.

1.5 Building a Logical Language

The distinguishing feature of logical language as compared to other formal lan-
guages is its focus on the representation of propositions (statements), by which
we usually mean something that can be either true or false. In natural language
we express propositions with sentences. One and the same proposition can be
expressed by different sentences. Thus, “Dana is married to Lou” expresses the
same proposition as “Lou is married to Dana” (and of course the same proposition
can also be expressed by sentences in other natural languages).

Other formal languages than logic also contain sentences expressing proposi-
tions. In the appropriate contexts, x> = y* + z> represents a proposition about the
relationships between the lengths of the hypotenuse and the legs of a right-angled
triangle, E = mc? one about the mass—energy equivalence in relativity theory, etc.
However, logic is distinguished by the generality of its treatment of sentences and
by its suitability for formal work related to the conclusions that can be drawn from
sets of sentences.

Sometimes, logical expressions are used to represent sentences that are not to
be classified as true or false, but rather according to some other dichotomy, such
as that between morally approved and morally unapproved actions or states of
affairs. There are also logical systems, called many-valued logics, in which the
traditional true/false dichotomy is replaced by a classification containing more than
two alternatives, such as true/false/unknown. These distinctions have little impact
on the construction of logical languages, and they will therefore not be considered
in this section.

The simplest tools for building a logical language are those that treat sentences
as wholes and do not contain separate representations of their parts. These construc-
tions will be the topic of Sect. 1.5.1. In Sect. 1.5.2 we turn to the construction of
sentences from their parts, and in Sect. 1.5.3 to formal elements that refer to the
parts of the sentences thus formed. Section 1.5.4 shows how the formation rules for
a formal language are usually expressed.

1.5.1 From Atomic to Composite Sentences

Let us start with a set of (proposition-representing) sentences. We can call them
a, b, ....Tobegin with, we will treat them as “atoms” (‘“atomic sentences”), i.e. we
disregard their internal structure. This is of course a choice of a level of abstraction.
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Operators
eV -a
e
(a&c)— (dve)
a
(cd)oe
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P a&(c—e)
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B (a=>b)v(d—e)
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(a=(b&c)) < (de)
Atomic The language
sentences

Fig. 1.1 A language formation diagram for sentential (propositional) logic

It provides us with a sort of bird’s-eye view that has turned out to be quite useful for
the study of phenomena such as conclusions and assumptions.

In order to get things going we need means to combine atomic sentences to form
composite, or as we usually say, molecular sentences. The construction elements
used for this purpose are called sentential operators, since they are operators that
take us from a sentence (or several sentences) to a new sentence. The simplest
sentential operator is negation, often denoted —. It takes us from a sentence a to its
negation —a. If a represents the same proposition as “I am tired”, then —a represents
the same proposition as “I am not tired”. Other such operators are conjunction
(“and”, &), disjunction (“or”, V), material implication (“if ... then”, — or D), and
equivalence (“if and only if”, <> or =). (All these are truth-functional operators, but
that is not a property of the language but one of the logic.)

Figure 1.1 shows how these operators can be used to form the full language of
propositional logic. Two important features should be noted in that diagram. First,
the atomic sentences are themselves directly introduced into the language, as shown
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Operators
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e
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Fig. 1.2 A language formation diagram for modal logic. [0 stands for necessity and ¢ for
possibility

with the horizontal arrow. Secondly, the operators —, & etc. can be applied not
only to atomic but also to molecular formulas. This means that unlimitedly complex
formulas can be formed, such as —a Vv —=(b V ¢), etc.

Other operators can be added to the language in the same way. In a discussion
about necessity and possibility we will need the unary (single input) operators [
(“it is necessary that ...”) and ¢ (“it is possible that . ..”), and often also the binary
(two input) operator of strict implication = (“if ... then necessarily ...”). These are
inserted into the logical language in Fig. 1.2. An important feature of this language
is that [J and ¢ can take as inputs sentences in which they are themselves already
present. We can therefore form sentences such as (0Jb and (@ — $(a Vv b)). From
an interpretational point of view this is not quite uncontroversial. It can for instance
be questioned whether a sentence such as [JLIb (“it is necessary that it is necessary
that b”) is at all meaningful. Is necessity iterable?
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factual sentences factual sentences deontic sentences

Fig. 1.3 A language formation diagram for a deontic logic that does not allow the iteration of
deontic operators. O stands for obligation, P for permission, and F for prohibition

One operator whose repeated use in a formula has often been questioned is the
deontic operator O that stands for moral requirement. From a factual statement
a representing some human action we can form the sentence Oa saying that a
is morally required. But how meaningful is the sentence O Oa? Does it say that
it is morally required that it is morally required that a? Then, exactly what does
that mean? There are reasonable interpretations of O that make this sentence
meaningless. In order to block the formation of such sentences we need to construct
a somewhat more complex language formation diagram, as shown in Fig.1.3.
Here we are not allowed to affix O to sentences already containing O. Therefore
neither O Oa nor O(Oa vV O-—a) are well-formed formulas, which means that
although they consist of parts of the language, they are not themselves parts of the
language. However, we can apply truth-functional operators to sentences containing
0, forming sentences such as =0 (a — b) and Oa Vv Ob.

Figure 1.4 shows an alternative language formation diagram for a deontic
language that does not allow “repeated” application of the deontic operators. The
difference between Figs. 1.3 and 1.4 is that in the latter, atomic and molecular factual
statements such as a, a V b etc. are directly included in the deontic language. Here
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Fig. 1.4 Another language formation diagram for a deontic logic that does not allow the iteration
of deontic operators. It differs from the diagram of Fig. 1.3 in allowing for the direct introduction
of factual sentences into the language

it is also possible to form sentences such as Op & —p and other sentences with
“mixed” deontic and factual contents.

1.5.2 Decomposing the Atoms

Factual sentences in many natural languages tend to have a standard grammatical
form containing two main parts, a subject and a predicate. The subject represents
that which we say something about, and the predicate that which we say about it:

Socrates wrote no book. Nevertheless, his thoughts changed the world.
subject  predicate connective subject predicate

sentence 1 sentence 2

As we have already seen, formal logic has taken over this structure from natural
language. Predicate language that is based on the subject/predicate distinction is by
far the most common formal representation used to decompose the logical atoms
and scrutinize their components. When we translate the sentence “The author is
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a bore” into predicate logic, we identify the subject (“The author”) and assign a
symbol such as i to it. Similarly, we identify the predicate (“is a bore”) and assign
to it a symbol such as B. The sentence is then denoted Bi.

Many natural language predicates refer to some specific individual or other object
of thought. In grammars of natural language there are two competing ways to
analyze such sentences:

First analysis: Second analysis:
Angelina is in love with Barbara. Angelina is in love with Barbara.
subject predicate subject predicate object
sentence sentence

For the purposes of logic the second analysis is preferred, since it allows for more
detailed investigations. It makes use of the predicate “is in love with” which takes
two variables, one of which corresponds to the subject and the other to the object
of the natural language sentence. The sentence can then be rendered by the formula
Lab, where L represents “is in love with”.

As mentioned in Sect. 1.4.6, each predicate always takes the same number of
variables (often called arguments). The number of variables is often called the arity
of the predicate. A predicate is called unary (monadic, 1-ary, one-place) if it takes
one variable, binary (dyadic, 2-ary, two-place) if it takes two, ternary (3-ary, three-
place) if it takes three, and for any natural number 7 it is called n-ary (n-place) if it
takes n variables. A O-ary (nullary, zero-place) predicate, i.e. a predicate without
variables, functions in the same way as an atomic sentence. That a predicate is
nullary does not mean that there is nothing that it says something about. Instead, this
means that we have chosen not to decompose it and introduce variables representing
one or more of its components.

When formalizing natural language, it is a good general rule to use predicates
with the lowest arity that is compatible with an adequate representation of the
subject matter. In particular, if predicates with high arity can be replaced by truth-
functional combinations of predicates with lower arity, then that should be done.
“The author and the bookseller are bores” should be translated as Ba & Bb, not
as Bab with a dyadic predicate B. Similarly, “Ivan and Joanna are Kelly’s parents”
should be translated as Pik & Pjk, not as Pijk.

Two warnings are warranted. First, use nothing else than the existential quantifier
(3) to represent “exists”. Do not introduce a predicate to represent “exists”, since
doing so gives rise to complications that you would like to avoid [8]. Secondly, use
nothing else than the equality sign (=) to represent “is equal to” or “is the same as”
as a binary predicate. It is important to follow the standard rules for predicate logic
with identity, which can be found in most textbooks on elementary logic.

Figure 1.5 shows a formation diagram for a simple predicate language with
monadic and dyadic predicates. Note that the components of sentences (variables
and non-nullary predicates) are not themselves included in the language, contrary to
the atomic sentences in Figs. 1.1, 1.2, and 1.4.
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Fig. 1.5 A language formation diagram for standard predicate logic without quantifiers

1.5.3 Quantifiers

In order to make efficient use of the decomposition of atomic sentences into
predicates and variables, we need to employ Frege’s great invention, quantifiers. The
quantifiers V (“all”) and 3 (“some”) are a type of sentential operators. Just like the
monadic operators referred to in Sect. 1.5.1, they take us from a sentence to another
sentence, hence if Fxy denotes “x has y as a friend” and i denotes the author, then
(Ay) Fiy says that the author has some friend. Similarly, the sentence

(VX)(Vy)(Fxy — Fyx)
says that friendship is always mutual, whereas the sentence
(@) (3y)(Lxy & —Lyx)

where L denotes “loves” expresses the most unfortunate fact that the same does not
apply to love.
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The translation of sentences from natural language into predicate logic is not
always straightforward, and sometimes it requires considerable changes in structure.
Often, sentences with one and the same structure in natural language require quite
different translations:

The dog is a Mastiff.
The giraffe is a mammal.

The first sentence is preferably translated into
Md

where M is the predicate “is a Mastiff” and d the particular dog referred to. The
second sentence is best translated as

(Vx)(Gx — Mx)

where G is the predicate “is a giraffe” and M the predicate “is a mammal”.

In a language with quantifiers we need to distinguish between constants and
variables. A constant, such as d in our formula Md, refers invariably to a particular
object, and it is not affected by quantifiers. It can be compared to a unique name
such as “Louis XIV” in natural language. A variable, such as x in our formula
(Vx)(Gx — Mx), has no meaning in itself but acquires meaning in the context, just
like pronouns such as “that”, “this”, and “it” in natural language.

The use of variables makes predicate logic well suited to keep track of complex
relationships. The resources of natural language are much less suited for that
purpose. We can distinguish between “this” and “that”, but we do not use them
repeatedly with persistent reference. We can introduce phrases like “the first person”
and “the second person”, but talk using such expressions is usually difficult to
follow. (See Box 1.1 on p. 25.)

The language formation diagram in Fig. 1.6 (an extension of Fig.1.5) sum-
marizes the construction of predicate logic with quantifiers. Note that in this
language, quantifiers cannot be applied to predicates. For instance, a formula such
as (3P)(Vx)Px is not well-formed. Due to this limitation, the logic based on
this language is called first-order predicate logic. In second-order predicate logic,
(3P)(Vx) Px is a well-formed formula. (It can be interpreted as “There is a property
that everything has.”)

Ordinary language contains many expressions that have similar functions in
sentences as “all” and “some”:

Most Icelanders understand Norwegian.

Very few Germans understand Chinese.

At most three Government members have experience of blue-collar work.
There are infinitely many prime numbers.

The committee has an an odd number of members.
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Fig. 1.6 A language formation diagram for standard predicate logic with quantifiers

The formal representation of such generalized quantifiers is of considerable philo-
sophical interest. The same applies to second- and higher-order logics, in which the
predicates themselves are treated as variables of quantifiers.

1.5.4 Specifying the Language

Formal languages are usually defined recursively, i.e. the definition identifies
their smallest elements and then proceeds to specify how these elements can
gradually be combined into larger and larger linguistic expressions. Our language
formation diagrams show how this recursive process proceeds with repeatable steps
of concatenation. In the specialized literature, this is expressed in more compact
fashion. There are two common ways to specify a logical language. One is to list a
set of language formation rules. In the following example this is done for the modal
language presented in Fig. 1.2:
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L is the language consisting exactly of the sentences obtainable through the
following rules:

1. T C L,where T = {ay, az, ...} is a countably infinite set of sentences.

2. Ifa e L,then - € L,0x € L, and Qo € L.

3. Iffae LandB € L,thena & B € L,aVv B € L,a - B € L, and
a< BelLl.

The other method, particularly common in computer science, is an abbreviation of
the former as a so-called Backus-Naur Grammar clause:

pi=ai,ax...| 79| 9&Y oV Yo > Y|¢d < ¥ |Lp]| 0

Here, ::= denotes that the symbol to the left should be replaced by one of those on
the right, and | denotes a choice among different such substitutions.

1.6 The Uses of Logical Inference

Translations into logical language can to some extent be clarifying in themselves.
This applies for instance to translations from the rather erratic quantifiers of natural
language to the more regular ones of predicate logic. But the most important advan-
tages of formalization are only obtainable when we go beyond mere translation, and
investigate, with logical tools, the properties of the models that we have built. It is
a major advantage of formal models that they are so precisely described that such
properties can be determined with certainty. Their major disadvantage, of course, is
that these properties may be different from those of that which they are a model of.
Efficient use of formal models requires both that we investigate the formal properties
of our models and that we critically evaluate how these properties relate to those of
the phenomena that led us to develop the models.

This is not the place to delve into the methodology of logico-mathematical
work, how to construct axioms and prove lemmas and theorems. Instead, this
section is devoted to the connections between the construction of a system of
logical inferences and the process of formalization. Section 1.6.1 discusses the
choice between extensional and non-extensional logic for sentential operators.
Section 1.6.2 shows how logical analysis can reveal distinctions that are less obvious
in natural language, thereby contributing to the development of new philosophical
concepts. This is followed by a discussion of how logical analysis can lead to
improvements of the formal framework itself. Sometimes minor adjustments are
sufficient (Sect. 1.6.3). On other occasions, logical analysis forces us back to the
drawing-board in search for a better formal model (Sect. 1.6.4).
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Box 1.2 Two ways to use a name
“Charles-Edouard Jeanneret” was the legal full name and “Le Corbusier” the
pseudonym of a famous architect. Consider the following sentences:

(1) Le Corbusier was born in 1887.

(2) Charles-Edouard Jeanneret was born in 1887.
(3) Le Corbusier is a pseudonym.

4 Charles-Edouard Jeanneret is a pseudonym.

In the first two sentences, the names refer to the person. These two sentences
have the same truth conditions, and they are indeed both true. In the last two
sentences, the names refer to themselves, and these two sentences do not have
the same truth conditions. (3) is true and (4) false.

In sentence (1), “Le Corbusier” is used extensionally, by which is meant
that the truth-value of this sentence is not changed if “Le Corbusier” is
replaced by another expression with the same extension. (The extension of
an expression is the collection of objects to which it refers, in this case a
collection consisting of one person.) In sentence (3), “Le Corbusier” is used
non-extensionally.

1.6.1 Intersubstitutivity of Logical Equivalents

It is important in philosophy to distinguish between extensional and non-extensional
uses of an expression. (See Box 1.2 for a reminder.) Therefore, when constructing
the logic of a sentential operator, we have to decide whether to give it an extensional
or a non-extensional logic.” We can illustrate this with the sentences about the Dodo
(Raphus cucullatus) that can be formed with the following notation:

d The Dodo is extinct.

r Raphus cucullatus is extinct.

E There is sufficient scientific evidence that . . ..
K Alix knows that . ...

Since r and d are equivalent, so are Er and Ed. More generally speaking, if we can
replace a sentence attached to the operator E by an equivalent sentence, then the
truth-value is not changed. An operator with this property is said to be extensional
or satisfy intersubstitutivity of logical equivalents.

The operator K does not have this property, since Kr and Kd are not logically
equivalent. It is both possible and quite common to know that the Dodo is extinct

7Rudolf Carnap [9, pp. 57-63] claimed that all non-extensional concepts can be reconstructed as
extensional, but his mode of reconstruction has not caught on and does not seem to be practicable.
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without knowing that Raphus cucullatus is extinct. This is a feature that K
shares with most other operators representing attitudes such as believing, doubting,
wishing, preferring etc.

When constructing a logical system that contains sentential operators, it is
important to specify which of these operators satisfy intersubstitutivity and which
do not. (Note that this is a property of the inference pattern applied to the language,
not a property of the language itself.) It might seem obvious that a logical operator
that represents a non-extensional concept in natural language, such as a knowledge
or belief operator, should also be non-extensional. In practice, however, it is quite
common to use extensional operators to represent non-extensional concepts. The
reason for this is that non-extensionality usually comes with a high price: it makes
the logic of the operator so weak that very little can be proved. Intersubstitutivity of
logical equivalents is an idealization that allows us to have a much richer logic to
work with. There are two major ways to justify that idealization.

The most common justification is that the “non-extensional” uses of the concept
can in most cases easily be identified. We can therefore use an operator with an
extensional logic and just bear in mind that it is inadequate to deal with problems
where non-extensional properties of the underlying concept have a role. We can for
instance develop a logic of belief with an extensional belief operator B and assign
properties to it such as Ba & Bb — B(a&b) and Ba — —B—a. A disadvantage
with this approach is that the outer limits of the logic’s area of application cannot be
specified in precise terms.

The other, somewhat more sophisticated, approach is to change the interpretation
of the operator so that it does not refer to the original ordinary-language concept but
to some variant of it that can be expected to allow for the substitution of logical
equivalents. For the belief operator such a reinterpretation has been proposed by
Isaac Levi [50, 51]. His solution is to interpret B as referring to what the agent is
committed to believe rather than what she actually believes.® A person who believes
in the above statement d (“The Dodo is extinct”), is also committed to believe in r
(“Raphus cucullatus is extinct”) upon understanding its meaning. This approach
has the advantage over the previous one that the delimitation is more precise and
therefore more accessible to criticism and improvement.

For another example, consider again the predicate O of moral requirement. In
deontic logic, O is usually taken to be extensional. But examples are not difficult to
find in which this assumption gives rise to strange results. Let a; signify that John
kills his wife’s murderer, a that he kills only other persons than his wife’s murderer,
and b that he does not kill anybody at all. Then —a; is logically equivalent with

8 Arguably, this interpretation deviates from the common understanding of what it means to be
committed to something. In ordinary parlance, commitment seems to be subject to a “committed
implies can” restriction that parallels the “ought implies can” restriction. If I am committed to
believe in all true mathematical statements, then this is a commitment in an entirely different sense
from that in which I am committed to keep my promises and repay my loans. In a more exact
analysis, such a commitment would have to be conditional on knowledge or knowability.
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ap Vv b. If O is extensional, then it follows from this that O—a; and O(ay Vv b) are
equivalent, and in particular that

O—-a; — O(apVvb)

In words: If John ought not to kill his wife’s murderer, then he ought to kill either
only other persons than his wife’s murderer, or no one at all. This is the revenger’s
paradox [31]. It can be avoided by giving up intersubstitutivity. However, that would
be a far-reaching weakening of deontic logic. Therefore, just as in epistemic logic,
it is customary in deontic logic to retain intersubstitutivity in spite of the problems
that it can give rise to. In the case of deontic logic, one way to justify this is that
the sentences that cause trouble tend to be expressed in misleading ways so that we
easily overlook that they are synonymous. For instance, although the two sentences
“John is obliged not to kill his wife’s murderer” and “John is obliged to either kill
only other persons than his wife’s murderer, or no one at all” mean exactly the same
thing, only the second makes it explicit that no prohibition to kill other persons
than his wife’s murderer is pronounced. In deontic logic, just as epistemic logic, the
tradition is to accept extensionality and avoid the “intensional contexts” that give
rise to trouble.

1.6.2 Logical Inference as a Means to Discover New Concepts

We can use the treatment of moral dilemmas in deontic logic as an example of
how logic can be used to analyze philosophical concepts in a precise way that
also gives rise to new philosophical concepts. Suppose that there is some action
representable by the sentence a, such that both Oa and O—a hold, in other words
both @ and not-a are morally required. This means that the dictates of the O
operator cannot be completely complied with. This is the most obvious case of a
moral dilemma. Indeed, moral dilemmas are often defined as situations with two
conflicting obligations.

But need they be two? Suppose that someone needs to be able to reach me
urgently, so that I am morally required to keep my mobile phone on. At the same
time I am, for quite different reasons, obliged to be in the audience when my
child performs in a school play. But members of the audience are required to keep
their mobile phones turned off during the performance. Letting a denote that I
have my phone on and b that I attend the performance, I am then under the three
obligations Oa, Ob, and O—(a&b). It is easy to check that each combination of
two of these three obligations is fully compatible, so there is no dilemma according
to the standard definition that refers to two conflicting moral requirements. Still,
the situation seems dilemmatic enough. The reason for this is of course that the
combined contents of all three obligations is inconsistent. This should lead us to
define moral dilemmas in terms of such combined inconsistency rather than in terms
of two conflicting obligations.

For another example, suppose that I am morally required both to be in Stockholm
at 10.00 a.m. (¢) and to be in the neighbouring town Uppsala at 10.30 a.m. the same
day (d). This is by no means logically impossible; it would indeed be practically
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possible if I had access to a helicopter. But I don’t. The set consisting of the two
sentences ¢ and d is not logically inconsistent. Still, this appears to express a true
moral dilemma. Although the set in question is not inconsistent, it is impossible
to satisfy the contents of both its elements. If we want examples like this to
be regarded as moral dilemmas, then we will have to revise our definition of
dilemmas so that it refers to impossibility rather than inconsistency. Realizing all
elements of a finite set of sentences means the same as realizing their conjunction.
We can therefore express this condition with a possibility operator {: A set of
obligations {Oaj, Oay, ..., Oa,} gives rise to a moral dilemma if and only if
= O (a&ar& . .. &ay,), where ¢ denotes possibility.

In this way, we have generalized our original notion of a moral dilemma to the
more general notion of (lack of) joint possibility (compossibility) of a set of moral
obligations. This opens up for further distinctions since there are different notions
of possibility. We can now speak of moral dilemmas of different types, depending
on how we interpret ¢. If we interpret it as logical possibility, then we are concerned
with “moral dilemmas with respect to logical possibility” which are of course much
fewer than the “moral dilemmas with respect to practical possibility” that we obtain
with a weaker interpretation of .

Once we have formulated the issue of joint possibility of a set of moral
obligations, we can generalize it further, and discuss the joint possibility of sets of
norms that may contain permissions. Should we treat permissions in the same way
as obligations? In other words, must the contents of a set of permissions be jointly
possible in order for the set of permissions to be consistent? It is easy to show
that such a requirement would be unreasonable. Just consider the set {Pa, P—a},
where P denotes permission and a that you take part in the weekly ceremonies of a
local religious establishment. Since a&—a is inconsistent, such a requirement would
render this set of permissions inconsistent. This is unconvincing since the very
idea of religious freedom is to let us choose between such, mutually incompatible
alternatives. For a set of permissions to be consistent, it seems to be sufficient that
each of them, taken alone, is consistent (or possible).

Next, let us consider sets of norms that contain both obligations and permissions.
There is a rather obvious way to combine the above two criteria into a single
criterion that covers this more general case: Each combination of the contents
of all the obligations with that of any single one of the permissions should be
jointly possible. This criterion was proposed by Georg Henrik von Wright (1916—
2003) ([82]; cf. [26]). It seems to work fairly well when put to test in various
examples. However, calling all situations in which some permission cannot be used
a “dilemma” would seem to stretch the term too far. Therefore, it may be better to
use a different terminology for these cases, such as the following:

A set of norms (obligations and permissions) is compossible if and only if the
set consisting of the contents of all its elements is jointly possible.

A set of norms (obligations and permissions) is realizable if and only if each
subset containing all the obligations and at most one of the permissions is
compossible.
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A set of norms (obligations and permissions) gives rise to a moral dilemma if
and only if the subset consisting of all its obligations is not compossible.

As we have already noted, these definitions come in different variants, depending
on the standard of possibility that we apply.

We have just expressed these distinctions in natural, rather than formal, language.
So what was the point of formalization in this case? The point is that it is no
coincidence that these distinctions were developed by deontic logicians, rather than
by moral philosophers working without the aid of a formal language. In this and
many other cases, the formal language directs our attention to inference-related
considerations that turn out to be helpful for the development of philosophical
terminology. The usefulness of formal models is confirmed, not disconfirmed, when
they give rise to distinctions that can also be expressed and used in informal
philosophy.

1.6.3 Reconsidering the Formalization: Splitting Concepts

As emphasized in Sect. 1.4.4, the process of formalization should include careful
consideration of whether or not terms from natural language can be treated
uniformly in the formal language. However, in spite of the formalizer’s best efforts,
it is not uncommon that once rules of logical inference have been introduced, new
problems are discovered that reveal a need to modify the original formalization. On
occasions, a need for additional splitting of concepts is discovered. Consider the
following two sentences, said to someone who beats a cat:

(1) “You must stop beating Mei-Yin.”
(2) “You are not allowed to be cruel to animals.”

(1) differs from (2) in offering a norm for only one situation, namely the present one.
In contrast, (2) exemplifies the most common type of norms referring to several
situations, namely normative rules.” This distinction is not easily extracted from
deontic discourse in natural language, since most languages use the same linguistic
forms for both purposes. This applies to conditional as well as non-conditional
norms. Consider the following examples:

(3) “If a president from the left is elected, then rich people will have to pay more
taxes.”

(4) “If you bribe the head of department, then you will be permitted to take part in
the extra retake.”

(5) “If you borrow money, then you must pay it back.”

9This distinction was made in [28)]. Similarly, Carlos Alchourrén [1] distinguished between “a
norm for a single possible circumstance (which may be the actual circumstance)” and a norm
for “all possible circumstances”, and David Makinson [59] distinguished between norms “in all
circumstances” and norms “in present circumstances”.
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(6) “If you pay the exam fee at least one week in advance, then you will be
permitted to take part in the extra retake.”

(3) and (4) are conditional statements saying that if the situation satisfies (will
satisfy) a certain characteristic, then certain actions are (will be) obligatory, respec-
tively permitted. These statements do not report any normative rules; they only
tell us what will be the case (normatively) under certain conditions. Contrastingly,
(5) and (6) express rules stating that in situations satisfying the given criteria, a
particular norm holds. The similarity between (4) and (6) illustrates that linguistic
form does not help us to distinguish between the two types of statements. In fact,
natural language provides no cue about the different types of conditionality in (4)
and (6). It is our knowledge of what legal and administrative rules usually look like
that makes us infer that (6) reports a permissive rule and (4) a statement about what
will in fact be permitted under certain circumstances.

In order to explore the logical significance of this distinction, we can use the
standard notation for conditional obligation and permission: We write O (a | b) for
“a is obligatory, given b”, and similarly P(a | b) for “a is permitted, given b>.10
Now consider the following two logical principles:

If b is true and Oa holds, then so does O(a | b).
If b is true and Pa holds, then so does P(a | b).

Let us first try them out on statements expressing situation-specific norms. Suppose
that before the presidential election I made the statement denoted (3) above. A left-
wing president is elected, and after the election it turns out that rich people are
indeed required to pay more taxes. It would then be strange to claim that what I
said was wrong. In particular, a rebuttal could not be based on the claim that (3)
does not hold in general — the statement only referred to the specific situation.
The same analysis applies, perhaps even more clearly, to statement (4). In fact,
these principles apply, although perhaps less obviously, if the sentences a and b are
completely unrelated. This is due to properties of “if...then ...” that are unrelated
to the normative component of the sentences. In a non-normative context, we would
admit the following inference as valid (albeit somewhat awkward):

Xiu-xiu has a blue shirt.
Xiu-xiu knows the ancient Greek language.
If Xiu-xiu has a blue shirt, then she knows the ancient Greek language.

For the same reason we should accept the following inference:

Xiu-xiu has a blue shirt.
Xiu-xiu is permitted to read classified government documents.

If Xiu-xiu has a blue shirt, then she is permitted to read classified government documents.

10This notation was introduced by Bengt Hansson [27].
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But this can only be true provided that we do not read the conditional statement as
expressing a normative rule. From the facts that Xiu-xiu has a blue shirt and that she
is permitted to read classified government documents we certainly cannot conclude
that there is a rule to the effect that if she has a blue shirt, then she is permitted to
read these documents. And it is easily checked that the two inference rules do not
hold for rule-reporting normative statements such as (6). From the two facts that I
paid the exam fee more than one week in advance and that I was permitted to take
part in the exam, it does not necessarily follow that there is a rule to the effect that
if one pays the fee within this time then one is allowed to take part in the exam.

Since situation-specific and rule-expressing norms are expressed in the same
way in natural language, the distinction between them has often gone unnoticed. It
received attention when the formal structure was put to test in logical investigations,
and it turned out that they differ in what logical rules they obey. The logical
differences between situation-specific and rule-expressing norms is nevertheless a
good reason to make this distinction in both formal and informal philosophy, despite
the fact that ordinary language does not distinguish between them.

1.6.4 Reconsidering the Formalization: Radical Reform

To illustrate how logical investigations can reveal the need for a radical reform of
a formalization, we can consider the problem of so-called free-choice permissions
[81, pp. 21-22]. These are permissions for someone to make a choice, for instance:

You are allowed to marry either a man or a woman.

The surgeon is permitted to take out either the patient’s left or his right kidney,
and transplant it to the patient’s daughter.

An obvious first attempt to formalize free choice permission is to represent “or”
with ordinary truth-functional disjunction (V), and this is indeed the formalization
that was the starting-point of the discussion. It would then seem rather obvious that
the following postulate should hold:

P(avb) — Pa & Pb

This postulate looks innocuous when presented in connection with an example of
permitted choice. However, if we also require intersubstitutivity for logically equiv-
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alent sentences, then we can make derivations with highly implausible outcomes,
such as the following [44, pp. 176-177]:

P((a&b)V (a&—b)) — P(a&b) & P(a&—b)
(a substitution instance of the postulate)
Pa — P(a&b) & P(a&—b)
(follows from the intersubstitutivity of logically equivalent sentences)
Pa — P(a&b)

The endpoint of this derivation is obviously absurd, and it gives us reason to either
give up the formalization of free choice permission as P (a V b), or else modify the
framework in which the derivation took place. Following the first line, some authors
have tried to solve the problem by replacing the standard permission operator
P by some other operator, but such alternative operators have invariably been
shown to have implausible properties [41]. The underlying problem is that all these
constructions are based on the assumption that free choice permission to p or g can
be represented as a property of the sentence p V g. However, if intersubstitutivity
holds, then this single sentence assumption is not at all plausible. The reason for
this is that it has the following rather obvious consequence:

If a v b is equivalent with ¢ Vv d, then there is a free choice permission to a or
b if and only if there is a free choice permission to ¢ or d.

It is not difficult to find examples showing that this leads to absurd conclusions:

The vegetarian’s free lunch [41]

In this restaurant I may have a meal with meat or a meal without meat.
Therefore I may either have a meal and pay for it or have a meal and not
pay for it.

Proof

Let m denote that you have a meal with meat, v that you have a meal
without meat, and p that you pay. ((mVvv)&p) Vv ((mVv)&—p) is equivalent
with m Vv v. Therefore, it follows from the single sentence assumption that
((mvv)&p) Vv ((mVvv)&—p) is (free choice) permitted if and only if m Vv is
(free choice) permitted.

To sum up, in a framework with intersubstitutivity of logical equivalents, (free
choice) permission to perform either a or b cannot be represented as a function of the
single sentence aVb. Instead, we can treat it as a function of the two sentences a and
b, i.e. as a function of two variables, not one. Similarly, (free choice) permission
to perform either a, b, or ¢ can be treated as a function of three variables, etc.
Alternatively, we can treat free choice permission as a property of a set of action-
describing sentences ({a, b} respectively {a, b, c}) in these examples) [41]. In this
case, logical investigations of what initially seemed to be a quite straightforward
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formalization revealed the need for a rather drastic reform of that representation. In
the process, we also learned something about the underlying informal notion that
would otherwise not have been easy to discover.

1.7 Going Beyond Logic

The previous sections have been devoted to the use of logic in philosophy, and
this for good reasons. Much philosophical subject matter is well represented by
sentences, and logic provides us with powerful tools to investigate how sentences
connect with each other.

But in spite of these advantages, there are no a priori grounds why logical
languages should be better suited than other symbolic languages for modelling
each and every subject matter studied by philosophers. In some cases, other formal
approaches can capture features of the subject matter that are difficult to express in
logic. It is also important to note that there is no clear demarcation between logical
and “non-logical” formal methods. Arguably, much if not most of mathematics can
be reconstructed in a logical framework, and conversely, logic can be seen as a
branch of mathematics. But for practical purposes we can distinguish between those
symbolic languages that are taught in courses and textbooks on logic and those
that one has to learn elsewhere. The following subsections will briefly introduce
three formal approaches of the latter category that have fairly widespread use in
philosophy, namely numerical models, decision matrices, and choice functions.

1.7.1 Numbers

Numbers are ubiquitous in most of the sciences. Physicists, economists, ecologists,
demographers, and scientists of almost any other discipline make frequent use of
models whose variables take numerical values. Philosophy is an exception, and
this for a reason that we discussed in Sect. 1.2.4: The variables that are relevant in
philosophy usually cannot be correlated with empirical measurements, and therefore
the most important advantage that numerical models have in other disciplines does
not apply in philosophy. But nevertheless, there are cases when models involving
numbers are useful in philosophy.

In value theory, it is often assumed that value, for instance moral value, can
be expressed numerically. Moral value can then be represented by a function u,
such that for each object a of evaluation, u(a) is a number that represents its
value. Since there is no measurement-based unit for moral value, a fictive unit is
employed, often called “utile” or “util”. But although the unit is elusive, the use of
a numerical value function imposes a structure with considerable impact on how
value is conceived. In particular, it allows us to add and multiply values. If some
event has the consequences a, b, and c, we feel free to speak of their total value and
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calculate it as u(a) +u(b) + u(c). This, of course, is the basic structure of utilitarian
moral philosophy. In contrast, deontological ethics is usually conceived in terms of
the binary distinction between duties and non-duties, and therefore it has much less
use for quantitative measures of value.

Standard logical models are not good at representing time. The reason for this
is that we usually assume that for any two (non-identical) points in time, there is
some third point in time that is posited between them. Such a structure is beyond
elementary logic; the best way to introduce it is to employ rational (or real) numbers.

A third important area for numerical representation is probability. It can be
introduced through a function p on event-representing propositions, such that if
a is an event, then p(a) is the probability of that event. Probabilities are used in
epistemology, decision theory, and many other areas of philosophy. They can be
given either an objective or a subjective interpretation. “Objective” probabilities
represent frequencies or tendencies pertaining to events in nature. “Subjective
probabilities” represent an agent’s degree of belief in statements. Notably, the term
“probability” should only be used about measures that have the same mathematical
properties as the objective probabilities that we know from examples with coins,
dice and other randomizing devices. Mathematically, this means that probabilities
have to satisfy the Kolmogorov axioms.'! It can plausibly be argued that our
subjective degrees of belief should be represented by degree-of-belief functions that
do not satisfy these axioms, but then they should not be called “probabilities”.

In epistemology, probabilistic and logical models have complementary strengths
and weaknesses. Logical models can provide us with a reasonable account of the
inferential relationships among beliefs, in other words how acceptance of one belief
can lead us to accept or reject some other belief. However, logical models have
difficulties in representing the relations of strength among beliefs, i.e. how one
belief can be stronger or weaker than another. For probabilistic models it is the
other way around. They can provide good accounts of the differences in strength
among beliefs, but not of the inferential connections among them [57]. Neither type
of model is well suited to represent both these aspects of belief systems. That is why
we need them both.

1.7.2 Decision Matrices

In a formal model of decision problems, several prominent components need to
be represented. There is a set of alternatives that the decision-maker can choose
among. In many real-life problems, the set of alternatives is open in the sense that
new alternatives can be invented or discovered [32, 43]. A typical example is your
decision how to spend tomorrow evening. In other decision problems, the set of
alternatives is closed, so that no new alternatives can be added. Your decision how
to vote in the upcoming elections will probably be an example of this. There will be

11See Chap. 19.
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Fig. 1.7 The basic construction of a decision matrix

a limited number of alternatives (candidates or parties) that you can choose among.
In decision theory, the alternative set is almost invariably assumed to be closed. The
major reason for this is that formal treatment is much easier if the alternative set is
closed. For the same reason, it is also commonly assumed that the alternatives are
mutually exclusive, i.e., it is not possible to choose more than one of them.

The effects of a decision depend not only on the decision-maker’s choice but also
on various factors beyond her control. In decision theory, these extraneous factors
are usually summarized into a number of cases, called states of nature. The states
of nature include natural events but also decisions by other persons. As an example,
consider a young boy, Peter, who makes up his mind whether or not to go to the local
soccer ground to see if there is any soccer going on that he can join. The effect of
that decision depends on whether there are any soccer players present. In decision
theory, this situation can be described in terms of two states of nature, “players
present” and “no players present”.

The possible outcomes of a decision are determined by the combined effects of
the chosen alternative and the state of nature that turns out to prevail. Hence, if Peter
goes to the soccer ground and there are no players present, then the outcome can be
summarized as “walk and no soccer”. If he goes and there are players present, then
the outcome is “walk and soccer”. If he does not go, then the outcome is “no walk
and no soccer”.

The basic idea of a decision matrix is to tabulate alternatives against states of
nature in order to show which outcome results from each combination. The decision
matrix for Peter’s decision is shown in Fig. 1.7. Such a matrix provides a clear
presentation of the decision, but it does not contain all the information that the
decision-maker needs in order to make the decision. The most important missing
information concerns how the outcomes are valued and how plausible the states of
affairs are.

The values of outcomes are usually expressed with numbers. Sometimes an
empirical value measure is available, such as economic costs or gains, or the number
of persons killed in an accident. But often fictitious numbers have to be used. In our
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Fig. 1.8 A utility matrix
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example, we may for instance assume that Peter assigns the value O to walking to
the soccer ground but finding no opportunity to play soccer, the value 3 to staying
at home, and the value 10 to walking to the soccer ground and playing soccer
there. We can then replace the basic decision matrix of Fig. 1.7 by a utility matrix
(payoff matrix) in which these values take the place of the outcome descriptions, see
Fig. 1.8.

Peter’s decision will be influenced by how probable he believes it to be that there
are any players at the soccer ground. Suppose that he takes this probability to be 0.3.
Then he can replace the states of nature by probabilities, as in Fig. 1.9. This type of
matrix is the starting-point in much of decision theory.

Game theory differs from decision theory in that there are two or more agents,
each of whom has a set of alternatives to choose among. In game theory it is usually
assumed that the outcome depends only on the decisions of the agents, so that no
distinction is made between different states of nature. (This is an idealization that
may of course sometimes be problematic.) In the basic game theoretical matrix for
two agents, the decisions of the agents are tabulated against each other, and the
outcome is determined by the combinations of their decisions. Figure 1.10 shows an
example of this. Two agents, Rosa and Carmen, are going to meet for a meal. Rosa
will make the food and Carmen will bring a bottle of wine. Rosa prefers red wine
for meat and white wine for fish, whereas Carmen prefers white wine for all kinds
of food.

Just as in decision matrices, the outcome descriptions of game matrices are often
replaced by numerical values representing the values of the outcomes. In games
it is important to distinguish between values for the different players. Therefore,
outcome values are represented by vectors. When there are two agents, the vector
(x, y) represents a situation in which the agent choosing among the rows in the
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Fig. 1.10 The basic construction of a game matrix for two agents (players)

Fig. 1.11 A utility matrix for ) )
the same game as in Fig. 1.10 Bring Bring
red wine white wine
Bring a
1,0 0,1
meat dish (1,0 {(0.1)
Bring
fish dish (0.0) {L.1)

matrix assigns the value x to the outcome, whereas the other agent assigns the value
y. Figure 1.11 is a utility version of the matrix in Fig. 1.10.

Both decision matrices and game matrices have turned out to be quite useful
in moral and political philosophy. In particular, game matrices put focus on
coordination problems that are not so easily treated in traditional logic-based
models. Game matrices are also increasingly used in (social) epistemology in order
to capture collective epistemic processes.

1.7.3 Choice Functions

A choice function is a representation of an agent’s choice tendencies. If C represents
your choice tendencies, then C({x, y, z}) = {x} means that if you have to choose
among x, y, and z, then you will choose x. Choice functions are usually applied
to sets whose elements are mutually exclusive, and they allow for ties; thus
C({x,y,z}) = {x,y} means that in the choice among x, y, and z you have a
tendency to choose either x or y, but you have no inclination to choose one of these
rather than the other. Choice functions have an important role in decision theory,
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in particular in social decision theory where a central issue is how the choices of
individuals can be combined into a social choice.'?

In addition, choice functions have turned out to be useful in several other
applications, such as belief revision, non-monotonic reasoning, and the logic of
conditionals. Consider an agent who initially believes in the two statements @ and
b, but then receives information showing that they cannot both be true. In the
terminology of belief revision, the agent has to contract by the sentence a&b. She
must then give up either her belief in a or that in b, or both. A choice function
can be used to model such choices. Virtually all belief revision models make use of
choice functions, but they differ in what the choice functions are applied to: beliefs
to remove, beliefs to retain, belief states that can be the outcome of the operation,
etc. The application of choice functions to different types of objects in a model of
a human belief system can give rise to operations of belief change with different
properties [42].

1.7.4 Combinations

The use of non-logical formal tools does not mean that logic is discarded. To the
contrary, the different non-logical tools are often combined with components from
logic. It is for instance convenient to apply the utility function u to sentences that
represent the states of affairs under evaluation, and the same applies to the prob-
ability function p. Increasingly, logicians are working with “hybrid systems” that
combine logic’s unsurpassed ability to represent statements and their interrelations
with various non-logical formal tools that enable us to treat and rearrange these
statements in ways that logic alone does not have resources for: choose among them,
assign values and probabilities to them, arrange them in temporal order, etc. Such
hybrid systems can sometimes make it possible to combine the advantages of two
or several formal representations.

1.8 Aberrations in Formal Models

In spite of all its advantages, formalization is not always useful. In some cases it has
given rise to more confusion than clarity. And even when it is useful, it is seldom if
ever without problems. As pointed out in Sect. 1.2.4, a formal model is always the
outcome of a trade-off between simplicity and faithfulness to the object of study. If
the subject-matter is complex, then a reasonably simple model will usually have to
leave out some of its philosophically relevant features.

12See Chap. 37.
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Due to this trade-off, an uncriticizable formal model of philosophical subject
matter is in practice unachievable. It will always be possible to develop a criticism
that puts focus on the simplifications that are inherent in the model. However,
even if such a counter-argument convincingly discloses an imperfection in the
model, it does not necessarily follow that the model is unfit for use. If a problem
in the model cannot be solved without substantial losses of simplicity, then it
may be appropriate to continue using the model, bearing in mind its weaknesses
(and perhaps supplementing it with other models that have other strengths and
weaknesses). The same applies, of course, to inaccuracies in informal models and
approaches in philosophy. The “adversary method” [63] in philosophy which takes
any flaw in a philosophical theory as proof that the theory should be rejected in toto,
is equally misguided in formal as in informal philosophy.

This is the reason why this section is called “Aberrations in formal models”,
rather than for instance “Faults in formal models”. Depending on what we use the
model for, some aberrations may be acceptable whereas others are not.

We can divide aberrations in formal models into two major types: those
concerning what can be expressed in the model’s language and those concerning
what can be inferred in the model. Each of these types can be further subdivided
depending on whether the aberration concerns an unjustified addition to what can
be expressed respectively inferred, or an unjustified subtraction from it.

1.8.1 Aberrations of Expression

Almost all formal models have a conspicuous deficit in what they can express. This
is mainly because in order to construct a workable formal model, the number of
primitive notions has to be kept to a minimum. A few examples will be sufficient to
show the rather drastic limitations in the expressive power of most formal languages.
In formal value theory, only a few value concepts are represented, primarily “better”
and “at least as good as”, and those that can be defined from these, such as “best”
and perhaps “good”. In contrast, ordinary language is rich in value terms, most of
which are seldom if ever included in formal accounts: “acceptable”, “fairly good”,
“worthless”, “invaluable” etc. As discussed in Sect. 1.4.4, deontic logic usually has
only one concept of moral requirement (O), whereas natural language has a whole
collection of prescriptive terms that differ in strengths and connotations, such as
“must”, “should”, “ought”, “has to”, “duty”, “obligation”, etc. Epistemic logic has
its focus on representations of the two terms “know” and “believe”, mostly leaving
out other epistemic terms such as “assume”, “guess”, “be convinced”, “doubt”, “be
aware that”, “have a hunch that”, “suspect”, etc.

Some formal languages contain superfluous expressions that do not correspond
to anything meaningful that can be said about their subject matter. One way in which
this comes about is through the formation rules of logical languages. If the language
contains a sentential operator G for “good”, then the formation rules allow us, for

any sentence a, to form a statement Ga meaning “a is good”. Then this will also
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apply to tautologies and contradictions, and we can form sentences such as G (b Vv
—b) and G (c&—c) that do not seem to have a meaningful interpretation. For similar
reasons, the language of deontic logic contains the sentence O(a&—a). It seems
to express some form of moral impossibility, but it does not correspond to how we
normally think about moral conundrums. Although one can say “I am obliged both
to be here and not to be here”, this refers to two separate obligations. (“I am obliged
to be here and I am also obliged not to be here”, Oa & O—a.) It does not refer to a
single obligation to do something impossible (O (a&—a)).

Such superfluous expressions can, if we so wish, be excluded from the language.
Technically, this requires somewhat more complicated language formation rules
than the conventional ones. In our examples, we can postulate that G and O can only
be affixed to sentences that are neither logically true nor logically false. However,
most logicians would be reluctant to employ language formation rules that refer to
what can be logically inferred. There are good reasons to construct the language
prior to, and independently of, the rules of inference. Therefore, it is much more
common to retain these artefacts in the logical language, and either treat them as
uninterpreted anomalies or, if possible, provide them with an interpretation that
corresponds to the conditions under which they can be inferred. We can for instance
treat O (p&—p) as an indicator of the presence of a moral conflict or dilemma.

The choice between these different ways to deal with artefacts in the logical
language is largely a matter of convenience, and not very important. What is
important, however, is that we do not take it for granted that all expressions in a
formal language are meaningful just because they are constructed from meaningful
language elements.

1.8.2 Aberrations of Inference

In some cases, the formal language does not support inferences that are reasonable
and can be drawn in ordinary language. One example of this is the inference from
“a is permitted” to “not-a is permitted” that we can draw in ordinary language with
its bilateral notion of permission, but not in deontic logic with its unilateral notion.

But the major problem with inferences is usually the opposite one: formal
models tend to support excessive inferences, i.e. inferences that are allowed by the
formal system but do not correspond to any properties of that which is modelled.
Arguably, most of the more problematic aberrations in formal models consist in such
superfluous inference patterns. In Sect. 1.6.1 we noted that the intersubstitutivity of
logically equivalent sentences produces superfluous inferences, but we also noted
that for many purposes this may be an aberration that is worth its price.

A somewhat related idealization is the use of logically closed sets for various
purposes in formal models, perhaps most conspicuously to represent an epistemic
agent’s set of beliefs. A set of sentences is logically closed if and only if everything
that follows logically from it is among its elements. Hence if both @ and a — b
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are elements of a logically closed set, then so is b. In the logic of belief revision,
a logically closed set (called a “belief set”) is the standard representation of an
agent’s beliefs. Since all mathematical truths that are expressible in a language are
logical truths in that language, this means that she believes in all mathematical truths
that can be expressed in the language. Such logico-mathematical omniscience is of
course far beyond human capabilities. The best justification for this aberration from
our actual doxastic behaviour seems to be the reinterpretation of belief sets proposed
by Isaac Levi: They do not represent what an agent actually believes but what she is
committed to believe. (Cf. Sect. 1.6.1 where this solution was applied to the belief
operator.)

Another interesting example of excessive inferences can be taken from deontic
logic. Consider the following three properties of a deontic logic:

Existence of moral dilemmas:
There are action-describing sentences a and b such that Oa & Ob, although
a&b is logically inconsistent.

Agglomeration:
If Oa and Ob then O (a&b).

Necessitation:
If Oa, and a logically implies b, then Ob.

Each of these principles has immediate intuitive appeal, as can easily be confirmed
with examples. But in combination they lead to an absurd conclusion. According to
Existence of moral dilemmas, there are sentences a and b such that Oa & Ob and
a&b is logically inconsistent. According to Agglomeration, O (a&b). Since a&b
is inconsistent, it holds for any sentence c that a&b implies c. Necessitation yields
Oc, and we have proved the following remarkably undesirable property:

Universal obligatoriness:
Oc

Obviously, the formal inference from Oa, Ob and the inconsistency of a&b to
Oc does not correspond to how we normally reason or argue about our moral
obligations. From “I ought to be at home with my children this evening” and “I ought
to work all night at the office”, we do not conclude “I ought to spend this evening
boozing in a nightclub”. Therefore, the derivation of Universal obligatoriness from
three seemingly quite plausible postulates is a logical artefact that has nothing to do
with the subject matter of deontic logic. Universal obligatoriness is so damaging
that any system implying it will have to be rejected. Consequently, a workable
system of deontic logic cannot contain all three of the principles Existence of moral
dilemmas, Agglomeration, and Necessitation. The most common solution is to give
up Existence of moral dilemmas. But for some purposes, such as the study of moral
dilemmas, one of the other two principles will have to go instead.
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If we replace necessitation by the weaker assumption of intersubstitutivity,

Intersubstitutivity of logical equivalents:
If Ox and x is logically equivalent with y, then Oy.

then the derivation of Oc (universal obligatoriness) will be blocked, but we can
instead derive O(c&—c) (obligatory inconsistency) from Oa and Ob, given that
a&b is logically inconsistent. This is also an artefact of the formal model, but as
argued in Sect. 1.8.1, O(c&—c) does not do much damage. Arguably, it can be
tolerated, and treated as an innocuous artefact of the formal system. Possibly, it
can even be given a meaningful interpretation, as an indicator of the presence of an
inconsistency.

1.8.3 Conclusion

In philosophy, like other disciplines, formal models are useful tools that allow us to
express ideas more precisely and to probe their implications. As in other disciplines,
we can only use formal models efficiently if we keep track of their strengths and
weaknesses. Since all formal models are idealizations, they all have imperfections,
and we should never expect to find the uniquely best formal model that will tell
us the whole truth and nothing but the truth about some philosophical subject
matter. But there can be no doubt that formal models are indispensable tools in
philosophical investigations. Today, no philosopher can afford to be ignorant of how
they can contribute to new philosophical insights.
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Chapter 2 ®
Argument Chechae

Henry Prakken

Abstract This chapter discusses how formal models of argumentation can clarify
philosophical problems and issues. Some of these arise in the field of epistemology,
where it has been argued that the principles by which knowledge can be acquired
are defeasible. Other problems and issues originate from the fields of informal logic
and argumentation theory, where it has been argued that outside mathematics the
standards for the validity of arguments are context-dependent and procedural, and
that what matters is not the syntactic form but the persuasive force of an argument.

Formal models of argumentation are of two kinds. Argumentation logics for-
malise the idea that an argument only warrants its conclusion if it can be defended
against counterarguments. Dialogue systems for argumentation regulate how dia-
logue participants can resolve a conflict of opinion. This chapter discusses how
argumentation logics can define non-deductive consequence notions and how their
embedding in dialogue systems for argumentation can account for the context-
dependent and procedural nature of argument evaluation and for the dependence
of an argument’s persuasive force on the audience in an argumentation dialogue.

2.1 Introduction

Introductions to logic often portray logically valid inference as ‘foolproof’ reason-
ing: an argument is valid if the truth of its premises guarantees the truth of its
conclusion. However, we all construct arguments from time to time that are not
foolproof in this sense but that merely make their conclusion plausible when their
premises are true. For example, if we are told that Peter, a professor in economics,
says that reducing taxes increases productivity, we conclude that reducing taxes
increases productivity since we know that experts are usually right within their
domain of expertise. Sometimes such arguments are defeated by counterarguments.
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For example, if we are also told that Peter has political ambitions, we have to retract
our previous conclusion that he is right about the effect of taxes if we also believe
that people with political ambitions are often unreliable when it comes to taxes.
Or, to use an example of practical instead of epistemic reasoning, if we accept that
reducing taxes increases productivity and that increasing productivity is good, then
we conclude that the taxes should be reduced, unless we also accept that reducing
taxes increases inequality, that this is bad and that equality is more important than
productivity. However, as long as such counterarguments are not available, we are
happy to live with the conclusions of our fallible arguments. The question is: are we
then reasoning fallaciously or is there still logic in our reasoning?

An answer to this question has been given in the development of argumentation
logics. In a nutshell, the answer is that there is such logic but that it is inherently
dialectic: an argument only warrants its conclusion if it is acceptable, and an
argument is acceptable if, firstly, it is properly constructed and, secondly, it can
be defended against counterarguments. Thus argumentation logics must define
three things: how arguments can be constructed, how they can be attacked by
counterarguments and how they can be defended against such attacks.

Argumentation logics are a form of nonmonotonic logic, since their notion of
warrant is nonmonotonic: new information may give rise to new counterarguments
defeating arguments that were originally acceptable. Besides a logical side, argu-
mentation also has a dialogical side: notions like argument, attack and defence
naturally apply when (human or artificial) agents try to persuade each other to adopt
or give up a certain point of view.

This chapter' aims to show how formal models of argumentation can clarify
philosophical problems and issues. Some of these arise in the field of epistemology.
Pollock [10] argued that the principles by which knowledge can be acquired are
defeasible. Later he made this precise in a formal system [11], which inspired the
development of argumentation logics in artificial intelligence (AI). Rescher [20] also
stressed the dialectical nature of theories of knowledge and presented a disputational
model of scientific inquiry.

Other issues and problems originate from the fields of informal logic and
argumentation theory. In 1958, Stephen Toulmin launched his influential attack on
the logic research of those days, accusing it of only studying mathematical reasoning
while ignoring other forms of reasoning, such as commonsense reasoning and legal
reasoning [21]. He argued that outside mathematics the standards for the validity
of arguments are context-dependent and procedural: according to him an argument
is valid if it has been properly defended in a dispute, and different fields can have
different rules for when this is the case. Moreover, in his famous argument scheme
he drew attention to the fact that different premises can have different roles in an
argument (data, warrant or backing) and he noted the possibility of exceptions to
rules (rebuttals). Perelman argued that arguments in ordinary discourse should not
be evaluated in terms of their syntactic form but on their rhetorical potential to
persuade an audience [9]. These criticisms gave rise to the fields of informal logic

! An earlier version of this chapter has appeared as [14].
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and argumentation theory, which developed notions like argument schemes with
critical questions and dialogue systems for argumentation. Many scholars in these
fields distrusted or even rejected formal methods, but one point of this chapter is
that formal methods can also clarify these aspects of reasoning. Another claim often
made in these fields is that arguments can only be evaluated in the context of a
dialogue or procedure. A second point of this paper is that this can be respected by
embedding logical in dialogical accounts of argumentation.
The philosophical problems to be discussed in this chapter then are:

— Can argumentation-based standards for non-deductive inference be defined?
— To what extent are these standards procedural?

— To what extent are they context-dependent?

— What is the nature of argument schemes?

— Can the use of arguments to persuade be formalised?

2.2 Dung’s Abstract Argumentation Frameworks

In 1995 Phan Minh Dung introduced a now standard abstract formalism for
argumentation-based inference, which assumes as input nothing but a set (of
arguments) ordered by a binary relation (by Dung called ‘attack’ but in this chapter
the term ‘defeat’ will be used).

Definition 2.1 An abstract argumentation framework (AF) is a pair (A, Def),
where A is a set arguments and Def € A x A is a binary relation of defeat. We
say that an argument A defeats an argument B iff (A, B) € Def, and that A strictly
defeats B if A defeats B while B does not defeat A. A set S of arguments is said to
defeat an argument A iff some argument in S defeats A.

Dung [4] defined four alternative semantics for A F's (over the years further seman-
tics have been proposed; cf. Baroni et al. [1]). A semantics for AF's characterises
so-called argument extensions of A F’s, that is, subsets of .A that are in some sense
coherent. One way to define extensions is with labellings of AF's, which assign to
zero or more members of Args either the label in or out (but not both) satisfying the
following constraints:

1. an argument is in iff all arguments defeating it are out.
2. an argument is out iff it is defeated by an argument that is in.

Stable semantics labels all arguments, while grounded semantics minimises and
preferred semantics maximises the set of arguments that are labelled in, and
complete semantics allows all labellings satisfying the two constraints. Let § €
{stable, preferred, grounded, complete} and (In, Out) an S-status assignment. Then
In is defined to be an S-extension.”

2This definition is different from but equivalent to Dung’s [4] definition of extensions.
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Fig. 2.1 Four argumentation frameworks

Some known facts (also holding for the corresponding extensions) are that each
grounded, preferred or stable labelling of an A F is also a complete labelling of that
AF; the grounded labelling is unique but all other semantics allow for multiple
labellings of an AF; each AF has a grounded and at least one preferred and
complete labelling, but there are A F's without stable labellings; and the grounded
labelling of an AF is contained in all other labellings of that AF.

Then the acceptability status of arguments can be defined as follows:

Definition 2.2 For grounded semantics an argument A is justified iff A is in the
grounded extension; overruled iff A is not in the grounded extension but defeated by
a member of the grounded extension; defensible otherwise. For stable and preferred
semantics an argument A is justified iff A is in all stable/preferred extensions;
overruled iff A is in no stable/preferred extension; defensible otherwise.

Figure 2.1 illustrates the definitions with some example argumentation frameworks,
where defeat relations are graphically depicted as arrows.

In AF (a) all semantics produce the same unique labelling. Argument C is in
by constraint (1) since it has no defeaters, so B is out by constraint (2) since it
is defeated by C, so A is in by constraint (1) since C defeats B. So all semantics
produce the same, unique extension, namely, {A, C}. Hence in all semantics A and
C are justified while B is overruled. It is sometimes said that C reinstates, or defends
A by defeating its defeater B.

In AF (b) grounded semantics does not label any of the arguments while preferred
and stable semantics produce two alternative labellings: one in which A is in and B
is out and one in which B is in and A is out. Hence the grounded extension is empty
while the preferred-and-stable extensions are {A} and { B}. All these extensions are
also complete. Hence in all semantics both A and B are defensible.

AF (c) has no stable extensions since no argument can be labelled both in and
out while there is a unique grounded, preferred and complete extension, which is
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empty, generated by a labelling which does not label any argument. Note that if a
fourth argument D is added with no defeat relations with the other three arguments,
there is still no stable extension while the unique grounded, preferred and complete
extension is {D}.

Finally, AF (d) shows a difference between grounded and preferred semantics.
The grounded extension is empty, since A and B can be left unlabelled so that
C and D are also unlabelled, while the two preferred (and stable) extensions are
{A, D} and {B, D}. Thus while in grounded semantics all arguments are defensible,
in preferred and stable semantics A and B are defensible, D is justified and C is
overruled.

The above definitions characterise sets of arguments that are in some sense
acceptable. In addition, procedures have been studied for determining whether a
given argument is a member of such a set. Some take the form of an argument game
between two players, a proponent and an opponent of an argument. The precise rules
of the game depend on the semantics the game is meant to capture. The rules should
be chosen such that the existence of a winning strategy (in the usual game-theoretic
sense) for the proponent of an argument corresponds to the investigated semantic
status of the argument, for example, ‘justified in grounded semantics’ or ‘defensible
in preferred semantics’.

Because of space limitations we can give only briefly one example game. The
following game is sound and complete for grounded semantics in that the proponent
of argument A has a winning strategy just in case A is in the grounded extension.
The proponent starts a game with an argument and then the players take turns, trying
to defeat the previous move of the other player. In doing so, the proponent must
strictly defeat the opponent’s arguments while he is not allowed to repeat his own
arguments. A game is terminated if it cannot be extended with further moves. The
player who moves last in a terminated game wins the game. Thus the proponent has
a winning strategy if he has a way to make the opponent run out of moves (from the
implicitly assumed A F') whatever choice the opponent makes.

As remarked in the introduction, argumentation logics must define three things:
how arguments can be constructed, how they can be attacked and how they can be
defended against attacks. Dung’s abstract formalism only answers the third question.
To answer the first two questions, accounts are needed of argument construction and
the nature of attack and defeat. We next discuss a general framework for formulating
such accounts.

2.3 An Abstract Framework for Structured Argumentation

The ASPICt framework [7, 8, 13] aims to integrate and further develop the main
current formal models of structured argumentation. While some of its design choices
can perhaps be debated, the framework is still representative of work in the field, for
which reason we present it here. ASPICT gives structure to Dung’s arguments and
defeat relation. It defines arguments as inference trees formed by applying strict (—)
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or defeasible (=) inference rules to premises formulated in some logical language.
Informally, if an inference rule’s antecedents are accepted, then if the rule is strict,
its consequent must be accepted no matter what, while if the rule is defeasible,
its consequent must be accepted if there are no good reasons not to accept it.
Arguments can be attacked on their ‘ordinary’ premises and on their applications
of defeasible inference rules. Some attacks succeed as defeats; whether this is so
is partly determined by preferences. The acceptability status of arguments is then
defined by applying any of [4] semantics for abstract argumentation frameworks to
the resulting set of arguments with its defeat relation.

ASPIC™ is not a system but a framework for specifying systems. To start with, it
defines the notion of an abstract argumentation system as a structure consisting of
a logical language £ with a negation symbol —, a set R consisting of two subsets
Rs and Ry of strict and defeasible inference rules, and a naming convention n in £
for defeasible rules in order to talk about the applicability of defeasible rules in L.
Thus, informally, n(r) is a wit in £ which says that rule r € R is applicable. (As is
usual, the inference rules in R are defined over the language £ and are not elements
in the language.)

Definition 3.1 An argumentation system is a triple AS = (L, R, n) where:

— L is alogical language with a negation symbol —.

- R = Rs; URy is a set of strict (R,) and defeasible (R ;) inference rules of the
form ¢y, ..., ¢, = ¢ and ¢y, ..., ¢,, = @ respectively (where ¢;, ¢ are meta-
variables ranging over wff in £), and Ry, N Ry = &.

— n: Ry —> L is anaming convention for defeasible rules.

We write i = —¢ justin case ¥ = —¢ or ¢ = — (we will sometimes informally
say that formulas ¢ and —¢ are each other’s negation).

Henceforth, a set S C L is said to be directly consistent iff 39 ¥, @ € Ssuchthat =
—o, otherwise S is directly inconsistent. And § is said to be indirectly (in)consistent
if its closure under application of strict inference rules is directly (in)consistent.

Definition 3.2 A knowledge base in an AS = (L, R, n) is a set  C L consisting
of two disjoint subsets XC,, (the axioms) and K, (the ordinary premises).

Intuitively, the axioms are certain knowledge and thus cannot be attacked, whereas
the ordinary premises are uncertain and thus can be attacked.

Definition 3.3 An argumentation theory is a tuple AT = (AS, K) where AS is an
argumentation system and /C is a knowledge base in AS.

ASPIC™ arguments are now defined relative to an argumentation theory AT =
(AS, K), and chain applications of the inference rules from AS into inference graphs
(which are trees if no premise is used more than once), starting with elements

3In most papers on ASPIC negation can be non-symmetric. In this paper we present the special
case with symmetric negation.
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from the knowlege base C. Arguments thus contain subarguments, which are the
structures that support intermediate conclusions (plus the argument itself and its
premises as limiting cases). In what follows, for a given argument the function
Prem returns all its premises, Conc returns its conclusion, Sub returns all its sub-
arguments, DefRules returns all defeasible rules of an argument and TopRule
returns the final rule applied in the argument.

Definition 3.4 An argument A on the basis of an argumentation theory with
a knowledge base £ and an argumentation system (£, R,n) is any structure
obtainable by applying one or more of the following steps finitely many times:

1. ¢ if ¢ € K with Prem(A) = {¢}; Conc(A) = ¢; Sub(A) = {¢};
DefRules(A) = &; TopRule(A) = undefined.
2. A1, ... A, —/= w4 if Aq,..., A, are arguments such that there exists a

strict/defeasible rule Conc(Ay), ..., Conc(A,) —/= ¥ in Ry/Ry.
Prem(A) = Prem(A() U...UPrem(A4,),

Conc(A) = ¥,

Sub(A) = Sub(Aj)U...USub(A,) U{A}.

DefRules(A) =DefRules(A|) U...UDefRules(A,);
TopRule(A) = Conc(Ay), ..., Conc(A,) —>/= .

Then A is: strict if DefRules(A) = O; defeasible if DefRules(A) # O; firm if
Prem(A) C K,; plausible if Prem(A) C ICp.

Example 3.5 Consider a knowledge base in an argumentation system with Ry =
{P.g = s;u,v—>whRa={p=t srt=vhEK ={qhKp={p ru}
An argument for w is displayed in Fig. 2.2. The type of a premise is indicated with
a superscript and defeasible inferences and attackable premises and conclusions are
displayed with dotted lines. Formally the argument and its subarguments are written
as follows:

Aiip Asi A=t

Ary:q Ae: A1, Ay — s
Az:r  A7:As, A3z, Ag => v
Agiu  Ag: A7, Ay > w

‘We have that
Prem(Ag) = {p,q,r,u}
Conc(Ag) = w
Sub(Ag) = {A1, A2, A3, A4, As, Ae, A7, As}
DefRules(Ag) = {p=1t; s, r,t = v}
TopRule(Ag) = U,v—> w

4> /= means that the rule is a strict, respectively, defeasible rule.
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Fig. 2.2 An argument
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Arguments can be attacked in three ways: on their premises (undermining attack),
on their conclusion (rebutting attack) or on an inference step (undercutting attack).
The latter two are only possible on applications of defeasible inference rules.

Definition 3.6 A attacks B iff A undercuts, rebuts or undermines B, where:

* A undercuts argument B (on B') iff Conc(A) = —n(r) for some B’ € Sub(B)
such that B”’s top rule r is defeasible.

* A rebuts argument B (on B’) iff Conc(A) = —¢ for some B’ € Sub(B) of the
form B, ..., B = ¢.

* Argument A undermines B (on B’) iff Conc(A) = —¢ forsome B’ = ¢, ¢ € IC),.

In Example 3.5 argument Ag can be undercut on two of its subarguments, namely,
As and A7. An undercutter of As must have a conclusion —¢p where n(p = t) = ¢
while an undercutter of A5 must have a conclusion —¢ where n(s, r, t = w) = ¢.
Argument Ag can be rebutted on A5 with an argument for —¢ and on A7 with an
argument for —v. Moreover, if the rebuttal of A5 has a defeasible top rule, then As
in turn rebuts the argument for —¢. However, Ag itself does not rebut that argument,
except in the special case where w = ——t. Finally, argument Ag can be undermined
with an argument that has conclusion —p, —r or —u.

Attack relations between arguments can be resolved with an ordering on
arguments. To formalise this, the notion of a structured argumentation framework is
introduced.

Definition 3.7 Let AT be an argumentation theory (AS, K B). A structured argu-
mentation framework (SAF) defined by AT is a triple (A, A#t, < ) where

— A is the set of all arguments on the basis of AT;
— =< isan ordering on A;
- (X,Y) € Antiff X attacks Y.

Modgil and Prakken [7] also study a variant of this definition in which arguments
are required to have indirectly consistent premises.
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Now attacks combined with the argument ordering yield three kinds of defeat.
For undercutting attack no preferences are needed to make it succeed, since under-
cutters are explicit exceptions to the rule they undercut. Rebutting and undermining
attacks succeed only if the attacked argument is not stronger than the attacking
argument.

Definition 3.8 A defeats B iff: A undercuts B, or; A rebuts/undermines B on B’
and A £ B’ A strictly defeats B iff A defeats B and B does not defeat A

The success of rebutting and undermining attacks thus involves comparing the
conflicting arguments at the points where they conflict. The definition of successful
undermining exploits the fact that an argument premise is also a subargument.

The ASPIC* framework assumes the argument ordering as given. It may depend
on all sorts of standards, such as statistical strength of generalisations, reliability of
information sources, preferences over outcomes of actions, or norm hierarchies. In
many contexts such standards can themselves be argued about. One way to formalise
this is by using Modgil’s [6] idea to decompose the defeat relation of Dung’s [4]
abstract argumentation frameworks into a more basic attack relation and to allow
attacks on attacks in addition to attacks on arguments. Combined with ASPIC™, the
idea is that if argument C claims that argument B is preferred to argument A, and A
attacks B, then C undermines the success of A’s attack on B (i.e., A does not defeat
B) by pref-attacking A’s attack on B.

Recall that argumentation logics must define three things: how arguments can be
constructed, how they can be defeated and how they can be defended against defeat-
ing counterarguments. While Dung’s abstract argumentation semantics addresses
the last issue, we can now combine it with the ASPICT framework to address the
first two issues.

Definition 3.9 An abstract argumentation framework (AF) corresponding to a SAF
= (A, Att, < ) is a pair (A, Def) such that Def is the defeat relation on A determined
by (A, Art, < ).

The justified arguments of the above defined AF are then defined under various
semantics, as in Definition 2.2. We now see that an argument can be defended
against attacks in two ways: by showing that the attacker is inferior to it or by
defeating the attacker with a counterattack that reinstates the original argument.
We can now finally define an argumentation-based consequence notion for well-
formed formulas (relative to an AT and with respect to any given semantics):

Definition 3.10 A wff ¢ € L is justified if ¢ is the conclusion of a justified
argument, and defensible if ¢ is not justified and is the conclusion of a defensible
argument.

An alternative definition of a justified wff is to say that every extension contains an
argument with the wif as its conclusion. Unlike the above definition, this alternative

5X < Y means as ususal that X < Y and Y £ X.
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definition allows different extensions containing different arguments for a justified
conclusion. This is similar to the different treatments that semantics for abstract
argumentation give to Fig. 1.1d.

One possible analysis of this difference is that some semantics, or some
definitions of justification, are better than others, but an alternative analysis is that
different definitions capture different senses or strengths of justification, which each
may have their use in certain contexts. For example, in the law, criminal cases
require higher proof standards than civil cases. And while in domains like the law
and medicine defeasible arguments are acceptable, in the field of mathematics all
arguments must, of course, be deductive. Thus we see how our formal framework
for argumentation can make sense of Toulmin’s claim that the standards for the
validity of arguments are context-dependent.

In addition, the kind of reasoning can be relevant, such as the distinction
between epistemic and practical reasoning. If, for instance, two incompatible actions
(say reducing and increasing taxes) have two different good consequences (say
increasing productivity and increasing equality in society) and there is no reason
to prefer one consequence over the other, then an arbitrary choice is (all other things
being equal) rational. If, on the other hand, two experts disagree about whether
reducing taxes increases productivity, then an arbitrary choice for one of them
seems irrational. So it might be argued that in practical reasoning a defensible
conclusion can be good enough while in epistemic reasoning we should aim for
justified conclusions.

2.4 The Nature of Inference Rules

While we now have a general framework for the definition of argumentation logics,
much more can be said. To start with, the framework can be instantiated in many
ways, so there is a need for principles that can be used in assessing the quality of
instantiations. Caminada and Amgoud [3] formulated several so-called rationality
postulates, namely, that each extension should be closed under subarguments and
under strict rule application, and be directly and indirectly consistent. ASPIC™T
unconditionally satisfies the two closure postulates while Prakken [13] and Modgil
and Prakken [7] identify conditions under which some broad classes of instantia-
tions satisfy the two consistency postulates.

The next question is, what are ‘good’ collections of strict and defeasible inference
rules? In Al there is a tradition to let inference rules express domain-specific
information, such as all penguins are birds or birds typically fly. This runs counter
to the usual practice in logic, in which inference rules express general patterns of
reasoning, such as modus ponens, universal instantiation and so on. This practice
is also followed in systems for so-called classical argumentation [2], in which
arguments from a possibly inconsistent knowledge base are classical proofs from
consistent subsets of the knowledge base. These systems are in fact a special case of
the ASPIC™ framework with £ being the language of standard propositional or first-
order logic, the strict rules being all valid propositional or first-order inferences, with
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no defeasible rules and no axiom premises, and with the premises of all arguments
required to be indirectly consistent. In this approach (which can be generalised
to other deductive logics) arguments can thus only be sensibly attacked on their
premises.

While this approach has some merits, it is doubtful whether all argumentation
can be reduced to inconsistency handling in some deductive logic. In particular John
Pollock strongly emphasized the importance of defeasible reasons in argumentation.
He was quite insistent that defeasible reasoning is not just some exotic, exceptional,
add-on to deductive reasoning but is, instead, an essential ingredient of our
cognitive life:

. we cannot get around in the world just reasoning deductively from our
prior beliefs together with new perceptual input. This is obvious when we look
at the varieties of reasoning we actually employ. We tend to trust perception,
assuming that things are the way they appear to us, even though we know that
sometimes they are not. And we tend to assume that facts we have learned
perceptually will remain true, as least for a while, when we are no longer
perceiving them, but of course, they might not. And, importantly, we combine
our individual observations inductively to form beliefs about both statistical
and exceptionless generalizations. None of this reasoning is deductively valid.
[12, p. 173]

Here the philosophical distinction between plausible and defeasible reasoning is
relevant; see Rescher [19, 20] and Vreeswijk [23, Ch. 8]. Plausible reasoning is
valid deductive reasoning from an uncertain basis while defeasible reasoning is
deductively invalid (but still rational) reasoning from a solid basis. In these terms,
models of deductive argumentation formalize plausible reasoning, while Pollock
modeled defeasible reasoning and the ASPICT framework gives a unified account
of these two kinds of reasoning.

There is also semantic support for the idea of defeasible inference rules.
Consider, for example, the statistical generalisation men usually have no beard.
Concluding from this that people with a beard are usually not men is a so-
called ‘base rate fallacy’ [22]. If (epistemic) defeasible reasoning is reduced to
inconsistency handling in deductive logic, such fallacies are easily committed.
Likewise, it has been argued that reasons of practical and normative reasoning are
inherently defeasible; cf. e.g. [18].

While the case for defeasible inference rules thus seems convincing, the question
remains what are ‘good’ defeasible inference rules, especially if they are to express
general patterns of inference. Here two bodies of philosophical work are relevant,
namely, Pollock’s [10, 11] notion of defeasible reasons and argumentation-theory’s
notion of argument schemes [26]. Pollock’s defeasible reasons are general patterns
of epistemic defeasible reasoning. He formalised reasons for perception, memory,
induction, temporal persistence and the statistical syllogism, as well as undercutters
for these reasons. In the ASPIC framework Pollock’s defeasible reasons can be
expressed as schemes (in the logical sense, with metavariables ranging over £) for
defeasible inference rules. The same analysis applies to argument schemes, which
are stereotypical non-deductive patterns of reasoning. Uses of argument schemes are
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evaluated in terms of critical questions specific to the scheme. In the literature on
argumentation theory many collections of argument schemes have been proposed,
both for epistemic, practical and evaluative reasoning. An example of an epistemic
argument scheme is the scheme from expert opinion [26, p. 310]:

E is an expert in domain D, E asserts that P is true, P is within D, therefore
presumably P is true

Walton [26] give this scheme six critical questions: (1) Is E credible as an expert
source? (2) Is E an expert in domain D? (3) What did E assert that implies P? (4) Is
E personally reliable as a source? (5) Is P consistent with what other experts assert?
(6) Is E’s assertion of P based on evidence?

A practical argument scheme is the scheme from good (bad) consequences (here
in a formulation that deviates from Walton [26] to stress its abductive nature):

Action A results in P, P is good (bad), therefore all other things being equal
A should (not) be done.

This scheme is usually given two critical questions: (1) Does A result in P? (2)
Does A also result in something which is bad (good)? (3) (When P is concluded to
be good) Is there another way to realise P?

In ASPIC, argument schemes can also be formalised as schemes for defeasible
inference rules; then critical questions are pointers to counterarguments. In the
scheme from expert opinion questions (2) and (3) point to underminers (of,
respectively, the first and second premise), questions (4), (1) and (6) point to
undercutters (the exceptions that the expert is biased or incredible for other reasons
and that he makes scientifically unfounded statements) while question (5) points to
rebutting applications of the expert opinion scheme. In the scheme from good (bad)
consequences question (1) points to underminers of the first premise, question (2)
points to rebuttals using the opposite version of the scheme while question (3) points
to undercutters.

This account of argument schemes can also clarify Toulmin’s [21] distinction
between warrants (rule-like premises) and backings of warrants. For example, a
warrant can be that smoking causes cancer while its backing can be an expert
opinion: then the defeasible inference rule expressing the scheme from expert
opinion allows to infer the warrant from the backing.

Let us illustrate the just-proposed modelling of defeasible reasons and argument
schemes with an example. The logical language £ is informally assumed to be a
first-order language augmented with a conditional for defeasible generalisations,
R consists of all deductively valid inferences over £ and R, consists of the above
schemes from expert opinion (e) and from good (gc) and bad (bc) consequences,
plus a modus ponens scheme (dmp) for defeasible generalisations. Consider then
the following arguments (where premise arguments are assumed to be in K, and
defeasible inferences are labelled with the inference rule they apply).
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A

Aj: P is an expert in economics

: P says “lowering taxes increases productivity”

Az: “lowering ... productivity” is about economics

Ays: A1, Az, Az =, lowering ... productivity Bj: lowering taxes increases inequality

As: Increased productivity is good By: Increased inequality is bad

Ag: A4, As =g taxes should be lowered B3: By, By = taxes should not be
lowered

Cy: P has political ambitions Di: P is never on TV

C»: people with political ambitions are usually D»: people who are never on TV usually

not reliable about taxes have no political ambitions

C3: C1, C2 =amp P is not reliable about taxes D3: Dy, Dy =ymp P has no political

ambitions

Cy: Rule e does not apply to unreliable people

Cs: C3, C4 — Rule e does not apply to P

W

Arguments Ag and B3 rebut each other. Assume B3 < Ag so Ag strictly defeats
B3. Assuming the obvious naming convention, argument Cs undercuts Ag on A4 and
so defeats both, while D3 undermines C5 on C and Cj in turn rebuts D3. At this
point we know that all unattacked premise arguments are justified in any semantics,
since they have no defeaters. For the remaining arguments, suppose first D3 < Cj.
Then Cj strictly defeats D3, so in any semantics D3, A4 and Ag are overruled, while
all C; and Bs are justified. Suppose next C1 < Ds3. Then Dj strictly defeats C3
and Cs by strictly defeating Cq, so in any semantics D3 and all A; are justified,
while Cy, C3, C5 and Bz are overruled. Suppose finally that neither C; < D3 nor
D3 < C1. Then C1 and D3 defeat each other so, even though D5 still strictly defeats
C3 and Cs, in any semantics all non-premise arguments plus C; are defensible.

2.5 Argumentation as a Form of Dialogue

As stated in the introduction, argumentation theorists often claim that arguments
can only be evaluated in the context of a dialogue or procedure. More specifically,
Walton [24] regards argument schemes as dialogical devices, determining dialectical
obligations and burdens of proof. An argument is a move in a dialogue and the
scheme that it instantiates determines the allowed and required responses to that
move. At first sight, our account of argument schemes as defeasible inference rules
would seem to be incompatible with Walton’s dialogical account. However, these
two accounts can be reconciled by embedding argumentation logics in dialogue
systems for argumentation.

While argumentation logics define notions of consequence from a given body of
information, dialogue systems for argumentation [25] regulate disputes between real
agents, who each have their own body of information, and who may be willing to
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learn from each other so that their information state may change. Moreover, during
the dialogue they may construct a joint theory on the issue in dispute, which also
evolves over time. Essentially, dialogue systems define a communication language
(the well-formed utterances) and a protocol (when a well-formed utterance may be
made and when the dialogue terminates).

Consider the following simple example, with a dialogue system that allows
players to move arguments and to challenge, concede or retract premises and
conclusions of these arguments. Each challenge must be answered with a ground
for the challenged statement or else the statement must be retracted. The two agents
have their own knowledge base but a shared ASPIC™ argumentation system with a
propositional language and three defeasible inference rules: p = ¢, r = p and
s = —r. Paul’s and Olga’s knowledge bases contain, respectively, single ordinary
premises p and r. Let us assume that all arguments are of equal preference. Paul
wants to persuade Olga that g is the case. He can internally construct the following
argument for g: Aj: r, A»: A1 = p, Az: Ay = ¢g. However, a well-known
argumentation heuristic says that arguments in dialogue should be made as sparse
as possible in order to avoid attacks. Therefore, Paul only utters the last step in the
argument, hoping that Olga will accept p so that Paul does not have to defend r.
This leads to the following dialogue.

Pi: g since p O1: whyp
Py:  psincer 0y: - since s

P3:  retract r, retract q

What has happened here? If Olga had been a trusting person who concedes a
statement if she cannot construct an argument for the opposite, then she would
have conceded p and g after P;. But g is not a justified conclusion from the joint
knowledge bases, so this outcome is undesirable. In fact, Olga was less trusting and
first asked Paul for his reasons for p. Since Paul was honest, he gave his true reasons,
which allowed Olga to discover that she could attack Paul with an undermining
counterargument. Paul could not defend himself against this attack, so he realised
that he cannot persuade Olga that ¢ is true; he therefore retracted r and g.

Argumentation logic applies here in several ways. It can model the agents’
internal reasoning but it can also be applied at each dialogue stage to the joint theory
that the agents have created at that stage. For example, after O, the logic says that
q is overruled on the basis of K, = @, K, = {p, r, s} while after P4 the logic says
that no argument for ¢ can be constructed on the basis of K, = @, K, = {p, s}.
Argumentation logic can also be used as a component of notions of soundness and
completeness of protocols, such as:

— A protocol is sound if whenever at termination p is accepted, p is justified by the
participants’ joint knowledge bases.

— A protocol is weakly complete if whenever p is justified by the participants’ joint
knowledge bases, there is a legal dialogue at which at termination p is accepted.
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— A protocol is strongly complete if whenever p is justified by the participants’
joint knowledge bases, all legal dialogues terminate with acceptance of p.

These notions can also be defined relative to the joint theory constructed during
a dialogue, or made conditional on particular agent strategies and heuristics (for
example, a protocol could be sound and complete on the condition that all agents
are honest but not trusting).

We can now without giving up the idea of an argumentation logic make sense
of the claim that arguments should be evaluated in the context of a dialogue or
procedure. The dialogue provides the relevant statements and arguments at each
stage of the dialogue. The logic then determines the justified arguments at that
stage. The logic also points at the importance of investigation. Since arguments
can be defeated by counterarguments, the search for information that gives rise to
counterarguments is an essential part of testing an argument’s viability: the more
thorough this search has been, the more confident we can be that an argument is
justified if we cannot find defeaters. The ultimate justification of an argument is then
determined by applying the logic to the final information state. Thus the ultimate
justification of an argument depends on both logic and dialogue, or more generally
on both logic and investigation.

On this account the critical questions of argument schemes have a dual role. On
the one hand they define possible counterarguments to arguments constructed with
the scheme (logic) while on the other hand they point at investigations that could
be done to find such counterarguments (dialogue and procedure). This account also
gives a further explanation why argument evaluation is context dependent, since
different contexts may require different protocols for dialogue: when a decision
has to be reached in reasonable time (as in a business meeting), a protocol may
be more restrictive than in settings like academic debate. For example, the right to
give alternative replies to a move may be restricted so that agents are forced to think
what is their best reply.

Finally, on this account persuasiveness of arguments can be modelled as follows.
Each dialogical agent has an internal argumentation theory and evaluates incoming
arguments in terms of how they fit with the A F’ that it can internally generate. Given
an acceptance attitude the agent will either accept the argument’s premises and/or
conclusion, or attack it with a counterargument, or ask for further grounds for a
premise. Personality models can help modelling which types of arguments an agent
of a certain type tends to accept. This gives a third way in which argument evaluation
is context-dependent: the persuasive force of an argument depends on the listener.
Current work of this kind is still preliminary but fascinating and promising (see
e.g., the proceedings of the annual ArgMas workshops on argumentation in multi-
agent systems). In fact this work provides a formal or even computational account
of Perelman’s New Rhetoric [9].
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2.6 Conclusion

In this chapter we discussed five philosophical problems concerning argumentation.
We first showed how argumentation-based standards for non-deductive inference
can be defined, by presenting an abstract framework for argument evaluation given
a set of arguments and their attack and defeat relations, and by supplementing it
with accounts of argument construction and the nature of attack and defeat. We then
clarified how a dialogical account of argument evaluation can be given in formal
terms, by discussing the embedding of argumentation logics in dialogue systems
for argumentation. This embedding also clarified the nature of argument schemes:
argument schemes can be seen as defeasible inference rules and their critical ques-
tions as pointers to counterarguments. We also clarified how the use of arguments to
persuade can be formalised, by adding the notions of argumentation strategies and
heuristics and suggesting the use of personality models of argumentative agents.
Finally, we gave several reasons why argument evaluation is context-dependent:
different domains may have different sets of argument schemes, different contexts
may require more or less strict semantics and/or protocols for dialogue and the
persuasive force of arguments may depend on the listener.
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Chapter 3 )
Formal Methods and the History Qe
of Philosophy

Catarina Dutilh Novaes

Although not (yet) entirely mainstream, uses of formal methods for the study of
the history of philosophy, the history of logic in particular, represent an important
trend in recent philosophical historiography. In this chapter, I discuss what can
(and cannot) be achieved by the application of formal methods to the history of
philosophy, addressing both motivations and potential pitfalls. The first section
focuses on methodological aspects, and the second section presents three case
studies of historical theories which have been investigated with formal tools:
Aristotle’s syllogistic, Anselm’s ontological argument, and medieval theories of
supposition.

3.1 Methodological Considerations

3.1.1 Why (Not) Apply Formal Methods to the History
of Philosophy?

Let us begin by discussing motivations and potential objections to the use of formal
methods in the study of the history of philosophy. A recurring concern pertains to
the risk of anachronism: formal methods are for the most part recent inventions, and
applying these modern frameworks to theories of the past is bound to bring along a
range of presuppositions and assumptions that have no counterpart in the historical
framework in question.

However, while this issue may be more acute in the case of formal methods, it in
fact pertains to philosophical historiography in general. Indeed, a certain amount of
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anachronism is inherent to any historical analysis, and it is not immediately obvious
why the anachronism brought in by formal methods would be substantially different
from the anachronism brought in by other recent methodologies and frameworks.
Thus, even acknowledging that philosophical theories bear a mark of historicity,
formal methods can still be seen as legitimate interpretive tools for historical
investigations.

Nonetheless, the risk of excessive anachronism when employing formal methods
is real, and perhaps more acute than with other methodologies. Thus, the historian
of philosophy who employs formal methods must remain particularly alert so as
to minimize or in any case take into account the inevitable traces of anachronism
in her investigations. The choice of the formalism to be used must be judicious,
as for a given historical analysis some formalisms will bring in a lesser degree of
anachronism and inadequacy than others.

This being said, formal methods can in fact be valuable tools in the context of
textual exegesis. Much of what the historian of philosophy does consists in working
with fexts, and formalization may help elucidate particularly thorny passages or
arguments.' (However, it must be stressed that a formalization of a historical theory
usually does not consist in taking the very linguistic expression of the theory in
the original text as its object.”) In other words, formal methods can serve as a
hermeneutical tool among others; by engaging in the formalization of a given
historical theory, the interpreter may obtain a deeper understanding of the theory,
possibly an understanding that other interpretive methods could not provide.

Indeed, formal methods seem particularly well-placed to unveil certain aspects
of the target theory. A formalization presupposes a deconstruction of the historical
theory so that some of its key elements are isolated from the others, thus outlining
its logical scaffolding. Furthermore, formal methods may disclose ‘hidden’ aspects
of a historical theory, which are not visible to the ‘naked eye’ (to pursue Frege’s
metaphor of a formalism as a microscope, in the preface of the Begriffsschrift).

Hence, provided they are used with caution and that their inherent anachronism
is taken into account, formal methods can be irreplaceable items in a historian’s
toolkit. But their use is only justified if they truly shed new light on the object of
analysis; unless new insight is obtained, fancy formalization may simply be overkill.

"More recently, computational methods have been gaining quite a lot of traction for research in
history of philosophy, under the umbrella of ‘digital humanities’. These are exciting developments
that may well change substantially how historians of philosophy approach their topics, but for now
they are still at early stages. While these can be broadly understood as formal methods, in this
piece I do not discuss them any further for reasons of space.

2In fact, I have argued elsewhere ([11], chap. 3) that it is a mistake to think about formalizations in
general merely as taking portions of ‘natural language’ as their starting point and translating them
into a formal language.
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3.1.2 How (Not) to Apply Formal Methods in History
of Philosophy

How does a historian of philosophy who applies formal methods proceed? It cannot
be sufficiently emphasized that the formal historian remains above all a historian:
it is solely on the basis of solid conceptual knowledge of her object of study that
she can successfully apply formal methods in her investigations. While formal tools
can be instrumental even in the interpretive process of textual analysis, ultimately
the formal historian must be thoroughly familiar with the historical framework in
question before formalization begins.

Next, an important step is the choice of an adequate formalism. The first uses
of formal methods to study the history of philosophy, in the second half of the
twentieth century, tended to adopt uncritically the ‘standard’ logical systems of
the time, in particular classical predicate logic. But as we will see with the case
studies below, uncritically adopting an inadequate framework is likely to lead to
poor results. An inadequate formalism will bring along unwarranted assumptions
and presuppositions, and/or fail to capture some key components of the historical
theory if they have no counterpart in the formalism.

The point is not that there will be at most one adequate formal framework for
each historical theory; there may well be different, equally adequate frameworks, or
frameworks adequate for different aspects of the theory. In other words, conceptual
as well as semi-pragmatic considerations will play a role, but some formalisms
are hopelessly unsuitable for a given historical theory. The choice of a formalism
is already an interpretive choice; there is no such thing as a theoretically neutral
formalization.

A formalization is always a process of abstraction, but one which promises to
offer further insight precisely because it separates what is crucial from what is
secondary in a given theory (relative to a given purpose), allowing for a more
uniform analysis. In any formalization, some elements of the target phenomenon
are represented by certain features of the model — what Shapiro® refers to as the
representors — while other features of the model are artifacts (again in Shapiro’s
terminology), introduced for convenience. So a good formalization is not one where
every aspect of what is being formalized is represented, but rather one where the
tradeoff between simplification and accuracy of representation is favorable.

In particular, the chosen formalism must have the right level of granularity with
respect both to the target historical theory and the purpose of the formalization: it
must abstract the right amount of information away — not too much, not too little.
The formalization is too coarse if it fails to capture important aspects of the historical
theory, and it is too fine-grained if it projects distinctions and concepts into the
theory that are not there to start with (naturally, it can be both too coarse and too
fine-grained).

3Shapiro [30].
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Note that these general considerations must be viewed as no more than schematic
guidelines for what is to count as an adequate formalization. Actual criteria must be
discussed on a case-by-case basis, as will be illustrated by the case studies below.

3.1.3 Interpreting the Results

Assume that the historian has undertaken a formalization of an episode in the history
of philosophy, and is now looking at the end-product. What does the formalization
mean? Has it succeeded in outlining aspects of the historical theory that alternative
methodologies had failed to identify?

There is a sense in which the goal of a formalization (of a historical theory or
otherwise) is precisely to reveal novel, hidden aspects of its object of study. In some
sense, the goal is to obtain a situation of mismatch between one’s initial beliefs about
a given historical theory and the results of the formalization.* But if a formalization
makes a prediction that is not explicitly to be found in the informal theory being
formalized (or vice-versa) — i.e. if there is a mismatch between formalization and
what is formalized — then this may mean two things: either the formalization is not
sufficiently faithful to the informal theory — in which case it is a ‘bad’ formalization;
or the formalization in fact ‘sees’ something in the original theory that was not
immediately apparent — in which case it is a ‘good’ formalization in that it is
illuminating.

If, however, the historian’s prior views on the historical theory and the results
of the formalization match completely, then on the one hand one may say that the
formalization is entirely accurate and adequate, but on the other hand one may also
say that it is uninformative in that it produced no new insights. So there is a sense
in which precisely the cases of mismatch are the interesting ones; when mismatch
occurs, further analysis is required in order to establish whether it is indeed a novel
result revealed by the formalization or rather a sign that it is inadequate.’

Again, there is no one-fits-all answer here; in each case, further analysis
is required to establish whether a mismatch between initial expectations and
the results of the formalization signals inadequacy, or alternatively, novelty and
informativeness. This may also be done with a critical stance, i.e. the formalization
may be able to outline shortcomings and flaws in the historical theory itself (e.g. the
potential invalidity of Anselm’s ontological argument). But often, what may appear
to be a shortcoming in the historical theory is, on further scrutiny, an unwarranted
projection of presuppositions (e.g. some of Lukasiewicz’s criticisms of Aristotelian
syllogistic). Thus, although a certain amount of critical stance is to be commended,
the principle of charity remains an important guideline for the formal historian of
philosophy.

4See [13].
SFor an example of formal analysis actually revealing something new about a historical theory, see
[8] on Bradwardine’s solution to the Liar paradox.
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3.2 Case Studies

To appreciate the (initially) innovative character of applying modern mathematical
logic to the analysis of so-called ‘traditional logic’, it is important to bear in
mind that much (though not all) of modern mathematical logic emerged as a
rejection of traditional logic. But since then (first half of twentieth century), much
has changed, and formal methods have been regularly used for the analysis of
philosophical theories of the past. In what follows, I discuss three case studies:
Aristotle’s syllogistic; Anselm’s ontological argument; and medieval theories of
supposition. By its very nature, the history of logic is particularly amenable to
formal analysis, but Anselm’s ontological argument illustrates a fruitful application
of formal methods outside the history of logic.

3.2.1 Syllogistic

The founder of ‘formal history of philosophy’ is the Polish logician Jan
Lukasiewicz, well known for his work on mathematical logic; the historical theory
he set out to formalize was Aristotle’s syllogistic. In the Prior Analytics, Aristotle
presents the logical system which became known as syllogistic, whose language
contains only four kinds of sentences (a and b are arbitrary terms):

A:Allais b

I: Some ais b
E:Noaisb

O: Some a is not b

Aristotle develops a theory of the pairs of such sentences yielding conclusions
that ‘follow of necessity’ — the famous syllogistic arguments. Of the 256 possible
combinations, 24 are said by Aristotle to constitute valid arguments. Lukasiewicz
became interested in Aristotle’s syllogistic already in the 1920s, but his major work
on the topic was published only in 1951: his monograph Aristotle’s Syllogistic from
the Standpoint of Modern Formal Logic [20]. Lukasiewicz’s account of Aristotelian
syllogistic can be thus summarized:

The logic of Aristotle is a theory of the relations A, E, I, and O (in their
mediaeval senses) in the field of universal terms. [...] As a logic of terms,
it presupposes a more fundamental logic of propositions, which, however,
was unknown to Aristotle and was discovered by the Stoics in the century
after him. Aristotle’s theory is an axiomatized deductive system, in which the
reduction of the other syllogistic moods to those of the first figure is to be
understood as the proof of these moods as theorems by means of the axioms
of the system. ([23], 134)

Crucially, Lukasiewicz formulates syllogistic as an axiomatic theory embedded
in a propositional logic, thus disregarding its original term-based nature. He arrives
at the same results as Aristotle (at least in terms of which arguments are deemed
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valid or invalid), but his derivations are nothing like Aristotle’s own. In particular, he
criticizes Aristotle’s per impossibile proofs of the syllogisms Baroco and Bocardo
(in the medieval terminology) as incorrect, simply because they are not deemed
correct within his axiomatic approach. He himself acknowledges that, taking valid
syllogisms to be rules of inference rather than axioms, Aristotle’s proofs are
correct, but rather than viewing this as a sign that his axiomatic interpretation
might be inadequate, he prefers to attribute the error to Aristotle.® Lukasiewicz’s
formalization in fact imposes “an order on Aristotle’s syllogistic, rather than
discovering the order within it” ([33], 192).

In the early 1970s, John Corcoran [5, 6] and Timothy Smiley [31] independently
presented alternative formalizations of Aristotle’s syllogistic; contra Lukasiewicz’s
axiomatic approach, they emphasized the role of rules of inference in the system.
Corcoran, for instance, views syllogistic as a term-based natural deduction system.
Thus, a valid syllogism such as “All a is b, all b is c, thus all a is ¢”, which is
rendered as an axiom by Lukasiewicz (in Polish notation):

CKAbcAabAac’

is formalized by Corcoran as a rule of inference:
Azy + Axz |=Axy

In this way, “Corcoran succeeds, as Lukasiewicz did, in reproducing Aristotle’s
results, and he succeeds, as Lukasiewicz did not, in reproducing Aristotle’s method
step by step, so that the annotated deductions of his system D are faithful translations
of Aristotle’s exposition.” ([23], 134) Undoubtedly, Corcoran’s formalization (as
Smiley’s) is a great improvement over Lukasiewicz’s from the point of view of
historical accuracy.

Alongside a presentation of Aristotle’s syllogistic as a natural deduction system,
Corcoran also introduces a formal semantics for the system, on the basis of families
of non-empty sets. He proves that his deductive system is sound and complete with
respect to this semantics, and then goes on to argue that this establishes the adequacy
of his deductive system. But why is it that this particular semantics should serve
as yardstick for the adequacy of the deductive system? Corcoran does not offer
much motivation for the choice of this semantics, and indeed other semantics for
syllogistic have been proposed in the literature [2].

There is no doubt that formal analysis has greatly improved our understanding
of syllogistic as a logical system.® But the divergences between Lukasiewicz’s
formalization and Corcoran’s also outline the extent to which conceptual, historical
analysis of the texts remains crucial, and illustrate the open-ended nature of
formalization in history of philosophy.

See ([29], 37-39).
7Polish notation is based on prefixing operators. ‘C’ stands for implication and ‘K’ for conjunction,
so this expression roughly means ‘Abc & Aab => Aac’.

8See for example [1] for some interesting meta-theoretical results, and [18] for a formal analysis
of Buridan’s modal syllogism.
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3.2.2 Anselm’s Ontological Argument

Anselm’s so-called ontological argument (most famously presented in chapter II of
the Proslogion, written c. 1077-78) purports to demonstrate the existence of God
on the basis of a seemingly plausible definition of God as ‘that than which nothing
greater can be thought’. More precisely, it purports to show from this definition
alone that a contradiction can be derived from the assumption that God does not
exist.”?

Anselm’s argument is one of the most discussed arguments in the history of
philosophy, and continues to puzzle commentators. Structurally, it is prima facie a
plausible argument, but there is something highly unsettling about deriving such a
strong conclusion (God exists) from apparently modest premises, by an apparently
valid reasoning. Commentators widely disagree on where the problem lies; as
summarized by Uckelman ([35], section 5),

The verdict on the premises range from “obviously true” to “obviously false”,
and similarly for the validity of the argument(s). The difficulty of determining
the soundness and validity of the argument is also located in different places,
with some of the various possibilities put forward including the problem of
counterfactual reasoning, the role played by the term ‘God’, the analysis
of definite descriptions, substitution into opaque contexts, the definition of
perfection, and the nature of possibility. Others believe that the real error of
the proof is still to be found, while some believe that the error is as simple as
begging the question or the fallacy of equivocation.

(Uckelman provides extensive references to the different commentators holding
these views.) Given this interpretive conundrum, it seems that the application of
modern logical apparatuses could be of great use to the interpreter. In effect, an
adequate formalization might be able to unveil the logical structure of the argument,
making hidden assumptions explicit, and bringing to the fore each of the inferential
steps in the argument. However, the different formalizations of Anselm’s argument
proposed in the literature disagree significantly on how best to interpret and analyze
it, which again illustrates the fluidity of formalization in research on the history of
philosophy: even a single argument, originally expressed in what amounts to half a
page of text, is susceptible to receiving highly diverging formal analyses.

Two notable applications of formal tools to Anselm’s argument were proposed
by Jacquette [16] and Oppenheimer and Zalta [24, 25]. Jacquette argues that the
argument has a strong modal component, more precisely an intensional/epistemic
component, introduced by the notion of ‘that than which nothing greater can be
thought’. (In fact, arguably there are two intensional layers: one introduced by ‘can
be’ and the other introduced by ‘thought’.) On his reconstruction, the argument
commits the fallacy of substitution in opaque contexts, as two co-referential terms

°See [34] for a concise presentation of the argument.
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(the definiens and the definiendum in the proposed definition of God) cannot be used
interchangeably in opaque contexts. Thus, according to Jacquette, the argument is
not valid.

While Jacquette focuses on the intensional/epistemic component of the argu-
ment, Oppenheimer and Zalta highlight the fact that the definiens in the proposed
definition of God corresponds to a definite description.'? Rather than eliminating
the definite description, they maintain that, in an analysis/reconstruction of the
argument, the phrase should be explicitly represented as such. For this end, they
resort to the framework of free logic, which allows for terms or expressions having
no denotation. On their reconstruction, the argument comes out as valid, once the
proposed logical behavior of definite descriptions is properly spelled out.

Arguably, each of these two formal analyses of Anselm’s argument has illumi-
nated a particular central aspect thereof: the intensional/epistemic component for
Jacquette, and the definite description component for Oppenheimer and Zalta. In
itself, this is not particularly remarkable; as argued in Sect. 3.1.2, a formalization
always entails a decision to focus on certain aspects of its object at the expense of
others. Thus, it is perfectly conceivable that there might be more than one adequate
formalization for the same object. Nonetheless, the fact that these two analyses
disagree on their verdict regarding the validity of Anselm’s argument does suggest
that they cannot both be equally ‘right’. Perhaps a unified analysis taking both
elements into account would be required to adjudicate the issue.

In any case, formalizations of Anselm’s argument illustrate applications of
formal methods in history of philosophy going beyond the history of logic strictly
speaking. They also illustrate the fact that formalizations always entail theoretical
choices, but suggest as well that, while there is typically room for more than one
adequate formalization, at times two formalizations turn out to be true competitors
that cannot both be adequate.

3.2.3 Medieval Theories of Supposition

Supposition is a key concept in Latin medieval semantics, but the phrase ‘medieval
theories of supposition’ covers a rather heterogeneous group of theories, ranging
from the twelfth to the fifteenth century [9]. The fragments of theories of supposition
having attracted the attention of contemporary philosophers and logicians are pri-
marily those (seemingly) related to the modern concept of quantification, especially
the so-called modes of personal supposition [10]. This is in itself quite revealing:
in first instance, modern philosophers were mostly interested in the similarities,
rather than in the differences, between the historical theories in question and modern
frameworks. Indeed, from early on, the ‘quantificational fragment’ of supposition

10([24], 509).
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theories was viewed from the perspective of modern conceptions of quantification:
“The theory of supposition is, to a very large extent, one with the modern theory of
quantification . ..” ([3], 28)."!

The different modes of personal supposition offer a semantic account of a wide
range of what the medieval authors referred to as syncategorematic terms (‘every’,
‘not’, ‘no’, ‘some’, ‘only’ etc.).12 This is spelled out by means of inferential
relations between sentences where such terms occur, and sentences of the form ‘This
ais b’, where ‘a’ and ‘D’ are terms occurring in the original sentences; the latter, the
categorematic terms, are those said to have such-and-such supposition. (There are
also rules specifying in which syntactic contexts, defined by the syncategorematic
terms and word order, a term would have such-and-such supposition)

The main modes of personal supposition can be defined as follows. Let (S) and
(Q) stand for any syncategorematic term (or combination thereof), and the general
form of a sentence P be ‘(Q) a is (S) b’. The generic definitions of the modes of

personal supposition in terms of inferential relations are'>:

— A term a has determinate supposition in P if and only if: A disjunction of
sentences of the form ‘This a is (S) »’ can be inferred from P, but a conjunction
of sentences of the form ‘This a is (S) »’ cannot be inferred from P.

— A term a has confused and distributive supposition in P if and only if: A
conjunction of sentences of the form ‘This a is (S) b’ can be inferred from P.

— A term a has merely confused supposition in P if and only if: A sentence with
a disjunctive subject term of the form ‘This a, or that a etc... is (S) b’ can be
inferred from P, but neither a disjunction nor a conjunction of propositions of the
form ‘This a is (S) b’ can be inferred from P.

The same applies mutatis mutandis to predicate terms, so that P can be fully
analyzed in terms of disjunctions and conjunctions of simpler sentences (possibly
including disjunctive terms). For example, in ‘Every a is b’, ‘a’ has confused and
distributive supposition and ‘b’ has merely confused supposition; in ‘No a is b’ both
terms have confused and distributive supposition; in ‘Some a is b’ both terms have
determinate supposition; and in ‘Some a is not b’ ‘a’ has determinate supposition
and ‘b’ has confused and distributive supposition.

Earlier interpreters noted that, while modern theories of quantification are
expressed in the formal language of predicate calculus, medieval theories were
expressed in the regimented form of Latin used at the time. But if this is merely a
superficial difference in modes of expression — that is, if theories of supposition are
indeed “one” with modern theories of quantification — then the translation into the
language of predicate calculus should be a straightforward affair. Matthews ([21],
99) was the first to challenge this assumption, noting that “Ockham [and medieval

!1See also [22], and [4] for an overview focusing specifically on the scholarship on Ockham.
128ee [26] for an overview from a contemporary perspective.

13See (Ockham [36], chap. 70) and ([17], chaps. 4.3.5 and 4.3.6) for some of the original
formulations of these definitions.
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authors in general] quantifies over terms whereas modern logicians quantify over
variables”; thus, “Ockham and the moderns are not free to agree on the interpretation
of any categorical propositions”. In a similar vein, Henry [14] suggested that,
rather than variable-based theories of quantification, an alternative system, namely
Lesniewiski’s Ontology, would be the right modern system to formalize medieval
theories of supposition. Indeed, Ontology is term-based, and the basic sentential
form is the traditional subject-copula-predicate form, thus being closer in spirit to
the medieval framework. But it brings along yet other presuppositions alien to the
supposition framework, and at any rate it never became widely adopted by historians
of philosophy. For the most part, formal treatments of supposition theory continued
to rely on standard predicate logic [19, 32], with mixed results.

Another challenge for any formalization of supposition theory with modern
predicate logic is the definition of merely confused supposition. As seen above,
merely confused supposition relies on term-disjunction: “This a or that a or that
other a etc. is b”. Now, in its standard versions, modern predicate logic does not
contain the device of term-disjunction (or of term-conjunction, for that matter).
It is not an insurmountable problem, and Priest and Read [28] adapted standard
predicate logic so as to accommodate term-disjunction. Nevertheless, the need for
such adaptations suggests once again that the equation between medieval theories
of modes of supposition and modern standard approaches to quantification is by no
means straightforward.

Does this mean that medieval theories of supposition are not amenable to
investigations with modern logical tools? This conclusion would be unwarranted.
Given the striking similarities between portions of Latin medieval semantics and
the modern enterprise of formal semantics, it would seem that formal tools can
indeed be fruitfully applied here.!* Nevertheless, as stressed in section “How (not)
to apply formal methods in history of philosophy”, formalization requires prior and
extensive conceptual analysis: one must first grasp the historical theory in its own
terms so as to determine which modern formalism, if any, might be adequate for a
formalization. With respect to theories of supposition, rather than hastily concluding
that they are “one” with modern quantification theory, some of the questions to
be asked are: what did theories of supposition represent for the medieval authors
themselves? What were the purposes assigned to them by these authors? ([7], chap.
1; [4], 11-15)

There is no doubt that the modes of personal supposition deal with ‘quantifi-
cational phenomena’ broadly construed, but a formalization must also do justice
to the profound differences between how medieval authors conceptualized these
phenomena and the presuppositions underlying modern systems such as predicate
logic. Generally, it would seem that the latter is not a particularly suitable system
to formalize the former, especially given the centrality of the concept of variable in

14127] is a particularly ambitious and impressive recent example of applications of modern formal
tools borrowed from logic and linguistic to medieval logical theories.
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the latter and its complete absence in the former. Indeed, it would seem that tailor-
made formalisms are more likely to offer informative analyses of these (and other)
medieval theories.

3.3 Conclusion

I have here attempted to offer a nuanced picture of the role of formal methods in
the study of the history of philosophy. Views on the matter tend to be extreme, split
between those who maintain that the application of formal methods for historical
analysis is hopelessly anachronistic and thus unwarranted; and those who deem it
entirely unproblematic. I have suggested that formalization can be an illuminating
approach for the historian of philosophy, but also that it requires careful reflection
and conceptual analysis. I have also suggested that, while generally there is not
one unique correct formalization of a historical theory, some formalizations are
definitely more adequate than others. Ultimately, a formalization must strive to
balance the orthogonal desiderata of faithfulness and informativeness; not an easy
task, but one with potentially fruitful results.
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Chapter 4 ®
Nonmonotonic Reasoning oo

Alexander Bochman

Abstract Nonmonotonic reasoning is a theory of the rational use of assumptions.
We describe the relations between NMR and Logic, and two main paradigms of
NMR, preferential and explanatory one.

4.1 Nonmonotonic Reasoning Versus Logic

Nonmonotonic reasoning (NMR) is an essential part of the logical approach to
Artificial Intelligence. Its birth is due to the research methodology suggested in
McCarthy [16] whose objective was a logical formalization of common sense
reasoning for dealing with Al problems. NMR itself was born, however, as a
result of dissatisfaction with traditional logical methods. Reasoning necessary for
an intelligent behavior and decision making has appeared to be impossible to
represent as deductive inferences in a logical system. The essence of the problem
was formulated in Minsky [21] that questioned the suitability of representing
commonsense knowledge in a form of a deductive system. Minsky also pointed
to monotonicity of logical systems as a source of the problem:

Monotonicity: ... In any logistic system, all the axioms are necessarily
“permissive” - they all help to permit new inferences to be drawn. Each added
axiom means more theorems, none can disappear. There simply is no direct
way to add information to tell such the system about kinds of conclusions that
should not be drawn!

Long before the first nonmonotonic formalisms, there have been problems and
applications in Al that required some forms of nonmonotonic reasoning. Initial
solutions to these problems worked, and this was an incentive for trying to provide
them with a more systematic logical basis [15].
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NMR is intimately related to traditional philosophical problems of natural kinds
and ceteris paribus laws. These notions resist precise logical definition, but involve
description of normal cases. Reasoning with such concepts is inherently defeasible,
so it fails to ‘preserve truth’ under all circumstances, which has always been
considered a standard for logical reasoning.

Natural kinds have reappeared in Al as a practical problem of building taxonomic
hierarchies for large knowledge bases that are allowed to have exceptions. The the-
ory of reasoning in such taxonomies has been called nonmonotonic inheritance (see
[10]). The guiding principle in resolving conflicts in such hierarchies was a speci-
ficity principle: more specific information should override more generic information
in cases of conflict. Thus, a knowledge base may contain both Birds fly and Penguins
don’t fly, but then, given that Tweety is a penguin, we univocally infer that it does
not fly, since Birds fly is a less specific claim. Though nonmonotonic inheritance
relied more on graph-based representations than on traditional logical tools, it has
managed to provide a plausible analysis of reasoning in this restricted context.

Nonmonotonicity of a different kind occurs in databases, logic programming
and planning algorithms. A common assumption in such systems is that positive
assertions that are not explicitly stated or derivable should be considered false.
Thus, a database of students enrolled in a particular course implicitly presupposes
that students that do not appear in the list are not enrolled in the course. Databases
embody such negative information by appealing to the closed word assumption,
which states that if a positive fact is not derivable from the database, its negation is
assumed to hold. A similar principle is employed in programming languages for Al
such as Prolog and Planner. Thus, in Prolog, the goal not G succeeds if the attempt
to find a proof of G fails. Prolog’s negation not is a nonmonotonic operator: if G
is not provable from some axioms, it needn’t remain nonprovable from an enlarged
axiom set. This negation-as-failure has been used to implement important forms of
commonsense reasoning, which eventually has led to developing modern declarative
logic programming as a general representation formalism for Al (see [1]).

But first and foremost, nonmonotonicity has appeared in reasoning about actions.
The main problem here was the frame problem: how efficiently determine which
things remain the same in a changing world (e.g., a red block remains red after
we have put it on top of another block). The frame problem arises in the context
of predictive reasoning that is essential for planning and formalizing intelligent
behavior, though neglected in traditional logic. Prediction involves the inference
of later states from earlier ones. Changes in this setting do not merely occur,
but occur for a reason. Furthermore, we usually assume that most things will
be unchanged by the performance of an action. It is this inertia assumption that
connects reasoning about action and change with NMR. What complicates the
problem, however, is a ramification problem, the necessity of taking into account
derived effects (ramifications) of actions. Suppose we have a suitcase with two
locks, and it is opened if both locks are open. Then the action of opening one lock
produces an indirect effect of opening the suitcase if the other lock is open. Such
derived effects override the inertia assumption. The ramification problem has raised
general questions about the role of causation in dynamic reasoning, and has led,
eventually, to the so-called causal approach to the frame problem (see [8]).
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Last but not least, there was the qualification problem, the problem of specifying
conditions for a given action to have its intended effect. If I turn the ignition key
in my car, I expect the car to start. However, many conditions have to be true for
this: the battery must be alive, there must be gas in the tank, there is no potato in the
tailpipe, etc. — an open-ended list of qualifications. Still, we normally assume that
turning the key will start the car. This is obviously a special instance of a general
philosophical problem of ceteris paribus laws, laws or generalizations that are valid
under ‘normal’ circumstances which are usually impossible to specify exactly. It has
become, however, an urgent practical problem for the representation of action and
change in AL

The above problems and their first solutions provided the starting point and basic
objectives for the first nonmonotonic theories. These origins explain, in particular,
an eventual discrepancy that has developed between NMR and commonsense
reasoning. Though the latter has often appeared to be a promising way of solving
Al problems, the study of ‘artificial reasoning’ need not be committed to it. Still,
in trying to cope with principal commonsense reasoning tasks, the suggested
formalisms have succeeded in capturing important features of the latter and thereby
have broken new territory for logical reasoning. Today, nonmonotonic reasoning
is not yet another application of logic, but a relatively independent field of logical
research that has a great potential in informing, in turn, general logical theory and
many areas of philosophical inquiry.

4.2 What Is Nonmonotonic Reasoning?

In everyday reasoning, we usually have incomplete information about a given
situation, and we use a lot of assumptions about how things normally are in order
to carry out further reasoning. Without such assumptions, it would be impossible
to accomplish the simplest human reasoning tasks. Speaking generally, human
reasoning is not reducible to collecting facts and deriving their consequences,
but involves also making assumptions (and wholesale theories) about the world
and acting in accordance with them. In this sense, commonsense reasoning is a
simplified form of a general scientific methodology.

NMR is a theory of the rational use of assumptions. Now, assumptions are
just beliefs, so they are abandoned when we learn new facts that contradict them.
However, NMR assigns a special status to assumptions; it makes them default
assumptions. Default assumptions are seen as always acceptable unless they conflict
with current evidence. This presumptive reading has a semantic counterpart in the
notion of normality; defaults are considered as holding for normal circumstances,
and the nonmonotonic reasoning always assumes that the world is as normal as is
compatible with known facts. This kind of belief commitment is a novel contribution
of NMR to a general theory of reasoning.
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This form of reasoning is distinct from deductive inference already because the
latter is monotonic: if C is provable from a set a, it will be provable from a larger set
a U {A}. Assumption-based reasoning is not monotonic, however, because adding
new facts may invalidate some of the assumptions.

The default Birds fly is not a statement that is true or not of the world; some
birds fly, some do not. Rather, it is an assumption used in building our theory
of the world. NMR does not make any claims about the objective status of the
assumptions it uses, so it does not depend on the objective confirmation of the latter.
What it cares about, however, is the internal coherence of the choice of assumptions
in particular situations. Of course, if we make an entirely inappropriate claim a
default assumption, it will either be useless (inapplicable in most situations) or,
worse, it may produce wrong conclusions. This makes nonmonotonic reasoning a
risky business. Still, in most cases assumptions we make are useful and give desired
results, and hence they are worth the risk of making an error. But what is even more
important, more often than not we simply have no ‘safe’ replacement for such a
reasoning strategy. That is why it is worth to teach robots and computers to reason
in this way.

4.3 Two Problems of Default Assumptions

The primary problem of NMR is how we can make and consistently use default
assumptions. Three initial nonmonotonic formalisms, namely circumscription [17],
default logic [23] and modal nonmonotonic logic [20] have provided rigorous
answers to this problem. The formalisms used three different languages — the
classical language in circumscription,! a set of inference rules in default logic, and a
modal language in modal nonmonotonic logic. Still, a common idea was to represent
commonsense conditionals as ordinary conditionals with additional assumptions
that could readily be accepted in the absence of contrary information. The differ-
ences between the three theories amounted, however, to different mechanisms of
making default assumptions. In fact, default logic and modal nonmonotonic logics
embodied the same nonmonotonic mechanism. However, the differences between
both of them and circumscription were more profound. In order to articulate them,
we should consider yet another important problem of default assumptions.

In order to preserve consistency of the resulting solutions, default assumptions
should not be used when they contradict known facts and other defaults. Clearly, if
a default plainly contradicts the facts, it should be ‘canceled’. But if a number of
defaults are jointly inconsistent with the facts, although each of them taken alone is
consistent with them, then we have a selection problem: which of the defaults should
be retained, and which abandoned in each particular case? An apparent solution is
to choose all maximal consistent subsets of defaults; this solution was implicitly

I Circumscription amounts to using only minimal models satisfying a first-order description.
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used in the circumscription approach of [17]. Unfortunately, it has turned out to be
inadequate as a general solution to the selection problem. The main reason is that
commonsense defaults are not born equal, and in most cases there is an additional
structure of dependence and priority among the defaults themselves. As a result, not
all consistent combinations of defaults turn out to be adequate as options for choice.
We mentioned, for instance, that the choice of defeasible rules in nonmonotonic
inheritance is constrained by the specificity principle: the two rules Birds fly and
Penguins don’t fly are jointly incompatible with a fact that Tweety is a penguin, but
we univocally drop only the first rule in this situation, since it is a less specific claim
than Penguins don’t fly. Speaking generally, commonsense defaults involve much
more structure than just a set of assumptions. That is why a solution to the primary
problem of NMR, how to make default assumptions, does not necessary provide a
solution to the selection problem. The latter requires a deeper understanding of the
use of assumptions in commonsense reasoning.

A general way of handling the selection problem in the framework of circum-
scription, called prioritized circumscription, has been suggested by Lifschitz and
endorsed in McCarthy [18]. The solution amounted to imposing priorities among
minimized predicates. In fact, it was one of the origins of a general preferential
approach to NMR (see below).

Default and modal nonmonotonic logics suggested a different, explanatory
approach to the selection problem. In fact, this approach has ‘borrowed’ a much
larger piece of commonsense methodology than circumscription. In both scientific
and commonsense discourse, a particular law may fail to explain the actual outcome
due to interference with other mechanisms and laws that contribute to the combined
result. In other words, violations of laws are always explainable (at least in principle)
by other laws that are active. It is this justificational aspect of reasoning that has been
formalized in the notion of extension in default logic and corresponding models
of modal nonmonotonic logic. An extension is a model generated by a set of
defaults that is not only consistent, but also, and most importantly, explains away,
or refutes, all other defaults that are left out. The latter requirement constitutes
a very strong constraint on the coherence of potential choices, which goes far
beyond plain consistency. Using this requirement, an explanatory theory can be
‘tuned’ to intended combinations of defaults by supplying the underlying logic
with appropriate refutation rules for default assumptions. In a hindsight, this might
be seen as one of the reasons why these formalisms have been relatively slow in
realizing the complexity of the selection problem. In fact, the problem has ‘survived’
initial attempts of formalization, and has reappeared in a most dangerous form as a
Yale Shooting Anomaly in Hanks and McDermott [9], where it was demonstrated
that apparently plausible representations of defaults in default logic and other
formalisms still do not provide an intended choice of assumptions for the solution
of the frame problem. Nevertheless, despite initial, radically anti-logicist, reactions
(cf. [19]), subsequent studies have shown that the Yale Shooting problem can be
resolved, after all, in the framework of these formalisms.
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4.4 Logic in Nonmonotonic Reasoning

The first nonmonotonic systems have re-shaped the initial contrast between NMR
and logic. Namely, it has been shown that a nonmonotonic formalism can be defined
by supplying some logical formalism with a nonmonotonic semantics, which forms
a distinguished subset of the corresponding logical semantics determined by the
logical formalism itself. Thus, for circumscription, the underlying logical formalism
is just the classical logic (and its semantics), while the nonmonotonic semantics is
given be the set of minimal models.

Unfortunately, this latter description has also brought to life a problematic
‘shortcut’ notion of nonmonotonic logic as a formalism determined directly by
syntax and associated nonmonotonic semantics. On this view, a nonmonotonic
logic has become just yet another logic determined by an unusual (nonmonotonic)
semantics. However, this view has actually hindered in a number of ways an
adequate understanding of nonmonotonic reasoning.

In ordinary logical systems, the semantics determines the set of logical con-
sequences of a given theory, but also, and most importantly, it provides an
interpretation for the syntax itself. Namely, it provides propositions and rules of
a formalism with meaning, and its theories with informational content. By its
very design, however, the nonmonotonic semantics is defined as a certain subset
of logically possible models, and consequently it does not determine, in turn, the
meaning of the propositions and rules of the syntax. Two radically different theories
may (accidentally) have the same nonmonotonic semantics. Furthermore, such a
difference cannot be viewed as apparent, since it may well be that by adding further
rules or facts to both these theories, we obtain new theories that already have
different nonmonotonic models (see [3] for further discussion).

The above situation is remarkably similar to the distinction between meaning
(intension) and extension of logical concepts, a distinction that is fundamental for
modern logic. Nonmonotonic semantics provides, in a sense, the extensional content
of a theory in a particular context of its use. In order to determine the meaning, or
informational content, of a theory, we have to consider all potential contexts of
its use, and hence ‘retreat’ to the underlying logic. This distinction suggests the
following more adequate understanding of nonmonotonic reasoning:

Nonmonotonic Reasoning = Logic + Nonmonotonic Semantics

Logic and its associated logical semantics are responsible for providing the
meaning of the rules of the formalism, while the nonmonotonic semantics provides
us with nonmonotonic consequences of a theory in particular situations.

In addition to a better understanding of the structure of nonmonotonic for-
malisms, the above two-layered structure has important benefits in comparing
different formalisms. In particular, it allows us to see many of them as instantiations
of the same nonmonotonic mechanisms in different underlying logics.
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4.5 Preferential Nonmonotonic Reasoning

In solving the selection problem of default assumptions, preferential approach
follows the slogan “Choice presupposes preference”, which makes it an instance
of a general methodology that is at least as old as decision theory and the theory
of social choice. According to this approach, the choice of assumptions should be
made by establishing preference relations among them.

Generalizing prioritized circumscription, [25] defined a model preference logic
based on an arbitrary preference ordering on interpretations.

Definition An interpretation i is a preferred model of A if it satisfies A and there
is no better interpretation j > i satisfying A. A preferentially entails B (written
A p~ B) if all preferred models of A satisfy B.

Shoham’s approach was very appealing, and apparently suggested a unifying
perspective on NMR. Kraus et al. [11] provided an axiomatization of such inference
relations. This has established logical foundations for a research program that
attracted many researchers both in Al and in logic. A detailed description of the
preferential approach can be found in [15].

A representation of preferential entailment more suitable for real NMR can
be based on the following model, where belief states correspond to admissible
combinations of default assumptions (see [2]):

Definition An epistemic state is a triple (S, [, <), where S is a set of belief states,
< a preference relation on S, while [ is a labeling function assigning a deductively
closed belief set to every belief state from S.

Epistemic states can determine what to believe in particular situations. Changes
in facts do not automatically lead to changes in epistemic states: the actual
assumptions made in particular situations are obtained by choosing preferred belief
states that are consistent with the facts.

A preferentially entails B in an epistemic state if A D B holds in all preferred
belief states consistent with A. Though apparently different from the original
definition of Shoham, it is actually equivalent to the latter.

It is tempting to conclude from the above that preferential approach has
assimilated nonmonotonic reasoning to plain deductive reasoning in a certain
‘nonmonotonic’ logic. This conclusion would be premature, however.

Preferential entailment is called nonmonotonic for the obvious reason that its
rules do not admit Strengthening: A |~ B does not imply A A C |~ B. However, it
is a monotonic, logical system in the more important sense that addition of new
rules preserves previous derivations. Furthermore, the above semantics determines
the meaning of conditionals, and hence preferential entailment describes precisely
their logic. This inevitably implies, however, that it cannot capture the associated
nonmonotonic reasoning with such defaults.

Preferential inference is severely sub-classical and does not allow us, for
example, to infer Red birds fly from Birds fly. Clearly, there are good reasons for not
accepting such a derivation as a logical rule; otherwise Birds fly would imply also
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Penguins fly. Still, we could accept Red birds fly as a reasonable default conclusion
from Birds fly in the absence of contrary information. By doing this, we would
follow the general strategy of NMR of making reasonable assumptions on the basis
of available information. This kind of reasoning will be defeasible, or globally
nonmonotonic, since addition of new rules can block some of the conclusions made
earlier. We can follow the idea of NMR also on the semantic side, namely by
choosing ‘most normal’ epistemic states that satisfy a given set of conditionals. By
doing this, we will accept rules that would not be derivable by preferential inference
alone.

Summing up, the logic of preferential entailment should be extended to a
nonmonotonic formalism by defining the associated nonmonotonic semantics. In
fact, the literature is abundant with attempts to define such a theory.

Lehmann and Magidor [12] described a semantic construction, called rational
closure, that allows us to make default conclusions from a set of conditionals.? This
was a starting point in the quest for an adequate theory of defeasible entailment.
A large number of modifications have been suggested, but a consensus has not
been achieved. A general approach to this problem can be found in Geffner [6].
Finally, nonmonotonic inheritance (see [10]) can be viewed as a syntactic approach
to defeasible entailment. Though it deals with conditionals restricted to literals, it
has achieved a remarkable correspondence between what is derived and what is
expected intuitively.

Most systems of defeasible entailment assume that classical implications corre-
sponding to conditionals should serve as defaults in the associated nonmonotonic
reasoning. Already this choice allows us to derive Red birds fly from Birds fly
in the absence of conflicting information about redness. It is still insufficient,
however, for capturing some further reasoning patterns. Suppressing details’, what
needs to be added here is a principled way of constructing a preference order on
default sets. Recall, however, that establishing preferences among defaults is the
main tool used by the preferential approach for resolving the selection problem of
NMR. Accordingly the problem of defeasible entailment boils down again to the
general selection problem for defaults. Unfortunately, this problem has turned out
to be far from being trivial, or even univocal. Geffner’s conditional entailment and
nonmonotonic inheritance still remain the most plausible solutions suggested in the
literature on preferential reasoning.

The preferential approach to NMR has suggested a powerful research program
that significantly advanced our understanding of nonmonotonic reasoning and even
of commonsense reasoning in general. Its most important achievement consists in
formalizing a plausible logic of default conditionals that could serve as a logical
basis for a full, nonmonotonic theory of defeasible reasoning. Unfortunately, it has
not succeeded in achieving this latter goal.

2 An equivalent construction, called system Z, has been suggested in Pearl [22].
3
°See [2].
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4.6 Explanatory Nonmonotonic Reasoning

The explanatory approach encompasses almost all nonmonotonic formalisms that
are actively investigated in Al today, including logic programming, argumentation
and causal reasoning. Explanation can be seen as its basic ingredient. Propositions
may not only hold in a model, but some of them are explainable (or caused) by
other facts and rules. Furthermore, explanatory NMR is based on principles of
Explanation Closure or Causal Completeness (see [24]), according to which any
fact holding in a model should be explained.

By the above description, abduction and causation are integral parts of explana-
tory NMR. In some domains, explanatory reasoning adopts simplifying assumptions
that exempt certain facts from the burden of explanation. Thus, the Closed World
Assumption stipulates that negative assertions do not require explanation. In fact,
minimization of models employed in McCarthy’s circumscription can be seen as a
by-product of this stipulation.

Simple default theories. Recall that a Tarski consequence relation is a set of
rules a—A (where A is a conclusion, and a a set of premises) that satisfies the
usual postulates. Its associated provability operator is Cn(u) = {A | utFA}. A
consequence relation is supraclassical if it subsumes classical entailment.

For a set A of rules, let Cnp denote the provability operator of the least
supraclassical consequence relation containing A. Then A € Cna(u) precisely
when A is derivable from u using the rules from A and classical entailment.

Now, a simple way of defining a nonmonotonic theory consists in combining a
logical theory, given by a set of (Tarski) rules, and a set of default assumptions:

Definition A simple default theory is a pair (A, A), where A is a set of rules, and
A a distinguished set of propositions called defaults.

Reasoning in this setting amounts to deriving plausible conclusions using rules
and defaults. Explanatory reasoning requires here that a reasonable set of defaults
explains why the rest of the defaults should be rejected.

Definition

* A et Ap of defaults is stable if and only if it is consistent and refutes any other
default: (—A) € Cna (Ap), for any A € A\ Ag.

* A sets of propositions is an extension of a simple default theory iff s = Cna (Ag),
for some stable set of defaults Ay. Extensions determine the nonmonotonic
semantics of a default theory.

Simple default theories provide a transparent description of explanatory NMR.
Despite its simplicity, however, this formalism is equivalent to Reiter’s default logic
(see [4]). It is also closely related to the general argumentation (or assumption-
based) framework of [5].

Generalizing the logic. For actual reasoning tasks of Al, we have to generalize
the logical basis from Tarski rules to disjunctive rules a + b, where b is a set of
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propositions. Informally, such a rule says that if all a’s hold, then at least one of b’s
should hold. The theory of disjunctive inference is actually a well-developed part of
general logical theory. A set of such rules forms a Scott consequence relation if and
only if it satisfies the following postulates:

(Reflexivity) AFA.
(Monotonicity) Ifatbanda Ca’,b C b/, thenad b/
(Cut) Ifat-b,Aanda, A+ b,thena F b.

Let u denote the complement of a set u of propositions. Then u is a theory of a
Scott consequence relation if u ¥ u.* A Scott consequence relation in a classical
language is supraclassical, if it satisfies:

Supraclassicality Ifa F A, thena - A.
Falsity fr.

The Falsity postulate excludes, in effect, classically inconsistent models.

Simple default theories can be naturally extended to disjunctive rules. The
resulting formalism will be equivalent to a disjunctive generalization of default
logic [7], and even to powerful formalisms suggested in Lin and Shoham [14]
and Lifschitz [13] as unified formalisms for nonmonotonic reasoning and logic
programming.

Biconsequence Relations. For a detailed analysis of explanatory NMR, we can
employ reasoning with respect to a pair of contexts. On the interpretation suitable
for NMR, one of these contexts is the main (objective) one, while the other context
provides assumptions that justify inferences in the main context.

A bisequent is an inference rule of the forma : b IF ¢ : d, where a, b, ¢, d are
sets of propositions. On the explanatory interpretation, it says ‘If a’s hold then one
of ¢’s holds provided no b is assumed, and all d’s are assumed’.

A biconsequence relation is a set of bisequents satisfying the rules:

a:blkc:d

Monotonicity —  _facd,bCb,cCc,dd;
a b-c:d
Reflexivity A:lFA: and TAFA;
Cut a:blFA,c:d A,a:blkc:d a:blFc:A,d a:A,blkc:d
u .
a:blFc:d a:blkc:d

A biconsequence relation can be seen as a product of two Scott consequence
relations. A pair (u, v) of sets of propositions is a bitheory of a biconsequence
relation if u : v W u : v. A set u is a theory if (u,u) is a bitheory. A bitheory
(u, v) is positively minimal, if there is no bitheory (1, v) such that u’ C u. Finally,
a biconsequence relation is supraclassical if both its component contexts respect the
classical entailment.

Nonmonotonic semantics of a biconsequence relation is a set of theories that are
explanatory closed in the sense that all their propositions are explained (i.e., derived)
when the theory itself is taken as the assumption context.

40r, equivalently, ifa - band a C u, thenu Nb # @.
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Definition A set u is an extension of a biconsequence relation, if (u,u) is a
positively minimal bitheory. A default nonmonotonic semantics of a biconsequence
relation is the set of its extensions.

A direct correspondence between default logic and biconsequence relations
can be established by representing Reiter’s default rules a : b/A as bisequents
a:—b |- A:. Then the above nonmonotonic semantics will correspond precisely to
the semantics of extensions in default logic. Moreover, many other nonmonotonic
formalisms, such as logic programming, modal and autoepistemic logics, and the
causal calculus can be expressed in this framework by varying the underlying logic
(see [3] for details).
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Chapter 5 ®
Induction Eece

Rafal Urbaniak and Diderik Batens

5.1 Introductory Remarks

Inductive reasoning, initially identified with enumerative induction (inferring a
universal claim from an incomplete list of particular cases) is nowadays commonly
understood more widely as any reasoning based on only partial support that the
premises give to the conclusion. This is a tad too sweeping, for this includes any
inconclusive reasoning. A more moderate and perhaps more adequate characteri-
zation requires that inductive reasoning not only includes generalizations, but also
any (ideally, rational) predictions or explanations obtained in absence of suitable
deductive premises. Inductive logic is meant to provide guidance in choosing the
most supported from a given assembly of conjectures. (Some authors think that this
has to be done by capturing the notion of partial support, but this conviction is by
no means universally accepted.)
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Approaches to inductive reasoning are so varied that it is difficult to find a more
specific characterization of all of them. In an attempt to draw at least a partial
connection, let us observe that among requirements which such a logic is often
expected to satisfy [20] are:

Connection with deduction: Deductive consequence and logical contradiction
should fit into an inductive logic as extreme cases of support that a conclusion
can obtain from premises.

Objectivity: If premises support the conclusion, this fact depends only on the
meaning of the premises and the conclusion.

Connection with probability: Some notion of probability should play an important
role in the development of inductive logic.

As we will see later on, the last two requirements are not universally accepted.
To fix the ideas, recall the standard axiomatization of probability theory, as given
in 1933 by Kolmogorov [44]:

Pr(p) =0 for any proposition p (5.1)
Pr(p) =1 if p is necessary 5.2)
Pr(p v q) = Pr(p) + Pr(q) if p and g exclude each other (5.3)

The first stab at capturing the notion of the support that a piece of evidence E
gives to a hypothesis H might be to identify it with the probability of the material
conditional £ — H. Alas, this approach does not work. For the probability of
E — H is the same as the probability of —F v H, which means that even if there is
no connection between E and H whatsoever, if the probability of H is high enough
or the probability of E is low enough, the probability of £ — H is still high (at
least as high as the probability of H or the probability of —E). (In fact, mutatis
mutandis, on this approach you can run any of the paradoxes usually associated
with material implication.) Thus, if there is a connection between inductive support
and probability, it has to be more sophisticated.

The received view is that the degree of confirmation is to be identified with the
conditional probability of the hypothesis given the evidence, defined by:

Pr(H|E) = Pr(H A E) if Pr(E) # 0 (5.4)
Pr(E)

Pr(p) is usually caled the absolute probability of p, as opposed to the conditional
probability of p given ¢, noted as Pr(p | g). Probability theory which tells one how
probabilities are related is not a full confirmation theory, though. To complete the
story we also have to explain and justify the basic assignment of probabilities to
propositions involved — their probability measure.

The first mathematically developed proposal following this path was put forward
by Carnap [11], and we start with presenting his approach (meant to satisfy all
three above-mentioned requirements) in Sect. 5.2. In Sect. 5.3 we will briefly survey
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Reichenbach’s attempt to satisfy all three requirements. In Sect.5.4 we discuss
one of the main theories on today’s market, Bayesianism, which drops the second
requirement. Next, in Sect. 5.5, we discuss Popper’s approach (which is a serious
attempt to drop the third requirement). Finally, in Sect. 5.6 we discuss the adaptive
approach to inductive generalization, which proceeds qualitatively and drops the
third requirement, not taking any degrees of confirmation as necessary for inductive
inferences.

A very important issue which we will not discuss in detail is the philosophical
problem of finding a general justification of inductive methods. The problem, raised
by Hume [33], has received enough attention in the literature (see for instance the
survey by Vickers [75]) and we could not do it justice in this short essay meant to
focus on formal methods (one exception is Sect. 5.3, where we look at an attempt
of justifying induction by means of certain results about a formal method). Another
thing which we won’t mention are causal and abductive inferences. They do fall
under our general notion of induction, but we decided to focus on more crucial
phenomena in the development of formal methods of induction instead.

5.2 Carnap and Induction

5.2.1 Preliminaries

The main notion which Carnap’s approach to induction [11] is meant to explicate is
the logical notion of the degree of confirmation of a hypothesis H by a given body
of evidence E : c(H, E). If E is the conjunction of the available observational data,
c(H, E) expresses the degree of confidence or belief that one should assign to H.!

Consider a first-order language containing a finite number of logically inde-
pendent monadic predicates, a finite number of individual constants and standard
Boolean connectives. A literal in such a language is either an atomic formula or its
negation.

A state description in such a language is a conjunction which for any predicate
and any constant contains exactly one literal composed of them (e.g. either Ga or
—Ga but not both). Thus, a state description for any property and any object says
whether this object has this property. Every sentence is logically equivalent to the
disjunction of the state descriptions which entail it. If every object in the domain
is named by a different individual constant, then the set of all state descriptions
exhausts the possible states of the domain as describable in the language.

IEarly defenders of the logical approach include Keynes [43] and Johnson [36, 37].
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A structure description generated from a given state description ¢ is the set of
all state descriptions that result from ¢ by a permutation of individual constants
(sometimes, it’s identified with the disjunction of its elements). Structure descrip-
tions can be interpreted as encoding information about the numerical distribution of
properties among objects.

For instance, take a language with only one predicate G and only two constants
a and b. There are four state descriptions:

(@) Ga A Gb, (b) Ga A —=Gb, (c) ~Ga A Gb, (d) =~Ga N —=Gb.

and three structure descriptions:

(A) {Ga A Gb} (“all objects have property G’),
BC) {Ga A—-Gb,—Ga N Gb} (‘exactly one object has property G’),
(D) {—=Ga N —~Gb} (‘no object has property G’).

A probability measure assigns probabilities to state descriptions, so that the sum
of the probability measures of all state descriptions is 1. As state descriptions are
mutually exclusive, the probability measure of a disjunction of state descriptions is
the sum of the probability measures of all disjuncts. Each sentence is equivalent to
a disjunction of state descriptions, so the probability measure covers all sentences.
Given a probability measure m, c(H, E) (the degree of confirmation of H by E)
can be defined by:

_ m(H A E)

That is, the degree to which evidence E confirms hypothesis H is the proportion of
the probability of the hypothesis and the evidence to the probability of the evidence.?
Thus, various confirmation functions arise from various probability measures.

5.2.2 Probability Measures m" and m*

One way to define a probability measure, introduced by Carnap, is to divide the
probabilities equally among the state descriptions. If there are k available (up to
logical equivalence) state descriptions, and exactly n of those state descriptions
logically imply sentence H, the probability of H is defined by m"(H) = n/k.

Each state description in our example is assigned the m'-value of 1/4. So,
m'(=Ga) = m'(c) + m¥'(d) = 1/4 + 1/4 = 1/2. As it turns out, the degree
of confirmation of =Ga by Gb is also 1/2:

2In case no evidence is available, hypothesis H is evaluated against any logical theorem T, so that
c(H,0)=c(H, T)=m(H).
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m'(=Ga A Gb) m(c) 4
mt(Gb)y  mT@@)+mfc) 172

¢’ (=Ga, Gb) = 1/2.

Analogous calculations show that mT(Ga) = CT(GG, Gb) = 1/2. But this shows
that observing Gb has no impact on the degree of belief one should assign to Ga.

The problem with this independence generalizes. Even for a thousand objects
ai,az, ..., aoo the following will hold:

c(P(ar), P(ax)A---AP(ajoo0)) = c(—P(ar), P(ax)A---AP(aio0)) = m(P(ay)).

But this means that no amount of evidence will have any impact on the level of
confirmation of P (ay).

This led Carnap to consider a different probability measure, m*. The method of
assigning m™ is quite simple: first divide probability 1 equally among the available
(up to logical equivalence) structure descriptions, thus building in the assumption
that each structure description is equally probable. Then, divide the probability of
each structure description equally among its members.

In our example, each of three structure descriptions is assigned probability
measure 1/3. Since (A) and (D) contain exactly one state description, each of those
state descriptions is assigned probability measure 1/3. On the other hand, each
element of (BC) obtains the value 1/6.

To see how this probability measure favors homogenous descriptions and deals
with the independence issue, compare the probability measure of —=Ga with the
confirmation of the hypothesis that =Ga on the evidence that Gb (intuitively, the
latter should be lower). —=Ga holds in (¢) and (d) and hence m*(—=Ga) = m*(c) +
m*(d) = 1/3 4+ 1/6 = 1/2. On the other hand:

m*(=Ga N Gb) m*(c) _ 16 _

COOCOD=TERGh w36

1/3.

As expected, ¢*(—Ga, Gb) < m*(—Ga). Similarly, ¢*(Ga, Gb) = 2/3 >
m*(Ga) = 1/2, so Gb (partially) confirms Ga and (partially) disconfirms —Ga.

5.2.3 The A-Continuum of Confirmation Functions

As it turns out, there is a wide variety of confirmation functions [12]. To see how
such a variety arises, consider the following. If Fy, F3, ..., Fy are all the monadic
predicates of a given language, we say that a Q-formula predicated of a constant a
is of the form:

tFianxtFan---ANEtFra
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where each + stands either for a negation or for nothing. Q-formulas of such a
language can be enumerated, let’s pick the i-th one and call it Q;. One of the key
confirmation assignments that we would like to calculate is that of ¢(Hg,, Egp)
where Hgp, is the Q;-formula predicated of a certain constant ¢ and Eg is a
conjunction of certain Q-formulas predicated of some constants different from a.
(That is, we would like to be able to measure how complete information about
certain objects observed so far confirms a given complete description of a new
object.)

As Carnap suggests, there are at least two important factors in our assessment
of c(Hgp;, Ep). One is the empirical factor of the relative frequency of Q;sin Eg:
s;i/s (where s; is the number of occurrences (modulo logical equivalence) of Q; in
E and s is the number of non-equivalent Q-formulas in E). The other factor is the
logical one: the logical factor of Q; equals 1/K, where K is the number of all Q-
predicates of the language. Following Carnap, c¢(Hg;, Eg) should be somewhere
between these two values. A convenient way of representing this is to take it to be
their weighted mean defined by:

wisi + %

c(Ho;  Eg) = ————"

5.6
—— (5.6)

where w; and w; are weights. Actually, since what matters is the ratio of the
weights, one of them can be parametrized. Carnap suggested parametrizing w; and
taking it to be s, thus making sure that the empirical factor gains weight as more
observations are being made. The other weight is usually represented as A:
si +A/K
c(Hg,, Eg) = ———— 5.7
(Hoi, Eg) = —— (5.7)
Any choice of A in (5.7) gives a new confirmation function in the sense of (5.5).
Consider what happens when we take A = 0. In this case

s;i +0/K

c(Ho;, E) = ——4

=si/s

For instance, suppose there are only three constants a, b, ¢ and only one predicate
F and that we so far observed only two of them, which turned out to be F. What
are the confirmation values of the hypothesis that the last object will also be F' and
of the opposite hypothesis, if A = 0?

c(Fe, FaAFb) =sp/s =2/2 =1
c(=Fc,Fa A Fb) = S-p/s =0/2=0

If however, one observed object is F and another one isn’t, we get:

c(Fc,Fa AN—Fb)=sp/s =1/2
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In this sense, (5.7) for A = 0 assigns maximal role to the evidence and no role
whatsoever to the logical possibilities (it corresponds to Reichenbach’s straight rule
— see Sect. 5.3).

For comparison, consider what happens as A approaches oco: in the limit (5.7)
yields 1/K. Thus, in our example, no matter whether we observed any other objects
which are F, the confirmation of the hypothesis that the next object will be F is just
the prior logical probability of that hypothesis®:

c(Fc,Fa N Fb)=c(Fc,~FaAn—-Fb)=m(Fc)=1/2.

So taking A = oo assigns maximal importance to the logical factor and no role to the
evidence and does not allow for learning from experience. In fact, the confirmation
function thus defined is ¢, which we already discussed.

The above choices of A are two extremes of a continuum of confirmation
functions (the lower A, the more important the impact of the evidence on the
confirmation value of the hypothesis). Where is the ¢* in this continuum? It is
obtained by equating A to K, in which case (5.7) yields the following:

Si+K/K_S]+1

Ho., Ep) = = .
c(Hois Eo) s+ K s+ K

(5.8)

5.2.4 Challenges and Tweaks

One difficulty is that the above framework provides a variety of probability measures
without indicating why we should prefer any of them over the others. Hajek [28] and
Glaister ([22]: 569) see this as a serious challenge. Vickers [75] is more moderate:
given certain basic restrictions,* even if the confirmation function is not unique,
quite a few useful claims hold no matter which non-extreme function we pick.
Initially, Carnap felt quite strongly about m™*, but eventually this embarrassment
of riches motivated Carnap to accept a somewhat subjectivist attitude consisting
in saying that there is a wide variety of options which remain open, even after all
methodological considerations have been brought it.> Some others, like Fitelson
[20], see nothing wrong in relativizing confirmation to probability measures and
using the logically objective ‘given such-and-such probability measure, the confir-
mation degree in this case is...  (Fitelson compares this to special relativity theory
in which it is not velocity but rather velocity with respect to a frame of reference
that is objective.)

3This holds as long as the evidence does not contain any constant occurring in the hypothesis.

“Most notably, regularity (every state description has non-zero probability) and symmetry (com-
plete permutations of individual constants and predicates of the same type do not change the value
of the function).

5See [79] for historical remarks.



112 R. Urbaniak and D. Batens

Another problem with Carnap’s inductive logic is that it is not very successful at
handling reasoning by analogy. Intuitively speaking, the more primitive properties
two objects share, the more likely it should be that they would agree on other
properties. Yet, ¢* fails to capture this intuition.’

For instance, suppose we have a language with two predicates F and G and two
constants @ and b. If reasoning by analogy worked, then the fact that Fa A Fb A Ga
should give more support to the hypothesis that Gb than just the evidence Ga:

c*(Gb, Fa A Fb A Ga) > ¢c*(Gb, Ga) (5.9)
And yet, (5.9) fails, because in this case both degrees of confirmation are equal:

m*(Ga AGb)  1/3

*(Gb, Ga) = =223
¢(Gb.Ga) = — S Ga) T
“(Fa NFbAGanGb)  1/9
¢*(Gb, Fa A Fb A Gay = T LANTbAGanGh) 19, 5
m*(Fa N Fb A Ga) 3/18

Carnap attempted to deal with such issues [13] (he introduced yet another
parameter apart from A, usually called 7), but the success is quite limited. Some
attempts to deal with analogical reasoning within a (widely) Carnapian framework
are [15, 44, 53, 70] and [50].

Once we generalize the notions to infinite domains, Carnap’s inductive methods
a priori assign zero probabilities to universal generalizations. This is considered
a problem [2] because usually laws of nature are taken to be universal, and if it
were true that no finite evidence can provide support for any universal statement,
this would go against our intuitions that certain scientific hypotheses are better
confirmed than others. The requirements put on confirmation functions can be
modified to allow for non-zero probabilities of universal generalizations [77], and
some attempts to give a systematic account of non-zero probabilities of universal
claims have been put forward. Most notable are those by Hintikka [30], who
introduced yet another parameter « dependent on the number of constants available
in the language to contribute to the non-zero confirmation of universal claims (the
theory has been extended in Hintikka and Niiniluoto [31]) and Kemeny [39], who
even with almost-zero confirmation degrees of universal hypotheses allowed to
compare their support in model-theoretic terms.” Hintikka’s approach only enables
one to assign non-zero probabilities to really general hypotheses, such as ‘all G are
F’, but not to objective probabilistic sentences like ‘the ratio of F within the set of
Gsisr’.

%The problem was noticed already by Kemeny [40]. See however ([3]: 92-96) and [51] for more
details.

7See also [3, 5, 78] and [57] for more detailed accounts.
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Fitelson [20] worries that on a Carnapian account nothing warrants the relevance
of the evidence to the hypothesis, and irrelevant evidence may highly confirm
a hypothesis just because the hypothesis is highly likely or the evidence highly
unlikely. He suggests [19] that the only historically proposed definition of con-
firmation that obeys certain basic relevance requirements is that of Kemeny and
Oppenheim [42], which identifies it with

Pr(E|H) — Pr(E|—H)
Pr(E|H) + Pr(E|-H)"

Thus, he suggests, relevance requirements help to deal with the initial embarrass-
ment of riches.®

A challenge to a purely syntactic approach to confirmation has been posed by
Goodman [26]. Say we have drawn a marble from a certain bowl on each of the past
ninety days and they all have been red. Thus, it seems, the evidence that the first
ninety marbles were red increases the confirmation of the hypothesis that the next
one will be red as well. But take another predicate, S, defined as ‘drawn up to today
and red, or drawn after today and blue.” Our evidence tells us that the ninety marbles
observed so far were S, and so, if Carnapian theory was straightforwardly adequate,
that the next one will be S too. But this is clearly not the case: our evidence does
not confirm the hypothesis that the next marble will be blue.” The main lesson to
be drawn is that which predicates can be sensibly used in inductive reasonings is an
extralogical issue.

Carnap set out to solve the problem of confirmation in terms of logical probabil-
ity, apparently expecting that there would be a single adequate probability measure.
After 1952 it turned out that he had to justify the choice of a probability measure.
The only sensible way of achieving this which he saw was in terms of empirically
motivated methodological considerations. In a sense this turned his program upside
down. For instance, choosing different wj in (5.6) leads to a new variety of measures
and parameterizing on s in (5.7) already presupposes that induction is justified (for
example, weighing it with 1/s leads to an anti-inductive measure).

Despite the difficulties, Carnap’s contributions were among the first technically
elaborate attempts to explicate the notions involved. The Carnapian program
encountered its difficulties, but their very appearance motivated researchers to
follow many different paths and led to a variety of ongoing research projects.

81n fact, many other attempts of redefining ¢ have been observed. See [18, 32] and [1] for a variety
of options.

9The paradox is slightly better known in the version from 1953, where Goodman speaks of ‘blue’
and ‘grue’ [27].
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5.3 Reichenbach’s Straight Rule and Pragmatic Justification
of Induction

Reichenbach identifies the probability of an event with the limit of the relative
frequency of events of the same kind.!? Given that we normally observe only finite
sequences of events, the question arises as to how we are to assess the relative
frequency at the limit and how our general strategy of achieving this is to be
justified. Reichenbach’s response to the first question is that we should apply what
he calls the straight rule (SR), which roughly speaking, says that one should take
observed relative frequencies to be the limiting relative frequencies (and adjust as
new observations are made) [4].

Reichenbach [4, 65] attempted to motivate the acceptance of SR, and hence
induction by the following considerations. Either there is an inductive method which
succeeds, or there is none. If there is none, we do not lose anything by using SR.
If there is one, then SR will succeed as well. This justification turns out to be
problematic {3]: 152—153), for there are many inductive methods which agree with
SR on past success ratio, vary from it in the predictions about the future which they
legitimize at any finite point [67], and converge to the same value. Reichenbach
provides no way of picking SR from among all its rivals. Even if it is SR which in
fact makes the right predictions, when assessed in terms of past successes it does
not stand out from a crowd of so far equally successful methods (although, for a
defense of SR against this qualm see [38]).

A related difficulty is that the type of convergence involved in SR is somewhat
weak because if one wants to obtain knowledge about infinitely many probabilistic
relations there might be no single upper limit on the number of observations that
have to be made even if for each such relation an upper limit exists {17]: 375).!!

5.4 Bayesian Approaches to Induction

5.4.1 Bayesianism and Subjective Probability

The embarrassment of riches which haunts the Carnapian objectivist program is
embraced by Bayesians. While the logical approach faces the difficulty of finding a
justification for a specific choice of initial probabilities, the personalistic Bayesians
take the choice of initial probabilities to be an extralogical (and personal) issue. For
them, an important task of a formal theory of inductive reasoning is to explain how,

10Reichenbach developed a slightly unorthodox probability calculus, see [17] for details.
Reichenbach’s approach also has to face all the challenges which haunt any frequentist
approaches to probability (like the need for a sensible account of the probabilities of singular
events). For a discussion, see [3, 28].
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given certain initial degrees of beliefs, one has to revise their commitment when
faced with new evidence.

Bayesians take personal probabilities (degrees of beliefs, also called subjective
probabilities or credences) to be strongly connected with bets [16, 64]. Suppose you
bet an amount n on a certain outcome S and I bet 3n against S. If S takes place,
you win 4n (gaining 3n) and I lose 3n. If S does not take place, I win 4n (gaining
n) and you lose n. In such a case we say that the stake is 4n (the sum of all bets),
your betting rate is 1/4 and my betting rate against S is 3/4. In general, a betting
rate is just the bet divided by the stake. (A conditional bet is just like that, with the
difference that if the condition is not satisfied, the bet is off.) A bet on S at rate k
is called fair if there is no advantage in betting on S at rate k rather than against
S at rate 1 — k. The degree of your belief in S is within the Bayesian framework
identified with what you consider the fair betting rate on S.'?

An important role in updating beliefs in face of new evidence is played by a
theorem of probability theory called Bayes’ Theorem. Before we describe how
Bayesian updating works, let us introduce the theorem.

5.4.2 Understanding and Applying Bayes’ Theorem

Bayes’ Theorem in its simple formulation states:

_ Pr(E|H)Pr(H)

The denominator can be rewritten in terms of conditional probabilities. By the law
of total probability, if Ay, ... A, are mutually disjoint hypotheses such that the sum
of their probabilities is 1,

Pr(E) = Pr(E|A)Pr(Ay) + -+ -+ Pr(E|A,)Pr(A,).
Applied to (5.10), this yields:

Pr(E | H)Pr(H)

Pr(H |E) = Pr(E|A})Pr(A;) + - - - +Pr(E|An)Pr(An).

(5.11)

In particular, we can use H, —H as elements of the partition, in which case we have:

Pr(E | H)Pr(H)

Pr(H | E) = Pr(E|H)Pr(H) + Pr(E|=H)Pr(—H)

12 A5 almost always in philosophy, the devil is in the details, and various worries arise when one
really wants to measure degrees of belief in terms of bets, but those issues lie beyond the scope of
our survey.
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The most interesting feature of Bayes’ Theorem is that it determines the
conditional probability of a hypothesis given a body of evidence in terms of
other probabilities (which is quite helpful if those other probabilities are easier to
ascertain). In general, determining Pr(E|H;) is often much easier than determining
Pr(H;|E) (and there may be good reasons for assigning equal probabilities to all H;).

An important role in Bayesianism is played by a procedure called conditional-
ization. It consists in changing our belief in a hypothesis H once new evidence E is
obtained in the following way. Take your initial probabilities involved in the right-
hand side of (5.11) at time ¢. If you already have the right-hand side probabilities,
Bayes’ Theorem allows you to calculate the probability of H conditional on E at
time ¢: Pr;(H | E). Now, if new evidence E is provided at some later time ¢’, your
Pry(H) should be identical to Pr;(H | E). That is, if at a certain time you believe
that the probability of a certain hypothesis given E is k, this is the probability you
should assign to that hypothesis once you find out that E (and you don’t find out
anything else that might have impact on the relevant probabilities).'3

The Bayesian framework allows for a number of ways of making sense of the
confirmation that a piece of evidence gives to a hypothesis. A piece of evidence E
(incrementally) confirms hypothesis H if Pr(H | E) > Pr(H) and the confirmation
level of H by E is often identified either with the difference measure Pr(H | E) —
Pr(H) or the ratio measure Pr(H | E) /Pr(H).

5.4.3 Arguments for Bayesianism

Why would a rational agent’s degrees of belief satisfy the axioms of probability?
The claim is supported by considerations meaning to show that the acceptance of
the axioms of probability theory is required to avoid being susceptible to sure loss.
A Dutch Book against an agent is a bet (or a series thereof) which, collectively
taken, the agent has to lose. Agents are called coherent if they are not susceptible to
a Dutch Book. De Finetti [16] proved that if one’s degrees of belief do not comply
to the axioms of probability theory, one is not coherent. Kemeny [41], Shimony [69]
and Lehman [49] proved that the implication in the opposite direction also holds.
One might be worried that grounding an epistemic standard in pragmatic
considerations is inappropriate. For people with such concerns, another class of
arguments developed from the perspective of epistemic utility theory, is available
[5]. Think of truth as 1 and falsehood as 0. Pick a measure of distance between
a given degree of belief and the given sentence’s truth-value (for instance, one
can use squared difference). The lower the score, the greater the accuracy of your
belief. Define some sensible way of aggregating inaccuracies of one’s beliefs into

13 Jeffrey [35] provides a more general formulation which applies also to cases where one only
finds out that E is probable to a certain degree. A Dutch Book argument (see Sect. 5.4.3) for this
general formulation has been given by Armendt [1] (see also [70]).
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one global measure of inaccuracy. Now, Accuracy theorem is available to the effect
that if a set of degrees of beliefs violates the axioms of probability, there is a set of
probabilistic degrees of belief which are more accurate, no matter what truth-values
the beliefs have, and the Converse accuracy theorem says that no probabilistic set of
beliefs is so dominated by a non-probabilistic one. From this perspective, not being
Bayesian is irrational, because it entails being further from the truth, no matter what
the truth is.

5.4.4 Challenges to Bayesianism

Let’s briefly list the main concerns that the Bayesians have to deal with (some of
them apply also to Carnap’s approach):

> Bayesianism does not say anything about the choice of initial probabilities of
E, of H and of E | H, so the same evidence might legitimately motivate two
researchers to assign quite different probabilities to a hypothesis, if their initial
probabilities are sufficiently different.

The Bayesian response to this difficulty is that one can prove that as the
amount of evidence increases, probabilities assigned to relevant hypotheses will
converge (almost) independently of what the initial subjective probabilities are
[68]. The problem is that (i) this works only if the initial subjective probabilities
are not 0 or 1, and (ii) extreme initial probabilities (close to 1 or close to 0)
prevent rapid convergence and make the further search for evidence practically
useless.

> In actual reasoning, rational agents rarely can assign (or even decently approx-
imate) subjective probabilities to the relevant factors, and it is unclear whether
betting preferences are a sufficient and correct way of discovering the priors
[35].

> If Pr(E) = 1, then Pr(H | E) = Pr(H), so old evidence cannot confirm
any hypothesis even if one realizes now that the evidence is relevant for the
hypothesis, for example because it is implied by it (this is called the problem
of old evidence [18, 23—25]).14 Some (like [21]) try to avoid this by weakening
the assumption that agents are logically omniscient,'> but it is not clear what
modifications of the Bayesian formal apparatus this move entails. Some try to
apply pre-formal philosophical discussion to massage the phenomenon into the
Bayesian framework [14, 48].

> Bayesianism in a sense disregards the structure of explanation and does not
take into account such factors as its simplicity or the unity of the underlying
theory. That is, all that is considered when we evaluate a given theory is our prior
probabilities and available evidence in its favor: factors like simplicity or unity,

14For a discussion, see [1].
15That is, the assumption that they know all logical consequences of what they know.
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intuitively important for the evaluation of a theory, are not explicitly considered
in the evaluation procedure. Sure, one can take these factors to be incorporated
among prior probabilities, but if that is the case, bayesianism does not really
explain how these factors are to be assessed and sweeps them under the carpet
of unexplained prior belief degrees.

> Bayesianism tells a story about rationality and its relation to betting behavior.
Yet, it does not say much about why being rational in this sense should put one
in an epistemologically privileged position. Why does the fact that I obey rules
which would help me to avoid a Dutch Book result in Bayesian updating being
the best way to go about scientific reasoning? It is not immediately clear why
scientific success and winning bets should be related [10].

D> As already mentioned, Bayes’ Theorem establishes a connection between
certain probabilities. The connection is useful if the probabilities on the right-
hand side are easier to ascertain than the one we attempt to assess. Perhaps,
Pr(E | H) often can be easily assessed, but the other probabilities on the right-
hand side of (5.11) may be more problematic. For example, Pr(E | =H) seems
at least as mysterious as Pr(H | E) if H is a general hypothesis. For instance, it
is not really clear how to establish the probability of observing a black raven if
not all ravens are black or the probability of Eddington’s observation if relativity
theory is false.

> Conditionalization does not follow from Bayes’ Theorem and is not justified as
an a priori rule of rationality. It does not follow from Bayes’ Theorem, because
one can obey Bayes’ Theorem at each moment while completely changing one’s
degrees of beliefs between moments. Nor does it seem a priori, because it is
diachronic, which means that it incorporates a prediction about what will happen
at a later time based on what has happened so far (and such moves are usually
not considered a priori since Hume). Some diachronic Dutch Book arguments
have been given by David Lewis (as reported by [73]), but they rely on stronger
assumptions which themselves do not seem a priori.

> The claim that rational agents should obey the laws of probability implies
their logical omniscience (insofar as deductive logic is involved). This difficulty
Bayesianism shares with many formal approaches to epistemology.'®

Given a variety of troubles that a fully subjectivist approach to priors encounters,
various unorthodox versions of Bayesianism are being put forward [34, 66, 76]
which try to put some additional constraints on priors without running into the
problems that fully objectivist and syntactical accounts run into [for a survey of
early papers of Bayesianism see [46], and for a survey and further refences see 3].!”

16 A twist to this problem is that once classical logic becomes the underlying logic, Bayesianism
is unable to account for the possibility of the underlying logic being revised and to explain how
evidence might motivate a change of underlying logic [72].

171t is also worth mentioning that one of the strength of Bayesianism lies in various applications of
the framework to classical philosophical problems. For instance, the framework is used to describe
and assess more precisely various arguments in the philosophy of religion (see e.g., [29]).
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5.5 Popper

As is well-known, Popper rejected the early Vienna Circle’s verificationism from his
(1935) on. For him, the central mechanism of scientific methodology is falsification.
Good scientists try to falsify theories, and our best theories are the outcome of such
attempts. Popper also rejects the idea of confirmation in the sense in which it was
used before in this paper. No finite set of observational data can justify one to raise
one’s degree of belief in a theory'®; a single falsification to the contrary justifies
one’s rejection of the theory. The very idea of inductive logic is rejected. For Popper,
all logic is deductive (and coincides with classical logic).

Popper’s disagreement with the Vienna Circle, not to mention personalists, lies in
his different conception of science. Scientific theories are not mere generalizations
of observations, but express lawlike connections. They are not justified by (passive)
observations, but by actions: attempts to falsify the theories. This requires that
one looks for specific observations or, even more typically, performs specific
experiments. Finding ‘confirming instances’ is too easy.'® But so is the duplication
of experiments that are likely to succeed. This is why Popper requires severe tests,
tests that are most likely to lead to falsification. The stress on theories is Popper’s.
Separate generalizations cannot be tested because their falsification can always be
reasoned away by modifying another generalization.’? Popper pushed the idea of
falsification to its extreme consequences—we shall see only part of that here.

Popper invoked formal methods to make all this precise. These methods invoke
classical logic. They also invoke logical probabilities. This, however, did not cause
any embarrassment of riches for Popper. As he explained in appendix *vii of
[61], he considered Carnap’s m " as the only methodologically acceptable measure
function for logical probability. All other measure functions can only be justified
by non-logical considerations. So any occurrence of Pr in this section should be
interpreted in terms of m .

Testing a theory means trying to bring about an observable fact that falsifies the
theory. So the first question for Popper’s methodology is which theories one should
test first.>! A theory is falsifiable if a possible observable fact contradicts it—non-

18Compare this to the fact that if the number of constants is infinite, then every measure function
m from Carnap’s A-continuum gives m (h) = 0 whenever £ is a universally quantified formula, and
gives c(h, e) = 0 whenever £ is a universally quantified formula and e is the conjunction of finitely
many singular formulas.

%In the appendix of (1979) Popper moreover rejects the common sense ‘bucket theory’ of
knowledge.

20Compare this to Quine’s arguments in “Two dogmas of empiricism” [63], which led Quine to a
holistic position.

2IMany of Popper’s ideas stem from (what since Kuhn is called) revolutionary science and this
requires conceptual change. Yet Popper’s formal criteria (like all approaches discussed in the
previous sections) presuppose a given language.
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falsifiable theories are deemed unscientific.’> A theory is more falsifiable (has a
higher degree of testability) to the extent that more logically possible facts contradict
it. This brings Popper to two criteria: generality and specificity. A hypothesis is
more general to the extent that it concerns a logically larger set of objects; it is more
precise to the extent that it specifies more about those objects. To get the flavor:
where P, O, and R are logically independent predicates, Vx(Px D Qx) is more
general than Vx((Px A Rx) D Qx): the former is contradicted by every sentence
of the form Pa A —Qo whereas the latter is only contradicted by sentences of the
form Po A Ra A —=Qu; Vx(Px D (Qx A Rx)) is more specific than Vx(Px D
Qx): the former is contradicted by sentences of the form Pa A =Qu« as well as by
sentences of the form Pa A —Ra, whereas the latter is only falsified by the former
sentences.”> Popper identifies the content of a sentence A with the falsifiability of A
and measures it, for example, by 1 — Pr(A), which is Pr(—A). (By the way, despite
using probability to define the content of a sentence, Popper did not use probability
to explicate the notion of confirmation.) Note that, where A and B are logically
independent,* A A B has an intuitively higher content than A and indeed Pr(—(A A
B)) > Pr(—A).

Needless to say, m is unable to capture the differences between the general
sentences from the previous paragraph if the domain is infinite. All those sentences
have probability zero. These probabilities are defined by a limit for the number
of elements of the domain going to infinity. In appendix *vii of (1935), Popper
introduces a “fine-structure of probability”. Even if Pr(A) = Pr(B) = 0, it is
possible that Pr(A | B) > Pr(B | A), and this indicates that B has a higher content
than A. A ready example is obtained by letting A be Vx(Px D Qx) and letting B
be Vx(Px D (Qx A Rx)). In this case 1 = Pr(A | B) > Pr(B| A). A different way
to look at the criterion is by noting that the limits of the probabilities of both A and
B converge to zero as the domain increases, but that the ratio of these probabilities
is always larger than 1 (and goes to infinity).

So the objective is clear: formulate and test bold hypotheses. If the hypothesis
survives the tests, one obtains a corroborated informative hypothesis—see below. If
it fails, one may still move to a non-falsified hypothesis that has the next highest
content (degree of falsifiability). Of course, no single (non-falsified) hypothesis has
the highest content. In the propagandistic style that was usual for those days, Popper
does not stress this. Here (as elsewhere), he is a free-market pal: pick yours and go
for it. The market (sorry, the facts) will decide.

To compare theories, Popper [59, 60] introduced (and in [62] elaborated on) the
notion of verismilitude or truthlikeness. Its qualitative version (as opposed to the
quantitative formulation, mentioned below) is as follows: take an interpreted theory

22But Popper hastens to relativize this ‘demarcation criterion’. ‘Metaphysical’ ideas play a central
role in generating scientific theories.

23Compare also “all heavenly bodies move in circles” to “all planets of the sun move in ellipses”,
remembering that all circles are ellipses.

24Note this entails they’re contingent.
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T and let 7! (T9) be the set of its true (false) sentences. T is more truthlike than
a theory S iff both S' € T! and 70 C §°, and either S' # 7' or 70 # $° (That
is, a theory to be more truthlike has to surpass the other in its truth content without
surpassing it in its falsity content, or to have smaller falsity content without being
ahead in its truth content.) Miller [52] and Tichy [74] provide a compelling criticism
of Popper’s definitions.??

Suppose then some theories survived the imposed tests. How good are they? Here
too, Popper formulates a measure, which he calls the degree of corroboration of a
hypothesis. Here is a definition from appendix *ix of [61]:

CUH. E) = Pr(E|H) — Pr(E)
"7 7 Pr(E|H) — Pr(E A H) + Pr(E)

So, where E is the conjunction of the available empirical evidence, the degree of
corroboration of the hypothesis H is proportional to the difference between the
probability of the evidence given the hypothesis and the absolute probability of the
evidence. The denominator is a normalizing factor, which keeps the values between
—1 and +1. If E contradicts H, Pr(E | H) = Pr(E A H) = 0. So the degree of
corroboration of H is —1. This indicates that H is falsified. The maximal value to
which H may be corroborated is obtained if E is identical to H—this will apply
if H is a singular statement or if, being God, you see that H obtains. In this case
Pr(E/H) = 1 and Pr(E A H) = Pr(H). The degree of corroboration of H then
reduces to 1 — Pr(H)/1, in other words Pr(—H). So the maximal degree to which
a hypothesis H may be corroborated is the content of H (the falsifiability degree
of H). The higher the content of a hypothesis, the higher its potential degree of
corroboration.

It is amusing to see that falsifiability turns up again here. Yet, putting the formal
machinery in perspective, Popper stresses that the corroboration of H is only
significant if H was subjected to the severest possible tests. We have seen before
that these are the tests that are most likely to falsify the hypothesis. That Popper
never offered a formal criterion for this, is presumably related to a weak spot in his
formalisms. Intuitively, repeating an experiment that did not lead to falsification is
not a severe test. But why is that? Apparently because, in view of previous instances
of the test, the next instance is likely not to lead to falsification. But why is that so?
Apparently this conclusion can only be drawn if we presume that the outcome of
the next instance of the test is likely similar to the outcome of previous instances.

Z5Popper introduced also two quantitative notions of verisimilitude, which employed the notion of
probability. Tichy [74] argues that both attempts have highly counterintuitive consequences. This
is not to say that the project of defining truthlikeness is doomed. There are various interesting
attempts to define the concept after Popper’s initial failure (see e.g., [54, 58]). Even though no
particular account is currently agreed on by everyone, certain progress has been made, and the
issue is a lively topic (for a survey, see [55, 56]).
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To presume so, however, is to presume a measure function different from Carnap’s
m", viz. one that assigns a non-zero weight to the empirical factor. And this Popper
does not want.

Indeed, Popper always stressed that a (non-falsifying) degree of corroboration of
H should not affect our degree of rational belief in H. He nevertheless advised one
to use the best tested theory as basis for action, and some take this to mean that the
degree of rational belief of those theories is raised. In Section 9 of [62], Popper tried
to remove this confusion. He distinguished preferring the best tested theory as basis
for action from relying on that theory. Preferring such theory is justified, because
of the merits the theory proved to have in the past. But this says nothing about the
future. So we cannot rely on the theory; no theory was shown true or can be shown
true. Our present most corroborated theories embody the best knowledge available
today. Only fools take 