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Preface to the Series

Springer’s Selected Works in Probability and Statistics series offers scientists and scholars the
opportunity of assembling and commenting upon major classical works and honors the work of dis-
tinguished scholars in probability and statistics. Each volume contains the original papers, original
commentary by experts on the subject’s papers, and relevant biographies and bibliographies.

Springer is commited to maintaining the volumes in the series with free access on SpringerLink, as
well as to the distribution of print volumes. The full text of the volumes is available on SpringerLink
with the exception of a small number of articles for which links to their original publisher is included
instead. These publishers have graciously agreed to make the articles freely available on their websites.
The goal is maximum dissemination of this material.

The subjects of the volumes have been selected by an editorial board consisting of Anirban
DasGupta, Peter Hall, Jim Pitman, Michael Sørensen, and Jon Wellner.
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Preface and Introduction

When Springer approached me with a proposal for editing a collection of Dev Basu’s writings and
articles, with original commentaries from experts in the field, I accepted this invitation with a sense
of pride, joy, and anxiety. I was a direct student of Dev Basu at the Indian Statistical Institute, and
accepted this task with a sense of apprehension. I was initially attracted to Basu because of his clarity
of exposition and a dignified and inspiring presence in the classrooms at the ISI. He gave us courses on
combinatorics, distribution theory, central limit theorems, and the random walk. To this date, I regard
those courses to be the best I have ever taken on any subject in my life. He never brought any notes,
never opened the book, and explained and derived all of the material in class with an effortlessness
that I have never again experienced in my life.

Then, I got to read some of his work, on sufficiency and ancillarity, survey sampling, the likelihood
principle, the meaning of the elusive word information, the role of randomization in design and in
inference, eliminating nuisance parameters, his mystical and enigmatic counterexamples, and also
some of his highly technical work using abstract algebra, techniques of complex and Fourier analysis,
and on putting statistical concepts in a rigorous measure theoretic framework. I realized that Basu
was also a formidable mathematician. The three signature and abiding qualities of nearly all of Basu’s
work were clarity of exposition, simplicity, and an unusual originality in thinking and in presenting his
arguments. Anyone who reads his paper on randomization analysis (Basu (1980)) will ponder about
the use of permutation tests and the role of a statistical model. Anyone who reads his papers on survey
data, the likelihood principle, information, ancillarity, and sufficiency will be forced to think about the
foundations of statistical practice. The work was fascinating and original, and influenced generations
of statisticians across the world. Dennis Lindley has called Basu’s writings on foundations “among
the most significant contributions of our time to the foundations of statistical inference.”

Foundations can be frustrating, and disputes on foundations can indeed be never-ending. Although
the problems that we, as statisticians, are solving today are different, the fundamentals of the subject
of statistics have not greatly changed. Depending on which particular foundational principle we more
believe in, it is still the fundamentals laid out by Fisher, Pearson, Neyman, Wald, and the like, that
drive statistical inference. Despite decades and volumes devoted to debates over foundational issues,
these issues still remain important. In his commentary on Basu’s work on survey sampling in this
volume, Alan Welsh says “· · · , and this is characteristic of Basu and one of the reasons (that) his
papers are still so valuable; it does challenge the usual way · · · . Statistics has benefitted enormously
that Basu made that journey.” I could not say it any better. It is with this daunting background that I
undertook the work of editing this volume.

This book contains 23 of Basu’s most significant articles and writings. These are reprints of the
original articles, presented in a chronological order. It also contains eleven commentaries written by
some of our most distinguished scholars in the areas of foundations and statistical inference. Each
commentary gives an original and contemporary critique of a particular aspect or some particular
contribution in Basu’s work, and places it in perspective. The commentaries are by George Casella and
V. Gopal, Phil Dawid, Tom DiCiccio and Alastair Young, Malay Ghosh, Jay Kadane, Glen Meeden,
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Preface and Introduction

Robert Serfling, Jayaram Sethuraman, Terry Speed, and Alan Welsh. I am extremely grateful to each
of these discussants for the incredible effort and energy that they have put into writing these commen-
taries. This book is a much better statistical treasure because of these commentaries.

Terry Speed has eloquently summarized a large portion of Basu’s research in his commentary. My
comments here serve to complement his. Basu was born on July 5, 1924 in the then undivided Bengal
and had a modest upbringing. He obtained an M.A. in pure mathematics from Dacca University in
the late forties. His initial interest in mathematics no doubt came from his father, Dr. N. M. Basu,
an applied mathematician who worked on the mathematical theory of elasticity under the supervision
of Nobel laureate C. V. Raman. Basu told us that shortly after the partition of India and Pakistan, he
became a refugee, and crossed the borders to come over to Calcutta. He found a job as an actuary. The
work failed to give him any intellectual satisfaction at all. He quit, and at considerable risk, went back
to East Pakistan. The adventure did not pay off. He became a refugee for a second time and returned
to Calcutta. Here, he came to know of the ISI, and joined the ISI in 1950 as a PhD student under
the supervision of C. R. Rao. Basu’s PhD dissertation “Contributions to the Theory of Statistical
Inference” was nearly exclusively on pure decision theory, minimaxity and admissibility, and risks
in testing problems under various loss functions (Basu (1951, 1952a, 1952b)). In Basu (1951), a
neat counterexample shows that even the most powerful test in a simple vs. simple testing problem
can be inconsistent, if the iid assumption for the sequence of sample observations is violated. In
Basu (1952a), an example is given to show that if the ordinary squared error loss is just slightly altered,
then a best unbiased estimate with respect to the altered loss function would no longer exist, even in the
normal mean problem. Basu (1952b) deals with admissible estimation of a variance for permutation
invariant joint distributions and for stationary Markov chains with general convex loss functions. It
would seem that C. R. Rao was already thinking of characterization problems in probability, and Basu
was most probably influenced by C. R. Rao. Basu wrote some early articles on characterizing normal
distributions by properties of linear functions, a topic in which Linnik and his students were greatly
interested at that time. This was a passing phase.

In 1953, he came to Berkeley by ship as a Fulbright scholar. He met Neyman, and listened to
many of his lectures. Basu spoke effusively of his memories of Neyman, Wald, and David Blackwell
at many of his lectures. It was during this time that he learned frequentist decision theory and the
classical theory of statistics, extensively and deeply. At the end of the Fulbright scholarship, he
went back to India, and joined the ISI as a faculty member. He later became the Dean of Studies,
a distinguished scientist, and officiating Director of the Research and Training School at the ISI.
He pioneered scholastic aptitude tests in India that encourage mathematics students to understand
a topic and stop focusing on cramming. The widely popular aptitude test book Basu, Chatterji, and
Mukherjee (1972) is an institution in Indian mathematics all by itself. He also had an ingrained love
for beautiful things. One special thing that he personally developed was a beautiful flower garden
around the central lake facing the entrance of the main residential campus. It used to be known as
Basu’s garden. He also worked for some years as the chief superintendent of the residential student
hostels, and when I joined there, I heard stories about his coming by in the wee hours of the morning
to check on students, always with his dog. I am glad that he wasn’t the superintendent when I joined,
because my mischievous friends and I were stealing coconuts from the campus trees around 4:00 am
every morning for an early morning carb boost. I can imagine his angst and disbelief and the angry
outrage of his puzzled dog at some of his dedicated students hanging from coconut trees at four in the
morning, and a few others hiding in the bushes on guard.

The subject of statistics was growing rapidly in the years around the second world war. The
most fundamental questions were being raised, and answered. In quick succession, we had the
Neyman-Pearson lemma, Cramér-Rao inequality, Rao-Blackwell theorem, the Lehmann-Scheffé theo-
rem, Neyman’s proof of the factorization theorem, Mahalanobis’s D2-statistic, the Wald test, the score
test of Rao, and Wald and Le Cam’s masterly and all encompassing formulation and development of
decision theory as a unified basis for inference. This was also a golden age for the ISI. Fisher was
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Preface and Introduction

spending time there, and so were Kolmogorov, and Haldane. Basu joined the ISI as a PhD student
in that fertile and golden era of statistics and the ISI. He was clearly influenced, and deeply so, by
Kolmogorov’s rigorous measure theoretic development of probability theory, and simultaneously by
Fisher’s prodigious writings on the core of statistics, maximum likelihood, sufficiency, ancillarity,
fiducial distributions, randomization tests, and so on. This influence of Kolmogorov and Fisher is
repeatedly seen in much of Basu’s later work. The work on foundations is obviously influenced by
Fisher’s work, and the technical work on sufficiency, ancillarity, and invariance (Basu (1967, 1969))
is very clearly influenced by Kolmogorov. It is not too much of a stretch to call some of Basu’s work
on sufficiency, ancillarity, and invariance research on abstract measure theory.

Against this backdrop, we see Basu’s first transition into raising and answering questions that
have something fundamental and original about them. Among the most well known is what everyone
knows simply as Basu’s theorem (Basu (1955a)). It is the only result in statistics and probability
that is listed in Wikipedia’s list of Indian inventions and discoveries, significant scientific inventions
and discoveries originating in India in all of recorded history. A few other entries in this list are the
hookah, muslin, cotton, pajamas, private toilets, swimming pools, hospitals, plastic surgery, diabetes,
jute, diamonds, the number zero, differentials, the Ramanujan theta function, the AKS primality test,
Bose-Einstein statistics, and the Raman effect.

The direct part of Basu’s theorem says that if X1, · · · , Xn have a joint distribution Pn,θ ,

θ ∈ �, T (X1, · · · , Xn) is boundedly complete and sufficient, and S(X1, · · · , Xn) is ancillary, then T
and S are independent under each θ ∈ �. The theorem has very pretty applications, and I will mention
a few. But, first, I would like to talk a little more of the context of this theorem. He was led to Basu’s
theorem when he was asked the following question. Consider iid N (μ, 1) observations X1, · · · , Xn .
Then, every location invariant statistic is ancillary; is the converse true? The converse is not true, and
so Basu wanted to characterize the class of all ancillary statistics in this situation. The reverse part of
Basu’s theorem answers this question; in general, suppose T (X1, · · · , Xn) is boundedly complete and
sufficient. Then, S(X1, · · · , Xn) is ancillary only if it is independent of T under each θ . Typically,
in applications, one would take T to be the minimal sufficient statistic, which has the best chance of
being also complete. Without completeness, an ancillary statistic need not be independent of T .

Returning to the more well known part of Basu’s theorem, namely the direct part, there is an ele-
ment of sheer beauty about the result. A sufficient statistic is supposed to capture all the information
about the parameter that the full data could supply, and an ancillary statistic has none to offer at all.
We can think of a rope, with T and S at the two ends of the rope, and θ placed in the middle. T
has everything to do with θ , and S has nothing to do with θ whatsoever. They must be independent!
The theorem brings together sufficiency, information, ancillarity, completeness, and conditional inde-
pendence. Terry Speed (Speed (2010), IMS Bulletin), calls it a beautiful theorem, which indeed it is.
Basu later worked on various other aspects of ancillarity and selection of reference sets; all of these
are comprehensively discussed in Phil Dawid’s commentary in this volume.

Basu’s theorem isn’t only pretty. It has also been used by many researchers in diverse areas
of statistics and probability. To name a few, the theorem has been used extensively in distribution
theory, in deriving Barndorff-Nielsen’s magic formula (Barndorff-Nielsen (1983), Small (2010)), in
proving theorems on infinitely divisible distributions, in goodness of fit testing (and in particular
for finding the mean and the variance of the WE statistic for testing exponentiality), and of late in
small area estimation. Hogg and Craig (1956), Lehmann (1981), Boos and Hughes-Oliver (1998),
and Ghosh (2002) have previously described some of these applications. Larry Brown has provided
some very powerful applications of a more general (but less statistically intuitive) version of Basu’s
theorem in Brown (1986), and Malay Ghosh has indicated applications to empirical Bayes problems
in his commentary in this volume. Here are a few of my personal favorite applications of Basu’s
theorem to probability theory. The attractive part of these examples is that you save on clumsy or
boring calculations by using Basu’s theorem in a clever way. The final results can be obtained without
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Preface and Introduction

using Basu’s theorem, but in a pedestrian sort of way. In contrast, by applying Basu’s theorem, you
do it elegantly.

Example 1 (Independence of Mean and Variance for a Normal Sample) Suppose X1, X2, · · · , Xn

are iid N (η, τ 2) for some η, τ . Suppose X is the mean and s2 the variance of the sample values
X1, X2, · · · , Xn . The goal is to prove that X and s2 are independent, whatever be η and τ . First note
the useful reduction that if the result holds for η = 0, τ = 1, then it holds for all η, τ . Indeed, fix any
η, τ , and write Xi = η + τ Zi , 1 ≤ i ≤ n, where Z1, · · · , Zn are iid N (0, 1). Now,

(
X ,

n∑
i=1

(
Xi − X

)2

)
L=

(
η + τ Z , τ 2

n∑
i=1

(
Zi − Z

)2

)
.

Therefore, X and
∑n

i=1(Xi − X)2 are independently distributed under (η, τ ) if and only if Z and∑n
i=1(Zi − Z)2 are independently distributed. This is a step in getting rid of the parameters η, τ

from consideration. But, now, we will import a parameter! Embed the N (0, 1) distribution into a
larger family of {N (μ, 1), μ ∈ R} distributions. Consider now a fictitious sample Y1, Y2, · · · , Yn

from Pμ = N (μ, 1). The joint density of Y = (Y1, Y2, · · · , Yn) is a one parameter Exponential
family density with the natural sufficient statistic T (Y ) = ∑n

i=1 Yi . And, of course,
∑n

i=1(Yi −Y )2 is
ancillary. Since this is an Exponential family, and the parameter space for μ obviously has a nonempty
interior, all the conditions of Basu’s theorem are satisfied, and therefore, under each μ,

∑n
i=1 Yi and∑n

i=1(Yi − Y )2 are independently distributed. In particular, they are independently distributed under
μ = 0, i.e., when the samples are iid N (0, 1), which is what we needed to prove. This is surely a very
pretty proof of that classic fact in distribution theory.

Example 2 (An Exponential Distribution Result) Suppose X1, X2, · · · , Xn are iid Exponential ran-

dom variables with mean λ. Then, by transforming (X1, X2, · · · , Xn) to
(

X1
X1+···+Xn

, · · · ,
Xn−1

X1+···+Xn
,

X1 + · · · + Xn

)
, one can show by carrying out the necessary Jacobian calculation that(

X1
X1+···+Xn

, · · · ,
Xn−1

X1+···+Xn

)
is independent of X1 + · · · + Xn . We can show this without doing any

calculations by using Basu’s theorem.
For this, once again, by writing Xi = λZi , 1 ≤ i ≤ n, where the Zi are iid standard Exponen-

tials, first observe that
(

X1
X1+···+Xn

, · · · ,
Xn−1

X1+···+Xn

)
is a (vector) ancillary statistic. Next observe that

the joint density of X = (X1, X2, · · · , Xn) is a one parameter Exponential family, with the natural
sufficient statistic T (X) = X1 + · · · + Xn . Since the parameter space (0,∞) obviously contains a

nonempty interior, by Basu’s theorem, under each λ,
(

X1
X1+···+Xn

, · · · ,
Xn−1

X1+···+Xn

)
and X1 + · · · + Xn

are independently distributed.

Example 3 (A Weak Convergence Result Using Basu’s Theorem) Suppose X1, X2, · · · are iid
random vectors with a uniform distribution in the d-dimensional unit ball. For n ≥ 1, let dn =
min1≤i≤n ||Xi ||, and Dn = max1≤i≤n ||Xi ||. Thus, dn measures the distance to the closest data point
from the center of the ball, and Dn measures the distance to the farthest data point. We find the limiting
distribution of ρn = dn

Dn
. Although this can be done by using Slutsky’s theorem, the Borel-Cantelli

lemma, and some direct algebra, we will do so by an application of Basu’s theorem.
Toward this, note that for 0 ≤ u ≤ 1,

P(dn > u) = (1 − ud)n; P(Dn > u) = 1 − und .
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As a consequence, for any k ≥ 1,

E[Dn]k =
∫ 1

0
kuk−1(1 − und)du = nd

nd + k
,

and,

E[dn]k =
∫ 1

0
kuk−1(1 − ud)ndu =

n!�
(

k

d
+ 1

)

�

(
n + k

d
+ 1

) .

Now, embed the uniform distribution in the unit ball into the family of uniform distributions in balls of
radius θ and centered at the origin. Then, Dn is complete and sufficient, and ρn is ancillary. Therefore,
once again, by Basu’s theorem, Dn and ρn are independently distributed under each θ > 0, and so, in
particular under θ = 1. Thus, for any k ≥ 1,

E[dn]k = E[Dnρn]k = E[Dn]k E[ρn]k

⇒ E[ρn]k = E[dn]k

E[Dn]k
=

n!�
(

k

d
+ 1

)

�

(
n + k

d
+ 1

) nd + k

nd

∼
�

(
k

d
+ 1

)
e−nnn+1/2

e−n−k/d

(
n + k

d

)n+ k

d
+1/2

(by using Stirling’s approximation)

∼
�

(
k

d
+ 1

)

n

k

d

.

Thus, for each k ≥ 1,

E

[
n1/dρn

]k

→ �

(
k

d
+ 1

)
= E[V ]k/d = E[V 1/d ]k,

where V is a standard Exponential random variable. This implies, because V 1/d is uniquely deter-
mined by its moment sequence, that

n1/dρn
L⇒ V 1/d ,

as n → ∞.
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Example 4 (An Application of Basu’s Theorem to Quality Control) Herman Rubin kindly suggested
that I give this example. He used Basu’s theorem to answer a question on statistical quality control
while consulting some engineers in the fifties. Here is the problem, which is simple to state.

In a production process, the measurement X of a certain product has to fall between conformity
limits a, b. For design, as well as for quality monitoring, the management wants to estimate what
percentage of items are currently meeting the conformity specifications. That is, we wish to esti-
mate θ = P(a < X < b). Suppose that for estimation purpose, we have obtained data values

X1, X2, · · · , Xn , which we assume are iid N (μ, σ 2) for some μ, σ . Then, θ = 

(

b−μ
σ

)
−


( a−μ
σ

)
.

Standard plug-in estimates are asymptotically efficient. But quality control engineers have an inherent
preference for the UMVUE. We derive the UMVUE below in closed form by using Basu’s theorem
and the Lehmann-Scheffé theorem.

By the Lehmann-Scheffé theorem, the UMVUE is the conditional expectation

E
(
Ia≤X1≤b |X , s

) = P
(
a ≤ X1 ≤ b |X , s

)

= P

(
a − X

s
≤ X1 − X

s
≤ b − X

s
|X , s

)

Now, (X , s) are jointly sufficient and complete, and X1−X
s is evidently ancillary. Therefore, by Basu’s

theorem, we get the critical simplification that the conditional distribution of X1−X
s given (X , s) is

the same as the unconditional distribution (whatever it is) of this ancillary statistic X1−X
s . Hence, the

UMVUE of θ is

= P

(
a − X

s
≤ X1 − X

s
≤ b − X

s

)
= Fn

(
b − X

s

)
− Fn

(
a − X

s

)
,

where Fn(t) denotes the CDF of the unconditional distribution of X1−X
s .

We can, perhaps a little fortunately, compute this in closed form. It is completely obvious that the
mean of Fn is zero and that the second moment is 1

n . With a little calculation, which we will omit, Fn

can be shown to be a Beta distribution on [−1, 1] (in fact, even this fact, which I am not proving here,
can be proved by using Basu’s theorem). In other words, Fn has the density

fn(x) =
�

(
α + 1

2

)
√

π� (α)
(1 − x2)α−1,−1 ≤ x ≤ 1.

The value of α must be n−1
2 , by virtue of the second moment being 1

n . Hence, the UMVUE of θ is

Fn

(
b − X

s

)
− Fn

(
a − X

s

)

where

Fn(t) = �
( n

2

)
√

π�( n−1
2 )

∫ t

−1
(1 − x2)

n−3
2 dx
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= 1

2
+ �

( n
2

)
√

π�

(
n − 1

2

) t 2 F1

(
1

2
,

3 − n

2
; 3

2
; t2

)
,

where 2 F1 denotes the usual Gauss Hypergeometric function. This describes the UMVUE of θ in
closed form. Herman Rubin or I have not personally seen this very closed form derivation involving
the Hypergeometric function anywhere, but it is another instance where Basu’s theorem makes the
problem solvable without breaking our back.

Example 5 (A Covariance Calculation) Suppose X1, · · · , Xn are iid N (0, 1), and let X and Mn

denote the mean and the median of the sample set X1, · · · , Xn . By using our old trick of importing
a mean parameter μ, we first observe that the difference statistic X − Mn is ancillary. By Basu’s
theorem, X1 + · · · + Xn and X − Mn are independent under each μ, which implies

Cov(X1 + · · · + Xn, X − Mn) = 0 ⇒ Cov(X , X − Mn) = 0

⇒ Cov(X , Mn) = Cov(X , X) = Var(X) = 1

n
.

We have achieved this result without doing any calculations at all.

Example 6 (Application to Infinite Divisibility) Infinitely divisible distributions are important in both
the theoretical aspects of weak convergence of partial sums of triangular arrays, and in real appli-
cations. Here is one illustration of the use of Basu’s theorem in producing unconventional infinitely
divisible distributions. The example is based on the following general theorem (DasGupta (2006)),
whose proof uses both Basu’s theorem and the Goldie-Steutel law (Goldie (1967)).

Theorem Let f be any homogeneous function of two variables, i.e., suppose f (cx, cy) =
c2 f (x, y)∀x, y and ∀c > 0. Let Z1, Z2 be iid N (0, 1) random variables and Z3, Z4, · · · , Zm

any other random variables such that (Z3, Z4, . . . , Zm) is independent of (Z1, Z2). Then for any
positive integer k, and an arbitrary measurable function g, f k(Z1, Z2)g(Z3, Z4, · · · , Zm) is infinitely
divisible.

A large number of explicit densities can be proved to be densities of infinitely divisible distributions
by using this theorem. Here are a few, each supported on the entire real line.

(i) f (x) = 1

π
K0(|x |), where K0 denotes the Bessel K0 function;

(ii) f (x) = 2 log(|x |)
π2(x2 − 1)

;

(iii) f (x) = 1√
2π

(
1 − √

2π |x |ex2/2
(−|x |)
)

;

(iv) f (x) = 1

2

1

(1 + |x |)2
.

Note that the density in (iv) is the so called GT density. Of course, we can introduce location and scale
parameters into all of these, and make families of infinitely divisible distributions.
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Continuing on with some other significant contributions of Basu, his mathematical work as well as
his foundational writings on survey sampling helped put sampling theory on a common mathematical
footing with the rest of rigorous statistical theory, and even more, in raising and clarifying really
fundamental issues. Alan Welsh has discussed the famous example of Basu’s elephants (Basu (1971))
in his commentary in this volume. This is the solitary example that I know of where a single example
has led to the writing of a book with the example in its title (Brewer (2002)). The elephants example
must be understood in the context of the theme and also the time. It was written when the Horvitz-
Thompson estimator for a finite population total was gaining theoretical popularity, and many were
accepting the estimator as an automatic choice. Basu’s example reveals a fundamental flaw in the
estimator in particular, and in the wisdom of sample space based optimality, more generally. The
example is so striking and entertaining, that I cannot but reproduce it here.

Example 7 (Basu’s Elephants) “The circus owner is planning to ship his 50 adult elephants and so he
needs a rough estimate of the total weight of the elephants. As weighing an elephant is a cumbersome
process, the owner wants to estimate the total weight by weighing just one elephant. Which elephant
should he weigh? So the owner looks back at his records and discovers a list of the elephants’ weights
taken 3 years ago. He finds that 3 years ago Sambo the middle-sized elephant was the average (in
weight) elephant in his herd. He checks with the elephant trainer who reassures him (the owner) that
Sambo may still be considered to be the average elephant in his herd. Therefore, the owner plans to
weigh Sambo and take 50y (where y is the present weight of Sambo) as an estimate of the total weight
Y = Y1 + . . . + Y50 of the 50 elephants. But the circus statistician is horrified when he learns of the
owner’s purposive sampling plan. “How can you get an unbiased estimate of Y this way?” protests the
statistician. So together they work out a compromise sampling plan. With the help of a table of random
numbers, they devise a plan that allots a selection probability of 99/100 to Sambo and equal selection
probabilities of 1/4900 to each of the other 49 elephants. Naturally, Sambo is selected, and the owner is
happy. “How are you going to estimate Y ?”, asks the statistician. “Why? The estimate ought to be 50y
of course,” says the owner. “Oh! No! That cannot possibly be right,” says the statistician. “I recently
read an article in the Annals of Mathematical Statistics where it is proved that the Horvitz-Thompson
estimator is the unique hyperadmissible estimator in the class of all generalized polynomial unbiased
estimators.” “What is the Horvitz-Thompson estimate in this case?”, asks the owner, duly impressed.
“Since the selection probability for Sambo in our plan was 99/100,” says the statistician, “the proper
estimate of Y is 100y

99 and not 50y.” “And how would you have estimated Y ,” enquires the incredulous
owner, “if our sampling plan made us select, say, the big elephant Jumbo?” “According to what I
understand of the Horvitz-Thompson estimation method,” says the unhappy statistician, “the proper
estimate of Y would then have been 4900y, where y is Jumbo’s weight.” That is how the statistician
lost his circus job (and perhaps became a teacher of statistics!).”

Some of my other personal favorites are a number of his counterexamples. The examples always
used to have something dramatic or penetrating about them. He would take a definition, or an idea,
or an accepted notion, and chase it to its core. Then, he would give a remarkable example to reveal a
fundamental flaw in the idea and it would be very very difficult to refute it. One example of this is his
well known ticket example (Basu (1975)). The point of this example was to argue that blind use of the
maximum likelihood estimate, even if there is just one parameter, is risky. In the ticket example, Basu
shows that the MLE overestimates the parameter by a huge factor with a probability nearly equal to
one. The example was constructed to make the likelihood function have a global peak at the wrong
place. Basu drives home the point that one must look at the entire likelihood function, and not just
where it peaks. Very reasonable, especially these days, when so many of us just throw the data into a
computer and get the MLE and feel happy about it. Jay Kadane has discussed Basu’s epic paper on
likelihood (Basu (1975)) for this volume.
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In this very volume, Robert Serfling discusses Basu’s definition of asymptotic efficiency through
concentration of measures (Basu (1956)) and the counterexample which puts his definition at the
extreme opposite pole of the traditional definition of asymptotic efficiency. An important aspect of
Basu’s definition of asymptotic relative efficiency is that it isn’t wedded to asymptotic normality, or√

n-consistency. You could use it, for example, to compare the mean and the midrange in the normal
case, which you cannot do according to the traditional definition of asymptotic relative efficiency.

A third example, but of less conceptual gravity, is his example of an inconsistent MLE
(Basu (1955b)). The most famous example in that domain is certainly the Neyman-Scott example
(Neyman and Scott (1948)). In the Neyman-Scott example, the inconsistency is caused by a nonva-
nishing bias, and once the bias is corrected, consistency is retrieved. Basu’s example is pathological
statistically, but like all his examples, this too makes the point in the most extreme conceivable way.
The inconsistent MLE isn’t fixable in his example.

One important point about Basu’s writings is that it is never clear that he does not like the proce-
dures that classical criteria produce. In numerous writings, he uses a time tested classical procedure.
But he only questions the rationale behind choosing them. This distinction is important. I feel that
in these matters, he is closer to Dennis Lindley, who too, reportedly holds the view that classical
statistics generally produces fine procedures, but using the wrong reasons. This seems to be very far
from a dogmatic view that all classical procedures deserve to be discarded because of where they
came from. But, even when Basu questioned the criteria for selecting a procedure in his writings, and
in his seminars, it was always in the best of spirits (George Casella comments in this volume that “the
banter between Basu and Kempthorne is fit for a comedy.”)

Shortly after he taught us at the ISI, Basu left India and moved to the USA. He joined the faculty
of the Florida State University, causing, according to his daughter Monimala, a family rebellion.
They would happily settle in Sydney, or Denmark, or Ottawa, or Sheffield, where Basu used to visit
frequently, even Timbuktu, but not in a small town in Florida. After he moved to the US, one can see
a distinct change of perspective and emphasis in Basu’s work. He now started working on more prac-
tical things; concrete elimination of nuisance parameters, modelling Bayesian bioassays with miss-
ing data (Basu and Pereira (1982a)), randomization tests (1980), and Bayesian nonparametrics. His
involvement in Bayesian nonparametrics resulted in a beautifully written paper on Dirichlet processes
starting from absolute scratch (Basu and Tiwari (1982b)). Jayaram Sethuraman superbly discusses this
paper in this volume. In a way, Basu’s involvement in Bayesian nonparametrics was perhaps a little
surprising. This is not because he could not deal with abstract measure theory; he was an expert on it!
But, because, Basu repeatedly expressed his deep rooted skepticism about putting priors on more than
three or four parameters. He never said what he would do in problems with many parameters. But
he would not accept improper priors, or even empirical Bayes. He simply said that he does not know
what to do if one has many parameters, because you then just can’t write your elicited information
into honest priors. In some ways, Basu was a half hearted Bayesian. But, he was very forthcoming.

Basu returned permanently to India 1986. He still taught and lectured at the ISI. I last saw Basu in
1995 at East Lansing. He, his wife Kalyani, and daughter Monimala were all visiting his son Shantanu,
who was then a postdoctoral scientist at Michigan State University. I spent a few hours with him, and I
told him what I was working on. I asked him if he would like to give a seminar at Purdue. He said that
the time came some years ago that he should now only listen, to young people like you, and not talk.
He said that his time has passed, and he only wants to learn now, and not profess. He often questioned
himself. In a nearly spiritual mood, he once wrote (Ghosh (1988)): “What have I got to offer? I am
afraid nothing but a set of negative propositions. But with all humility, let me draw the attention of
the would be reader to the ancient Vedic (Hindu scripture) saying- “neti, neti, · · · , iti,” which means-
“not this, not this, · · · , this!”

Basu went back to Calcutta from Lansing, and I received letters from him periodically. In the March
of 2001, when I was visiting Larry Brown at the Wharton school, one morning an e-mail came from
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B.V. Rao at Calcutta. The e-mail said that he is duty bound to give me the saddest news, that Dr. Basu
passed away the night before. I went to Larry Brown’s office and gave him the news. Larry looked
at me, as if he did not believe what I said, and I saw his eyes glistening up, and he said - “that’s just
too bad. He was such a good guy.” However, the idealism and the inspiration live on, as strongly as
in 1973, when he walked into that classroom at the ISI to meet twenty 16 year olds, and fifty minutes
later, we were all in love with probability. I know that I speak for numerous people who got to know
Basu as closely as we did, that he was a personification of purity, in scholarship and in character.
There was an undefinable poetic and ethereal element in the man, his personality, his presence, his
writings, and his angelic disposition, that is very very hard to find. He is missed dearly, but he lives in
our memory. The legacy remains ever so strong. I do tell my students in my PhD theory course; read
Basu.

West Lafayette, Indiana, USA Anirban DasGupta
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Basu, D. (1952a). An example of non-existence of a minimum variance estimator, Sankhyā, 12, 43–44.
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1952.
7. D. Basu. On symmetric estimators in point estimation with convex weight functions, Sankhyā,
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359–362, 1954.
11. D. Basu. On the optimum character of some estimators in multistage sampling problems,
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18. D. Basu. A note on the multivariate extension of some theorems related to the univariate normal

distribution, Sankhyā, 17, 221–224.
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Basu’s Work on Randomization and Data Analysis

George Casella and Vikneswaran Gopal

1 Introduction

Sir R. A. Fisher put forward the idea that randomization is a necessary component of any designed
experiment. It is accepted without question by most practitioners of statistics. Yet in the two
papers

1. Basu, D. (1978) Relevance of randomization in data analysis. Survey sampling and measurement
267-292.

2. Basu, D. (1980) Randomization analysis of experimental data: the Fisher randomization test.
Journal of the American Statistical Association 75 (371) 575-582.

Basu wonders out loud if randomization is really that important. He argues his case in the context of
survey sampling, and when analyzing data using a randomization test.

In [1] Basu covers the survey sampling situation, and the randomization test is the topic of [2].
Although he acknowledges that there is a place for randomization in surveys (see Section 4 of [1]),
his belief is the opposite for the randomization test. It is important to note the difference between the
randomizations discussed in the two papers. In [1], Basu focuses on prerandomization - how to pick a
sample from a sampling frame, and how it affects the subsequent analysis of data. In [2], the focus is
on the randomization test, which was first introduced by Fisher. The two types of randomization are
intricately linked, as the first provides a basis for the second. In essence, Basu argues that the absence
of prerandomization does not make a dataset worthless, however, because of the total dependence of
the randomization test on prerandomization, a randomization test is never valid.

In this commentary, we provide a short summary of Basu’s ideas on randomization. That he did
not write a great deal more on this topic is, in his own words, “a measure of my diffidence on the
important question of the relevance of randomization at the data analysis stage”.
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2 Survey Sampling

The main question posed in [1] is about how to analyze the data generated by a survey or experiment.
With a series of examples, Basu demonstrates the disadvantages of a frequentist approach, which is
closely tied to the exact sampling plan used.

We highlight one of his more striking examples here. Suppose we have a well-defined finite pop-
ulation P , consisting of individually identifiable objects called units. We can perceive of P as the
set {1, 2, . . . , N }. Corresponding to each j ∈ P , there exists an unknown quantity Y j . The goal of
sampling is typically to estimate some function of (Y1, Y2, . . . , YN ). The method of achieving this is
through a sampling plan S , by which we mean a set of rules, following which we can arrive at a
subset s of P .

Suppose also that we have a machine that produces N = 100 units in a day. However, it is possible
for the machine to malfunction at some point, after which it only produces defective products. Using
the definitions of the previous paragraph, Yi take on values 1 or 0, depending on whether they are
defective or functioning. The aim is to estimate θ = ∑

Yi , the total number of defective products
manufactured in a day, by drawing a sample from the N units.

Randomization is injected into the experiment through the choice of the sampling plan. Should
we draw a simple random sample? Maybe a stratified sample? Whatever S we chose, the result of
drawing a sample of size 4 would be recorded as, say,

Y17 = 0, Y24 = 0, Y40 = 1, Y73 = 1.

What then would a non-Bayesian statistician do with this data? To apply a randomization analysis,
the probability of this sample with respect to the sampling scheme would have to be computed. A
complicated enough scheme might even preclude this. A Bayesian, on the other hand, would observe
that regardless of the sampling scheme applied, we know that 61 ≤ θ = ∑

Yi ≤ 76, since the first
defective occurred in the set {25, 26, . . . , 40}. Moreover, the likelihood function would be constant
over the set {61, 62, . . . , 76} and we simply base all inference on this. Thus, Basu is invoking the
Conditionality and Likelihood Principles to conclude that at the data analysis stage, the exact nature
of the sampling plan is not important. He also points out that it in this case a sequential purposive
sampling plan would serve our need better.

Notice that the example has been carefully set-up so that the non-Bayesian would be somewhat
confused. For example, θ as it is presented here, would not be viewed as a parameter in classical
statistics. But Basu, being a Bayesian, does not make a distinction between a random variable and a
parameter. The way Basu presents the problem, a Bayesian analysis offers itself as the most natural
thing to do. Such an approach avoids the need for obsessive randomization, and extracts information
from the sample obtained rather than basing inference on samples that were not drawn.

3 The Test of Randomization

With [2], Basu places the randomization test under his microscope. At the end of his analyses, he
concludes that he is unable to justify the use of the randomization test.

In the initial segments of the paper, Basu presents a version of the Fisher randomization test as a
precursor to nonparametric tests such as the sign test and the Wilcoxon signed-rank test. Following
that, he speculates that Fisher lost interest and belief in the randomization test. The final section
of the paper is the most entertaining one. It contains a fictitious conversation between a scientist,
a statistician and Basu himself. The three individuals discuss the randomization test introduced by
Fisher in Chapter III (Section 21) of [3].
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The scientist wishes to test whether a new diet is an improvement over the standard one. 30 animals
are divided into 15 homogeneous pairs and from each pair, the scientist selects one subject for the
treatment and the other one for the control. The response is the amount of weight gained in a subject
after, say, 6 weeks. The data for each pair are recorded as (ti , ci ). Suppose that for this particular
experiment, the scientist records that ti − ci > 0 for all i , and that T = ∑

i (ti − ci ) is a large positive
number.

H0 states that the new diet makes no difference to the response. If this null hypothesis were true,
it would mean that any difference in response for the i-th pair must have been caused by “nuisance”
factors such as subject differences. Under H0 then, the significance level of the observed statistic
would be Pr(T ′ ≥ T |H0) = (1/2)15, assuming that all treatment assignments were equally likely.
Basu takes the position that the randomization test should be applicable even if the randomization
were not so. Specifically, he asks why the randomization test yields a different significance level
if a biased coin were used to assign treatments within each pair. This apparent breakdown of the
methodology is one of the reasons that leads Basu to recommend that the test not be used.

In introducing the article [2] in an earlier collection [4], Basu poses similar questions with regard
to the famous tea-tasting experiment, which was also introduced by Fisher in [3].

A lady declares that by tasting a cup of tea made with milk she can discriminate whether the milk or tea infusion
was first added to the cup. . . . Our experiment consists in mixing eight cups of tea, four in one way and four in
the other, and presenting them to the subject for judgement in a random order.

The subject knows that there are 4 cups of each kind, and her task is to pick out the two groups of cups.
Fisher argued that under the (null) hypothesis that the lady does not have the ability to distinguish, if
we use the number of matches between the true grouping and the lady’s grouping as a statistic, the
significance level of a perfect grouping by the lady is given by

Pr(T ≥ 8|H0) = 1

70

Basu asks a series of questions of this approach:

Why randomize? Was it because we wanted to keep the Lady in the dark about the actual layout? But then,
why did we have to tell the Lady that there were exactly four cups of each kind in the layout and that all the
70 choices were equally likely? Why couldn’t we choose just any haphazard looking layout and keep the lady
uninformed about the choice? But then, how could we compute the significance level? Instead of randomizing
over the full 70 point set, couldn’t we randomize over a smaller, say, 10 point set of haphazard arrangements?
How can we explain that in that case the same data (x, y) with T = 8 will be associated with a significance level
of 1/10? Why are we holding the Lady’s response y as fixed and playing this probability game with the ancillary
statistic x?

Fisher went some way to explaining some of these questions when he described the purpose of
randomization, in Chapter II (Section 10) of [3].

The element in the experimental procedure which contains the essential safeguard, is that the two modifications
of the test beverage are to be prepared “in random order”. . . . The phrase “random order” itself, however, must
be regarded as an incomplete instruction, standing as a kind of shorthand symbol for the full procedure of
randomization, by which the validity of the test of significance may be guaranteed against corruption by the
causes of disturbance which have not been eliminated.

Fisher says that randomization is what solves the problem of not being able to hold every single
factor other than the treatment condition constant. The only solution is to ensure that every treat-
ment allocation has an equal chance of occurring. Any other probability distribution on the treatment
assignments could introduce a confounding factor.

For example, suppose that in the diet experiment, a coin that yields a treatment assignment of
(ti , ci ) with probability 1/4 rather than 1/2 is used. Then this is clearly against the requirement spelt
out by Fisher, because for example, a treatment allocation with 15 (ci , ti )’s is more likely than one
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with 15 (ti , ci )’s. If the animals were kept in a pen divided into 30 cells in a 15 × 2 arrangement, it is
possible that the cells on the left obtained more sunlight and hence caused the animals to gain more
weight. This would make the control treatment look good, since more animals on the left would be
assigned that treatment.

The validity of the randomization test depends on the prerandomization being carried out properly,
which requires that all treatment assignments be equally likely. Granted, Fisher never explicitly stated
that when he said randomize, he meant for us to impose a uniform distribution on the treatment
allocations. However, even if he had made his intentions explicit, would Basu have let him so lightly?
We think not. Unless Fisher gave a sound mathematical argument as to why all treatment allocations
should be equally likely, Basu’s points would still be relevant and fair.

4 Final Thoughts

It is a tremendous joy to read Basu’s papers. He presents his view in such a convincing manner that one
almost feels ashamed at believing anything to the contrary. However, it is clear from the final sections
of [1] that he does not suffer terribly from tunnel vision; he dissects his own arguments and tries to
come up with explanations for possible criticisms of his points. It is also evident that he welcomes a
good debate. The discussions at the end of [2] provide ample evidence for this. The banter between
Basu and Kempthorne in particular, is fit for a comedy (be sure not to miss it!).

(Re-)Reading Basu’s papers, which combine an inimitable style of writing with impactful exam-
ples, is an educating, enlightening and entertaining experience. At best, we question our assumptions
and beliefs, which leads us to gain new insights into classical statistical concepts. At “worst”, we
embark on a journey to becoming Bayesian.
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Basu on Ancillarity

Philip Dawid

1 The origins of ancillarity

The term “ancillary statistic” was introduced by R. A. Fisher (Fisher 1925) in the context of maximum
likelihood estimation. Fisher regarded the likelihood function as embodying all the information that
the data had to supply about the unknown parameter. At a purely abstract level, this might be regarded
as simply an application of the sufficiency principle (SP), since as a function of the data the whole
likelihood function (modulo a positive constant factor — a gloss we shall henceforth take as read)
is minimal sufficient; but that principle says nothing about what we should do with the likelihood
function when we have it. Fisher went beyond this stark interpretation, regarding the actual form
of the likelihood function as itself somehow embodying the appropriate inference. In some cases,
such as full exponential families, the maximum likelihood estimator (MLE) is itself sufficient, fully
determining the whole course of the likelihood function; but more generally it is only in many-one
correspondence with the likehood function, so that two different sets of data can have associated
likelihood functions whose maxima are in same place, but nevertheless differ in shape. Initially, for
Fisher, an ancillary statistic (from the Latin “ancilla”, meaning handmaiden) denoted a quantity cal-
culated from the data which “lent support” to the MLE, by providing additional information about the
shape of the likelihood function, over and above the position of its maximum — for example, higher
derivatives of the log-likelihood at the MLE. If we regard the spikiness of the likelihood function
as telling us something about the (data-dependent) precision of the MLE, we might select a suitable
ancillary statistic to quantify this precision: this appears to have been Fisher’s original motivation.
According to this understanding of an ancillary statistic as describing the shape of the likelihood
function, it is necessarily a function of the minimal sufficient statistic. Ideally, the MLE together with
it handmaiden would fully determine the likelihood function, the pair then constituting a minimal
sufficient statistic.

Fisher (1934) then considered the working out of these general concepts in the special case of
a location model, where the MLE fully determines the location of the likelihood function, but is
entirely uninformative as to its its shape; while the configuration statistic, i.e., the set of pairwise
differences between the observations, constitutes an ancillary statistic, fully determining the shape
of the likelihood function, but uninformative about its location. For this model (though, for Fisher’s
original definition, not necessarily more generally) it is also true that the distribution of this ancillary
statistic is entirely independent of the value of the unknown location parameter; furthermore, the
conditional distribution of the maximum likelihood estimator, given the configuration, has a density
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that has the same shape as the likelihood function. At a certain point, Fisher decided that it was such
properties, rather than his original handmaiden conception, that were of crucial general importance,
and from that point on the word “ancillary” was used to mean “having a distribution independent
of the parameter”. Associated with this was the somewhat vague idea of a “conditionality principle”
(CP), whereby it is the conditional distribution of the data, given the ancillary statistic, that is regarded
as supplying the appropriate “frame of reference” for determining the precision of our estimate. As
a simple example lending support to this principle, suppose we first toss a fair coin, and then take
10 observations if it lands heads up, or 100 if it lands tails up. The coin toss does not depend upon
the parameter (it is ancillary in the revised sense, although not necessarily in the original sense),
and so cannot, of itself, be directly informative about it; but it does determine the precision of the
experiment subsequently performed, and it does seem eminently sensible to condition on the number
of observations actually taken to obtain a realistic measure of realised precision.

At an abstract level, CP can be phrased as requiring that any inference should be (or behave as
if it were) conducted in the frame of reference that conditions on the realised value of an ancillary
statistic. One can attempt to draw analogies between this CP and the sufficiency principle, SP, which
tells us that our inference should always be (or behave as if it were) based on a sufficient statistic.
But is important to note that in either case there may be a choice of statistics of the relevant kind, and
we would like to be able to apply the principle simultaneously for all such. Considering first the case
of sufficiency, suppose T1 is sufficient and, in accordance with SP, we are basing our inference on T1
alone. If now T1 is a function of T2, then T2 is also sufficient: but the property that our inference should
be based on T2 alone is automatically inherited from this property holding for the “smaller” statistic
T1, so we do not need to take any explicit steps to ensure this. In particular, if we can find a smallest
sufficient statistic T0, a function of any other sufficient statistic, then basing our inference on T0 will
automatically satisfy SP with respect to any choice of sufficient statistic. It is well known that, subject
only to mild regularity conditions, such a smallest (“minimal”) sufficient statistic can generally be
found. Hence it is pretty straightforward to satisfy SP simultaneously with respect to every sufficient
statistic: simply base inference on the minimal sufficient statistic.

The case of ancillarity appears very similar, though with the functional ordering reversed. Suppose
S1 is ancillary, and, in accordance with CP, we are basing inference on the conditional distribution
of the data, given S1. If now S2 is a function of S1, then S2 is also ancillary; and the property that
inference is conditioned on S2 is automatically inherited from this property holding for the “larger”
statistic S1. This analysis suggests that — in close analogy with the case of the minimal sufficient
statistic — we should aim to identify a largest ancillary statistic S0, of which every ancillary statistic
would be a function. Then conditioning on S0 would automatically satisfy CP, simultaneously with
respect to every choice of ancillary statistic.

2 Enter Basu

The above analysis appears unproblematic, and might be thought to make a compelling case for always
conditioning on the largest ancillary statistic — an apparently straightforward enterprise. But then
along comes Basu, and suddenly things are not so clear!

Basu presented theory and counter-examples to show that in general there is no unique largest
ancillary statistic, conditioning on which would allow us to apply the conditionality principle unam-
biguously. Typically there will be a multiplicity of ancillary statistics that are maximal, i.e., cannot be
expressed as a non-trivial function of any other ancillary; and in this case no single largest ancillary
can exist. Even in what would seem to be the simplest special case, of two independent observations
from the normal location model, having Xi ∼ N (θ, 1) (i = 1, 2), there is no largest ancillary: for
any c ∈ [−∞,+∞], the statistic Sc defined as X1 − X2 if X1 + X2 > c, X2 − X1 otherwise, is
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ancillary (Basu 1959). But knowing Sc for all c we can recover the full data (X1, X2) — which is
clearly not ancillary. This possibility arises because two statistics can each be marginally ancillary,
while not being jointly ancillary. Another example of this phenomenon occurs for the bivariate normal
distribution with standard normal marginals and unknown correlation coefficient: the data on either
variable singly are ancillary, but this clearly fails when both variables are combined.

Some have argued that such examples merely show that we should not have abandoned Fisher’s
original conception that an ancillary statistic should itself be a function of the minimal sufficient
statistic — which does not hold in the above examples. But Basu has other examples that are not
subject to this criticism. One simple example (Basu 1964) involves the outcome X of a single throw of
a die, where, for some value of θ ∈ [0, 1], the probabilities of obtaining the scores 1–6 are respectively,
(1/12) × (1 − θ, 2 − θ, 3 − θ, 1 + θ, 2 + θ, 3 + θ). Then X itself is minimal sufficient, but there
are 6 non-equivalent maximal ancillary functions of X : for example, one such is Y1 = 0 if X = 1
or 4, Y1 = 2 if X = 2 or 5, Y1 = 3 if X = 3 or 6; another is Y6 = 0 if X = 1 or 6, Y6 = 2 if
X = 2 or 5, Y6 = 3 if X = 3 or 4. We thus have a choice of ancillaries to condition on. For any
such choice, the conditional distribution of X is confined to two possible values, so looking like a
biased coin-toss; but the bias is a different function of θ in each case, and there is no clear reason
to prefer one of these choices rather than another. Since there is no largest ancillary here, the simple
interpretation of the conditionality principle, as enjoining us to make inference in the reference set
obtained by conditioning on any ancillary, appears non-operational. Attempts — e.g., Cox (1971),
Kalbfleisch (1975) — have been made to restrict CP to apply only to certain ancillaries, but these are
either unconvincingly ad hoc or fail fully to resolve the difficulty.

In the presence of a choice of maximal ancillaries to condition on, CP could nevertheless be rescued
if the conditioning in fact had no effect (or had the same effect in all cases). In another strand of his
work, Basu found conditions for this to hold. Thus let T be a complete (and hence also minimal)
sufficient statistic. Basu (1955) showed that T must be independent of any ancillary statistic, for
any value of the parameter. It follows that any inference based only on the marginal distribution of
T , which of course respects SP, will also respect CP, with respect to any possible choice of ancillary
statistic. This applies, for example, in the example above of two observations from the normal location
model, in which the minimal sufficient statistic T = 1

2 (X1 + X2) is complete, hence independent of
any ancillary (including Sc), so that any inference based on T alone will automatically satisfy CP.
However, the general usefulness of this construction is limited, since in many problems (such as
the biased die example above) the minimal sufficient statistic is not complete, and its conditional
distribution does depend on which ancillary is conditioned on — so that this particular escape route
is blocked off.

A related result (though with less direct relevance for CP) is that, under additional conditions, any
statistic which is independent of a sufficient statistic is ancillary. In Basu (1955) this was asserted as
true without further conditions; a counter-example and corrected version were given in Basu (1958).

3 Ancillarity and likelihood

In the light of these depressing results, one might reach the depressing conclusion that, however
appealling CP may seem, there is no general way of satisfying it. And that conclusion is essentially
correct if we take a frequentist approach to inference, since we end up with entirely different sample
spaces, with entirely different properties, by conditioning on different ancillaries. However, this does
not mean that there is no way of making inferences that respect CP. For example, suppose we agree,
along with Fisher, that the message in the observation X = x0 is entirely encapsulated in the likelihood
function for the parameter θ that this observation generates: L0(θ) ∝ Prob(X = x0 | θ) (we here
suppose, purely for simplicity of exposition, that the sample space is discrete). For any ancillary
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statistic S = s(X), the conditional probability of X = x , given S = s := s(x), is Prob(X = x | θ)/

Prob(S = s), where the denominator does not involve θ by ancillarity of S; so, for any data x0 the
likelihood function computed in this conditional frame of reference, L∗

0(θ) ∝ Prob(X = x0 | S =
s0; θ) (with s0 = s(x0)), will be identical with the full-data likelihood function, L0(θ) ∝ Prob(X =
x0 | θ). It follows that any inference that is based purely on the properties of the observed likelihood
function — for instance, the maximum likelihood estimate, the curvature of the log-likelihood at its
maximum, a Bayesian posterior based on a fixed prior distribution,. . . — will be entirely unaffected if
we condition on an ancillary statistic, and hence will automatically satisfy CP.

One of the most significant results in this area was Birnbaum’s theorem (Birnbaum 1962). This
showed that any general method of inference about some parameter θ , applicable across a range of
experimental setups, will satisfy both the sufficiency and the conditionality principles if and only if
it depends only on the observed likelihood function — i.e., it satisfies the likelihood principle, LP.
Basu’s investigations led him down this same path, and he did fully accept LP. However, even this
was not enough for him, and in many of his works — e.g., Basu (1975); Basu (1977) — he argued
that the only sensible way of satisfying LP is to be, or at least act like, a Bayesian with a fixed proper
prior distribution. But that is another story.
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Basu, D. (1964). Recovery of ancillary information. Sankhyā, Series A, 26, 3–16.
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Conditional Inference by Estimation of a Marginal
Distribution

Thomas J. DiCiccio and G. Alastair Young

1 Introduction

Conditional inference has been, since the seminal work of Fisher (1934), a fundamental part of the
theory of parametric statistics, but is a less established part of statistical practice. Crucial aspects of
our understanding of the issues behind conditional inference are revealed by key work of Dev Basu:
see, for example, Basu (1959, 1965).

Conditioning has two principal operational objectives: (i) the elimination of nuisance parameters;
(ii) ensuring relevance of inference to an observed data sample through the conditionality principle of
conditioning on the observed value of an ancillary statistic, when such a statistic exists. The concept of
ancillarity here is usually taken to mean distribution constant. The elimination of nuisance parameters
is usually associated with conditioning on sufficient statistics, and is most transparently and uncon-
troversially applied for inference in multiparameter exponential family models. Basu (1977) provides
a general and critical discussion of conditioning to eliminate nuisance parameters. The notion of con-
ditioning to ensure relevance, together with the associated problem, which exercised Fisher himself
(Fisher, 1935), of recovering information lost when reducing the dimension of a statistical problem
(to, say, that of the maximum likelihood estimator, when this estimator is not sufficient), is most
transparent in transformation models, such as the location-scale model considered by Fisher (1934).

In some circumstances, issues to do with conditioning are clear cut. Though most often applied as
a slick way to establish independence between two statistics, Basu’s Theorem (Basu, 1955) shows that
a boundedly complete sufficient statistic is independent of every ancillary statistic, which establishes
the irrelevance for inference of any ancillary statistic when a boundedly complete sufficient statistic
exists.

In many other circumstances, however, through the work of Basu and others, we have come to
understand that there are formal difficulties with conditional inference. We list just a few. (1) It is well
understood that conflict can emerge between conditioning and conventional measures of repeated sam-
pling optimality, such as power. The most celebrated illustration is due to Cox (1958). (2) Typically
there is arbitrariness of what to condition on; in particular, ancillary statistics are often not unique and
a maximal ancillary may not exist. See, for instance, Basu (1959, 1965) and McCullagh (1992). (3)
We must confront too the awkward mathematical contradiction of Birnbaum (1962), which says that
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the conditionality principle, taken together with the quite uncontroversial sufficiency principle, imply
acceptance of the likelihood principle of statistical inference, which is incompatible with the common
methods of inference, such as calculation of p-values or construction of confidence sets, where we are
drawn to the notion of conditioning.

Careful, elegant and accessible evaluation of these issues and related core ideas of statistical infer-
ence characterise much of the work of Basu, whose analyses had a profound impact on shaping the
current prevailing attitude to conditional inference. Calculating a conditional sampling distribution is
typically not easy, and such practical difficulties, taken together with the formal difficulties with con-
ditional inference elucidated by Basu and others, have led to much of modern statistical theory being
based on notions of inference which automatically accommodate conditioning, at least to some high
order of approximation. Of particular focus are methods which respect the conditionality principle
without requiring explicit specification of the conditioning ancillary, and which therefore circumvent
the difficulties characterised by Basu associated with non-uniqueness of ancillaries.

Much attention in parametric theory now lies, therefore, in inference procedures which are stable,
that is, which are based on a statistic that has, to some high order in the available data sample size, the
same repeated sampling behaviour both marginally and conditionally given the value of the appropri-
ate conditioning statistic. The notion is that accurate approximation to an exact conditional inference
can then be achieved by considering the marginal distribution of the stable statistic, ignoring the rel-
evant conditioning. This idea is elegantly expressed for the ancillary statistic context by, for example,
Barndorff-Nielsen & Cox (1994, section 7.2), Pace & Salvan (1997, section 2.8) and Severini (2000,
section 6.4). See also Efron & Hinkley (1978) and Cox (1980).

A principal approach to approximation of an intractable exact conditional inference lies in devel-
opments in higher-order small-sample likelihood asymptotics, based on saddlepoint and related ana-
lytic methods. Book length treatments of this analytic approach are given by Barndorff-Nielsen &
Cox (1994) and Severini (2000). Brazzale et al. (2007) demonstrate very convincingly how to apply
these developments in practice. Methods have been constructed which automatically achieve the elim-
ination of nuisance parameters which is desired in the exponential family setting, though focus has
been predominantly on ancillary statistic models. Here, a key development concerns construction of
adjusted forms of the signed root likelihood ratio statistic, which require specification of the ancillary
statistic, but are distributed, conditionally on the ancillary, as N (0, 1) to third order, O(n−3/2), in the
data sample size n. Normal approximation to the sampling distribution of the adjusted statistic there-
fore provides third-order approximation to exact conditional inference: see Barndorff-Nielsen (1986).
Approximations which yield second-order conditional accuracy, that is, which approximate the exact
conditional inference to error of order O(n−1), but which avoid specification of the ancillary statistic,
are possible: Severini (2000 section 7.5) reviews such methods.

In the computer age, an attractive alternative approach to approximation of conditional inference
uses marginal simulation, or ‘parametric bootstrapping’, of an appropriately chosen statistic to mimic
its conditional distribution. The idea may be applied to approximate the conditioning that is appro-
priate to eliminate nuisance parameters in the exponential family setting, and can be used in ancillary
statistic models, where it certainly avoids specification of the conditioning ancillary statistic.

2 An inference problem

To be concrete in our discussion, we consider the following inference problem. Let Y = {Y1, . . . , Yn}
be a random sample from an underlying distribution F(y; η), indexed by a d-dimensional parameter
η, where each Yi may be a random vector. Let θ = g(η) be a (possibly vector) parameter of interest,
of dimension p. Without loss we may assume that η = (θ, λ), with θ the p-dimensional interest
parameter and λ a q-dimensional nuisance parameter. Suppose we wish to test a null hypothesis of
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the form H0 : θ = θ0, with θ0 specified, or, through the familiar duality between tests of hypotheses
and confidence sets, construct a confidence set for the interest parameter θ . If p = 1, we may wish to
allow one-sided inference; for instance, we may want a test of H0 against a one-sided alternative of the
form θ > θ0 or θ < θ0, or construction of a one-sided confidence limit. Let l(η) = l(η; Y ) be the log-
likelihood for η based on Y . Also, denote by η̂ = (θ̂ , λ̂) the overall maximum likelihood estimator of
η, and by λ̂θ the constrained maximum likelihood estimator of λ for a given fixed value of θ . Inference
on θ may be based on the likelihood ratio statistic, W = w(θ) = 2{l(η̂)−l(θ, λ̂θ )}. If p = 1, one-sided
inference uses the signed square root likelihood ratio statistic R = r(θ) = sgn(θ̂ − θ)w(θ)1/2, where
sgn(x) = −1 if x < 0, = 0 if x = 0, and = 1 if x > 0. In a first-order theory of inference, the two key
distributional results are that W is distributed as χ2

p, to error of order O(n−1), while R is distributed

as N (0, 1), to error of order O(n−1/2).

3 Exponential family

Suppose the log-likelihood is of the form l(η) = θs1(Y ) + λT s2(Y ) − k(θ, λ) − d(Y ), with θ scalar,
so that θ is a natural parameter of a multi-parameter exponential family. We wish to test H0 : θ = θ0
against a one-sided alternative, and do so using the signed root statistic R.

Here the conditional distribution of s1(Y ) given s2(Y ) = s2 depends only on θ , so that condition-
ing on the observed value s2 is indicated as a means of eliminating the nuisance parameter. So, the
appropriate inference on θ is based on the distribution of s1(Y ), given the observed data value of s2.
This conditional inference has the unconditional (repeated sampling) optimality property of yielding
a uniformly most powerful unbiased test: see, for example, Young & Smith (2005, section 7.2). The
necessary conditional distribution is, in principle, known, since it is completely specified, once θ is
fixed. In practice, however, the exact inference may be difficult to construct: the relevant conditional
distribution typically requires awkward analytic calculations, numerical integrations, etc., and may
even be completely intractable.

DiCiccio & Young (2008) show that in this exponential family context, accurate approximation
to the exact conditional inference may be obtained by considering the marginal distribution of the
signed root statistic R under the fitted model F(y; (θ, λ̂θ )), that is, under the model with the nuisance
parameter taken as the constrained maximum likelihood estimator, for the given value of θ . This
scheme yields inference agreeing with exact conditional inference to relative error of third order,
O(n−3/2). Specifically, DiCiccio & Young (2008) show that

pr{R ≥ r; (θ, λ̂θ )} = pr(R ≥ r |s2(Y ) = s2; θ){1 + O(n−3/2)},

when r is of order O(1). Their result is shown for both continuous and discrete models. The approach
therefore has the same asymptotic properties as saddlepoint methods developed by Skovgaard (1987)
and Barndorff-Nielsen (1986) and studied by Jensen (1992). DiCiccio & Young (2008) demonstrate
in a number of examples that this approach of estimating the marginal distribution of R gives very
accurate approximations to conditional inference even in very small sample sizes. A crucial point
of their analysis is that the marginal estimation should fix the nuisance parameter as its constrained
maximum likelihood estimator: the same third-order accuracy is not obtained by fixing the nuisance
parameter at its global maximum likelihood value λ̂.

Third-order accuracy can also be achieved, in principle, by estimating the marginal distributions of
other asymptotically standard normal pivots, notably Wald and score statistics. However, in numerical
investigations, using R is routinely shown to provide more accurate results. A major advantage of
using R is its low skewness; consequently, third-order error can be achieved, although not in a relative
sense, by merely correcting R for its mean and variance and using a standard normal approximation
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to the standardized version of R. Since it is computationally much easier to approximate the mean
and variance of R by parametric bootstrapping at (θ, λ̂θ ) than it is to simulate the entire distribution
of R, the use of mean and variance correction offers substantial computational savings, especially for
constructing confidence intervals. Although these savings are at the expense of accuracy, numerical
work suggests that the loss of accuracy is unacceptable only when the sample size is very small.

4 Ancillary statistic models

In modern convention, ancillarity in the presence of nuisance parameters is generally defined in the
following terms. Suppose the minimal sufficient statistic for η may be written as (η̂, A), where the
statistic A has, at least approximately, a sampling distribution which does not depend on the parameter
η. Then A is said to be ancillary and the conditionality principle would argue that inference should be
made conditional on the observed value A = a.

McCullagh (1984) showed that the conditional and marginal distributions of signed root statistics
derived from the likelihood ratio statistic W for a vector interest parameter, but with no nuisance
parameter, agree to error of order O(n−1), producing very similar p-values whether one conditions on
an ancillary statistic or not. Severini (1990) considered similar results in the context of a scalar interest
parameter without nuisance parameters; see also Severini (2000, section 6.4.4). Zaretzki et al. (2009)
show the stability of the signed root statistic R, in the case of a scalar interest parameter and a general
nuisance parameter, and their methodology can be readily extended to the case of a vector interest
parameter θ to establish stability of signed root statistics derived from W in the presence of nuisance
parameters. Stability of the likelihood ratio statistic W is immediate: the marginal and conditional
distributions are both χ2

p to error O(n−1).

Since the marginal and conditional distributions of R coincide to error of order O(n−1) given
A = a, it follows that the conditional p-values obtained from R are approximated to the same
order of error by the marginal p-values. Moreover, for approximating the marginal p-values, the
marginal distribution of R can be approximated to error of order O(n−1) by means of the parametric
bootstrap; the value of η used in the bootstrap can be either the overall maximum likelihood estimator,
η = (θ̂ , λ̂), or the constrained maximum likelihood estimator, η = (θ, λ̂θ ). For testing the null hypoth-
esis H0 : θ = θ0, the latter choice is feasible; however, for constructing confidence intervals, the
choice η = (θ̂ , λ̂) is computationally less demanding. DiCiccio et al. (2001) and Lee & Young (2005)
showed that the p-values obtained by using η = (θ, λ̂θ ) are marginally uniformly distributed to error
of order O(n−3/2), while those obtained by using η = (θ̂ , λ̂) are uniformly distributed to error of
order O(n−1) only. Numerical work indicates that using η = (θ, λ̂θ ) improves conditional accuracy
as well, although, formally, there is no difference in the orders of error to which conditional p-values
are approximated by using the two choices. Though in principle the order of error in approximation
of exact conditional inference obtained by considering the marginal distribution of R is larger than
the third-order, O(n−3/2), error obtained by normal approximation to the sampling distribution of
the adjusted signed root statistic, substantial numerical evidence suggests very accurate approxima-
tions are obtained in practice. Particular examples are considered by DiCiccio et al. (2001), Young &
Smith (2005, section 11.5) and Zaretzki et al. (2009).

In the case of a vector interest parameter θ , both the marginal and conditional distributions of
W = w(θ) are chi-squared to error O(n−1), and hence, using the χ2

p approximation to the distribution
of W achieves conditional inference to error of second order. Here, however, it is known (Barndorff-
Nielsen & Cox, 1984) that a simple scale adjustment of the likelihood ratio statistic improves the
chi-squared approximation:

p

E(θ,λ){w(θ)}w(θ)
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is distributed as χ2
p to error of order O(n−2). Since E(θ,λ){w(θ)} is of the form p + O(n−1), it follows

that E
(θ,λ̂θ )

{w(θ)} = E(θ,λ){w(θ)} + Op(n−3/2). Thus, estimation of the marginal distribution of W

by bootstrapping with η = (θ, λ̂θ ) yields an approximation having error of order O(n−3/2); moreover,
to error of order O(n−2), this approximation is the distribution of a scaled χ2

p random variable with
scaling factor E

(θ,λ̂θ )
{w(θ)}/p. The result of Barndorff-Nielsen & Hall (1988), that

p

E
(θ,λ̂θ )

{w(θ)}w(θ)

is distributed as χ2
p to error of order O(n−2), shows that confidence sets constructed by using the

bootstrap approximation to the marginal distribution of W have marginal coverage error of order
O(n−2).

The preceding results continue to hold under conditioning on the ancillary statistic. In particular,

p

E(θ,λ){w(θ)|A = a}w(θ)

is, conditional on A = a, also χ2
p to error of order O(n−2). The conditional distribution of W

is, to error of order O(n−2), the distribution of a scaled χ2
p random variable with scaling factor

E(θ,λ){w(θ)|A = a}/p. Generally, the difference between E(θ,λ){w(θ)} and E(θ,λ){w(θ)|A = a} is
of order O(n−3/2) given A = a, and using the bootstrap estimate of the marginal distribution of
W approximates the conditional distribution to error of order O(n−3/2). Thus, confidence sets con-
structed from the bootstrap approximation have conditional coverage error of order O(n−3/2), as well
as marginal coverage error of order O(n−2).

Bootstrapping the entire distribution of W at η = (θ, λ̂θ ) is computationally expensive, especially
when constructing confidence sets, and two avenues for simplification are feasible. First, the order
of error in approximation to conditional inference remains of order O(n−3/2) even if the marginal
distribution of W is estimated by bootstrapping with η = (θ̂ , λ̂), the global maximum likelihood
estimator. It is likely that using η = (θ, λ̂θ ) produces greater accuracy; however, this increase in
accuracy might not be sufficient to warrant the additional computational demands. Second, instead of
bootstrapping the entire distribution of W , the scaled chi-squared approximation could be used, with
the scaling factor E

(θ,λ̂θ )
{w(θ)}/p being estimated by the bootstrap. It could be of interest to examine,

by theoretical analysis or numerical examples, which of these two simplifications is preferable. Use
of the bootstrap for estimating Bartlett adjustment factors was proposed by Bickel & Ghosh (1990).
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Basu’s Theorem

Malay Ghosh

Professor Basu, in his long illustrious career, has made many fundamental contributions to the
foundations of statistical inference. Among others, I point out his work on ancillarity, likelihood
principle, partial and marginal sufficiency, randomization and foundations of survey sampling.

In spite of all the above contributions, Basu is possibly the most well-known to a vast majority of
statisticians for a theorem which bears his name. Basu’s Theorem, published in Sankhya, 1955, has
served several generations of statisticians as a fundamental tool for proving independence of statistics.
The theorem itself is beautiful because of its elegance and simplicity, and yet one must acknowledge
its underlying depth, as it is built on several fundamental concepts of statistics, such as sufficiency,
completeness and ancillarity.

The theorem simply states that if a sufficient statistic T is boundedly complete and a statistic U is
ancillary, then T and U are independently distributed. But the theorem is not just useful for what it
says. It can be used in a wide range of applications such as in distribution theory, hypothesis testing,
theory of estimation, calculation of moments of many complicated statistics, calculation of mean
squared errors of empirical Bayes estimators, and even surprisingly, establishing infinite divisibility
of certain distributions. The application possibly extends to many other areas of statistics which I have
not come across. I strongly believe that even probabilists can benefit by knowing this theorem, since
it may provide a handy tool for finding distributions of many complex statistics.

A detailed set of examples showing applications of Basu’s Theorem in various branches of statistics
is available in Ghosh (2002). I will present only a few of them here. But first I will discuss a few
conceptual issues as pointed out in Lehmann (1981) and DasGupta (2006).

Lehmann (1981) pointed out that the properties of minimality and completeness of a sufficient
statistic are of a rather different nature. A complete sufficient statistic is minimal sufficient, but the
converse is not necessarily true. The existence of a minimal sufficient statistic T , by itself, does not
guarantee that there does not exist any function of T which is ancillary. Basu’s Theorem tells us that
if T is complete in addition to being sufficient, then no ancillary statistic other than the constants can
be computed from T . Thus, by Basu’s Theorem, completeness of a sufficient statistic T characterizes
the success of T in separating the informative part of the data from that part, which by itself, carries
no information. The following example illustrates this.

Example 1 Let X1, · · · , Xn be independent and identically distributed (iid) with joint probability den-
sity function (pdf) belonging to the double exponential family

M. Ghosh (B)
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P =
{

n∏
i=1

fθ (xi ) : fθ (x) = f (x − θ), x ∈ R1, θ ∈ R1

}
, (1)

where f (x) = (1/2)exp(−|x |). Let X(1) ≤ X(2) ≤ · · · ≤ X(n) denote the ordered Xi ’s. Then
T = (X(1), · · · , X(n)) is minimal sufficient for P . But clearly T is not boundedly complete as
can be verified directly by showing that the expectation of any bounded function of X(n) − X(1)

(with the exception of constants) is a nonzero constant not depending on θ , but that the proba-
bility that the function is equal to that constant is not 1 (in fact equal to zero). In this example,
X(n) − X(1), while ancillary, is not independent of T . On the other hand, if one considers instead the
augmented class of all continuous pdf’s P = {∏n

i=1 f (xi ) : f continuous}, then T is indeed com-
plete, and Basu’s Theorem asserts that there does not exist any non-constant function of T which is
ancillary.

Thus, for the double exponential family, sufficiency has not been successful in “squeezing out”
all the ancillary material, while for the augmented family, success takes place by virtue of Basu’s
Theorem.

There are several ways to think of possible converses to Basu’s Theorem. One natural question
is that if T is boundedly complete and sufficient, and U is distributed independently of T for every
θ ∈ �, then is U ancillary? The answer is no as pointed out by in Koehn and Thomas (1975) in the
following example.

Example 2 Let X ∼ uniform[θ, θ + 1), where θ ∈ � = {0,±1,±2, · · · , }. Then X has pdf fθ (x) =
I[[x]=θ], where [x] denotes the integer part of x . It is easy to check that [X ] is complete sufficient for
θ ∈ �, and is also distributed independently of X , but clearly X is not ancillary!

The above apparently trivial example brings out several interesting issues. First, since Pθ ([X ] =
θ) = 1 for all θ ∈ �, so that [X ] is degenerate with probability 1. Indeed, in general, a nontriv-
ial statistic cannot be independent of X , because if this were the case, it would be independent
of every function of X , and thus independent of itself! However, this example shows also that
if there exists a nonempty proper subset X0 of X , and a nonempty proper subset �0 of � such
that

Pθ (X0) = 1 for θ ∈ �0;
= 0 for θ ∈ � − �0, (2)

then the converse to Basu’s Theorem may fail to hold. In Example 2, X = R1, and � is the set of
all integers. Taking �0 = {θ0} and X0 = [θ0, θ0 + 1), one produces a counterexample to a possible
converse to Basu’s Theorem.

Basu (1958) gave a sufficient condition for the converse to his theorem. First he defined two prob-
ability measures Pθ and Pθ ′ to be overlapping if they do not have disjoint supports. In Example 2, all
probability measures Pθ , θ ∈ � are non-overlapping. The family P is said to be connected if for every
pair {θ, θ ′}, θ ∈ �, θ ′ ∈ �, there exist θ1, · · · , θk , each belonging to � such that any two members
of the sequence overlap. The following theorem is given in Basu (1958).

Theorem 1 Let P = {Pθ , θ ∈ �} be connected, and T be sufficient for P . Then U is ancillary if T
and U are independent for every θ ∈ �.

It is only the sufficiency and not the completeness of T which plays a role in Theorem 1. An alter-
native way to think about a possible converse to Basu’s Theorem is whether the independence of all
ancillary statistics with a sufficient statistic T implies that T is boundedly complete. The answer is
again NO as Lehmann (1981) produces the following counterexample.
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Example 3 Let X be a discrete random variable assuming values x with probabilities p(x) as given
below:

x −5 −4 −3 −2 −1 1 2 3 4 5
p(x) α′ p2q α′ pq2 1

2 p3 1
2 q3 γ ′ pq γ pq 1

2 q3 1
2 p3 αpq2 αp2q

Here 0 < p = 1 − q < 1, is the unknown parameter, and α, α′, γ , γ ′ are known positive constants
satisfying α + γ = α′ + γ ′ = 3/2. In this example, |X | is minimal sufficient, P(X > 0) = 1/2 so
that U = I[X>0] is ancillary. However, if α �= α′, then U is not distributed independently of T .

Lehmann (1981) pointed out that this converse to Basu’s Theorem fails to hold because ancillarity
is a property of the whole distribution of a statistic, while completeness is a property dealing only
with expectations. He showed also that correct versions of the converse could be obtained either by
replacing ancillarity with the corresponding first order property or completeness with a condition
reflecting the whole distribution.

To this end, define a statistic V ≡ V (X) to be first order ancillary if Eθ (V ) does not depend on
θ ∈ �. Then one has a necessary and sufficient condition for Basu’s Theorem.

Theorem 2 A necessary and sufficient condition for a sufficient statistic T to be boundedly complete
is that every bounded first order ancillary V is uncorrelated with every bounded real-valued function
of T for every θ ∈ �.

An alternative approach to obtain a converse is to modify instead the definition of completeness.
Quite generally, a sufficient statistic T is said to be G-complete (G is a class of functions) if for every
g ∈ G, Eθ [g(T )] = 0 for all θ ∈ � implies that Pθ [g(T ) = 0] = 1 for all θ ∈ �. Suppose, in
particular, G = G0, where G0 is the class of all two-valued functions. Then Lehmann (1981) proved
the following theorem.

Theorem 3 Suppose T is sufficient and every ancillary statistic U is distributed independently of T .
Then T is G0-complete.

Basu’s Theorem implies the independence of T and U when T is boundedly complete and sufficient,
while U is ancillary. This, in turn, implies the G0-completeness of T . However, the same Example 3
shows that neither of the reverse implications is true. On the other hand, if instead of G0, one considers
G1 which are conditional expectations of all two-valued functions with respect to a sufficient statistic
T , then Lehmann proved the following theorem.

Theorem 4 A necessary and sufficient condition for a sufficient statistic T to be G1-complete is that
every ancillary statistic U is independent of T (conditionally) for every θ ∈ �.

Theorems 2–4, provide conditions under which a sufficient statistic T has some form of com-
pleteness (not necessarily bounded completeness) if it is independent of every ancillary U. However,
Theorem 1 says that ancillarity of U does not follow even if it is independent of a complete suffi-
cient statistic. As shown in Example 2, [X ] is complete sufficient, and hence, by Basu’s Theorem, is
independent of every ancillary U, but [X ] independent of X, but X not ancillary.

Next we provide a few selected examples which show multifaceted applications of Basu’s Theorem.

Example 4 (A Distribution Theory Result) Let X i = (X1i , X2i )
T be n iid random variables, each

having a bivariate normal distribution with means μ1(∈ R1) and μ2(∈ R1), variances σ 2
1 (> 0) and

σ 2
2 (> 0), and correlation ρ ∈ (−1, 1). Let X̄ j = n−1 ∑n

i=1 X ji , S2
j = ∑n

i=1(X ji − X̄ j )
2 ( j = 1, 2)

and R = ∑n
i=1(X1i − X̄1)(X2i − X̄2)/(S1S2). Under the null hypothesis H0 : ρ = 0, (X̄1, X̄2, S2

1 , S2
2)

is complete sufficient for (μ1, μ2, σ
2
1 , σ 2

2 ), while R is ancillary. Thus (X̄1, X̄2, S2
1 , S2

2) is distributed
independently of R when ρ = 0. Due to the mutual independence of X̄1, X̄2, S2

1 and S2
2 when
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ρ = 0, one gets now the mutual independence of X̄1, X̄2, S2
1 , S2

2 and R when ρ = 0, and the
joint pdf of these five statistics is now the product of the marginals. Now to derive the joint pdf
qμ1,μ2,σ

2
1 ,σ 2

2 ,ρ(x̄1, x̄2, s2
1 , s2

2 , r) of these five statistics for an arbitrary ρ ∈ (−1, 1), by the Factorization
Theorem of sufficiency, one gets

qμ1,μ2,σ
2
1 ,σ 2

2 ,ρ(x̄1, x̄2, s2
1 , s2

2 , r) = q0,0,1,1,0(x̄1, x̄2, s2
1 , s2

2 , r)
L(μ1, μ2, σ

2
1 , σ 2

2 , ρ)

L(0, 0, 1, 1, 0)
,

where L(·) denotes the likelihood function under the specified values of the parameters.

Example 5 This example, taken from Boos and Hughes-Oliver (BH) (1998), is referred to as the Monte
Carlo Swindle. The latter refers to a simulation technique that ensures statistical accuracy with a
smaller number of replications at a level which one would normally expect from a much larger number
of replications. Johnstone and Velleman (1985) provide many such examples. One of their examples
taken by BH shows that if M denotes a sample median in a random sample of size n from a N (μ, σ 2)

distribution, then the Monte Carlo estimate of V (M) requires a much smaller sample size to attain a
prescribed accuracy, if instead one finds the Monte Carlo estimate of V (M − X̄) and adds the usual
estimate of σ 2/n to the same.

We do not provide the detailed arguments of BH to demonstrate this. We point out only the basic
identity V (M) = V (M − X̄) + V (X̄) as used by these authors. As noticed by BH, this is a simple
consequence of Basu’s Theorem. As mentioned in Example 2, for fixed σ 2, X̄ is complete sufficient
for μ, while M − X̄ = med(X1 −μ, · · · , Xn −μ)− (X̄ −μ) is ancillary. Hence, by Basu’s Theorem,

V (M) = V (M − X̄ + X̄) = V (M − X̄) + V (X̄) = V (M − X̄) + σ 2/n.

Hogg and Craig (1956) have provided several interesting applications of Basu’s Theorem. Among
these, there are some hypothesis testing examples where Basu’s Theorem aids in the derivation of
the exact distribution of −2 loge λ under the null hypothesis H0, λ being the generalized likelihood
ratio test (GLRT) statistic. One common feature in all these problems is that the supports of all the
distributions depend on parameters. We discuss one of these examples in its full generality.

Example 6 Let Xi j ( j = 1, · · · , ni ; i = 1, · · · , k) (k ≥ 2) be mutually independent, Xi j ( j =
1. · · · , ni ) being iid with common pdf

fθi (xi ) = [h(xi )/H(θi )]I[0≤xi ≤θi ], i = 1, · · · , k, (3)

where H(u) = ∫ u
0 h(x)dx , and h(x) > 0 for all x > 0. We want to test H0 : θ1 = · · · = θk

against the alternative H1: not all θi are equal. We write X i = (Xi1, · · · , Xini )
T , i = 1, · · · , k

and X = (XT
1 , · · · , XT

k )T . Also, let Ti ≡ Ti (X i ) = max(Xi1, · · · , Xini ), i = 1, · · · , k, and T =
max(T1, · · · , Tk). The unrestricted MLE’s of θ1, · · · , θk are T1, · · · , Tk . Also, under H0, the MLE
of the common θi is T . Then the GLRT statistic for testing H0 against H1 simplifies to λ(X) =∏k

i=1 Hni (Ti )/Hn(T ), where n = ∑k
i=1 ni . Hence,

− 2 loge λ(X) =
k∑

i=1

[−2 loge{Hni (Ti )/Hni (θ)}]

− [−2 loge{Hn(T )/Hn(θ)}], (4)

where θ denotes the common unknown value of the θi ’s under H0. It follows from (4) that T1, · · · , Tk

are independent with distribution functions Hni (ti )/Hni (θi ), (i = 1, · · · , k). Hence, under H0,
Hni (Ti )/Hni (θ) are iid uniform(0,1). Accordingly, under H0,
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k∑
i=1

[−2 loge{Hni (Ti )/Hni (θ)}] ∼ χ2
2k . (5)

Also, under H0, the distribution function of T is Hn(t)/Hn(θ), and hence, Hn(T )/Hn(θ) is uni-
form(0,1) under H0. Thus, under H0,

− 2 loge[Hn(T )/Hn(θ)] ∼ χ2
2 . (6)

So far, we have not used Basu’s Theorem. In order to use it, first we observe that under H0, T is
complete sufficient for θ , while λ is ancillary. Hence, under H0, T is distributed independently of
−2 loge λ. Also, from (5),

k∑
i=1

[−2 loge{Hni (Ti )/Hni (θ)}] = [−2 loge λ] + [−2 loge{Hn(T )/Hn(θ)}]. (7)

The two components in the right hand side of (8) are independent. Now by (6), (7) and the result that
if W1 and W2 are independent with W1 ∼ χ2

m and W1 + W2 ∼ χ2
m+n , then W2 ∼ χ2

n , one finds that
−2 loge λ ∼ χ2

2k−2 under H0.
The above result should be contrasted to the regular case (when the support of the distribution does

not depend on parameters) where under some regularity conditions, −2 loge λ is known to have an
asymptotic chisquared distribution. In a similar scenario with n observations and k unknown parame-
ters in general, and 1 under the null, the associated degrees of freedom in the regular case would have
been (n − 1) − (n − k) = k − 1 instead of 2(k − 1).

Empirical Bayes (EB) analysis has, of late, become very popular in statistics, especially when the
problem is simultaneous estimation of several parameters. An EB scenario is one in which known
relationships among the coordinates of a parameter vector, say, θ = (θ1, · · · , θk)

T allow use of the
data to estimate some features of the prior distribution. For example, one may have reasons to believe
that the θi are iid from a prior �0, where �0 is structurally known except possibly for some unknown
parameter (possibly vector-valued) λ. A parametric EB procedure is one where λ is estimated from
the marginal distribution of the observations.

Often in an EB analysis, one is interested in finding Bayes risks of the EB estimators. Basu’s
Theorem helps considerably in many such calculations as we demonstrate below.

Example 7 We consider an EB framework as proposed in Morris (1983a, 1983b). Let Xi |θi be inde-
pendent N (θi , V ), where V (> 0) is assumed known. Let θi be independent N (zT

i b, A), i = 1, · · · , k.
The p-component (p < k) design vectors zi are assumed to be known, and let ZT = (z1, · · · , zk).
We assume rank(Z)=p. Based on the above likelihood and the prior, the posteriors of the θi are inde-
pendent N ((1− B)Xi + B zT

i b, V (1− B)), where B = V/(V + A). Accordingly, the posterior means,
the Bayes estimators of the θi are given by

θ̂ B A
i = (1 − B)Xi + B zT

i b, i = 1, · · · , k. (8)

In an EB set up, b and A are unknown, and need to be estimated from the marginal distributions
of the Xi ’s. Marginally, the Xi ’s are independent with Xi ∼ N (zT

i b, V + A). Then, writing X =
(X1, · · · , Xk)

T , based on the marginal distribution of X , the complete sufficient statistic for (b, A)

is (b̂, S2), where b̂ = (ZT Z)−1 ZT X is the least squares estimator or the MLE of b, and S2 =∑k
i=1(Xi − zT

i b̂)2. Also, based on the marginal of X , b̂ and S2 are independently distributed with

b̂ ∼ N (b, (V + A)(ZT Z)−1), and S2 ∼ (V + A)χ2
k−p. Accordingly b is estimated by b̂. The MLE
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of B is given by min(kV/S2, 1), while its UMVUE is given by V (k − p − 2)/S2, where we must
assume k > p + 2 for the latter to be meaningful. If instead, one assigns the prior �(b, A) ∝ 1
as in Morris (1983a,1983b), then the HB estimator of θi is given by θ̂ H B

i = (1 − B∗(S2))Xi +
B∗(S2)zT

i b̂, where B∗(S2) = ∫ 1
0 B

1
2 (k−p−2) exp

(
− 1

2V BS2
)

d B/
∫ 1

0 B
1
2 (k−p−4) exp(− 1

2V BS2)d B.

Thus a general EB estimator of θi is of the form

θ̂i = [1 − B̂(S2)]Xi + B̂(S2)zT
i b̂. (9)

We will now demonstrate an application of Basu’s Theorem in finding the mean squared error (MSE)
matrix E[(θ̂ − θ)(θ̂ − θ)T ], where θ̂ = (θ̂1, · · · , θ̂k)

T , and expectation is taken over the joint distri-
bution of X and θ . The following theorem provides a general expression for the MSE matrix.

Theorem 5 With the notations of this section,

E[(θ̂ − θ)(θ̂ − θ)T ] = V (1 − B)Ik + V B Z(ZT Z)−1 ZT

+ E[(B̂(S2) − B)2S2](k − p)−1(Ik − Z(ZT Z)−1 ZT ).

Proof Write θ̂
B A = (1 − B)X + B Zb. Then

E[(θ̂ − θ)(θ̂ − θ)T ] = E[(θ − θ̂
B A + θ̂

B A − θ̂)(θ − θ̂
B A + θ̂

B A − θ̂)T ]
= E[(θ − θ̂

B A
)(θ − θ̂

B A
)T ] + E[(θ̂ B A − θ̂)(θ̂

B A − θ̂)T ], (10)

since

E[(θ − θ̂
B A

)(θ̂
B A − θ̂)T ] = E[E(θ − θ̂

B A|X)(θ̂
B A − θ̂)T ] = 0.

Now

E[(θ − θ̂
B A

)(θ − θ̂
B A

)T ] = E[(θ − θ̂
B A

)(θ − θ̂
B A

)T |X]
= E[V ar(θ |X)] = E[V (1 − B)Ik] = V (1 − B)Ik . (11)

Next after a little algebra, we get

θ̂
B A − θ̂ = (B̂(S2) − B)(X − Zb̂) + B Z(b̂ − b).

Now by the independence of b̂ with X − Zb̂, noting S2 = ||X − Zb̂||2, where || · || denotes the
Euclidean norm, and V ar(b̂) = V B−1(ZT Z)−1, one gets

E(θ̂
B A − θ̂)(θ̂

B A − θ̂)T = E[(B̂(S2) − B)2(X − Zb̂)(X − Zb̂)T ]
+ V B Z(ZT Z)−1 ZT . (12)

Next we observe that

(X − Zb̂)(X − Zb̂)T /S2 =
[
(X − Zb) − Z

(
b̂ − b

)] [
(X − Zb) − Z

(
b̂ − b

)]T
(V + A)−1

|| (X − Zb) − Z
(

b̂ − b
)

||2 (V + A)−1
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is ancillary, and by Basu’s Theorem, is independent of S2, which is a function of the complete suffi-
cient statistic (b̂, S2). Accordingly,

E[(B̂(S) − B)2(X − Zb̂)(X − Zb̂)T ] = E[(B̂(S) − B)2S2]E[(X − Zb̂)(X − Zb̂)T /S2], (13)

and then by the formula for moments of ratios,

E[(X − Zb̂)(X − Zb̂)T /S2] = E[(X − Zb̂)(X − Zb̂)T ]/E(S2)

= (k − p)−1[Ik − Z(ZT Z)−1 ZT ]. (14)

The theorem follows.
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Basu’s Work on Likelihood and Information

Joseph B. Kadane

It has been a joy learning from Dev Basu’s work on aspects of statistical inference, and especially his
deep and often provocative essays on fallacies of common statistical principles. I will limit myself to
his epic paper Statistical Information and Likelihood.

“Statistical Information and likelihood” is a tour de force in three parts. In the first part, Basu
studies the implications of the sufficiency and conditionality principles, and shows that these lead to
the likelihood function as the summary of the information in an experiment. His treatment is similar
to that of Birnbaum (1962, 1972). His second part reviews non-Bayesian likelihood methods, leaning
especially on Fisher’s maximum likelihood method (MLE). He criticizes the use of sampling standard
errors around the MLE to create confidence intervals in the grounds that they violate the likelihood
principle. His third part gives various examples that illuminate what he finds problematic about fidu-
cial arguments, improper Bayesian priors, and simple-null hypothesis testing. Although most of his
effort is critical, on the positive side Basu advocates subjective Bayesian analysis with proper priors,
and making optimal decisions using a utility (or loss) function.

This essay needs to be understood in the context of its time. It was given in lecture form in 1972,
ten years after Fisher’s death. Fisher himself vigorously, vociferously, and sometimes with blind fury
would attack those who disagreed with him. Basu is speaking from within the Fisherian tradition,
and showing, by theorem and by counterexample, that large parts of that tradition simply do not
make sense. This took courage and conviction, particularly considering the audience to whom he gave
the talk. The discussants, in alphabetical order, were Barnard, Barndorff-Nielsen, Cox, Dempster,
Edwards, J.D. Kalbfleisch, Lauritzen, Martin-Lof, and Rasch. Of these, only Dempster had anything
supportive to say about Bayesian ideas, and he characterizes himself as a “sometimes Bayesian”.

Nonetheless, the discussion is civil and respectful. I am particularly struck by the tone of the
exchange of letters between Basu and Barnard. By the end, only a couple of points are still subject to
disagreement, and the atmosphere is collegial.

Basu concludes his response to the discussion by writing “The Bayesian and Neyman-Pearson-
Wald theories of data analysis are the two poles in current statistical thought. Today I find assembled
before me a number of eminent statisticians who are looking for a via media between the two poles. I
can only wish you success in an endeavor in which the redoubtable R.A.Fisher failed”.

The situation is much the same today. The difficulty lies in what is to be regarded as random and
what is to be regarded as fixed. To a classical statistician, the data are random, even after they have
been observed, while the parameters are fixed but unknown (whatever that may mean). To a Bayesian,
the data, after they are observed, are fixed at the observed values, but the parameters are uncertain,
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and hence random. There are not convenient middle grounds between these two perspectives. Basu
has no hesitation about where he stands, writing “with an experiment already planned and performed,
and with the sample x already before us, I do not see any point in speculating about all other samples
that might have been.” This places him solidly in the Bayesian camp.
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Basu on Survey Sampling

Glen Meeden

Fifty years ago at a large scientific conference a statistician and a probabilist happen to set down
together for lunch. In the ensuing small talk the probabilist admitted to knowing nothing about statis-
tics and ask for a brief introduction to the subject. His companion outlined the common scenario of a
company receiving a shipment of 1,000 widgets and selecting 20 of them at random to be tested. He
then explained how the number of defective widgets in the sample could be used to make inferences
about the state of the remaining 980 widgets in the shipment. The probabilist thought about this for
a minute and then remarked, “I do not understand how knowledge about the 20 sampled units can
tell me anything about the remaining 980 unsampled units.” It is easy to forget how nonintuitive it
is to claim that learning the observed values of the units in a sample, selected by random sampling,
translates to knowledge about the unobserved values of the units remaining in the population.

If y = (y1, . . . , yN ) is the vector of unknown population values of the characteristic of interest
then given a sample s we denote the observed or seen values by y(s) = {yi : i ∈ s} and the
remaining unobserved or unseen values by y(s′) = {y j : j /∈ s}. For Basu the fundamental question
of survey sampling is how can one relate the seen to the unseen. Without some assumption about
how these two sets are related knowing y(s) does not tell one anything about y(s′). His application of
the sufficiency and likelihood principles to survey sampling demonstrated that all we learn from the
observed data are the values of the characteristic of interest in the sampled units and that the “true”
vector of population values must be consistent with these observed values. Note this fact justifies the
probabilist’s statement. Moreover, Basu showed that this is true for any sampling plan where, at any
stage, the choice of the next population unit to be observed is allowed to depend on the observed
values of the characteristic of the previously selected units.

For Basu the Bayesian paradigm was the natural way to relate the unseen to the seen and still
follow the likelihood principle. Let π(y) be the prior density function or probability function for the
Bayesian survey sampler over the parameter space of possible vectors y. The Bayesian selects π(·) to
represent the prior information and his or her prior beliefs about y. Once the sample has been selected
and the seen have been observed inferences are based on the posterior distribution, π(y(s′)|y(s)), of
the unseen given the seen and the design plays no role.

When Basu was writing we were, for the most part, restricted to prior distributions whose posterior
distributions could only be studied using paper and pencil. With the recent advances in Bayesian
computing it is now possible to simulate complete copies of y(s′) for many different possible posterior
distributions. For such a posterior given y(s) we can form many copies of y(s′) and hence many
complete copies of the population. Supposes we are interested in estimating the function γ (y). For
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each complete simulated copy we can compute the value of γ . Given a large set of such simulated
values we can find approximately the corresponding point and interval estimates of γ . The key point
in a Bayesian analysis is finding a sensible prior distribution. Once this in hand and the sample has
been selected inferences can be made for any function γ of interest.

This is in contrast to the design approach where the sampling design is often an important way to
incorporate prior information into a problem. The design along with an unbiased requirement leads to
an appropriate estimator. One difficulty with this approach is that each different choice of the function
γ requires a different argument. At a more fundamental level this suggests that the design approach
does not yield a coherent method of relating the unseen to the seen. Basu never found this approach
compelling because it violated the likelihood principle. Furthermore he never had much good to say
about unequal probability sampling designs since, again by the likelihood principle, after the sample
has been chosen the selection probabilities should play no role at the inferential stage.

Much of survey practice is still design based. It has always seemed curious to me that this one
area of statistics where prior information is routinely employed makes use of this information in a
way that cannot be justified from the Bayesian perspective. This is especially surprising given Basu’s
work. It is interesting to speculate why this is so. Part of the reason, I believe, is that it has always
been difficult to find sensible and tractable prior distributions for large dimensional problems. This is
particularly true in survey sampling which often deals with governmental statistics for which a certain
degree of objectivity is expected. The challenge for a Bayesian is to find prior distributions which
allow one to make use of the kinds of prior information which are now incorporated into a design.
Our ability to now simulate complete copies of a population from more complicated but realistic
posterior distributions should help fulfill the promise of Basu’s work in the years ahead.
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Commentary on Basu (1956)

Robert J. Serfling

Asymptotic relative efficiency of estimators

For statistical estimation problems, it is typical and even desirable that more than one reasonable
estimator can arise for consideration. One natural and time-honored approach for choosing an estima-
tor is simply to compare the sample sizes at which the competing estimators meet a given standard of
performance. This depends upon the chosen measure of performance and upon the particular popula-
tion distribution F .

For example, we might compare the sample mean versus the sample median for location esti-
mation. Consider a distribution function F with density function f symmetric about an unknown
point θ to be estimated. For {X1, . . . , Xn} a sample from F , put Xn = n−1 ∑n

i=1 Xi and Medn =
median{X1, . . . , Xn}. Each of Xn and Medn is a consistent estimator of θ in the sense of convergence
in probability to θ as the sample size n → ∞. To choose between these estimators we need to
use further information about their performance. In this regard, one key aspect is efficiency, which
answers:

Question A How concentrated about θ is the sampling distribution of θ̂?

Criteria for asymptotic relative efficiency

Variance as a measure of performance

A simple and natural criterion relative to the above question is the variance of the sampling distri-
bution: the smaller this variance, the more “efficient” is that estimator. In this regard, let us consider
“large-sample” sampling distributions. For Xn , the classical central limit theorem tells us: if F has
finite variance σ 2

F , then the sampling distribution of Xn is approximately N (θ, σ 2
F/n), i.e., Nor-

mal with mean θ and variance σ 2
F/n. For Medn , a similar classical result [10] tells us: if the den-

sity f is continuous and positive at θ , then the sampling distribution of Medn is approximately
N (θ, 1/4[ f (θ)]2n). On this basis, we consider Xn and Medn to perform equivalently at respective
sample sizes n1 and n2 if
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σ 2
F

n1
= 1

4[ f (θ)]2n2
.

Keeping in mind that these sampling distributions are only approximations assuming that n1 and n2
are “large”, we define the asymptotic relative efficiency (ARE) of Med to X as the large-sample limit
of the ratio n1/n2, i.e.,

ARE(Med, X , F) = 4[ f (θ)]2σ 2
F . (1)

More generally, for any parameter η of a distribution F , and for estimators η̂(1) and η̂(2) which are
approximately N (η, V1(F)/n) and N (η, V2(F)/n), respectively, the ARE of η̂(2) to η̂(1) is given by

ARE(̂η(2), η̂(1), F) = V1(F)

V2(F)
. (2)

Interpretation: If η̂(2) is used with a sample of size n, the number of observations needed for η̂(1) to
perform equivalently is ARE(̂η(2), η̂(1), F) × n.

In view of the asymptotic normal distribution underlying the above formulation of ARE in estima-
tion, we may also characterize the ARE given by (2) as the limiting ratio of sample sizes at which the
lengths of associated confidence intervals at approximate level 100(1 − α)%,

η̂(i) ± 
−1
(

1 − α

2

) √
Vi (F)

ni
, i = 1, 2,

converge to 0 at the same rate, when holding fixed the coverage probability 1 − α. (In practice, of
course, consistent estimates of Vi (F), i = 1, 2, are used in forming the CI.)

The treatment of ARE for consistent asymptotically normal estimators using the variance criterion
had been long well established by the 1950s – see [1] for a string of references.

Probability concentration as a measure

Instead of comparison of asymptotic variance parameters as a criterion, one may quite naturally com-
pare the probability concentrations of the estimators in any ε-neighborhood of the target parameter η:
P(|̂η(i) − η| > ε), i = 1, 2. When we have

log P(|̂η(i)
n − η| > ε)

n
→ γ (i)(ε, η), i = 1, 2,

as is typical, then the ratio of sample sizes n1/n2 at which these concentration probabilities converge
to 0 at the same rate is given by γ (1)(ε, η)/γ (2)(ε, η), which then represents another ARE measure for
the efficiency of estimator η̂

(2)
n relative to η̂

(1)
n . This entails approximation of the sampling distribution

in the tails. Accordingly, instead of central limit theory the relevant tool is large deviation theory,
which is rather more formidable. In the context of hypothesis testing, Chernoff [3] argued that when
the sample size approaches infinity it is appropriate to minimize both Type I and Type II error proba-
bilities, rather than minimizing one with the other held fixed. He developed an ARE index essentially
based on tail probability approximations. See also [10, 1.15.4] for general discussion.

28



Commentary on Basu (1956)

How compatible are these two criteria?

Those who have been fortunate enough to observe D. Basu in action, as I was when we were col-
leagues at Florida State University in the early 1970s, know his talent for inquiring into the boundaries
of any good idea. Relative to the present context, when the variance and probability concentration
criteria were just becoming established criteria in the 1950s, stemming from somewhat differing ori-
entations, it was Basu who thought of exploring their compatibility. Basu [2] provides an example in
which not only do the variance-based and concentration-based measures disagree on which estimator
is better. but they do so in the most extreme sense: one ARE is infinite at every choice of F in a given
class �, while the other ARE is zero for every such F .

Basu’s construction is straightforward and worth discussing, so we briefly examine some details.
For X1, . . . , Xn an i.i.d. sample from N (μ, 1), put

Xn = n−1
n∑

i=1

Xi and Sn =
n∑

i=1

(Xi − Xn)2.

Basu defines the estimation sequences for μ given by T = {tn} and T ′ = {t ′n}, with

tn = (1 − Hn)Xn + nHn and t ′n = X [√n],

where Hn = 1 if Sn > an and 0 otherwise, and an satisfies P(Sn > an) = 1/n. He shows that√
n(tn − μ)

d−→ N (0, 1). Since also n−1/4(t ′n − μ)
d−→ N (0, 1), it follows that the ARE according

to (2) is given by

ARE(tn, t ′n, N (μ, 1)) = lim
n→∞

n−1

n−1/2
= 0. (3)

He also shows that the corresponding ARE based on concentration probabilities for any fixed choice
of ε is given by

lim
n→∞

n−1

o(n−1)
= ∞. (4)

An immediate observation about this example is that it is not pathological. Rather, it employs
ordinary ingredients characteristic of typical application contexts.

Another important aspect is that the disagreement between the two notions of ARE is as extreme
as possible. Not merely differing with respect to whether the ARE is < 1 or > 1, here one version is
infinite at every choice of F in the class � = {N (μ, 1) : −∞ < μ < ∞}, while the other version is
zero for every such F .

The details of proof yield the interesting corollary that (4) also gives the concentration probability
ARE of tn versus simply Xn . Thus the estimator which is optimal under the variance ARE criterion
is infinitely nonoptimal under the concentration probability ARE criterion.

A slight variation on Basu’s {tn} provides an example of superefficient estimator, similar to that of
J. L. Hodges (see Le Cam, 1953). discussed in Lehmann and Casella (1998). Put

t∗n = A(1 − Hn)Xn + nHn

for some constant A �= 1. Then we have that
√

n(t∗n − μ)
d−→ N (0, A2) + limn→∞

√
nμ(A − 1),

i.e.,
√

n(t∗n − μ) converges to ±∞ if μ �= 0 and otherwise converges to N (0, A2). Therefore, in the
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case that μ = 0 and A < 1, the estimator t∗n outperforms the “optimal” estimator. See Lehmann and
Casella (1998) for useful discussion of superefficiency.

We see that the content of Basu’s example, like all of his contributions to statistical thinking,
reflects great ingenuity and insight applied very productively to useful purposes.

Subsequent developments

The impact of Basu [2] thus has been to motivate stronger interest in “large deviation (LD)
approaches” to ARE. For example, Bahadur [1] follows up with a deep discussion of this approach
along with many constructive ideas. Quite a variety of LD and related moderate deviation approaches
are discussed in Serfling [10, Chap. 10]. More recently, Puhalskii and Spokoiny [9] provide an exten-
sive treatment of the LD approach in statistical inference. For convenient elementary overviews on
ARE in estimation and testing, see DasGupta [4], Serfling [11], and Nikitin [8], for example.
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Commentary on A Note on the Dirichlet Process

Jayaram Sethuraman

Consider the standard inference problem where the data X = (X1, . . . , Xn), taking values in X n ,
consist of independent observations from a common distribution F or probability measure P on
(X ,B). The essentials of Bayesian analysis are well developed for this problem, when the common
distribution F is completely specified in terms of a finite number k of parameters θ = (θ1, . . . , θk).
A prior distribution for this problem is just a suitable distribution on a subset in Rk described by any
restrictions the parameters θ must satisfy. The calculation of posterior distribution become routine
from this point onwards. Special classes of prior distributions called conjugate families have the prop-
erty that the posterior distribution is also in the same class. Computations become simpler when the
conjugate family is itself parametrized by a finite number of parameters. If the prior distribution in a
conjugate family can be described by the parameters λ = (λ1, . . . , λm) then the posterior distribution
based on data X would also be in the same conjugate family with parameters λX = (λX

1 , . . . , λX
m); the

term “updated” bas been used to describe the parameters of the posterior distribution.
When X consists of k points, the common distribution P is a discrete distribution and it can be

completely described by p = (p1, . . . , pk) satisfying pi ≥ 0, i = 1 . . . , k,
∑k

1 pi = 1. In view
of the linear dependence among these parameters it is enough to specify a prior distribution just
for (p1, . . . , pk−1); in other words, P is parametrized by k − 1 parameters satisfying the above
conditions. A natural conjugate family is the finite dimensional Dirichlet distribution D(λ1, . . . , λk),
which is the distribution of ( Z1

Z , . . . ,
Zk−1

Z ) where Z = Z1 + · · · + Zk and Z1, . . . , Zk are indepen-
dent Gamma random variables with parameters λ1, . . . , λk respectively. The parameters (λ1, . . . , λk)

will have to satisfy the conditions λ1 ≥ 0, . . . , λk ≥ 0,
∑k

1 λi > 0. When all the λi are posi-
tive, the distribution D(λ1, . . . , λk) can be defined in a more familiar way by a pdf proportional
to

∏k−1
1 pλi −1

i (1 − ∑k−1
1 p j )

λk−1. The data X = (X1, . . . , Xn) which are i.i.d. P can also be sum-
marized by its empirical distribution function Fn( j) = 1

n

∑n
1 I (Xi = j), j = 1, . . . , k. In this case

the posterior distribution can easily be shown to also be the finite dimensional Dirichlet distribution
D(λ1 + nFn(1), . . . , λk + nFn(k)).

To perform nonparametric inference when the common distribution P is not restricted to such
parametric classes one should study classes of probability distributions for P which varies in the
space P of all probability measures on (X ,B). A natural σ -field in P is σ(P), the smallest σ -field
such that sets of the form {P : P(B) < r} where B ∈ B and r ∈ [0, 1]. One can consider
P as (P(B), B ∈ B) and thus take P as an element of [0, 1]∞ satisfying the familiar countable
additivity assumptions. One can also consider P to be the vectors (P(B1), . . . , P(Bk)) satisfying
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P(Bi ) ≥ 0, i = 1, . . . , k,
∑k

1 P(Bi ) = 1 over all finite measurable partitions (B1, . . . , Bk) of X and
satisfying some other conditions. Ferguson (1973) used the above description to define a probability
measure on P as follows. Let α be a non-zero finite measure on (X ,B). Ferguson (1973) defined
Dα , the Dirichlet process with parameter α, to be the probability measure on (P, σ (P)) under which
(P(B1), . . . , P(Bk)) has the finite dimensional Dirichlet distribution D(α(B1), . . . , α(Bk)), for each
measurable partition (B1, . . . , Bk) of X .

The paper of Ferguson (1973) revolutionized the subject of nonparametric Bayes methods by show-
ing that when Dα is used as a prior distribution for P , the posterior distribution becomes the Dirichlet
process Dα+nFn where Fn is the empirical measure of the data X. This means that Dirichlet processes
form a conjugate family of priors in the standard nonparametric problem. This paper further showed
how to obtain Bayes estimates of several functions of P . It also established that Dirichlet process Dα

is concentrated on the subset of all discrete probability measures in P .
The papers Blackwell (1973) and Blackwell and MacQueen (1973) appeared in the same journal

issue where Ferguson’s article appeared. These papers gave other ways to define a Dirichlet prior and
to establish its properties.

Berk and Savage (1979) also gave an elementary proof of the result that Dirichlet processes con-
centrate on the collection of discrete measures.

The treatment of measure theoretical issues involved in all this was not satisfactory. For instance it
was not clear that the Dirichlet process was well defined as a probability measure on (P, σ (P)). Do

we know that the set P0
de f= {P : P is a discrete probability measure} is in σ(P) before asserting that

it had probability 1 under a Dirichlet process? How general can the space X be? These and other such
questions remained.

The paper of Basu and Tiwari (1982) is a delightful paper that clears up all these questions. The
paper starts out by describing the nature of general Bayes inference. It describes carefully and in
detail the properties of finite-dimensional Dirichlet distributions which form a conjugate family in the
standard nonparametric problem concerning random variables taking values in X consisting of a finite
number of points. A quick extension when X is countable is presented next.

The case where X is a Borel space is the main focus of this paper. (Separable complete metric
spaces are examples of Borel spaces). Borrowing from the ideas in Blackwell (1973), Basu and Tiwari
establish the existence and properties of a Dirichlet process in this general case, with care and in an
elementary way.

The highlight of this paper consists of Sections 6, 7 and 8. A very clear exposition of several
measurability issues and the existence of the Dirichlet process are presented in these sections. It is
shown that the function P → Pd(X ) which gives the total sum of the probability masses of the
discrete part of P is a measurable function from (P, σ (P)) to [0, 1]. Again it is established that the
collection, P0, of all discrete probability measures on (X ,B) is a measurable set in (P, σ (P)). It is
only after this has been established, it makes sense to say that Dirichlet processes gives probability 1
to this set and this fact is established next. It is further shown that the collection P ′ of all probability
measures whose support is X is also a measurable set in (P, σ (P)). It is only after this has been
established, it makes sense to say that Dα has support P ′ if α has support X and this result is also part
of the paper.

David Blackwell’s visit to Florida State University in 1978–79 gave Basu, Tiwari and myself
inspiration to work on Dirichlet processes. In the course of my lectures at that time I discovered a
constructive definition of a Dirichlet process which does not place restrictions of the space X . This
result appears in Sethuraman (1994).
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Commentary on D. Basu’s Papers on Sufficiency
and Related Topics

T.P. Speed

It is an honour and a pleasure to be able to offer this commentary on some of D. Basu’s papers on
sufficiency and related topics. In the early 1970s, we thought that we might write a book together
on sufficiency. We had many discussions and exchanged a fair amount of material. In particular, we
prepared a bibliography on sufficiency which was reasonably comprehensive at the time (Basu and
Speed (1975)). But the planned book never came to fruition. I have not worked on this topic since the
late 1970s. So the experience of writing this commentary has been a pleasant walk down the memory
lane. However, it also means that I may be unaware of some relevant later developments. Accordingly,
I begin with an apology in advance to the readers for any such oversight or errors. Caveat lector!

General background

I think it is worth setting the scene for Basu’s work on sufficiency. A new refugee from the then
East Pakistan, he began working towards a PhD in 1950, at the Indian Statistical Institute, under the
direction of C. R. Rao. We can assume that during this period, he gained a thorough grounding in
the theory and philosophy of statistical inference, in particular, on the work of Fisher. Basu’s doctoral
dissertation was on estimation and testing in a decision theoretic framework, and to a smaller extent
on some characterisation problems for normal distributions. It was not very Fisherian in style, but
more mathematical. Undoubtedly, it was influenced by the work of Neyman, Pearson, Wald, notably
Rao, and perhaps others. After submitting his PhD thesis (to the Calcutta University) in 1953, he
went to the University of California at Berkeley as a Fulbright scholar. It was a long trip by ship.
By the end of his time there, if not even before, I believe that he would have thoroughly absorbed
the modern version of the Neyman-Pearson-Wald approach to inference, being defined and taught by
Erich Lehmann, Charles Stein, Henry Scheffé, Lucien Le Cam, and Jerzy Neyman himself. In fact,
some major papers of these statisticians were published in Sankhya, then edited by P. C. Mahalanobis.

Sufficiency background

Fisher introduced sufficiency in his famous 1922 paper (Fisher (1922)) on the mathematical founda-
tions of theoretical statistics. Stigler (1973) is a good source for more background. In this paper,
Fisher decreed that if θ is the parameter of concern, and a statistic T contains the whole of the
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information that the full sample supplies as to the value of θ , then for any other statistic T2, and
for any θ , the conditional distribution of T2 given T should be the same under all θ . There and in
later papers, Fisher presented several properties of sufficient statistics. In the 1930s, Neyman gave a
rigorous proof of the factorisation criterion (Neyman (1935)), while Pitman, Koopman, Darmois, and
Brown (Darmois (1935), Koopman (1936), Pitman (1936), Brown (1964)) independently discovered
that under suitable regularity conditions, Exponential families were the only classes of distributions
to possess nontrivial sufficient statistics at all sample sizes, and minimal sufficient statistics that have
the same affine dimension as the parameter space to which θ belongs. Kolmogorov (1942) intro-
duced Bayes sufficiency, though Basu was not to be seriously interested in it till the early 1970s. An
important development on the practical implications of sufficiency that also came in the 1940s was
the independent discovery by C. R. Rao and David Blackwell (Rao (1945), Blackwell (1947)) of the
theorem that bears their names. Perhaps more significantly for Basu’s work on sufficiency, a 1949
paper by P. R. Halmos and L. J. Savage (Halmos and Savage (1949)) elegantly placed sufficiency
within the framework of measure theory, and replaced Fisher’s parametric families by a more or less
arbitrary family of probabilities, through the consideration of sufficient σ -fields. Halmos and Savage
obtained their best results under the assumption of a dominated family of probabilities, that is, that
each member of the family of probabilities possessed a density (Radon-Nikodym derivative) with
respect to a common σ -finite measure. Their measure-theoretic approach was adopted in nearly all of
Basu’s papers on sufficiency.

The main themes in Basu’s sufficiency papers

The Trinity. Kolmogorov introduced the famous triple (�,A, P) (Kolmogorov (1933)). In his writings
on sufficiency, Basu used the expanded triple (�,A,P), where P is a general family of probabil-
ity measures on A. He used X or X instead of �, and called (X ,A,P) the trinity. The precise
nature of parametrization played little or no role in most of his research on sufficiency, the princi-
pal exceptions being his discussions of invariance and partial sufficiency, and some of his famous
counterexamples.

Null sets. Much of our intuition in statistics is developed for the dominated case, where each of
our probability measures in P has a density with respect to a common σ -finite dominating measure.
With just a single probability measure P , we only need to take care with P-null sets. When we work
with sufficiency, we need to pay attention to null sets more generally. With a family of probability
measures P , the relationships between the P-null sets for different members P of P , and the sets
which are P-null for all P in P (called P-null sets), and the different completions of the underlying
measure space all play a critical role. Much of Basu’s work on sufficiency is marked by very careful
treatment of considerations of null sets.

Completeness and other joint aspects of a statistic and the family of probabilities. In 1950, Lehmann
and Scheffé published a landmark paper which highlighted the importance of the notions of complete-
ness and bounded completeness of a family of distributions (Lehmann and Scheffé (1950)). Later,
weak completeness came into the picture. Completeness was an essential ingredient of one of Basu’s
most well known contributions, namely Basu’s theorem.

Ordering, maximality, and minimality of σ -fields. Another fundamental contribution in the 1950
paper of Lehmann and Scheffé was the introduction of the notion of minimal sufficiency. In the mea-
sure theoretic framework, this amounted to identification of a minimal sufficient σ -field. On several
occasions, Basu studied the ordering of sub-σ -fields with various specific properties, and the ques-
tions of existence of maximal or minimal elements among them. As a rule, this was not a simple
matter.
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The papers (As in Author Bibliography)

Basu’s Theorem (paper 15)

Basu’s theorem (Basu (1955)) says that a boundedly complete sufficient statistic and any ancillary
statistics are independently distributed under all θ . This is Theorem 2 in the paper. This was Basu’s
first paper on sufficiency, and arguably the most well known. Numerous applications of Basu’s theo-
rem, including many in probability theory, are detailed in the commentary of Anirban DasGupta and of
Malay Ghosh in this volume; for earlier references on applications of Basu’s theorem, see the beautiful
exposition in Boos and Hughes-Oliver (1998), and also see DasGupta (2007). Theorem 1 in the paper
was a converse, but not correct as stated. In a later paper, Basu gave a correct converse, which describes
conditions under which a statistic which is independent of a sufficient statistic under all θ must be
ancillary. This has been used in the literature on higher order asymptotics to establish approximate
ancillarity of certain P-values; for example, see Lauritzen (2008). It is also worth pointing out that
although we regard Basu’s theorem purely as a result in statistical inference, it is also a tremendously
effective tool in probabilistic calculations. Students of probability would be better equipped if they
were trained in applying Basu’s theorem to greatly simplify many distributional calculations.

Sufficiency and Finite Population Sampling (papers 29, 27, 26)

In some sense, we can see Basu at his best in his papers on finite population sampling. These papers
have several goals, all of which he achieves neatly and eloquently. The first goal involves setting
the statistical notion of sampling from a finite universe within the same mathematical framework of
all other statistical models, by defining a suitable trinity (X ,A,P). Basu argues that it is natural
to take A as the set of all subsets of the sample space X , and P as an undominated family of
discrete probabilities on A. He then shows that a maximal sufficiency reduction is always at hand.
These are also probably the papers in which he shows his Bayesian transition for the first time. One
piece of evidence of this is his theorem that once the survey data from the finite universe has been
obtained, inference should no longer depend on the sampling design that was actually used. Paper 29
(Basu (1970)) contains the now famous and colorful example of Basu’s elephants. This example has
led many statisticians of subsequent generations to think about the exact role and relevance of sample
space based optimality criteria, such as admissibility. The example of Basu’s elephants was the subject
of an entire book on survey sampling (Brewer (2002)). Paper 27 also had the goal of showing that
the counterexamples given by Pitcher (1957) and Burkholder (1961) concerning sufficiency in the
undominated case need not discourage statisticians. Indeed, paper 27 shows what a difference an A
makes.

Sufficiency and Invariance (papers 25, 18)

Calling upon invariance (under transformations preserving a statistical model) to select one from
competing decision procedures originated in the late 1940s, though undoubtedly there were earlier
instances. The approach was widely used in Erich Lehmann’s classic text Testing Statistical Hypothe-
ses, first published in 1959 (Lehmann (1959)). Invariance is a tool for data reduction, and so is
sufficiency. Charles Stein (in some unpublished work), Burkholder (1960) (see Hall, Wijsman, and
Ghosh (1965)), Hall, Wijsman, and Ghosh (1965), Berk and Bickel (1968), and Berk (1972) explored
the relationship between sufficiency and invariance reductions of the sample data. These papers form
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the background for Basu’s research in this area, which includes his characteristic search for clear and
simple proofs, compelling motivation, a desire to deal very carefully with null sets, and is also of
very significant expository value. Let me summarize it briefly. Suppose that (X ,A,P) is a statistical
trinity, and G a group of one-to-one bimeasurable transformations of (X ,A) onto itself which are
measure-preserving, i.e., Pg−1 = P for all P ∈ P and all g ∈ G. It is not hard to prove that for
any g ∈ G, the sub-σ -field Ag = {A ∈ A : g−1 A = A} is sufficient for the triple (X ,A,P)

and so interest naturally turns to A(G) = ∩gAg . The sub-σ -field A(G) is the σ -field of G-invariant
sets. Closely related are the sub-σ -fields of essentially and almost G-invariant sets (see Basu (1970)
for the exact definitions). With these preliminaries, Basu explores conditions under which a minimal
sufficient sub-field T is contained in or coincides with the sub-field of almost G-invariant sets. In the
second half of the paper, Basu turns to parameter-preserving transformations, foreshadowing his work
on partial sufficiency. But his focus here is firmly on normal models.

In paper 25 (Basu and Ghosh (1969)), Basu and Ghosh introduced the concept of nontrivial weak
completeness. Nontrivial weak completeness means that there are no sets A, not P- equivalent to the
empty set or the entire space X , such that P(A) is constant in P ∈ P . The principal aim of this
paper was to explore families P which are not weakly complete. This was almost entirely restricted
to translation parameter families on the real line, circle, or some other compact or locally compact
group. Several interesting connections with theorems from harmonic analysis, and as was customary
with Basu, a number of interesting examples were described. But no neat general results really came
into light.

Partial Sufficiency (paper 39)

When we read Basu’s work, it appears that Basu embraced the Bayesian approach to statistical infer-
ence because of the failure of the other approaches to deal adequately with inference concerning what
he termed as sub-parameters, that is, functions of the global parameter. I think he found sufficiency
compelling when inference concerning the entire parameter was the goal, despite some of the prob-
lems and paradoxes involving ancillary statistics. In this case, reduction to the likelihood function is
the maximal possible reduction, which he probably found appropriate. However, when he turned to
ways of carrying out inference for sub-parameters of interest, eliminating nuisance parameters not of
interest, and the procession of forms of partial sufficiency, he did not find any solution that stood up to
his creative scrutiny (Basu (1978)). Although there has been a lot more work on this topic since Basu’s
1978 paper, I don’t think that any general satisfactory solution to the problem has emerged. Today,
non-Bayesians deal with nuisance parameters on a case-by-case basis, at times aided by special results,
such as Barndorff-Nielsen’s formula (Barndorff-Nielsen (1983)), or special tools, such as conditional,
partial or profile likelihoods (Cox (1975), Severini (1994)). Bayesians would often integrate out all the
nuisance parameters, perhaps with some type of a noninformative prior (Bernardo and Smith (1994)).
Satisfactory general approaches concerning sub-parameters and elimination of nuisance parameters
seem as far away today as they did when Basu wrote his probing article in 1978.

Sufficiency and Coherence (paper 46)

In the late 1960s and 1970s, several authors sought to broaden the domain of the nice results due to
Halmos and Savage (1949) concerning general, pairwise, and minimal sufficiency, which they proved
undeer the assumption that the family of probabilities was a dominated family. Pitcher (1965) defined
the notion of compactness of a family of probability measures, Mussman (1972) introduced weak
domination, Hasegawa and Perlman (1974) gave us coherence, while Le Cam (1964) explored related
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ideas within the framework of vector lattices. Siebert (1979) connects the first three, showing that
they are essentially equivalent. While Siebert’s publication predates Basu and Cheng (1981), it came
after S. C. Cheng’s 1978 Florida State PhD thesis written under Basu’s direction, from which paper
46 most likely derived. This paper had an expository flavor. But it also gives a useful addendum to the
converse part of Basu’s theorem. Basu’s original converse (Basu (1958)) was in terms of the family
of probabilities being connected. Koehn and Thomas (1975) strengthened this theorem of Basu to
lay down a necessary and sufficient condition for the converse to Basu’s theorem to hold. This result
of Koehn and Thomas said that non-ancillary statistics independent of a sufficient statistic (under
all θ ) exist if and only if the family of probabilities admit a splitting set. In paper 46, Basu and
Cheng show that under the condition of coherence, this necessary and sufficient condition of Koehn
and Thomas is exactly the same as Basu’s original connectedness condition. Thus, under coherence,
the two theorems of Basu precisely characterize the relationship between ancillarity and sufficiency
through their independence, a very clean conclusion.
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Basu’s paper on randomization tests (Basu, 1980) is a critique of the use of randomization as a basis
for inference (i.e. as the source of the variability underlying the application of statistical arguments).
The paper focusses on analyzing data obtained from an experiment, making it a direct companion
piece to Basu (1978) and Basu (1971) which consider very similar issues in analyzing data obtained
from sample surveys. It fits comfortably with Basu’s work on sample surveys and more generally on
statistical inference, enriching and being enriched by the whole body of work. However, part of the
attractiveness and strength of the present paper is that it can also be read alone, without reference to
Basu’s other work, as a relatively accessible, stimulating illustration of Basu’s approach to thinking
about statistical inference. It is a classic Basu paper highlighting the hallmarks of his style: it is
provocative and challenging, based on simple examples pushed to extremes, and illustrated in an
entertaining way by a conversation between three people. Underlying all this of course is deep thinking
on serious issues. And, as an additional benefit, the discussion and Basu’s rejoinder are insightful and
interesting, adding much to the original paper.

The title of the paper puts the focus on randomization tests but in fact Basu discussed both permu-
tation tests (Section 4) and randomization tests (Section 6), treating them both as randomization tests.
Permutation tests are operationally similar to randomization tests but different from them because the
justification for the test comes from an assumed model rather than from a physical act of randomiza-
tion. They fit therefore into the standard model-based framework for inference whereas randomization
tests fit into the design-based framework. This point was partly acknowledged by Basu at the end of
Section 5 and then made strongly by Hinkley, Kempthorne and Rubin in their discussions. In his
rejoinder, Basu justified his inclusion of the permutation test by pointing out similarities between
it and the randomization test. I think that he was a bit too quick to dismiss the differences but this
potentially distracting issue is reduced if we interpret the paper from a more general perspective than
the title suggested. As some aspects of the critique apply quite generally to significance tests, the
paper can be interpreted usefully as a critique of significance tests which is developed by exploring,
as Basu liked to do, particular instances of significance tests.

Basu identified the components of a significance test as a test statistic (which Basu called a test
criterion) and a sample space or reference set for determining the tail area probability under the null
hypothesis. As we are reminded in the discussion of unequal probability randomization, there is also
the distribution under the null hypothesis of the test criterion over the reference set. Basu’s critique
of the significance testing paradigm is based on the fact that both the choice of the test criterion and
the reference set are to some extent arbitrary but important to the outcome. As is pointed out in the
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discussions, this emphasizes that significance is not a property of data alone (as is apparently implied
by Basu when he uses the phrase “the significance level of the data”) but also depends on the test
criterion and the reference set. It is always useful to be reminded of these kinds of subtleties.

The fact that in significance testing the choice of the test criterion is arbitrary and different choices
lead to different interpretations of the same data is not new to this paper but has been known for a
long time. Indeed, such considerations led to the Neyman-Pearson approach of considering alternative
hypotheses and using the power of a test to help with the choice of test criterion. Basu’s contribution
here is to use the simple framework to illustrate the issue very simply and directly by comparing tests
based on the mean and median. Even though the conclusion is unsurprising, the illustration is very
nice.

For the permutation test, the reference set is determined by what we choose to condition on and
Basu pointed out that different choices with different consequences are possible. Typically Basu
pushed this to the extreme by constructing a two point reference set which severely limits the sig-
nificance level. This is an interesting point but even Basu described this choice as “too ridiculous to
deserve any serious consideration” and indicated that it is a choice we could choose to avoid. In the
case of the randomization test, the physical act of randomization determines the reference set so the
choice is made a step earlier by how we choose to do the physical randomization. Basu discussed
the impact on the test of extreme choices of randomization showing that randomization inference can
be unhelpful (Basu said “founders on the rocks”) when we have restricted and/or unequal probability
randomization. This point was also made strongly in Basu (1971) and is the main point of this paper:
The issues arising in making randomization inferences from data from experiments are the same as
those in making design-based inferences from data from sample surveys.

A point which Basu liked to emphasise when criticizing inference which is not fully conditional
on the observed data (which means non-Bayesian inference) is the effect on the analysis of changing
the information available to the analyst. In this paper, Basu used am imagined three-way conversation
between himself (author), a scientist and statistician to illustrate (amongst other things) the effect
of changing the nature of the original randomization. This is not as memorable as Basu’s famous
elephant example (Basu, 1971) but it is written in the same tongue-in-cheek, provocative style with
serious intent. No doubt, many statisticians would feel that they can avoid confronting the questions
raised by the unwelcome disclosure of additional information but, at least at the level of thinking
about statistical inference, we ought to think about the fact that procedures which require less than
full conditioning must be changed as more information becomes available to ensure that we keep on
using all the information.

Perhaps the deepest and most challenging part of the paper is Basu’s discussion of the applicability
of the sufficiency principle to the permutation test and the conditionality principle to the randomization
test. It is instructive, though perhaps disappointing, that the sufficiency principle does not rule out
any of the three (permutation) test statistics Basu considered. In this sense, all three test statistics
use all the information in the data. What I find interesting is that this shows how what we mean by
“all the information” depends on what we assume. This means that we can adjust the meaning of
“all the information”, making it an arbitrary concept. In the final section of concluding remarks, Basu
pointed out that the outcome of the randomization is an ancillary statistic and then argued that Fisher’s
conditionality principle means that it should be held fixed in the analysis. That is, randomization
should not be used as the basis of inference. This is a real challenge which is difficult to refute without
refuting conditional inference in its entirety. Hinkley recognised the strength of the point and put an
alternative view in his discussion.

Basu’s approach in this paper is to examine randomization and permutation tests in simple cases
pushed to extremes to highlight issues with the tests. This is valuable and important but it allows
for the temptation to try to minimize the consequences by conceding the points and arguing that the
message is that one should try to avoid getting into such extreme cases. If extreme cases are seen as
giving one kind of examination, the other side is to ask whether the tests do what they are intended to
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do in ideal situations? Basu’s discussion of ancillarity is an important contribution to this side of the
debate; the issue has equal force in ideal situations (the sample size is large and the the test is based on
equiprobable, unrestricted randomization) and in extreme situations and it is not easy to argue around.

There are other points on the “ideal” side of the examination which are not touched on by either
Basu or the discussants. For example, in the quotation from Fisher (1960) included by Basu in
Section 5, Fisher says that “The utility of such nonparametric tests consists in their being able to
supply confirmation whenever, rightly or, more often, wrongly, it is suspected that the simpler tests
have been appreciably injured by departures from normality.” This was taken up by Hinkley who
argued that the point of randomization is to justify the normal-theory analysis. It is worth examining
whether it in fact does so. The difficulty is that the randomization (and the permutation analysis)
justify every normal theory analysis and we are led into the situation where the fact that everything
goes means that nothing goes. Basu might have put it something like this:

Statistician: As I routinely do, after receiving the data, I subjected the data to a standard normal
theory analysis. This is justified by the physical act of randomization I asked you to carry out when
you designed the experiment. The results show that the treatment has no effect.

Scientist: Thank you for doing that. I should mention that, when collecting the data, I noticed that
I recorded an extremely large observation that may be an outlier but then forgot about it. Does this
affect your analysis?

Statistician: No, randomization justifies the standard normal theory analysis even when the data are
not normally distributed and even if there are outliers in the data. This is one of the great advantages
of nonparametric methods.

Author: What if the outlier is generated by a different process from the one that is of interest in the
experiment? If I remove the outlier and then apply a standard normal theory analysis, I find that there
is a significant treatment effect. Is this conclusion also justified by the randomization?

Scientist: One more thing, I didn’t mention that, as is usual in the literature for this kind of data, I
gave you the logarithm of the original variables. Does this matter?

Statistician: I would have done the standard normal theory analysis on the original data. Just as a
check, I exponentiated the data you provided and redid the analysis; I found no treatment effect.

Author: If all these analyses are equally justified by the randomization, which one should we adopt?
Scientist (utterly flabbergasted): What am I supposed to do?
The justification provided for the normal theory analysis holds for any set of observed data from

the experiment so it holds regardless of the scale on which the data are, regardless of the fact that the
data may seem to come from a long-tailed distribution and regardless of whether there are extreme
outliers in the data or not. This is a kind of extreme robustness: normal-theory analysis is always
justified so we do not even need to consider non-normal models. On the other hand, in practice,
normal theory analysis is not always justified so the blanket justification ends up undermining itself.
Put in a different way, randomization and permutation arguments can justify basing inference on
an automatic numerical computation without examining the data at all. This has happened with the
design-based analysis of surveys (but arguably much less in the analysis of randomized experiments)
and is one reason surveys have become separated from the rest of statistics, something which Basu
decried. It has also done robustness no favors and may in part explain the deep resistance to the ideas
of robustness in some regions and some areas of statistics.

If a test is valid regardless of the observed values of the data, how should we think about robust-
ness? Robustness theory provides a partial resolution and additional insight by making the distinction
between robustness of validity (able to preserve the level) and robustness of efficiency (able to pre-
serve the power). However, it seems difficult to do power calculations for randomization tests (more
difficult than for permutation tests), making it difficult to pursue the issues from entirely within a
randomization framework. It is interesting that this brings us back to the general issue of choice of
test criterion and shows that it is a difficult problem for randomization tests over and above the general
difficulty of the problem within the significance testing paradigm.
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The value of Basu’s work is not ultimately in whether he is right or not, or whether we agree with
him or not, but rather in that it confronts us and makes us think deeply about how we analyze data and
make statistical inferences. It is not comfortable reading Basu, but it is enriching and there is benefit
in rereading the work from time to time to reassess our understanding. This is true in general and very
specifically true of his paper on randomization tests.
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“A circus owner is planning to ship his 50 adult elephants and so he needs a rough estimate of the
total weight of the elephants . . .”, so begins Example 3 in Basu (1971), the most colorful and striking
illustration of Basu’s challenges to the design-based analysis of sample survey data. The full story is
included in the box for easy reference. The owner decides to take a sample of size n = 1 (“As weighing
an elephant is a cumbersome process”) and is talked out of a non-random sample (select Sambo, the
elephant that had the average weight 3 years before) and the model-based estimate (50y) into an
unequal probability sample (select Sambo with probability 99/100 and any of the other elephants
with probability 1/4900) and the Horvitz-Thompson estimator (100y/99 if Sambo is selected and
4900y if any other elephant is selected). The point of the story is summarised in Figure 1 which
shows the log-sampling distributions (i.e. the sampling distributions of the log of the estimators) for
samples of size 1 of the model-based estimator and the Horvitz-Thompson estimator for a troupe of
50 elephants. (We plot the log-sampling distributions to improve the visual impact.) On this scale, the
model-based estimator is very close to the actual total weight (indicated by an arrow) but, and this
is Basu’s elegantly made point, the design-unbiased Horvitz-Thompson is far from the actual total
weight in every possible sample. The design-based optimality of the Horvitz-Thompson estimator is
no consolation to either the circus owner or the “unhappy statistician” who, Basu tells us, “lost his
circus job (and perhaps became a teacher of statistics!)”.

The elephant story provokes and challenges, delights and frustrates, and ultimately encourages
deep thinking on serious issues. Basu argued that the analysis of survey data should be subject to the
same general principles as the analysis of other forms of data, and that there should be no special
pleading for survey analysis to be treated differently from other statistical analyses. It is not surprising
therefore that Basu’s elephants illustrate specific points about survey analysis as well as general points
about statistical analysis. In the survey context, Basu’s elephants illustrate specific difficulties with
unbiased estimation, unequal probability samples and design-based analysis. The elephant’s bring
these together with striking effect but they can also be teased apart and considered separately. One
response to the example (Hajek in the discussion) is to suggest a different estimator for θ , the total
weight of the elephants: since we know the weights of the elephants from the last time they were
weighed, we should use a ratio estimator rather than the Horvitz-Thompson estimator. It is a nice irony
that the ratio estimator is slightly design-biased! For another suggestion, see Rao in the discussion
of Basu (1978). A different response is to suggest that we use a different design, perhaps with less
variable weights, the extreme choice being equal probability sampling with all the weights equal. The
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Fig. 1 The design-based log-sampling distributions (i.e. the x-axis is on the log scale) of the model-based and Horvitz-
Thompson estimators for a sample of size 1 from a troupe of 50 elephants. The model-based estimator has a degenerate
distribution represented by the diamond symbol and the dashed segment. The Horvitz-Thompson estimator has a distri-
bution represented by the circles and solid segments. The true total weight of the troupe is shown by the arrow below
the y = 0 line

elephants show that if we use unequal probability sampling and the weights do not depend on θ but
simply reflect our desire or otherwise to include each unit in the sample, giving the most weight to the
observations we want to include least in the sample may not be sensible. Actually, as pointed out in
the discussion by Hajek, Godambe and Koop, the sampling design may incorporate prior information
about the population and hence depend on θ , but a relationship like this is very difficult to formalize
mathematically and so difficult to exploit. Whether for this or for some other reason, Basu did not
see value in unequal probability sampling, even though, in simple examples, he did explore some
purposive designs for which the selection probabilities are highly unequal. Basu’s preferred response,
and the motivation for the example, is for us to do a different kind of (non-design-based) analysis
which does not depend on the sampling design.

Basu’s critique is much broader than unbiased estimation and unequal probability sampling: The
fundamental point in his (later) sample survey papers is that the design-based approach contravenes
the likelihood principle and hence should not be used for the analysis of survey data. One could argue
this from the point of view that there is no likelihood in the design-based framework, although this
would open the possible rejoinder that the likelihood principle is then not relevant. Instead, Basu
argued that there is a likelihood, the function that equals the probability of selecting the given sample
on �x , “the set of parameter points that are consistent with a given sample”, and zero otherwise
(Basu, 1969). If the sampling design does not depend on the target parameter θ , the design is ancillary
and the likelihood is constant on �x . If the i th elephant weighs Yi , then θ = ∑N

i=1 Yi and, if we sample
a single elephant weighing y, the likelihood is constant on the set �x = {θ ≥ y}. It is interesting that
this likelihood is derived from the sampling design and seems to require a probability sample: If the
sample is purposive, there is nothing stochastic in the setup so, although we can simply define the
likelihood to be constant on �x and zero elsewhere, this function is not the joint density of the sample
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viewed as function of the unknown parameter. Basu felt that we should implement the likelihood
principle by doing a Bayesian analysis so he would have specified a prior on θ , thereby introducing a
stochastic element, but this still leaves open the question of how to interpret the likelihood which is
defined without reference to the prior.

The model-based approach provides another way of introducing probability into survey analysis
(by treating ω = (Y1, . . . , Yn) as a random vector) and hence of obtaining a likelihood (from the
distribution of ω). How does this relate to what Basu (1978) called his “neo-Bayesian thesis on sam-
ple surveys”? Royall raised the model-based approach in his discussion of Basu (1971) but Basu,
although he may have intended to, did not really engage with it. He suggested in response to Royall
that superpopulation models are exactly like a Bayesian formulation of the background knowledge. He
argued in his (1978) response to the discussion that superpopulation models are not objective and do
not even exist, except in the mind, something he presumably also felt of his prior distributions. Since
a prior for θ implies a distribution on ω from which the prior can be derived, Basu’s neo-Bayesian
and the model-based analysis should be able to be put into close numerical agreement by making
compatible choices of prior and superpopulation model. These choices are potentially checkable from
a census, at least in some cases and at least to the same extent as ordinary statistical models. To this
extent at least, they do have an objective existence. It is interesting to explore these issues in more
detail in the context of a different Basu example.

In Example 1 from Basu (1978), the population consists of N units, each of which is either defective
(Yi = 1) or non-defective (Yi = 0). The units are produced by a mechanical device in such a way
that, after the first defective unit, all the rest of the units are defective. The problem is to estimate
the number of defective units θ = ∑N

i=1 Yi from the values Yi observed on a sample s of units.
Let v be the largest i ∈ s such that Yi = 0; if Yi = 1 for all i ∈ s, set v = 0. Let w be the
smallest i ∈ s such that Yi = 1; if Yi = 0 for all i ∈ s, set w = N + 1. Basu pointed out that,
with probability one, θ ∈ �x = [N − w + 1, N − v] and this implies that some samples are much
more informative than others: the best sample has w = v + 1 because then we know θ exactly.
Although it is not our primary concern here, the design-based analysis of the example is interesting
too because it explicitly permits us, if we so choose, to ignore the structure of the population. For
example, if we select the sample by simple random sampling without replacement, we can use the
expansion estimator θ̂E = (N/n)

∑
i∈s Yi to produce an optimal, design-unbiased estimator of θ

which is often outside the interval �x . Of course, we expect to do better by incorporating the structure
of the population into the sampling design. For example, we can select the first unit at random; at
the (k + 1)th step, select the next unit at random in [v(k) + 1, w(k) − 1], where v(k) and w(k) are the
values of v and v from the first k observations; and continue until w(k) = v(k) + 1 or k = n. This is a
stochastic version of the purposive design discussed by Basu which might be used in a design-based
analysis, provided the design-based analyst can work out the sample inclusion probabilities needed to
construct an estimator of θ . However, Basu would still have criticised this analysis as being in conflict
with the likelihood principle.

Basu did not present his own analysis for this example, but we can construct an analysis he might
have agreed to. For a sampling design which does not depend on θ , the likelihood is constant on the
interval [N − w + 1, N − v] so, if the prior density of θ is q(θ), the posterior density is

q(θ |x) = q(θ)∑N−v
t=N−w+1 q(t)

, θ = N − w + 1, N − w + 2, . . . , N − v,

(Basu, 1969). When we are interested in a point estimate of θ , we use the posterior mean

θ̂q =
∑N−v

t=N−w+1 tq(t)∑N−v
t=N−w+1 q(t)

.

47



A.H. Welsh

In the model-based approach, we model the distribution of ω. For this particular population, it is
completely equivalent to model θ or the label of the first defective unit M = N − θ + 1. The optimal
mean squared error predictor of θ is given by θ̂p = N + 1 − E(M |s) = N − w + 1 + E(w − M |s),
where the second expression is written in the familiar form of a sample contribution plus a non-sample
contribution. Now we know that Yi = 0 for i ≤ v and Yi = 1 for i ≥ w so the sample information is
that m ∈ [v + 1, w]. It follows that

P(M = m|s) = P(M = m|v + 1 ≤ M ≤ w) = P(M = m)∑w
k=v+1 P(M = k)

m = v + 1, v + 2, . . . , w,

from which we can compute E(M |s) and hence

θ̂p = N + 1 −
∑w

k=v+1 k P(M = k)∑w
k=v+1 P(M = k)

.

Algebraically, θ̂p equals the posterior mean θ̂q when q(t) = P(M = N + 1 − t) (i.e. q is the
distribution of θ = N + 1 − M), supporting Basu’s (1971) response to Royall. Adopting a prior for θ

is implicitly adopting a distribution for ω and, at least numerically, the consequences can be made to
match. For example, if we model M as having a uniform distribution on {0, 1, . . . , N }, then

θ̂p = N − w + 1 + (w − v)/2

and this equals the posterior mean θ̂q when the prior for θ is uniform on {0, 1, . . . , N }. If instead we
model M as having a geometric distribution with parameter π , then we can show that

θ̂p = N − w + 1 +
[
w − 1 + vπ − (1 − π)w−v(1 + wπ)

π{1 − (1 − π)w−v}
]

.

and this equals the posterior mean θ̂q when the prior for θ is the distribution of θ = N +1− M and M
has a geometric distribution with parameter π . Importantly, algebraic equality does not mean that θ̂q

and θ̂p have the same content and meaning. From Basu’s Bayesian perspective, π is a hyperparameter
which we are free to specify: as π → 0, θ̂q → N − w + 1 + (w − v − 1)/2 and as π → 1,
θ̂q → N − v so that θ̂q ∈ �x\[N −w + 1, N −w + 1 + (w − v − 1)/2]. The data tells us that θ ∈ �x

and the prior selects a particular point in �x to resolve the arbitrariness of where, but the choice is
entirely driven by us through the prior rather than the data. (If the prior has no support on �x , the
sample represents an event with prior probability zero and there is no usable posterior distribution.
Thus, even if we have strong beliefs about the value of θ , the prior should still put some probability on
every possible value of θ .) From the model-based perspective, π is an unknown parameter which we
need to estimate. An often attractive way to do this is to use the maximum (model-based) likelihood
estimator. The model-based likelihood is obtained from the population density of M (in this case,
the geometric distribution) by treating ω as the complete data, the sample as incomplete data with
the non-sample data missing (in a way determined by the design) and summing the complete data
likelihood over the unobserved data. If we assume the sampling design is uninformative (i.e. sample
selection does not depend on ω), then we can proceed straightforwardly. The model-based likelihood
is not the same as the design-based likelihood used by Basu. Nonetheless it is also a likelihood, so
we can impose a prior distribution on π and then do a Bayesian analysis which can be viewed as a
hierarchical version of Basu’s analysis with a hyperprior on π . Alternatively, we can substitute π̂ into
θ̂q as we do in the model-based analysis and view the result as an empirical Bayes predictor. Basu
only considered enumerative inference about finite-population parameters like θ and had no interest
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in analytic inference about hyperparameters like π ; the model-based approach allows us to make
analytic inferences about parameters like π as well as enumerative inference about finite-population
parameters like θ . If we were to pursue the analysis beyond point estimation to inference, Basu would
have objected to our using the sampling distribution in the model-based analysis and insisted on using
his posterior distribution.

It is a challenge to describe how Basu would have analysed specific examples because he wrote
more about what he would not do than what he would do and, when asked specifically, declined to
provide more than general comments. In his very brief response to the discussion to Basu (1978),
he wrote that analysing survey (probably meaning any) data is more an art than a science and he
could say no more than that the analysis should be Bayesian (in the sense of fixing the sample and
speculating about the parameters). Basu (1978) was clear that we need to know how the data were
collected in order to analyse them - but, other than explicitly rejecting the design-based approach to
doing this, he did not explain how to incorporate the data collection process into the analysis. It is
natural for a Bayesian to include it in the prior specification, although this may be very difficult to
achieve, particularly with purposive sampling. One possible role for probability sampling then is to
simplify the way the data were collected and hence the prior specification. Basu (1969, 1978) also
argued that except in simple populations, purposive sampling is too hard to justify (although, as Rao
pointed out in the discussion to Basu (1978), this is not the case with Royall’s purposive designs) and
probability sampling can help a statistician defend his or her integrity. Basu’s views on the role of
randomisation are close to those of Royall (1976) and Rubin (1978).

Basu’s papers on survey sampling should be read by everyone with an interest in survey sam-
pling, indeed in statistics. The discussion papers are the most stimulating: they can be read starting
with Basu (1971), referring to Basu (1969) for technical support, and then Basu (1978) or the other
way round. The discussions and responses from Basu enhance the papers, stimulating much further
thought. The paper by Basu and Ghosh (1967) on sufficiency is written in a very different, much
more technical style. Basu (1958) is a traditional design-based paper, written before Basu became a
Bayesian. It does not challenge the basic design-based framework in the same way as the later papers
but, and this is characteristic of Basu and one of the reason his papers are still so valuable, it does
challenge the usual method of analysing samples collected with replacement. With hindsight, it is
tempting to see hints in Basu (1958) of what was to come, but it is a long way from there to the
elephants, the circus and the “unhappy statistician”. Statistics has benefitted enormously from the fact
that Basu made that journey, questioning each step of the way.
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