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   Foreword   

 In this book, the author team describe concepts and methods for measurement of 
greenhouse gas emissions and assessment of mitigation options in smallholder agri-
cultural systems, developed as part of the SAMPLES project. The SAMPLES 
(Standard Assessment of Agricultural Mitigation Potential and Livelihoods) system 
adapts existing internationally accepted methodologies to allow a range of stake-
holders to assess greenhouse gas (GHG) emissions from different agricultural activ-
ities, to identify how these emissions might be reduced (i.e., mitigation), and to 
provide data through an online dataset that can be used to aid in these efforts. 

 The book is divided into three sections: (1) designing a measurement program to 
allow users to identify what measurements are needed and how to go about taking 
the measurements, (2) data acquisition, describing how to deal with complex issues 
such as land use change, and (3) identifying mitigation options, which deals with 
scaling issues, how to use models, and how to assess trade-offs. Within each section 
is a series of chapters, written by leading experts in the fi eld, providing clear guide-
lines on how to deal with each of the issues raised. 

 The work was begun at an international workshop in 2012, and the authors have 
since produced this synthesis. Through this work, the authors provide a comprehen-
sive and transparent system to allow stakeholders to calculate and reduce agricultural 
GHG emissions, and assess other impacts. Since it builds on established and interna-
tionally accepted methodologies it is robust, yet the authors have managed to break 
down the complex and potentially overwhelming concepts and methods into bite-
sized chunks. Diffi cult subjects such as inaccuracy and uncertainty are not avoided, 
yet the authors manage to make these topics accessible and the process manageable. 

 Potential users include, but are not limited to, national agricultural research cen-
ters, developers of national and subnational mitigation plans that include agriculture, 
agricultural commodity companies and agricultural development projects, and stu-
dents and instructors. Anyone with an interest in agriculture, greenhouse gas emis-
sions, and how to minimize these emissions will fi nd the book immensely useful.  

     Pete     Smith     
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  Pref ace   

 In October 2011, we faced a problem. We knew that the greenhouse gas (GHG) 
emissions from smallholder agriculture contributed to climate change and could 
present a climate change mitigation solution; however, we had no idea by how 
much. Experts at a workshop on farm and landscape GHG accounting organized by 
the CGIAR Research Program on Climate Change, Agriculture and Food Security 
(CCAFS) and the Food and Agriculture Organization of the UN (FAO) quickly 
realized that there were few data to support GHG quantifi cation in smallholder sys-
tems. Compounding the issue, everyone seemed to use different approaches for 
estimating emissions and mitigation impacts. This meant that even if data were 
available they could not easily be compared. We needed to harmonize methods. 
However, the available measurement protocols typically focused on singular farm-
ing activities, such as soil fl uxes or biomass. This contrasted with the realities of 
diverse smallholder farms, which have multiple greenhouse gas sources and sinks. 
We needed a more holistic approach that could capture the diversity and complexity 
of smallholder systems. 

 To meet these challenges, workshop participants conceived the idea for the 
SAMPLES (Standard Assessment of Agricultural Mitigation Potential and 
Livelihoods) project, which CCAFS initiated in 2012, in collaboration with partners 
at FAO’s Mitigation of Climate Change in Agriculture (MICCA) program, the 
Global Research Alliance for Agricultural Greenhouse Gas Emissions (GRA), and 
multiple universities worldwide. The goal of SAMPLES was to increase and 
improve the availability of data on greenhouse gas emissions and removals in small-
holder agricultural systems and to design ways to reduce the cost and improve the 
quality of future data collection efforts for these systems, especially to quantify the 
impacts of low emissions practices. SAMPLES has worked toward these objectives 
through four interrelated activities: (1) global emission hotspot analysis, (2) esti-
mating emissions and potential reductions in a whole-farm context, (3) capacity 
building around GHG quantifi cation, and (4) policy engagement. 

 This volume is the product of 3 years of work toward creating a coherent 
approach and dataset on smallholder farm emissions and mitigation options. The 
SAMPLES quantifi cation framework was developed during an expert workshop on 
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GHG quantifi cation held in Garmisch-Partenkirchen, Germany, in October 2012 
and hosted by the Karlsrühe Institute of Technology. Following the workshop, 
authors reviewed the available “best practice” in greenhouse gas quantifi cation 
methods and in some cases developed new methods to adapt the approach to the 
research constraints found in developing countries. Methods described herein are 
based on internationally accepted methods and have been reviewed by experts in 
the fi eld. 

 These guidelines are intended to inform the fi eld measurements of agricultural 
GHG sources and sinks, especially to assess low emissions development options in 
smallholder agriculture in tropical developing countries. The methods provide a 
standard for consistent, robust data that can be collected at reasonable cost with 
available equipment. They can be used to support improved emissions factors for 
country inventories, to assess the mitigation impacts of projects, or as methods for 
scientifi c studies. The accompanying website (  http://samples.ccafs.cgiar.org/    ) pro-
vides additional resources such as links to step-by-step guidelines, scientifi c publi-
cations, and a database of agricultural emission factors. 

 We acknowledge with gratitude the following individuals who helped conceive 
this volume at a workshop in Garmisch-Partenkirchen, Germany, in October 2012:

   Alain Albrecht, Institut de Recherche pour le Développement (IRD), France  
  Andre Butler, IFMR LEAD, India  
  Klaus Butterbach-Bahl, International Livestock Research Institute (ILRI) and 

Institute of Meteorology and Climate Research Atmospheric Environmental 
Research (IMK-IFU)  

  Aracely Castro Zuñiga, Independent Consultant, Italy  
  Ngonidzashe Chirinda, International Center for Tropical Agriculture (CIAT), 

Colombia  
  Alex DePinto, International Food Policy Research Institute (IFPRI), USA  
  Jonathan Hickman, Columbia University, USA  
  ML Jat, International Maize and Wheat Improvement Center (CIMMYT), India  
  Brian McConkey, Agriculture and Agri-food Canada and Global Research Alliance 

on Agricultural Greenhouse Gas Emissions, Canada  
  Ivan Ortiz Monasterio, International Maize and Wheat Improvement Center 

(CIMMYT), Mexico  
  Barbara Nave, BASF, Germany  
  An Notenbaert, International Livestock Research Institute (ILRI), Kenya  
  Susan Owen, Center for Ecology and Hydrology, UK  
  JVNS Prasad, Central Research Institute for Dryland Agriculture (CRIDA), India  
  Meryl Richards, University of Vermont and CGIAR Research Program on Climate 

Change, Agriculture and Food Security (CCAFS), USA  
  Philippe Rochette, Agriculture and Agri-Food Canada  
  Todd Rosenstock, World Agroforestry Centre (ICRAF), Kenya  
  Mariana Rufi no, Center for International Forestry Research (CIFOR), Kenya  
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  Björn Ole Sander, International Rice Research Institute (IRRI), Philippines  
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  Jonathan Vayssieres, CIRAD, Senegal  
  Eva Wollenberg, University of Vermont and CGIAR Research Program on Climate 

Change, Agriculture and Food Security (CCAFS), USA  
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 We also acknowledge the following individuals and organizations that provided 
feedback on all or part of the guidelines during the review process:

   Juergen Augustin, Leibniz Centre for Agricultural Landscape Research, Germany  
  Rolando Barahona Rosales, National University of Colombia (Medellín), Colombia  
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 This work was undertaken as part of the CGIAR Research Program on Climate 
Change, Agriculture and Food Security (CCAFS), which is a strategic partnership 
of CGIAR and Future Earth. This research was carried out with funding by the 
European Union (EU) and with technical support from the International Fund for 
Agricultural Development (IFAD). The views expressed in the document cannot be 
taken to refl ect the offi cial opinions of CGIAR, Future Earth, or donors. 
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    Chapter 1   
 Introduction to the SAMPLES Approach                     
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    Abstract     This chapter explains the rationale for greenhouse gas emission estima-
tion in tropical developing countries and why guidelines for smallholder farming 
systems are needed. It briefl y highlights the innovations of the SAMPLES approach 
and explains how these advances fi ll a critical gap in the available quantifi cation 
guidelines. The chapter concludes by describing how to use the guidelines.    

1.1      Motivation for These Guidelines 

 Agriculture in tropical developing countries produces about 7–9 % of annual anthro-
pogenic greenhouse gas (GHG) emissions and contributes to additional emissions 
through land-use change (Smith et al.  2014 ). At the same time, nearly 70 % of the 
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technical mitigation potential in the agricultural sector occurs in these countries 
(Smith et al.  2008 ). Enabling farmers in tropical developing countries to manage 
agriculture to reduce GHG emissions  intensity   (emissions per unit product) is conse-
quently an important option for mitigating future atmospheric GHG concentrations. 

 Our current ability to quantify GHG emissions and mitigation from agriculture 
in tropical developing countries is remarkably limited (Rosenstock et al.  2013 ). 
Empirical measurement is expensive and therefore limited to small areas. Emissions 
can be estimated for large areas with a combination of fi eld measurement, modeling 
and remote sensing, but even simple data about the extent of activities is often not 
available and models require calibration and validation (Olander et al  2014 ). These 
guidelines focus on how to produce fi eld measurements as a method for consistent, 
robust empirical data and to produce better models. 

 For all but a few crops and systems, there are no measured data for the emissions 
of current practices or the practices that would potentially reduce net emissions. For 
crops, signifi cant information has been gathered for irrigated rice systems e.g., in 
the Philippines, Thailand, and China (Linquist et al.  2012 ; Siopongo et al. 2014) and 
for nitrous oxide emissions from China where high levels of fertilizer are applied 
(Ding et al.  2007 ; Vitousek et al.  2009 ). Yet measurements of methane from live-
stock—a major source of agricultural GHG emissions in most of the developing 
world—are lacking (Dickhöfer et al.  2014 ). Similarly, little to no information exists 
for most other GHG sources and sinks. Smallholder farms comprise a signifi cant 
proportion of agriculture in the developing world in aggregate, as high as 98 % of 
the agricultural land area in China, for example, yet tend to escape attention as a 
source of signifi cant emissions because of the small size of individual farms. 

 The dearth of empirical data contributes to why most tropical developing coun-
tries, all of which are non-Annex 1 countries of the UNFCCC, report emissions to 
the UNFCCC using  Tier 1 methodologies with default emission factors  , rather than 
more precise Tier 2 or Tier 3 methods and country-specifi c emission factors (Ogle 
et al.  2014 ). However, Tier 1 default emission factors represent a global average of 
data derived primarily from research conducted in temperate climates for monocul-
tures, which is very different from the complex agricultural systems and landscapes 
typical of smallholder farms in the tropics. Given our knowledge of the mechanisms 
driving emissions and sequestration (e.g., temperature, precipitation, primary pro-
ductivity, soil types, microbial activity, substrate availability), there is reason to 
believe that these factors represent only a rough approximation of the true values for 
emissions (Milne et al.  2013 ). 

  Field measurement   of GHG emissions in tropical developing countries is generally 
done using methods developed in temperate developed countries. However, multiple 
factors complicate measurement of agricultural GHG sources and sinks in non-Annex 
1 countries and necessitate approaches specifi c to the conditions common in these 
countries, including heterogeneity of the landscape, the need for low- cost methods, 
and the need for improving farmers’ livelihood and food security. 

    Heterogeneous landscapes   . Annex-1 countries are dominated by industrial agri-
culture, usually monocultures with commonly defi ned practices, over relatively 
large expanses. The combination of high research intensity and large-scale agriculture 
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in developed countries creates a homogenous, relatively data-rich environment 
where point measurements of key sources (e.g., soil emissions from corn  production 
in the Midwestern US or methane production from Danish dairy animals) can be 
extrapolated with acceptable levels of uncertainty to larger areas using empirical 
and process-based models (Del Grosso et al.  2008 ; Millar et al.  2010 ) . 

 In contrast, many farmers (particularly smallholders) in tropical developing 
countries operate diversifi ed farms with multiple crops and livestock, with fi eld 
sizes often less than 2 hectares. For example, in western Kenya maize is often inter-
cropped with beans, trees, or both and in regions with two rainy seasons, maize 
might be followed in the rotation by sorghum or other crops. Exceptions exist of 
course, such as in Brazil, where industrial farming is well established and farms can 
be thousands of hectares. Where heterogeneity does exist, it complicates the design 
of the sampling approach in terms of identifying the boundary of the measurement 
effort, stratifying the farm or landscape, and determining the necessary sampling 
effort. Capturing the heterogeneity of such systems, as well as comparing the effects 
of mitigation practices or agronomic interventions to improve productivity, often 
demands an impractical number of samples (Milne et al.  2013 ). Methods are needed 
to stratify complex landscapes and target measurements to the most important land 
units in terms of emissions and/or mitigation potential. 

   Resource limitations   . People and institutions undertaking GHG measurements 
have different objectives, tolerances for uncertainty, and resources. Cost of research 
is one of the major barriers faced by non-Annex 1 countries in moving to Tier 2 or 
Tier 3 quantifi cation methods. Some methods require sampling equipment, labora-
tory analytical capacity, and expertise that is not available in many developing coun-
tries. Furthermore, different spatial scales (e.g., fi eld, farm, or landscape) require 
different methods and approaches. The chapters in this volume guide the user in 
choosing from available methods, taking into account the user’s objectives, resources 
and capacity. 

   Improving livelihood and food    security     as a primary concern . The importance of 
improving farmer’s livelihoods and capacity to contribute to food security though 
improved productivity must be taken into account in mitigation decision-making 
and the research agenda supporting those decisions. Measuring GHG emissions per 
unit area is a standard practice for accounting purposes, but measuring emissions 
per unit yield allows tracking of the effi ciency of GHG for the yield produced and 
informs agronomic practices (Linquist et al.  2012 ). This volume considers produc-
tivity in targeting measurements and sampling design, along with recommendations 
for cost-effective yield measurements.  

 Improved  data   on agricultural GHG emissions and mitigation potentials provides 
opportunities to decision-makers at all levels. First and foremost, it allows govern-
ments and development organizations to identify high production, low-emission 
development trajectories for the agriculture sector. With the suite of farm- and 
landscape- level management options for GHG mitigation and improved productivity 
available for just about any site-specifi c situation, there are numerous options to 
select from. Country- or region-specifi c data allows more accurate comparison of 

1 Introduction to the SAMPLES Approach



4

these options. Second, the prospects of the emerging green economy and potential 
for climate fi nance will dictate how emission reductions are both valued and verifi ed. 
Verifi cation, whether for  Nationally Appropriate Mitigation Actions (NAMAs)  , 
Nationally Determined Contributions (NDCs), or product supply chain assessments, 
will require both reasonable estimates of baseline emissions and accurate quantifi ca-
tion of emission reductions. Third, economies of tropical developing countries are 
largely dominated by agricultural production, and this sector contributes a signifi cant 
fraction to their national GHG budgets (Fig.  1.1 ). Accurate data strengthen the basis 
for their negotiating position in global climate discussions.

  Fig. 1.1    ( a ) Total agricultural GHG emissions (GtCO 2 e yr-1) by country (CH 4  and N 2 O only). 
Data are average of emission fi gures from FAOSTAT database of GHG emissions from agriculture 
in 2010, EPA global emission estimates for 2010 and national reports to the United Nations 
Framework Convention on Climate Change (UNFCCC). If a country had not submitted a report to 
the UNFCC since the year 2000, we used only FAOSTAT and EPA data. ( b ) Percent of national 
emissions that come from agriculture, not including land-use, land-use change and forestry 
(LULUCF). Data from national reports to the UNFCCC       
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1.2        Who Should Use These Guidelines? 

 These guidelines are intended to inform anyone conducting fi eld measurements of 
agricultural greenhouse gas sources and sinks, especially to assess mitigation options 
in smallholder systems in tropical developing countries. The methods provide a 
standard for consistent, robust data that can be collected at reasonable cost with 
equipment often available in developing countries. They are also intended to provide 
end users of GHG data with a standard to evaluate methods used in previous efforts 
and inform future quantifi cation efforts. The comparative analyses found in these 
chapters are accompanied by the recommended step-by-step instructions for the 
methods on the  SAMPLES website   (  www.samples.ccafs.cgiar.org    ). 

 Potential users of the guidelines include:

•     National agricultural research centers (NARS)  .  NARS   researchers can use these 
guidelines to establish protocols for greenhouse gas measurement from agricul-
ture within their institution and ensure comparability with other research partners. 
They may also be used to review the robustness of existing measurement methods 
or for fi nding ways to reduce costs.  

•   Compilers of national GHG  inventories  . These guidelines are intended to pro-
vide methods for data collection to support the development of Tier 2 emission 
factors and the calibration of process-based models for Tier 3 approaches.  

•   Developers of  national and subnational mitigation plans   that include agriculture. 
Strategies to limit or reduce emissions take multiple forms:  Low-Emission 
Development Strategies (LEDS)  , and  Nationally Appropriate Mitigation Actions 
(NAMAs)   and at the national scale, Nationally Determined Contributions 
(NDCs). Accurate information is required both in the planning phase, to estab-
lish baselines and compare potential interventions, and in the implementation 
phase, to  measure, report, and verify (MRV)   emissions reductions attributable to 
the strategy or policy. Field measurements are often necessary to generate 
national emission factors or calibrate models that can then be used in MRV sys-
tems. These guidelines should be used to ensure that fi eld measurements meth-
ods are cost- effective, comparable across sites, and of suffi cient accuracy.  

•   Agricultural commodity companies and agricultural development projects. 
These guidelines complement greenhouse gas accounting methodologies such 
as the Product Category Rules ( PCRs  )    and carbon credit standards as well as 
agricultural greenhouse gas calculators such as EX-Ante Carbon Balance Tool 
( EX- ACT  )    (Bernoux et al.  2010 ) and  Cool Farm Tool      (Hillier et al.  2011 ). These 
methodologies and tools often require, or are improved by, user-input data cor-
responding to the project area, such as soil C stocks or emission factors for fertil-
izer application. These guidelines and the associated web resources provide 
methods—not usually covered in product and project standards—for the fi eld 
measurements to generate these data.  

•    Students and instructors  . Postgraduate students, advisors, and university instruc-
tors can use these guidelines as a manual in selecting research methods.    
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 Box 1.1 Make Best Use of Limited Resources by Carefully Selecting 
Practices for Testing 

 GHG measurement is often undertaken with the purpose of comparing miti-
gation practices. Too often, those practices are chosen randomly or opportu-
nistically, without explicit consideration of their feasibility or mitigation 
potential. The results of GHG measurement research will be more useful if 
practices for testing are identifi ed in a systematic way with input from rele-
vant decision-makers. This can be thought of as a process of “fi ltering” 
options from a laundry list of potentials to a few for further testing. 

   Identify the scope of    practices     for consideration  
 This can be seen as the “boundary” of potential options. Establishing a 

spatial boundary is a fi rst step; this may be ecological (a watershed) or politi-
cal (a county). Additionally, it is useful to further narrow the focus to particu-
lar agricultural activities or sectors. The criteria for doing so may include:

•    Extent of an activity within the landscape. The targeting approach described 
by Rufi no et al. (Chap.   2    ) is useful to determine this, as are agricultural 
census data and land-cover maps.  

•   Magnitude of emissions from a given agricultural activity. At the national 
scale, this can be estimated from FAOSTAT (FAOSTAT  2015 ), or the national 
communication to the UNFCCC. At farm or landscape scales, greenhouse 
gas calculators (Colomb et al.  2013 ) can provide a rough estimate.  

•   Stakeholder priorities. Government development plans and priorities may 
provide opportunities to incorporate mitigation practices that also improve 
production or livelihoods. Farmer unions and project funders may have 
priorities as well. It is good practice to consult a variety of stakeholders in 
identifying priority activities or sectors, including women and disadvan-
taged groups.  

•   Scale of practice changes to be considered. Different mitigation practices 
imply differing scales of change within an agricultural system. Some may 
be incremental practice changes (such as improved nitrogen-use effi -
ciency), whereas others may modify the entire system (such as changing 
crops or animal breeds, or incorporating trees). Some mitigation options 
are not “practices” per se, but transformational changes such as different 
livelihoods or a change in land-use, such as changing from nomadic pasto-
ralism to settled agriculture (Howden et al.  2011 ).     

  Identify potential    practices    
 Once the geography and scope of the mitigation effort have been estab-

lished, develop a list of practices that may be applicable. Ideas may come from 
interviews and surveys of stakeholder groups as well as published literature. 
The website accompanying this volume includes resources for this purpose. 
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1.3       How to Use These Guidelines 

 The ten chapters in this volume are grouped into three categories that correspond 
with the steps necessary to conduct measurement (1) question defi nition, (2) data 
acquisition and (3) “option” identifi cation (synthesis) (Fig.  1.2 ). Some readers, such 
as those looking to evaluate mitigation options for an agricultural NAMA, may want 
to go through each step. Readers interested in measurement methods for a particular 
GHG source can go directly to the associated chapter.

  Box 1.1 (continued) Narrow the list of practices for testing  

 Several criteria should be used to narrow the  list of practices   to a smaller 
feasible number for fi eld-testing.

•     Likely    mitigation potential   . While the purpose of fi eld measurements is to 
provide accurate information on mitigation potential, expert judgment and 
currently available emission factors and models can allow a rough estimate 
to guide fi eld measurements toward practices with the largest potential for 
reducing emissions. Again, some greenhouse gas calculators are useful for 
this purpose. The CGIAR Research Program on Climate Change, 
Agriculture, and Food Security is currently developing a tool specifi cally 
to rank the most effective mitigation practices in a given geographic area 
(Nayak et al.  2014 ).  

•    Uncertainty of current    information   . Sometimes, the most relevant mitiga-
tion practice may be one that is already well studied in the project area, or 
for which uncertainty around mitigation potential is generally low. In these 
cases, it may be better to focus fi eld measurement efforts on practices for 
which uncertainty is high, or globally available emission factors are not 
relevant. If uncertainty has not been quantifi ed, it may be valuable to con-
duct a small initial measurement effort and compare these results with out-
puts from available models. This can then guide the larger measurement 
campaign to areas most needed to reduce uncertainty.  

•    Benefi ts for adaptation and    livelihoods   . Reduction of greenhouse gas 
emissions is not the primary focus of farmers or, usually, policy makers. 
Practices should also be prioritized based on their benefi ts in terms of pro-
ductivity, income, and resilience to climate change. Here, input from farm-
ers and their organizations is critical. Likewise, there may be barriers to 
adoption that make a particular practice impractical or require supportive 
policies, such as high upfront investment or lack of access to markets 
(Wilkes et al.  2013 ).  

•    Available resources . Funding, labor, and time will necessarily limit the 
number of practices for which measurements can be conducted.    

1 Introduction to the SAMPLES Approach
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     Step 1. Question defi nition  
  Question defi nition   defi nes the scope, boundaries and objectives of a mea-

surement program. Measurement campaigns may be undertaken for a number of 
GHG quantifi cation objectives such as developing emission factors, GHG inven-
tories, or identifying mitigation options. The objective has considerable leverage 
on how and what is measured. In this volume,  Rufi no et al . (Chap.   2    ) describes 
methods for characterizing heterogeneous farming systems and landscapes, 

  Fig. 1.2    Steps and their results of the SAMPLES approach. Each step yields inputs for subsequent 
steps, though components within each step are optional and subject to the interest of the inquiry.       
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identifying the critical control points in terms of food security and GHG emis-
sions in farming systems and landscapes. This characterization of the system 
generates fundamental information about the distribution and importance of 
farming activities in the landscape. Though often overlooked, depending on the 
preferences and priorities of donors or researchers, systems characterization is 
critical to target measurements to the most relevant areas in a landscape and 
stratify the landscape to inform sampling design.  

   Step 2. Data acquisition  
  Data acquisition   is the “nuts and bolts” of quantifi cation. It represents the 

activities that are conducted to measure and estimate GHG fl uxes or changes in 
carbon stocks. The six chapters that make up this step discuss methods to quan-
tify stocks, stock changes and fl uxes of the major GHG sources and sinks includ-
ing land-use and land-cover change ( Kearney and Smukler  Chap.   3    ), greenhouse 
gas emissions from soils ( Butterbach-Bahl et al . Chap.   4    ), methane emissions 
due to enteric fermentation in ruminants ( Goopy et al . Chap.   5    ), carbon in bio-
mass ( Kuyah et al . Chap.   6    ) and soil carbon stocks ( Saiz and Albrecht  Chap.   7    ). 
Methods to measure land productivity under agriculture—an essential input for 
tradeoff analysis—are treated separately ( Sapkota et al . Chap.   8    ) (Table  1.1 ).

   Each chapter provides a comparative analysis of existing methods for quanti-
fi cation, particularly evaluating methods across three key features—accuracy, 
scale, and cost (Table  1.2 ). Authors provide recommendations about how to 
select the optimal measurement approaches appropriate to the technical and 
fi nancial constraints often encountered in developing countries, supplemented 
with discussion of the limitation of various methods. A central theme of the 
chapters is that GHG quantifi cation is inherently inaccurate. The biogeochemis-
try of the processes that researchers are measuring coupled with the logistical 
practicalities of research mean that every measurement is only an estimate of the 
true fl ux. The researcher must therefore understand how different measurement 
approaches will affect their estimates and tailor measurement campaigns or 
quantifi cation efforts to characterize the fl uxes necessary to meet program objec-
tives in a transparent and objective way. The resultant data on GHG fl uxes pro-
duced from different sources and sinks can then be aggregated for partial or full 
GHG budgets using the guidelines from Chaps.   9    –  10    .

        Step 3. Estimation of    emissions     and analysis of    mitigation     options  
 The fi nal step is to synthesize the results to identify emissions levels and miti-

gation options. 
 Data acquisition in Step 2 may take place at multiple scales, ranging from 

point measurements of individual farming activities (such as soil carbon mea-
surements) to pixel analysis at various resolutions of land-use and land-cover 
change. It is then necessary to extrapolate these point measurements of individ-
ual features back to scales of interest (fi elds, farms, or landscapes).  Rosenstock 
et al . (Chap.   9    ) describe the three principal ways that this can be accomplished: 
empirical, process-based models or a combination of both.  Van Wijk et al . (Chap. 
  10    ) provide guidance on approaches to synthesize all the data to produce esti-
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mates of  tradeoffs or synergies in various farm or landscape management activi-
ties-for example, activities that support mitigation as well as adaptation to 
climate change. Tradeoff analysis, though originating in the 1970s, has been 
developing rapidly due to increase in computing power and advances in theory 
and modeling frameworks. However, the authors stress that practical analysis 
has to include stakeholders to integrate their own perspectives and preferences 
for the analysis to be practically valuable. By developing estimates of GHG 
fl uxes at relevant scales and analyzing tradeoffs, the approaches detailed in this 
volume can inform low-emissions development planning.      

   Table 1.1    Chapters of this volume and their associated IPCC source and sink categories (IPCC 
 1996 ,  2006 )   

 SAMPLES chapter  1996 IPCC guidelines  2006 IPCC guidelines 

 Chapter   3    : Determining GHG 
emissions and removals 
associated with land-use and 
land-cover change 

 5 Land-use change and 
forestry 

 3B Land 

 Chapter   4    : Measuring GHG 
emissions from managed and 
natural soils 

 4C Rice cultivation  3C2 Liming 
 4D Agricultural soils  3C3 Urea application 

 3C4 Direct N 2 O emissions 
from managed soils 
 3C7 Rice cultivations 

 Chapter   5    : Measuring methane 
emissions from ruminants 

 4A Enteric fermentation  3A1 Enteric fermentation 

 Chapter   6    : Quantifying tree 
biomass carbon stocks and 
fl uxes in agricultural 
landscapes 

 5A Changes in forest and 
other woody biomass stocks 

 3B1 Forest land 

 5B Forest and grassland 
conversion 

 3B2 Cropland 

 5C Abandonment of managed 
lands 

 3B3 Grassland 

 5-FL Forest land 
 5-CL Cropland 
 5-GL Grassland 

 Chapter   7    : Methods for 
quantifi cation of soil carbon 
stocks and changes 

 5B Forest and grassland 
conversion 

 3B2 Cropland 

 5C Abandonment of managed 
lands 

 3B3 Grassland 

 5D CO 2  emissions and 
removals from soil 
 5-FL Forest land 
 5-CL Cropland 
 5-GL Grassland 

 Chapter   8    : Yield estimation of 
food and non-food crops in 
smallholder production systems 

 4F Field burning of 
agricultural residues (for 
calculating residue quantities) 

 3C1b Biomass burning on 
croplands 
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   Open Access    This chapter is distributed under the terms of the Creative Commons Attribution 
4.0 International License (  http://creativecommons.org/licenses/by/4.0/    ), which permits use, dupli-
cation, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, a link is provided to the Creative 
Commons license and any changes made are indicated.

   Table 1.2    Examples of measurements options and their accuracy, cost, and scale implications 
based on analyses in this volume   

 Method 

 Experimental considerations 

 Select uses  Accuracy  Scale  Costs 

 Enteric fermentation 
 Empirical 
equations 

 Low, subject to 
variability in feed 
intake and 
emissions 
relationships 

 Large, many 
animals, 
herds, and 
inventories 

 Low, when based 
on just numbers of 
animals but 
increase when feed 
intake is measured 

 – Inventories 

 Respiration 
chambers 

 High temporal 
resolution 
measurements 
with sophisticated 
equipment 

 Small, limited 
to only a few 
animals 

 High, specialized 
equipment for 
accurate high 
resolution 
measurements and 
animal 
maintenance 

 – Emission factors 
 – Mitigation options 

 SF6  Moderate to high  Small, 
animals and 
herds 

 Moderate, requires 
specialized 
equipment and 
skills 

 – Emission factors, 
especially of 
grazing animals 

 – Mitigation options 
 Soil emissions 
 Laboratory 
incubations 

 Low, measure 
emission 
potential and may 
not match fi eld 
conditions 

 Large, with 
potential for 
many 
hundreds of 
samples that 
can span large 
spatial extents 

 (Relatively) low 
per sample due to 
minimal fi eld 
requirements 

 – Emission potential 
 – Identify hotspots 

of emissions 
 – Mechanistic 

research 
 – Model 

parameterization 
 Manual 
static 
chambers 

 Moderate, high 
spatial and 
temporal 
variability can 
lead to poor 
estimates 

 Moderate, 
with pooling 
methods 
capable of 
collecting 
data from 
many sites 

 Moderate, 
relatively cheap 
but fi eld and lab 
costs become 
prohibitively 
expensive in many 
developing 
countries 

 – Inventories 
 – Emission factors 
 – Mitigation options 

 Automatic 
chambers 

 High, overcome 
temporal 
variability issues 
but limited in 
numbers because 
of costs 

 Small, 
generally only 
one site is 
measured at a 
time 

 High, the infi eld 
system represents a 
signifi cant cost per 
measurement 

 – Emission factors 
 – Mechanistic 

research 
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    Abstract     This chapter presents a method for targeting landscapes with the objective 
of assessing mitigation options for smallholder agriculture. It presents alternatives in 
terms of the degree of detail and complexity of the analysis, to match the requirement 
of research and development initiatives. We address heterogeneity in land-use deci-
sions that is linked to the agroecological characteristics of the landscape and to the 
social and economic profi les of the land users. We believe that as projects implement 
this approach, and more data become available, the method will be refi ned to reduce 
costs and increase the effi ciency and effectiveness of mitigation in smallholder agri-
culture. The approach is based on the assumption that landscape classifi cations 
refl ect differences in land productivity and greenhouse gas (GHG) emissions, and 
can be used to scale up point or fi eld-level measurements. At local level, the diversity 
of soils and land management can be meaningfully summarized using a suitable 
typology. Field types refl ecting small-scale fertility gradients are correlated to land 
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quality, land productivity and quite likely to GHG emissions. A typology can be a 
useful tool to connect farmers’ fi elds to landscape units because it represents the 
inherent quality of the land and human-induced changes, and connects the landscape 
to the existing socioeconomic profi les of smallholders. The method is explained 
using a smallholder system from western Kenya as an example.   

2.1       Introduction 

 Little is known about the environmental impact of smallholder agriculture, especially 
its  climate implications  . The lack of data limits the capacity to plan for low- carbon 
development, the opportunities for smallholders to capitalize on carbon markets, 
and the ability of low-income countries to contribute to global climate negotiations. 
Most importantly for smallholders, available information has not been linked to the 
effects on their livelihoods. Many research initiatives aim to close this information 
gap and will eventually lead to the adoption of mitigation practices in smallholder 
agriculture. Technically feasible mitigation practices do not necessarily represent 
plausible options, which are desirable for farmers. A key goal of mitigation in 
smallholder agriculture is the long-term benefi t to the farmers themselves, achieved 
either through improved practices or subsidized as part of a global emissions reduc-
tion market. This chapter focuses on targeting the measurement of greenhouse 
gas (GHG) emissions in smallholder systems, as it is expected that this will also 
correspond to the potential for social impact of mitigation. Here targeting means the 
process of selecting units of a  landscape   where scientists or project developers will 
estimate a number of parameters to assess mitigation potential of land-use practices. 
 Systematic selection   of measurement locations ensures that measurements can be 
scaled up to give meaningful information for implementing mitigation measures. 

  Analysis   of smallholder agriculture is a challenge because farming takes place in 
fragmented and diverse landscapes. Various actors may wish to target mitigation 
actions in this environment, including national and subnational governments who 
want to meet mitigation goals; project implementers at all levels; communities that 
wish to access carbon fi nancing; and the research community that wants to contrib-
ute meaningfully to climate change mitigation. Although the spatial resolution and 
coverage of the assessment differ across actors, all face two basic questions related 
to emissions: how much mitigation can be achieved and where. 

 The scientifi c community conducts biophysical research to estimate the potential 
of soils to sequester carbon, and to estimate emissions of non-CO 2  gases from agri-
culture, forestry, and other land uses (AFOLU). If estimates of emission reductions 
are not available, the success of mitigation actions will be unknown. This is mostly 
the case in projects proposed in low-income countries where information on emis-
sions and carbon sequestration potential is nonexistent or patchy. Most commonly 
where interventions are proposed, landscapes are considered uniform and equally 
effective for the mitigation actions promoted. 

 Before implementing mitigation projects, all actors should examine the mitigation 
objectives and use a structured targeting top-down, bottom-up, or mixed- method 
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approach. The scientifi c community should use the same principles to increase the 
effectiveness of mitigation research, allow for comparability, and fi ll knowledge 
gaps at critical stages. The targeting of mitigation research projects and the 
 implementation   of mitigation actions are typically framed in terms of mitigation 
potential. Such assessments are carried out at relatively large scale and provide a 
range of achievable objectives, but do not connect directly with land users’ realities. 
This is often done at an academic level without on-the-ground consultations and 
ignoring socioeconomic barriers. 

 We propose a targeting method using varied sources to support the analysis 
including geographical information systems (GIS), remote sensing (RS), socioeco-
nomic profi les, and biophysical drivers of GHG emissions. In summary, we intro-
duce a cost-effective method for selecting representative fi elds and landscape units 
as a basis for estimating GHG emissions, soil carbon stocks, land productivity and 
economic benefi ts from cultivated soils and natural areas. The objective of this 
chapter is to guide scientists and practitioners in their decisions to estimate GHG 
emissions, and to identify mitigation options for smallholders at whole-farm and 
landscape levels. This is a new area of research that links mitigation science with 
development, landscape ecology, remote sensing, and economic and social sciences 
to understand the consequences of land-use decisions on the environment. 

 The proposed approach is based on the assumptions that:

    1.    A landscape can be practically described using  GIS   and  RS   techniques that 
explain either landscape features associated with land-use and/or vegetation 
structure and functioning. The resulting landscape classifi cation therefore also 
refl ects differences in land productivity and GHG emissions, and can be used to 
scale up point or fi eld-level measurements.   

   2.    At the local level, the diversity of soils and land management can be meaningfully 
summarized using a suitable typology.  Field types   refl ecting small-scale soil 
fertility gradients are correlated with land quality, land productivity (Zingore 
et al.  2007 ; Tittonell et al.  2010 ) and quite likely GHG emissions.  Land produc-
tivity   includes physical values (e.g., expressed in biomass per unit of land) and 
economic goods (e.g., expressed in monetary value per unit of land).   

   3.    A  typology   is a useful tool to connect farmers’ fi elds to landscape units 
because it represents the inherent quality of the land and human-induced 
changes. It can also connect the landscape to the existing socioeconomic profi les 
of smallholders.     

 To test the method, we used a smallholder system from Western Kenya as an 
example.  

2.2      Initial Steps   

 The targeting approach stratifi es landscapes of different complexity into different 
classes, to identify units that provide estimates of emission reductions representing 
larger areas. Figure  2.1  shows how a complex landscape can be split—using a 
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top- down approach—into smaller units ( i landscape units ) that have a common bio-
physical environment at regional scale. This disaggregation can be done using GIS 
and RS, assisted by existing secondary data. Landscape units can be further disag-
gregated into  j farm types  and  k common lands  to describe differences in the ways 
that individual households and communities access and use the land. The sort of 
units that link the land-to-land users will vary according to tenure systems in differ-
ent territories, jurisdictions, and countries (Ostrom and Nagendra  2006 ). This step 
uses information on incomes, land tenure, and food security. It enables mitigation 
practices to be designed that are appropriate for heterogeneous rural communities, 
and where the land can be privately and communally managed. To make a connec-
tion with farming activities and ultimately with the level at which mitigation prac-
tices are implemented, farms and common lands can be disaggregated into  l fi eld 
types  and  m land types . This distinction may fade out in countries where the land is 
intensively used independently of the tenure system. The identifi ed units can be stud-
ied in terms of land productivity, economic outputs, carbon stocks, GHG emissions, 
and the social and cultural importance of farming activities for rural families.

2.3        Top-Down Approach 

 We illustrate the  steps   to split a complex landscape (of any size) into homogeneous 
units using GIS and RS information and socioeconomic surveys to study  mitigation 
potential   (Fig.  2.1 ). This may be of interest, for example, where a  carbon credit 

  Fig. 2.1    Conceptual model of a nested targeting approach. The model indicates ( dashed boxes ) 
the sort of analyses conducted at each level       
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project   is implemented, or if a district, province, or other authority wishes to assess 
the mitigation potential of a number of agricultural technologies. Once the  land-
scape boundaries   are defi ned, one can disaggregate the complex landscape into dif-
ferent units. If the landscape boundaries are not delineated, the analyst may choose 
to select an area that is representative of the larger region in order to extrapolate 
results. The landscape can be analyzed initially using a combination of RS and GIS. 
We suggest different approaches to disaggregate a landscape and decide where to 
conduct fi eld measurements. 

 After selecting a landscape for assessment and developing a conceptual model of 
land-use and land-cover (LULC), the simplest method to identify landscape  units   is 
the exploration and visual interpretation of satellite imagery, preferably with the 
best available spatial resolution and observation conditions (e.g., peak of vegetation 
productivity). LULC classifi cation (using object-based approaches and VHR imag-
ery) and landscape classifi cation (using RS vegetation productivity parameters) are 
more sophisticated methods of approaching a landscape. With visual interpretation, 
numerous landscape features can be characterized using physical (e.g., geomor-
phology, vegetation, disturbance signs) and human criteria (e.g., presence of popu-
lation, land-use, and infrastructure). This yields relatively large, homogeneous 
landscape units (e.g., describing the mosaic of LULCs in an area). By comparison, 
automated LULC classifi cation yields results at a much fi ner spatial scale. In most cases 
it maps the individual fi elds that make up a landscape. The process of automated 
LULC mapping involves:

    1.    Discriminating areas of general LULC types such as croplands or shrublands   
   2.    Characterizing structural traits of all these types   
   3.    Integrating areas and traits to identify homogeneous landscape units    

  The two fi rst steps require the composition of the  landscape   to be characterized 
(i.e., the areas under each of the fi eld or land types according to Fig.  2.1 ), and their 
spatial confi guration (i.e., the arrangement of fi eld or land types). 

 In landscapes with dominant smallholder agriculture, cultivated land can be easily 
recognized through the presence of regular plots with homogeneous surface brightness, 
and minor features such as ploughing or crop lines and infrastructure. In addition, the 
structural heterogeneity of cultivated areas can be assessed by the geometry of the 
fi elds (size and symmetry of the shapes), the presence of productive infrastructure and 
signs of disruption, such as woody encroachment within fi elds. Land under (semi-)
natural vegetation can be characterized in terms of vegetation composition (share of 
trees, shrubs, and grass), signs of biomass removal or the presence of barren areas, and 
degradation (gullies, surface salt accumulation). Finally, in order to delimit landscape 
units, all descriptions should be integrated in a holistic manner using, for example, 
 Gestalt-theory      (Antrop and Van Eetvelde  2000 ) to identify and digitize potential 
discontinuities. This simple method has the potential to enhance the quality of broad-
scale land-use studies, and can be performed using freely available imagery, like 
Google Earth, supported by online photographic archives such as “Panoramio” or 
“Confl uence  Project  ” (Ploton et al.  2012 ). 
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2.3.1     Landscape Stratifi cation: An Example from East Africa 

 The Lower Nyando region of Western Kenya, which is dominated by smallholder 
producers, provides an example of the proposed approach. The  CGIAR Program   for 
 Climate Change, Agriculture, and Food Security (CCAFS)   promotes climate smart 
agriculture in this area. To develop and test our targeting approach, we used the three 
methods described above: (1) visual classifi cation using VHR imagery, (2) LULC 
classifi cation using object-based approaches and VHR imagery, and (3) landscape 
classifi cation using medium to coarse resolution RS vegetation productivity 
parameters. 

    Visual  Classifi cation   Using VHR Imagery 

 This is a quick and relatively inexpensive visual approach for exploring landscapes. 
The largest costs are the acquisition of the  VHR   images. Based on a QuickBird ®  
image from the dry season (1 December 2008), six landscape classes were identifi ed 
(Table  2.1  and Fig.  2.2 ). This initial classifi cation can be used to test whether the 
units are indeed related to soil emissions and mitigation potential. The landscape 
classifi cation is expected to refl ect differences in land productivity and GHG 
emissions, because it captures inherent soil and vegetation variability.

    Class delimitation criteria and mitigation opportunities are listed for each class 
in Table  2.1 . The limits between the classes are determined by spatial changes in 
the detailed criteria. As expected, these changes can be abrupt or gradual, and the 
ability or experience of the mapper could lead to variable results. 

 The visual delineation may or may not coincide with regional biophysical gradients, 
as shown by a quick assessment of the topography of Nyando (Fig.  2.3 ). In our case 
study, the highlands coincided with areas allocated to cash crops, while the low-
lands included a continuum from subsistence crops to wooded natural land types. 
Delineating a landscape on the sole basis of topography may be inaccurate and/or 
incomplete, yet the use of a digital elevation model (DEM) is an inexpensive option 
to simplify landscapes.

       Land-Use and Land-Cover Classifi cation Using Object-Based Approaches 
and VHR Imagery 

 The fi ne-scale analysis of actual  LULC   allows the interface between biophysical and 
human-induced processes to be captured. The automated methods are more complex 
than the visual interpretation described previously and require digital processing of 
remote sensing imagery. VHR satellite imagery with pixel resolution <1 m can be 
used for semiautomatic (supervised) mapping of LULC in heterogeneous and fi ne-
structured landscapes with sparse vegetation cover. To make optimal use of the rich 
information provided by the VHR data,  object-based approaches      are recommended. 
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Compared to pixel-based approaches, object-based approaches permit the full 
exploitation of the rich textural information present in VHR imagery, as well as 
shape-related information. They also avoid “salt and pepper” effects when classify-
ing individual pixels. Figure  2.4  summarizes the main steps of such an approach.

   In a similar way to Fig.  2.2 , the landscape is fi rst segmented into small, homogeneous 
subunits or objects. This process is indicated in Fig.  2.4  as   image segmentation      . Input 
to this image segmentation is georectifi ed, multilayered very high-resolution (VHR) 
satellite images. The resulting objects (also called “segments”) are groups of adjacent 
pixels, which share similar spectral properties, and which are different from other 
pixels belonging to other objects. 

 To segment a landscape using VHR satellite images, the so-called segmentation 
algorithms are used. Contrary to the visual classifi cation approach, objects/segments are 

     Table 2.1    List of visual classes determined for the Nyando study region, Kenya   

 Class  Delimitation criteria 
 Mitigation 
opportunities 

 A  Cultivated land 
dominated by 
cash crops 

 Presence of an agricultural matrix, i.e., extensive 
(>70 % of the area) and connected (few 
identifi able large patches) cover. Most plots 
(>75 %) are comparatively large and of similar 
size (~1 ha), regular-shaped (rectangular), and 
have a heterogeneous color and brightness. 
Heterogeneity in this class originates from 
plough or crop lines, pointing to a crop cover. 
Presence of infrastructure (e.g., houses, storage 
places, etc.). No degradation signs (e.g., surface 
salt accumulation, lack of vegetation, gullies) 

 Agroforestry, 
fertilizer 
management 

 B  Natural 
vegetation 

 Presence of a matrix of any original vegetation 
type (forests, shrublands, savannahs). Trees or 
large shrubs are clearly distinguishable by their 
round shape or shadows in the images 

 Halting land and 
tree cover 
degradation 

 C  Mixed natural 
vegetation and 
agricultural land 

 No single cover type reaches 70 % of the area, 
and patches of crop, pasture, and natural 
vegetation are intermingled 

 Agroforestry, 
livestock 
management 

 D  Cultivated land 
dominated by 
subsistence 
crops 

 Same as A, but most plots are smaller, of 
variable area and shape (rounded, elongated, 
irregular). In this class, heterogeneity comes in 
addition from patches of herbaceous or shrubby 
vegetation within plots (a sign of land 
abandonment), and surface degradation 

 Fertilizer and 
manure 
management, 
agroforestry 

 E  Agricultural 
land dominated 
by grazing land 

 Same as A, but most plots are comparatively 
larger, have irregular shape (no bilateral 
symmetry), and lack of plough or crop lines. 
Frequent isolated trees or shrubs inside plots. 
Signs of infrastructure are less common than in A 

 Livestock 
management, 
manure 
management, 
agroforestry 

 F  Mixed 
cultivated land 

 Both elements of A and D are found 
intermingled within small areas 

 Agroforestry, 
fertilizer, and 
manure management 
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  Fig. 2.3    Topographic 
characteristics of Nyando 
region. Altitude (masl) and 
slope (expressed as 
percentage) came from the 
Shuttle Radar Topography 
Mission (SRTM) digital 
elevation model (USGS 
 2004 ). The lines 
delineating the landscape 
units of Nyando are the 
same as in Fig.  2.2        

  Fig. 2.2    Landscape analysis based on a visual inspection of landscape structure of Nyando, 
Western Kenya. ( a – f ) Are samples of the territory represented by the original QuickBird ®  image 
(all have the same spatial extent of 500 m). The larger panel on the  right  represents the six mean-
ingful classes of landscape from the visual classifi cation approach. Letters (A, B, C, D, E, and F) 
show the location of samples in the area (see explanations in Table  2.1 )       
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identifi ed in a fully automated manner. Both commercial and open source solutions 
exist for this task. Excellent open source solutions are, for example, QGIS (  www.qgis.
org/    ), GRASS GIS (grass.osgeo.org/) and ILWIS (  www.ilwis.org/    ). 

  Fig. 2.4    Flowchart for object-based supervised classifi cation of VHR imagery. The process yields 
a detailed LULC map of the area covered by the VHR satellite imagery, as well as information on 
the uncertainty of the classifi cation outcome for each image object       
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 After segmenting the image into image objects, an arbitrary number of features 
are extracted for each object. In Fig.  2.4 , this process is labelled as   feature extrac-
tion   .    Besides spectral features, textural features, as well as shape information, can 
be extracted. This information is used in a subsequent step to automatically assign 
each object to one of the user-defi ned LULC classes (process labelled as  Random  
( RF )  forest classifi er ). To “learn” the relationship between input features and class 
labels, training samples with known LULC must be provided in suffi cient numbers 
and quality using a process called  training data extraction . 

 Because the relation between input features and class label may change depend-
ing on image location (e.g., related to terrain and elevation), a stratifi ed classifi -
cation is recommended. For this task, before starting the classifi cation process, 

  Fig. 2.5    Visualization of important steps of the supervised classifi cation of the Nyando study 
region. ( a ) RGB image of WorldView-2 ®  VHR imagery with manually delineated strata, ( b ) DEM 
of the region with strata       

  Fig. 2.6    ( a ) In situ information about the land-use/land-cover of training samples for one of the 
ten strata; the segmented image objects are also visible in  gray , ( b ) classifi cation result based on 
spectral and textural features of the WorldView-2 ®  VHR image for the same stratum       
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the entire scene is (visually) split into a few (larger) regions (or strata) that can 
be considered homogeneous in terms of land-cover characteristics and the physical 
setting of the landscape. 

 The stratifi cation is usually done just after the automated image segmentation 
(Fig.  2.4 ). Of course, results from other studies can be used as well (e.g.,  boundaries      
shown in Fig.  2.2 ). Figure  2.5a  shows the  RGB composite      of a WorldView-2 image 
of the Nyando study area, and Fig.  2.5b , the corresponding  DEM     . In both maps, 
manually drawn landscape boundaries (strata) are also shown (yellow lines).

   For one of the strata, Fig.  2.6a  shows the available reference information obtained 
from fi eldwork and complemented through visual image interpretation. These train-
ing samples are necessary for the RF classifi er to “learn” the relationship between 
input features and class labels. The resulting object-based  classifi cation      is shown 
for this landscape unit in Fig.  2.6b . The  object limits      (e.g., gray lines in Fig.  2.6a ) 
have been automatically derived using GRASS GIS.

   For the classifi cation, several algorithms are available (e.g., maximum likelihood 
classifi er, CART, kNN, etc.). Based on the authors’ own and published experience, 
we exploited a widely used ensemble classifi er called “random forest” (RF)    which 
often yields good and robust classifi cation results (Gislason et al.  2006 ; Rodriguez- 
Galiano et al.  2012 ; Toscani et al.  2013 ).  RF      uses bootstrap aggregation to create 
different training subsets, to produce a diversity of classifi cation trees, each provid-
ing a unique classifi cation result. For example, if 500 decision trees are grown inside 
the RF, one will obtain 500 class labels for each object. The fi nal output class is 
obtained as the majority vote of the 500 individual labels (Breiman  2001 ). The pro-
portion of votes of the winning class to the total number of trees used in the classifi -
cation is a good measure of confi dence; the higher the score, the more confi dent one 
can be that a class is correctly classifi ed. Similarly, the margin calculated as the 
proportion of votes for the winning class minus the proportion of votes of the second 
class indicates how sure the classifi er was in their decision. Such confi dence indica-
tors are not readily obtained using visual image interpretation.  RF      also produces an 
internal unbiased estimate of the generalization error, using the so-called “out-of-bag” 
( OOB  ) samples to provide a measure of the input features’ importance through ran-
dom permutation. Classifi cation performance of the entire LULC map can be based 
on common statistical measures (overall accuracy (OA), producer’s accuracy (PA) 
and user’s accuracy (UA)) (Foody  2002 ) derived from the classifi cation error matrix, 
using suitable validation samples. Figure  2.7  shows the resulting LULC map of 
 Nyando      obtained with this object-based classifi cation approach and using VHR 
imagery from WorldView-2 ® .

        Landscape Classifi cation   Using RS Vegetation Productivity Parameters 

  The two previous approaches are based on static descriptions of the landscape units 
(or of their constituent elements) in terms of LULC. However, alternative land traits 
can be explored to determine homogeneous landscape units. A promising alterna-
tive is the analysis of vegetation function in terms of the magnitude and temporal 
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variability of primary productivity (Paruelo et al.  2001 ). We tested this functional 
analysis in Lower Nyando, using the period 2000–2012. Vegetation primary pro-
ductivity was assessed through the proxy variable  Normalized Difference Vegetation 
Index (NDVI)  . This index has been of great value for biogeographical studies, 
allowing rough but widespread characterizations of the magnitude and temporal 
variability of productivity based on homogeneous measurements across wide spa-
tial and temporal extensions and different ecosystems (Lloyd  1990 ; Xiao et al. 
 2004 ; Sims et al.  2006 ). In this example, we acquired NDVI data from the MODIS 
(Moderate Resolution Imaging Spectroradiometer) Terra instrument. 1  In this dataset, 
one image is produced every 16 days, leading to 23 images per year. 

 We selected from the 13-years × 23-dates database, only those values indicating 
good to excellent quality conditions (i.e., pixels not covered by clouds, and with a 
low to intermediate aerosol contamination). Then, we used the code TIMESAT 
v.3.1 to reconstruct temporal series (Jönsson and Eklundh  2002 ,  2004 ; Eklundh and 
Jönsson  2011 ). This tool fi ts smoothed model functions that capture one or two 
cycles of growth and decline per year. We selected an adaptive Savitzky-Golay 

1   Product coded as the MOD13Q1; spatial and temporal resolutions of 250 m and 16 days, respec-
tively from the ORNL “MODIS Global Subsets: Data Subsetting and Visualization” online tool 
( http://daac.ornl.gov ). 

  Fig. 2.7    LULC map of Nyando from WorldView-2® VHR imagery, using an object-based clas-
sifi cation approach       
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model (Jönsson and Eklundh  2002 ), assuming two vegetation growth cycles per 
year due to the natural bimodal behavior of rains in the study region. From the 
reconstructed temporal series (and by means of TIMESAT and the R v.2.15 statisti-
cal software), we calculated different functional metrics depicting average annual 
magnitude (e.g., mean, maximum NDVI) and seasonality (e.g., coeffi cient of varia-
tion (CV) of available values, number of growing seasons), and interannual vari-
ability (e.g., CV of mean annual values, annual trends) (Baldi et al.  2014 ). 

 For the sake of simplicity in the Lower Nyando example, Figure  2.8  presents: 
(a) NDVI maximum values as a proxy for carbon stocks of cultivated and unculti-
vated ecosystems; (b) intra-annual CV, describing whether the productivity is con-
centrated in a short period or distributed evenly through the year; (c) interannual CV 
of mean annual values, describing long-term productivity fl uctuations; and (d) the 
slope of the maximum annual NDVI versus time relationship (Paruelo and Lauenroth 
 1998 ; Jobbágy et al.  2002 ).

   Figure  2.9  shows the entire temporal range for the case of maximum annual values. 
Combined, structural and functional assessments provide essential information 
about the quality of the detected fi eld or land types to study GHG mitigation poten-
tials. Likewise, this approach may reveal functional divergences between a single 

  Fig. 2.8    Vegetation functioning depicting an average annual magnitude and seasonality, and 
interannual variability of primary productivity. ( a ) Maximum NDVI, ( b ) Intra-annual NDVI CV, 
( c ) Interannual mean NDVI CV, ( d ) slope of the maximum NDVI versus time relationship.  Lines  
represent homogeneous landscape units from the visual interpretation of Fig.  2.2        
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fi eld or land type or convergences between different classes as shown in Figs.  2.8  
and  2.9 , with strong impacts on cascading ecosystem processes.

   To identify landscape units using only functional information, we integrated func-
tional attributes by applying an unsupervised classifi cation procedure. In contrast 

  Fig. 2.9    Annual maximum NDVI value for the 2000–2012 period.  Lines  represent homogeneous 
landscape units from the visual interpretation of Fig.  2.2        
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with a LULC classifi cation, we do not expect a priori conceptual scheme, both in 
terms of the number of classes and their identity. Functional classes often have to be 
split or merged to create a meaningful map, i.e., to show patterns of patches and cor-
ridors rather than isolated pixels (“salt and pepper” appearance). Using the unsuper-
vised clustering algorithm  ISODATA   (Jensen  1996 ), we generated a map delimitating 
fi ve different classes which reached our pattern-based expectations (Fig.  2.10 ). This 
approach revealed functional divergences between single farm types or common 
lands (e.g., western versus eastern cultivated areas dominated by cash crops), and 
convergences between different classes (e.g., western mixed shrubs and cultivated 
land versus eastern cultivated areas dominated by cash crops), with potential impacts 
on cascading ecosystem processes.

   In addition to the landscape analysis, other on-the-ground information is needed 
for the development of a representative sampling design for smallholder systems 
before resource-consuming measurements of soil GHG fl uxes or soil carbon and 
nitrogen stock inventories are implemented. The characterization of farmers’ 
socioeconomic condition is important here, because this also affects resource 
management. On-farm variations in soil properties, which result from long-term 
differences in fi eld management, create soil fertility gradients that may justify the 
use of a fi eld typology.     

2.4      Bottom-Up Approach   

 For some specifi c landscapes or agricultural systems there may be a wealth of fi eld 
data that characterize the use of the land at fi eld and farm level. This could include 
household surveys, soil surveys, productivity and economic assessments. This 
information comes at the price of laborious and costly data collection, and we 
encourage scientists and project developers to take advantage of existing fi eld and 
farm data to inform the targeting of mitigation options at the local level. The analy-
sis of these data informs the selection of  fi eld   and farm types indicated in Fig.  2.1 , 
which are the ultimate entry point for deciding where to carry out GHG measure-
ments and identifying mitigation practices. This fi eld-level characterization is espe-
cially useful in very fragmented landscapes, where topography, soils and long-term 
management create strong gradients in soil fertility and water retention capacity, 
which may lead to differences in emissions potential (Yao et al.  2010 ; Wu et al. 
 2010 ). We acknowledge that such detailed characterization may not be needed in 
simple landscapes with few land uses and relatively fl at relief. Expert opinion by 
soil scientists can help decision-making about the location of fi eld-level 
assessments. 

 We present a method that can be used to link the fi elds and farming practices with 
the landscape level, and emissions due to agricultural practices with potential for 
emissions reductions at scale. The method is based on assumptions 2 and 3 pre-
sented in Sect.  2.1 : i.e., that the diversity of soils and land management can be 
meaningfully summarized using a  fi eld typology     , which connects farmers’ fi elds to 
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landscape units representing inherent land quality and  human-induced changes     . 
There is evidence that fi eld types can be defi ned on the basis of simple indicators 
that are correlated to land quality and land productivity. Research in Western Kenya 
and Zimbabwe shows the relationship between soil quality, intensity of manage-
ment, and land productivity (Tittonell et al.  2005 ,  2010 ; Zingore et al.  2007 ), which 
we believe are correlated to soil GHG emissions. 

 A  fi eld typology      can be derived a priori using information collected in household 
surveys. This can help connect fi eld management with farm types, defi ned by liveli-
hood indicators, including food and tenure security. Including these dimensions in 
the analysis provides an opportunity to link mitigation with food security and pov-
erty to estimate trade-offs and synergies. Such an analysis permits an assessment of 
the feasibility of mitigation for different farmers and identifi cation of the incentives 
needed for adoption. Land users can assess and weigh up the livelihood benefi ts of 
different practices (e.g., income, increased production of food) and the costs of 
implementing such practices. 

 Using the  Lower Nyando site  , we show how to use household and fi eld surveys 
to support targeting at a local level and how to link it to the selected landscape. We 
collected existing information on households and farm management. The lower 
Nyando site was characterized using the  IMPACTlite tool   (Rufi no et al.  2012a ,  b ) that 
gathered generic data to analyze food security, adaptation, and mitigation in small-
holder agriculture. A comprehensive household survey was conducted to characterize 
household structure, asset ownership, farm production, costs and benefi ts of farming 
activities, other sources of income generation, and food consumption (Rufi no et al. 
 2012a ,  b ). Using the farm household characterization, and to elaborate the fi eld typol-
ogy, fi elds recorded in the household survey were measured, georeferenced and addi-
tional management data were collected. The household survey covered three 
production systems across the sampling frame of the Kenyan CCAFS site of Nyando 
(Förch et al.  2013 ), and included 200 households. A fi eld typology was built on the 
basis of  field type scores   collected through a survey (see forms in  Appendix ). 
A subsample of fi elds was selected randomly to represent the fi eld types. 

2.4.1     Field Typology Defi nition 

   The  fi eld typology      must refl ect inherent soil fertility resulting from soil type and 
long-term management. The process of defi ning the fi eld typology is dependent on 
the landscape within which the project works and the sociocultural norms of the 
farmers. For example, crop diversity may be considered as a sign of productive land 
in subsistence agriculture systems. Adjusting the weighting to take into account 
local knowledge is important to link well with ground truths. 

 The scores obtained through this process are simply a tool for subdividing fi elds 
based on easily obtainable data, analogous to a rapid rural appraisal (Dorward et al. 
 2007 ). It is often justifi able to adjust the weightings based on the data, by identifying 
the common characteristics of the fi eld types and checking that the subdivisions are 
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indeed meaningful. Whenever possible the classifi cation should be counter checked 
against the common sense evaluation of an experienced fi eld offi cer on the ground. 

 At the Nyando site, we used a number of variables to defi ne a fi eld type score:

•     Crop . This score is the sum of the crops that each household is cultivating in one 
plot. Intensively managed fi elds are cropped with several crops, which often 
receive more agricultural inputs than other fi elds.  

•    Fertilizer use . This score distinguishes organic and inorganic fertilizers. Manure 
was given a score of 2 and other inorganic fertilizers a score of 3. It was assumed 
that fi elds receiving inorganic fertilizers are managed more intensively than 
fi elds that only receive animal manure.  

•    Number of subplots . This is the number of subplots within a given fi eld or plot. 
Subplots are units within a fi eld or permanent land management structure that 
can change in space or time. This aims to capture the spatial and temporal allocation 
of land to crops, crop mixtures, and the combination of annual and perennial 
crops in intercropping, permanent and seasonal grazing land.  

•    Location of fi eld . Fields next to the homestead receive a score of 2, while fi elds 
further away from the house receive a score of 0. This assumes that fi elds close 
to the homestead receive preferential land management (e.g., fertilization, 
addition of organic matter, weeding) compared to fi elds that are far away.  

•    Signs of erosion . Fields differing in visible signs of erosion obtained different 
scores, depending on severity. For gulley, rill and gulley, sheet, rill erosion, fi elds 
received a score of 0. Sheet erosion or no visible erosion obtained a score of 1.    

 Plots with a score higher than 10 were labelled as fi eld type 1. Those with scores 
between 4 and 10 were labelled as fi eld type 2, and those with scores lower than 4 
were labelled as fi eld type 3. The process of defi ning scores for each variable 
involved making judgments about correlations and data quality. The end scores 
were then investigated, defi nitions adjusted and natural cut-off points identifi ed. 
The identifi cation of natural cut-offs for the fi eld types is a delicate process because 
the scoring tool is crude enough that one would not expect a substantial difference 
on the ground between borderline cases. A useful guideline is that borderline cases 
should not be either under- or overrepresented in any fi eld type  .   

2.5     Combining Top-Down and Bottom-Up: The Basis 
for Scaling Up 

 The fi eld typology sampled across households represents the diversity of land man-
agement  practices        . If it is combined with a land-use classifi cation, it connects local 
management with landscape characteristics as indicated in Fig.  2.11 . Provided that 
land-use units or land classes have been sampled at fi eld-level, or that spatially explicit 
information is available on the diversity of fi eld types, connecting these two layers 
may provide a measure of variability on GHG emissions, productivity, and livelihood 
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indicators. To achieve this, enough fi eld sites have to be selected to represent each 
landscape class, and must be monitored for GHG emissions, carbon stock changes, 
production of biomass, and other variables of interest. The number of replicates or 
fi eld sites to represent a landscape class will depend on within-class heterogeneity, 
and the resources available for monitoring emissions. An absolute minimum of three 
replicates per land class is required to estimate biophysical parameters.

   The advantage of selecting replicated fi eld  sites      that correspond to landscape 
classes is the possibility to scale up (i.e., to estimate project-level benefi ts and trade- 
offs with livelihood indicators). It also provides an opportunity to extrapolate fi nd-
ings to similar environments. In the case of lower Nyando, we combined the fi eld 
typology derived from a household characterization with the landscape description 
including fi ve classes or units shown in Fig.  2.10 . “ Landscape plots     ” were selected 
to represent fi eld types using landscape units where we monitored GHG emissions, 
analyzed carbon stocks, and estimated productivity and the economics of production. 
We present here the results of 12 months of monitoring  GHG emissions      aggregated 
at fi eld and landscape level (Fig.  2.12 ). The information provided a comprehensive 
database to estimate emissions potential and trade-offs with other socioeconomic 
indicators, such as income and land productivity. Additional fi eld sites were added 
to compensate for areas poorly represented by the household survey and to include 
natural areas. This can be a serious disadvantage of using secondary data in a 
bottom-up approach, where householders neglect natural areas such as woodlands 
or wetlands during interviews. Natural areas were selected from the landscape anal-
ysis, where natural vegetation units were mapped.

  Fig. 2.11    Conceptual model and products of the nested targeting approach. The model indicates 
the sort of outputs obtained at each level. The integration of all level measurements conducted at 
fi eld-level is to be scaled up       
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  Fig. 2.12    Cumulative annual emissions of CO 2  (Mg C-CO 2  m −2  year −1 ), CH 4  (kg C-CH 4  m −2  
year −1 ), and N 2 O (kg N-N 2 O m −2  year −1 ) from 60 different fi elds located in Lower Nyando in 
Western Kenya split by land class, fi eld type, crop type, and landscape position (Pelster et al. 
 2015 ).       

2.6        Conclusions 

 A methodology is presented to target mitigation research at fi eld, farm-, and land-
scape level. It uses both a top-down and a bottom-up approach to capture local 
diversity in soils and management practices, and landscape heterogeneity. It enables 
generic recommendations to be made about scaling up alternative mitigation 
options. The methods can fi t the purposes of diverse projects, including the target-
ing of GHG measurement or the testing of carbon sequestration practices. The prod-
ucts generated such as land-use or land class maps and selected fi eld types allow 
fi eld sites to be selected for monitoring biophysical parameters. Once monitoring of 
GHG emissions, productivity, and economics are fi nalized, the nested approach 
suggested here provides a basis for scaling up, which can be achieved using differ-
ent analytical methods discussed in Chap.   10     of this volume.      
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2.7      Appendix 

    

Field typology survey Date:
Surveyor:

HH ID: ______________________   Name of respondent:___________________
PLOT LOCATION AND SIZE
South_______________ East________________ Error________

Plot Subplot Subplot Subplot
ID

Area (m2)

Land cover

Photo ID

Land tenure:
Communal    Rented    Owned

Does the farmer burn the plot?
regularly    sometimes     never

Agricultural practices
Crops commonly planted in field
Crop (e.g. Maize)                       Highest yields (local units)
_________________  ___________________
_________________  ___________________
_________________  ___________________

Land cover prior to
agriculture:
Forest

Grass or shrubland

unknown

How many years ago was it covered to agriculture (circle one):

0-2 2-5 5-10 >10 unknown

Are fertilizers applied?

Yes     or      No

If yes, which sub-plot?
__________________

YES, FERTILIZERS ARE APPLIED
Type               Amount           Crop

_______  ________ _________ 
_______  ________ _________ 
_______  ________ _________ 
_______  ________ _________

Woody cover (%) Herbaceous cover (%):
<4 4 - 15 15 - 40 <4 4 - 15 15-40

40 - 65 >65 40 - 65 >65

Visible evidence of erosion

Rill  Sheet Gully none

What is your best plot (or subplot) and why?

Type (eg)
UREA
CAN
MANURE
AMOUNT = PER PLOT
ID WHICH CROP

Do animals graze the plot?
regularly   sometimes  never 

  

      Open Access    This chapter is distributed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, 
duplication, adaptation, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, a link is provided to the Creative 
Commons license and any changes made are indicated.
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The images or other third party material in this chapter are included in the work’s Creative 
Commons license, unless indicated otherwise in the credit line; if such material is not included in 
the work’s Creative Commons license and the respective action is not permitted by statutory 
regulation, users will need to obtain permission from the license holder to duplicate, adapt or 
reproduce the material.    
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    Abstract     This chapter reviews methods and considerations for quantifying green-
house gas (GHG) emissions and removals associated with changes in land-use and 
land-cover (LULC) in the context of smallholder agriculture. LULC change con-
tributes a sizeable portion of global anthropogenic GHG emissions, accounting for 
12.5 % of carbon emissions from 1990 to 2010 (Biogeosciences 9:5125–5142, 
2012). Yet quantifying emissions from LULC change remains one of the most 
uncertain components in carbon budgeting, particularly in landscapes dominated by 
smallholder agriculture (Mitig Adapt Strateg Glob Chang 12:1001–1026, 2007; 
Biogeosciences 9:5125–5142, 2012; Glob Chang Biol 18:2089–2101, 2012). 
Current LULC monitoring methodologies are not well-suited for the size of land 
holdings and the rapid transformations from one land-use to another typically found 
in smallholder landscapes. In this chapter we propose a suite of methods for esti-
mating the net changes in GHG emissions that specifi cally address the conditions of 
smallholder agriculture. We present methods encompassing a range of resource 
requirements and accuracy, and the trade- offs between cost and accuracy are spe-
cifi cally discussed. The chapter begins with an introduction to existing protocols, 
standards, and international reporting guidelines and how they relate to quantifying, 
analyzing, and reporting GHG emissions and removals from LULC change. We 
introduce general considerations and methodologies specifi c to smallholder agricul-
tural landscapes for generating activity data, linking it with GHG emission factors 
and assessing uncertainty. We then provide methodological options, additional con-
siderations, and minimum datasets required to meet the varying levels of reporting 
accuracy, ranging from low-cost high-uncertainty to high-cost low-uncertainty 
approaches. Technical step-by-step details for suggested approaches can be found in 
the associated website.   
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3.1      Introduction 

 Land-use and land-cover (LULC) change contributes a sizeable portion of global 
anthropogenic GHG emissions, accounting for an estimated 12.5 % of carbon emis-
sions from 1990 to 2010 (Houghton et al.  2012 ). Signifi cant demographic and socio-
economic pressures are exerted on  carbon storing land   uses such as forests in the 
tropics yet distribution and rates of change (e.g., loss of forests and agricultural inten-
sifi cation) in tropical smallholder landscapes remain very uncertain (Achard et al. 
 2002 ). Much of this uncertainty stems from the substantial heterogeneity of LULC 
that exists, often at very fi ne spatial scales, in such landscapes. Even within LULC 
categories, signifi cant heterogeneity in carbon stocks often occurs as a result of driv-
ers specifi c to smallholder agriculture, such as fallow rotations, uneven canopy age 
distribution, and integrated crop–livestock systems (Maniatis and Mollicone  2010 ; 
Verburg et al.  2009 ). These factors result in the need for monitoring strategies differ-
ent from those developed for more commonly monitored LULC  transitions   such as 
large-scale deforestation and urban expansion (Ellis  2004 ). Here we present general 
considerations and a suite of methods for estimating net changes in GHG emissions 
that specifi cally address the conditions of smallholder agriculture. In the process we 
illustrate the relative trade-offs between costs of analysis, precision, and accuracy. 

 There are four basic steps required to calculate GHG emissions/ removals   from 
LULC change:

•     Determine change in LULC . Changes in the areal extent of LULC classes must 
be determined by comparing data collected from two or more points in time.  

•    Develop a baseline . Observed changes in carbon stocks must be compared against 
a “business as usual” scenario of what would have happened in the absence of 
project activities. This step is generally carried out by either developing a baseline 
scenario or through direct observation of a reference region.  

•    Calculate carbon stock changes . Carbon stocks associated with LULC classes 
must be quantifi ed for each point in time or emission factors must be used to 
calculate carbon stock changes and associated GHG emissions or removals.  

•    Assess accuracy and calculate uncertainty . Accuracy of each step must be assessed 
in order to determine the uncertainty associated with fi nal emission/removal 
estimates associated with LULC changes.    

 It is important to note that these steps are not necessarily chronological. For 
example a baseline scenario could be developed prior to LULC change detection. 
Accuracy assessments should be done concurrently with each phase of data collec-
tion and analysis. 

 In order to carry out the above steps, two basic types of data are required, defi ned 
by the Intergovernmental Panel on Climate Change ( IPCC  ) as activity data and  emis-
sion factors      (IPCC  2006 ).  Activity data      refer to the areal extent of chosen LULC 
categories, subcategories, and strata and are generally presented in hectares.  Emission 
factors      refer to the data used to calculate carbon stocks associated with activity data 
and are usually presented as metric tons of carbon (or carbon dioxide equivalents) 
per hectare. Emission factors may not be required for all carbon pools when carbon 
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stock densities are inventoried directly using fi eld sampling and/or remote sensing 
techniques. The IPCC Guidelines ( 2006 ) also lay out three tiers of methods used to 
calculate GHG emissions and reductions, which increase not only in precision and 
accuracy but also in data requirements and complexity of analysis.  Tier 1      requires 
country-specifi c activity data but uses IPCC default emission factors that can be 
found in the IPCC Emission Factor Database (IPCC n.d.) and analysis is generally 
simple and of low cost.  Tier 2   uses similar methods to Tier 1 but requires the use of 
some region- or country-specifi c emission factors or carbon stock data for key car-
bon pools and LULC categories (more information on key pools can be found in 
Sect.  3.4.1 ).  Tier 3   requires high-resolution activity data combined with highly 
disaggregated inventory data for carbon stocks collected at the national or local 
level and repeated over time. 

 Collection of data to generate emission factors or calculate carbon stock densities 
is covered elsewhere in this book. The focus of this chapter is on the generation of 
activity data and the various methods available to link emission factors and/or car-
bon stock densities with activity data for estimating total carbon stocks and GHG 
emissions/removals at the landscape-scale. The following sections provide an over-
view of the general activities for each of the four steps required to calculate GHG 
emissions/reductions from LULC change, with a focus on smallholder agriculture 
landscapes. Trade-offs between uncertainty and cost are addressed and a variety of 
references—including existing protocols, scientifi c research, and review papers—are 
cited. Summary tables are presented at the beginning of each section, with a complete 
table at the end of the chapter (Table  3.8 ).  

3.2     Determining Change in LULC 

   The IPCC  Guidelines   ( 2006 ) outline three specifi c  Approaches   to monitoring 
activity data (described in detail below). The three Approaches refer to the repre-
sentation of land area and will infl uence the ability to meet the three IPCC Tiers, 
which indicate the overall uncertainty of GHG emission/reduction estimates 
(Table  3.1 ). In general, progressing from Approach 1 to 3 increases the amount of 
information associated with activity data but requires greater resources. It should be 
noted that increasing the information contained within activity data does not guar-
antee a reduction in uncertainty. Accuracy will ultimately depend on the quality of data 
and implementation of the Approach as much as the Approach itself (IPCC  2006 ). 
However, progressing from Approach 1 to 3 provides the opportunity for reducing 
uncertainty and meeting higher Tier requirements.

    Approach 1  uses data on total land-use area for each LULC class and stratum but 
 without  data on conversions between land uses. The result of Approach 1 is usually 
a table of land-use areas at specifi c points in time and data often come from aggre-
gated household surveys or census data. Results are not spatially explicit, only allow 
for the calculation of net area changes and do not allow for analysis of GHG emis-
sions/removals for land remaining within a LULC category or the exploration of 
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drivers of LULC change. Therefore Approach 1 may not be suitable for carbon 
crediting under mechanisms such as the  Verifi ed Carbon Standard (VCS)   or 
 Reducing Emissions from Deforestation and Forest Degradation (REDD+)   
(see GOFC-GOLD  2014 ). 

  Approach 2  builds on Approach 1 by including information on conversions from 
one LULC class to another, but the data remain spatially non-explicit. This provides 
the ability to assess changes both into and out of a given LULC class and track 
conversions between LULC classes. A key benefi t of Approach 2 is that emission 
factors can be modifi ed (if data are available) to refl ect specifi c conversions from 
one LULC category to another. For example, forests with a long history of prior 
cultivation may store less carbon than undisturbed forests of the same age (e.g., 
Eaton and Lawrence  2009 ; Houghton et al.  2012 ). Such factors cannot be taken into 

     Table 3.1    Summary of activities to determine change in LULC at various uncertainty levels   

 Activity 
 Higher 
uncertainty 

 Mid-range 
uncertainty  Lower uncertainty 

 Key 
references 

 Data 
acquisition 

 Approach 1 or 
2 with minimal 
or no data 
collection 
(using existing 
aggregated 
datasets such 
as census or 
existing maps) 

 Approach 2 with 
disaggregated 
datasets (existing or 
developed) 

 Approach 3 with 
mid-resolution 
imagery and 
supplementary data 

 De Sy et al. 
( 2012 ); IPCC 
( 2006 ); 
Ravindranath 
and Ostwald 
( 2008 ) 

 Approach 3 with 
coarse or mid-
resolution imagery 

 Approach 3 with very 
high- resolution 
imagery 

 LULC 
classifi cation 

 Broad LULC 
categories 
developed 
through 
subjective 
(non- 
empirical) 
survey 
methods; not 
spatially 
explicit 

 Broad LULC 
categories with 
simple subclasses or 
strata 

 Empirically derived 
LULC categories and 
strata 

 GOFC-GOLD 
( 2014 ); IPCC 
( 2006 ); 
Vinciková 
et al. ( 2010 )  Classifi ed using 

visual interpretation 
or pixel-based 
techniques with 
limited or imagery-
based training data; 
spatially explicit 

 Supervised 
classifi cation using 
pixel-based, 
object-based or 
machine learning 
techniques with 
fi eld-derived training 
data; spatially explicit 

 LULC 
change 
detection 

 Arithmetic 
calculation of 
change in total 
land area for 
each LULC 
class using 
data generated 
by Approach 1 

 Arithmetic 
calculation of 
change in total land 
area for each LULC 
class and transitions 
between LULC 
classes using data 
generated by 
Approach 2 or; 
post-classifi cation 
comparison with 
coarse or mid-
resolution imagery 

 Spatially explicit 
change detection 
using post- 
classifi cation 
comparison, image 
comparison, 
bitemporal 
classifi cation or other 
GIS-based 
approaches 

 Huang and 
Song ( 2012 ); 
van Oort 
( 2007 ) 
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account using Approach 1. The results of Approach 2 can be expressed as a land-use 
conversion matrix of the areal extent of initial and fi nal LULC categories. 

  Approach 3  uses datasets that are spatially explicit and compiled through sam-
pling and wall-to-wall mapping techniques. Remotely sensed data (e.g., imagery 
from aerial- or satellite-based sensors) are often used in combination with georefer-
enced sampling such as fi eld or household surveys. Data are then analyzed using 
 geographic information systems (GIS)   and can be easily combined with other spa-
tially explicit datasets to stratify LULC categories and emission factors. This can 
greatly improve the accuracy of emission/removal estimates, especially for large 
areas, and allows for statistical quantifi cation of uncertainty. Approach 3 can be an 
effi cient way to monitor large areas. However it may require greater human and 
fi nancial resources, which could be cost-prohibitive for smaller projects, especially 
if the spatial resolution of freely available or low-cost imagery is too coarse to detect 
LULC changes. (See Sect.  3.2.2  for more information about remotely sensed data.)   

3.2.1      Setting Project Boundaries   

  The extent, location, and objectives of monitoring will all infl uence the appropriate 
choice of methods for analyzing LULC change and associated GHG emissions and 
reductions. While activity data may or may not be spatially explicit, the extent 
(i.e., boundaries) of the area monitored must be explicitly and unambiguously 
defi ned and should remain the same for all reporting periods. Several factors should 
be considered when defi ning the extent of the monitoring area. 

  Baseline Development and Data Availability . The availability of existing data 
(e.g., historical and/or cloud-free satellite imagery, forest inventories, research stud-
ies, census data) can determine the area for which a justifi able baseline scenario can 
be developed and therefore the project extent may need to be adjusted accordingly 
(Sect.  3.3 ). In some cases, it might be useful to adhere to political divisions rather 
than geographic boundaries if socioeconomic data are available in political units that 
do not correspond with geographic boundaries such as a watershed or ecoregion. If a 
reference region is to be used, it is important to consider whether one of appropriate 
size and characteristics can be found to match the chosen inventory extent (Sect. 
 3.3.2 ). For example the reference region may need to be 2–20 times larger than the 
project area to meet some VCS methodologies (VCS Association  2010 ). 

  IPCC Tier Selection . The inventory area may need to be reduced in order to meet 
higher IPCC Tier levels. For example, if a spatially explicit inventory (Approach 3) 
meeting IPCC Tier 3 guidelines is desired, expensive high-resolution satellite imag-
ery and intensive data collection may be required and resource constraints may lead 
to a smaller inventory area. Meeting a lower IPCC Tier requirement could allow for 
the use of freely available imagery and/or existing data that could enable monitor-
ing of a larger area. 

  Stratifi cation and Variability . Ideally, inventory data will be collected in such a way 
as to suffi ciently capture the spatial variability of key stratifi cation variables. 
Identifi cation of such variables a priori may reveal that it is impractical or fi nancially 
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unfeasible to develop a sampling strategy that can suffi ciently capture variation within 
the entire area and the extent of the monitoring area may need to be adjusted. 

  Policy Levers . It is important to consider which policy levers exist, at what scale 
they can be applied and which may be infl uenced by assessment results when deter-
mining monitoring boundaries. For example, if regulations affecting land-use are 
implemented solely along political boundaries, it may not make sense to draw 
project- monitoring extents around watershed boundaries that may encompass mul-
tiple political units with differing regulations or policy options.   

3.2.2       Data Acquisition 

 Data to estimate areal LULC extents can be acquired through three general sources: 
existing datasets developed for other purposes, collection of new data through sam-
pling and complete LULC inventories using remote sensing data (Table  3.1 ). 

    Existing Data 

  Existing datasets   can come from national or international sources or from other 
projects or research activities. Data may be available in a variety of formats and 
collection dates, and at varying spatial and temporal scales and extents. Time should 
be taken to identify existing data sources in order to determine what data remain to 
be collected, at what temporal and spatial scales and to what degree project resources 
can accommodate these needs. Useful datasets can include historical LULC maps, 
climate data, biophysical data (e.g., soil or hydrological maps), census or household 
surveys and political boundaries or administrative units.  

     Ground-Based Field Sampling Methods   

 Ground-based methods are recommended when existing datasets are incomplete, 
out of date, or inaccurate and complete spatial coverage with remote sensing tech-
niques is unfeasible or would not be accurate on its own (IPCC  2003 , Sect. 2.4.2). 
Ground-based sampling can be expensive and time consuming and is generally 
more appropriate for smaller project areas or when used in a sampling framework 
over larger areas. Field sampling to help determine LULC areal extents can result in 
two types of geographic data: biophysical data and socioeconomic data. Biophysical 
data generally require objective physical measurement of various land attributes 
(e.g., parcel size, vegetative composition). Ideally these measurements are georef-
erenced using GPS in order to integrate them with remote sensing data and enable 
accurate follow-up measurements. Socioeconomic data can be collected using a 
variety of methods including interviews, surveys, census, questionnaires, and 
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participatory rural appraisals (e.g., semistructured interviews, transect walks, and 
other fl exible approaches involving local communities; see Ravindranath and 
Ostwald  2008  for more information). Socioeconomic data may or may not be geo-
referenced, depending on the application. 

 Both biophysical and socioeconomic data acquired using the methods mentioned 
above can give a reasonable estimate of the proportions of LULC categories within 
the inventory area provided sample locations are selected using statistically rigor-
ous methods to maintain consistency and minimize bias. These proportions can then 
be multiplied by the total land area to generate activity data. Sample locations can 
be chosen using random or targeted (non-random) methods (Box  3.1 ). Random 
methods allow for quantifi cation of uncertainties and are therefore generally 
 preferred, but targeted methods may be useful for measuring carbon stocks related 
to a specifi c event (e.g., a fi re) or calibration of modelling for a specifi c carbon pool 
(e.g., effects of decomposition on soil carbon) (Maniatis and Mollicone  2010 ).  

  Box 3.1 Random and Targeted Sampling Methods for Generating 
LULC Activity Data 

  Random Sampling  
   Random sampling   is generally done using systematic or stratifi ed sampling 
methods. Systematic sampling spatially distributes sampling locations in a ran-
dom but orderly way, for example using a grid. Stratifi ed sampling selects sam-
ple sites based on any number of environmental, geographic, or socioeconomic 
variables to achieve sampling rates in proportion to the distribution of the chosen 
variables across the inventory extent. Stratifi ed sampling methods (e.g., optimum 
allocation) can improve the accuracy and reduce costs of monitoring efforts 
(Maniatis and Mollicone  2010 ) and tools exist to determine the number of sam-
ple plots needed (UNFCCC/CCNUCC  2009 ). Ideally sample sites for determi-
nation of LULC can be co-located with sites for measuring carbon stocks and 
GHG emissions, although this may not always be practical or feasible.  

  Targeted Sampling  
  Targeted sampling   refers to the non-random selection of specifi c sample 
regions based on determined criteria. A common example of targeted sampling 
is the use of low-cost or free-imagery to identify “hotspots” of active LULC 
change such as deforestation (Achard et al.  2002 ; De Sy et al.  2012 ). These 
hotspots, or a randomly selected subset within, can then be selected as sample 
units for more in-depth monitoring using higher-resolution imagery and/or 
comprehensive fi eldwork. These data can then be used to train LULC classifi -
cation algorithms and assess the accuracy of results obtained using medium or 
coarse resolution imagery. Regardless of the method chosen, sampling should 
be statistically sound and allow for the quantifi cation of uncertainty . 
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     Remote Sensing Data   

  Complete wall-to-wall LULC inventories are generally carried out using a combi-
nation of remote sensing data and fi eld-based sampling. Remotely sensed data come 
from aerial photography, satellite sensors, and airborne or satellite-based RADAR 
or LiDAR. Optical sensors are the most commonly used in LULC classifi cation as 
they provide spectral information in the visible and infrared bands at a range of 
resolutions and costs (Table  3.2 ). While fi ne (<5 m) or medium (10–60 m) resolu-
tion imagery are preferable for accurately monitoring LULC in landscapes domi-
nated by smallholder agriculture, cost of acquisition and/or processing may be 
prohibitive for projects covering large areas. However, methods exist for nesting 
high-resolution sampling within coarser resolution wall-to-wall coverage to reduce 
uncertainty of LULC change analysis across large areas and lower costs (e.g., Achard 
et al.  2002 ; Jain et al.  2013 ).

   Image processing techniques can be applied to the remotely sensed data to 
enhance particular land-cover types, or enable more accurate stratifi cation and clas-
sifi cation, such as the calculation of the  Normalized Difference Vegetation Index 
(NDVI), developing textural variables (e.g., Castillo-Gonzalez 2009)   or principle 
component analysis (PCA). Imagery can also be classifi ed into land-cover classes 
enabling easier manipulation in a GIS. Spatial analysis of remotely sensed data 
combined with environmental and/or socioeconomic variables can also create addi-
tional datasets to further enhance classifi cation and stratifi cation. Designating eco-
logical or anthropogenic biomes (Ellis and Ramankutty  2008 ), calculating market 
accessibility (Chomitz and Gray  1996 ; Southworth et al.  2004 ) and identifying 
landscape mosaics (Messerli et al.  2009 ) are examples of such user-generated datasets 
to improve analysis of LULC change and explore drivers of change in smallholder 
landscapes. 

       Spatial Considerations   

  The spatial scale(s) at which data collection and analysis will take place is a key factor 
to consider when developing a monitoring and analysis program. Changing the scale 
at which analysis takes place can result in signifi cantly different results, even when 
using the same dataset. The “optimal” scale of measurement and prediction is proj-
ect-specifi c and may even vary for different steps of analysis (Lesschen et al.  2005 ). 
Complementary analysis at multiple scales may further improve accuracy (Messerli 
et al.  2009 ). A number of factors related to spatial scale should be considered to 
maintain transparency, and improve accuracy and effi ciency of analysis. 

 The fi nest-scale unit of data is called a minimum information  unit   or minimum 
mapping  unit   (MIU or MMU). This is often the size of a small contiguous group of 
pixels for remote sensing data or the household for census data, although data may 
only be available aggregated to an administrative unit such as a village or municipal-
ity. To qualify for carbon credits, for example under the REDD+ mechanism, MMUs 
of <1–6 ha are generally required (De Sy et al.  2012 ; GOFC-GOLD  2014 ). In land-
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scapes dominated by smallholder agriculture, individual LULC parcels are often 
0.5 ha or smaller. When using remote sensing data, it is preferable to have MIUs 
(e.g., pixels) that are signifi cantly smaller than the average farm size to avoid mixed 
pixels that encompass multiple LULC categories. However methods of remote sens-
ing analysis, such as spectral unmixing (Quintano et al.  2012 ) and hierarchical train-
ing with very high-resolution imagery (e.g., Jain et al.  2013 ) have been developed to 
attempt to deal with the issue of mixed pixels in coarser resolution imagery. 

 It is important to consider the scale of all available data to avoid mismatches that 
could lead to data management problems or wasted resources. Depending on the 
analysis methods used, data may have to be resampled to the coarsest available 
dataset. For example, it may be unnecessary to acquire a 5 m digital elevation model 
for stratifi cation if it will be combined with 30 m Landsat data.   

     Temporal Considerations   

  Several temporal boundaries should be fi xed established during the development of 
a monitoring methodology.

    Historical reference period . If developing a baseline scenario from a historical ref-
erence period, this period must be specifi cally defi ned and appropriate for sce-
nario development.  

   Monitoring period:  The period for which changes in GHG emissions and reductions 
from LULC change are to be monitored.  

   Timing of monitoring:  The schedule for monitoring to take place. Care should be 
taken to acquire imagery and/or carry out fi eld sampling as close to the same 
time of year as possible for each monitoring period as interannual variability in 
vegetative cover and phenology may vary signifi cantly in some locations (Huang 
and Song  2012 ; Serneels et al.  2001 ). Changes in carbon stocks from LULC 
change, such as declines in soil organic carbon (SOC) or vegetative regrowth, 
may not be linear within a monitoring period or may level off to zero-change 
within the period, also requiring appropriately timed sampling or modelling.  

   Monitoring frequency:  The frequency of monitoring activities (e.g., imagery acquisi-
tion, fi eld-sampling, surveys). Management strategies within a LULC category, for 
example cropping intensity, can have signifi cant impacts on carbon stocks (e.g., 
Schmook  2010 ). More frequently, strategically timed data collection (i.e., sam-
pling and/or image acquisition) is often required to detect changes in management 
strategies within an LULC category (De Sy et al.  2012 ; Jain et al.  2013 ; Smith et al. 
 2012 ). In most cases, particularly when dealing with remote sensing, increasing the 
temporal resolution of data (i.e., more frequent acquisition) necessitates declining 
spatial coverage and resolution (due to either technological or cost-prohibitive fac-
tors) and this trade-off must be considered when choosing between data sources.  

   LULC change defi nitions . The time period after which a change in LULC is consid-
ered permanent must be determined. For example, shifting cultivation, common 
practice in smallholder agriculture, results in cycles of cultivation and fallow 
periods that vary year to year, yet can resemble managed or secondary forest- 
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cover  when observed over the long term (Houghton et al.  2012 ). These tempo-
rary changes in land-cover (e.g., from annual cropping to secondary forests) can 
be misinterpreted as afforestation or deforestation depending on the timing of 
sampling or image acquisition if they are not considered across their entire cycle 
with suffi ciently frequent measurements (DeFries et al.  2007 ). One approach to 
account for fl uctuating carbon stocks associated with shifting cultivation is to 
calculate time-averaged carbon stocks for a given land-use system (Bruun et al. 
 2009 ; Palm et al.  2005 ).  

   Other considerations . Many studies have found that land-use is often infl uenced by 
land features. For example, farmers may choose to cultivate areas with fertile, car-
bon-rich soils (e.g., Aumtong et al.  2009 ; Ellis and Ramankutty  2008 ; Jiao et al. 
 2010 ) or reduce fallow periods when the soil fertility is high (Roder et al.  1995 ) 
and leave forests intact only in areas with poor soils. This preferential selection can 
make it diffi cult to determine that land-use is in fact causing a change in soil carbon 
stocks, and not the other way around (soil carbon stocks infl uencing land-use). 
Repeated sampling may be required to observe carbon stock changes resulting 
directly from LULC conversion (Bruun et al.  2009 ). The effects of prior land-use 
on future carbon sequestration potential may also be signifi cant (see Eaton and 
Lawrence  2009 ; Hughes et al.  1999 ). While diffi cult to quantify, these delayed 
fl uxes can be included when considering LULC transitions (e.g., a forest converted 
from agriculture may not store the same amount of carbon as a forest converted 
from a pasture). Finally, complications can arise from temporal mismatching, for 
example if biophysical or social data are collected in a separate time period from 
satellite imagery. There may be benefi ts from matching the timing of data acquisi-
tion on various factors (Rindfuss et al.  2004 ).       

3.2.3      LULC Classifi cation and Change Detection 

    LULC  Category Defi nition   

  Regardless of the Approach used to generate activity data, LULC categories must be 
clearly and objectively established and LULC categories, subcategories, and strata 
should be mutually exclusive and totally exhaustive (Congalton  1991 ) with clear 
defi nitions of transitions from one class to another. (Note that sophisticated analysis 
methods using non-discrete, probabilistic or “fuzzy” classifi cation do exist (e.g., 
Foody  1996 ; Southworth et al.  2004 ), but are beyond the scope of this chapter). For 
example, forests are generally defi ned based on a threshold value of minimum area, 
height and tree crown cover and the Designated National Authority (DNA) for each 
country can aid in defi ning LULC category defi nitions (GOFC- GOLD  2014 ). 
Objective defi nitions are especially important in smallholder landscapes where shift-
ing cultivation and fallow rotations are common and transitions between LULC 
classes may not be straightforward. Furthermore, since smallholder landscapes often 
consist of small and heterogeneous land uses, it is possible that sampling points may 

3 Determining Greenhouse Gas Emissions and Removals Associated with Land-Use…



48

fall into more than one LULC category. Systematic, transparent, and objective meth-
ods are needed to determine to which LULC category a sampling point belongs 
(Maniatis and Mollicone  2010 ). 

 The  IPCC    Agriculture, Forestry, and Other Land-Use (AFOLU) Guidelines   
( 2006 ) defi ne the following six broad land-use categories:

•    Forest Land  
•   Cropland  
•   Grassland  
•   Wetlands  
•   Settlements  
•   Other Land    

 These top-level classes were designed to be broad enough to encompass all land 
areas in a country and allow for consistent and comparable reporting between coun-
tries. Monitoring activities can further divide these classes into conversion catego-
ries (i.e., Forest Land converted into Cropland, Wetlands converted into Settlements). 
For REDD+ GHG inventories and Tiers 2 and 3 reporting, it is likely that these 
top-level classes must be further divided into subcategories and/or stratifi ed to 
allow for disaggregation of carbon stocks and improved estimation accuracy. 
Subcategories refer to unique LULCs within a category (e.g., secondary forest, 
within Forest Land) that impact emissions and for which data are available. 
Identifi cation of subcategories can greatly reduce uncertainty of carbon stock esti-
mates. For example, Asner et al. ( 2010 ) found that secondary forests held on aver-
age 60–70 % less carbon than intact forests in the Peruvian Amazon, and other 
studies have found similarly large differences in carbon stocks between forest types 
(e.g., Eaton and Lawrence  2009 ; Saatchi et al.  2007 ), highlighting the importance of 
forest subclasses. Secondary forests, a signifi cant LULC class in smallholder land-
scapes, are estimated to make up more than half of tropical forested areas and can 
be an important source or sink of carbon (Eaton and Lawrence  2009 ; Houghton 
et al.  2012 ). Therefore, distinguishing between secondary forests, bush-fallows, and 
undisturbed forests, while often challenging, will likely result in more accurate car-
bon stock estimates. 

 Stratifi cation within LULC categories and subcategories can be based on any 
number of factors signifi cant to emission estimation such as climate, ecological 
zone, elevation, soil type, and census data (e.g., population, management prac-
tices) (see Stratifi cation, below). Final LULC categories and strata will depend on 
project location, climate and ecological factors, data availability, analysis capac-
ity, and other factors. Ideally, however, subcategories or strata can be aggregated 
to correspond with the six broad land-use categories listed above to maintain con-
sistency between country or project inventories. Designation of LULC classes 
and strata will also depend on the IPCC Approach chosen to represent land-use 
area data. To meet Approaches 2 and 3, data on conversion between LULC cate-
gories and strata must be available, potentially limiting the number of possible 
subcategories and strata .  
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    LULC Classifi cation, Mapping, and Tabulation 

  Non-spatially explicit methods   for collecting activity data (Approaches 1 and 2) 
result in tables of land area totals by LULC category for a given point in time. 
Depending on how data are collected, these results can be aggregated to political or 
geographic boundaries and incorporated into existing maps. The data themselves 
are not spatially explicit in their disaggregated form and therefore exact patterns of 
land-use cannot be interpreted within the spatial unit of aggregation (Table  3.1 ). 
The original data will generally come from LULC surveys, census data, existing 
maps or a combination of these. Therefore uncertainty associated with Approaches 
1 and 2 will depend in large part on the quality of the sampling methods used to 
collect the original data. Costs could range greatly depending on the size of the 
project area, availability of existing data, heterogeneity of the landscape, and acces-
sibility, but in general Approaches 1 and 2 can be low-cost options, especially for 
smaller projects. 

  Spatially explicit methods   for generating activity data (Approach 3) use a com-
bination of remote sensing and fi eld-based sampling to develop a wall-to-wall clas-
sifi ed LULC map with which LULC category areas can be totalled. Wall-to-wall 
maps provide the opportunity for interpolation between data points using GIS soft-
ware and the development of spatially explicit polygons and/or individual pixels 
assigned to various LULC categories. In this manner activity data can be effi ciently 
calculated, overlaid with ancillary data for stratifi cation, and integrated with emis-
sion factors to quantify and analyze GHG emissions/reductions, their spatial vari-
ability, and drivers. Many methods exist to classify LULC, but they can be grouped 
into three main categories: visual interpretation, unsupervised classifi cation, and 
supervised classifi cation (Box  3.2 ). Additionally, a number of pre- and/or post- 
processing steps may also be required to ensure accurate results. Choice of classifi -
cation methods and image processing will depend on available resources, technical 
expertise, imagery, location, and available software. Greater detail on specifi c 
methodologies is presented on the associated website. Whichever methods are cho-
sen for preprocessing, classifi cation, and post-processing, they should be transpar-
ent, repeatable by different analysts, and results should be assessed for accuracy 
(GOFC-GOLD  2014 ). 

       Stratifi cation   

  Once LULC classes have been identifi ed and imagery classifi ed, stratifi cation by 
one or more variables may be desirable to improve estimation of carbon stocks, 
GHG emissions and reductions, and/or baseline development. The primary goal of 
stratifi cation is to minimize the variability of carbon stock estimates within LULC 
categories (Maniatis and Mollicone  2010 ). The most basic form of carbon stock 
stratifi cation is the development of subcategories (e.g., secondary forest versus 
mature forest; tree crops versus annual crops). Additional datasets and/or more 
intensive sampling may be required to identify subcategories, which may increase costs, 
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  Box 3.2 General LULC Classifi cation Methods Using Remote 
Sensing Data 

   Visual interpretation    
 The simplest method of LULC classifi cation is visual interpretation. In this 
method, a person familiar with the landscape and the appearance of LULC 
classes in remotely sensed imagery, manually interprets and classifi es poly-
gons around different land-covers. This method can be quite accurate but may 
not be precisely repeatable and can result in high uncertainty if comparisons 
are made between maps classifi ed by different people. However systematic 
approaches to visual interpretation can increase accuracy and repeatability 
(e.g., Achard et al.  2002 ; Ellis  2004 ; Ellis et al.  2000 ). 

   Unsupervised classifi cation    
 This method is fully automated and classifi cation occurs without direct user 
intervention, although parameters such as the number of classes to be identi-
fi ed can be set by the user. Unsupervised classifi cation algorithms cluster pix-
els into spectrally similar classes and very small spectral differences between 
classes can be identifi ed (Vinciková et al.  2010 ). This method can be useful for 
exploring the number and distinguishability of potentially identifi able classes. 

  Supervised classifi cation  
   Supervised classifi cation   relies on the training data that is used to calibrate 
automated or semiautomated classifi cation algorithms. Training data may be 
obtained through fi eld sampling, separate higher-resolution remote sensing 
imagery or from within the original image. Ideally training points will be 
chosen in a statistically rigorous way (e.g., random, stratifi ed, systematic) and 
spatial and temporal factors should be considered (Sect.  3.2.2 , Spatial 
Considerations and Temporal Considerations).

•     Pixel-based supervised classifi cation . Pixel-based supervised classifi cation 
is one of the most commonly used classifi cation methods. It uses spectral 
information for placing individual pixels into classes. Algorithms use train-
ing data and predetermined classes identifi ed by the user to classify pixels. 
Statistical methods such as signature separability functions can be used to 
evaluate the quality of training of data and improve classifi cation accuracy 
(Moreno and De Larriva  2012 ). One drawback to pixel-based classifi cation, 
be it supervised or unsupervised, in smallholder agriculture landscapes is 
the problem of mixed pixels where individual pixels encompass multiple 
LULCs. Spectral mixture analysis (SMA), also called spectral unmixing, 
can overcome this problem by assigning individual pixels an estimated pro-
portional value of multiple LULC classes (Quintano et al.  2012 ). SMA can 
improve classifi cation accuracy in heterogeneous landscapes but requires 
signifi cant technical expertise and expensive GIS software.  

•    Object-based classifi cation . The primary goal of object-based classifi cation 
is to identify MIUs on which to base classifi cation criteria (Castillejo- 
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and transparent objective methods should still be used to defi ne subcategories. 
However, stratifi cation can reduce overall costs if monitoring activities can be 
targeted toward subcategories in which LULC transitions and carbon stock changes 
are expected (GOFC-GOLD  2014 ). Further stratifi cation can be done using bio-
physical (e.g., slope, rainfall, soil type) and socioeconomic (e.g., population) datasets. 
Combining datasets requires either spatially explicit data (Approach 3) or datasets 
following Approaches 1 or 2 that have been aggregated to spatially defi ned units 
such as administrative boundaries. (See Lesschen et al. ( 2005 ) for a good overview 
on combining datasets for analysis of LULC change in farming systems.) 

 Stratifi cation should only be carried out to the degree that chosen strata improve 
carbon stock estimates and reduce uncertainty. Statistical methods such as multi-
variate and sensitivity analyses exist to assess the quality of potential strata. Project 
objectives, timeframe, and the temporal and spatial resolution of available data will 
also impact the choice of LULC subcategories and strata .  

    LULC Change Detection 

  When using  activity data   generated with Approaches 1 and 2, change detection can 
be as simple as carrying out basic arithmetic to calculate the change in total land 
area of each LULC class at two or more points in time. Approach 2 will include 
results on the specifi c transitions observed (e.g., from forest to cropland versus from 
forest to pasture) and results are generally reported using a land-use conversion 
matrix (IPCC  2006 ; Ravindranath and Ostwald  2008 ). 

 Spatially explicit methods (Approach 3)    to detect changes in LULC can be 
 separated into three general categories: post-classifi cation comparison, image 

González et al.  2009 ). In pixel-based classifi cation, the pixel is the MIU 
whereas object-based methods quantitatively group pixels that are spec-
trally similar and spatially adjacent to create new MIUs representing patches 
or parcels of homogenous land-covers. Classifi cation is then carried out on 
individual objects using a combination of spatial and spectral informa-
tion. Object-based techniques combined with high-resolution imagery 
have not only been shown to outperform pixel-based methods in highly 
heterogeneous landscapes (e.g., Moreno and De Larriva  2012 ; Perea et al. 
 2009 ) but also require extensive technical expertise, time, and specialized 
GIS software.  

•    Other supervised classifi cation techniques —Additional, relatively complex 
techniques such as regression/decision trees, neural networks, hierarchical 
temporal memory (HTM) networks (Moreno and De Larriva  2012 ), and 
support vector machines (Huang and Song  2012 ) have also shown success 
in improving classifi cation accuracy in heterogeneous landscapes.     

Box 3.2 (continued)
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comparison approach, and bitemporal classifi cation approach. Post-classifi cation 
comparison is the most straightforward approach and consists of fi rst conducting 
separate LULC classifi cations on two or more images and comparing the results to 
detect change. Post-classifi cation change detection is popular due to the fact that 
hard classifi cation for single-date imagery is often required for other purposes or 
preexisting classifi ed images are being used for one or more dates (van Oort  2007 ). 
One major drawback to this approach is that each image will contain uncertainty 
stemming from misclassifi cation, which could result in signifi cant errors in the 
change map from  misidentifi cation of LULC change. The image comparison 
approach attempts to reduce these errors by comparing the two unclassifi ed images 
and identifying pixel-based change thresholds through methods such as differenc-
ing, ratioing, regression, change vector analysis, and principal component analysis 
(Huang and Song  2012 ). Bitemporal classifi cation goes a step further by analyzing 
multiple images simultaneously and applying one of a variety of algorithms to pro-
duce a fi nal map with change classes in a one-step process (Huang and Song  2012 ). 
The two latter approaches can be more adept at detecting specifi c changes of inter-
est and more subtle changes (van Oort  2007 ) and may reduce uncertainty in cases 
where classifi cation accuracy is low.     

3.3      Developing a Baseline 

 Activity data are monitored at two or more points in time to assess LULC change. 
However, this change must be compared against a “business as usual” scenario to 
determine additionality (i.e., to defi ne what would have occurred in the absence of 
project interventions). Only by comparing observed changes against a well- developed 
and justifi ed baseline can we be sure that project activities resulted in changes that 
would not have occurred otherwise. Two general methods exist to develop a com-
parative baseline of LULC change: the development of a baseline scenario or the 
monitoring of a reference region. 

3.3.1     Baseline Scenarios 

  A  baseline scenario   predicts the LULC changes that would occur within the 
inventory area in the absence of interventions by creating a “business as usual” 
scenario from a variety of input data (Table  3.3 ). This scenario can be developed on 
a project- by- project basis using conditions and information particular to the project 
(project- specifi c approach) or for a specifi c geographic area, which may extend 
beyond the project area boundaries (regional baseline approach, also called the per-
formance standard approach). Either approach can be based on historical data and/or 
logical arguments about economic opportunities that could infl uence future LULC 
change (Sathaye and Andrasko  2007 ) and examples of both approaches are given in 
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Table  3.4 . The project-specifi c approach is often based on logical arguments where 
the baseline scenario is identifi ed as the scenario facing the fewest barriers 
(Greenhalgh et al.  2006 ). This approach requires the development of multiple sce-
narios for the project area and requires economic-related data to evaluate which is 
most likely to occur. The regional baseline approach uses time-based estimates to 
project future carbon stock changes. This approach may require more GHG-related 
and spatially explicit data to enable quantitative analysis of trends in LULC change 
and GHG emissions/removals (Greenhalgh et al.  2006 ). The regional approach can 
result in more credible and transparent baselines and reduce costs when multiple 
projects are proposed within the same region (Brown et al.  2007 ; Sathaye and 
Andrasko  2007 ). An example of a potentially very useful dataset for identifying 
historical trends of forest-related disturbances is the high-resolution global forest 
change map recently published by Hansen et al. ( 2013 ).

    Modelling future LULC changes based on historical and current data can be done 
using solely historical trends in percent change in land area or by incorporating driv-
ers of LULC change into predictive models. Projection of historical LULC change 
trends requires reliable activity data for at least two points in time, preferably at the 
beginning and end of the historical period. Drivers used in modelled baselines can be 
simple metrics (e.g., population growth) to meet Tiers 1 and 2, or a more complex 
combination of spatially explicit biophysical and socioeconomic factors to meet 
Tiers 2 and 3. Drivers can greatly improve baseline development by capturing peri-
odic fl uctuations or variations across a landscape that may not be captured using 
trend analysis (Sathaye and Andrasko  2007 ). For example historical deforestation 

   Table 3.3    Summary of activities for developing a baseline at various uncertainty levels   

 Activity 
 Higher 
uncertainty 

 Mid-range 
uncertainty  Lower uncertainty  Key references 

 Baseline 
scenario 
development 

 Logical 
arguments or 
simple trend 
analysis based 
on limited 
historical data 

 Projection of 
historical LULC 
trends using 
multitemporal 
historical data 
and/or simple 
predictor 
variables; or 
monitoring of a 
similar reference 
region 

 Modelled baseline 
developed using 
empirically derived 
predictor variables 
from multitemporal 
historical datasets; or 

 Brown et al. 
( 2007 ); 
Greenhalgh 
et al. ( 2006 ); 
Sathaye and 
Andrasko 
( 2007 )  Monitoring of a highly 

similar reference 
region with clearly 
defi ned comparative 
thresholds 

 Baseline 
justifi cation 

 Logical 
arguments and/
or qualitative 
investment, 
barrier or 
common 
practice 
analysis 

 Investment, barrier 
and/or common 
practice analysis 
using limited 
quantitative 
analysis 

 Development of 
alternative baseline 
scenarios with 
investment and/or 
barrier analysis and 
common practice 
analysis using 
quantitative 
approaches 

 Greenhalgh 
et al. ( 2006 ); 
VCS 
Association 
( 2012 ) 
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trends may not continue into the future if certain thresholds have been reached or 
land-use determinants such as road networks have changed (Chomitz and Gray 
 1996 ). Incorporating such factors into models can improve trend prediction and 
many different models exist to analyze the infl uence of drivers and set baselines 
(e.g., Brown et al.  2007 ). Reporting should describe the model and drivers in detail 
and the chosen model should be transparent, include empirical calibration and vali-
dation processes and generate uncertainty estimates (Greenhalgh et al.  2006 ). 

 To qualify for carbon crediting under the VCS, Clean Development Mechanism 
(CDM), REDD+ or other mechanisms, the baseline must generally be justifi ed 
using investment, barrier and/or common practice analysis (Greenhalgh et al. 
 2006 ;Tomich et al.  2001 ; VCS Association  2012 ). In other words, barriers to the 
LULC changes sought by project activities or policies must be identifi ed to show 
that insuffi cient incentives exist to achieve the desired LULC changes without inter-
vention. Ideally multiple scenarios will be developed and evaluated to determine 
which is the most credible and conservative baseline choice. Several temporal con-
siderations also exist related to both the historical period used to generate a baseline 
scenario and the period for which the baseline is projected forward. Historical data 
should be as relevant as possible to the projected period and major events (e.g., hur-
ricanes, fi res) and policy changes (e.g., protected area designations) should be con-
sidered when acquiring historical data. A narrative approach exploring the story 
behind historical LULC dynamics can further reveal relationships between observed 
changes and the forces driving them (Lambin et al.  2003 ). The validity period for 
the baseline (i.e., for how many years the baseline is considered valid and accurate) 
should also be taken into account. Experience from other projects suggests that an 
adjustable baseline approach is preferable. A common approach is to set a fi xed 
baseline for the fi rst 10 years, at which point it is evaluated and adjusted as needed 
(Brown et al.  2007 ; Sathaye and Andrasko  2007 ; VCS Association  2014 ).   

3.3.2       Reference Regions   

  An alternative to developing a baseline scenario for the project area is to monitor a 
separate reference region, a common approach among  Voluntary Carbon Standard 
(VCS) methodologies   (e.g., VCS Association  2010  and others). The reference region 
should be suffi ciently similar to the project area to conclude that the trajectory of LULC 
change observed in the reference region would also have occurred within the project 
area in the absence of project activities. While exact requirements for identifi cation of 
a reference region vary, in general the reference region must be signifi cantly larger than 
and demonstrably similar to the inventory area. In order to demonstrate similarity, key 
variables must be compared which may include landscape features (e.g., slope, eleva-
tion, LULC distribution), ecological variables (e.g., rainfall, temperature, soil type) and 
socioeconomic conditions (e.g., population, land tenure status, policies, and regula-
tions) (see VCS Association  2010 ). Transparent comparison procedures must be devel-
oped to set comparative thresholds for the reference region (e.g., average slope of the 
reference region shall be within 10 % of the average slope of the inventory area). 
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 Monitoring a reference region may be a cost-effective option for small projects that 
can easily identify an area similar to the project area. However larger projects, or proj-
ects working in a unique biophysical or sociopolitical environment, may fi nd it diffi cult 
to locate an appropriate reference region, or may fi nd it cost-prohibitive to monitor one.    

3.4     Calculating Carbon Stock Changes 

 In order to estimate GHG emissions and removals, carbon stock densities must be 
quantifi ed for each LULC category subclass and/or stratum. Carbon stock densities 
may come from default values, national datasets, scientifi c studies or fi eld sampling 
and are generally given as tons of carbon per hectare (Mg C ha −1 ) for individual or 
combined carbon  pools   (Table  3.5 ).

3.4.1         Key Carbon Pools   

 The IPCC  Guideline  s ( 2006 ) defi ne fi ve carbon pools: living aboveground biomass, 
living belowground biomass, deadwood, litter and soil organic matter (SOM). In the 
case that data are not available for all carbon pools, key pools can be identifi ed based 
on their relative expected contribution to total carbon stock changes caused by possi-
ble LULC transitions. Thresholds are developed to delimit the minimum contribution 
of total emissions from a pool to be defi ned as “key.” For example, a threshold could 
be created stating that only pools representing more than 10 % of total carbon stocks 
are considered key. Therefore it is possible that some pools will be key for certain 
LULC classes but not for others. Identifying key pools can help target monitoring and 
modelling efforts to minimize uncertainty and is required under IPCC reporting.  

3.4.2     Initial Carbon Stock  Estimates   

 Calculation of initial carbon stocks can be done in several ways ranging from the use 
of simple arithmetic to running complex models. The simplest method is to assign a 
single carbon stock density value (or range of values) to each LULC category and 
multiply this value by the total area of each category. This method can be used with 
activity data associated with any of the three Approaches. It is relatively straightfor-
ward and potentially low-cost, but may introduce high levels of uncertainty as it 
assumes that there is no variability of carbon stocks within LULC categories. 

 Uncertainty can be reduced by taking into account additional drivers of carbon 
stocks beyond just LULC categories. This can be done through stratifi cation (Sect. 
 3.2.3 ) and/or modelling. Modelling approaches require data on carbon stocks and 
rates of change, which can be obtained from default emission factors, scientifi c 
research, or fi eld measurements. Additional biophysical (e.g., slope, rainfall, soil 
type) and socioeconomic (e.g., population) datasets may also be needed. A variety 
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of models such as PROCOMAP, CO 2 FIX, CENTURY, ROTH, and others exist with 
a range of complexity and data requirements. (See Ravindranath and Ostwald  2008  
for a good comparison of several models.)  

3.4.3     Monitoring Carbon Stock Changes 

 Carbon stock changes are estimated using one of two general methods: one process- 
based and the other stock-based. The process-based method estimates the net addi-
tions to, or removals from, each carbon pool based on processes and activities that 
result in carbon stock changes, such as tree harvesting, fi res, etc. The stock-based 
method estimates emissions and removals by measuring carbon stocks in key pools 
at two or more points in time. 

   Table 3.5    Summary of activities for calculating carbon stock changes from LULC change at 
various uncertainty levels   

 Activity 
 Higher 
uncertainty 

 Mid-range 
uncertainty  Lower uncertainty  Key references 

 Defi ne key 
carbon 
pools 

 Key pools 
identifi ed using 
international or 
default data; 

 Key pools 
identifi ed using 
region- specifi c 
or fi eld-based 
data 

 Key pools identifi ed for 
each LULC class using 
fi eld sampling, or 

 GOFC-GOLD 
( 2014 ); IPCC 
( 2006 , Volume 
4, Chap. 2) 

 Same key pools 
applied to all 
LULC classes 

 Key pools 
defi ned 
separately for at 
least broad 
LULC categories 

 Data available for all 
carbon pools 

 Initial 
carbon 
stock 
estimates 

 Single carbon 
stock density 
applied to each 
LULC class 
based on global 
or regional 
default data 

 Carbon stocks 
stratifi ed by 
subclasses or 
additional strata 
and derived from 
country- specifi c 
data and/or fi eld 
sampling for key 
carbon pools 

 Spatially explicit 
stratifi cation and 
modelling of carbon 
stocks using empirically 
derived drivers of 
observed carbon stock 
variability; or 

 Goetz et al. 
( 2009 ); 
GOFC-GOLD 
( 2014 ); 
Greenhalgh 
et al. ( 2006 ); 
IPCC ( 2006 ) 

 Direct carbon stock 
monitoring approaches 
(e.g., using LiDAR, 
RADAR, optical sensors) 

 Monitoring 
carbon 
stock 
changes 

 Process-based 
method using 
default 
emissions 
factors assigned 
to LULC classes 
and change 
processes (e.g., 
deforestation) 

 Process-based 
method using 
emission factors 
derived from 
country- or 
region- specifi c 
data 

 Process-based method 
using emission factors 
derived from fi eld 
sampling within the 
project area or research 
activities in highly 
similar areas 

 Greenhalgh 
et al. ( 2006 ); 
Houghton 
et al. ( 2012 ); 
IPCC ( 2006 , 
Volume 4, 
Chap. 2) 

 Stock-based methods 
using multitemporal 
carbon stock inventories 
for key pools 

S.P. Kearney and S.M. Smukler



59

    Process-Based Method 

   The  process-based method      (sometimes called the gain-loss, IPCC default or emis-
sion factor method) estimates gains or losses of carbon in each pool by simulating 
changes resulting from disturbance or recovery (Houghton et al.  2012 ). Changes in 
LULC drive process-based models, and carbon stocks are re-allocated based on 
observed or modelled LULC change. Gains are a result of carbon accumulation from 
the atmosphere (e.g., in tree biomass) or transfers from another pool (e.g., from bio-
mass to SOC via decomposition). Losses are attributed to transfers to another pool or 
emissions to the atmosphere as CO 2  or other GHGs (IPCC  2006 , Volume 4, Chap. 2). 
Additional emission factors can be developed for emitting activities that do not nec-
essarily affect the fi ve carbon pools identifi ed by the IPCC. These include, for 
example, direct emissions from livestock, farm equipment or the production of non-
food products. Models and emission factors used in process- based methods can vary 
in complexity and potentially meet any Tier requirements. IPCC default factors can 
be used to achieve Tier 1 reporting requirements whereas country-specifi c or locally 
derived research data combined with more complex modelling approaches are 
required to meet Tier 2 and 3 requirements.    

    Stock-Based Method 

 The  stock-based method      (also called the bookkeeping, stock-difference, or stock- 
change method) combines ground-based and/or remotely sensed data of measured 
carbon stocks with data on changes in the total land area of each LULC class between 
two or more points in time. For stock-based methods, carbon stock changes are mea-
sured independently of LULC change and are then multiplied by the total area of each 
LULC class and stratum. Process-based methods model carbon stock changes based 
on LULC changes. Depending on the spatial resolution of data, conversions might be 
required to arrive at a carbon density (Mg C ha −1 ) that is then combined with activity 
data to estimate total emissions/removals. Typically, country- specifi c information is 
required for use with the stock-based method and resource requirements for data 
collection may be greater than process-based methods unless appropriate datasets 
already exist. Stock-based methods often meet at least Tier 2 requirements, provided 
activity data were generated according to Approach 2 or 3.    

3.5     Assessing Accuracy and Calculating Uncertainty 

 In order to qualify for carbon crediting under mechanisms such as VCS, CDM, and 
REDD+, fi nal reporting of GHG emissions/removals associated with LULC change 
must include uncertainty estimates (Maniatis and Mollicone  2010 ).  Uncertainty   
should be reported as the range within which the mean value lies for a given prob-
ability (e.g., a 95 % confi dence interval) or the percent uncertainty of the mean 
value, each of which can be calculated from the other (IPCC  2003 ). Errors will be 
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introduced at every level of data collection. Analysis and assessment of accuracy 
and uncertainty should be carried out for each step. Not only is this important for 
reporting purposes, it can provide valuable information to project managers to 
determine which steps contain the greatest sources of uncertainty, thereby encour-
aging cost-effective monitoring (e.g., Smits et al.  1999 ). 

 In this chapter we focus on estimating uncertainty associated with the collection 
of activity data, detection of LULC changes, and linking of emission factors and/or 
carbon stocks. Methods for assessing uncertainty related to the production of emission 
factors and measurement of carbon stocks (e.g., calculating soil carbon in a forest) 
are discussed elsewhere. 

3.5.1     LULC  Classifi cation Accuracy Assessment   

  When remote sensing data are used to develop wall-to-wall LULC maps, two types of 
error exist: errors of inclusion (commission errors) and errors of exclusion (omission 
errors). Accuracy should be assessed using a statistically valid method, the most com-
mon method being statistical sampling of independent higher-quality validation sam-
ple units (e.g., pixels, polygons, sites) for comparison against classifi ed sample units 
(Congalton  1991 ) (Table  3.6 ). These validation samples can be taken from fi eld obser-
vations, additional higher-resolution remote sensing imagery, or can be visually iden-
tifi ed from within the original image provided they are independent from those used 
during training. As with the selection of training data, validation sampling should be 
done in a statistically sound and transparent manner. Stratifi ed or proportional sam-
pling techniques may be desirable to improve accuracy and reduce costs. When using 
fi eld-based sampling to analyze current imagery, validation data should be collected 
as close to the time of image acquisition as possible, ideally at the same time as 
training data. Including farmers or other community members in the data collection 
process can be an effective way to estimate past LULC for classifi cation and valida-
tion of historical imagery, while at the same time empowering stakeholders and 
addressing conservation issues (e.g., Sydenstricker-Neto et al.  2004 ).

   The accuracy of classifi ed sample units compared against “real-world” validation 
sample units can be presented in an error matrix, also called a confusion matrix. This 
helps visualize errors, identify relationships between errors and LULC categories, and 
calculate indices of accuracy and variation (Congalton  1991 ). Classifi cation accuracy 
refers to the percentage of sample units correctly classifi ed and can be calculated as 
commission and omission errors for each LULC class as well as an overall accuracy 
for all classes (Table  3.7 ). These classifi cation accuracies can then be used as an 
uncertainty estimate to discount carbon credits associated with LULC change. For 
example, to maintain conservativeness of carbon credit estimates the VCS Association 
VM0006 ( 2010 ) uses the smallest accuracy of all maps as a discount factor for carbon 
credits. In the hypothetical example from Table  3.7 , this would result in carbon credits 
being discounted by 25 % (multiplied by a discount factor of 0.75). Representing 
accuracy using an error matrix also provides an opportunity to assess which LULC 
categories are most often confused. For example, cropland in smallholder landscapes 
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   Table 3.6    Summary of activities for assessing accuracy and calculating uncertainty at various 
uncertainty levels   

 Activity 
 Higher 
uncertainty 

 Mid-range 
uncertainty  Lower uncertainty  Key references 

 LULC area 
estimates 
and change 
detection 

 Assessment of 
data collection 
procedures to 
ensure data 
quality, but 
without the 
use of 
methods to 
quantify 
uncertainty 

 Assessment of data 
quality through 
systematic analysis 
of data collection 
procedures; or error 
matrix with Kappa 
coeffi cient based on 
validation points 
from limited fi eld 
ground-truthing or 
marginally 
higher-quality 
imagery 

 Confusion matrix 
with Kappa 
coeffi cient based 
on validation 
points from 
ground-truthing 
in the fi eld or 
higher-quality 
imagery 

 Congalton ( 1991 ); 
IPCC ( 2006 , 
Volume 4, Chap. 3) 

 Calculation of 
confi dence 
intervals for 
LULC category 
areas and changes 
in area 

 Carbon stock 
estimates 

 Varies by carbon pool; See Chaps.   6     and   7     for more information 

 Combining 
uncertainty 
estimates 

 Simple error 
propagation 

 Error propagation 
using more complex 
equations and 
controlling for 
correlation of input 
data 

 Monte Carlo 
simulations or 
other 
bootstrapping 
techniques 

 GOFC-GOLD 
( 2014 ); IPCC 
( 2003 ); 
Ravindranath and 
Ostwald ( 2008 ); 
Saatchi et al. ( 2007 ) 

    Table 3.7    Hypothetical error matrix showing the number of pixels mapped and validated (ground- 
truthed) by LULC class. Values in bold highlight the number of correctly mapped pixels and the 
row and column totals, which are used to calculate producer’s and user’s accuracy   

 Mapped 
classes 

 Ground truth classes 

 Forest  Cropland  Grassland  Wetland  Settlements  Other land  Total 

 Forest   900   50  50  0  0  0   1000  
 Cropland  50   750   150  30  20  0   1000  
 Grassland  30  60   810   70  20  10   1000  
 Wetland  30  30  30   390   0  20   500  
 Settlements  0  20  20  10   420   30   500  
 Other land  0  20  0  0  30   450    500  
 Total   1010    930    1060    500    490    510    4500  

 Producer’s accuracy 
(omission error) 

 User’s accuracy 
(commission error) 

 Forest  900/1010  89 %  900/1000  90 % 
 Cropland  750/930  81 %  750/1000  75 %  Overall accuracy 
 Grassland  810/1060  76 %  810/1000  81 %  3720/4500  83 % 
 Wetland  390/500  78 %  390/500  78 % 
 Settlements  420/490  86 %  420/500  84 % 
 Other land  450/510  88 %  450/500  90 % 
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is often misclassifi ed due to small farm sizes and its resemblance to bare soil (due to 
minimal refl ectance from young crops) or secondary forests (due to intercropping 
with tree species commonly found in secondary forests) (e.g., Sydenstricker-Neto 
et al.  2004 ). Other accuracy indicators include the kappa coeffi cient or KHAT statistic, 
root mean squared error (RMSE), adjusted  R  2 , Spearman’s rank coeffi cient and others 
(Congalton  1991 ; Jain et al.  2013 ; Lesschen et al.  2005 ; Smits et al.  1999 ). 

3.5.2        LULC Change Detection Accuracy Assessment 

  The accuracy of LULC  change detection   can be assessed using methods similar to those 
used to validate single scene LULC classifi cation, but additional considerations exist. 
When making post-classifi cation comparisons using two independently classifi ed 
images, the accuracy of each individual classifi cation should be assessed in addition to 
the accuracy of the change image. It is usually easier to identify errors of commission in 
change products because often only a small proportion of the land area will have expe-
rienced change, and often within a limited geographic area (GOFC-GOLD  2014 ). 
Unique sampling methodologies may therefore prove more cost-effective to validate the 
relatively rare event of changes in LULC within an image (Lowell  2001 ). A transition 
error matrix can be used to report the accuracy with which transitions between LULC 
categories are detected. This allows for assessment of uncertainty for each transition 
(e.g., forest to cropland, forest to grassland) and for partitioning of uncertainty attribut-
able to the change detection process versus classifi cation (van Oort  2007 ).   

3.5.3       Uncertainty   Associated with Estimating Carbon Stocks 

 Uncertainty estimates should be developed for key carbon pools within each LULC 
category. Uncertainty of carbon stocks using the stock-based method will be related 
to sampling. The process-based method will contain uncertainty estimates derived 
from scientifi c literature, model accuracy or other sources. Factors such as the scale 
of aggregation, stratifi cation variables, and the spatial or temporal considerations 
discussed above can all infl uence the uncertainty associated with integrating carbon 
stocks and activity data.  

3.5.4     Combining Uncertainty Values and Reporting Total 
Uncertainty 

 Combining uncertainty estimates for activity data, LULC change detection and 
emissions factors or carbon stocks can be done several ways, ranging from simple 
error propagation calculations (Tier 1) to more complex Monte Carlo simulations, 
also called bootstrapping or bagging (Tiers 2 and 3). Several approaches exist for 
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calculating error propagation. For example, different equations are recommended 
if input data are correlated (e.g., the same activity data or emission factors were 
used to calculate multiple input factors that are to be summed) or if individual 
uncertainty values are high (e.g., greater than 30 %) (GOFC-GOLD  2014 ; IPCC 
 2003 ). Monte Carlo simulations select random values within probability distribu-
tion functions (PDF) developed for activity data and associated carbon stock esti-
mates to calculate corresponding changes in carbon stocks. The PDFs represent the 
variability of the input variables and the simulation is undertaken many times to 
produce a mean carbon stock-change value and range of uncertainty (see IPCC 
 2003  and citations within for more detailed information on running Monte Carlo 
simulations). Simulation results can be combined with classifi cation accuracies to 
compute uncertainties for each pixel. This allows exploration of the variation of 
accuracy by LULC class or stratum, and where to target future measurements to 
achieve the greatest reductions in overall uncertainty (Saatchi et al.  2007 ). 
Generally speaking, Monte Carlo simulations require greater resources than error 
propagation equations, but both methods require quantitative uncertainty estimates 
for activity data, LULC changes, and carbon stocks.    

3.6     Challenges, Limitations, and Emerging Technologies 

 Monitoring LULC change and associated GHG emissions/reductions in a cost- 
effective manner remains a challenge in heterogeneous landscapes such as those 
dominated by smallholder agriculture. Monitoring change in management within 
LULC categories can be even more challenging, yet management is often a key 
component of smallholder carbon projects.  Technologies   are emerging to directly 
monitor carbon stocks (namely aboveground biomass), which could overcome 
some of these challenges. For example LiDAR shows promise for accurate direct 
estimation of vegetation structure, aboveground biomass, and carbon stocks (Goetz 
and Dubayah  2011 ; Goetz et al.  2009 ). While  direct measurement methods   are 
generally still in the research phase and may be cost-prohibitive for most projects, 
they may prove especially useful for smallholder settings as they can improve 
accuracy by removing the error associated with misclassifi cation of LULC, a 
potentially large source of uncertainty in heterogeneous landscapes. In the end, it 
is diffi cult to recommend a single methodological approach to monitoring LULC 
in smallholder landscapes as optimal methods will depend on the project area, size, 
available resources, time period, interventions, and other factors. An overall sum-
mary of the general methods discussed in each section of this chapter is presented 
in Table  3.8 . Time should be taken to assess these methods and their associated 
trade-offs, read the relevant key references and stay abreast of emerging remote 
sensing options to identify the most appropriate methodology for specifi c project 
conditions.
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    Abstract     Standard methods for quantifying GHG emissions from soils tend to use 
either micrometeorological or chamber-based measurement approaches. The latter 
is the most widely used technique, since it can be applied at low costs and without 
power supply at remote sites to allow measurement of GHG exchanges between 
soils and the atmosphere for fi eld trials. Instrumentation for micrometeorological 
measurements meanwhile is costly, requires power supply and a minimum of 1 ha 
homogeneous, fl at terrain. In this chapter therefore we mainly discuss the closed 
chamber methodology for quantifying soil GHG fl uxes. We provide detailed guid-
ance on existing measurement protocols and make recommendations for selecting 
fi eld sites, performing the measurements and strategies to overcome spatial vari-
ability of fl uxes, and provide knowledge on potential sources of errors that should 
be avoided. As a specifi c example for chamber-based GHG measurements we dis-
cuss sampling and measurement strategies for GHG emissions from rice paddies.   
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4.1      Introduction 

  Microbial processes   in soils, sediments, and organic wastes such as manure are a 
major source of atmospheric greenhouse gases (GHG). These processes create spa-
tially as well as temporally heterogeneous sources or sinks. Consequently, a thor-
ough understanding of the underlying processes and a quantifi cation of 
spatiotemporal dynamics of sinks and sources are the bases for (a) developing 
GHG inventories at global, national, and regional scales, (b) identifying regional 
hotspots and (c) developing strategies for mitigating GHG emissions from terres-
trial, specifi cally agricultural systems. 

 At the ecosystem scale, biosphere– atmosphere   fl uxes of CO 2 , CH 4 , and N 2 O are 
bi-directional, i.e., what is observed is a net fl ux of production and consumption 
processes (e.g., CO 2 : photosynthesis and autotrophic and heterotrophic respiration; 
CH 4 : methanogenesis and methane oxidation; N 2 O: nitrifi cation and de-nitrifi cation 
as source processes and de-nitrifi cation as a sink process). The same is true for  soil–
atmosphere exchange processes  , though, with regard to CO 2 , often only respiratory 
fl uxes are measured. 

 Approximately 2/3 of all  N 2 O emissions   are linked to soil and manure manage-
ment (Fowler et al.  2009 ; IPCC 2013). For CH 4  as well, soils and organic wastes 
strongly infl uence atmospheric CH 4  concentrations. It is estimated that wetland and 
paddy soils represent approximately 1/3 of all sources for atmospheric CH 4  (Fowler 
et al.  2009 ). On the other hand, well-aerated soils of natural and semi-natural eco-
systems—and to a lesser extent soils of agroecosystems—are sinks for atmospheric 
 CH 4   , removing approximately 20–45 Tg yr −1  of CH 4  from the atmosphere (Dutaur 
and Verchot  2007 ), which corresponds to approximately 6–8 % of all sinks for 
atmospheric CH 4  (Fowler et al.  2009 ). For  CO 2 , soils   are a major source due to 
autotrophic (plant root) and heterotrophic (microbial and soil fauna breakdown of 
organic matter) respiration. However, at the ecosystem scale, soils can act as net 
sinks as well as sources for CO 2 , since at this scale plant primary production (CO 2  
fi xation from the atmosphere by photosynthesis), litter input to soils as well as 
respiratory fl uxes are considered. It is well established that soils to a depth of 1 m 
globally store approximately three times the amount of carbon currently found in 
the atmosphere (Batjes  1996 ; IPCC 2013). Thus, land use and land management 
changes, as well as changes in climate affect plant primary production and fl uxes of 
litter to the soil and soil organic matter mineralization dynamics. This can either 
result in a mobilization of soil C and N stocks, or, with adequate management, turn 
soils into C sinks. The latter is an essential process for removal of atmospheric CO 2  
and climate protection and has been called the “ recarbonization     ” of our terrestrial 
ecosystems (Lal  2009 ). 

 Due to the mostly microbiological origin of soil, sediment, and organic waste 
GHG emissions, changes in environmental conditions directly affect the exchange 
of GHG between terrestrial systems and the atmosphere (Butterbach-Bahl and 
Dannenmann  2011 ). Changes in  temperature   affect enzyme activities, while changes 
in redox conditions—as infl uenced by soil aeration fl uctuations as a consequence of 
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changes in soil moisture—can favor sequentially different microbial processes. For 
example,  fi eld irrigation and fl ooding   as a standard management for rice paddies 
results in anaerobic soil conditions, thereby slowing down and stopping aerobic 
decomposition processes, while sequentially initializing a series of microbial pro-
cesses that use elements and compounds other than oxygen as an electron acceptor: 
fi rst NO 3  −  (denitrifi cation), followed by SO 4  −  and Fe 3+  and Mn 3+/4+  reduction, before 
fi nally CH 4  is produced as a product of organic matter degradation under strictly 
anaerobic conditions by methanogens (Conrad  1996 ). 

 Environmental conditions not only change naturally across days, seasons, and 
years as a consequence of diurnal and seasonal temperature and rainfall regimes, but 
also due to management of agricultural (forest with regard to plantations) land, as 
was explained above with the example of fl ooding of paddy fi elds. Changes in envi-
ronmental  conditions   affect the activity of the microbial community as well as that 
of plants, and consequently, the associated GHG production and consumption pro-
cesses. Thus, GHG emissions from soils show a rather pronounced temporal vari-
ability on short (diurnal) and longer (days to weeks and years) timescales (e.g., Luo 
et al.  2012 ). Moreover, environmental conditions also vary spatially because soil 

  Fig. 4.1    General recommendations for chamber placement, gas sampling, gas concentration mea-
surements, and measurement of auxiliary parameters for static chamber soil GHG fl ux measure-
ments. ( Note : text in  italic  are additional measurements/parameters which might be worthwhile to 
observe)       
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conditions, plant cover, land management and thus, nutrient availability, soil aera-
tion and microbial community composition, also change across micro- (e.g., soil 
matrix) to landscape and continental scales. As a result, GHG fl uxes also vary con-
siderably across spatial scales, making it necessary to develop a solid sampling 
strategy to target measurement sites, i.e., determine which sites are representative 
for the landscape one would like to work in, to estimate GHG fl uxes and develop 
strategies to mitigate those emissions. Targeting (Chap.   2     of these guidelines) is a 
cornerstone to allow meaningful upscaling to landscape and higher spatial scales. 
But targeting already starts at the measurement site, since decisions have to be made 
about where (and when) to place chambers for fl ux measurements (Fig.  4.1a ).

   This chapter does not aim to provide a cookbook of how to measure soil and 
GHG fl uxes. Plenty of work has been published on this topic, fi lling bookshelves 
and libraries (see e.g., Table  4.1 ). Here, we provide guidance to the relevant litera-
ture and highlight potential problems that might come up when designing a GHG 
measurement  program   (Fig.  4.1 ) rather than explain the sampling procedures in 
detail. We also provide examples of how to overcome problems in the context of 
GHG measurements for smallholder systems.

4.2        What Technique Is Most Suitable for Measuring 
Biosphere–Atmosphere Exchange Processes of GHGs? 

 The two most commonly used techniques for measuring fl uxes between terrestrial 
ecosystems and the atmosphere are: (a) enclosure-based (chamber) measurements 
(manual or automated) and (b) micrometeorological measurements (e.g., eddy 
covariance or gradient methods), or a combination of both (Denmead  2008 ). The 
choice of the measurement technique itself is largely driven by resource investment, 
demand, and by the research question. 

4.2.1     Micrometeorological Measurements 

   Use of micrometeorological techniques  requires      homogenous fi elds with a signifi -
cant fetch (>1 ha) that should not be infl uenced by buildings, trees, slopes, etc. Land 
use, land management, vegetation, and soil properties should be homogeneous for 
the direct fetch area, but also for the wider area. Typically these techniques are 
applied in fl at terrain with large, homogeneous land use, such as pasture, grassland, 
maize, or wheat monocrops, forests, or tree plantations. Capital costs of microme-
teorological measurements of GHG fl uxes are high, since the required sensors (3D 
wind fi eld, fast-response gas analyzers) plus auxiliary instruments (meteorological 
station, mast, etc.) for fl ux measurements at one site, cost around 60,000–80,000 
USD for CO 2  and energy fl uxes alone. Adding other components, such as CH 4  (open 
path sensors are available) and N 2 O (requiring laser spectroscopy instruments), 
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requires a signifi cant additional investment in instruments, starting from 30,000 to 
40,000 USD per gas. Energy supply for the instruments (if not only focused on open 
path CO 2 /H 2 O/CH 4  technology) is another constraint that should be considered. The 
two most prominent global networks for multi-site and multi-species observations 
of biosphere–atmosphere-exchange of GHGs using micrometeorological method-
ologies are the National Ecological Observatory Network (NEON) in the USA 
(  http://neoninc.org/    ) and the Integrated Carbon Observation Network (ICOS) in 
Europe (  http://www.icos-infrastructure.eu/?q=node/17    ). Both networks offer infor-
mation, processing tools for calculating fl uxes and experts for providing support for 
designing, establishing, and running micrometeorological measurements. 

 Micrometeorological techniques for assessing GHG exchange are not recom-
mended for smallholder systems due to the complexity of land uses and land man-
agement, small-scale gradients in soil fertility, and complex crop rotations with 
intercropping (Chikowo et al.  2014 ). 

 Some literature for a fi rst reading on micrometeorological techniques is listed in 
Table  4.1   .  

4.2.2      Chamber Measurements   

 This technique allows measurements of GHG fl uxes at fi ne scales, with chambers 
usually covering soil areas <1 m 2 , and are thus much better suited for smallholder 
farming systems. They can be operated manually or automatically (Breuer et al. 
 2000 ). Chamber measurements are rather simple and therefore the most common 
approach for GHG measurements since they allow gas samples to be stored for 
future analysis and, with the exception of automated systems, they do not require 
power supply at the site. In contrast with micrometeorological approaches, cham-
bers are suitable for exploring treatment effects (e.g., fertilizer and crop trials) or 
effects of land use, land cover, or topography on GHG exchange. However, care 
must be used in order to obtain accurate data, since installation of the chamber dis-
turbs environmental conditions and measured fl uxes might not necessarily refl ect 
fl uxes at adjacent sites if some precautions are not considered (see Sect.   5.2.1     below). 

 There are two types of chambers: dynamic and static chambers.  For  dynamic 
chambers   the headspace air is exchanged at a high rate (>1–2 times the chamber’s 
volume per minute) and fl uxes are calculated from the difference in gas concentra-
tions at the inlet and outlet of the chambers multiplied by the gas volume fl ux, 
thereby considering the area which is covered by the chamber (Butterbach-Bahl 
et al.  1997a ,  b ). Static chambers are gas-tight, without forced exchange of the head-
space gas volume, and are usually vented to allow pressure equalization between the 
chamber’s headspace and the ambient air pressure (e.g., Xu et al.  2006 ). The volume 
of the “vent tube” should be greater than the gas volume taken at each sampling time. 

 Two situations call for using dynamic chambers: fi rst, when measuring reactive 
gas fl uxes such as soil NO emissions, and when there is a need to minimize the bias 
of changes in headspace air concentrations on the fl ux (Butterbach-Bahl et al. 
 1997a ,  b ). The second point is important, as signifi cant deviations of chamber head-
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space gas concentrations from ambient air concentrations affect the exchange pro-
cess between soils and the atmosphere itself, since the fl ux at the soil–atmosphere 
interface is the result of simultaneous production and consumption processes. For 
example, if N 2 O concentration in the chamber headspace is much higher than atmo-
spheric concentrations, microbial consumption processes are stimulated. Moreover, 
since emissions are mainly driven by diffusion and gas concentration gradients, 
signifi cant increases/decreases in headspace concentrations of the gas of interest 
will slow down/accelerate the diffusive fl ux. Both mechanisms fi nally result in a 
deviation of the fl ux magnitude from undisturbed conditions (Hutchinson and 
Mosier  1981 ). It is important to be aware of this, though for practical reasons it is 
partly unavoidable because the precision of the analytical instruments used for gas 
fl ux measurements, such as electron capture detectors (ECDs) and gas chromatog-
raphy, is insuffi cient to allow for dynamic chamber measurements. However, there 
are methods to cope with this problem, such as using non-linear instead of linear 
models to calculate fl uxes as measured with static chamber technique (e.g., Kroon 
et al.  2008 ; Table  4.1 ), using quantum cascade lasers (QCLs) in the fi eld (fast box; 
Hensen et al.  2006 ) and in general by minimizing chamber closure time as much as 
possible. Chamber closure time is dictated not only by the magnitude of the gas fl ux 
but also by the chamber height. Therefore, in agricultural systems where plants need 
to be included for representative measurements, it is suggested to use chambers 
which can be extended by sections according to plant growth (Barton et al.  2008 ).  

   Static chambers   are usually mounted on a frame which should be inserted 
(approximately 0.02–0.15 m) at least a week before fi rst fl ux measurements to over-
come initial disturbances of soil environmental conditions due to the insertion of the 
frame. Once the chamber is closed gas-tight on the frame, headspace concentrations 
start to change, either increasing if the soil is a net source (e.g., for CO 2 —Fig.  4.2 ), 
or decreasing if the soil is functioning as a net sink (e.g., CH 4  uptake by upland 
soils). For accurate calculation of gas fl ux, a minimum of four gas samples from the 
chamber headspace across the sampling interval (e.g., 0, 10, 20, 30 min following 
closure) is recommended (Rochette  2011 ).

   Gas fl ux measurements with static and dynamic chambers have been described 
extensively and Table  4.1  provides an overview of recommended literature, while 
Fig.  4.1  indicates important considerations when using chamber methodology. 
Static chambers can not only be used for measurement of soil N 2 O and CH 4  and CO 2  
respiratory fl uxes, but also for measuring net ecosystem exchange of carbon diox-
ide. The latter requires the use of transparent chambers and consideration of correc-
tions for photosynthetically active radiation and temperature inside and outside the 
chamber (Wang et al.  2013 ).  

    Chambers and Changes in Environmental  Conditions   

 Closing a chamber gas-tight from the surrounding environment immediately affects 
a number of boundary conditions. The pressure inside the chamber might differ 
from outside, because when chambers are gas-tight and exposed to sunlight, the 
temperature of the headspace air increases so that air pressure inside in the chamber 
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increases too. Both factors affect the gas exchange between the soil and the air. 
Thus, chambers should be heat insulated and opaque (except for the determination 
of net ecosystem respiration; see Zheng et al.  2008a ,  b ) and a vent should be used 
(see Hutchinson and Livingston  2001 ) to equilibrate pressure differences between 
ambient and headspace air. Upon chamber closure of transparent non-insulated 
chambers exposed to direct sunlight, headspace temperature might increase by 
10–20 °C within 20 min. Insulated chambers will also show a slight increase in soil 
headspace temperature. This affects microbial as well as plant respiratory activity. 
Therefore, minimizing closure times is necessary not only to minimize the effects 
of changing headspace gas concentrations on diffusive fl uxes as described above, 
but to minimize temperature changes as well as (Table  4.1 ). One should therefore 
calculate the minimum fl ux that can be detected with the analytical instrument to be 
used and adjust the closure time accordingly. If possible, limit closure time to a 

  Fig. 4.2    Theoretical evolution of the concentration of a gas being emitted from the soil upon use 
of a static chamber. Concentration of the gas above the soil surface ( black line ) remains at a rela-
tively constant level; at the moment when the chamber is closed ( left arrow ), the concentration in 
its headspace begins to rise. Along the closing period of the chamber, several gas samples are taken 
( black squares ) and subsequently the concentration is determined, e.g., by use of gas chromatog-
raphy. Right after opening the chamber ( right arrow ) concentration above soil surface returns to 
atmospheric background levels. Soil GHG emissions are most commonly calculated from the lin-
ear increase of the headspace gas concentration during the chamber closing period ( red line ), the 
volume of the chamber, the area of the soil covered by the chamber, as well as air temperature, air 
pressure, and molecular weight of the molecule under investigation (see e.g., Butterbach-Bahl 
et al.  2011 ). It should be noted that changes in gas concentration upon chamber closure can signifi -
cantly deviate from linearity, showing, e.g., saturation effects. In all cases it should be tested if 
non-linear fl ux calculation methods do not fi t the better observed changes in chamber headspace 
concentrations with time (see e.g., Pedersen et al.  2010 )       
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maximum of 30–45 min. If automated chamber systems are used, change positions 
weekly or at 2-week intervals to minimize effects on soil environmental conditions, 
in particular soil moisture. Chambers have been shown to reduce soil moisture even 
if they open automatically during rainfall (Yao et al.  2009 ).  

    Chambers and  Spatial Variability   of GHG Fluxes 

 Soil environmental conditions change on a small scale due to differences in (a) bulk 
density resulting from machine use or livestock grazing, (b) texture as a conse-
quence of soil genesis, (c) management (rows, inter-rows, cropping), (d) tempera-
ture (plant shading), (e) soil moisture (e.g., groundwater distances or as an effect of 
texture differences), (f) soil organic carbon (heterogeneous distribution of harvest 
residues) or (g) rooting depth and distribution (with effects on soil microbial diver-
sity, activity, and distribution) (see Fig.  4.1a ). For example, urine or feces dropping 
by livestock on rangeland or manure application to cropland has been shown to 
increase spatial and temporal variability of fl uxes, since at plot scale not every patch 
responds equally to increased availability of substrate for microbial N and C 

  Fig. 4.3    The concept of gas pooling. ( a ) Gas pooling across chambers for a given sampling time, 
( b ) gas sample mixing within the syringe, ( c ) transfer of the gas sample to a vial, ( d ) four vials for 
four sampling times and fi ve chambers, ( e ) air sample analysis via gas chromatography (for further 
details see Arias-Navarro et al.  2013 )       
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turnover processes due to small-scale differences in soil properties, soil environ-
mental conditions, and microbial activity and diversity. Overcoming spatial vari-
ability effects on GHG fl uxes is a major challenge, specifi cally for highly diverse 
smallholder systems. The problem can be addressed by proper sampling design 
(Fig.  4.1 ) (see e.g., Davidson et al.  2002 ) or by using the gas pooling technique 
(Arias-Navarro et al.  2013 ) (Fig.  4.3 ).

   Proper sampling design in this context requires fi rstly that the landscape should 
be stratifi ed into a number of separate categories. This stratifi cation needs to include 
geophysical information as well as management activities. Also, in order to under-
stand the drivers of the management decisions, it is critical to collect the political 
and socioeconomic climate of the various farms. The sampling approach can then 
concentrate measurement activities on emission hotspot and leverage points to cap-
ture heterogeneity and account for the diversity and complexity of farming activi-
ties (Rosenstock et al.  2013 ). 

 The  gas pooling technique   is similar to what is usually done for soil or water 
analyses. The principal idea of gas pooling is to generate a composite air sample out 
of the headspace of several chambers (Fig.  4.3 ). The chamber headspace is sampled 
at least four times across the closure period as is usually done, but gas samples at 
time 0, 10, 20, or 30 min are combined for several chambers of each individual 
sampling time (Arias-Navarro et al.  2013 ). As a consequence, information on the 
spatial variability is lost, but can be regained if on some sampling days, fl uxes of the 
chambers are measured individually. This technique allows installation of a signifi -
cantly higher number of chambers without increasing the amount of gas samples to 
be analyzed.    

4.3     Measurement of GHG Fluxes in Rice Paddies 

 Due to its importance as a source for atmospheric CH 4  we specifi cally discuss 
 measurement of GHG fl uxes in rice paddies in more detail. Unlike other fi eld crops, 
rice is usually grown in fl ooded fi elds. The standing water creates anaerobic condi-
tions in the soil that allows growth of a certain class of microorganisms ( methano-
genic archaea ) that use simple carbon compounds (e.g., CO 2  or acetate) as electron 
donors and produce methane in anaerobic respiration.  Methane oxidation  , on the 
other hand, does occur but only in the uppermost mm of fl ooded paddy soil or in the 
rhizosphere—due to radial O 2  losses of rice roots (Butterbach-Bahl et al.  1997a , 
 b )—and during unfl ooded periods. Since methanogenic archaea are extremely sen-
sitive to oxygen and immediately stop CH 4  production while stimulating CH 4  oxi-
dation, drainage of rice fi elds is an attractive mitigation option. 

  Methane   is the most important GHG in rice production systems and has some 
implications on the chamber design and sampling time. Nitrous oxide emissions are 
generally low in fl ooded fi elds but increase with drainage. However, this increase in 
N 2 O emissions does not offset the mitigation effect that dry fi eld conditions have on 
CH 4  emissions (Sander et al.  2014 ). 
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 Overall, requirements for GHG measurements in fl ooded rice production sys-
tems (dominated by CH 4  emissions) are partly different from measurement in 
 upland systems  , which has some important implications on the chamber design and 
general sampling procedure (Table  4.2 ).

4.3.1        Rice Chamber Design and General Procedure   
(See Also Table  4.2 ) 

   Methane   that is produced in the soil has three different emission pathways to the 
atmosphere: (1) diffusion through the water layer, (2) ebullition (bubbling), and (3) 
transport through the aerenchyma of the rice plants. The largest share of emitted 

    Table 4.2    Overview of recommended minimum requirements for closed chamber sampling in 
rice paddy and for measurements of fi eld GHG fl uxes from upland arable fi elds   

 Feature 

 Minimum requirement/recommendation 

 Rice paddy  Arable fi eld 

 Chamber 
dimension 

 4 rice hills included, ≥0.16 m 2 , 
>1 m height  or  extendable, 
chamber base ~20 cm high 

 Height 10–40 cm (fl exible height if 
possible), insertion depth 5–20 cm, 
minimum area 0.04 m 2 . Include plants 
as long as possible, consider row/
inter-row effects 

 Chamber 
material 

 Refl ective  or  white  and / or  
insulated 

 Opaque, insulated (use transparent 
material only if NEE should be 
measured) 

 Chamber 
equipment 

 Thermometer, fan, sampling port, 
hole for irrigation water, vent 

 Thermometer, fan, vent 

 Frequency  Once per week  or  elaborated 
fl exible schedule 

 Once per week, following the fi rst 10 
days after fertilization or re-wetting of 
dried soils if possible daily 
measurements 

 Length of 
measuring period 

 1 year  1 year 

 Spatial replicates  At least 3, possibly use gas 
pooling technique 

 At least 3, possibly use gas pooling 
technique 

 Time of day  At the time of approx. average 
daily soil temperature (often 
mid-morning). Record diurnal 
fl ux variation from time to time 

 Record diurnal fl ux variation 

 Closure time  As short as possible, as long as 
necessary, In hot environments 
20–30 min, not more than 45 min 

 As short as possible, as long as 
necessary, In hot environments 20–30 
min, not more than 45 min 

 Number of gas 
samples for fl ux 
calculation 

 ≥4 per deployment  ≥4 per deployment 

  These recommendations have been synthesized from prior chamber measurement protocols 
(see Table  4.1 ) and amended or modifi ed on basis of expert judgments. For further details see also 
Fig.  4.1   
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methane (up to 90 %) is in fact transported through the rice plant itself (Wassmann 
et al.  1996 ; Butterbach-Bahl et al.  1997a ,  b ), which makes it indispensable to 
include rice plants into the closed chamber (→ chamber height >1 m). This also 
applies to any measurements of wetland GHG fl uxes, since plant- mediated trans-
port is of critical importance here as well. The chamber base (the part of the cham-
ber that remains in the soil during the whole growing season) should be installed at 
least 1 day (better a week or more) before the start of the sampling campaign and 
should not be higher than ~20 cm (with 10 cm below and 10 cm above soil surface) 
in order to minimize an effect on plant growth. To account for variability within the 
fi eld, each chamber should include at least 4 rice plants or 4 “hills” in a trans-
planted system and an area of average plant density in a seeded system, resulting 
in a chamber area of ≥0.16 m 2 . Note that due to the fl ooded fi eld conditions, the 
chamber base in rice systems should have holes (~2 cm above soil surface) to allow 
water exchange between the chamber inside and the fi eld. This hole or holes must 
be closed before sampling in case irrigation water level falls and the hole(s) is 
above the water layer. 

 Movement in the wet paddy soil can potentially cause gas bubbles to evolve and 
impede undisturbed gas sampling. Therefore, installation of boardwalks in the fi eld 
is highly recommended. Exposure to high air temperatures and high solar radiation 
often characterize rice paddies and so it is in especially crucial to ensure that the 
plants inside the chambers are not damaged by heat stress during sampling. 
Therefore, the chamber material should be refl ective or white or the chamber should 
be equipped with proper insulation. Since the gas volume in the closed chamber 
changes due to temperature increase and samples being taken, chambers should 
have a vent to allow equilibration with outside air pressure.   

4.3.2     Time of Day of Sampling 

  Methane emissions typically follow a distinct diurnal variation following changes in 
soil temperature (Neue et al.  1997 ), i.e., low emissions during night time that 
increase after sunrise, peak around noon to early afternoon and decrease again 
thereafter. Therefore the timing  of   gas sampling is of great importance in order to 
measure as close as possible to a time representing a daily average fl ux rather than 
at times leading to over or underestimation of fl uxes. Minamikawa et al. ( 2012 ) 
found that methane fl uxes around 10 a.m. were closest to the daily mean CH 4  fl ux 
in temperate regions. Similar assumptions are likely valid for tropical and subtropi-
cal regions. However, we recommend measuring region-specifi c diurnal emission 
patterns at least three times during the growing season of rice and based on the 
observed diurnal pattern to decide on the best sampling time. Alternatively, measur-
ing diurnal soil temperature profi les at 5-cm depth can provide reasonable estima-
tions of the time of day with mean methane emission because soil temperature and 
CH 4  fl ux are closely related.   
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4.3.3      Sampling Frequency   

 The precision of cumulative seasonal GHG emissions largely depends on the 
 sampling frequency. Minamikawa et al. ( 2012 ) found that sampling once a week for 
fl ooded rice in temperate regions resulted in an accurate estimation of total emis-
sions. Buendia et al. ( 1998 ) proposed a more fl exible sampling schedule of 10-day 
intervals in the beginning of the growing season, 20-day intervals in the middle and 
7-day intervals at the end of the season in tropical environments and came up with 
similarly accurate seasonal emission estimates. 

 It is important to note that more frequent sampling is necessary during dry peri-
ods of rice cultivation as methane emissions from paddy soils with a high clay 
content show a sharp peak when drainage is applied (Lu et al.  2000 ) and nitrous 
oxide emissions increase during dry periods (Jiao et al.  2006 ). In order to have com-
plete fl ux information of an area, some gas samples should also be taken between 
two cropping seasons.   

4.4     Analytical Instruments Used for Chamber 
Measurements 

 When using the  static chamber   approach, several analytical instruments can be used 
for determining GHG concentrations in the sample air, either directly in the fi eld or, 
following storage of headspace gas samples in vials or gas-tight syringes, at a later 
time in the laboratory. The latter always requires that the gas-tightness of the vials/ 
syringes is tested regularly. 

4.4.1     Gas Chromatography 

 Instruments used for gas sample analysis rely on different operational principles. Gas 
chromatography ( GC     ) is the most commonly used analytical technique when deter-
mining GHG concentrations in gas samples from chambers (e.g., Keller et al. 1986; 
Kiese and Butterbach-Bahl 2002; Kelliher et al. 2012). Usually, 1–3 mL of air sample 
is injected into the gas chromatograph and the different compounds are separated on 
an analytical column (e.g., Hayesep N for N 2 O, 3 m, 1/8″) for detection with various 
detectors. For N 2 O a  63 Ni Electron Capture Detector (ECD) is commonly used. The 
ECD should be operated at between 330 and 350 °C, since the N 2 O sensitivity is 
highest and the cross-sensitivity to CO 2  is lowest in this range. However, there is still 
a cross-sensitivity to CO 2  if N 2  is used as sole carrier and purge gas (Zheng et al. 
 2008a ,  b ; Wang et al.  2010 ). No cross-sensitivity exits if Argon/CH 4  is used as carrier 
gas or if the ECD cell is purged with a gas mixture of 5 % CO 2  in N 2  (Wang et al. 
 2010 ). Another possibility to eliminate the cross-sensitivity of N 2 O and CO 2  is to use 
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a pre-column fi lled with Ascarite (coated NaOH), which scrapes the CO 2  from the 
gas-stream. However, pre-columns need to be changed frequently (approximately 
2-week intervals) due to saturation and capturing of air sample moisture. 

 Another critical point is that if gas chromatographs with ECD are used for con-
centration measurements, the signal to concentration ratio might deviate from a 
linear response if—in the case of N 2 O—sample air concentrations are signifi cantly 
>700 ppbv. Therefore, a check of the linearity of the signal to concentration ratio 
should be done for each instrument and gas under consideration. 

 For CH 4  a  fl ame ionization detector (FID)   is normally used and, if a methanizer 
is introduced before the detector, CO 2  can also be measured with a FID (or more 
standard: use of a thermal conductivity detector for CO 2 ).  

4.4.2     Spectroscopic Methods 

    Spectroscopic methods      are becoming more and more prominent for measuring 
GHG fl uxes between soils and the atmosphere by static chamber technique. A spe-
cifi c example is  photoacoustic spectroscopy (PAS),   with instruments being minia-
turized to make them suitable for direct fi eld use, e.g., allowing direct measurements 
of changes in chamber headspace N 2 O, CH 4 , or CO 2  concentration with time follow-
ing chamber closure (e.g., Leytem et al.  2011 ). PAS technique, as every spectro-
scopic method, is based on the principle that GHGs absorb light at a specifi c 
wavelength, here in the infrared spectra. The absorption is thereby directly linked to 
the concentration (Beer-Lambert law) and in the case of PAS, the absorption of the 
light or energy is converted into an acoustic signal, which is measured by a micro-
phone. For chamber measurements in the fi eld, the PAS instrument is usually con-
nected to the chamber in a closed loop so that the air from the apparatus exhaust is 
returned to the chamber avoiding underpressure or dilution. 

 PAS instruments are becoming popular as an alternative to GC-technique due to 
portability, low maintenance, and ease-of-operation (Iqbal et al.  2012 ). In principle, 
commercially available PAS instruments, such as INNOVA (Lumasense 
Technologies) require a yearly calibration only and are “plug-and-play” instruments 
ready to be used in the fi eld. However, because GHGs and water vapor have multi-
ple absorption bands across the measuring spectra, such instruments are prone to 
interferences. Recently, Rosenstock et al. ( 2013 ) showed that for INNOVA instru-
ments N 2 O concentration measurements were non-linearly affected by water con-
tent and CO 2 . Comparable results were already reported by Flechard et al. ( 2005 ), 
though only a few researchers have noted the problems that might be associated 
with the use of PAS. The manufacturers claim that the INNOVA software accounts 
for cross interferences, but corrections do not seem to work suffi ciently while test-
ing several instruments (Rosenstock et al.  2013 ). Furthermore, there is also evi-
dence that ambient air temperature affects the electronics and thus, the reliability of 
measured GHG concentrations (Rosenstock et al.  2013 ), when using PAS under 
fi eld conditions. Specifi cally for N 2 O, measured concentrations varied up to 100 % 
depending on environmental conditions (Rosenstock et al.  2013 ). Also the precision 
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and accuracy of CH 4  measurements seems to be rather low, with deviations in con-
centration of nearly 400 % for calibration gases (Rosenstock et al.  2013 ). As it 
stands now, it is advisable to question the use of INNOVA instruments for CH 4  as 
well as for N 2 O measurements in particular by using the instrument for simultane-
ous measurements of multiple gas species. 

 Other techniques may include tunable diode lasers (TDL), quantum cascade 
lasers (QCL), Fourier transform infrared spectroscopy (FTIR) or cavity ring-down 
spectroscopy (CRDS). Instruments using these spectroscopic techniques usually 
operate under high vacuum and, thus, a continuous air fl ow through the instrument is 
required. Therefore, instruments need to be at the study site and physically connected 
to chambers. Though these instruments are still quite expensive (e.g., compared to 
GC) they are becoming more and more robust and suitable for fi eld applications. 
However, a constant (use of UPS is suggested) main power supply is still needed and 
checks for cross-sensitivity should be a standard procedure in the laboratory  .  

4.4.3      Auxiliary Measurements   

  As described earlier in this chapter, spatiotemporal patterns of GHG fl uxes are 
closely linked to changes in environmental conditions (see also Fig.  4.1 ). Therefore, 
GHG fl ux measurements are rather useless if environmental parameters such as soil 
and vegetation properties and management are not monitored at the same time, 
since these factors signifi cantly affect fl uxes. This necessarily also includes the 
quantifi cation of soil C and N stocks, as for example application of animal manure 
to arable fi elds and rangeland has been shown to signifi cantly increase soil carbon 
stocks (Maillard and Angers  2014 ), which need to be considered when calculating 
the GHG balance of a given system. Moreover, since GHG fl ux measurements are 
expensive and can’t be repeated everywhere, models need to be developed, tested, 
and fi nally used for estimating fl uxes at landscape, regional, and global scale as well 
as for exploring mitigation options at multi-year scales or for predicting climate 
change feedbacks on biosphere–atmosphere exchange processes. Comprehensive 
datasets, including both fl ux measurements and detailed information on soil and 
vegetation properties and management are prerequisites for model development and 
testing. Surprisingly such datasets are still scarce, because either fl ux measurements 
do not meet the required measuring standards or the needed auxiliary measurements 
and site information are not monitored or reported. 

 Since responsibilities for GHG fl ux and auxiliary measurements are often split 
between collaborators, there is a need to clarify personal responsibility of data provi-
sion prior to the start of measurements. Rochette and Eriksen-Hamel ( 2007 ) reviewed 
published N 2 O fl ux data and developed a minimum set of criteria for chamber design 
and methodology. According to their evaluation of 365 studies, there was low to 
very low confi dence in reported fl ux values in about 60 % of the studies due to poor 
methodologies or incomplete reporting. Thus, it is necessary to improve not only the 
quality of fl ux measurements, but also the reporting of soil and vegetation properties 
and management. See Fig.  4.1  for suggested variables for measurement.    
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4.5     Conclusions 

 Micrometeorological or chamber-based techniques can be used for the quantifi ca-
tion of biosphere–atmosphere exchange processes of GHGs. In view of the diversity 
and patchiness of land uses and land management associated with smallholder agri-
culture, chamber-based methods, specifi cally the closed (static) chamber approach, 
is recommended. Overcoming spatial and temporal variability of fl uxes remain an 
issue, and should be addressed by a well- designed sampling scheme including land-
scape targeting of measuring sites (see Rufi no et al. this book), targeting of chamber 
placement at fi eld and plot scale (Fig.  4.1 ), running of at least 3–5 replicates per plot 
to address small- scale variability (and possibly use of the gas pooling technique, 
Fig.  4.3 ), fl ux measurements in weekly intervals over a period of at least 1 year and 
detailed documentation of environmental conditions and fi eld activities (Fig.  4.1 ). 
This will ensure that all data can fi nally be used for modeling and upscaling. Quality 
control and quality assurance remains an issue at all steps, also with regard to gas 
analytics. Probably the most effi cient way for a researcher to familiarize him- or 
herself with gas fl ux measurement techniques is a longer stay with a recognized 
research group.    
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    Abstract     Accurate measurement techniques are needed for determining green-
house gas (GHG) emissions in order to improve GHG accounting estimates to IPCC 
Tiers 2 and 3 and enable the generation of carbon credits. Methane emissions from 
agriculture must be well defi ned, especially for ruminant production systems where 
national livestock inventories are generated. This review compares measurement 
techniques for determining methane production at different scales, ranging from 
in vitro studies to individual animal or herd measurements. Feed intake is a key 
driver of enteric methane production (EMP) and measurement of EMP in small-
holder production systems face many challenges, including marked heterogeneity 
in systems and feed base, as well as strong seasonality in feed supply and quality in 
many areas of sub-Saharan Africa. 

 In vitro gas production studies provide a starting point for research into mitiga-
tion strategies, which can be further examined in respiration chambers or ventilated 
hood systems. For making measurements under natural grazing conditions, meth-
ods include the polytunnel, sulfur hexafl uoride (SF 6 ), and open-path laser. 
Developing methodologies are briefl y described: these include blood methane con-
centration, infrared thermography, pH, and redox balance measurements, methano-
gen population estimations, and indwelling rumen sensors.   
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5.1      Introduction 

  Fermentation processes   by rumen microbes result in the formation of reduced cofac-
tors, which are regenerated by the synthesis of hydrogen (H 2 ) (Hungate  1966 ). 
Accumulation of excessive amounts of H 2  in the rumen negatively affects the fermen-
tation rate and growth of some microbial consortia. Methanogens therefore reduce 
carbon dioxide (CO 2 ) to methane (CH 4 ) and water (H 2 O) thereby capturing available 
hydrogen (McAllister et al.  1996 ). It is predicted that total CH 4  emissions from live-
stock in Africa will increase to 11.1 mt year −1  by 2030, an increase of 42 % over three 
decades (Herrero et al.  2008 ). Production increases and effi ciencies in the livestock 
sector are seen as complementary outcomes if enteric methanogenesis can be reduced. 
While mitigation strategies are focused on manipulation of nutritional factors and 
rumen function, animal breeding programmes for selecting highly effi cient animals 
that produce less enteric CH 4  might also be useful. Regardless of the mitigation strat-
egy imposed, any reduction in  enteric methane production (EMP)   must be quantifi ed 
and for this to be achieved, accurate baseline emissions data are essential. 

 This chapter reviews the existing and developing methodologies for gathering 
accurate data on ruminant methane production under a wide range of production 
systems. The  principles   of using predictive algorithms based on dietary, animal and 
management variables are considered here for modelling smallholder livestock emis-
sions, but not in detail. Predictive models have been considered in detail elsewhere 
(Blaxter and Clapperton  1965 ; Kurihara et al.  1999 ; Ellis et al.  2007 ,  2008 ; Charmley 
et al.  2008 ; Yan et al.  2009 ). Major techniques are highlighted at different levels—in 
vitro, animal, herd and farm scale—and their advantages and disadvantages, includ-
ing implementation in practice, are discussed. These methodologies can be used to 
support mitigation strategies or quantify total national livestock emissions.  

5.2     Indirect Estimation 

5.2.1      In Vitro Incubation   

  The amount of gas released from the fermentation process and the buffering of 
volatile fatty acids (VFAs) is related to the kinetics of fermentation of a known 
amount of feedstuff (Dijkstra et al.  2005 ). Several systems have been developed 
for measuring in vitro gas production, varying considerably in complexity and 
sophistication. Menke et al. ( 1979 ) describes a manual method using gastight 
syringes, which involves constant registering of the gas volume produced. More 
recently others have described a system using pressure transducers (Pell and 
Schofi eld  1993 ; Theodorou et al.  1994 ; Cone et al.  1996 ). Variants of this system 
are now available as proprietary systems (RF, ANKOM Technology ® ) using radio-
frequency pressure sensor modules, which communicate with a computer interface 
and dedicated software to record gas pressure values. 
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 The basic principle of the in vitro technique relies on the incubation of rumen 
inoculum with a feed substrate under an anaerobic environment in gastight culture 
bottles. Gas accumulates throughout the fermentation process and a cumulative 
volume is recorded. Gas volume curves can be generated over time. To estimate 
kinetic parameters of total gas production, gas production values are corrected 
for the amount of gas produced in a blank incubation and these values can be fi tted 
with time using a nonlinear curve fi tting procedure in GenStat (Payne et al.  2011 ) 
or other suitable software. Headspace gas samples are taken to analyze the gas 
compositions and determine actual CH 4  concentrations, typically by gas chroma-
tography. A “quick and dirty” alternative is to introduce a strongly basic solution, 
such as NaOH into the vessel, which will cause the CO 2  to enter the solution. 
The remaining gas is assumed to be CH 4 . 

 Gas is only one of the outputs of microbial fermentation, and the quality of the 
information derived can be improved by also considering substrate disappearance 
and production of VFAs (Blümmel et al.  2005 ).   

5.2.2     Estimation from Diet 

  EMP can be estimated from intake and  diet   quality (digestibility). A number of 
algorithms can be used to do this, although estimates of emissions can vary by 35 % 
or more for a particular diet (Tomkins et al.  2011 ). Diet quality can be inferred from 
analysis of representative samples of the rations or pasture consumed, but where 
intake is not measured, estimation of EMP faces considerable challenges. Models 
which estimate intake based on diet quality or particular feed fractions assume 
ad libitum access, and in situations where animals are corralled without access to 
feed overnight, the validity of this assumption is likely violated (Jamieson and 
Hodgson  1979 ; Hendricksen and Minson  1980 ). In such a case, intake can be inferred 
from energy requirement (Live Weight (LW) + Energy for: LW fl ux; maintenance + 
lactation and pregnancy + locomotion) using published estimates (such as National 
Research Council) to convert physical values into energy values and so infer intake 
of the estimated diet. If this method is chosen, multiple measurements are required to 
capture changes in these parameters, as well as seasonal infl uences on feed availabil-
ity and quality. Where possible, estimates made using this methodology should be 
validated by measurements in respiratory chambers.    

5.3     Direct Measurement 

5.3.1      Open-Circuit Respiration Chambers   

  Models to estimate national and global CH 4  emissions from sheep and cattle at farm 
level are mostly based on data of indirect calorimetric measurements (Johnson and 
Johnson  1995 ). Respiration chambers are used to measure CH 4  at an individual animal 
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level. Their use is technically demanding, and only a few animals can be monitored at 
any one time (McGinn et al.  2008 ). However, these systems are capable of providing 
continuous and accurate data on air composition over an extended period of time. 

 Although the design of chambers varies, the basic principle remains the same. 
Sealed and environmentally controlled chambers are constructed to house test 
animals. All open-circuit chambers are characterized by an air inlet and exhaust, 
so animals breathe in a one-way stream of air passing through the chamber space. 
Air can be pulled through each chamber and, by running intake and exhaust fans at 
different speeds, negative pressure can be generated within the chamber. This is to 
ensure that air is not lost from the chamber (Turner and Thornton  1966 ). However, 
CH 4  can still be lost from chambers that are imperfectly sealed (down the concen-
tration gradient), so gas recovery is an essential routine maintenance task. Thresholds 
for chamber temperature (<27 °C), relative humidity (<90 %), CO 2  concentration 
(<0.5 %), and ventilation rate (250–260 L min −1 ) have been described (Pinares- 
Patiño et al.  2011 ), but may vary in practice. It is very important, however, to ensure 
that test animals remain in their thermoneutral zone while being measured, or intake 
is likely to be compromised. Some chambers may be fi tted with air-conditioning 
units, which provide a degree of dehumidifi cation and a ventilation system. This 
ensures that chambers can be maintained at constant temperature (Klein and Wright 
 2006 ) or at near-ambient temperature to capture normal diurnal variance (Tomkins 
et al.  2011 ). Choices about temperature are governed by technical resources and 
experimental objectives. Feed bins and automatic water systems may also be fi tted 
with electronic scales and meters to monitor feed and water intake. 

 Change in O 2 , CO 2 , and CH 4  concentrations is measured by sampling incoming 
and outgoing air, using gas analyzers, infrared photoacoustic monitors, or gas chro-
matography systems (Klein and Wright  2006 ; Grainger et al.  2007 ; Goopy et al. 
 2014 b). The other essential measurement is airfl ow, over a period of either 24 or 
48 h. The accuracy and long-term stability of the measurements are dependent on the 
sensitivity of the gas analyzers used and the precision of their calibration. Chambers 
are directly calibrated by releasing a certain amount of standard gas of known con-
centration to estimate recovery values (Klein and Wright  2006 ). Measurement out-
comes are also infl uenced by the environmental temperature, humidity, pressure, 
incoming air composition, and chamber volume. The larger the chamber, the less 
sensitive the measurements are to spatial fl uctuations, as the response time is depen-
dent on the size of the chamber and the ventilation rate (Brown et al.  1984 ). The cali-
bration of the gas analyzers must be accurate and replicable for long-term use. 

 One constraint of this technique is that normal animal behavior and movement 
are restricted in the respiration chambers. Animals benefi t from acclimatization in 
chambers prior to confi nement and measurement, in order to minimize alterations in 
behavior, such as decreased feed intake (McGinn et al.  2009 ). However, there is 
clear evidence that this will happen in a small proportion of animals, regardless of 
training (Robinson et al.  2014 ) and this should be borne in mind when interpreting 
data. Using transparent construction material in chamber design allows animals to 
have visual contact with the other housed animals. 

 There are high costs associated with the construction and maintenance of open- 
circuit respiration chambers. The need for high performance and sensitive gas 
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analyzers and fl ow meters must be considered in design and construction. Only a 
few animals can be used for measurements within chambers at any one time (Nay 
et al.  1994 ). Nevertheless, respiration chambers are suitable for studying the differ-
ences between treatments for mitigation strategies, and continue to be regarded as 
the “gold standard” for measuring individual emissions.   

5.3.2     Ventilated Hood System 

  The  ventilated hood system   is a simplifi cation of the whole animal respiration 
chamber, as it measures the gas exchange from the head only, rather than the whole 
body. Moreover, it is an improvement on face masks as used by Kempton et al. 
( 1976 ), because gas measurements can be generated throughout the day and animals 
are able to access food and water. 

 Modern ventilated hood systems for methane measurements have been used in 
Japan, Thailand (Suzuki et al.  2007 ,  2008 ), USA (Place et al.  2011 ), Canada 
(Odongo et al.  2007 ) and Australia (Takahashi et al.  1999 ). Fernández et al. ( 2012 ) 
describes a mobile, open-circuit respiration system. 

 The ventilated hood system used by Suzuki et al. ( 2007 ,  2008 ) consists of a head 
cage, the digestion trial pen, gas sampling and analysis, behavior monitoring, and a 
data acquisition system. Similarly to whole animal chambers, it is equipped with a 
digestion pen for feed intake and excreta output measurements. An airtight head 
cage is located in front of the digestion pen and is provided with a loose fi tting 
sleeve to position the animal’s head. Head boxes are provided with blowers, to 
move the main air stream from the inlet to the exhaust. Flow meters correct the air 
volume for temperature, pressure, and humidity. Air fi lters remove moisture and 
particles from the gas samples, which are sent to the gas analyzers (Suzuki et al. 
 2007 ). The mobile system of Fernández et al. ( 2012 ) contains a mask or a head hood 
connected to an open-circuit respiration system, which is placed on a mobile cart. 

 The ventilated hood system is a suitable method under some circumstances, 
especially where open-circuit chambers are not viable. A critical limitation of the 
hood system is that extensive training is absolutely essential to allow the test ani-
mals to become accustomed to the hood apparatus. Thus while it can be used to 
assess potential of feeds, it is not suitable for screening large numbers of animals. 
A further consideration is that hoods capture only measurements of enteric metha-
nogenesis and exclude the proportion emitted as fl atus.   

5.3.3     Polytunnel 

    Polytunnels      are an alternative to respiration chambers, and operation and measure-
ments are somewhat simpler. Methane emissions from individual or small groups of 
animals can be acquired under some degree of grazing. This allows test animals to 
express normal grazing behavior, including diet selection over the forages confi ned 
within the polytunnel space (Table  5.1 ). They have been used in the UK to measure 
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CH 4  emissions from ruminants under semi-normal grazing conditions. Murray et al. 
( 2001 ) reports CH 4  emissions from sheep grazing two ryegrass pastures and a clo-
ver–perennial ryegrass mixed pasture using this methodology. Essentially polytun-
nels consist of one large infl atable or tent type tunnel made of heavy duty 
polyethylene fi tted with end walls and large diameter ports. Air is drawn through the 
internal space at speeds of up to 1 m 3  s −1  (Lockyer and Jarvis  1995 ). In general they 
are used where emissions from fresh forages are of interest because animals can be 
allowed to graze a confi ned area of known quality and quantity. When the available 
forage is depleted the tunnel is moved to a new patch.

   Air fl ow rate can be measured at the same interval as the CH 4  or can be continu-
ously sampled at the exhaust port (Lockyer  1997 ). Micropumps may be used to pass 
the exhausted air to a dedicated gas analyzer or a gas chromatograph (GC) (Murray 
et al.  2001 ). Data from all sensors can be sent to a data logger, which captures 
fl ow rate, humidity, and temperature within the tunnel, and gas production from the 
livestock. Samples of the incoming and exhaust air can be taken as frequently as 
necessary, depending on the accuracy required. The samples can be either taken 
manually or by an automatic sampling and injection system. 

 The polytunnel system requires frequent calibration to assure a good recovery 
rate, which is performed using the same principle as the chamber technique. 
Methane measurements can be collected over extended periods of time. Fluctuations 
occur due to changes in animal behavior, position relative to the exhaust port, 
internal temperature, relative humidity, and grazing pattern of the animal: eating, 
ruminating, or resting (Lockyer and Jarvis  1995 ; Lockyer and Champion  2001 ). 
The polytunnel is suitable for measuring CH 4  emissions under semi-normal grazing 
conditions. It has been reported that the polytunnel method gives 15 % lower 
readings of CH 4  concentration compared to the respiration chamber method, sug-
gesting that animals actually consume less in the polytunnel. This requires further 
investigation. Recovery rate is high in both systems: 95.5–97.9 % in polytunnels, 
compared to 89.2–96.7 % in chambers (Murray et al.  1999 ). With an automated 
system, measurements can be performed with high repeatability. The system is por-
table and can be used on a number of pastures or browse shrubs, though again its 
utility is limited by the inability to capture feed intake.    

5.3.4      Sulfur Hexafl uoride Tracer Technique   

   The  sulfur hexafl uoride (SF 6 ) technique   provides a direct measurement of the CH 4  
emission of individual animals. This technique can be performed under normal 
grazing conditions, but can also be employed under more controlled conditions 
where intake is measured and/or regulated. 

 The SF 6  principle relies on the insertion of a permeation tube with a predetermined 
release ratio of SF 6  into the rumen, administered by mouth (Johnson et al.  1994 ). 
Air from around the animal’s muzzle and mouth is drawn continuously into an 
evacuated canister connected to a halter fi tted with a capillary tube around the neck. 
Johnson et al. ( 1994 ) provide a detailed description of the methodology. 
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 The duration of collection of each sample is regulated by altering the length and/
or diameter of the capillary tube (Johnson et al.  1994 ). Several modifi cations have 
since been reported with specifi c applications (Goopy and Hegarty  2004 ; Grainger 
et al.  2007 ; Ramirez-Restrepo et al.  2010 ). Most recently Deighton et al. ( 2014 ) 
has described the use of an orifi ce plate fl ow restrictor which considerably reduces 
the error associated with sample collection and should be considered in preference 
to the traditional capillary tube fl ow restrictors. At completion of sample collection 
the canisters are pressurized with N 2  prior to compositional analysis by gas 
 chromatography. Enteric CH 4  production is estimated by multiplying the CH 4 /SF 6  
ratio by the known permeation tube release rate, corrected for actual duration of 
sample collection, and background CH 4  concentration (Williams et al.  2011 ), which 
is determined by sampling upwind ambient air concentration. Williams et al. ( 2011 ) 
emphasized the importance of correct measurement and reporting of the background 
concentrations, especially when the method is applied indoors. CH 4  is lighter 
(16 g mol −1 ) than SF 6  (146 g mol −1 ) and will therefore disperse and accumulate 
differently depending on ventilation, location of the animals, and other building 
characteristics. 

 This method enables gas concentrations in exhaled air of individual animals to be 
sampled and takes into account the dilution factor related to air or head movement. 
The high within- and between-animal variation is a signifi cant limitation of this 
method. Grainger et al. ( 2007 ) reported variation within animals between days of 
6.1 % and a variation among animals of 19.7 %. Pinares-Patiño et al. ( 2011 ) moni-
tored sheep in respiration chambers simultaneously with the SF 6  technique. They 
reported higher within (×2.5) and between (×2.9) animal variance compared to the 
chamber technique, combined with a lower recovery rate (0.8 ± 0.15 with SF 6  versus 
0.9 ± 0.10 with chambers). These sources of variation need to be taken into account in 
order to determine the number of repeated measures necessary to ensure accurate 
results. Moate et al. ( 2015 ) describes the use of Michaelis–Menten kinetics to better 
predict the discharge rate of capsules, which should reduce error associated with esti-
mating discharge rates. It should also prolong the useful life of experimental subjects 
through the improved predictability of discharge rates over much longer intervals. 

 The SF 6  technique allows animals to move and graze normally on test pastures. 
This makes the method suitable for examining the effect of grazing management on 
CH 4  emissions (Pinares-Patiño et al.  2007 ) but it does so at a cost. The SF 6  method 
is less precise, less physically robust (high equipment failures), and more labor- 
intensive than respiration chamber measures.    

5.3.5     Open-Path Laser 

   The use of  open-path lasers      combined with a micrometeorological dispersion 
method can now be used to measure enteric methane emissions from herds of ani-
mals. It therefore facilitates whole-farm methane measurements across a number of 
pastures. 
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 The open-path laser method for whole-farm methane measurements is already in 
use in Canada (McGinn  2006 ; Flesch et al.  2005 ,  2007 ), Australia (Loh et al.  2008 ; 
McGinn et al.  2008 ; Denmead  2008 ; Tomkins et al.  2011 ), New Zealand (Laubach 
and Kelliher  2005 ) and China (Gao et al.  2010 ). Methane concentration measure-
ments are performed using one or more tuneable infrared diode lasers mounted on 
a programmable and motorized scanning unit (Tomkins et al.  2011 ). The tuneable 
infrared diode laser beams to a retro refl ector along a direct path, which refl ects the 
beam back to a detector. The intensity of the received light is an indicator of the CH 4  
concentration (ppm) along the path. In an optimal situation there should be at least 
one path for each predominant wind direction: one path upwind (background CH 4 ) 
and multiple paths downwind (CH 4  emission) of the herd. This method assumes that 
the herd acts as a surface source or, when individual animals can be fi tted with GPS 
collars, individual animals are treated as point sources. 

 Regardless of application, the CH 4  concentration is calculated as the ratio of the 
external absorption to internal reference-cell absorption of the infrared laser beam 
as it travels along the path (Flesch et al.  2004 ,  2005 ). Methane concentration and 
environmental indicators such as atmospheric temperature, pressure, and wind 
direction and speed are continually measured and recorded using a weather station 
(Loh et al.  2008 ,  2009 ). Data—including GPS coordinates of the paddock or indi-
vidual animals from a number of averaging time periods—can be merged using 
statistical software. After integrating, WindTrax software (Thunder Beach 
Scientifi c, Nanaimo, Canada) uses a backward Langrangian Stochastic (bLS) model 
to simulate CH 4  emissions (g day −1  per animal), by computing the line average CH 4  
concentrations with atmospheric dispersion conditions. 

 The data integrity of the open-path laser method is highly dependent on environ-
mental factors and the location of test animals. Flesch et al. ( 2007 ) described several 
criteria to determine data integrity using the open-path laser method. These criteria 
are based on wind turbulence statistics, laser light intensity,  R  2  of a linear regression 
between received and reference waveforms, surface roughness, atmospheric stabil-
ity, and the source location (surface or point source). Invalid data can be generated as 
a result of misalignment of the laser, unfavourable wind directions, surface rough-
ness or periods in which the atmospheric conditions (rain, fog, heat waves, etc.) are 
unsuitable for applying the model (Freibauer  2000 ; Laubach and Kelliher  2005 ; Loh 
et al.  2008 ). To optimize the positioning of the equipment, these meteorological and 
physical aspects of the experimental site must be taken into account (Flesch et al. 
 2007 ; Loh et al.  2008 ,  2009 ). Moreover, the measurement area is restricted by the 
length of the laser paths when using a surface source approach. It is important to 
defi ne the herd location, as uneven distribution of the herd results in miscalculations 
of the CH 4  concentration. Tomkins et al. ( 2011 ), comparing open- circuit respiration 
chambers with the open-path laser technique, reported estimated CH 4  emissions 
using the bLS dispersion model of 29.7 ± 3.70 g kg −1  dry matter intake (DMI), com-
pared to 30.1 ± 2.19 g kg −1  DMI measured using open-circuit respiration chambers. 

 The open-path laser method does not interfere with the normal grazing behavior 
of the cattle and is noninvasive. Spatial variability is taken into account in these 
measurements, as the method can simulate gas fl uxes over a large grazing area. 
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Moreover, the tuneable diode laser is highly sensitive and has a fast response to 
changes in CH 4  concentration, with detection limits at a scale of parts per trillion 
(McGinn et al.  2006 ). The labor intensity is low, although the equipment requires 
continuous monitoring. This method is expensive, which refl ects not only the 
requirement for sensitive and rapid-response instruments to analyze CH 4  concentra-
tion, but also the requirement to capture micrometeorology data. Diurnal variations 
due to grazing and rumination pattern, pasture composition, and individual varia-
tion need to be considered in planning experimental protocols to prevent over- or 
undercalculation of the total emission. Furthermore, DMI determination is not very 
accurate as this is based on predictive models using the relationship between LW 
and LW gain, following assumption of the ARC ( 1980 ).     

5.4     Short-Term Measurement 

 While most assessments of enteric methane emissions are focused on daily methane 
production (DMP), or the derivative, daily methane yield (MY), there is an increasing 
impetus to estimate the emissions of large numbers of animals in their productive envi-
ronment. This is driven both by the demand for data to establish genetic parameters for 
DMP and to verify mitigation strategies or GHG inventories. This area is discussed 
only briefl y here, as there is currently limited scope for the application of these tech-
nologies in sub-Saharan Africa. The area has been ably reviewed by Hegarty ( 2013 ). 

5.4.1     Greenfeed  ®   Emission Monitoring Apparatus 

  Greenfeed  ®        is a patented device (Zimmerman and Zimmerman  2012 ) that measures 
and records short-term (3–6 min) CH 4  emissions from individual cattle repeatedly 
over 24 h by attracting animals to the unit using a “bait” of pelleted concentrate. 
By being available 24 h day −1  potential sampling bias is reduced and the technique 
has been shown to provide comparable estimates to those produced both by respira-
tory chamber and SF 6  techniques (Hammond et al.  2013 ). However, a signifi cant 
limitation of the technique is the requirement to supply an “attractant” to lure the 
animal to use the facility, consisting of up to 1 kg of concentrate pellets per day. 
This will certainly affect DMP and may also alter VFA profi les or the overall digest-
ibility of the diet. Attempts to use energy neutral attractants, such as water have 
proven equivocal (J Velazco, personal communication).  

5.4.2     Portable Accumulation Chambers 

   Portable accumulation chambers ( PAC     ) consist of a clear polycarbonate box of 
approximately 0.8 m 3  volume, open at the bottom and sealed by achieving close 
contact with fl exible rubber matting. Methane production is measured by the increase 
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in concentration that occurs while an animal is in the chamber for approximately 1 h. 
PACs were designed to screen large numbers of sheep, variously to identify poten-
tially low and high emitting individuals and to develop genetic parameter estimates 
in sheep populations. This technique initially showed close agreement with respira-
tory chamber measurements (Goopy et al.  2009 ,  2011 ). Subsequent investigations 
demonstrated such measurements to be moderately repeatable in the fi eld and to 
have potential for genetic screening of animals (Goopy et al.  2015 ). Longer-term 
comparisons of PAC measurements and respiratory chamber data, however, suggest 
that these two methods may be measuring quite different traits and further investiga-
tion is required before committing signifi cant resources to PAC measurements 
(Robinson et al.  2015 ).    

5.4.3     Application of CH 4 :CO 2   Ratio   

 Madsen et al. ( 2010 ) proposed using the ratio of CH 4 :CO 2  in exhaled breath to 
assess EMP in ruminants. This method requires knowledge about the intake, energy 
content, and heat increment of the ration consumed. Haque et al. ( 2014 ) applied this 
method, using a fi xed heat increment factor. Hellwing et al. ( 2013 ) regressed open- 
circuit chamber measurements of DMP in cattle against estimates calculated using 
CH 4 :CO 2  ratios and found them to be only moderately correlated ( R  2  = 0.4), which 
suggest this method is unsuitable for precision measurements.  

5.4.4     Spot Sampling with Lasers 

   Spot measurements   of methane in the air around cattle’s mouths have been made 
using laser devices to provide short-term estimates of enteric methane fl ux 
(Chagunda et al.  2009 ; Garnsworthy et al.  2012 ). These estimates are then scaled up 
to represent DMP — requiring an impressive number of assumptions to be met to 
satisfy such scaling. Chagunda and Yan ( 2011 ) have claimed correlations of 0.7 
between laser and respiratory chamber measurements, but this claim is based on the 
laser apparatus measuring methane concentrations in the outfl ow of the chambers, 
rather than from the animals themselves.    

5.5     Emerging and Future Technologies 

5.5.1      Blood Methane Concentration   

 This methodology relies on enteric methane being absorbed across the rumen wall, 
transported in the blood stream to the pulmonary artery and respired by the lungs. 
The jugular (vein) gas turnover rate of enteric SF 6  (introduced by an intraruminal bolus) 
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and CH 4  has been used to determine the respired concentrations and solubility of 
these gases (Ramirez-Restrepo et al.  2010 ). The solubility coeffi cients and CH 4  
concentrations are determined by gas chromatography, comparing the peak area of 
the sampled gases with standards. Variances in CH 4  and SF 6  blood concentrations 
may be related to the methodology, or may occur because these gases are not 
equally reabsorbed. This requires further investigation. Sampling can be logisti-
cally challenging and labor-intensive and it is important to recognize that this 
method provides little more than a “snapshot” of methane concentration at the 
time of sampling.  

5.5.2      Infrared Thermography      

 Montanholi et al. ( 2008 ) have examined the use of infrared thermography as an 
indicator for heat and methane production in dairy cattle. No direct relationship was 
reported, however, between temperature in any specifi c part of the body and methane 
production.  

5.5.3     Intraruminal Telemetry 

 The  use      of a rumen bolus to measure methane in the liquid phase is logistically 
possible and small changes (<50 μmol L −1 ) in CH 4  concentrations could be 
detectable (Gibbs  2008 ). Low pH and redox potential have been correlated 
with decreased CH 4  concentrations, and a pH and redox sensor have been devel-
oped to suit a rumen bolus by eCow Electronic Cow Management at the University 
of Exeter, UK (  www.ecow.co.uk    ). This technology is still in its exploratory stages 
but the application of a rumen bolus to measure CH 4  in the rumen headspace has 
been patented (McSweeney, personal communication.) and could theoretically 
provide accurate CH 4  concentration estimates for large numbers of free grazing 
animals.  

5.5.4      Quantitative Molecular Biology      

 Gibbs ( 2008 ) examined the correlation between the numbers of methanogens and 
CH 4  production in short time intervals. Results from real-time polymerase chain 
reaction (PCR) suggest that increased CH 4  production is related to increased 
methanogen metabolic activity rather than increased population size.   

J.P. Goopy et al.

http://www.ecow.co.uk/


113

5.6     Summary 

 EMP is a complex trait, involving animal physiology and behavior, plant factors, 
and animal management. Although there are many techniques available to estimate 
EMP, all have limitations. The appropriateness of a technique is strongly infl uenced 
by its intended purpose and the degree of precision required. It is important to rec-
ognize that while more sophisticated in vitro techniques can provide robust infor-
mation about the fermentative, and hence, methanogenic potential of feeds, they do 
not truly represent in vivo fermentation, nor do they account for feed intake, and 
will be of limited predictive use for animals grazing heterogeneous pastures. 
If intake is unknown it will diminish the utility of established models, especially 
when assumptions regarding ad libitum intake are violated. Lasers, infrared, and 
SF 6  techniques can all be used to measure EMP of animals at pasture. However, all 
are technically fastidious and in situations where intake is unknown, cannot be used 
to determine emissions intensity. Respiration chambers, while requiring signifi cant 
capital to construct and technical skill to operate, provide precise and accurate mea-
surements of EMP on known feed intake. Whilst there are justifi ed criticisms sur-
rounding reproducibility of EMP at pasture and evidence of changed feeding 
behavior in some cases, respiration chambers remain the most accurate method of 
assessing EMP in individual animals. 
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    Abstract     This chapter presents methods to quantify carbon stocks and carbon 
stock changes in biomass of trees in agricultural landscapes. Specifi cally it assesses 
approaches for their applicability to smallholder farms and other tree enterprises in 
agricultural landscapes. Measurement techniques are evaluated across three crite-
ria: accuracy, cost, and scale. We then recommend techniques appropriate for users 
looking to quantify carbon in tree biomass at the whole-farm and landscape scales. 
A basic understanding of the carbon cycle and the concepts of biomass assessment 
is assumed.   

6.1     Introduction 

 Trees and woody  biomass   play an important role in the global carbon cycle. Forest 
biomass accounts for over 45 % of terrestrial carbon stocks, with approximately 
70 % and 30 % contained within the above and belowground biomass, respectively 
(Cairns et al.  1997 ; Mokany et al.  2006 ). Not all trees exist inside forests, however. 
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Trees feature prominently in agricultural landscapes globally. Almost half of all 
agricultural lands maintain at least 10 % tree cover (Zomer et al.  2014 ) (Table  6.1 ). 
Despite widespread distribution, tree outside forests ( TOF  )    are an often neglected 
carbon pool and little information is available on carbon stocks in these systems or 
their carbon sequestration potential (de Foresta et al.  2013 ; Hairiah et al.  2011 ).

   The ubiquity and use of trees in agricultural landscapes is signifi cant for small-
holder farmers’ livelihoods and modifying local climate (van Noordwijk et al.  2014 ), 
but it also contributes to global climate change mitigation (Nair et al.  2009 ,  2010 ). 
Even when planted at low densities, the aggregate carbon accumulation in trees can 
help fi ght  climate change   because of the large spatial extent covered (Verchot et al. 
 2007 ; Zomer et al.  2014 ). Such trees are estimated to accumulate 3–15 Mg ha −1  year −1  
in aboveground biomass alone (Nair et al.  2010 ), a non-trivial amount when com-
pared to other carbon sinks such as soil. Simultaneously, trees diversify diets, reduce 
soil erosion, and expand market opportunities for smallholder farmers (Van 
Noordwijk et al.  2011 ). Thus, trees in agricultural landscapes offer opportunities to 
mitigate climate change and improve smallholder livelihoods (Kumar and Nair  2011 ). 
The synergy between climate adaptation and mitigation through trees in agricultural 
lands is now receiving explicit attention (Duguma et al.  2014 ). 

 Despite the signifi cant advances in assessment methods, quantifying carbon 
stocks and fl uxes at different spatial scale is still challenging. Although National 
Forest Inventories ( NFIs     ) are supposed to provide such guidelines, they are well 
developed only in the Northern hemisphere. Most NFIs also do not include trees 
outside forests (TOF) and until recently TOF have been poorly defi ned (de Foresta 
et al.  2013 ; Baffetta et al.  2011 ). Hence sampling designs that can be consistently 
applied to both forests and TOF are lacking while ideally national biomass esti-
mates should include carbon estimates of both forests and TOF. Most NFIs (except 
Sweden and Canada) do not include explicit TOF categories (de Foresta et al.  2013 ). 

 The dearth of consistent methodology and a new interest to integrate trees in 
farming systems in global  biomass assessments   (de Foresta et al.  2013 ) is catalyzing 
efforts to generate data on biomass and carbon specifi c for trees on farmland. This, 
however, comes with the challenge to rapidly develop and standardize methods for 
biomass assessment, obstacles in the forestry community has been grappling with 
for decades. Forest-based methodologies can be adapted for some applications. 
However, TOF present unique issues. To begin with, tree stands in agricultural 

   Table 6.1    Typical precision for various quantifi cation uses   

 End user  Potential uses  Typical precision 

 National governments  Reporting to the IPCC  Variable 
 Development of National Appropriate 
Mitigation Actions 

 Markets  Carbon trading between governments and 
businesses 

 ±10 to 20 % 

 Development 
organizations 

 Promotion of low emission agricultural 
development 

 Undefi ned 
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landscapes typically show irregular shapes when compared to those in more dense 
forest stands. The geometry of tree stands on farmland is particularly plastic, sensi-
tive to local environmental conditions (Harja et al.  2012 ), and human management 
(Dossa et al.  2007 ; Frank and Eduardo  2003 ).  Tree management   (pruning,  coppicing, 
lopping, etc.) may violate assumptions of the available allometries, which were 
developed based on physiological relationships (e.g., mass and  diameter at breast 
height (DBH)  ) observed in forests and plantations (Kuyah et al.  2012a ). The impact 
of local edaphic conditions on tree growth combined with the diversity of uses and 
agroecological conditions complicates the construction of a coherent database to 
represent carbon and biomass estimation equations (BEMs) for farmland trees. 
The consequence is a scarcity of data and a fragmented understanding of the role 
trees on farms may play in climate and development discussions. 

 With more attention paid to farm forestry, agroforestry, and expansion of the 
agricultural frontier in many countries, quantifi cation of biomass in trees in agricul-
tural landscapes is receiving greater attention. There is a growing interest in the 
assessments of carbon stocks and sequestration for carbon monitoring and reporting 
needs, but also as a way to evaluate agricultural interventions (Thangata and 
Hildebrand  2012 ). In the following sections, we discuss general considerations of 
measurement accuracy, cost, and scale when quantifying and discuss the two pre-
dominant quantifi cation approaches for biomass and carbon in trees on farms.  

6.2     Accuracy, Scale, and Cost 

 Accurate estimates of changes  in   C stocks are required and uncertainties should be 
reduced as much as is practical (IPCC  2003 ). Yet, uncertainty depends strongly on 
scale and the costs of high accuracy plus high spatial resolution must be weighed 
against the benefi ts of farmer incentive schemes that need such information, as 
opposed to cheaper solutions that meet accuracy targets by spatial aggregation, e.g., 
to a 1 km 2  scale (Lusiana et al.  2014 ). Methodological limitations and random as 
well as systematic errors associated with quantifi cation of biomass of trees on farms 
guarantee uncertainties in estimates. A large degree of uncertainty exists in estima-
tions of C stocks and fl uxes at the local, regional, and global scale. Some of the 
uncertainty results from the lack of consensus on defi nitions, inconsistencies in 
methods, and assumptions leading to widely differing results even among similar 
studies (Sileshi  2014 ). These variations are mainly a result of lack of a common 
framework for sampling. Uncertainty in C estimation should be addressed to estab-
lish the reliability of estimates and provide a basis of confi dence for decision- 
making, particularly where comparisons (e.g., with baseline results) are involved. 
Identifi ed uncertainties can be quantifi ed through statistical methods such as error 
propagation (Chave et al.  2004 ). Uncertainties in biomass quantifi cation result from 
six primary sources in the quantifi cation process: (1) the level of detail in the method 
used, (2) the complexities of the systems and landscapes being modeled, (3) sam-
pling error, (4) measurement error, (5) model errors, and (6) the inconsistency in 
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estimating and reporting biomass components (Chave et al.  2004 ; IPCC  2003 ). 
Available biomass and carbon estimates for trees on farms vary considerably and 
associated measures of uncertainty in the estimates (e.g., standard errors and confi -
dence intervals) are often not reported. 

  There is a potential mismatch between the  scale   at which measurements are 
made and the scale at which information is required for policy and programmatic 
development. Different methodologies allow quantifi cation of carbon stocks at 
various spatial and temporal scales, ranging from plot to landscape scale and shorter 
and longer time horizons. Here again, the method used depends on the available 
funds and accuracy required. Field sampling methods destructive (i.e., harvesting 
trees, drying, and weighing biomass) or non-destructive (i.e., use of BEMs) are 
affordable and applicable for only a limited number of sites (Table  6.2 ). Remote 
sensing is practical and effective for mapping aboveground biomass in expansive 
remote areas, e.g., at regional scale. 

   The  cost   of carbon quantifi cation depends on the method chosen, a choice that is 
determined by the scale of measurement and desired level of accuracy. The methods 
presented here vary in their degree of robustness, allowing for trade-offs between 
accuracy, cost, and practical viability for smallholder systems (Table  6.2 ). The key 
is to determine information that can be obtained at relatively low cost but still pro-
duces estimates within an acceptable level of accuracy. Destructive measurements 
are known to be costly in terms of resources, effort, and time, and are not permitted 
for rare or protected species. Modeling with BEMs is therefore an expedient way of 
estimating carbon both from fi eld inventories or remote sensing. Obtaining fi eld 
inventories is expensive, slow, and impractical in large areas. Ground-based mea-
surements of tree diameters are therefore often combined with predictive models to 
estimate carbon stocks in small areas that can be upscaled. The costs on fi eld inven-
tories and analytical methods are greatly infl uenced by the sampling design used 
and the minimum number of measurement required for a particular method. For 
both modeling with BEMs and remote sensing, costs can be greatly reduced and 

    Table 6.2    Comparison of approaches and techniques in terms of scale, cost, and accuracy   

 Approach  Scale  Cost  Accuracy  Uncertainty 

 Destructive sampling  Limited to 
small area 

 Expensive  Most accurate 

 Allometry  Allows 
upscaling 

 Cheap once 
equations are 
developed 

 Relatively 
accurate 

 Dendrochronology  High 
resolution at 
tree level 

 Cheap once 
the lab 
equipment 
exists 

 Very accurate 
if individual 
rings are easy 
to read 

 Missing rings, 
wood anatomy, 
wedging, etc. 

 Remote sensing  Variable 
(high to low 
resolution) 

 High- 
resolution 
data are still 
very 
expensive 

 Relatively 
accurate 
depending on 
the indices of 
method used 

 For low resolution 
there is blended 
information that 
reduce farm-level 
assessment 
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effi ciencies of labor and time achieved by adopting multipurpose sampling sites or 
procedures. For example, the sites could be designed to take measurements for car-
bon quantifi cation, and also provide data for biodiversity analyses or assessment of 
vegetation and soil properties. An example is the Land Health Surveillance 
Framework, designed to cost-effectively enable measurement and monitoring of 
carbon in a given landscape over years (Vågen et al.  2010 ). Regarding the models, 
simple power-law models with DBH alone are less expensive to develop and use 
compared to parameter-rich models. This is because  DBH   measurements can be 
easily obtained at low cost compared to specialized equipment required for height 
or crown area measurements. Remote sensing can greatly reduce the time and cost 
of collecting data over large areas, particularly for highly variable, widely spaced, 
and hard-to-access areas (Wulder et al.  2008 ). However, remote sensing approaches 
such as airplane-mounted LiDAR instruments are still too costly and technically 
demanding. And while remote-sensing instruments can estimate proxies that can 
also be converted into biomass using statistical models; additional expenses will be 
incurred on fi eld data for calibration/validation, which are also prone to errors. This 
is because there is no remote-sensing instrument that can presently measure tree 
carbon stocks directly (Gibbs et al.  2007 ).  

6.3     Quantifi cation of Five Carbon Pools 
of Representative Plots 

 Tree biomass can be estimated using direct (destructive) or indirect (non- destructive) 
approaches (Pearson et al. ( 2005 ) or GOFC-GOLD ( 2011 ) for methods, models, 
and parameters widely used).  Direct methods   require felling of trees and weighing 
the component parts. Destructive sampling provides the best data for building 
BEMs, generating inventory for estimating biomass, and providing requisite infor-
mation for validating indirectly estimated biomass (Brown  1997 ; Gibbs et al.  2007 ). 
By contrast,  indirect methods   (e.g., BEMs and remote sensing) use readily measur-
able proxies, such as DBH, crown area, or vegetation indices that are then converted 
into biomass based on statistical relationships established by destructive sampling 
(Brown  2002 ; Bar Massada et al.  2006 ). Unfortunately, most algorithms and regres-
sions relating remotely sensed data to biomass increase precision, not accuracy. 
Therefore, it is important to make ground measurements to increase the accuracy of 
BEMs and remotely sensed data. 

  Cost   considerations require that estimates of carbon stocks and stock changes 
on farms and landscapes be based on representative samples from land uses and 
covers and measurement of proxy variables rather than quantifying biomass on 
every farm or pixel and destructive sampling of trees, respectively. Indirect mea-
sures and statistical models only approximate biomass with a precision subject to 
the representativeness of the models to local conditions. That latter consideration 
is particularly salient for smallholder situations in tropical developing countries. 
Models have largely been constructed on data not collected in the tropics and little 
in Africa (Hofstad  2005 ; Henry et al.  2011 ) and even fewer data and BEMs are 
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available for trees on farms. Applying equations to data with size range beyond the 
one that was used in building the equations can lead to high levels of bias and poor 
estimates of biomass. Biomass—and carbon—estimates by indirect methods will 
therefore always be inaccurate. Qualitatively, at least, the direct linkage between 
tree architecture, as modifi ed by farm management, and fractal branching models 
that generate allometric equations suggests ways to make adjustments where major 
branches or parts of the crown are missing from trees (Hairiah et al.  2011 ; 
MacFarlane et al.  2014 ). 

 The  cost   and time of destructive measurement make it impractical for most uses. 
Therefore, this discussion focuses on indirect quantifi cation methods. Indirect 
 quantifi cation   of four IPCC identifi ed biomass carbon pools (aboveground biomass, 
belowground biomass, deadwood, and litter) involves a series of steps (1) stratifi ca-
tion/identifi cation of the target areas, (2) measurement of proxies for biomass, (3) 
calculating biomass/carbon (4) scaling to whole-farms and landscapes (Fig.  6.1 ). 
This highlights the need to recognize two aspects to the uncertainty of carbon 
estimation: the fi rst aspect is plot level—how good are measurements of biomass in 
the fi eld? Do they account for belowground biomass, dead biomass, soil carbon, 
hollow trees, and smaller trees e.g., those <10 cm diameter? How good are we at 
converting wood volumes into total aboveground biomass? The second aspect of 
uncertainty is converting plot-level measurements across space, either through 
modeling or with satellite data.

  Fig. 6.1    Mixed-method approach to fi ve-pool carbon estimates for farms and landscapes       
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6.3.1       Selecting Plots 

  Quantifi cation at farm  and   landscape scales requires extrapolation from data 
gathered from relatively small plots to larger areas. Extrapolation is necessary 
because it is prohibitively expensive to measure every tree on every farm or 
throughout the landscape. With stratifi cation, we aim to quantify the biomass and 
carbon at a few representative locations and then use data on the frequency of 
their occurrence to calculate total biomass at larger spatial extents. It is therefore 
critically important that the sample is representative of the larger area and farm/
landscape features of interest and an estimate of the frequency of occurrence of 
the feature of interest is possible (Brown  1997 ). A stratifi ed  random sampling 
approach   can be employed to guide sample selection ranging from remote sensing 
to household surveys. For building BEMs, a randomized pre-sample of trees can 
be generated from an inventory with respect to a stratifi ed diameter class and trees 
for destructive sampling chosen through a blind selection without tree species 
association. For inventories, stratifi cation by topographic features, management 
infl uence, and age classes are likely to produce more homogenous strata from 
which sample units could be selected. Age is essential particularly where lifecycle 
analysis is involved. In rotational plantations this is easy to implement, but in 
many land use systems derived from natural vegetation by selective retention of 
trees (e.g., shea or baobab trees in many savanna systems), regeneration pattern 
need to inform the sample selection. In systems with “internal regeneration,” sim-
ilar to natural forest with a gap renewal cycle, the age of the most frequent tree 
diameter class can be used to reconstruct a time-averaged carbon stock at the land 
use system level (Hairiah et al.  2011 ). We refer you to Chap.   2     of this manual and 
the references therein to determine an appropriate method for stratifying the sam-
ple. The remainder of this discussion assumes the availability of representative 
plots and knowledge of the relative distribution of different features or land use 
classes in the geographic space of interest.   

6.3.2     Measurements of Proxies for Tree Biomass 

  Tree biomass is estimated from ground- based   inventory data, remote sensing, or 
a combination of the two. Researchers and project developers tend to rely on 
BEMs, which calculate tree biomass based on easily measured dimensions based 
on the idea that standard relationships occur such as the diameter to mass or height 
to mass (West  2009 ) or root-to-shoot (Cairns et al.  1997 ; Mokany et al.  2006 ). 
Because of the variations in tree characteristics among ecological conditions, 
particularly in agricultural landscapes, and the need to account for biomass in all 
plant parts, it is ideal to use locally developed equations or develop BEMs at a 
local scale (Henry et al.  2011 ). Where local BEMs are not available, there are two 
other options. First, volume equation and inventory data arising from commercial 
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interest valuing the stock of wood resources in forests may be available in many 
developing countries (Hofstad  2005 ; Henry et al.  2011 ). However, this approach 
provides data primarily on merchantable wood, leaving out components such as 
branches, twigs, and leaves, yet in some species these components constitute a 
signifi cant amount, about 3 %, of the total aboveground biomass (Kuyah et al. 
 2013 ). The second option is to use the pantropical models (e.g., Chave et al. 
 2005 ). However, these are broadly derived, based on a large dataset and stratifi ed 
by region or climatic conditions. The defi nition of climatic regimes is not intuitive 
and direct application of these models could give biased estimates if applied 
across the board, particularly in agricultural landscapes where trees face multiple 
stresses (Kuyah et al.  2012a ; Sileshi  2014 ). 

 BEMs require the measurement of tree dimensions such as DBH, basal area, 
height, or crown dimensions. Presuming measurements are conducted with care, 
accurate biomass estimates are best obtained by measurements of each parameter. 
However, certain measurements (e.g., height) are diffi cult to obtain accurately in 
the fi eld by non-destructive methods and hence including this parameter in models 
may introduce error into the biomass estimates, by a mean of 16 % (Hunter et al. 
 2013 ). Furthermore, complete datasets are in many cases not necessary to provide a 
reasonable estimate of biomass because inclusion of all parameters only moderately 
increases the accuracy of the total estimate. For example, inclusion of DBH alone 
provided an estimate within 1.5 % of the actual biomass measured in an agricultural 
landscape of Western Kenya (Kuyah and Rosenstock in review), which agrees with 
most studies (Cole and Ewel  2006 ; Basuki et al.  2009 ; Bastien-Henri et al.  2010 ). 
Given the complexities and potential errors in measuring other parameters (i.e., dif-
fi cult terrain or dense foliage when measuring height), the need for specialized 
tools (e.g., hypsometer or clinometer for height), or destructive measurements 
(e.g., wood density), the use of DBH alone appears cost-effective and robust for 
most purposes (Sileshi  2014 ). 

 At landscape scales, ground-based inventories are typically too resource- 
intensive to complete. Instead, crown area—which can be measured by remote 
sensing—is increasingly being tested for estimating aboveground biomass (Wulder 
et al.  2008 ; Rasmussen et al.  2011 ; Fig.  6.2 ). Two issues complicate widespread 
application of remote sensing and crown areas. First, crown area is not as strongly 
correlated with biomass as  DBH  . This may be particularly important for trees on 
farms that show irregular growth patterns due to variable environmental conditions 
(e.g., near red/far red light interception, availability of soil nutrients) or manage-
ment by farmers (e.g., limb collection for fi rewood). For example, (Kuyah et al. 
 2012b ) show crown area measurements alone grossly misrepresent standing stocks 
of carbon, by about 20 % relative to diameter estimates. It is therefore important to 
calibrate remotely sensed crown area estimates with fi eld measured DBH to 
improve the accuracy of measurements. Second, remote sensing of crown areas for 
trees outside of forests requires high-resolution imagery to differentiate small 
features such as individual trees on farms. Typically, Quickbird images with sub-m 
resolution are best suited for this task but cost ~15 USD per km. Without suffi cient 
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resolution, it is not possible to identify trees and may lead to underestimation of 
biomass. Unfortunately, the price of the satellite imagery increases in parallel with 
the resolution and the specialized skills necessary to process the imagery limits 
many  applications of this technique outside of the research arena at this time. 
Despite the challenges, crown area allometry is likely the most promising approach 
to transform our ability to capture information on aboveground biomass stocks, 
potentially for relatively low total costs in the future (Gibbs et al.  2007 ; Wulder 
et al.  2008 ).

   Field measurements and remote sensing generate estimates of aboveground bio-
mass. Though most of the carbon in trees is contained in aboveground biomass, a 
signifi cant fraction can be found in the four other major carbon pools: belowground 
biomass, litter, deadwood, and soils. Soil carbon is discussed in Chap.   7     (Saiz and 
Albrech this volume) and thus we restrict this brief discussion to the other three pools. 
For almost all applications, belowground biomass will be estimated by allometric 
relationships based on DBH or prescribed root-to-shoot ratios. We are quite skeptical 
of the accuracy of general root-to-shoot ratios for estimation of belowground biomass 
as the growth patterns are sensitive to water availability and may range from 10:1 in 
moist conditions versus 4:1 in arid conditions (IPCC  2003 ). Recent destructive experi-
ments suggest that DBH may be a better predictor than root-to-shoot ratio for trees on 
farms but again require inventories to establish  DBH  . Global studies show that 
belowground biomass (BG) is isometrically related to aboveground biomass (AG) 
(Hui et al.  2014 ; Cheng and Niklas  2007 ); i.e., BG =  a (AG). If one can correctly 

  Fig. 6.2    Delineation of TOF crowns by remote sensing using sub-meter resolution Quickbird 
imagery (Gumbricht unpublished)       
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estimate ‘ a ’, we believe estimating BG from AG using allometric method may be bet-
ter than using shoot-to-root ratios. 

 Consideration of litter and deadwood deserve unique attention for trees on 
farm. Litter might be assumed to be in equilibrium with growth and thus ignored 
in biomass estimation especially on farmland. Deadwood might also be treated in 
the same way given most will be collected for fi rewood or in slash and burn 
agriculture, fi re will consume most of it. A case can be made that the relative lim-
ited size of these pools justifi es such treatment for most cases, especially when 
considering decadal timescales. In cases when litter and deadwood need to be 
estimated, measurements using small nested plots or an independent sampling 
design will be required. For litter, the information collected is total mass per unit 
area but for dead wood, depending on the size, one can measure total mass or 
estimate volume that can be used for mass calculation if wood density is known 
(Pearson et al.  2005 ,  2007 ).   

6.3.3     Calculating C Stocks and Fluxes 

 Until now, we have been discussing the quantifi cation of biomass stocks in a 
small plot area. Oftentimes, however, researchers and project developers are more 
interested in the change in carbon, accumulation or loss, with various practices or 
land use change. So here we consider methods to quantify rates of change in 
woody biomass. 

    Time-Averaged Carbon Stock for Different Land Uses 

 Carbon stocks  in   trees generally accumulate slowly over time. Often it is therefore 
most appropriate to analyze the changes over multiple years or decadal time scales. 
On longer time scales it is possible to analyze the average change (per annum or a 
given time interval) for the lifecycle of the land use or farming system (see Fig.  6.3 , 
for example). Stock change accounting assesses the magnitude of change carbon 
stored between two or more ecosystems that share a reference state. This approach 
is desirable because it allows a researcher to substitute space for time, overcoming 
the challenges of returning to measure the same location/land use/trees twice. 
Researchers locate farming systems existing in the landscape that have already 
been transformed from other land use systems. Carbon stocks calculated from the 
different systems can then be compared to provide a relative estimate of changes 
over time. Characteristically, the changes are standardized to changes per year. 
This approach assumes that carbon stock changes results from land use change/
management and changes in carbon stocks are linear over the time period exam-
ined. This latter assumption negates the temporal dynamics of carbon. Yet, time 
averaged carbon stock presents a snapshot picture about the relative annual fl ux 
and cumulative impacts.
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  Fig. 6.3    Time-averaged aboveground carbon and total soil carbon (0–20 cm).  Source : Hairiah 
et al. ( 2011 )       

       Annual Changes: Growth Rates, Dendrochronology, Repeated 
Measurements 

  Though rarely quantifi ed, examining  annual changes   in biomass carbon in trees on 
farm is important when calculating whole-farm GHG balances, that is, when calcu-
lating the global warming potential or global warming intensity of the system. 
Unfortunately, the growth rates of tropical tree species are only known for a small 
sample of commercially viable timber species and the remaining knowledge gap 
greatly limits the ability to map or model carbon stock changes. There are typically 
few options to gain information about annual stock changes in the absence of 
published growth rates: repeated measurements,  biomass expansion factors (BEFs)  , 
and dendrochronology. 

 Repeated measurement of the same tree species is an option to create informa-
tion on growth rates or annual changes in carbon stocks. Repeated measurements 
must be cautious to return precisely to the same tree/stand and the same measure-
ment of the tree. Because repeated measurement relies on exact locations to docu-
ment what can sometimes be small changes, this method is sensitive to observational 
and measurement errors as well as anomalies in growth patterns on the tree selected. 
Furthermore, repeated measurements can typically only be performed on a limited 
number of trees. Thus again, tree selection, to account for heterogeneity and mini-
mize sampling artifacts, is critical. Though not without uncertainty, repeated 
 measurement do provide a non-destructive approach to quantify short-term changes 
in carbon stocks. 
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 BEFs are another approach of using exiting stand volume data from previous 
forest studies to assess carbon density. BEF bundles two aspects, a conversion of 
volume to mass and an inclusion of ignored trees foliage, small branches not 
accounted in commercial volume assessment. The BEF is a conversion factor that 
calculates biomass based on traditional commercial volume data (Brown  1997 ). 

 The use of  dendrochronology   is an emerging fi eld of application of tree ring for 
biomass assessment for individual tree growth. The method is based on the forma-
tion of annual rings in many tropical trees in areas with one distinct dry season. 
Often, this seasonality induces cambial dormancy of trees, particularly if these 
belong to deciduous species (Brienen and Zuidema  2005 ). Annual tree rings pro-
vide growth information for the entire life of trees and their analysis has become 
more popular in tropical forest regions over the past decades (Soliz-Gamboa et al. 
 2010 ). It is demonstrated that tree-ring studies is a powerful tool to develop high-
resolution and exactly dated proxies for biomass accumulation over time in indi-
vidual trees (Mbow et al.  2013 ). In addition to annual increment of biomass, 
tree-ring analysis helps characterize climate–growth relationship between tree 
growth and rainfall in certain periods of the year and how this translates into tree 
productivity information that is central to carbon sequestration assessment (Mbow 
et al.  2013 ). Basically the use of such method implies the application of allometric 
models on diameter over bark on individual rings measured during the tree lifetime 
(Gebrekirstos et al.  2008 ). Important information can be collected using tree ring: 
(1) growth rate—average annual diameter increment-of-individual species to recon-
struct long-term growth of trees and estimate productivity of trees; (2) age–diameter 
relationships which are required in carbon projections; (3) limiting factors of tree 
growth such as long time drought or severe fi res.    

6.3.4     Scaling to Whole-Farms and Landscapes 

 The fi nal step involves aggregating the  data   on carbon stocks or stock changes 
into whole-farm and landscape-scale estimates. The precise  scaling methods   
applied somewhat depend on the types of data collected and the equations used. 
However, scaling plot measurements will generally proceed in the following 
steps:

    1.    Land use/cover transition matrix in proportion for each zone by spatial analysis   
   2.    Frequency of each zone by spatial analysis   
   3.    Total area of the target area by spatial analysis (expressed in hectares)   
   4.    Carbon stock of each system component calculated from the plot level measure-

ments, allometric equations, and statistical analysis (expressed in Mg C ha −1 )   
   5.    Changes in the C stock for each transition by multiplying each cell in the 

matrix by the difference in the time-averaged C stock for each transition/con-
version by the conversion factor (depending on plot size; expressed in Mg CO 2  
equivalent ha −1 )   
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   6.    Annual changes in C stock for each transition by dividing changes in C stock by 
the length of the study period (expressed in Mg CO 2  equivalent ha −1 )   

   7.    Total annual emission and total sequestration and net changes of C stock in the 
landscape (expressed in Mg CO 2  equivalent ha −1 )    

  Because the principal scaling approach relies on similarity-based relationships 
(e.g., allometric equations) that are scale invariant, the same steps are equally rele-
vant for whole-farms or landscapes, irrespective of the spatial extent. Furthermore, 
since the results are expressed in CO 2  equivalent ha −1  it is possible to integrate these 
measures with those from other GHG sources and sinks such as soil carbon or trace 
gas emissions from soils.   

6.4     Additional Sources of Information 

 Because of the interest in forest inventories, there are countless sources of infor-
mation available to help appropriately select and apply various techniques. 
Table  6.3  tabulates what we feel are the key sources of information, and links to 
specifi c protocols can be found on the website  (  http://www.samples.ccafs.cgiar.
org/protocol/Biomass    ).  

   Table 6.3    Annotated key sources of information   

 Brown S (1997) Estimating Biomass and Biomass Change of Tropical Forests: a Primer. 
(FAO Forestry Paper—134). Food and Agriculture Organization of the United Nations (FAO), 
Rome, Italy 
   This report describes multiple methods for estimating biomass density, including one of the 

fi rst comprehensive descriptions of methods for destructive biomass estimation. The report 
includes biomass estimates for different tropical countries based on forest type and climate. 
Supplementary tables report wood density for different tree species across tropical Asia, 
America, and Africa 

 West PW (2009) Tree and Forest Measurement. 2nd edition. Springer, Heidelberg, Germany 
   The primary audience for this book is undergraduate forestry students, practicing foresters, 

and landholders. As such, it introduces the techniques of tree and forest measurement with 
particular attention paid to non-destructive (allometric) approaches. This book provides a 
step-by-step description of how to measure trees as well as their component parts and then 
scale to the stand or population 

 One hundred years of tree-ring research in the tropics-a brief history and an outlook to future 
challenges. Dendrochronologia 20:217-231 
   This article describes the history of tree-ring analysis in the tropics. Tropical 

dendrochronology is hotly debated primarily because the consistent intra-annual temperatures 
of tropical systems do not produce the same tree-ring pattern we observe in temperate 
tree-rings. Worbes discusses the progress in and applications of tropical tree-ring research. 
One such application that we would like to highlight is the potential to use tree-rings to 
evaluate individual tree growth and thus track biomass accumulation through time 

(continued)

6 Quantifying Tree Biomass Carbon Stocks and Fluxes in Agricultural Landscapes

http://www.samples.ccafs.cgiar.org/protocol/Biomass
http://www.samples.ccafs.cgiar.org/protocol/Biomass


132

   Open Access    This chapter is distributed under the terms of the Creative Commons Attribution 4.0 
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Abstract  Smallholder agricultural systems in tropical and subtropical regions may 
have significantly contributed to greenhouse gas (GHG) emissions over the past 
number of decades. As a result, these systems currently offer large GHG mitigation 
potentials (e.g., soil organic carbon (SOC) sequestration), which can be realized 
through the implementation of good management and sustainable agricultural prac-
tices. In this chapter we synthesize current available methodologies designed to 
assess SOC stocks and stock changes. From this analysis, it becomes apparent that 
the design and subsequent implementation of any quantification and monitoring 
scheme envisaged for studies focusing solely on the soil component greatly differs 
from those developed for whole ecosystem accounting, not just in its approach, but 
also in the amount of resources needed to implement it within a given degree of 
accuracy. We provide analyses and recommendations on methods specifically deal-
ing with quantification and assessment of SOC at both the individual farm and the 
landscape scale in smallholder agricultural systems.

7.1  �Introduction

Agricultural activities are responsible for about one-third of the world’s green-
house gas (GHG) emissions and this share is projected to grow, especially in 
developing countries (IPCC 2007). Indeed, smallholder agricultural systems are 
highly dynamic and heterogeneous environments that may have significantly con-
tributed to GHG emissions over the past number of decades (Berry 2011). 
Furthermore, these systems traditionally suffer from severe soil organic matter 
(SOM) depletion due to intense decomposition following soil ploughing, the 
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removal of most of the aboveground biomass during harvest, and the enhanced 
soil erosion inherent to those activities. Yet, they may also offer large mitigation 
potentials through the implementation of good management and sustainable agri-
cultural practices, particularly through improvements in land-use management, as 
nearly 90 % of IPCC-identified technical potential lies in enhancing soil carbon 
sinks (Lipper et al. 2011).

A number of methodologies are currently available for the quantification of car-
bon stocks in terrestrial ecosystems, varying widely in terms of accuracy, scale, and 
resources needed for their implementation (e.g., Pearson et al. 2005; Ravindranath 
and Ostwald 2008; Hairiah et al. 2010). Table 7.1 offers a comparative analysis of 
methods for quantification of soil organic carbon (SOC) stocks and changes with 
regard to level of accuracy, scale, resources demanded, and land covers considered. 
While nearly all the schemes feature soil as a component of the total carbon pool, 
the number of methods specifically designed to assess SOC stocks and stock 
changes are considerably more limited. This is despite the wide acknowledgement 
that many ecosystem services are strongly correlated with SOC levels, and their 
huge importance for sustaining local livelihoods. The design and implementation of 
any quantification and monitoring methodology for studies focusing solely on the 
soil component may greatly differ from those developed for whole ecosystem 
accounting, not only in approach or the accuracy but also in necessary resources. 
Therefore, it is justified to develop methods that can effectively deal with soil car-
bon quantification and monitoring for a given accuracy within the available budget. 
In the present work we focus on the soil component and provide analyses and rec-
ommendations for methods to quantify SOC in smallholder agriculture in tropical 
environments.

The SOC inventory in a given soil profile is controlled by the complex interac-
tion of many factors, including climate, soil texture, topography, fire frequency, land 
use, and land management (Bird et al. 2001; Saiz et al. 2012). These drivers exert 
contrasting influences on SOC stocks at different spatial scales. At the local scale, 
biotic factors and management activities play a fundamental role in affecting the 
quantity and quality of carbon inputs and decomposition processes, while at larger 
scales the variation in SOC stocks is mainly controlled by topographic, edaphic, and 
climate-related factors (Wynn and Bird 2007; Allen et al. 2010; Saiz et al. 2012). 
Ultimately, an increase in SOC levels at a given site may occur either through the 
reduction of factors promoting SOM mineralization and lateral exports (e.g., ero-
sion), and/or by increasing SOM inputs and enhancing stabilization mechanisms 
(e.g., physical protection of SOM through stable aggregates).

Given the inherent high spatial variability of SOC, accurate quantification and 
monitoring of SOC stocks and stock changes is a complex task even in relatively 
homogeneous ecosystems. This complexity is further exacerbated in smallholder 
environments by the existence of multiple land use activities occurring at various 
management intensities. Moreover, sources of uncertainty and suitable levels of 
precision and accuracy differ when working at the landscape scale as opposed to the 
farm scope because biogeochemical processes affecting SOC dynamics operate and 
interact at different spatial scales (Veldkamp et  al. 2001; Milne et  al. 2013). 
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Therefore, efficient sampling designs are needed across smallholder agricultural 
systems to ensure that SOC stocks and stock changes can be detected at various 
scales for a given accuracy and at minimum costs (Milne et al. 2012; Singh et al. 
2013). Chapters 2 and 3 in this book provide some critical discussions on sampling 
designs specific to smallholder contexts. These chapters deal with systems charac-
terization and targeting, and determination GHG emissions and removals associated 
with land use and land cover change.

In the present work, we propose an integrated field-based approach for small 
household systems that encompasses estimates of SOC stocks and stock changes 
both at farm and landscape scales over a wide range of land use management 
intensities.

7.2  �Quantification of Soil Carbon Stocks

7.2.1  �Sampling Design: Stratification of the Project Area

While the establishment of a geographical extent for quantification of SOC stocks 
and stock changes at the farm level can be straightforward, it is not the case for 
smallholder landscape assessment. The landscape concept may be defined by a geo-
graphic or ecological boundary, which often includes a mosaic of land covers and 
land uses that are managed in several different ways by the multiple stakeholders 
involved. In this context, Chap. 2 in this book provides recommendations for strati-
fying the landscape according to its agricultural productivity, economic outputs, 
potential GHG emissions, and social and cultural values. A SOC quantification 
scheme could integrate with such a stratification approach at the landscape level.

Herein, we describe the methods specifically dealing with quantification and 
assessment of SOC at both the individual farm and the landscape scale in small-
holder agricultural systems.

�Farm Level

Intensive work conducted over the past decade in smallholder agricultural systems 
in sub-Saharan Africa has demonstrated the existence of within-farm variability of 
soil fertility and related soil properties (Prudencio 1993; Carsky et al. 1998; Tittonell 
et al. 2005a, b, 2013). A common feature of these farming systems is the existence 
of strong gradients of decreasing soil fertility with increasing distance from the 
homestead, which mainly occur as a result of differential resource allocation driven 
by the farmer. This spatial gradient must be taken into account when designing SOC 
sampling strategies in these agricultural systems, and more so considering that pre-
vious work has also identified strong correlations between yields, soil quality indi-
cators, land use management, and the distance from the homestead (Tittonell et al. 
2005b, 2013). On the other hand, the presence of either annual or perennial 
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vegetation on a given land use may have a strong impact on SOC stocks, as they 
significantly determine both the quantity and quality of organic matter inputs into 
the soil (Guo and Gifford 2002; Saiz et  al. 2012). Therefore, distance from the 
homestead and land use classified by the presence of annual or perennial vegetation, 
are the main criteria to use in order to categorize field types for the purpose of soil 
sampling. Accordingly, fields are classified into home gardens, close-distance, mid-
distance, and remote fields following a similar procedure as in Tittonell et  al. 
(2005b). These areas may contain several land uses, and as it may not be feasible to 
sample all of them, priority should be given to the actual representativeness of the 
land uses being considered. Therefore, sampling should be preferentially done in 
the largest fields provided that management activities with potentially heavy impact 
on SOC stocks, such as manure additions or recurrent burning of stubble, are 
roughly comparable between the different land uses. However, this assumption may 
not hold quite true in these farming systems, and thus it is worth noting that if land 
use management needs to be adequately quantified, then the sampling effort may 
need to be increased quite considerably. Nonetheless we hypothesize that, on the 
whole, soil sampling across a spatial gradient may partially account for the effect of 
land management intensities along the farm, given that such activities are also likely 
to occur along the same gradient.

�Landscape Level

Assessment of SOC stocks at the landscape scale can be done following a spatially 
stratified randomized sampling design, as this will allow for a more optimum areal 
coverage and unbiased assessment of sample mean, variance, and estimation vari-
ance of the sample mean. At the landscape level, the stratification can be done either 
through: (a) ancillary data, or (b) geographic coordinates, which may include the 
use of a systematic grid over the project area (de Gruijter et al. 2006).

Stratification through ancillary variables requires the establishment of discrete 
strata on which selected factors affecting SOC stocks show some degree of unifor-
mity. Once the study boundaries have been defined, the use of remote sensing in 
combination with geophysical and management information may provide an effec-
tive means to stratify the target area (Ladoni et al. 2010). Such stratification needs 
to be performed considering, at minimum: available soil classifications, soil texture, 
landform information, topographic position, land cover, land use, management his-
tory, fire records, and obvious soil erosion/deposition processes. The initial stratifi-
cation should be conducted in a hierarchical order whereby the factor that exerts 
the strongest influence on SOC stocks is ranked first, and other factors with less 
influence on SOC are subsequently assigned (e.g., a classical ranking approach 
might be climate, soil texture, land cover and management, etc.). The VCS module 
(VMD0018) provides detailed methodology on how to implement and adapt the 
stratification to the needs of the sampling process. Ideally, the number of samples to 
be measured in each stratum should be determined as a proportion of the area and 
the variance observed for that particular stratum. For this, a pilot soil sampling can 
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be conducted which would serve a double purpose: to obtain an initial estimate of 
the variance for each stratum and serve as a training exercise for technicians who 
will be involved in subsequent sampling (MacDicken 1997). Nonetheless, it is 
likely that in smallholder systems, a stratum defined by biophysical factors may still 
be made up of land parcels managed in highly contrasting ways. Indeed, land 
management could account for more variation in SOC stocks at the landscape/ 
regional level than either soil types or land use. Under such circumstances, there 
may be a need to stratify into a greater number of land use categories to account for 
land use management practices between farm tenancies (Bell and Worrall 2009). 
Consequently, the number of samples needed to account for spatial patterns and 
uncertainty in a highly heterogeneous environment can quickly become impractical 
due to the cost and time associated with sample collection, preparation, and analy-
ses. To avoid this, spatially stratified systematic sampling approaches such as the 
one employed by the Land Degradation Surveillance Framework (LDSF; Aynekulu 
et al. 2011; Vågen et al. 2015) are easier to establish and monitor, and therefore may 
be a cost-effective alternative to provide a representative landscape estimate of 
SOC stocks and their changes. Moreover, the resulting sampling locations are spa-
tially dispersed across the study area, but the range of variation in SOC stocks is not 
as effectively covered as with the stratification by ancillary variables. Therefore, the 
user should make his/her own choice depending on the available resources and the 
degree of accuracy required. We advocate the stratification by ancillary variables. 
However, in the case of very large heterogeneous regions, we recommend the 
implementation of a spatially stratified systematic sampling. It is worth stressing 
that while both stratification approaches (spatial and using ancillary variables) can 
yield relatively accurate information about SOC stocks at the landscape level, they 
lack proper accounting at the farm scale unless specific sampling strategies within a 
given household are further implemented.

The number of plots required to estimate SOC stocks in each stratum depends on 
the desired precision, often set at ±10 % of the mean at 90 or 95 % confidence level. 
The number of plots per stratum can be ascertained through the relationship 
described by Snedecor and Cochran (1967); See specifics in the detailed methodol-
ogy section (Appendix A).

An initial soil sampling campaign should be conducted to establish baselines that 
can be used as references to monitor changes in SOC stocks. The level of precision 
required for a SOC inventory will undoubtedly influence the number of plots to be 
sampled, which will have necessarily a very strong impact on the cost associated 
with fieldwork and soil processing. Indeed, the largest component of the total cost 
incurred in SOC surveys corresponds to soil sampling and preparation (Aynekulu 
et al. 2011). Except for the case of surveys in which extremely large numbers of 
samples are collected (>2000), the actual cost of soil analyses is relatively low com-
pared to the total expenditure derived from the collection and preparation of sam-
ples. Withal, and in order to minimize the number of samples to be analyzed, an 
extensively applied method is the bulking (pooling) of samples collected within a 
plot at the same depth interval. This procedure has been shown to be a cost-effective 
technique for smoothing out local heterogeneity and for achieving robust local and 
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regional estimates of SOC inventories (Bird et  al. 2004; Wynn et  al. 2006; Saiz 
et al. 2012).

The specific objectives of the study shall ultimately dictate the sampling priori-
ties, which combined with the available resources, will determine the methodology 
and sampling intensity to apply.

7.2.2  �Sample Collection

(See also the Simplified Protocol for this purpose in Appendix B)
Ideally, samples undergoing analyses should be as representative as possible of 

the area of interest. To help with this, samples can be combined to provide a single 
representative composite sample, but there should be at least several composite 
samples per selected plot to provide an estimate of variance. Therefore, we propose 
to take three soil samples (which will be subsequently pooled by depth interval 
before analyses) at four locations in each plot. A plot will correspond to a given field 
and land use within each selected farm. The initial sampling location will roughly 
be allocated at the center of the field, with three replicates laid out according to a 
pattern of three axes separated 120° with respect to an initial axis pointing north. 
The replicates will be selected along these axes at approximately mid-distance 
between the center of the field and its boundaries. The final sampling locations will 
be georeferenced using a GPS, and notes should be taken about the sampling loca-
tion with regard to the proximity of perennial vegetation (i.e., shrubs, trees, etc.), 
and any other relevant information such as presence of rock outcrops. Unless very 
intensive sampling is required in a given particular field, then the low analytical 
load proposed at the field scale (four composite samples) does not allow for proper 
intercomparison of small-scale intercropping, or for comparison between furrows 
and ridges. Therefore, sampling should be systematically allocated at the same 
ploughing feature (e.g., furrow).

Previous to any sampling surface litter will be removed by hand. Soil samples 
will then be collected at 0–10 and 10–30 cm depth intervals making use of a steel 
corer. This procedure will allow for determinations through the retrieval of a single 
soil core of both OC abundance and accurate soil bulk density (SBD) at each depth 
interval. Accurate determination of SBD in the topsoil layers is particularly critical 
given that it is at these shallow locations where SBD shows the largest variability 
and significantly large quantities of OC are stored. Nevertheless, it is important to 
note that while the use of a steel corer may be a feasible procedure in many arable 
lands as a result of both soil being regularly disturbed and stones being progres-
sively removed over the years, the use of a soil auger may be necessary to collect 
samples in stony or very hard soils. Indeed, impenetrable layers permitting, soil 
sampling at 30–50 cm needs to be carried out individually at each of the four sam-
pling locations. In this case, replication at each sampling location is avoided because 
of the considerable extra time and effort that would be required. Section  7.2.4 
explains the different procedures that can be used to calculate SOC stocks.
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7.2.3  �Sample Preparation and Analytical Methods

(See also the Simplified Protocol for this purpose in Appendix B)
Once in the laboratory, samples are weighed in their sealed bags, clumps broken 

by hand and then oven dried at 40 °C to constant weight. Thereafter, an aliquot of 
each sample will be oven dried at 105 °C for 4 h which will allow for the calculation 
of SBD, while the remainder of the samples will then be dry sieved to 2 mm and 
gravel and root content >2 mm determined by weight.

Standard methods of soil carbon analysis such as dry combustion or wet oxida-
tion are extensively used in SOC studies as they provide optimum quality results. 
Moreover, elemental (dry) combustion appliances can be coupled to mass spec-
trometers to provide stable isotopic carbon signatures of SOM, which broadens the 
possibilities for better assessing soil carbon dynamics (Bird et al. 2004). However, 
the elemental combustion technique is resource-demanding and may be impractical 
or too expensive for large sets of samples and for continuous monitoring (Aynekulu 
et al. 2011; Batjes 2011). Nonetheless, the amount of time required to estimate SOC 
stocks and the sampling and analytical costs can be greatly reduced by employing 
emerging techniques for in situ estimation of SOC. Among such techniques the one 
that has been most widely used, and thus tested, is the Infrared Reflectance 
Spectroscopy, either at the Near or Mid-infrared reflectance spectroscopy (NIRS or 
MIRS), which once calibrated can provide rapid accurate SOC estimates (Shepherd 
and Walsh 2002, 2007; Aynekulu et al. 2011). Despite its usefulness and versatility, 
it is still necessary that a significant proportion of samples (i.e., 20 %) covering the 
projected range of SOC values for a given inventory are analyzed using standard 
SOC analytical procedures. This will in turn offer the necessary calibration set to 
confidently apply either MIRS or NIRS to the total set of samples. The use of remote 
spectroscopy on airborne or satellite-mounted sensors can also provide spatially 
distributed and resource-efficient measurement of SOC content (Ladoni et al. 2010). 
However, these techniques still require simultaneous ground observations to allow 
for proper calibration, and there are several major challenges associated with data 
accuracy (Croft et al. 2012; Stevens et al. 2006).

7.2.4  �Quantification of SOC Stocks

There are different approaches to account for soil carbon stocks and stock changes, 
and they all aim at providing a measure of mass of SOC per unit ground area.

The spatial coordinate approach calculates stocks considering the amount of car-
bon contained within a given volume of soil, which is defined by the sampled area and 
the depth referenced to the surface level. With this approach, the average SOC stock 
for a given depth interval (d) is calculated according to the following formula:

	
md d dBD OC gr= ´ ´ ´ -( )D 1 10/ ;
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where:

μd is SOC stock (Mg OC ha−1)
BDd is soil bulk density (g cm−3)
OCd is the concentration of OC in soil (<2 mm; mg OC g−1soil)
D is soil depth interval (cm)
gr is fractional gravel content, the soil fraction >2 mm

However, the amount of soil contained within a given volume (SBD) may change 
as a result of swelling and/or compaction caused by land use change or management. 
Under those circumstances, sampling to a fixed depth from the surface (spatial coor-
dinate approach) will result in different amounts of soil mass being sampled for the 
same volume, while the soil C concentration per unit dry soil mass might not have 
changed. This can lead to errors in the interpretation of changes in SOC storage fol-
lowing disturbance.

The determination of SOC stocks can also be achieved through cumulative or 
material mass coordinate approach, which consists of collection and quantification 
of all the soil mass in a given depth interval. The use of cumulative mass coordinate 
approach is widely used to correct for differences in bulk density that may have 
been caused by land use change or agricultural practices. Moreover, the adoption of 
this method may improve our ability to make comparative measurements across 
time, treatments, locations, and equipment (McKenzie et  al. 2000; Gifford and 
Roderick 2003; Wuest 2009). Furthermore, since sampling by mass avoids potential 
biases derived from varying bulk density caused by land use change or agricultural 
practices, it is often regarded as the method of choice for SOC monitoring over time 
(see McKenzie et al. 2000 and Gifford and Roderick 2003 for detailed guidance on 
the method). Nonetheless, compared to soil coring, this method requires additional 
effort and skill. In the cumulative mass approach, depth varies such that each sam-
ple contains the same dry mass per unit ground area. Gifford and Roderick (2003) 
provide in-detail explanations and examples on how to determine SOC stocks using 
this methodology. Briefly, the method involves coring a bit deeper than the nominal 
depth involved (e.g., 55 cm for a required 50 cm depth) and each full soil core is 
then divided into several segments. We recommend sampling at 10, 30, 50, and 
55 cm in those cases where coring may be feasible in order to compute for SBD and 
be able to interconvert between the spatial coordinate and the cumulative mass 
coordinate approach.

Another method that has been recommended to quantify SOC stock changes is 
the equivalent soil mass approach (Ellert and Bettany 1995; Lee et  al. 2009). It 
consists of correcting for differences in SBD through the calculation of the mass of 
SOC in an equivalent soil mass per unit area (i.e., the heaviest soil layer is desig-
nated as the equivalent mass, against which to calculate the thickness of the soil that 
is required to obtain such mass). However, its implementation is even more difficult 
than the coordinate mass approach (McBratney and Minasny 2010).

Regardless of the method used to quantify SOC stocks, the provision of SBD 
data is of great importance so as to understand and interpret SOC dynamics (Gifford 
and Roderick 2003). In the case of soil augering, the calculation of SBD can be 
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achieved by sand-filling the auger-hole volume. Alternatively, one can use soil den-
sity rings, which are orthogonally inserted onto the wall of a dugout soil pit. These 
are however highly time consuming as well as demanding tasks, and hence they 
should be limited to cases in which coring is not possible.

7.2.5  �Scaling SOC Stocks to Landscape and Whole Farms

There is a lack of standardized methodologies to scale up SOC stocks from a point 
source (pedon) to regional (landscape) and larger spatial scales. In this work, the 
scaling up of SOC stocks at the landscape scale is achieved through the proposed 
spatially stratified randomized sampling design. Accordingly, the average SOC 
stock for a given stratum is calculated as follows:

	
mst = =å1 1n

y
i i

n
;
	

where:

μst is the mean SOC stock for stratum st
yi represents each calculated SOC stock in that stratum
n is the number of observations in that stratum (see Appendix A for detailed calcu-

lations on the number of plots required in each stratum)

The variance in SOC stocks for a given stratum is calculated according to the 
following formula:

	
s st st
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where:

σ is the SOC stocks variance
yi represents each calculated SOC stock in that stratum
μst is mean SOC stock associated with the stratum st
n is the number of observations in that stratum

The average SOC stock for the area of study (landscape) is calculated consider-
ing both the mean SOC stock obtained for each stratum and the area occupied by 
each stratum. Therefore, the calculation is as follows:

	
m

m
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where:

μ is the mean SOC stock
ah is the area of the stratum h
μh is mean SOC stock associated with the stratum h
A is the total area of the study

The average standard error in SOC stocks for the area of study (landscape) is 
calculated according to the following formula:

	

SE = æ
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;

	

where:

SE is the standard error for the entire population
ah is the area of the stratum h
Sh is the variance of stratum h
A is the total area of the study

Scaling SOC stocks from a few point source measurements (fields) to the whole 
farm necessarily requires a series of assumptions unless all fields within the farm 
are sampled (which may be highly unpractical). Here, it is assumed that the center 
and perimeter of each field are georeferenced so that the field’s surface area can be 
determined. In the proposed scheme, samples within a given farm should be taken 
along the previously described land use intensity gradient (i.e., home gardens, 
close-distance, mid-distance, and remote fields) at their most spatially representa-
tive fields. If for a given section (i.e., close-distance fields), there is an occurrence 
of individual fields with annual and perennial vegetation (crops or trees), and the 
area of the smaller field is at least half the size of bigger field, then sampling should 
be conducted at both fields. The average SOC stock for the selected farm is then 
calculated considering both the mean SOC stock obtained for each section and the 
area occupied by each section. The calculation procedure is similar to the one 
described for the landscape scale, and it simply replaces strata by sections.

Uncertainties in SOC stock assessments vary according to the scale and the spa-
tial landscape unit. Goidts et  al. (2009) demonstrated that scaling up field scale 
measurements to the landscape level increases the coefficient of variation of SOC 
estimates. However, the same work showed that such uncertainty may be smaller 
than errors associated to local spatial heterogeneity and analytical procedures.

7.3  �Quantification of Soil Carbon Stock Changes

The determination of the sampling intensity required to demonstrate a minimum 
detectable difference in SOC stocks over time has been the subject of numerous 
studies (Garten and Wullschleger 1999; Conen et  al. 2004; Smith 2004). The 
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actual number of samples to detect SOC differences for different degrees of sta-
tistical confidence will be directly dependent on the background level that the 
study requires (i.e., the detectable difference in SOC relative to the stock baseline 
estimated in the first inventory). Moreover, considering the inherent natural vari-
ability of soil properties, the demonstration of small changes in SOC stocks may 
often require the collection of an impractically large number of samples (Garten 
and Wullschleger 1999), whose costs may quickly overrun any financial benefit 
derived from a potential increase in SOC levels. Therefore, different approaches 
have been used to monitor SOC stock changes, which invariably represent a com-
promise between accuracy and cost. Table 7.2 shows a comparison of methods 
used to monitor SOC stock changes classified according to the level of accuracy, 
scale, and resources demanded.

7.3.1  �Repeated measurements

A further classification is made on the basis of the measurement domain (where the 
analyses take place).

�Laboratory-Based Analyses

These are the most widely used techniques, which involve physical collection and 
subsequent processing of soil samples (see Sect. 7.2.3). The standard methods used 
for soil carbon analysis are dry combustion, wet oxidation, and the use of reflec-
tance spectroscopy, which is increasingly being used over the past number of years 
as an effective way to optimize time and analytical costs. However, some contro-
versy still exists about the compatibility of data derived from different spectroradi-
ometers (Reeves 2010), and there is still a need for collection and analyses by 
conventional techniques of a significant proportion of samples to allow for calibra-
tion of the entire sample set.

�In Situ Analyses

While lab-based analyses provide high-quality results, they are resource-demanding 
and may be impractical or too expensive for continuous monitoring of SOC 
(Aynekulu et al. 2011; Batjes 2011). The implementation of SOC analyses in the 
field by means of portable spectroscopy allows for the assessment of a much larger 
number of sampling locations compared to that offered by lab-based methods, as 
the former is a fast, cost-effective, and non-destructive technique. However, its 
accuracy is lower than that provided by conventional methods, since there are issues 
related to soil surface conditions such as soil moisture and surface roughness, which 
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may affect the spectral signal. Therefore, there is a need to conduct a statistical cali-
bration before each field campaign in order to achieve an acceptable level of accu-
racy (Stevens et al. 2006).

�Remote Spectroscopy

The use of reflectance spectroscopy on airborne or satellite-mounted sensors pro-
vide high temporal resolution and allow for an improved representation of the spa-
tial variation of SOC in a cost-efficient manner (Ladoni et  al. 2010; Croft et  al. 
2012; Stevens et al. 2006). Nonetheless, there are still major constraints with regard 
to using this technique as a plausible method to detect SOC stock changes. Croft 
et al. (2012) highlight some of these limitations, which include: the comparatively 
higher analytical uncertainty than that obtained from conventional or ground-based 
reflectance spectroscopy; the high spatiotemporal variability of soil surface condi-
tions that can affect the spectral signal (e.g., soil moisture, vegetation or crop resi-
due cover, differences in soil surface roughness, etc.); the spatial uncertainties 
associated with instrument spatial resolution and SOC spatial heterogeneity; and the 
need for atmospheric correction and simultaneous ground data collection to cali-
brate and validate the output of such studies. Furthermore, remote spectroscopy can 
only use the reflectance of bare surface to measure soil properties and is not able to 
detect vertical gradients in SOC within the topsoil (Stevens et al. 2006). Finally, 
there is a dearth of studies using remote spectroscopy in arid or semi-arid regions, 
which host a large amount of small household farming systems. In these environ-
ments SOC contents are typically low and the interference with other soil properties 
(e.g., CaCO3 or CaSO4 contents) may change the spectral behavior of soil consider-
ably, which could have further detrimental effects on the performance of the remote 
sensing techniques (Ladoni et al. 2010). Withal, the detection limit of these tech-
niques is still too high to use them for SOC stock change studies (Stevens et al. 
2006). To make these techniques fully operative, additional efforts must be taken to 
decrease the detection limit.

7.3.2  �Modeling

Compared to measuring techniques that require the implementation of repeated mea-
surements to quantify SOC stock changes, the use of process-based models (e.g., 
DNDC, Roth-C, Century) have obvious advantages in terms of resources demanded. 
Moreover, models can provide relatively fast and inexpensive simulations of SOM 
dynamics at different spatiotemporal scales. However, such simulations are based on 
a number of assumptions that will necessarily result in very large uncertainties of the 
estimates obtained. Here, we briefly describe some of the main weaknesses of mod-
els that could potentially be used to quantify SOC stock changes within the context 
of small household agricultural systems in tropical environments.
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�Assumption of Stable Conditions

Most SOM dynamic models assume stable conditions in SOM pools prior to model-
ing how factors like management or climate change affect their dynamics. However, 
the vast majority of small household systems in the tropics are not necessarily in 
steady state conditions. In the tropics, large tracts of land under current agricultural 
practices have been covered by natural ecosystems not much longer than a generation 
ago, but in many cases this would only be a few decades or even just some years ago 
(Houghton 1994; FAO and JRC 2012). Because of this, current SOM dynamics will 
still be highly influenced by past vegetation. Therefore, the assumption of stable con-
ditions in those systems is likely to result in gross inaccuracies. While the influence of 
past vegetation might of course be modeled, this would be done at the expense of 
bringing on further uncertainty to the results, as this impact is likely to vary with the 
type of vegetation, time since conversion, landscape position, soil type, etc.

�Coupling Erosion Processes

Quite a significant number of small household systems are established on slopes 
of varying degrees, with farms being increasingly established on steep marginal 
land as a result of population pressure. Moreover, cropped fields may be void of 
vegetation for some time during the year, or in some cases, the entire year (fallow). 
The  combination of those factors makes soil erosion a highly significant factor, 
which may naturally lead to lateral transfers of SOM. Again, coupling a soil erosion 
model to a SOM dynamic one can be attempted, but the resultant application would 
need to be parameterised for the wide array of heterogeneous conditions existing 
between farm managements, the different land uses, soil types, etc., all of which 
may undoubtedly produce an even greater source of uncertainty.

�Existence of Contrasting SOM Dynamics Between Crops

Small household systems are highly dynamic in terms of the crops being used (C3 
plants such as legumes and napier grass; and C4 plants such maize and sorghum) 
whose presence and abundance may vary between years within the fields of a given 
farm. There is increasing evidence that C3 and C4 vegetation have a strong influence 
on SOM processes, see for instance Wynn and Bird (2007) and more recently Saiz 
et al. (2015). Besides inherent microbial processes and material (biomass) recalci-
trance, these dynamics are highly influenced by soil texture through their effect on 
abiotic properties. Therefore, vegetation may exert very strong effects on SOC 
stocks, which traditional SOM dynamic models are not yet able to simulate.

In summary, models can provide very useful indications about trends of SOM 
levels with respect to changes in climate and/or management, and they can do so at 
high spatiotemporal resolutions and at a fraction of the cost of those using repeated 
measurements (Table 7.2). However, the uncertainties associated to the estimates 
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are currently too large to use them as a verifiable tool to demonstrate SOC stock 
changes, particularly in these highly heterogeneous systems. At the very least, 
models require high-quality data gathered at different time intervals for proper 
parameterisation, and this is still an important aspect clearly lacking for these 
grossly understudied tropical systems (Rosenstock et al. 2016, Chap. 9).

7.3.3  �Monitoring Frequency and Recommendations

While IPCC (2003) and IPCC (2006) recommend 5- and 10–20 year monitoring 
intervals respectively, a relevant sampling interval suited to site-specific conditions 
can be ascertained by using models of SOC dynamics to plan both the frequency 
and intensity of subsequent surveys for determining SOC stock changes (Smith 
2004). However, modeling of highly heterogeneous environments such small 
household agricultural systems in tropical systems is a challenging task, which is 
unlikely to provide a single answer with regard to when and how intensively differ-
ent sites should be measured to detect significant changes in SOC stocks. 
Alternatively, estimation of changes in SOC over shorter periods could be achieved 
through the measurement of changes in particular soil carbon fractions (e.g., par-
ticulate organic matter) given that these are more sensitive to changes than total 
carbon in the bulk soil (Six et al. 2002). While this is a rather useful qualitative 
assessment of SOC sequestration it does not reflect the overall SOC stock changes 
that should be simultaneously assessed, thus increasing the overall cost and sam-
pling effort. Furthermore, the implementation of a SOM fractionation procedure 
requires specific laboratory equipment (i.e., sonicator) and access to relatively 
expensive consumables (i.e., heavy liquid; Wurster et al. 2010).

We recommend adopting a strategy similar to the one proposed by Lark (2009), 
which suggests sampling only a proportion of the initial baseline sites in any one 
stratum. This strategy purposely focuses efforts in those locations likely to show the 
larger differences in SOC stocks over a fixed term (i.e., 10-year period). Thereafter, 
the strata that show a large change could then be sampled more intensively. 
Locations likely to show the larger changes in SOC stocks will normally include 
fields affected by intensive management, those having changed land use since the 
last survey, and the ones presenting recent signs of land degradation. We also advise 
pairing sampling locations in space as this may allow for a more effective detection 
of SOC changes in time (Ellert et al. 2007), and a sampling scheme consistent with 
that used in the first round of sampling. Furthermore, collection of samples should 
be routinely conducted at roughly the same time of the year, and in between relevant 
agricultural practices (i.e., harvesting, fertilization, etc.). Further information about 
quantifying SOC over time is given in the Appendix A.

We would like to conclude this section on SOC stock changes stressing that the 
only way to detect reliable signals and early trends in soil monitoring schemes is to 
improve the overall measurement quality (precision and bias) and to shorten the 
measurement periodicity (Desaules et  al. 2010). However, the labor, analytical 

7  Methods for Smallholder Quantification of Soil Carbon Stocks and Stock Changes

http://dx.doi.org/10.1007/978-3-319-29794-1_9


152

costs, and time needed to achieve a given sensitivity might overrun the potential 
monetary benefits derived from a hypothetical increase in SOC levels. As an illus-
trative case, Smith et al. (2001) indicate that between 10 and 20 samples should be 
collected to detect a 15 % change in SOC stocks in a relatively homogeneous sys-
tem (<25 % coefficient of variation). Moreover, special attention should also be 
placed on the issue of permanence as most of the new SOC fixed as a result of 
improved management activities is in a labile form (particulate organic carbon), and 
thus, it is highly prone to be lost back to the atmosphere in a relatively short time-
frame if conditions changed. Therefore, emphasis should be placed on promoting 
sustainable agricultural practices, as these will bring both economic and environ-
mental benefits to the farmers in the medium term. Enhanced SOC sequestration 
may indeed be one of those benefits, but in our view it should not be the purpose of 
grand resource-demanding monitoring schemes, especially if the time elapsed 
between surveys has not been long enough (i.e., at least 10–20 years). Bearing this 
in mind, and even considering that at present proper simulation of SOM dynamics 
is very limited in small household systems because of the scarcity of high-quality 
data, modeling still represents an alternative that, provided high-quality data was 
available, could be applied across broad spatiotemporal scales in a cost-effective 
manner. Therefore, we propose the establishment of permanent monitoring sites 
across a gradient of management qualities (from highly intense to poor management 
scenarios) in the geographical area of interest to serve as reference sites to generate 
data that can be used for model parameterization and validation for farming prac-
tices under small household conditions.

�Appendix A: Methodology for Quantification of Soil Carbon 
Stocks and Carbon Stock Changes

�Number of Plots Required

The number of plots required to estimate SOC stocks in each defined stratum 
depends on the desired precision, often set at ±10 % of the mean at 90 or 95 % con-
fidence level. In the case of strata defined by ancillary variables, the number of plots 
per stratum can be ascertained through the relationship described by Snedecor and 
Cochran (1967);
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where:

tα is Student’s t with degrees of freedom at either 0.95 or 0.90 probability level
S and D are the standard deviation and the specified error limit respectively for val-

ues obtained from an initial assessment of the stratum
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On the other hand, and for the case of a given area stratified by geographical 
coordinates or ancillary variables, the number of plots required could be determined 
using a slightly modified relationship (Pearson et al. 2005; Aynekulu et al. 2011);
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where:

tα, S, and D are as above and derive from values obtained from an initial assessment 
of the area considered

N is the number of sample units in the population, that is the total area divided by 
plot size

The resultant number of plots can be further allocated into a number of defined 
strata by using:
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where:

Nh is the area of the stratum h
Sh is the standard deviation of stratum h
L is the number of strata
n is the total number of plots

In the cases where the confidence interval exceeds ±10 % with 90 % confidence, 
the user may undertake one of three actions (VCS module VMD0018): (a) re-
stratify according to any significant correlation observed between the sample vari-
ance to geographic or other factors, (b) Increase the number of plots, and (c) set 
lower confidence intervals, increasing thus the estimates uncertainty. The determi-
nation of the number of plots to be sampled in each stratum as a proportion of both 
its area and the observed variance may certainly be an efficient approach. Adding to 
this efficiency, it can also be expected that the number of plots required for determi-
nation of SOC stocks for a given stratum defined by ancillary variables may be 
significantly small compared to the ones needed in the less homogeneous strata 
defined by geographical coordinates.

With regard to the number of samples required to demonstrate a given minimum 
detectable difference in SOC stocks over time the reader is referred to Garten and 
Wullschleger (1999), Conen et al. (2004) and Smith (2004) for sound descriptions 
of the methods and equations used. Finally, a very recent report by Chappell et al. 
(2013) provides excellent advice on a generic monitoring design to detect changes 
in SOC, which includes illustrative examples with step-by-step calculations.
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�Appendix B: Simplified Protocol for Taking and Processing 
Soil Samples, Adapted for the SAMPLES Project

This protocol covers both the soil sampling procedure and sampling processing and 
assumes the plots to be sampled have already been pre-selected.

�Soil Sampling

Soil samples are collected in four different locations within the plot of choice to 
account for the inherent heterogeneity of SOC. Start roughly at the center of the 
plot/subplot (replicate 1) and establish the other three replicates laid out accord-
ing to a pattern of three axes separated 120° with respect to an initial axis pointing 
north. Make sure the other three replicates are set up at a prudent distance from 
the edges of the plot/subplot (+5 m if possible) to avoid any boundary effects, but 
do try to cover ground. The final sampling locations will be georeferenced using 
a GPS.

 

It is assumed that a stainless steel corer, a soil auger, and/or a spade will be used 
for retrieving the samples. All samples will be placed in labeled zip-lock bags. It is 
very important that the bags are clearly labeled with a permanent marker. Always a 
good idea to label them immediately after you take the sample otherwise they may 
get mixed up (if a marker is not around, write it in a paper and put it inside of each 
bag). A good labeling should mention at the very least:

•	 Plot/subplot name or number (e.g., DCR)
•	 Replicate number (e.g., 3 for replicate 3)
•	 Depth (i.e., 10–30)

Then in the same bag and line in big clear letters following the example given it 
should say: DCR-3 (10–30)
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�Detailed Sampling Procedure

In the case of the 0–10 and 10–30 cm intervals, three individual samples within 1 m 
radius will be collected. This is done to better account for local heterogeneity, which 
is particularly pronounced at this shallow depth. Subsequently samples from the 
same location and depth interval are pooled to minimize analytical costs.

0–10 cm

•	 Remove vegetation and surface litter.
•	 Push short corer (steel cylinder) into soil until the 10  cm mark is reached. 

Retrieve it gently by carefully shaking it back and forth sideways to compact a 
bit the surrounding soil (this will get subsequent sampling at depth much easier 
and will avoid soil crumbling into the hole).

•	 Pull the corer out rotating carefully (always clockwise as this will be very rele-
vant when using the other soil sampling gear at depth).

•	 Place the soil into plastic bag, trying not to touch it with the hands. Starting with 
the topside (loose crumbly soil gets out first), and then turn the cylinder 
upside-down.

•	 To help the soil come out, use the rubber mallet to impact the cylinder walls 
while it gets turned around. The soil will come out eventually. Get all the soil out 
of the tube.

10–30 cm

•	 Hammer the next sampling cylinder into the soil until the depth markings. You 
may be using a regular cylinder or the one with a detachable cutting edge (pref-
erably the latter as it is more robust). If using the latter, then you will have to 
carefully detach this cutter and scrap the sample out onto the bag. This can be 
done by a second person, thus improving sampling speed. Regardless, beware 
of what you are using as the diameters (crucial for bulk density determination) 
change for each choice.

•	 Shake it back and forth carefully sideways (to compact surrounding soil).
•	 Rotate clockwise, pull out and extract soil sample (using the sample extruder if 

using cylinders without detachable cutting edge).
•	 Again: put the soil into a labeled plastic bag avoiding contact with the hands.

30–50 (55) cm

•	 If the soil is relatively soft and free of stones, use the cylinders (as bulk density 
can still be used). If that is not the case, then use the soil auger or spade.

•	 If you are using the cumulative mass coordinate system to calculate SOC stocks, 
then you will need to collect all of the soil at the suggested depth intervals plus 
an extra one a bit deeper (50–55 cm).

•	 If using a spade to reach the required depth, the sample will be obtained by 
scratching the soil out of the walls. Prior to obtaining any sample, the walls of 
this hole (pit) need to be cleaned (scratched) to avoid contamination. Start 
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scratching/ sampling from the bottom once the hole has been finished. Take 
roughly the same amount of soil material along the targeted depth interval, as 
you do not want to take most of your sample at a concentrated point. It would 
be good to have a graduated ruler or stick with depth marks.

In general, also consider the following:

•	 Take notes that may help you to interpret results later on (GPS, land use history, 
farmers’ comments on management, type of soil, current vegetation, evidence of 
erosion, fire, etc…).

•	 If using coring, a sample that comes broken in the first 30 cm (as a result of 
coarse stones/roots) cannot be used. Sampling has to be done again in another 
location nearby.

•	 Beware that if the soil is very rocky, there will be a risk of overestimating SOC 
stocks if using soil coring. Therefore, an estimate of rock content for a given plot 
should be given. However, an accurate quantification of rockiness is a very 
demanding task, as it would involve to purposely sampling several pits at each 
studied field.

•	 Always take note of what corer you are using (because of diameters!). It may be 
that you are exchanging between cylinders with different sizes for whatever 
logistical reason (e.g., cylinder with detachable cutting hoe vs. normal cylinder. 
These two have different diameters and will definitely affect bulk density calcu-
lations). This is very important, take notes.

•	 Be careful that the sampling hole does not get contaminated while taking sam-
ples, e.g., do not step on the hole, do not let litter or surface soil fall in, etc.

•	 After sampling a plot, the coring cylinders and scraper need to be thoroughly 
cleaned (have wet cloths with you).

•	 If using the auger, use the same depth intervals as those with the cores (0, 10, 
30, 50).

•	 From the outside of the plastic bag, crumble by hand big clumps of soil into 
smaller parts, which will be critical for easy soil processing later on.

•	 Closure of bags: rolling them up releasing air from the bag and then close it, 
so that it contains as little air as possible.

•	 Take several pictures of the plot/subplot.
•	 As a matter of good practice, do try to fill in sampling holes with any excess 

soil derived from your digging.
•	 To calculate SBD using the auger, you will need to calculate the volume by 

filling the hole with sand, which is highly demanding and slow procedure.

�Soil Bulk Density Determinations

In all cases, calculation of SBD should include fractions >2 mm. So before any sieving 
takes place the following should be done:

G. Saiz and A. Albrecht



157

As soon as possible, and certainly before 2 days after collection from the field, 
let the samples air-dry (after opening and rolling down bags) in a rain-protected 
location. It is always a good idea to progressively (each day) break the soil clumps 
with your fingers while the bags are being dried (but be gentle or you may break the 
bag). A bit everyday is the best, otherwise you will find handling of samples much 
harder in the coming days, and will have to use a hammer. Also, avoid cross-
contamination between samples by doing it from the outside of the bag (gently 
squeezing it with your fingers). When an oven becomes available, put the bags 
inside at 40 °C. After a number of days, when samples are seemingly dry (5–7 days 
will be safe—but of course it all depends on initial moisture content), take them out 
of the oven and weigh each sample (including the plastic bag) but wait about half 
an hour after the samples have been taken out to do this weighing.

After this weighing, take an aliquot of each sample and place them in labeled 
paper bags (about ~ ¼, of the total sample, but weigh how much exactly before 
you put them inside the oven). Dry them at 105 °C for 24 h. As before, weigh all 
the samples after about half an hour after they were taken out of the 105° oven. 
Once the weights of these aliquots have been recorded you can throw this material 
away.

In total you should have three weights for each sample (i.e., total soil weight, 
sample before oven dried at 105 °C, sample after oven dried at 105 °C). This will 
allow for proper calculation of SBD.

In general, also consider the following:

•	 Make sure you always take weights knowing which bag you are using as each 
different type of bag will have different weight (both plastic and paper).

•	 Get an average weight of five bags of each type you use, so that can be deducted 
from the calculations later on.

•	 Let the samples dry by air (open plastic bag) and roll them down.
•	 Always check that the oven works well.
•	 Let the samples cool down at room temperature for at least 30 min, unless there 

was a desiccator that could be used for storing samples prior to weighing. In such 
case, then the weighing should occur immediately after extracting the samples 
from the desiccator.

•	 Weigh the soil with its bag. Very Important!
•	 Balance/scale should be precise up to 0.1 g.

�Sample Processing

Sieving: The remaining of each sample dried at 40° (most of it) needs to be 
weighed again and sieved to 2  mm. Gravel and root content >2  mm will be 
weighed separately. Therefore we will get the fractions of coarse roots and gravel. 
But first remove carefully all large clumps with a rolling pin (bakery). Removing 
the soil from the bag to break up any clumps is very time consuming and may lead 
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to gross errors. Therefore, it is good practice to progressively break clumps from 
outside of the bag as the sample dries. After sieving, you should have three weighs 
for each sample (bag) in total (i.e., total soil weight, roots>2  mm, and gravel 
(>2 mm)).

Pooling/bulking: There are numerous ways of pooling, and the final choice 
depends on the purpose and load of work that can be undertaken. The methods 
explained below are just two ways that lead to fewer analyses to be undertaken and 
cover two different purposes:

	1.	 If the aim is to get bulk soil samples to undertake just a single analyses at each 
plot/subplot bulk by depth interval (e.g., all samples from the same plot/subplot 
collected at 10–30 cm), then do as follows:

•	 Use the same weight for all the replicates (20 or 30 g), and put them together 
in a bowl or tray. Do not use the entire sample from each bag! Keep them as 
back ups.

•	 Mix them a bit always with clean, dry hands (10 s should be alright).
•	 Put the mixture in a new bag with the same code as before but indicating 

“Bulk” at the end.
•	 If the aim is to also get a “master soil sample” 0–30  cm for subsequent 

analyses (texture, mineralogy, organic matter fractionation, ECEC, etc.) then 
from the previous bulked bags the weights that need to be put together are 
calculated as follows:

First the average bulk density for the Master (BDM) is calculated:

	
BDM BD BD= ´( )é

ë
ù
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ë
ù
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1 3 2 3
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Then to obtain about 90 g of Master sample, proceed as follows:
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60

10 30
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These weights are put in a separate bag, which is to be called “master” with same 
code as before and indicating (0–30) at the end of the labeling.

	2.	 Sometimes it may be necessary to have an extra bag with about 20 g of Master 
soil (0–30) that will be used for soil textural analyses. Take about 20 g from this 
bag and put them into a small bag with the same coding indicating that is for 
“texture.”

Powdering: If powdering is needed, then proceed as follows:

•	 Take about 3 g of your sieved, pooled/bulked sample.
•	 Powder the sample with the aid of a mortar-pestle or micromill device.
•	 Put the sample into a small plastic bag with the code on it.
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•	 Be very careful that all instruments used for powdering get properly cleaned 
(if  using water then it is very important that everything is absolutely dry 
again—or subsequent analyses involving weighing of the sample will be 
biased).

•	 Finally, about 50 g of sample per bag should be stored for any further potential 
analyses.
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Abstract  Enhancing food security while contributing to mitigate climate change 
and preserving the natural resource base and vital ecosystem services requires the 
transition to agricultural production systems that are more productive, use inputs 
more efficiently, are more resilient to climate variability and emit fewer GHGs into 
the environment. Therefore, quantification of GHGs from agricultural production 
systems has been the subject of intensive scientific investigation recently to help 
researchers, development workers, and policy makers to understand how mitigation 
can be integrated into policy and practice. However, GHG quantification from 
smallholder production system should also take into account farm productivity to 
make such research applicable for smallholder farmers. Therefore, estimation of 
farm productivity should also be an integral consideration when quantifying small-
holder mitigation potential. A wide range of methodologies have been developed to 
estimate crop yields from smallholder production systems. In this chapter, we pres-
ent the synthesis of the state-of-the-art of crop yield estimation methods along with 
their advantages and disadvantages. Besides the plot level measurements and sam-
pling, use of crop models and remote sensing are valuable tools for production 
estimation but detailed parameterization and validation of such tools are necessary 
before such tools can be used under smallholder production systems. The decision 
on which method to be used for a particular situation largely depends on the objec-
tive, scale of estimation, and desired level of precision. We emphasize that multiple 
approaches are needed to optimize the resources and also to have precise estimation 
at different scales.
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8.1  �Introduction

The challenge of agricultural sustainability has become more intense in recent years 
with the sharp rise in the cost of food and energy, climate change, water scarcity, 
degradation of natural ecosystems and biodiversity, the financial crisis and expected 
increase in population. With increasing demands for food and agricultural products, 
intensification of smallholder production system becomes increasingly necessary. 
Recently, agricultural technologies that increase food production sustainably while 
offering climate change adaptation and mitigation benefits–collectively known as 
climate smart agricultural (CSA) practices-have been the subject of scientific inves-
tigation. CSA practices are designed to achieve agricultural sustainability by imple-
mentation of sustainable management practices that minimize environmental 
degradation and conserve resources while maintaining high-yielding profitable sys-
tems, and also improve the biological functions of the agroecosystems. However, 
simultaneous quantification of productive, adaptive, and mitigative production sys-
tems is still scant and scattered.

Understanding the greenhouse gas (GHG) fluxes between agricultural fields and 
the atmosphere is essential to know the contribution of farm practices to GHG 
emissions. However, quantification of GHGs from agricultural production systems in 
smallholder systems is meaningless if the livelihood effects of those activities are 
ignored (Linquist et  al. 2012). As farm productivity is inextricably linked to food 
security of smallholder farmers in developing countries, the importance of productiv-
ity must be taken into account in mitigation decision-making and the GHG research 
agenda supporting those decisions. Most of the GHG emission studies, so far, high-
light the emission reduction potential of particular activities without paying due atten-
tion on yield and livelihood benefits for smallholder production (Rosenstock et al. 
2013). The benefit of smallholder production systems, in terms of reduced emissions 
and increased carbon sequestration should, therefore, be assessed taking household 
benefits such as resilience led-productivity enhancement and input use efficiency in 
due consideration. In this chapter, we focus on comparative analysis of yield estima-
tion methods from field to landscape level under smallholder production practices.

8.2  �Crop Productivity Estimation

Various methods have been developed for quantifying production and productivity 
of agricultural systems at research plot level and also for agricultural statistics at 
regional and national level. However, as agricultural production systems are chang-
ing to address new challenges, for example, CSA practices, the yield estimation 
methods developed and tested for a particular production system may not adequately 
reflect the yield for new production systems. For example, the standard crop cut 
method using sampling frames may create significant bias and error if applied to 
crops planted in raised beds in row geometry.

Standardization of crop yield estimation methods, particularly in the context of 
smallholder production system at various scales (field, farm to landscape scale) 
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helps not only to obtain accurate agricultural statistics but also in assessing suitability 
of low-emission agricultural practices under various production environments. 
Accurate yield estimation allows trade-off analysis on crop yield and emission 
reduction of particular production practices thereby helping appropriate mitigation 
decision-making without compromising smallholder livelihoods and rural develop-
ment (Rosenstock et al. 2013). This is particularly important in the context that a 
significant proportion of developing countries have expressed an interest in GHG 
mitigation in the agriculture sector (Wilkes et al. 2013). Here, we present various 
yield estimation methods followed by comparative analysis of those methods at 
various scales i.e., from field to landscape level.

8.2.1  �Crop Cuts

Estimating crop yield by sampling a small subplot within cultivated field was devel-
oped in the 1950s in India (Fermont and Benson 2011) and rapidly adopted as the 
standard method of crop yield estimation, known popularly as the crop cut method. 
In this method, yield in one or more subplots is measured and total yield per unit 
area is calculated as total production divided by total harvested area in the crop cut 
plot or subplot. The number of subplots and area of each subplot to be selected for 
yield estimation through crop cuts depends on the resources available and the level 
of precision required in the estimation. In practice, 1–5 subplots of 0.25–50 m2 are 
used for yield estimation. In on-farm research conducted by CIMMYT, use of a 
0.5 m by 0.5 m sampling frame overestimated the wheat yield by more than two 
times as compared to 1 m2 or larger sampling frame (Fig. 8.1). This finding suggests 
that when estimating crop yield by using crop cut method, the size of sampling plot 
should be at least 1 m2. In the field with variable crop performance, it is advisable to 
use even larger sampling frame or increase the number of subplots to be harvested 
for yield estimation. For better result, the person throwing the sampling frame in the 
field should be blindfold. Alternatively, a person independent of the research or 
demonstration should throw the sampling frame in the field to minimize the bias.

8.2.2  �Farmers’ Survey

Estimating crop production through farmers’ interviews involves asking farmers to 
estimate or recall the yield for an individual plot, field, or farm. It can be done 
before harvesting (estimate) or after harvesting (recall). Before harvesting, farmers 
are asked to predict what quantity they expect to harvest. Farmers will base their 
predictions of expected yield on previous experiences, by comparing the current 
crop performance to previous crop performances. Singh (2013) argue that yield 
estimation surveys following this method should be made at maximum crop growth 
stage. This helps enumerators/extension worker to verify the farmer’s response by 
visual observation of the crop. Postharvest estimations are commonly made at the 
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farmer’s house or at the site where the harvest is stored in order for the enumerator 
to cross-check the estimates with the harvested products. Postharvest surveys should 
be carried out as soon as farmers harvest the crop, although Erenstein et al. (2007) 
reported that farmers can recall yield for up to three-to-six previous seasons.

To estimate the crop yield, production data obtained from farmer recall or predic-
tion require division by the plot area from which the crop was or will be harvested. 
This introduces an additional source of error. To remove this error source, Fermont 
et al. (2009) obtained a direct estimate of average crop yield by asking farmers to 
estimate the number of local harvest units they would have obtained from a well-
known unit of land, often the farm compound, if it had been planted to a specific crop.

8.2.3  �Estimating Crop Yield by Using Grain Weight  
(Test Weight)

Estimating crop yield by using pre-estimated test weight is one of the easiest and 
quickest methods which can be used in a number of situations and farm conditions. 
This is similar to the crop cut method but does not require harvesting and subse-
quent weighing of the sampled area. Using a sampling frame, count the number of 

Fig. 8.1  Estimated grain yield of wheat by harvesting the subplot of different size
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earheads/pods in 1 m2 area at least five to seven times within a plot whose yield is 
to be determined and calculate average number of heads/pods per meter square 
area. Similarly, count the number of grains in 20–25 heads/pods and take the aver-
age. The yield of the crop can then be determined by using the following for-
mula. The 1000-grain weight can be taken from previous data or from published 
figures (Table 8.1).

	
Yield Mg ha

grains per head heads per m grain weigh- =
´

´1
2

100

1000# # - tt g( )
1000 	

The 1000-grain weight of crops is influenced by many factors such as genotype, 
management, and environment. Therefore, care should be taken to use appropriate 
1000-grain weight value based on the variety grown and the growing condition. 
Estimation accuracy, regardless of the method, depends on the accuracy of obser-
vations taken in the field. Counts of grain per head and heads per square meter area 
must be accurate and taken randomly at enough locations (at least 5) to provide an 
average of the whole field.

8.2.4  �Whole Plot Harvest

Harvesting the entire field to determine crop yield is normally done in trial plots, 
excluding one or more boundary lines that may not reflect the tested treatment due 
to boundary effects. This method can be employed in experimental or demonstra-
tion plots. It can also be used to estimate yield from small-scale farmers’ fields if 
farmers are willing to cooperate but is too costly for larger samples of farmers. The 
complete harvest method is considered the most accurate and often used as a stan-
dard for comparing effectiveness and accuracy of other methods. Crops that have a 
defined maturity date, such as cereals or legumes with a determinate growth habit, 
can be harvested in a single operation whereas crops with staggered maturity such 
as banana, cassava, and legumes or with an indeterminate growth habit like com-
mon bean, cowpea, and mungbean require multiple harvests per plot. In many cases, 

Table 8.1  Thousand grain weight of some example crops

Crop 1000-grain weight (g) Source

Wheat 30–45 Jat et al. (2014)

Rice 18–23 Jat et al. (2014)

Lentils 30–50 http://www.depi.vic.gov.au/

Field pea 200 http://www.depi.vic.gov.au/

Chickpea (desi) 180 http://www.depi.vic.gov.au/

Chickpea (kabuli) 380–420 Frade and Valenciano (2005)

Maize 237–268 Sampathkumar et al. (2013)
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a farmer gathers all his/her produce from his/her land in one place, threshes there 
and take home the produce after weighing. In such cases, it is easy to estimate the 
yield by dividing the total yield by the total area cultivated by the farmer.

8.2.5  �Sampling for Harvest Unit

This is similar to yield estimation through whole plot harvest except that only a few 
samples out of the total harvest are weighed. In this method, the number of units, 
such as sacks, baskets, bundles, is counted after the farmer harvests his/her plot. 
A number of harvest units are then randomly selected and weighed to obtain an 
average unit weight. Total harvest of the plot is obtained by multiplying the total 
number of units harvested by the average unit weight. Crop productivity can then be 
calculated by dividing total production by the area from where the production came 
from. Ideally, sampling of harvest units is done just before storage and includes a 
measurement of the moisture content of the harvested product (Casley and Kumar 
1988). This method can be used on larger samples than is possible with crop-cut or 
whole-plot harvest method. However, the crops must be harvested all at once for 
this method to be applicable.

An alternative method which requires the physical threshing of only a small sam-
ple to estimate yield, biomass, and other yield-related parameters has been developed 
by Castellanos-Navarrete et al. (2013). This is rather a simple procedure that dra-
matically reduces the labor and large-scale threshing required to obtain reliable yield 
and associated yield-related parameters. The methodology can also be used for any 
situation and any cereal crop. It can be readily applied for on-farm research situations 
where samples are taken in the field and then transported back to a central point for 
threshing. Harvest should be done as soon after physiological maturity as possible. 
Here, after harvesting the crop from sample harvest area, 50–200 tillers are selected 
randomly for fresh and dry biomass weight, grain weight, and test weight. The yield 
and yield-related parameters are then determined by using the relationship of the 
determined parameters and the harvest area. Step-by-step procedures for yield esti-
mation following this method can be found in Castellanos-Navarrete et al. (2013).

8.2.6  �Expert Assessment

Sometimes crop yield is estimated by summarizing the opinions of field agronomists, 
extension agents, and researchers (Dumanski and Onofrei 1989). These experts are 
often able to estimate crop production or yield by visually assessing the crop condi-
tion, such as color, plant vigor, plant density, in the field. This is known as eye assess-
ment. Eye assessment can be combined with field measurement and empirical 
formulas, collectively known as the expert assessment method. The expert assessment 
method can be applied on a relatively large scale as compared to the crop-cut method 
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but on a smaller scale than the farmer’s estimate. However, eye estimation of crop 
yield requires not only practical but also technical familiarity with the yield potential 
of different varieties of crops in different environments. Therefore, accuracy of the 
yield assessment, in this method, will strongly depend on the level of expertise of the 
personnel involved in the assessment. Care should be taken not to use extension 
worker as expert for yield estimation in their own work area as they may be biased to 
demonstrate their own work (Casley and Kumar 1988).

8.2.7  �Crop Cards

The crop card method is a refined version of the farmer recall procedure to obtain 
more reliable harvest estimates for crops with an extended harvest period or multi-
ple harvests, such as cassava, banana, cowpea, sweet potato. As farmers may have 
problems in accurately remembering the amounts they harvested over time from 
one or several plots, this method helps them by keeping the written record of all 
plots. In this method, each farmer in a survey is given a set of crop cards where he/she 
records the quantity of crop in each harvest, which can then be added up to calculate 
the total harvested yield. However, this may be challenging to use in smallholder 
production contexts of developing countries due to high illiteracy rates and lack of 
adequate manpower for regular monitoring (Ssekiboobo 2007).

8.2.8  �Crop Modelling

Crop modelling is widely used to estimate average biological yields in the conditions 
of smallholder farmers. Empirical–statistical crop models establish a relationship 
between yield and environmental factors from long-term datasets and use the estab-
lished relationship to predict crop yield at regional or national levels based on environ-
mental data (Park et al. 2005). Empirical crop growth models are relatively simple to 
develop, but these models cannot take into account the temporal changes in crop yields 
without long-term field experiments (Jame and Cutforth 1996). Furthermore, the 
derived functional equation is locally specific, and it is thus difficult to extrapolate to 
other areas unless environmental conditions are similar. Many of such models embody 
a number of simplifications. For example, weeds, diseases, and insect pests are assumed 
to be controlled, and there are no extreme weather events such as heavy storms.

Process-based crop models, on the other hand, estimate crop yield on the basis of 
daily gains in biomass production by taking into account all known interactions 
between physiological processes and environmental conditions (Sawasawa 2003). 
Because process-based models explicitly include plant physiology, agroclimatic 
conditions, and biochemical processes, these models are able to simulate both 
temporal and spatial dynamics of crop yields and thus have higher extrapolation 
potential than empirical models.
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8.2.9  �Allometric Models

Allometric models are mathematical relationships between plant morphological 
characteristics and crop yield. The morphological characters can be measured on a 
selected number of plants which then can be used to predict biological yield in field. 
Allometric models should be based on variables that can be quantified easily using 
rapid, inexpensive, and non-destructive methods of data collection (Fermont and 
Benson 2011). For bananas in Uganda, Wairegi et al. (2009) found that a multivari-
ate model using girth of the pseudo-stem at base and at 1 m, the number of hands, 
and the number of fingers gave a robust prediction of bunch weight. Tittonell et al. 
(2005) used plant height and ear length to predict maize yields in western Kenya. 
In cereal crops, the number of tillers per unit area, ear or spike length, number of 
grains per spike, and 1000-grain weight—commonly known as yield attributing 
characters—can be determined and used to estimate the crop yield. Data collection 
is one of the prerequisites of this method although data collection may be less labor 
intensive than with the crop cut method.

8.2.10  �Remote Sensing

Use of remote sensing to estimate the biological crop yield is being explored in 
many countries and likely will become the basis of agricultural statistics in the 
future (Zhao et al. 2007). Crop yield estimation using remote sensing is based on the 
principle of spectral reflectance of green plants, which can be captured in satellite 
images as spectral data, and depends on the state, structure, and composition of the 
plant. The spectral data can be used to construct several vegetation indices such as 
normalized difference vegetation index (NDVI) which indicates the green biomass 
that can be used as proxy indicator of the yield (Prasad et al. 2006). The limitation 
in the use of satellite images to estimate crop yields of smallholder farmers is that 
the resolution of available satellite imagery (pixel size) is not sufficiently detailed to 
capture the variability of crops and crop performance in smallholder fields, which 
often are less than 0.1 ha in size and sometimes intercropped (Fermont and Benson 
2011). In India, for example, vegetation indices from satellite images show only a 
moderate correlation (R2 between 0.45 and 0.54) with crop cut data (Singh 2013).

8.3  �Critical Analysis and Comparison of Yield Estimation 
Methods with Regards to Cost, Scale, and Accuracy

A comparison of the wide range of methodologies to estimate crop production in 
terms of their cost effectiveness, suitability for different scales from field to land-
scape and sources of errors or bias is presented in Table 8.2. A strong advantage of 
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the crop-cut method is that the area of the cut is known and thus does not introduce 
an error into the final yield computation. It has been a standard method for yield 
estimation recommended by organizations such as the Food and Agriculture 
Organization of the United Nations for years. However, crop cuttings may suffer 
from serious limitation due to heterogeneity of crop conditions within farmers’ 
plots. In crop cuts, enumerators have the tendency not to sample locations with poor 
crop stand, leave border areas where crop yield is generally lower than in the mid-
dle of the plot and include the plant falling at the edge of sampling frame. A 
study done in Bangladesh found that even with best-educated enumerators, crop-cut 
estimates exceeded actual yield by 20 % whereas farmers’ estimates of production 
were lower (Diskin 1999). Further, crop cut only estimates biological yield without 

Table 8.2  Comparison of various methods of crop production estimation with regard to their 
cost-effectiveness, scale, and accuracy

Method Cost-effectiveness Scale
Precision in estimation, errors, and 
biases

Crop cut Time and labor 
intensive

Field, farm, 
and sometimes 
landscape level

Tendency to overestimate

Farmer’s estimate Cheap and quick 
method that saves 
time and money

Farm to 
landscape

Fairly accurate estimation but needs 
adequate supervision. Subjective. 
Sometimes farmers deliberately 
overestimate or underestimate

Sampling harvest 
unit

Cost-effective Farm to 
landscape

Error prone in the condition where 
farmers harvest from multiple areas 
at time and not possible with 
staggered harvesting

Whole plot harvest Cost intensive, 
labor intensive

Plot level, farm 
level, case 
study

Almost bias/error-free

Expert assessment Moderately 
cost-effective

From farm to 
landscape level

Chances of error increases if 
different teams of experts are used 
or extension people are used to 
estimate yield in their own area. 
Subjective

Crop cards Cost and labor 
intensive

Field to farm 
level

Bias due to illiteracy, use of local 
units etc.

Crop modelling Cost-effective Landscape Less if adequately parameterized 
and calibrated. Do not include 
induced improvements in 
agricultural technology

Purchaser’s/
insurance record

Cost-effective Field scale Suitable for cash crops only with 
no household consumption

Allometric models Cost-effective Field scale Suitable for few crops only

Remote sensing Cost-effective Landscape Chance of error in cases where 
different crops have the same 
signature
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taking into account postharvest losses and is therefore unable to estimate economic 
yield, which is of most interest to farmers. All these tendencies contribute to upward 
bias when extrapolating results to a larger area. Further, using a large weighing 
balance to weigh smaller quantities from crop cuts may sometimes introduce mea-
surement errors. This method is costly and time-consuming, and not suitable for 
heterogeneous crop performance (typical of smallholder production systems) and 
staggered harvesting as this is a one-point-in-time measurement.

The farmers’ estimation method does not require laborious measurements, and 
therefore this method is time- and cost-efficient and is suitable for estimation at larger 
scales. For years, it was assumed that farmers’ estimates were too subjective and unreli-
able and when differences appeared between crop cut and farmers’ production esti-
mates, it was attributed as farmers’ error. However, research in 1980s suggested that 
farmers’ estimation may be just as accurate as crop cut, at least for determining total 
farm production (Murphy et al. 1991). However, literacy levels of farmers and non-
standard harvest units pose serious drawbacks in its use in smallholder production 
systems of developing countries. Farmers may use part of their produce as in-kind 
payment to their labor which they may not count in their estimate, leading to underes-
timation. Further, many farmers consciously over- or underestimate in the case of sus-
pected benefits such as food aid or penalties such as taxes (Diskin 1999). Expert 
assessment can be relatively error-free if the same team of experts can be used through-
out the study (Rozelle 1991). However, finding a large number of experts with required 
practical and technical experience to estimate relative performance of different crops/
varieties under different environments is a challenge to employ this approach at larger 
scales. Furthermore, both farmer’s estimation and expert assessment are subjective 
and amenable to several non-sampling errors. Therefore, it is advisable to combine 
these methods with other methods for better estimation of crop yield.

The advantage of whole plot harvest method is that it is almost bias-free since all 
sources of possible errors and biases associated with crop cut or farmers’ estimate are 
eliminated when the entire field is harvested. However, this involves a large volume of 
work to obtain robust estimates of yield at landscape level. Sampling of harvest units 
can be used on larger samples than is possible with crop-cut or whole plot harvest 
method. However, this method is unsuitable for crops with staggered harvesting.

Use of crop cards can be combined with farmers’ estimate for crops with multiple 
harvesting and staggered ripening. However, this is again very labor intensive and 
cannot be employed for large-scale surveys. Further, use of local unit of measure-
ment by different farmers may introduce error in estimation. Use of allometric 
methods is limited to a certain number of crops such as banana and maize. In devel-
oped countries, purchasers’ records or crop insurance data may be used for crop 
yield estimation but this method may not be suitable in the context of smallholder 
production in developing countries.

Crop modelling and remote sensing are cost-effective methods of yield estima-
tion which can be employed at large scales fairly accurately although empirical 
models fail to capture landscape heterogeneity and process-based models need 
rigorous parameterization, calibration, and validation before they can be used for 
large-scale estimation.
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8.4  �Conclusion

Precise estimation of crop yield in smallholder agriculture is challenging because of 
highly heterogeneous crop performance within a plot, continuous planting and 
intercropping or mixed cropping to meet various household requirements. Staggered 
ripening of many crops with an extended harvest period and planted area not being 
equal to harvested area further complicates the issue of crop yield determination in 
smallholder farmers’ condition. A wide range of methodologies have been devel-
oped to estimate crop yields in the smallholder production systems, each with 
advantages and disadvantages. This review has primarily considered the application 
of these methodologies to cereal cropping systems, but the methodologies can be 
adapted to other cropping systems as well. A choice of method depends on the 
objective and desired level of precision, scale of estimation, and available resources. 
For example, whole plot harvesting may be suitable for small-scale detailed studies at 
plot level whereas for large-scale survey at regional level combination of crop cut, 
farmer’s estimation and expert assessment may be used. Use of crop models and 
remote sensing may be appropriate for agricultural statistics, provided adequate 
parameterization of models is done and imagery at sufficiently fine resolution to cap-
ture the variability of crops and their performance in smallholder fields is available.
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Abstract  Measurements of nutrient stocks and greenhouse gas (GHG) fluxes are 
typically collected at very local scales (<1 to 30 m2) and then extrapolated to esti-
mate impacts at larger spatial extents (farms, landscapes, or even countries). 
Translating point measurements to higher levels of aggregation is called scaling. 
Scaling fundamentally involves conversion of data through integration or interpola-
tion and/or simplifying or nesting models. Model and data manipulation techniques 
to scale estimates are referred to as scaling methods.

In this chapter, we first discuss the necessity and underlying premise of scaling 
and scaling methods. Almost all cases of agricultural GHG emissions and carbon 
(C) stock change research relies on disaggregated data, either spatially or by farming 
activity, as a fundamental input of scaling. Therefore, we then assess the utility of 
using empirical and process-based models with disaggregated data, specifically con-
centrating on the opportunities and challenges for their application to diverse small-
holder farming systems in tropical regions. We describe key advancements needed 
to improve the confidence in results from these scaling methods in the future.
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9.1  Introduction?

Agricultural systems are a major source of atmospheric greenhouse gas (GHG) 
emissions, contributing approximately 30 % to total anthropogenic emissions if 
land use change is included (Vermeulen et al. 2012). To better target interventions 
aimed at reducing GHG emissions from agricultural systems, there is a need for 
information on GHG balances and the GHG intensity of agricultural products (e.g., 
emissions per unit product) at levels where livelihood and environmental impacts 
occur and land management decisions are being made. However, even in small-
holder farming systems where decisions are taken on fields and farms that are usu-
ally less than 1 ha, this decision scale is substantially greater than the scale at which 
changes in GHG fluxes take place or are measured, often that of micrometers and 
meters (Butterbach-Bahl et al. 2013). The factors regulating nitrous oxide (N2O) 
generation in agricultural fields illustrate this point. At the scale of soil aggregates—mm 
in size–soil moisture affects oxygen available to microbes, driving denitrification 
(the conversion of NO3

− to N2O principally by facultative anaerobic bacteria). 
Meanwhile, soil moisture, influenced by the percentage of water filled pore space, 
is regulated by precipitation and soil tillage—events determined at a larger spatial 
extent. Furthermore, heterogeneous distribution of decomposing residues from the 
previous harvest may lead to formation of denitrification and N2O hotspots at the cm 
scale, thereby triggering changes in the magnitude and spatial variability of fluxes 
even at plot scale (Groffman et  al. 2009). Consequently, land-based mitigation 
actions require a lower resolution of information than that needed to explain the 
processes driving GHG emissions at the soil–plant–atmosphere interface.

GHG fluxes are typically measured at locations or “points,” intended to be repre-
sentative of a larger area. Independent of source, sink or molecule, GHG measure-
ments—for example chamber measurements of fluxes—are conducted on only a 
fraction of the area or a few of the landscape units because of costs and complexity 
(Rufino et al. 2016; Butterbach-Bahl et al. 2016). When attempting to understand 
landscape or regional GHG fluxes or consider mitigation options, it is therefore 
necessary that these point measurements be translated to larger extents where effec-
tive and meaningful mitigation actions can be taken.

“Scaling” GHG flux measurements underlies GHG accounting (e.g., national 
inventories), and forms the basis for policy analysis (e.g., marginal abatement cost 
curves), development strategies (e.g., low emission development), and even simple 
testing of mitigation options (e.g., comparing impacts of one practice versus an 
alternative). Thus, it is important to understand basic principles and terminology 
that pertain to scales and scaling, to avoid confusion in discussions and analysis. 
Scale refers to the spatial or temporal dimension of a phenomenon (van Delden 
et al. 2011; Ewert 2004). Scaling refers to the transfer of information between scales 
or organizational levels (Blöschl and Sivapalan 1995). Scaling methods refer to 
tools required to accomplish scaling. This chapter is concerned with understanding 
the theory and practice behind scaling methods as applied to GHG measurements 
and impacts.
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9.2  �Scaling Methods

Most scaling methods are grounded in ecological hierarchy theory. Hierarchy the-
ory provides a conceptual framing for scaling in that it structures systems as nested 
levels of organization (Holling 1992). Components are arranged within higher lev-
els; for example, a field is part of a farm that can be thought of as part of a land-
scape; moreover, these different components are spatially heterogeneous areas of 
interacting patches of ecosystems (Fig. 9.1). Scaling methods rely on this concep-
tual framing to infer relationships between attributes and to translate values derived 
from point measurements into estimates across scales.

Scaling methods can be categorized into two groups: (1) manipulation of input or 
output data or (2) manipulation of models (Volk and Ewert 2011). Approaches that 
manipulate data are extrapolation, interpolation, (dis)aggregation, or averaging 
sampled input data (i.e., point measurements) to generate estimates at larger scales 
(Table 9.1). National Greenhouse Gas Inventories that use IPCC default Tier 1 
emission factors (IPCC 2006) are an example of a scaling method that uses a data 
manipulation approach, namely disaggregation and aggregation. Agriculture is dis-
aggregated into farming activities and their extents (e.g., size of cattle population or 
tons of nitrogen (N) fertilizer applied) for which a coefficient or empirical model 
derived from point measurements of the relationship between that activity and GHG 
fluxes (i.e., empirical model) is then used to calculate emissions at national or sub-
national levels. Data manipulation approaches are among the simplest approaches to 
implement, especially in regions and for production conditions where data are 
sparse. However, since data manipulation approaches generally neglect heterogene-
ity in GHG emissions and underlying physicochemical and biological processes, 
estimates may not represent observed fluxes well at the site level. However, in most 
cases for developing countries, the accuracy of using such methods is unknown 
because there are insufficient data to evaluate the variation of source events (input 
data) or the accuracy of outputs. The ability to generate accurate estimates at larger 
temporal or spatial scales by manipulating data depends on (1) representative sam-
pling of the disaggregated GHG source/sink activities and (2) the availability of a 

Fig. 9.1  Illustration of a nested hierarchy. Regions (East Africa) can be disaggregated to land-
scapes (natural forest, communal lands, and agriculture) to farms (mixed crop–livestock) to fields 
(cabbages) (Photos: Authors; CCAFS; Google Maps 2015) 
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reasonable model—empirical or process-based—to scale input data. Recently, novel 
approaches for disaggregation of national, landscape, or farm components such as 
stratification by socioecological niches using a combination of household surveys 
and remote sensing and stratification by agroecological conditions using existing 
climate, soils, and management information have been evaluated to improve esti-
mates because of the better representation of the heterogeneity found in plots, fields, 
farms, and landscapes (Hickman et al. 2015; Rufino et al. 2016).

Table 9.1  Conceptual framework of select scaling methods based on Ewert et al. (2011). Reprinted 
with permission.

Scaling method
Graphical 
representation Opportunities Challenges

GHG 
example

Manipulation of data

Extrapolation 
and singling 
out

Extrapolation

Singling out

Simple Heterogeneity in 
inputs are 
neglected

Tully et al. 
(in prep)

Aggregation 
and 
disaggregation

Aggregation

Disaggregation

Spatial 
heterogeneity is 
taken into account

Need to have 
hypotheses 
about underlying 
drivers of input 
data 
heterogeneity

Rufino 
et al. (2016)

Aggregation/
averaging 
(stratified input 
data)

Model

Less 
computationally 
intensive because 
of averaged input 
data

Averaging input 
data may 
compromise 
modeling efforts

Bryan et al. 
(2013), Li 
et al. (2005)

Aggregation/
averaging 
(stratified 
output data)

Model
Model
Model
Model
Model

More accurate 
representation of 
heterogeneity

Data and 
simulation 
intensive which 
limits 
applicability at 
scale

De Gryze 
et al. (2010)

Manipulation of models

Modification of 
model 
parameters

Model

Parameter

Uses existing 
models

Fine-scale model 
parameters may 
be inappropriate 
for larger scales

Simplification 
of model 
structure

Model

Summary model

Relies on 
understanding of 
known 
fundamental 
relationships

Subject to 
availability of 
data and 
understanding of 
processes

Perlman 
et al. (2013), 
Spencer 
et al. (2011)

Derivation of 
response 
function or 
coefficients

Model

Responses

Model
Simplifies 
process-based 
model output to 
summary function

Simplifying 
relationships 
may neglect 
important 
dynamics.

Sieber et al. 
(2013)

Based on Ewert et al. (2011)
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The alternative to manipulating data is to modify existing models to be relevant 
at larger spatial scales. This has been successfully done for national-scale soil C 
monitoring in the United States, where an integrated data collection and biogeo-
chemical process-based model (DAYCENT) estimates changes in soil C stocks 
(Spencer et al. 2011). However, other examples for agricultural GHG impact assess-
ments remain scientific exercises (see Perlman et al. 2013 for national scale N2O 
assessment). Approaches to manipulate models change the model structure to 
account for the availability and resolution of input data and to make them computa-
tionally tractable. Reformulation of model structure (not creating new models) can 
result in a reduction of parameters (e.g., macroecological models of functional 
traits) or simplified model functional forms (e.g., empirical equations derived from 
multiple runs of process-based models). An important consideration is that scaling 
by modifying models introduces uncertainty: uncertainty in the quality and quantity 
of input data, uncertainty of datasets used to test models, and uncertainty related to 
model structure and parameters in the revised models.

Theory supporting the manipulation of data and models as well as potential 
errors/uncertainties in outcomes is reviewed in the integrated assessment literature 
(e.g., Ewert et al. 2011; Volk and Ewert 2011). The process of selecting representa-
tive sampling points by various stratification methods (e.g., spatially, land cover, 
farming activity, etc.) are covered in Chap. 2 and measurement techniques for vari-
ous fluxes and productivity are covered in Chaps. 3–8. Here we discuss the two 
methods most commonly used to scale up point measurements of disaggregation/
aggregation data: empirical and process-based models.

Empirical models are usually relatively simple statistical functions constructed 
based on the relationship between occurrence of activities or external events, farm-
ing or rainfall for example, and monitored responses in the magnitude and tempo-
ral and spatial variability of GHG fluxes. By contrast, process-based ecosystem 
models are built upon our current theoretical understanding of the physicochemi-
cal and biological processes underlying GHG emissions. They represent current 
understanding of complex processes and the interactions of C, N, and water cycling 
at the ecosystem scale to simulate the mechanisms that control GHG fluxes. 
However, process models need detailed input information and have numerous 
parameters describing key ecosystem processes and some of the algorithms are 
still empirical and represent apparent flux responses rather than the underlying 
processes. Unlike empirical models that require calibration each time they are 
used, one assumes that the simulated processes are universal and, thus, that are 
based on a number of site tests, they might be applied at sites with a different agro-
ecological regime for which they have not previously been calibrated, although 
calibration of specific parameters might still be required. In the following, we 
briefly describe these two approaches, their applicability for smallholder sys-
tems, representation of the landscape units, technical demands of the process, and 
sources of uncertainty.
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9.3  �Using Empirical and Process-Based Models 
with Disaggregated Data

9.3.1  �Empirical Models

Empirical models for scaling GHGs are based on statistical functions that relate 
land management “activities” such as extent of a land cover type, amount of fertil-
izer applied, or the number of heads of livestock to changes in GHG emissions or C 
sequestration. Carbon stock changes, and GHG fluxes can then be calculated based 
on two types of input data: (1) that describes the occurrence of activities (the so-
called “activity data”) and (2) the average effect that an activity has on a nutrient 
stock or flux in question (“emission factors”) (Eq. (9.1)).

	
GHG EF= ∑

i

n

i iA *
	

(9.1)

where

GHG equals the stock (mass) or flux (rate: mass per unit time), sequestration or 
balance in units of C, N, or an integration of the two (CO2 eq)

A represents the extent (area) over which an activity occurs
EF is an emissions factor (e.g., a constant rate relative to the specific activity: mass 

per unit time per unit area)

Summation of GHG fluxes or stock changes across N activities (sources/sinks) 
generates a cumulative balance for the selected area. This approach is analogous to 
a linear aggregation scaling method based on measurements or estimated values.

The most widely applied empirical models for scaling GHGs are contained 
within the IPCC Guidelines for Greenhouse Gas Accounting (IPCC 2006). The 
IPCC Guidelines define global (Tier 1) and, sometimes regional (Tier 2) emission 
factors for GHG sources and sinks such as the methane produced by enteric fermen-
tation per head of cattle or the amount of nitrous oxide resulting from the applica-
tion of nitrogenous fertilizers. Persons interested in GHG quantification can multiply 
these values and use the provided equations with locally relevant data on farm and 
landscape management activities to generate estimates of individual sources and 
sinks or cumulative GHG balances. Application of emission factors and empirical 
models is the foundation of national GHG inventories and data (Tubiello et al. 2013) 
and is becoming more common for landscape GHG accounting including ex-ante 
climate change mitigation project impact assessments (Colomb and Bockel 2013).

IPCC Tier 1 default emission factors are based on both empirical data and expert 
opinion. In some cases, emissions factors are derived from analysis of 100 s or even 
1000 s of measurements of the source activity and the rates of emissions. For 
instance, IPCC default emissions factor for nitrous oxide emissions from N fertil-
izer use (%) are based on the database of nearly 2 000 individual measurements 
from studies conducted around the world (Stehfest and Bouwman 2006). Distribution 
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of the studies they are taken from is however biased toward measurement cam-
paigns conducted in Europe and North America. Other emission factors are esti-
mated based on very limited data (e.g., single values for carbon stocks in agroforestry 
systems) or expert opinion (e.g., emission factor for methane emission from enteric 
fermentation is based on modeled results, not measurements, for Africa) (IPCC 
2006). Global default emission factors are published in the National Guidelines for 
Inventories while other regionally relevant emission factors are available in the 
IPCC Emissions Factor database, peer-reviewed literature and in the future will be 
made available through the SAMPLES web platform.

Empirical models are typically thought to generate reasonable approximations of 
GHG fluxes at higher levels of organizations and large spatial extent (Del Grosso 
et al. 2008), presuming the activity data are well constrained. This is because it is 
thought that at large scales such as across countries, the departure of actual fluxes 
from average emissions factor values will average out with aggregation of multiple 
land units. However, for any local scale—farms for example, where local environ-
mental and management heterogeneity of conditions are not well represented in the 
global datasets, applying empirical models and emissions factors may represent a 
significant departure from actual fluxes.

The relevance of using empirical models for farm-scale estimates of GHG bal-
ances is untested and perhaps spurious, especially for farming systems in develop-
ing countries. IPCC guidelines using Tier 1 default factors were not designed for 
this purpose. Tier 1 approaches were intended to be used when the source activity 
was relatively inconsequential to total GHG budgets, perhaps contributing less than 
5 % of the total (IPCC 2006). Furthermore, significant variations in GHG flux rates 
occur between point locations due to edaphic mechanisms that control biological 
emission processes. Because observations of GHG fluxes for tropical smallholder 
farming systems are scarce or nearly missing in available databases, Tier 1 default 
factors may considerably misrepresent flux rates for such systems. In view of the 
low use of N fertilizers in sub-Saharan Africa it is therefore not surprising that many 
of the N2O fluxes currently being measured there are 1/3 to 1/2 of those estimated 
using the Tier 1 IPCC emission factors (Hickman et  al. 2014; Shcherbak et  al. 
2014). A comprehensive evaluation of Tier 1 emission factors relating to GHG 
impacts measured in tropical regions is currently lacking. Despite these concerns 
and the uncertainty of the results, disaggregation of whole farms into component 
activities and applying available empirical models remains a way to estimate rela-
tive impacts of smallholder farming activities at the whole-farm level (Seebauer 
2014), as well as understand emission hotspots and the research gaps.

Emissions from livestock production in the tropics, namely from enteric fermen-
tation and manure management, present their own challenges due to data scarcity 
(Goopy et al. 2016). Similarly to soil fluxes, emissions from both sources are poorly 
constrained and according to the review by Owen and Silver (2015) data for dairy 
manure management are limited in Africa and extremely scarce for other systems 
(Predotova et al. 2010). Yet in many countries, these sources are thought to be sub-
stantial contributors to total GHG budgets (Gerber et al. 2013).
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Besides poorly constrained emission factors, an additional issue (and arguably 
most important) is limited knowledge of farm management practices (A in Eq. 
(9.1)), which limits the use of empirical relationships and models to calculate fluxes. 
Many developing countries have poorly defined record keeping and reporting 
schemes about organic and inorganic fertilizer use, manure management, crop rota-
tions, and other activities, so there is limited information on the extent of land man-
agement decisions (Ogle et al. 2013). This adds another source of uncertainty (in 
addition to emission factors themselves). Valentini et al. (2014) reported that esti-
mates of the extent of various land cover types in Africa can be from 2.5 to 110 % 
different, depending on the data source, either using inventory sources or satellite 
imagery. Other evidence from data collection methods suggests that the uncertainty 
in farm management practices is similar to that of emissions, 30–80 % (Fig. 9.3, 
Seebauer 2014). New practices have been developed to help developing countries 
better represent the activities in their agricultural landscapes (Tubiello et al. 2013) 
and many institutions such as the US Environmental Protection Agency train gov-
ernment personnel in developing countries to co-compile inventories. However, 
problems with the data quality itself remain. Incentives to improve and standardize 
data collection and archiving efforts are limited.

Simplicity and transparency are the largest benefits of using data (dis)aggrega-
tion techniques and empirical models for scaling GHG estimates. The models rep-
resent relationships that are easy to understand and implement, which makes them 
accessible to next users without requiring much technical expertise. This has led to 
the creation of a wide range of GHG calculators such as the Cool Farm Tool and 
EX-ACT (see Colomb and Bockel 2013 for a review). These tools make it possible 
for non-specialists to perform calculations and generate estimates of GHG balances 
with relatively little data or effort. It is still unknown, however, whether the esti-
mates produced by such tools provide robust values—either in terms of absolute or 
relative changes between different practices (Fig. 9.2).

9.3.2  �Process-Based Models

Empirical models are only one way to scale measured data. Process-based models 
are also used. For example, Bryan et al. (2013) averaged household data for seven 
counties and four agroecological zones in Kenya used a process-based model to 
predict changes in methane emissions from enteric fermentation and revenue with 
improved feeding practices (Table 9.2). Process-based models consist of equations 
implementing current scientific understanding of the mechanisms determining sys-
tem properties. Even though microbial and physicochemical processes involved in 
GHG emissions from soils are implemented in various biogeochemical models, 
equations are often based on empirical observations or represent apparent changes 
in production rates or microbial activity due to, for example, changes in environ-
mental conditions such as changes in moisture and temperature. Thus, models 
describe a system consisting of components such as soil physics and energy fluxes, 

T.S. Rosenstock et al.



183

vegetation biomass development, or soil microbial C and N turnover and their inter-
actions, which are represented by the equations describing states and rates at differ-
ent points in time (temporal resolution). Process-based GHG models are designed 
to run at source scale (e.g., site or animal) after being calibrated based on observed 
relationships in controlled experiments and monitoring data. Because the equations 
represent principal microbial, biogeochemical and physicochemical processes 
underlying ecosystem–atmosphere exchange processes and the emission of GHGs, 
the models can be suitable to simulate GHG dynamics under diverse environmental 
and management conditions, even conducting “what if” scenario type of experi-
ments. The robustness of process-based models has made them a widely used pre-
dictive tool in global change studies and they might be suitable as well to account 
for fine scale heterogeneity in the farming context, which is not possible with cur-
rent empirical models. However, process-based models need to be tested for their 
ability to represent GHG under specific conditions to have confidence in their pre-
dictions. This is an involved process, which restricts their utility for sites and sys-
tems outside the range of the available calibration data. Until process-based models 
have been adapted, calibrated, and evaluated to account for diversity and complex-
ity characteristic of smallholder farming, their use for GHG quantification at the 
whole-farm level in mixed systems, such as the crop–livestock systems of Africa, 
remains a challenge, requires a tight coupling of sectorial models and a whole sys-
tem understanding, and implies significant uncertainty.

Fig. 9.2  Uncertainty of activity data inputs into a whole-farm accounting approach used in 
Western Kenya (Seebauer 2014). Uncertainty depends on the farm activity in question and ranges 
from 10 to 20 % for crop residue inputs up to greater than 80 % with on-farm tree biomass. Data 
were collected by survey and colors represent different farm types

9  Scaling Point and Plot Measurements of Greenhouse Gas Fluxes, Balances…



184

The accuracy of a process-based model is related to errors due to model structure 
(model parameter uncertainty) or errors due to the accuracy of data inputs (input 
uncertainty). Errors related to model structure are based on incomplete understand-
ing and knowledge of the fundamental relationships that are driving GHG produc-
tion and consumption processes in soils, variation in ways to describe underlying 
processes, and fluxes at the soil–atmosphere interface and the representation of 
them in the model. These errors can be quantified statistically by comparing the 
model’s predicted GHG fluxes to measured GHG fluxes, with correlation coeffi-
cients for instance. Errors related to input uncertainty occur because the input data 
describing a particular system is not well known. This may be particularly problem-
atic in developing countries when the detailed climate, soils, and land use data are 
not available at a high degree of resolution. Input uncertainty can be estimated using 
Bayesian calibration and Monte Carlo simulations (see for example Van Oijen et al. 
2011; Rahn et al. 2011).

Process-based models are available for the majority of biological GHG sources 
and sinks but tend to be limited to one type of source or sink. For instance, 
CENTURY, DAYCENT, and LandscapeDNDC (Giltrap et  al. 2010; Haas et  al. 
2013) were developed to simulate biomass production and soil processes, including 
simulation of soil GHG fluxes and soil C/N stock changes. Process-based models 
are also available to simulate CH4 emissions from livestock but have so far mainly 
been applied in the United States and in Europe (Thornton and Herrero 2010; Rotz 

Table 9.2  Geographically averaged input data was used to run a process-based model 
(RUMINANT) to predict changes in emissions and revenues with changing diets under two 
scenarios (Bryan et al. 2013)

District

Baseline diet Improved feeding

Cost of CO2e 
emissions 
(US$)

Baseline net 
revenue per L 
of milk (US$) Scenario

Cost of CO2e 
emissions 
(US$)

Baseline net 
revenue per L 
of milk (US$)

Prosopis

Garissa 6.53 0.33 1.5 kg 6.45 0.23

6.53 0.33 3 kg 6.16 0.18

Desmodium

Gem 7.77 0.11 1 kg 7.52 0.26

2 kg 7.85 0.23

Napier grass

Mbeere 9.64 0.04 2 kg 9.94 0.16

9.64 0.04 3 kg 9.90 0.15

Hay

Othaya 9.57 0.15 2 kg 9.68 0.16

9.57 0.15 4 kg 9.61 0.11

Grevillia

Njoro 9.06 0.14 1 kg 9.61 0.19

9.06 0.14 2 kg 10.63 0.19
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et al. 2012; Duretz et al. 2011). These models are reasonable when evaluating the 
soil carbon sequestration potential at large scales or emissions of N2O from mono-
culture fields (Babu et  al. 2006), or changes in herd management (Pathak et  al. 
2005; Bryan et al. 2013; Perlman et al. 2013) but perhaps less so when trying to 
characterize the GHG impacts of smallholder systems at the whole farm level or for 
landscape-scale accounting.

Smallholder farming systems comprise multiple types of farming activities, 
often combining trees, animals, and crops in interconnected systems. Human man-
agement alters nutrient flows, potentially mitigating or exacerbating emissions from 
parts of the system; applying sectoral process-based models to whole farms there-
fore may oversimplify the complex interactions taking place (Tittonell et al. 2009). 
As of yet, few modeling approaches have been adapted for farm-level modeling of 
GHG impacts in mixed crop–livestock systems (Schils et  al. 2007; Groot et  al. 
2012; Del Prado et al. 2013) and to our knowledge none have been applied to small-
holder conditions of tropical developing countries.

To facilitate the widespread use of process-based models, as a first step the mod-
els need to be tested for most locations dominated by smallholder farming, which 
requires the availability of respective test datasets. Data on site-specific factors such 
as soil properties, cropping sequences, and fertilizer use are required; information 
which is often unavailable in many developing countries. In terms of enteric fermen-
tation, the challenge is both a lack of information on animal numbers, species, and 
breeds, feeding regimes, as well as the quality of feeds and forages even though the 
models are based on the presumption that the chemical reactions that occur in the 
rumen are fairly standard and tend to go to completion. However, emission factors 
and rates currently available which have been obtained so far, don’t consider that 
livestock production in developing countries often involves periods of severe under-
nutrition with feed qualities being far lower than tested in experiments in OECD 
countries. It is obvious that there is a great need to generate data that can be used for 
model parameterization and evaluation for smallholder conditions. Until now, only 
limited information has been available to independently assess the validity of the 
emission models for developing country conditions, casting doubt on the reliability 
of results generated from process-based models.

�Conclusion

The complexity and scale that is characteristic of smallholder farming and the 
general lack of data presents significant challenges for scaling GHG emissions with 
much certainty. Significant efforts and investments are needed to improve systems 
representation so that the data collected are used to improve either empirical or 
process-based models. Moreover, conducting detailed monitoring campaigns can 
address the challenge of complexity and heterogeneity, and provide data that can be 
used to scale up representative systems with greater confidence.
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Besides concerns over accuracy, technical demands in terms of data availability 
and model testing all limit the utility of using process-based models as a scaling 
method for GHG fluxes in agricultural systems of tropical developing countries at 
this time. However, given the costs of monitoring programs, it becomes an impera-
tive to establish programs that can adapt and improve process-based models for 
quantification as they provide a means to test hypotheses of mitigation options and 
GHG accounting. This will require a number of investments in monitoring of small-
holder practices of field and livestock management, scientific capacity building, and 
GHG measurements to evaluate the models for smallholder conditions. We estimate 
that a 10-year program of targeted and iterative measurements and modeling—those 
for key sources and sinks spanning heterogeneous conditions—is needed before use 
of process-based models becomes a viable solution for widespread GHG quantifica-
tion in smallholder systems at either farm or landscape scales. In the meantime, 
models can be parameterized and tested well for farm and landscape situations, 
albeit time and resource intensive, but the limitations need to be recognized by those 
using the models and more importantly those using the model outputs.
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    Abstract     Trade-off analysis has become an increasingly important approach for 
evaluating system level outcomes of agricultural production and for prioritising and 
targeting management interventions in multi-functional agricultural landscapes. We 
review the strengths and weakness of different techniques available for performing 
trade-off analysis. These techniques, including mathematical programming and par-
ticipatory approaches, have developed substantially in recent years aided by math-
ematical advancement, increased computing power, and emerging insights into 
systems behaviour. The strengths and weaknesses of the different approaches are 
identifi ed and discussed, and we make suggestions for a tiered approach for situa-
tions with different data availability. This chapter is a modifi ed and extended ver-
sion of Klapwijk et al. (2014).   
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10.1      Introduction 

 Trade- offs  , by which we mean exchanges that occur as compromises, are ubiquitous 
when land is managed with multiple goals in mind. Trade-offs may become particu-
larly acute when resources are constrained and when the goals of different stakehold-
ers confl ict (Giller et al.  2008 ).  In agriculture  , trade-offs between output indicators 
may arise at all hierarchical levels, from the crop (such as grain versus crop residue 
production), the animal (milk versus meat production), the fi eld (grain production 
versus nitrate leaching and water quality), the farm (production of one crop versus 
another), to the landscape and above (agricultural production versus land for nature). 
An individual farmer may face trade-offs between maximizing production in the 
short term and ensuring sustainable production in the long term. Within landscapes, 
trade-offs may arise between different individuals for competing uses of land. Thus 
trade-offs exist both within agricultural systems, between agricultural and broader 
environmental or sociocultural objectives, across time and spatial scales, and between 
actors. Understanding the system dynamics that produce and change the nature of the 
trade-offs is central to achieving a sustainable and food-secure future. 

 In this chapter we focus on how the complex relationships between the manage-
ment of farming systems and its consequences for production and the environment—
here represented by greenhouse gas (GHG) emissions—can be analyzed and how 
trade-offs and possible synergies between output indicators can be quantifi ed. For 
example, an important  hypothesis   is that by increasing soil carbon sequestration in 
agricultural systems, farmers can generate a signifi cant share of the total emission 
reductions required in the next few decades to avoid catastrophic levels of climate 
change. At the same time, increasing soil carbon sequestration also increases soil 
organic matter, which is fundamental to improving the productivity and resilience of 
cropping and livestock production systems, and thereby a potential win–win situa-
tion is identifi ed. However, it is debatable whether these win–win situations exist in 
reality. An important constraint for this hypothesis is the lack of organic matter like 
crop residues on many smallholder mixed crop–livestock systems, to serve both as 
feed for livestock and as an input into the soil in order to increase soil organic matter. 
This organic matter could be produced through the use of mineral fertiliser or inten-
sifi cation of livestock production, but both of these have negative consequences for 
GHG emissions, probably offsetting the gains made in soil organic matter storage. It 
therefore seems likely that to achieve maximum impact on smallholders’ food pro-
duction and food security, environmental indicators have to be compromised. 
However, good quantitative insight into these compromises is still lacking. 

 Trade-off analysis has emerged as one approach to assessing farming system 
dynamics from a multidimensional perspective. Although the concept of trade-offs 
and their opposite—synergies—lies at the heart of several recent agricultural research- 
for- development initiatives (Vermeulen et al.  2011 ; DeFries and Rosenzweig  2010 ), 
methods to analyze trade-offs within agroecosystems and the wider landscape are 
nascent (Foley et al.  2011 ). We review the state of the art for trade-off analyses, high-
lighting important innovations and constraints, and discuss the strengths and weak-
nesses of the different approaches used in the recent literature.  
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10.2     The  Nature of   Trade-Off Analysis 

  Trade-offs are quantifi ed through the analysis of system-level inputs and outputs 
such as crop production, household labour use, or environmental impacts such as 
greenhouse gas emissions. The outcomes that different actors may want to achieve, 
in and beyond the landscape, need to be defi ned at different time and spatial scales. 
Understanding these desired outcomes, or different stakeholders’ objectives, is a 
necessary fi rst step in trade-off analysis. 

 We illustrate the key concepts and processes of trade-off analysis with a simple 
example that has only two objectives: farm-scale production and an environmental 
impact on greenhouse gas emissions. Once the objectives have been defi ned, the 
next step is to identify meaningful indicators that describe these objectives. The 
indicators form the basis for characterizing the relationships between objectives 
(Fig.  10.1 ). The shape of the trade-off curve gives important information on the 
severity of the trade-off of interest. Is it simply a straight line, like the central curve 
(Fig.  10.1a )? Is the curve convex (i.e. the lower curve), which means strong trade- 
offs exist between the indicators); or concave (i.e. the upper curve), which means 
the indicators are independent of each other and the trade-offs between the indica-
tors are quite ‘soft’? The shape of the trade-off curve represents different functional 
relationships and can be assessed by evaluating farm management options; in our 
example, each point could represent a method and level of mineral fertiliser applica-
tion (Fig.  10.1b ). The position of each option in the trade-off space describes its 
outcomes in terms of the two indicators, productivity and environmental impact. 
Based on this information, a ‘best’ trade-off curve can be drawn (Fig.  10.1c ). In 
trade-off analyses the researcher will be interested in which system management 
interventions result in which type of outcome of the different objectives (Fig.  10.1d ).

   Once the best (observed or inferred) trade-off curve has been identifi ed, various sys-
tem management interventions can be studied to assess the extent to which they contrib-
ute to the desired objectives (Fig.  10.1d ). This analysis determines whether so-called 
‘win–win’ solutions are possible, where the performance of the system can be improved 
with regard to both objectives. Alternatively, does improvement in one objective auto-
matically lead to a decrease in system performance for another objective (Fig.  10.1e )? 
Possible threshold values can be identifi ed once the shape of the trade-off curve is 
known. For example, do productivity thresholds exist, above which the environmental 
impact increases rapidly? In some situations, it may be possible to alter the nature of the 
trade-off between production and environmental impact through the exploration of new 
management interventions (Fig.  10.1f ), thereby redefi ning the ‘best’ trade-off curve.   

10.3     Research Approaches and Tools 

 Trade-offs are typically much more complex with more dimensions and objectives 
than indicated by the simple two-dimensional examples presented in the previous 
section. A wide variety of tools and approaches have been developed to account for 
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  Fig. 10.1    Key concepts of trade-offs and their analysis of a simple two-objective example (for 
explanation see text) EI = environmental impact, P = production. ( a ) Shape, ( b ) outcomes of man-
agement options, ( c ) trade-off and possibility for synergies, ( d ) strategies (interventions) and out-
comes, ( e ) thresholds, ( f ) can trade-offs be alleviated       

diverse situations. The most suitable approach depends on the nature and scale of 
the problem to be addressed, the trade-offs involved, and the indicators available. 
We assess fi ve widely applied approaches: (1)  participatory methods  ; (2) empirical 
analyses; (3) econometric tools; (4) optimization models, and (5) simulation 
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models. These fi ve approaches overlap often and can help generate complementary 
knowledge. Consequently, trade-off analyses will often utilize several methods 
simultaneously or iteratively. 

  The concept of  participatory research  originally highlighted the need for the 
active involvement of those who are the subject of research, or for whom the 
research may lead to outcome changes. In recent times, the notion has expanded to 
acknowledge that change in researchers’ assumptions and perceptions may be 
required to achieve desired outcomes that are attractive to farmers (Crane  2010 ). 
Participatory approaches, such as fuzzy cognitive mapping (Murungweni et al. 
 2011 ), resource fl ow mapping, games and role-playing, are powerful ways to iden-
tify actor-relevant objectives and indicators, although the scope of farmer knowl-
edge and perceptions within scientifi c research can be constraining in some 
situations, particularly in times of rapid change (Van Asten et al.  2009 ). There are 
many examples of participatory approaches (Gonsalves  2013 ) that could be or are 
used to assess trade-offs. Participatory approaches usually generate qualitative data 
and so, although they may not be well suited for quantifying trade-offs, they provide 
critically important information to support quantitative tools, for example through 
the development of participatory scenarios (DeFries and Rosenzweig  2010 ; 
Claessens et al.  2012 ). However, despite the participatory nature of these approaches, 
the assessment of trade-offs often remains researcher-driven.  

 Quantitative assessment of trade-offs requires   empirical    or experimental 
approaches to generate data on the behavior of the system under different condi-
tions. Trade-off curves can be drawn on the basis of experimental measurements of 
indicators, such as the removal of plant biomass for fodder and the resulting soil 
cover, which is a good proxy for control of soil erosion (Naudin et al.  2012 ). 
Statistical techniques such as data envelope analysis (Fraser and Cordina  1999 ) or 
boundary line analysis (Fermont et al.  2009 ) can be used to quantify best possible 
trade-offs between indicators in empirical datasets (e.g. Fig.  10.1c ). Related to these 
empirical approaches are   econometric tools   : these use large datasets as the basis of 
statistical coeffi cients that defi ne the input–output relationships of system level out-
comes (e.g. Antle and Capalbo  2001 ). Developments combine biophysical and 
socioeconomic aspects of the system, and use farm-level responses to quantify con-
sequences at a regional level (Antle and Stoorvogel  2006 ). Empirical and econo-
metric approaches are powerful in the sense that outcomes of various system choices 
can be explored using the existing variability in system confi guration and perfor-
mance. However, the inference space of the analysis is constrained to the dataset 
collected and is therefore not suitable for predicting outcomes outside the ranges of 
the original data. 

  Empirical approaches cannot be used to assess indicators that are diffi cult to 
measure directly; therefore, they are often combined with   simulation models    to 
obtain an overview of overall system performance. Simulation models allow the 
dynamic nature of trade-offs to be explored, where outcomes can differ in the short 
or long term (Zingore et al.  2009 ). System performance, expressed quantitatively in 
terms of outcomes represented by different indicators, can be used as an input for 
  optimization  approaches   such as mathematical programming (MP). MP fi nds the 
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best possible trade-off through multicriteria analysis and can assess whether this 
trade-off curve can be alleviated through new interventions. MP has a long history 
(e.g. Hazell and Norton  1986 ) and is among the most extensively used trade-off 
application in land use studies (e.g. Janssen and Van Ittersum  2007 ). This is despite 
its inherent limitation, that land users do not always behave according to economic 
rationality and optimise their behaviour. Techniques have been developed recently 
to solve non-linear MP problems and integrate across levels, linking farms and 
regions through markets and environmental feedbacks (e.g. Laborte et al.  2007 ; 
Roetter et al.  2007 ; Louhichi et al.  2010 ). 

 Inverse modelling techniques use non-linear  simulation models  directly to per-
form multiobjective optimization without the intermediate step of MP. Furthermore, 
with the identifi cation of the appropriate model outputs, system behaviour can be 
assessed across different temporal and spatial scales and feedbacks taken into 
account, which is often a weak part of MP models. The complexity of agroecosys-
tems and the large number of potential indicators can hamper effi cient applications 
of this computationally intensive method. But advances in computer power have 
resulted in several applications in farming systems research, going from farm to 
landscape (Groot et al.  2007 ,  2012 ; Tittonell et al.  2007 ).  

 The various approaches to trade-off analysis each have key  strengths and weak-
nesses   and combining approaches may provide enhanced opportunities for a realis-
tic, relevant, and integrated assessment of systems (Table  10.1 ). For example, in 
many cases, participatory approaches are needed to defi ne meaningful objectives 
and indicators, but are not suitable to reliably quantify the trade-offs associated with 
possible interventions.  Empirical   and econometric  approaches   can be used to quan-
tify the current state of the overall agricultural system. In many cases, however, 
 simulation models   are needed to quantify indicators that are diffi cult to measure (for 
example, effects of management on longer term productivity) and to explore options 
beyond the existing system confi gurations and boundaries (Table  10.1 ). Optimization 
can be used to assess the potential for synergies and alleviation of trade-offs, but has 
limited applicability when sociocultural traditions and rules play a key role 
(Thornton et al.  2006 ).

   It is clear that for trade-off analyses combinations of techniques are needed. 
Multicriteria analysis is an example of such an  integrated approach  , in which par-
ticipatory and optimization methods are combined: the weighting of the individual 
criteria in goal programming models is done together with the stakeholders, and by 
changing these weights with the stakeholders a trade-off analysis is performed (e.g. 
Romero and Rehman  2003 ).  

10.4     A  Tiered Approach   

  The discussion above demonstrates that for fully integrated trade-off analyses dif-
ferent approaches should be combined. However, in many cases data availability 
will not allow such elaborate analyses. The techniques discussed in the previous 
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section not only have different strengths and weaknesses, but also different data 
demands. Typically, empirical and econometric approaches are highly data-demand-
ing, and therefore time-consuming and expensive, whereas participatory approaches 
can provide essential information about system functioning after only a few well-
designed discussion panels and targeted questionnaires. Simulation and optimiza-
tion models can be, in terms of data demand, anywhere between these extremes. 
Their data demand is highly determined by model setup and complexity. 

 An example of a tiered approach in which researchers move from quick initial 
data analyses to more complex, data demanding, modelling exercises is the four- 
step approach used by Van Noordwijk and his team at ICRAF (Meine van 
Noordwijk, personal communication; see also Tata et al.  2014  for the fi rst three 
steps; Villamor et al.  2014  for an agent-based modelling approach).

    Table 10.1    Strengths and weaknesses of the different approaches for analysing trade-offs in 
agricultural systems   

 Aspect 

 Research approach 

 Empirical  Econometric  Simulation  Optimization  Participatory 

 Act  Pot  Act  Pot  Act  Pot  Act  Pot  Act  Pot 

 Integration of 
interdisciplinary 
content 

 −  +  +  +  −  +  −  −  −  + 

 Assessment across 
different time 
horizons 

 −  −  +  +  +  +  +  +  −  + 

 Assessment across 
spatial scales and 
integration levels 

 −  +  −  +  +/−  +/−  +/−  +  −  + 

 Takes into account 
qualitative 
information 

 −  +  −  −  −  −  −  −  +  + 

 Appropriate 
representation of 
uncertainty 

 −  +  −  +  −  +  −  +  −  + 

 Identifi cation of 
possibilities to 
alleviate the 
observed trade-offs 

 −  −  −  −  +  +  +  +  −  − 

 Ability to deal with 
real-life system 
complexity 

 +  +  −  +  −  −  −  −  +  + 

 Applicability to 
real-life 
decision-making 

 +  +  +  +  −  −  +/−  +/−  +  + 

   Act  actual or current use in the scientifi c literature,  Pot  potential usefulness of technique  
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•    Step one is the collection of system characterization data and the analysis of 
these data to explore whether trade-offs can be identifi ed, for example between 
an environmental indicator like soil carbon and the net present value of the land.  

•   The second step is to look at these variables from a dynamic perspective and 
identify opportunities for interventions by analysing the opportunity costs of 
 different management options. This step already requires much more detailed 
data than step 1, and in the example above, could be used to identify the price of 
emission reduction potentials.  

•   In the third step, the consequences of the identifi ed intervention options for the 
different land users and the environment can be explored by using dynamic land- 
use models.  

•   Finally in the fourth step, agent-based models and participatory modelling exer-
cises are used to analyse the opinions of, and interactions between, different 
actors in the landscape. This provides an integrated analysis of both the environ-
mental and socioeconomic factors and actors within the landscape.    

 This four-step approach demonstrates the way in which the strengths of different 
methods of trade-off analysis can be combined, and how such an analysis can move 
stepwise towards more complex and data-demanding exercises. 

 All in all it is not straightforward to give concrete advice that relates the purpose of 
analysis to the technique and approach to be used. Researchers make personal choices 
about complexity and analytical approach as part of the ‘art’ of modelling and trade-
off analyses. This is sometimes diffi cult to reconcile with the ‘objectivity’ that we 
pursue in scientifi c research. However, some general indications can be given. 

 If the objective of the analysis is to assess the overall potential for system 
improvement and the room for manoeuvre to increase effi ciencies and profi tability 
without negative effects on environmental indicators, then optimization approaches 
are the most logical choice. If the purpose is to analyse the short- and long-term 
consequences of certain interventions and the trade-offs between different objec-
tives over different time scales, then simulation modelling is an obvious candidate. 
This may be combined with some sort of multiobjective, non-linear optimization or 
inverse modelling approach. 

 Both optimization and simulation are typically used for scientifi cally oriented 
studies. In order to have real-life impact, that takes into account the complexities of 
agricultural systems and the large diversity of drivers and options in agricultural 
land use, especially in developing countries, a variety of quantitative and qualitative 
approaches are likely to be needed (e.g. Murungweni et al.  2011 ). The setup of these 
tools, the identifi cation of indicators, and the presentation of results need to be 
determined using participatory approaches where key stakeholders are involved and 
drive decisions from the beginning of the project. This might lead to the study hav-
ing less value in terms of scientifi c novelty, but will increase its practical relevance 
on the ground. With the topic of this chapter in mind, it is ironic that in many cases 
there might be a trade-off between the scientifi c and societal impact that can be 
achieved by a research project that has its own constraints in terms of time and 
money.      
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