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Preface

With the advent of so-called “next generation” sequencing technologies, the study of
genetic variation in populations gained a new dimension, turning population genetics into
population genomics. While a scaling-up in data set size accompanied this shift, population
genomics is more than just “big data” population genetics: because the objects of study here
are “genomes” and not only “multiple genes,” the newly emerging field of population
genomics comes along with its specific biological questions and statistical models.

Developments of new statistical methods are linked to the availability of particular data
sets. As the first large population genomic initiatives came from primates, the development
of many new methods targeted these organisms. Following the generation of increasingly
diverse data sets, it is essential to promote the application of these methods to a broader
range of organisms and questions.

The goal of this volume is to present the reader with state-of-the-art inference methods
in population genomics. It focuses on data analysis based on rigorous statistical techniques.
Data set preparation and preprocessing are covered in other volumes such as Statistical
Genomics (Mathé and Davis eds) and Data Production and Analysis in Population Genomics
(Pompanon and Bonin eds), while Evolutionary Genomics (Anisimova Ed) provides a more
general background in evolutionary genomics.

The content of the book is divided into three parts. Part I recalls general concepts
related to the biology of genomes and their evolution. Part II covers state-of-the-art
methods for the analysis of genomes in populations, allowing to compute basic statistics
(Chapters 2 and 3), understand population structure (Chapter 4), study selective processes
(Chapters 5 and 6), and uncover the demographic history of populations (Chapters 7 and
8). More advanced tools allowing to simulate evolutionary scenarios (Chapter 9) or possible
sample histories of a given data set (Chapter 10) are also presented. Chapters of this part
come with practical examples of data analysis, with all necessary material available from the
companion website of this book. Finally, part III of this collection offers an overview of the
current knowledge that we acquired by applying such methods to a large variety of eukary-
otic organisms: plants (Chapters 11 and 12), fungi (Chapters 13 and 14), insects
(Chapter 15), fishes (Chapter 16), birds (Chapter 17), rodents (Chapter 18), and primates
(Chapter 19). Without pretending to exhaustivity, these chapters highlight the exciting
diversity of questions that the study of genome evolution at the population level can address,
together with the originality of the model systems and approaches that have been instru-
mental in answering them.

Plön, Germany Julien Y. Dutheil
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Essential Concepts



Chapter 1

A Population Genomics Lexicon

Gustavo V. Barroso, Ana Filipa Moutinho, and Julien Y. Dutheil

Abstract

Population genomics is a growing field stemming from soon a 100 years of developments in population
genetics. Here, we summarize the main concepts and terminology underlying both theoretical and
empirical statistical population genomics studies. We provide the reader with pointers toward the original
literature as well as methodological and historical reviews.

Key words Population genetics, Neutral theory, Coalescent theory, Mutation, Recombination, Selec-
tion, Lexicon

1 Genomic Variation

1.1 Loci, Alleles,

and Polymorphism

Population genomics studies the evolution of genome variants in
populations. A locus (pl. loci) refers to a given location in the
genome. The particular sequence at a given locus may vary between
individuals, each variant being termed an allele. We call loci with at
least two alleles polymorphic and invariant loci monomorphic. The
term polymorphism refers to the presence of multiple alleles but is
commonly used as a countable noun as a substitute for “polymor-
phic locus” (one polymorphism, several polymorphisms).

Alleles may differ because of the nucleotide content, but also in
length, as a result of nucleotide insertions or deletions (a.k.a.
indels). Variable loci of length one can have up to four distinct
alleles (A, C, G, or T) and are termed single nucleotide polymorph-
isms (SNPs). SNPs constitute, so far, the majority of the data
accounted for by population genetic models.

1.2 Mutations Molecular events altering the genome are termedmutations. Muta-
tions include substitution of a nucleotide into another one, removal
or addition of one or several nucleotides, as well as multiplication of
some part of the genome. Mutation is the process by which new

Julien Y. Dutheil (ed.), Statistical Population Genomics, Methods in Molecular Biology, vol. 2090,
https://doi.org/10.1007/978-1-0716-0199-0_1, © The Author(s) 2020
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alleles are formed. The infinite site model assumes that during the
timeframe of evolution modeled, each locus have undergone at
most one mutation [1–3]. This model also implies that each muta-
tion creates a new allele in the population and that there is no
“backward” or “reverse” mutation. The infinite site model is a
generally reasonable assumption as the mutation rate is typically
low and genomes are large. It might be locally invalidated, however,
in case of mutation hotspots or when larger evolutionary timescales
are considered. Under this premise, at most two alleles are expected
per locus. Loci with two alleles are termed diallelic or biallelic, the
first term having historical precedence and being more accurate [4],
while the second is more commonly used since the 1990s. Further-
more, in a population genomic dataset, a sampled diallelic locus is
called a singleton if one of the two alleles is present in only one
haploid genome, and a doubleton if it is present in precisely two
haploid genomes.

1.3 The Wright–

Fisher Model

The simplest process of allele evolution within a single population is
named theWright–Fisher model. It describes the evolution of alleles
in a population of fixed and constant size, where all alleles have the
same fitness, and therefore the same chance to be transmitted to the
next generation (neutral evolution). The population is assumed to
be panmictic, that is, individuals are randomly mating. Time is
discretized in non-overlapping generations so that the alleles in the
current generation are a random sample of the alleles from the
previous generation, without new alleles being generated by muta-
tion. Under such conditions, allelic frequencies evolve only because
of the stochasticity in the sampling of gametes that will contribute
to the next generation, a process termed genetic drift. Because
populations are of finite size, alleles will be sampled at their actual
frequencies on average only and the ultimate fate of any allele is
either to reach frequency zero in the population and be lost, when
by chance no individual carrying this allele has any descendant in
the next generation or to become fixed when all other alleles have
been lost. The time until fixation depends on the population size:
smaller populations will show a stronger sampling effect and
shorter times to fixation. When genetic drift is the only force acting
on a population, the number of alleles at a given locus is necessarily
decreasing over time.

The Wright–Fisher model with mutation extends the Wright–
Fisher model by introducing new alleles in the population, at a
given rate. As the mutation rate is low, new mutations appear in a
single copy, their initial frequency is then 1/2N in a diploid popu-
lation. Mutation and drift act in opposite direction and amutation-
drift equilibrium is reached when the rate of allele creation by
mutation equals the rate of allele loss by drift. The genetic diversity
is then determined by the sole product of the population sizeN and

4 Gustavo V. Barroso et al.



the mutation rate u. Under the infinite site model, the expected
heterozygosity at a locus in a population of diploid individuals is
approximated by [1]

ĥ ¼ 4 �N � u
4 �N � u þ 1

while the expected number of distinct alleles and their respective
frequencies can be estimated using Ewens’s sampling formula [5].

A substitution occurs when a new mutation has spread in the
population, increasing from frequency 1/(2N) to 1 (see Note 1).
Kimura showed that the average time to fixation of a new mutation
is 4N in a population of diploid individuals [6]. Furthermore, as a
neutral mutation has a probability of reaching fixation equal to 1/
(2N) and given that there are 2N � u new mutations per genera-
tion, in a purely neutrally evolving population, the expected num-
ber of substitutions per generation is equal to 2N � u � 1/
(2N) ¼ u. The substitution rate is therefore independent of the
population size and, assuming that the mutation rate is constant in
time, the number of substitutions between two populations is a
direct measure of the number of generations separating them, a
phenomenon termed molecular clock [7].

1.4 The Backward

Wright–Fisher Model:

The Standard

Coalescent

While the Wright–Fisher process naturally describes the evolution
of sequences within populations one generation after the other,
population genetic data typically represent individuals sampled at a
given time point. For inference purposes, it is therefore convenient
to model the history of the genetic material that gave rise to the
sample. The modelization of the ancestry of a sample (also known
as the genealogy) is typically done backward in time, as every locus
find a common ancestor in the past, until the most recent common
ancestor (MRCA) of the sample. The merging of two lineages in
the past is called a coalescence event, and the set of mathematical
tools describing this process under a variety of demographic models
is referred to as the coalescence theory. Kingman [8] first described
the standard coalescent, the genealogical model corresponding to
the Wright–Fisher model (but see refs. 9 and 10 for a historical
perspective). The standard coalescent is, therefore, also referred to
as the Kingman’s coalescent.

2 Beyond the Wright–Fisher Model

The Wright–Fisher model has been extended in several ways to
include more realistic assumptions on the underlying evolutionary
process. These extensions led to the concept of Effective population
size (Ne), originally defined as the number of individuals contribut-
ing to the gene pool. When a population deviates from the assump-
tions of the Wright–Fisher model, Ne is no longer equal to the
census population size (N). Often (but not always) in such cases,

Population Genomics Lexicon 5



Ne can be obtained by a linear scaling of N such that it reflects the
number of individuals from an idealized Wright–Fisher population
that would display the same genetic diversity as the actual popula-
tion under study [11].

2.1 Demography A possible deviation from the Wright–Fisher assumptions happens
when the population size is not constant across generations. The
term demographic history generally refers to the collection of demo-
graphic parameters (effective sizes, growth rates) that describes the
history of the population until its most recent common ancestor
[12]. When population size varies in a cyclic manner with relatively
small period n generations, the resulting genealogies can be mod-
eled by a Wright–Fisher process with a population size equal to the
harmonic mean of the historical population sizes, so that

Ne ¼ n
Pn

i
1
Ni

,

where Ni refer to the ith population size [13]. More drastic demo-
graphic effects include genetic bottlenecks, corresponding to a sharp
decrease (shrinkage) in population size.

2.2 Population

Structure

In the absence of panmixia, genetic exchanges occur more often
between certain individuals, resulting in population structure with
several subpopulations. Population structure may occur for differ-
ent reasons such as overlapping generations, assortative mating, or
geographic isolation [12]. Assortative mating occurs when indivi-
duals choose their mates according to some similarity between their
phenotypes. If the phenotype is genetically determined, assortative
mating can influence the level of heterozygosity in the
population [14].

Gene flow describes the migration of genetic variants between
subpopulations under a scenario of population structure. It reduces
genetic differentiation among subpopulations [15]. Ultimately,
subpopulations can diverge and become genetically isolated, a pro-
cess called speciation. The simplest speciation processes involve
spontaneous isolation (isolation model) or spontaneous isolation
followed by a period of gene flow (isolation with migration
model) [16].

When speciation events occur in a short timeframe and ances-
tral population sizes are large, ancestral polymorphism may persist
in the ancestral species, a phenomenon called incomplete lineage
sorting (ILS) [17]. The expected amount of ILS depends on the
number of generations between two isolation events (ΔT) and the
ancestral effective population size NeA [18]:

PrðILSÞ ¼ 2
3
e

�2 � ΔT

NeA

� �

6 Gustavo V. Barroso et al.



The term introgression is used to depict the transfer of genetic
material between diverged populations or species through second-
ary contact [19]. As a result, extant lineages share a common
ancestor that predates the two isolation or speciation events. The
resulting genealogy may, therefore, be incongruent with the phy-
logeny defined by the two splits, depending on the order of coales-
cence events between lineages [20].

3 Statistics on Nucleotide Diversity

Statistics are needed to infer population genetics parameters from
polymorphism data. The site frequency spectrum (SFS) describes the
empirical distribution of allele frequencies across segregating sites
of a given (set of) loci in a population sample. For a sample of
n sequences (in n haploid individuals or n/2 diploid individuals),
the so-called unfolded SFS is the set of counts of derived alleles
X ¼ (X1, X2, . . ., Xn�1), where sample configurations Xi denote
the number of sites that have n � i ancestral and i derived alleles.
The ancestral state is usually estimated using an outgroup sequence.
In cases where we cannot assess the ancestral allele, the folded site
frequency spectrum, X0, may be calculated instead. X0 represents
the distribution of the minor allele frequencies, such as X 0

i ¼ Xi þ
Xn�i for i < n/2 and X 0

n=2 ¼ Xn=2 [13, 21, 22]. The shape of the

SFS is affected by underlying population genetic processes, such as
demography and selection, and therefore serves as the input of
many population genetics methods [23] (see Fig. 1).

Watterson’s theta, here noted θ̂S , is an estimator of the population
mutation rate θ ¼ 4Ne � u, whereNe is the (diploid) effective popu-
lation size and u the mutation rate. It is derived from the number of
segregating sites Sn of a sample of size n [25]. Assuming an infinite
sites model, Sn is equal to the product of u and the expected time to
coalescence, corrected by the sample size:

E½Sn� ¼ u � 4 �Ne
Xn�1

i¼1

i:

Since 4Ne � u ¼ θ the equation may be written as E[Sn] ¼ θ � an,
where an ¼ Pn�1

i¼1 i. The proposed estimator of θ for the sample is

θ̂S ¼ Ŝn
an

¼ Ŝn

1þ 1
2
þ . . .þ 1

n � 1

� � ,

Population Genomics Lexicon 7



where Ŝn is the observed number of segregating sites in the sample.
In order to be comparable, values of θ are usually reported per site,
and θ̂S is then further divided by the sequence length L. This
estimator is unbiased when the data is generated from a Wright–
Fisher process but is not robust to deviations from it, due to
selection or demography [26].

Tajima’s π, the average pairwise heterozygosity is a measure of
nucleotide diversity defined as the number of pairwise differences
between a set of sequences [27]. Under the infinite sites model, the
number of mutations separating two orthologous chromosomes
Dij is equal to the number of nucleotide differences between

Bottleneck Structure
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Fig. 1 Effect of demography on the shape of the site frequency spectrum (SFS). The figure depicts four
scenarios: constant population size, exponential growth, genetic bottleneck, and population structure. The red
curve shows the expectation under a constant population size. In the case of exponential growth or a genetic
bottleneck, the SFS displays an excess of low-frequency variants. Population structure, here simulated as two
subpopulations exchanging migrants at a low rate, results in an excess of intermediate frequency variant
when we reconstruct a single SFS from the two subpopulations. Simulations were performed using the
msprime software [24] (see also Chapter 9 and the online companion material)
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sequences i and j. As the expectation of the average pairwise nucle-
otide differences between all pairs of sequences in a sample is equal
to θ ¼ 4Ne � u [28], Tajima’s estimator of θ is:

θ̂π ¼ 2
nðn � 1Þ � L

Xn�1

i¼1

Xn

j¼iþ1

Dij ,

where L is the total sequence length.

4 Selective Processes

4.1 Protein-Coding

Genes

The coding region of a protein-coding gene, also known as Coding
DNA Sequence (CDS) is the portion of DNA, or RNA, that
encodes a protein. A start and stop codons limit the coding region
at the five-prime and three-prime end, respectively. In mRNAs, the
CDS is bounded by the five-prime untranslated region (5-UTR)
and the three-prime untranslated region (3’-UTR), also included in
the exons. Mutations within coding regions are expected to be of
distinct types: synonymous mutations lead to no change of amino-
acid at the protein level due to the redundancy of the genetic code,
as opposed to non-synonymous mutations. Non-synonymous muta-
tions can further be classified as conservative and non-conservative
(¼ radical), whether they replace an amino-acid by a biochemically
similar one or not. Because of the structure of the genetic code, the
four types of mutations at one site (toward A, C, G, or T) can be in
principle both synonymous and non-synonymous. Sites where
n out of four possible mutations are synonymous are called n-fold
degenerated. Four-fold degenerated sites only undergo synonymous
mutations, while a mutation at a so-called zero-fold degenerated site
is necessarily non-synonymous. Most of second codon positions are
zero-fold degenerated, while many of the third positions are four-
fold degenerated.

4.2 Fitness Effect The resulting change of fitness at the organism level characterizes
the type of mutations: neutral mutations have no impact on the
fitness, while harmful or deleterious mutations induce a lower
fitness. Conversely, advantageous mutations increase the fitness of
the organism compared to the wild-type genotype. There is, how-
ever, a wide range of selective effects, which extends the categori-
zation of mutations from strongly deleterious, through weakly
deleterious, neutral to mildly and highly adaptive mutations. The
relative frequencies of these types of mutations represent the distri-
bution of fitness effects [29, 30].

The selection coefficient (s) is a measure of differences in fitness,
which determines the changes in genotype frequencies that occur
due to selection. It is commonly expressed as a relative fitness. If
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one considers a single locus with two alleles A and a, a standard
parametrization is to attribute a fitness of 1 to the homozygote AA
and relative fitness of 1 + s for the homozygote aa. The heterozy-
gote Aa is attributed a fitness of 1 + h � s, where h is the so-called
coefficient of dominance. The s parameter varies between � 1 and
+ 1 (but see Note 2), wherein values comprised among � 1 and
0 are indicative of negative selection, while positive values corre-
spond to positive selection [13, 31]. The efficiency of selection,
however, depends on both s and the effective population size, Ne,
so that mutations with Ne � s � 1 behave in effect like neutral
mutations, whose fate is determined by genetic drift only [29].

4.3 Types of

Selection

Positive selection acts on alleles that increase fitness, raising their
frequency in the population over time, while negative selection (¼
purifying selection) decreases the frequency of alleles that impair
fitness. Both positive and negative selection decrease genetic diver-
sity. Conversely, balancing selection acts by maintaining multiple
alleles in the gene pool of a population at frequencies higher than
expected by drift alone. Three mechanisms are generally acknowl-
edged: heterozygous advantage, where heterozygotes have a higher
fitness than homozygotes and maintain genetic polymorphism;
frequency-dependent selection, where the fitness of the genotype is
inversely proportional to its frequency in the population; and envi-
ronment-dependent fitness of genotypes (also known as local adap-
tation) [31, 32].

4.4 Inference of

Selection in Protein-

Coding Sequences

The strength and direction of selection acting on protein-coding
regions may be assessed by contrasting the rate of non-synonymous
(potentially under selection, dN) to synonymous (assumed to be
neutral, dS, but see, for instance, [33]) substitutions between spe-
cies. In a population of sequences evolving neutrally, all substitu-
tions are neutral and the two rates are equal, leading to a dN/dS
ratio equal to one on average. Assuming non-synonymous muta-
tions are either neutral or deleterious while synonymous mutations
are always neutral, the rate of non-synonymous substitutions will be
lower than the rate of synonymous substitutions, and the dN/dS
ratio will be lower than one. Conversely, if non-synonymous muta-
tions are positively selected, their rate of fixation may exceed the
rate of synonymous mutation, leading to a higher substitution rate
and a dN/dS ratio higher than one.

At the population level, the ratio of non-synonymous (pN) and
synonymous (pS) polymorphism is indicative of the strength of
purifying selection acting on a protein. Because non-synonymous
mutations are more likely to have a negative fitness effect and be
counter-selected, they tend to be removed from the population by
purifying selection or segregate at low-frequency. We can estimate
the synonymous and non-synonymous genetic diversity by com-
puting the average pairwise heterozygosity π separately for
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non-synonymous and synonymous mutations, noted πN and πS,
respectively. The πN/πS ratio is therefore generally below one, the
stronger the purifying selection, the closer the ratio is to zero.

Contrasting the dN/dS and pN/pS ratios allows to test the
selection regime acting on the sequences [34]. If mutations are all
neutral or deleterious, we expect the ratios dN/dS and pN/pS to be
equal. Positively selected mutations will tend to quickly rise to
fixation and will not be observed as polymorphism, leading to an
increased dN/dS ratio higher than pN/pS. Conversely, balancing
selection will lead to an excess of polymorphism detectable as dN/
dS < pN/pS [35]. A simple measure of the proportion of amino-
acid substitutions resulting from positive selection (α) is given by
1 � (dS � pN/dN � pS) [36]. Using the complete synonymous and
non-synonymous site frequency spectra, it is further possible to
estimate the distribution of fitness effects and account for slightly
deleterious and slightly advantageous mutations when estimating
the rate of adaptive substitutions (see Chapter 5) [37].

5 Linkage and Recombination

5.1 The Coalescent

with Recombination

In sexually reproducing species, recombination refers to both the
shuffling of non-homologous chromosomes and the rearrange-
ment of homologous chromosomes during meiosis. Such cross-
over events cause each chromosome to have two parent chromo-
somes in the previous generation, which are themselves the pro-
ducts of recombination events in the previous generations.
Therefore, any chromosome in the current generation can be
viewed as a mosaic of chromosomes that existed in the past (see
Fig. 2) [38]. The collection of coalescence and recombination
events that describes the history of sampled chromosomes until
the most recent common ancestor of each non-recombining
block is reached (see Fig. 2) is called the ancestral recombination
graph (ARG) [39]. Compared to a tree-like genealogy of a sample
without recombination, whose complexity depends only on the
sample size, the complexity of the ARG grows with the sample
size and the number of recombination events in the ancestry of
the sample.

Backward-in-time, the most recent common ancestor (MRCA)
denotes the first individual where the entire sample (population)
coalesces for a particular non-recombining block. The TMRCA
notes the timing of such event. DNA sequences provide no infor-
mation beyond the MRCA in a sample of genomes since all indivi-
duals will share any mutation that happens further back in time
[40]. In the presence of recombination, different parts of the
genome will have different MRCAs. In this case, all ancestral mate-
rial is eventually found as a contiguous sequence in the grand most

Population Genomics Lexicon 11

https://doi.org/10.1007/978-1-0716-0199-0


recent common ancestor (GMRCA) of the sample (see Fig. 2). If the
GMRCA is not an MRCA for any nucleotide, this individual does
not have any significance for DNA sequences [39].

In the ARG, nucleotide segments that are found both in past
chromosomes and in contemporary samples are termed ancestral
genetic material (see Fig. 2). Conversely, non-ancestral genetic
material refers to segments that are found in past chromosomes
but not in contemporary samples. Furthermore, non-ancestral
genetic material flanked on both sides by ancestral genetic material
is referred to as trapped genetic material. In this setting, recombi-
nation events that happen in trapped genetic material can affect
linkage disequilibrium between present-day nucleotides (see Fig. 2).
Thus the existence of trapped genetic material introduces long-
range correlations between genealogies rendering the coalescent
with recombination a non-Markovian process along chromosomes

Present a b

Past

*

TMRCA

[x, 1]

TMRCA

[0, x]

1

2

3

4

5

x

Fig. 2 An ancestral recombination graph. An ancestral recombination graph is a
collection of recombination (1–2) and coalescence (3–5) events. In each
depicted chromosome, white bars represent segregating ancestral material,
black bars represent coalesced ancestral material, and thin lines represent
non-ancestral material. The asterisk denotes trapped non-ancestral material.
Note that “1” does not impact the sample because the resulting segments are
joined back together in “4” before coalescing in “5.” There are thus only two
relevant TMRCAs in the ARG, separated at position x

12 Gustavo V. Barroso et al.



[41]. The Sequentially Markov coalescent (SMC) is an approxima-
tion to the coalescent with recombination whereby recombination
events are assumed to happen only within ancestral material. This
approximation allows the use of efficient algorithms in both simu-
lation and data analysis [42, 43].

5.2 Impact of

Linkage on Selection

An excess of linkage between loci compared to a random associa-
tion is termed linkage disequilibrium (LD). LD arises from genetic
drift, population admixture, and selection, but is reduced by
recombination each generation. It is, therefore, higher between
close loci and decays with increasing physical distance [44].

Linked selection refers to the reduction of diversity at neutral
sites that happens as a result of their physical linkage to variants
under selection [45]. In the absence of recombination, all variants
segregating in a chromosome would undergo the same shift in
frequency as the selected variant. However, recombination creates
new allelic combinations and reduces this correlation as the physical
distance from the selected locus increases (see Fig. 3).

Background selection refers to a form of linked selection where
the reduction of diversity at neutral loci results from linkage to a
locus under purifying selection [46], and genetic hitchhiking is
commonly used to depict linked selection due to linkage to a
locus under positive selection [47], where a new beneficial muta-
tion will rise in frequency in a population. As the new positively
selected allele increases its frequency, nearby linked alleles on the
chromosome will “hitchhike” along with it, also growing in fre-
quency, thus producing a selective sweep of genetic diversity (see
Fig. 3d). Hard sweeps occur when a new mutation is positively
selected and is therefore exclusively associated with the genetic
background where it arose. Conversely, soft sweeps occur when a
mutation is already segregating in the population at the onset of
selection. This mutation may exist in several genetic backgrounds
and therefore does not prompt a complete loss of genetic variation
after the selective sweep [47] (see Fig. 3a–c).

Linkage of two or more loci can also impair the efficacy of
positive selection, a phenomenon termed Hill–Robertson interfer-
ence (HRI) [48]. When two advantageous mutations at distinct loci
in distinct individuals segregate in the population, one will be lost
unless a recombination event brings them together. In the absence
of recombination between the selected loci, only the unlikely event
of recurrent mutations can generate the optimal haplotypic combi-
nation [49] (see Fig. 3e).
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A) Incomplete, then complete hard sweep

B) Incomplete, then complete soft sweep from standing genetic variation

C) Incomplete, then complete soft sweep from recurrent mutations

D) Background selection

E) Hill-Robertson interference

Fig. 3 Impact of selection on genetic diversity. Black lines represent individual genomes. SNP variants are
displayed by filled circles. Distinct variants at the same position are depicted with different colors: neutral
variants in gray, positive variants in red or yellow, and negative variant in blue. (a) A positively selected new
variant spreads in the population and removes genetic diversity at linked loci, generating a hard selective
sweep. (b and c) Segregation of several positively selected variants in different genetic backgrounds, either
from standing variation or recurrent mutations, resulting in a soft selective sweep. (d) Reduction of neutral
diversity because of linkage to deleterious mutations (background selection). (e) Competitive segregation of
positively selected variant at distinct loci, resulting in the loss of advantageous variants (Hill–Robertson
interference)
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6 Notes

1. The use of the term substitution differs in population genetics
and molecular biology. In the latter case, it describes a particu-
lar type of mutation where a single nucleotide replaces a dis-
tinct one (as opposed to insertions/deletions, for instance).

2. In some instances, s is substituted by � s, so that the relative
fitnesses become ωAA ¼ 1, ωAa ¼ 1 � h � s and ωaa ¼ 1 � s.
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Part II

Statistical Methods for Analyzing Genomes in Populations



Chapter 2

Processing and Analyzing Multiple Genomes Alignments
with MafFilter

Julien Y. Dutheil

Abstract

As the number of available genome sequences from both closely related species and individuals within
species increased, theoretical and methodological convergences between the fields of phylogenomics and
population genomics emerged. Population genomics typically focuses on the analysis of variants, while
phylogenomics heavily relies on genome alignments. However, these are playing an increasingly important
role in studies at the population level. Multiple genome alignments of individuals are used when structural
variation is of primary interest and when genome architecture permits to assemble de novo genome
sequences. Here I describe MafFilter, a command-line-driven program allowing to process genome align-
ments in the Multiple Alignment Format (MAF). Using concrete examples based on publicly available
datasets, I demonstrate how MafFilter can be used to develop efficient and reproducible pipelines with
quality assurance for downstream analyses. I further show howMafFilter can be used to perform both basic
and advanced population genomic analyses in order to infer the patterns of nucleotide diversity along
genomes.

Key words Multiple genome alignment, Synteny, Alignment post-processing, Quality filtering, Mul-
tiple alignment format

1 Introduction: Multiple Genome Alignments

Multiple genome alignments (MGAs) record the homology rela-
tionships between related genome sequences. While conventional
sequence alignments contain information about nucleotide substi-
tutions, insertions, and deletions, MGAs encode evolutionary
events occurring at a larger scale. Such events include chromosome
fusion, fission, and rearrangements, which break colinearity
between sequences (akasynteny break). Furthermore, genome
sequences, as opposed to gene sequences, are generally segmented.
The underlying cause of this segmentation may be biological (pres-
ence of multiple chromosomes) or technical (genome sequence
could only be assembled at the contig or scaffold level).

Julien Y. Dutheil (ed.), Statistical Population Genomics, Methods in Molecular Biology, vol. 2090,
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MGAs are typically used to compare genomes in distinct species
(see, for instance, the 99 vertebrate genome alignments from the
UCSC Genome Browser [1]). Conversely, population genomic
analyses typically focus on micro-variation events—single nucleo-
tide polymorphisms (SNP) and short indels—and assume synteny
and karyotype conservation between individual genomes. As a
result, genetic variation is stored as variant calls with respect to a
reference genome, often as a file in the Variant Call Format (VCF)
[2] or MAP format [3]. Variant files, however, do not usually
contain information about invariable positions and need to be
combined with additional information for most evolutionary appli-
cations (e.g., as a list of “callable positions,” that is, positions where
enough information was available to detect a SNP if any).

The Multiple Alignment Format (MAF, not to be confounded
with the Mutation Annotation Format) describes the homology
relationships between several genomes, as flat text files (see https://
genome.ucsc.edu/FAQ/FAQformat.html, last accessed 29/08/
18). A MAF file is a list of several alignment blocks where the
constitutive sequences are in synteny (see Fig. 1). While the struc-
ture of each block is identical to traditional sequence alignments
(as in the Clustal or Phylip formats), where homologous positions
in each sequence are on top of each other and form an alignment
column, sequence names follow a dedicated syntax in order to
record genome coordinates. Besides, several annotation lines can
be included, including, for instance, sequence quality scores.
Genome alignment programs producing MAF files as output
include TBA [4], Mugsy [5], ROAST http://www.bx.psu.edu/
~cathy/toast-roast.tmp/README.toast-roast.html (last accessed
29/08/18), Last [6], and Mauve [7].

MGAs are also used in population genomic studies, either
when complete individual genomes can be obtained (e.g., [8, 9])
or when pseudo-genomes can be generated [10] (see Note 1).
Because they contain information about both variable and invari-
able positions, MGAs can be directly used for conducting evolu-
tionary analyses, accounting for missing data and structural
variation. This, however, comes at the cost of extended computer
requirements, in particular in terms of file size. Additional align-
ment quality checks are also typically required, as full-genome
aligners do not include post-processing steps as most variant calling
pipelines do.

In this chapter, we will see how to use the MafFilter pro-
gram to conduct population genomic analyses. In the following, we
assume that the data is available as a MGA in the MAF format.
Conversion to variant call formats will also be discussed.
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2 General Principles on MafFilter Usage

As MAF files were initially used for multi-species alignments, each
input genome is referred to as a species. In the following, a species
can, however, also denote a particular strain or individual in a
population. Similarly, the term chromosome will be used in a broad
sense encompassing scaffolds and contigs, in case of unmapped
genome assemblies (see Fig. 1).

2.1 Serial Processing

of Alignment Blocks:

Filters

As MAF files are organized into a series of syntenic blocks, Maf-
Filter sequentially processes input files one block at a time by
applying filters. A filter takes a MAF alignment block as input,
conducts one or several analyses, and returns a MAF block.
Depending on the type of analysis performed, the output block
might be identical to the input one or a modified version. In some
cases, the filter can compute additional information that can be
written to an output file or stored as meta-data (see Table 1 for
examples). Filters are combined sequentially, the output of one
filter serving as input to the next one, allowing to design advanced
analysis workflows.

2.2 Option Files

and Command Line

Arguments

The MafFilter program can be controlled by arguments that are
passed from the command line or, more conveniently, as a script
file. Arguments take the form of ‘parameter’¼‘value’ statements,
which can potentially be nested. Arguments can also be called
within the script, allowing to define global variables. Below is a
minimalist example demonstrating the syntax:

Table 1
Example types of filters supported by MafFilter

Filter name Filter function Output

MafStatistic Compute statistics
on a block

Unmodified input block

MinBlockLength Filter blocks given
alignment length

Unmodified input block if its
length is larger than a given
threshold, otherwise the
block is discarded

Subset Keep only a subset of species A block with sequences from
the specified set of species

WindowSplit Split a block into smaller
blocks of a given size

Multiple smaller blocks

DistanceEstimation Compute an evolutionary
distance matrix from all
sequences in the block

Unmodified input block with
a distance matrix attached
as meta-data
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1 # maffilter param=MinimalistExample.bpp DATA=chr9
2 input.file=../Primates/$(DATA).maf.gz
3 input.file.compression=gzip
4 input.format=Maf
5 output.log=$(DATA).maffilter.log
6 maf.filter=\
7 MinBlockLength(min_length=1000),\
8 Output(file=$(DATA).min1kb.maf.gz, compression=gzip)

Line 1 is a comment line, which will not be parsed. Bash style
comments (starting with #), C style (surrounded by /* and */)
and C++ style (starting with //) are recognized. The script uses a
global variable named “DATA” that is set via the command line and
whose value is called using theMakefile syntax $(DATA). The script
can be run using the command

maffilter param=MinimalistExample.bpp DATA=chr9

It will parse the input alignment (here human chromosome
9 aligned with 19 other Mammals, downloaded from the UCSC
genome browser), keep only blocks that are at least 1 kb in length,
and write the result to a new MAF file. Line 2 indicates the path to
the input MAF file; line 3 specifies that the file was compressed
using gzip; line 4 indicates that the file is in the MAF format. While
MafFilter is dedicated to the analysis of MAF files, it can also
take as input a Fasta file for a single species, with one sequence per
chromosome. Line 5 indicates the path to a log file, where
information about the analysis will be written. Line 6 shows
the main argument, maf.filter, which contains a comma-
separated list of options, one per filter. Filters will be applied in
their order of specification, so that the output of filter 1 will be
the input of filter 2, etc. As the line can be rather long, it is split
using the “∖” character. In this most simple example, there are
two filters specified: MinBlockLength, which discards blocks
below 1 kb, and Output, which writes the resulting alignment
to a new gzip-compressed MAF file.

In the following, we will see more advanced examples of
filters and how they can be combined to conduct genomic
analyses.

3 MafFilter as a Data Processor

3.1 Extracting Data

of Interest

A MAF alignment contains information about all genomic regions
in a set of species, and some analyses can focus on a subset of such
species. Besides, certain types of analyses involve only a subset of
positions, such as protein-coding sites. MafFilter allows to pro-
cess a MAF alignment and restrict it both to a subset of species and
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positions. In the first case, selected species are specified as an
argument of a filter, while in the second, a file describing which
positions to keep is provided, as a feature file (such as a BED or
GFF-like file, see https://genome.ucsc.edu/FAQ/FAQformat.
html, last accessed 29/08/18).

The following example illustrates these aspects. The pipeline
filters block to keep only the ones with sequences in Human,
Chimpanzee, Bonobo, Gorilla, and Orangutan. Additional
sequences for other species, if any, are discarded. In a second step,
coding regions are extracted and written as a separate alignment
file.

1 # maffilter param=ExtractingData.bpp DATA=chr9
2 # Note: need to create subdirectory Alignments
3 # before running this script
4
5 input.file=../Primates/$(DATA).maf.gz
6 input.file.compression=gzip
7 input.format=Maf
8 output.log=$(DATA).maffilter.log
9 SPECIES=(hg38, panPan1, panTro4, gorGor3, ponAbe2)
10 maf.filter \=
11 Subset \(
12 species \,)SEICEPS($=
13 strict=yes, keep \,on=
14 remove_duplicates \,)sey=
15 Merge \(
16 species \,)SEICEPS($=
17 dist_max \,)0=
18 ExtractFeature \(
19 ref_species \,83gh=
20 feature.file=../Primates/chr9.CDS1kb.gtf, \
21 feature.format \,FTG=
22 complete \,sey=
23 ignore_strand \,)on=
24 OutputAlignments \(
25 format \,latsulC=
26 file=Alignments/FivePrimates%i-%c-%b-%e.aln, \
27 reference \)83gh=

The Subset filter (line 11) extracts blocks where certain species
are aligned (given as a list, here provided as a global variable set line
9). The strict and keep arguments can be combined to obtain
various behaviors: with strict set to “yes” and keep set to “no”,
we only keep blocks where the five selected species are all present
and discard sequences from putative additional species. The
remove_ duplicates argument further removes blocks where
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any of the selected species might be present more than once (para-
logous sequences). The Merge filter (line 15) subsequently fuses
consecutive blocks in complete synteny, which might have been
split apart because of a synteny break in one of the non-selected
species.

The position extraction is done by the ExtractFeature filter
(line 18), which retains regions specified in a file in the Gene
Transfer Format (GTF). The GTF file contains only Coding
DNA Sequences (CDS) with at least 1 kb in length. We further
specify to only extract regions that are fully covered in the
alignment (complete argument, line 23). The ignore_s-
trand argument, line 24, tells whether regions on the negative
strand should be reverse-complemented (“no” option) or kept as
is (“yes” option).

Finally, the writing of the extracted blocks is done by the
OutputAlignments filter (line 24). Each block is written in the
Clustal alignment format [11] into a file with path Align-
ments/FivePrimates% i-% c-% b-% e.aln, where %i will
be replaced by the index of the block. As a result, each block will
be written in a separate file. If the special %i code is omitted, all
alignments will be appended to a single output file. The additional
special codes %c, %b, and %e can be optionally used in combina-
tion with %i and correspond to the coordinates of the block
(chromosome, begin and end, respectively) according to one
“reference” species specified by the reference argument. Fur-
ther note that MafFilter cannot create directories, only files. In
case the provided output path is not valid, no output will be
generated.

3.2 Statistics

with MafFilter

The effect of each data extraction step can be visualized using
statistics filters. The SequenceStatistics filter is a powerful and
generic way of computing and reporting measures for each block. It
takes as input a list of statistics names and generates a table file with
computed statistics as columns, and each block as a row. The table
also contains the coordinates of the block according to one refer-
ence species.

The following pipeline is a modification of the one presented in
Subheading 3.1. After each step, a SequenceStatistics filter is
added to report the length (number of alignment columns) and
size (number of sequences) of each block. This creates four files,
summarized in Fig. 2.
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1 # maffilter param=Statistics.bpp DATA=chr9
2
3 input.file=../Primates/$(DATA).maf.gz
4 input.file.compression=gzip
5 input.format=Maf
6 output.log=$(DATA).maffilter.log
7 SPECIES=(hg38, panPan1, panTro4, gorGor3, ponAbe2)
8 maf.filter \=
9 SequenceStatistics \(
10 statistics=(BlockLength,BlockSize), \
11 ref_species \,83gh=
12 file=$(DATA).statistics1.txt), \
13 Subset \(
14 species \,)SEICEPS($=
15 strict=yes, keep \,on=
16 remove_duplicates \,)sey=
17 SequenceStatistics \(
18 statistics=(BlockLength,BlockSize), \
19 ref_species \,83gh=
20 file=$(DATA).statistics2.txt), \

Extract CDS

Merge

Subset

Start

10 1,000 100,000

Number of blocks

A
na

ly
si

s 
st

ep
A

Extract CDS

Merge

Subset

Start

5 10 15 20

Number of sequences in blocks

B

Extract CDS

Merge

Subset

Start

1 10 100 1000 10000

Length of blocks (bp)

C

Extract CDS

Merge

Subset

Start

10 1,000 100,000

Alignment length (kb)

D

Fig. 2 Effect of data extraction filters, as measured with statistics filters. Four steps are plotted: before filtering
(“Start”), after subsetting to five primate species (“Subset”), after merging synteny blocks (“Merge”) and after
extracting CDS regions (“Extract CDS”). (A) Number of blocks after each step. (B) Distribution of block sizes,
that is, the number of species represented in each block. (C) Distribution of block lengths, that is, number of
alignment columns in each block. (D) Total alignment length, that is, the sum of all block lengths
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21 Merge \(
22 species \,)SEICEPS($=
23 dist_max \,)0=
24 SequenceStatistics \(
25 statistics=(BlockLength,BlockSize), \
26 ref_species \,83gh=
27 file=$(DATA).statistics3.txt), \
28 ExtractFeature \(
29 ref_species \,83gh=
30 feature.file=../Primates/chr9.CDS1kb.gtf, \
31 feature.format \,FTG=
32 complete \,sey=
33 ignore_strand \,)on=
34 SequenceStatistics \(
35 statistics=(BlockLength,BlockSize), \
36 ref_species \,83gh=
37 file=$(DATA).statistics4.txt) \

After filtering, 81 alignment blocks are created. This is less than
the 146 entries in the GTF file, the difference being due to CDS
that are (at least partially) missing or not in synteny in any of the five
selected species. When only the human and chimpanzee genomes
are considered, for instance, the number of complete CDS present
in the alignment becomes 118.

3.3 Pre-Processing

the Data for Quality

Insurance

Comparative evolutionary analyses of sequences require high-
quality input data, as any error at this stage is likely to propagate
in the downstream analyses. Such errors may occur both at the
individual sequence level (sequencing and assembly errors) and at
the alignment level (wrong orthology inference, alignment errors).
In some cases, we also want to discard regions (e.g., protein-coding
positions) that are likely to violate the prior assumptions of a given
analysis (e.g., neutral evolution).

The MAF format allows storing position-specific scores. Using
QualFilter, it is possible to remove regions with a low score in a
given set of species. The filter further allows computing the average
score in a sliding window with user-specified size. Windows with an
average score below a given threshold are discarded, and the
corresponding block split accordingly. Similarly, MaskFilter can be
used to clean blocks according to the proportion of masked positions
in a given set of sequences. Masked regions are coded as lowercase
nucleotides and are typically used to annotate low-complexity regions.

The local quality of the alignment can be assessed via the
distribution of gaps in sliding windows. AlnFilter and AlnFilter2

both slide windows along the alignment and discard regions with
too many gaps. They differ by their scoring criteria: AlnFilter

computes the global frequency of gap characters, while AlnFilter2

estimates the number of indel events, independently of the length
of the insertion or deletion track. EntropyFilter can also be used
to remove highly variable regions in the alignment.

Finally, FeatureFilter can be used to exclude regions from the
alignment. Features to exclude can be specified as an annotation

Processing and Analyzing Multiple Genomes Alignments 29



file, in GFF, GTF, or BedGraph format. When GFF or GTF anno-
tation files are provided, it is further possible to exclude only a given
subset of features.

Most filters allow writing the filtered regions in a separate file
optionally. This feature enables to finely tune the filtering criteria by
visually assessing which regions are kept or removed. Using the
SequenceStatistics filter is also convenient to monitor the pro-
portion of alignment discarded. In the following sections, concrete
example analyses will demonstrate the use of these filters. Before
getting there, however, we will introduce a last set of filters enabling
inter-operability between analysis tools: format conversion filters.

3.4 Conversion

to Other Formats

When MGAs store genomes from individuals of the same species,
they can be exported as variants. This requires that a reference
genome is specified, usually implying that any synteny break will
be further ignored, together with parts of the alignment that do
not include the chosen reference species. When exporting to variant
formats, it is generally recommended to first project the alignment
on the reference species, so that the variants are sorted (see, for
instance, program maf_project in Subheading 5). MafFilter
can export in three distinct variant formats: the widely used VCF
[2] (VcfOutput filter), Plink ped and map files [3] (PlinkOutput
filter), and MSMC [12] (see Chapter 7, MsmcOutput filter).

Synteny block can also be exported into standard alignment
format with the OutputAlignments filter, as seen in Subheading 3.1.
The OutputAlignments filter further accepts a ldhat_header
argument allowing to export alignments readable by the convert
program from the LDhat package [13].

Meta-data associated with alignment blocks can be exported
using dedicated filters. The OutputDistanceMatrices filter exports
all matrices into a file in the Phylip format. Similarly, the Output-

Trees filter exports trees in Newick format. Both require the speci-
fication of a tag name used to attach the meta-data to each block
(e.g., MLdistance or BioNJ).

4 Examples of Advanced Analyses

4.1 Example

Analysis 1: Computing

Nucleotide Diversity

Along the Genome

This section describes the first complete analysis example. We use
the publicly available Drosophila Population Genomics Project
phase 3 (DPGP3, see Chapter 13) [10], containing 197 genomes
from a single African ancestral population. We restrict our analysis
to one chromosome arm (2L) and ten individuals. The
corresponding dataset has been combined into a single MAF file
(see online Supplementary Information). The following script first
uses AlnFilter to process the data in 10 bp windows slid by one bp
in order to remove regions with too many gaps, which discards 10%
of the alignment (see Fig. 3A). This leads to many more blocks (see
Fig. 3B), of shorter length (see Fig. 3C). The resulting split blocks
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are then merged if not further apart than a 100 bp, using the Merge

filter. When merged, missing regions are filled by unresolved char-
acters (“N”). The resulting blocks are split into non-overlapping
windows of 10 kb, and smaller blocks are discarded (MinBlock-
Length and WindowSplit filters). As a result, 32% of the original
alignment is lost (see Fig. 3A). Two statistics are used to compute
population genetics quantities: SiteFrequencySpectrum, which
counts minor allele frequencies (see Chapter 1 in this volume) and
DiversityStatistics, which computes various diversity estimators
(see Table 2).
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The MafFilter script starts by defining a few variables: data-
set (line 3), list of individual sequences used (lines 4–5), reference
sequence used for the output of coordinates (line 6) and size of the
window for which estimators are computed (here 10 kb, line 7).

Table 2
Available statistics for the SequenceStatistics filter

Statistic name Statistic function Output

BlockSize Report the number of sequences Numerical value

BlockLength Report the number of alignment
columns

Numerical value

SequenceLength Report the number of nucleotides for
a given sequence

Numerical value

AlnScore Report the alignment score for the
block, as encoded in the input MAF
file

Numerical value

BlockCounts Report the frequencies of each
nucleotide

Numerical values, one for each
character state

SiteStatistics Compute the number of sites with
missing data/gaps, numbers of
mono, di, tri, and quadri-allelic
sites, number of parsimony-
informative sites

Numerical values, one for each
statistic

PairwiseDivergence Compute the percentage of
mismatches between two user-
specified species

Numerical values

SiteFrequencySpectrum Count sites based on their minor
allele frequency, according to user-
specified bins

Numerical values, one per bin

PolymorphismStatistics Compare two sets of sequences and
compute the number of fixed and
polymorphic positions in both sets.

Numerical values, for all
combination of fixed and
polymorphic sites (e.g., fixed
in one set and polymorphic in
the other)

DiversityStatistics Compute the number of segregating
sites, Watterson’s theta, Tajima’s pi,
and Tajima’s D.

Four numerical values

ModelFit Given a phylogenetic tree, fit a
nucleotide substitution model
using maximum likelihood and
report the parameter estimates. A
large variety of models from Jukes-
Cantor to General Time Reversible
are available, including rate across
sites variation models.

Numerical values, one per
estimated parameter
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The script generates a text file with all computed statistic per 10 kb
windows, together with their coordinates in the reference genome.
Besides, simpler statistics files are generated at each step of the
analysis to summarize the data used. The actual alignment is also
output as a new MAF file for further assessment.

1 # maffilter param=Maffilter-Diversity.bpp
2
3 DATA=dpgp3_Chr2L_10indv
4 INDV=ZI152,ZI173,ZI190,ZI199,ZI211,ZI219,\
5 ZI253,ZI344,ZI374,ZI490
6 REF=ZI152
7 WSIZE=10000
8
9 input.file=../Drosophila/$(DATA).split.maf.gz

10 input.file.compression=gzip
11 input.format=Maf
12 output.log=$(DATA).maffilter-diversity.log
13 maf.filter \=
14 SequenceStatistics \(
15 statistics=(BlockLength,BlockSize), \
16 ref_species \,)FER($=
17 file \,)txt.1scitsitats.)ATAD($=
18 AlnFilter \(
19 species \,))VDNI($(=
20 window.size \,01=
21 window.step \,1=
22 missing_as_gap \,sey=
23 max.gap \,3.0=
24 max.ent \,1-=
25 relative \,sey=
26 file \,fam.nla_hsart.)ATAD($=
27 compression \,enon=
28 verbose \,)sey=
29 SequenceStatistics \(
30 statistics=(BlockLength,BlockSize), \
31 ref_species \,)FER($=
32 file \,)txt.2scitsitats.)ATAD($=
33 Merge(species=($(INDV)), dist_max=100), \
34 SequenceStatistics \(
35 statistics=(BlockLength,BlockSize), \
36 ref_species \,)FER($=
37 file \,)txt.3scitsitats.)ATAD($=
38 Output \(
39 file \,zg.fam.deretlif.)ATAD($=
40 compression \,)pizg=
41 MinBlockLength(min_length=$(WSIZE)), \
42 WindowSplit \(
43 preferred_size \,)EZISW($=
44 align \,retnec=
45 keep_small_blocks \,)on=
46 SequenceStatistics \(
47 statistics=(BlockLength,BlockSize, \
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48 DiversityStatistics \,(
49 ingroup \,)))VDNI($(=
50 SiteFrequencySpectrum \(
51 ingroup \,))VDNI($(=
52 bounds=(-0.5,0.5,1.5,2.5,3.5,4.5,5.5)) \
53 \,)
54 ref_species \,)FER($=
55 file=$(DATA).diversity_statistics.txt) \

This example demonstrates the use of AlnFilter: lines 20–21
specify the size of the window and the amount by which it is slid
(10 nucleotides slid by 1). Line 22 further tells the filter that
missing nucleotides (“N”) should be counted as gaps. The maximal
proportion of gaps allowed in the window is set to 0.3 (line 23).
Absolute numbers of gaps can also be specified by changing line
25 to “no.” In this example, we do not filter according to the site
variability, and the maximal entropy is set to � 1 (line 24). Alterna-
tively, windows will be discarded if they both display a number of
gaps and entropy higher than the specified thresholds. Discarded
regions are output to a separate MAF file (lines 26–27), for further
assessment. Finding the optimal alignment filtering criteria requires
to compare both the retained and rejected regions. Multiple Aln-

Filter can be combined in order to achieve the desired quality.
Diversity estimators are computed as standard statistics (see

Subheading 3.2). DiversityStatistics takes only one input argu-
ments, the list of individuals to use (line 49, in this case, all of
them). SiteFrequencySpectrum requires, in addition, specifying
boundaries for the frequencies to compute (line 52). As we have
ten genomes, the possible SNPs minor frequencies are 0, 1, 2, 3,
4, and 5 out of 10. We therefore specify as boundaries � 0.5, 0.5,
1.5, 2.5, 3.5, 4.5, and 5.5. Note that it is possible to specify fewer
boundaries to pull two or more categories. Each category generates
one column in the output statistic file. Besides, positions with
unresolved characters or more than two alleles are counted sepa-
rately and excluded from the site frequency spectrum calculation.

The computed site frequency spectrum reveals an excess of
low-frequency variants (see Fig. 3d), resulting in a globally negative
Tajima’s D value (see Fig. 3e). The effect is relatively constant along
the chromosome, except for the most telomeric region (see Fig. 3f),
suggesting that this population underwent a demographic expan-
sion. Patterns of heterozygosity, on the other hand, show a sub-
stantial reduction at the telomere, and a positive correlation with
the distance to the centromere, at the right end of the align-
ment (Kendall’s tau ¼ 0.28, p-value < 2.2 � 10�16, see Fig. 3g).
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4.2 Example

Analysis 2: Inferring

Phylogenetic

Relationships

In this example, we infer the phylogenetic relationships of five great
apes. We use the UCSC 20-way genome alignment, containing
16 Primates genomes. For the sake of computational efficiency,
we restrict the analysis to chromosome 9 only. We implement the
following pipeline:

1. extract the genome alignment for human, chimpanzee,
bonobo, gorilla, and orangutan,

2. filter the alignment to remove ambiguously aligned regions,

3. split the resulting filtered alignment into non-overlapping
10 kb windows,

4. compute a pairwise distance matrix using maximum likelihood
and estimate a BioNJ tree for each window,

5. root each tree using the orangutan sequence as an outgroup,

6. write the resulting trees to a file,

7. fit a model of sequence evolution on the human, bonobo,
chimpanzee, and gorilla ingroup using maximum likelihood
and output parameters to a file.

This results in the following MafFilter option file:

1 # maffilter param=MafFilter-Phylogeny.bpp
2
3 DATA=chr9
4 SPECIES=(hg38, panPan1, panTro4, gorGor3, ponAbe2)
5 WSIZE=10000
6
7 input.file=../Primates/$(DATA).maf.gz
8 input.file.compression=gzip
9 input.format=Maf
10 output.log=$(DATA).maffilter.log
11 maf.filter \=
12 Subset \(
13 species \,)SEICEPS($=
14 strict=yes, keep \,on=
15 remove_duplicates \,)sey=
16 XFullGap(species=$(SPECIES), verbose=no), \
17 MinBlockLength(min_length \,)01=
18 AlnFilter2(verbose \,on=
19 species \,)SEICEPS($=
20 window.size=10, window.step \,1=
21 missing_as_gap \,sey=
22 max.gap=2, max.pos=2, relative=no, \
23 file \,enoN=
24 compression \,)enon=
25 Merge \(
26 species \,)SEICEPS($=
27 dist_max \,001=
28 rename_chimeric_chromosomes=yes), \
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29 Output \(
30 file \,zg.fam.deretlif.)ATAD($=
31 compression \,)pizg=
32 MinBlockLength(min_length=$(WSIZE)), \
33 WindowSplit \(
34 preferred_size \,)EZISW($=
35 align \,retnec=
36 keep_small_blocks \,)on=
37 DistanceEstimation(verbose \,on=
38 method \,lm=
39 model=K80(kappa \,)2=
40 rate=Gamma(n=4, alpha \,)5.0=
41 parameter_estimation \,laitini=
42 max_freq_gaps \,33.0=
43 gaps_as_unresolved \,sey=
44 profiler \,enon=
45 message_handler \,enon=
46 extended_names \,)sey=
47 DistanceBasedPhylogeny(verbose=no, \
48 method=bionj, dist_mat=MLDistance), \
49 NewOutgroup \(
50 tree_input \,JNoiB=
51 tree_output \,detoor_JNoiB=
52 outgroup \,)2ebAnop=
53 OutputTrees \(
54 tree \,detoor_JNoiB=
55 file \,dnd.seert.)ATAD($=
56 compression \,enon=
57 strip_names \,)sey=
58 DropSpecies \(
59 tree_input \,detoor_JNoiB=
60 tree_output \,eertbus_JNoiB=
61 species \,)2ebanop=
62 SequenceStatistics \(
63 statistics \(=
64 BlockCounts(suffix \,)lla.=
65 BlockCounts(species=hg38 , suffix=.hs), \
66 BlockCounts(species=panPan1, suffix=.pp), \
67 BlockCounts(species=panTro4, suffix=.pt), \
68 BlockCounts(species=gorGor3, suffix=.gg), \
69 BlockCounts(species=ponAbe2, suffix=.pa), \
70 ModelFit \(
71 model=HKY85(kappa=1, theta=0.5, \
72 theta1=0.5, theta2=0.5), \
73 rate_distribution=Gamma(n=4, alpha=0.5), \
74 root_freq \,lluF=
75 tree \,eertbus_JNoiB=
76 parameters_output=(HKY85.theta_1, \
77 HKY85.theta1_1, HKY85.theta2_1, \
78 HKY85.kappa_1, Gamma.alpha, \
79 Full.theta1, Full.theta2, Full.theta), \
80 fixed_parameters \,)(=
81 reestimate_brlen \,on=
82 max_freq_gaps \,3.0=
83 gaps_as_unresolved \,))sey=
84 ref_species \,83gh=
85 file=$(DATA).model-statistics.csv), \
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This rather large option file starts with the selection of the species of
interest, which we store as a list in the SPECIES variable (line 4).
The Subset filter (lines 12–15) extracts the corresponding species
for each block, excluding blocks where not all five species are
present (strict¼yes), and removing any additional species that
might be present (keep¼no). Besides, we discard any block
where a species might be present more than once because of
paralogy (remove_duplicates¼yes). As a result, after this
step, all blocks contain exactly five sequences, one for each
species.

We then proceed with alignment filtering (starting line 16). We
first remove all alignment columns containing a gap in all kept
sequences, due to putative indels with more distant species, which
have now been discarded. This is achieved via the XFullGap filter
(line 16). We then slide a 10 bp window in order to exclude regions
with a least two indel events, independent of their size. Only indel
events involving at least two species are counted (AlnFilter2, with
arguments max.pos¼2 and max.gap¼2). The number of gaps is
specified as a number of occurrences (relative¼no); it can also
be specified as a proportion of the number of sequences. As we are
sliding 10 bp windows, we first discard alignment blocks with less
than ten columns (MinBlockLength filter, line 17). The resulting
alignment is spread into numerous, potentially small blocks. In
order not to discard too much data in subsequent steps of the
analysis, we perform a merging step (lines 25–28). With the speci-
fied configuration, consecutive blocks will only be merged if all
input species are syntenic, that is, the sequences in the two blocks
are colinear (same chromosome, same strand, same distance
between the start of the new block and end of the previous one).
By specifying a subset of species only, it is possible to merge accord-
ing to some focus species, resulting in coordinates being lost for
other species. We further consider a maximum distance of 100 bp in
order to merge consecutive blocks (line 27). When two blocks are
merged, so are the sequence names, which may result in excessively
long names. Using the rename_chimeric_chromosomes
argument, we tell the program to arbitrarily give new names to
merged sequences, which will be called chimtigXX, XX being a
unique number. When merged, missing positions will be replaced
by “N” characters, allowing to preserve coordinates. In effect, the
combination of the AlnFilter2 and Merge filters result in a masking
of the discarded positions.

We analyze the resulting filtered dataset in windows of 10 kb.
The focus window size is specified as a global variable (line 5) and
can be changed in order to assess the impact of the window size on
the results. The WindowSplit filter breaks each block into
non-overlapping blocks of a given size (lines 33–36). Input argu-
ments allow specifying how to cut a block when its size exceeds the
specified window size: either start from the left, center on the block
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while discarding start and end regions or adjust the size in order not
to lose any data. Note that in the latter case, the input window size
w will be the minimum size. The resulting window size can, there-
fore, be comprised between w and 2 � w � 1. When the
keep_small_blocks option (line 36) is set to yes, and the
window size is not adjusted, out-of-window alignment parts and
block smaller than the specified window size will be kept as separate
blocks. Otherwise, they will be discarded.

Phylogenetic reconstruction in each window is performed
using a distance method (BioNJ, [14]), which requires first to
estimate a pairwise distance matrix. We use a maximum likelihood
method, with a K80 substitution model (line 39) and a discrete
gamma distribution of rates across sites (line 40). For computa-
tional efficiency purpose, we only estimate distances and keep other
parameters fixed to realistic values (transition/transversion ratio
equal to 2 and gamma shape parameter equal to 0.5). We further
consider gaps as unknown characters in the modeling and discard
positions with more than one-third of unresolved characters (lines
42 and 43). For each windowed block, the resultingmatrix is stored
as meta-data, with label MLDistance. This distance matrix is then
given as input to the DistanceBasedPhylogeny filter, which recon-
structs a tree using the BioNj method (line 50) and stores it under
the label BioNJ. Further processing includes rooting each tree
using the Orangutan sequence (NewOutgroup filter, lines 49–52)
and removal of the outgroup branch (DropSpecies filter, lines
58–61). Rooted trees are saved into a text file using the Output-

Trees filter for further analysis.
The final step of the analysis consists in the estimation of

substitution parameters for each window. This is done via a
SequenceStatistics filter, and two dedicated statistics: Block-

Counts and ModelFit. The BlockCounts statistics is rather straight-
forward, as it computes nucleotide frequencies in a given set of
species. We use a combination of six calls to this statistic to compute
averaged (line 64) as well as species-specific frequencies (lines
65–69). Input arguments include the set of species to use in the
calculation, as well as suffix strings to distinguish the different
output results. The ModelFit statistic is more complex and requires
to specify a substitution model, similar to the DistanceEstimation

filter. As the model is being fitted to the full tree using Felsenstein’s
dynamic algorithm [15], a more parameter-rich model can be
employed (HKY85, [16]). In particular, we use a non-stationary
model, allowing us to estimate the observed and equilibrium fre-
quencies separately. Under such a model, the ancestral nucleotide
frequencies are different from the equilibrium ones and are fully
parameterized (line 74). In order to reduce computational time, we
do not reestimate branch lengths and keep them to the values
resulting from the BioNJ algorithm (line 81). Enabling branch
length reestimation does not change the results significantly (see
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companion material). Further parameters can be fixed to their
initial or default value using the fixed_parameters argument
(line 80). Finally, the output_parameters argument allows
specifying which estimated parameters should be output to the
result file. As the nomenclature of parameter names can be compli-
cated, MafFilter outputs the list of available parameters when
run. A two-step run might, therefore, be needed in order to fit the
desired model.

The results of this analysis are summarized in two files: a
spreadsheet file containing numerical values, one statistic per col-
umn and one 10 kb window per line (file chr9.model-statis-
tics.csv), and one text file containing a list of trees, one line per
window (file chr9.trees.dnd). R scripts are provided as com-
panion material in order to analyze these output files. The analysis
led to 883 trees. A majority rule consensus tree leads to a topology
compatible with the well-established phylogeny of the species (see
Fig. 4A) [17]. This topology is supported by a majority of windows
(Fig. 4B), but four other “minor” topologies are also inferred:
topology C and D are supported by 55 and 54 windows, and
group human with gorilla and chimpanzee + bonobos with gorilla,
respectively. Such topologies result from incomplete lineage sorting
in the humans-chimpanzees-bonobos ancestral populations
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[18]. The two last topologies, E and F, are supported by three and
four windows and group humans with bonobos and humans with
chimpanzees, respectively, revealing incomplete lineage sorting in
the common ancestor of bonobos and chimpanzees [19].

Having inferred the underlying genealogy for each window, we
could fit a model of sequence evolution and estimate parameters
related to the underlying substitution process. We find that the
proportions of A vs. T and G vs. C nucleotide are constant over
the chromosome and equals (A/(A + T) ’ G/(G + C) ’ 0.5).
The ratio of transitions over transversions increases along the chro-
mosome, from �4 on the left end to �5 on the right end (see
Fig. 5A). Observed GC content is highly conserved between all
species (see companion material), and increases at the right end of
the chromosome (ancestral GC, see Fig. 5B). Equilibrium GC
content, on the other hand, is higher in the two telomeric regions,
mirroring the recombination rate. Such relationships between
recombination and equilibrium GC content are expected when
GC-biased gene conversion is occurring [20]. In the online com-
panion material, an extended version of this script is provided,
which removes protein-coding regions in addition to filtering the
alignment. This increases the total execution time but does not
significantly affect the results.
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4.3 Example

Analysis 3: Running

External Software

MafFilter can integrate external tools within its analysis pipeline.
Programs can be run on each alignment block, and their result
parsed and further processed. Two types are currently supported,
based on the nature of the output.

The SystemCall filter exports each block as a standard align-
ment file, runs a program generating a new alignment, and subse-
quently replaces the original alignment block with the new
alignment. This procedure allows improving the genome alignment
by running standard gene alignment programs on synteny block.
The following script demonstrates this ability using the MAFFT
aligner [21] on the Primates chromosome 9 alignment:

1 DATA=chr9
2 SPECIES=(hg38, panPan1, panTro4, gorGor3, ponAbe2)
3
4 input.file=../Primates/$(DATA).maf.gz
5 input.file.compression=gzip
6 input.format=Maf
7 output.log=$(DATA).maffilter-realign.log
8 maf.filter \=
9 Subset \(
10 species \,)SEICEPS($=
11 strict=yes, keep \,on=
12 remove_duplicates \,)sey=
13 XFullGap(species=$(SPECIES), verbose=no), \
14 SequenceStatistics \(
15 statistics=(BlockSize, BlockLength), \
16 ref_species \,hg38=
17 file=$(DATA)_subset.statistics.csv), \
18 WindowSplit \(
19 preferred_size \,00001=
20 align \,tsujda=
21 keep_small_blocks \,)sey=
22 SystemCall \(
23 name \,TFFAM=
24 input.file \,atsaf.nIkcolb=
25 input.format \,atsaF=
26 output.file \,atsaf.tuOkcolb=
27 output.format \,atsaF=
28 call \,)hs.tffaMnur/.=
29 Merge \(
30 species \,)SEICEPS($=
31 dist_max \,0=
32 rename_chimeric_chromosomes=yes), \
33 SequenceStatistics \(
34 statistics=(BlockSize, BlockLength), \
35 ref_species \,hg38=
36 file=$(DATA)_windows_realigned.statistics.csv),\
37 Output \(
38 file \,zg.fam.dengilaer_)ATAD($=
39 compression \,pizg=
40 verbose \)1=
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As in Subheading 4.2, the pipeline starts by extracting
sequences for five species and removing full gap positions (lines
9–13). The SystemCall filter runs a wrapper script named run-
Mafft.sh, located in the current directory (lines 22–28). The
script reads a file named blockIn.fasta and writes the realigned
sequences into a new file blockOut.fasta, which will be parsed
by MafFilter. It further checks that the input block has at least
two sequences:

1 #! /bin/bash
2 if [ ‘grep ’>’ blockIn.fasta | wc -l‘ == "1" ];
3 then
4 #Only one sequence in block, we pass...
5 cp blockIn.fasta blockOut.fasta
6 else
7 mafft --fft --nomemsave --maxiterate 2 --thread -1 \
8 blockIn.fasta > blockOut.fasta 2> mafft.log
9 fi

For computational efficiency, we ensure that input alignments are
no longer than 10,000 sites and split long blocks using the Window-

Split filter (lines 18–21). The keep_small_blocks option is
set to yes, so that smaller blocks are kept unsplit and not discarded.
Realigned blocks are subsequently re-assembled using the Merge

filter (lines 29–32). However, note that this script will typically
take ca. 1 day to complete on a standard desktop computer. The
final alignment is exported to a new Maf file (lines 37–40), and
statistics are computed before and after realignment. The total
alignment length (number of aligned positions) slightly shrinks
from 89.245 to 89.223 Mb after realigning with MAFFT.

The ExternalTreeBuilding filter enables running an external
phylogeny reconstruction software on each alignment block and
import the resulting tree. As done in Subheading 4.2, we filter the
alignment of chromosome 9 and reconstruct the phylogenetic tree
in 10 kb windows, this time using the PhyML program [22]:

1 # maffilter param=MafFilter-Phylogeny.bpp
2
3 DATA=chr9_realigned
4 SPECIES=(hg38, panPan1, panTro4, gorGor3, ponAbe2)
5 WSIZE=10000
6
7 input.file=$(DATA).maf.gz
8 input.file.compression=gzip
9 input.format=Maf

10 output.log=$(DATA).maffilter-phylogeny.log
11 maf.filter \=
12 MinBlockLength(min_length \,)01=
13 AlnFilter2(verbose \,on=
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14 species \,)SEICEPS($=
15 window.size=10, window.step \,1=
16 missing_as_gap \,sey=
17 max.gap=2, max.pos=2, relative=no, \
18 file \,fam.nla_hsart.)ATAD($=
19 compression \,)enon=
20 Merge \(
21 species \,)SEICEPS($=
22 dist_max \,001=
23 rename_chimeric_chromosomes=yes), \
24 Output \(
25 file \,zg.fam.deretlif_)ATAD($=
26 compression \,)pizg=
27 MinBlockLength(min_length=$(WSIZE)), \
28 WindowSplit \(
29 preferred_size \,)EZISW($=
30 align \,retnec=
31 keep_small_blocks \,)on=
32 ExternalTreeBuilding \(
33 input.file \,yhp.nIkcolb=
34 input.format \(pilyhP=
35 order=sequential, type=extended), \
36 output.file=blockIn.phy_phyml_tree, \
37 output.format \,kciweN=
38 property_name \,LMyhP=
39 call \,)hs.lmyhPnur/.=
40 NewOutgroup \(
41 tree_input \,LMyhP=
42 tree_output \,detoor_LMyhP=
43 outgroup \,)2ebAnop=
44 OutputTrees \(
45 tree \,detoor_LMyhP=
46 file \,dnd.seert.)ATAD($=
47 compression \,enon=
48 strip_names \)sey=

The ExternalTreeBuilding filter exports the current block as
an alignment file (lines 32–39) and the runPhyml.sh script
launches phyml:

1 #! /bin/bash
2 phyml -i blockIn.phy -d nt -q -m HKY85 -f m -t e -c 4 \
3 -a e -s BEST -o tlr -b 0 > phyml.log 2> phyml.err

An HKY85 model of nucleotide substitutions is used with a four-
class discrete gamma distribution of rate fitted to the data. The best
tree from both nearest neighbor interchange (NNI) and subtree
pruning and regrafting (SPR) algorithms for topology search is
selected and further read by MafFilter. After rerooting (line
40), the trees for every block are collected and output. This pipeline
produces exactly 1000 trees, compared to 883 when no realign-
ment was performed, demonstrating that the realignment step
substantially increased the quality of the alignment. Results are
consistent with the BioNJ analysis, 852 blocks supporting the
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well-established phylogeny of the species. 85 and 58 trees cluster
human and gorilla or chimpanzee and bonobo with gorilla, respec-
tively, consistent with the occurrence of incomplete lineage sorting.
Interestingly, these analyses reveal a dissymmetry in the frequency
of the two ILS topologies, the one grouping human and gorilla
being more frequent than the one grouping gorilla and chimpan-
zee. This was previously observed [23] and shown to be due to a
higher rate of sequencing errors in the chimpanzee genome [18].

4.4 Example

Analysis 4:

Coordinates

Translation from One

Species to Another

Many evolutionary analyses require inter-specific comparisons.
When the compared species are closely related enough, it is possible
to perform a joint genome alignment in order to work with a single,
common reference genome. This may not always be the preferable
option, however, in particular when species are divergent and/or
have undergone substantial structural variation and the patterns
under study are intrinsically dependent on the genome position
(e.g., linkage disequilibrium [9]). In such cases, analyses are con-
ducted independently in each species, and coordinates are then
converted into a common reference for comparison.

The LiftOver utility, available at UCSC, can be used to con-
vert genome coordinates from one genome assembly to another, but
should not be used tomap genomes of distinct species. MafFilter,
however, has a function allowing to perform such task, providing a
genome alignment of the two species is available. Such an alignment
can be obtained with software like BlastZ and LastZ [24], TBA
[4], or Mummer [25]. The following example shows how to convert
human gene coordinates into their gorilla homologs using MafFil-
ter and the 20-way genome alignment from UCSC:

1 DATA=chr9
2 SPECIES=(hg38, gorGor3)
3
4 input.file=../Primates/$(DATA).maf.gz
5 input.file.compression=gzip
6 input.format=Maf
7 output.log=$(DATA).maffilter-liftover.log
8 maf.filter \=
9 Subset \(
10 species \,)SEICEPS($=
11 strict=yes, keep \,on=
12 remove_duplicates \,)sey=
13 XFullGap(species=$(SPECIES), verbose=no), \
14 Merge(species \,))SEICEPS($=
15 LiftOver \(
16 ref_species \,83gh=
17 target_species \,3roGrog=
18 target_closest_position \,sey=
19 feature.file=../Primates/chr9.CDS1kb.gtf, \
20 feature.file.compression \,enon=
21 feature.format \,FTG=
22 file \,nlt.3roGrog_ot_83gh=
23 compression \)enon=
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The option-file starts by reading the genome alignment and speci-
fying the path to the log file (lines 4–7). It then selects the two
species to compare, as shown in Subheading 3.1. The LiftOver

filter specifies the path towards the feature file to translate (lines
19–21), here in GTF format (MafFilter currently supports
translation form GFF, GTF, and BedGraph files, eventually com-
pressed). Lines 16 and 17 allow setting the reference and target
species, respectively. Argument target_closest_position
set the behavior in case the matching position in the target genome
is a gap. If set to yes, the closest non-gap position will be returned.
Original and translated positions will be returned in a tabular file,
specified at lines 22 and 23. Note that for the LiftOver filter to
work correctly, the alignment should be projected on the reference
genome (in this case hg38), for instance using the maf_project
program from the TBA package. Besides, feature coordinates will
only be translated if they are wholly contained in an alignment
block, that is if the feature does not overlap with a synteny break.
It is therefore essential, for optimal efficiency, that the alignment
blocks reflect the synteny structure of the reference and target
species only, which will be the case if the two species have been
pairwise aligned. When the two species are from a multiple genome
alignment, the Subset and Merge filters should be used to combine
syntenic blocks.

The output file recalls the query coordinates and their transla-
tion, for the features that could be translated. It is often convenient
to merge this translation file with the original query, which can be
done in R:

1 anno <- read.table("../Primates/chr9.CDS1kb.gtf",
2 sep = "\t")
3 tln <- read.table("hg38_to_gorGor3.tln", header = TRUE)
4 tln$begin.ref <- tln$begin.ref + 1
5 tln$begin.target <- tln$begin.target + 1
6 anno2 <- merge(anno, tln, by.x = c(1,4,5),
7 by.y = c(1,3,4), all = TRUE)

The first 5 lines read the original GTF file as a table. GTF annota-
tions are 1-based, inclusive [a, b], while MafFilter uses 0-based,
exclusive coordinates [a, b[. GTF coordinates are automatically
converted when reading the file, but MafFilter outputs results
in its coordinate system. We convert them back at lines 4 and
5, before merging the two tables, lines 6 and 7. Furthermore, the
strand column in the translation table does not match the strand
column in the input GTF file. In the feature file, this column
indicates on which strand the feature is to be found, information
that is not used in the translation step. The “strand” column in the
translation file indicates which strand of the sequence was present in
the genome alignment. Since the alignment was projected on the
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reference genome, the corresponding value is always positive. In
the target genome, the value will be positive if the genomes are
colinear, and negative in the case of a genomic inversion.

5 Other Useful Tools

MafFilter provides tools to analyze a MAF file sequentially.
These tools primarily focus on processing data for statistical ana-
lyses. It has a limited formatting capacity, in particular when long-
range operations are involved, such as reordering alignment blocks.
The TBA [4] and Last [6] packages contain several useful tools for
that purpose, which can be used in combination with MafFilter.

From the TBA package:

l The maf_order program permits to select and order sequence
according to their species names.

l The maf_project program order alignment blocks according
to a reference genome. Blocks where the reference genome is on
the negative strand will be reversed. All blocks that do not
contain the reference species will be discarded.

From the Last package:

l The maf-join program allows combining several (sorted)
multiple alignments.

l The maf-sort program permits to sort alignments according
to sequence names.

6 Conclusion

The MafFilter program allows to efficiently process multiple
genome alignment files, by sequentially analyzing synteny blocks.
It features a flexible and extensible syntax permitting the design of
reproducible pipelines for the post-processing of genome data.
Beyond filtering and quality assessment, MafFilter can be used
to analyze patterns of diversity along genomes, within and between
species.

7 Note

Note 1: pseudo-genomes

1. Pseudo-genomes are obtained by applying a set of inferred
variants to the corresponding reference genome. All positions
for which a variant could not be called (whether there is one or
not) will, therefore, be identical to the reference genome in the
resulting pseudo-genome.
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Chapter 3

Data Management and Summary Statistics with PLINK

Christopher C. Chang

Abstract

PLINK is a versatile program which supports data management, quality control, and common statistical
computations on matrices of genomic variant calls, in a computationally efficient manner. In population
genomics, it is frequently used to take care of the “basics,” so they do not need to be reimplemented when a
new type of analysis needs to be performed on such a matrix. I describe several of these basic operations, and
discuss uses and pitfalls.

Key words Allele frequency, Hardy–Weinberg equilibrium, Linkage disequilibrium, Principal com-
ponent analysis, Relationship inference, Sex inference, Variant call format

1 Introduction

Genotyping chips and sequencing machines produce data in a wide
variety of formats. However, they are all trying to measure the same
thing: what are the genome sequences of these organisms? These
sequences will tend to be 99%+ -identical between different organ-
isms of the same species, of course, but thanks to mutation and
sexual reproduction, interesting variation will remain, and it is this
variation that is the primary object of study for population
genomics.

The most commonly studied type of variation is the “single
nucleotide polymorphism” (SNP), an isolated position in the
genome that noticeably varies between organisms of the same
species while adjacent positions remain identical. They account
for a large fraction of total variation, they are relatively easy to
detect with modern technologies, and they introduce fewer analyt-
ical difficulties than, e.g., genomic rearrangements. Thus, many
population-genomic datasets are in the form of a SNP � sample
matrix. PLINK 1.0 [1] introduced a simple and efficient binary
encoding for biallelic-SNP � sample matrices which has become a
de facto standard (see Note 1).
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PLINK itself also supports a variety of common data manage-
ment and quality control operations on such matrices, along with
some useful summary statistics; and the wider ecosystem of soft-
ware directly supporting the PLINK 1 binary format can handle
much more (see, e.g., the ADMIXTURE software discussed in
Chapter 4). In this chapter, I will cover the following:

l How to convert data into the PLINK 1 binary format.

l Filtering out samples and SNPs with too much missing data.

l Selecting a sample subset without very close relatives.

l Minor allele frequency reporting, and using MAFs to filter
out SNPs.

l Hardy–Weinberg equilibrium statistics, and filtering applications.

l Selecting a SNP subset in approximate linkage equilibrium.

l Principal component analysis.

l Sex validation and imputation.

l Reporting linkage disequilibrium statistics.

l Exporting data to other file formats.

2 Materials

You will want PLINK 1.9 and 2.0 [2] for everything that follows. If
they are already installed on your system, typing plink or plink2
with no additional command-line arguments into a bash
(or Windows cmd) shell should cause version information and
partial lists of supported commands to be printed:

~$ plink

PLINK v1.90b6.4 64-bit (7 Aug 2018) www.cog-genomics.org/plink/1.9/

(C) 2005-2017 Shaun Purcell, Christopher Chang GNU General Public License v3

plink [input flag(s)...] {command flag(s)...} {other flag(s)...}

plink --help {flag name(s)...}

Commands include --make-bed, --recode, --flip-scan, --merge-list,

--write-snplist, --list-duplicate-vars, --freqx, --missing, --test-mishap,

--hardy, --mendel, --ibc, --impute-sex, --indep-pairphase, --r2, --show-tags,

--blocks, --distance, --genome, --homozyg, --make-rel, --make-grm-gz,

--rel-cutoff, --cluster, --pca, --neighbour, --ibs-test, --regress-distance,

--model, --bd, --gxe, --logistic, --dosage, --lasso, --test-missing,

--make-perm-pheno, --unrelated-heritability, --tdt, --dfam, --qfam, --tucc,

--annotate, --clump, --gene-report, --meta-analysis, --epistasis,

--fast-epistasis, and --score.

’plink --help | more’ describes all functions (warning: long).
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If either is not already installed on your system, prebuilt bin-
aries for Linux, OS X, and Windows can be downloaded from

https://www.cog-genomics.org/plink/1.9/ and
https://www.cog-genomics.org/plink/2.0/
Alternatively, you can download the source code from
https://github.com/chrchang/plink-ng
and build the programs yourself. On some systems, you can

also easily install PLINK 1.9 from a package manager such as APT,
Bioconda, or Homebrew.

PLINK is designed to interoperate well with R, and this chapter
includes an R plotting command. On the off chance you do not
have R installed, it can be downloaded from

https://cran.r-project.org/mirrors.html
Sample datasets (based on 1000 Genomes phase 1 [3]) and

PLINK outputs for many operations described in this chapter can
be downloaded from the companion website.

3 Methods

3.1 Getting Started:

Importing

and Merging Data

A PLINK 1 binary fileset contains three files:

l A text file with the “.fam” extension, containing sample IDs and
possibly some pedigree information (sex, parental IDs). PLINK
sample IDs normally have two components: a family ID (“FID”)
in the first column and an individual ID (“IID”) in the second
column of the .fam file.

l A text file with the “.bim” extension, containing biallelic-variant
IDs, positions, and the two observed alleles for each variant.
(Alleles can contain more than one nucleotide; PLINK is
designed to work with SNP-like data, but it is not restricted to
just SNPs.) Usually, the less common allele is in the 5th column
and the more common one is in the 6th, but if your organism
has already been sequenced enough to have an official “reference
genome,” the 6th column may always contain the reference-
genome allele.

PLINK 1.9 refers to the 5th-column allele as “A1,” and the
6th-column allele as “A2.”

l A binary file with the “.bed” (seeNote 2) extension, containing a
compact representation of the variant � sample matrix. Logi-
cally, for an autosome in a diploid genome, each matrix entry is
either “0 copies of A2 allele,” “1 copy,” “2 copies,” or “NA.”

Sometimes, you will be given data in a different format, and/or
multiple filesets which should be merged into a single PLINK
binary fileset for more convenient analysis.
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3.1.1 Variant Call Format Genome sequencing data is frequently represented in Variant Call
Format (VCF) [4] or its binary counterpart BCF. In addition to
variants and genotype calls, these files may contain genotype and
mapping quality statistics, and many other tidbits of information.
However, in population genomics, you usually only need the var-
iants and genotype calls. These can be converted to PLINK-format
with a command like

plink --vcf original_data.vcf.gz \

--keep-allele-order \

--make-bed \

--out converted_data

which generates a {converted_data.bed, converted_data.bim,
converted_data.fam} fileset with the same genotype calls as origi-
nal_data.vcf.gz.

Let us walk through the pieces of the command line above.

l “–vcf original_data.vcf.gz” specifies that the primary source of
input data for this run is original_data.vcf.gz, and it is in VCF
format. The .gz at the end of the filename indicates that the file is
gzip-compressed; PLINK automatically decompresses the file in
this case.

l The backslash at the end of the first line indicates that we are not
done typing the command. It is not strictly necessary: you could
put all four flags on a single line instead. But the one-flag-per-
line style is usually more readable.

l “–keep-allele-order” tells PLINK 1 to keep the allele ordering in
the input file, because VCF files explicitly specify which allele is
in the species “reference genome” and which allele deviates from
it, and that information is useful at times. A2 is set to the
reference allele, and A1 is set to the alternate allele.

Without this flag, PLINK 1 automatically reorders the alleles
such that A2 is the most common (“major”) allele in the imme-
diate dataset, and A1 is the least common (“minor”). Thus, it is
normally unsafe to make assumptions about which allele is A1
and which is A2: if a particular allele is present at 48% frequency,
it is easy to imagine that allele having 51% frequency in one
dataset (and thus being “major” there) and 45% in another.
However, there are several ways to impose a specific ordering
when necessary; –ref-from-fa (PLINK 2 only) and –a2-allele are
generally the most useful.

l “–make-bed” is the command to generate a new PLINK1 binary
fileset. This is used a lot.

l “–out” lets you set the output filename prefix for the current
run. Without it, all output filenames would be of the form plink.
{extension} instead.
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You can find more documentation on each of these flags by
going to

https://www.cog-genomics.org/plink/1.9/
and typing the flag name into the “Quick index search” box at

the bottom of the left sidebar. Or you can run “plink –help [flag
name]” to get a quick summary. Both sources of documentation
also discuss some quality filters PLINK can apply, if very-low-qual-
ity genotype calls remain in the VCF file; the information on how
PLINK sample IDs are generated from VCF sample IDs may also
be relevant.

The command line

plink2 --vcf original_data.vcf.gz \

--make-bed \

--out converted_data

has the same effect. Note the lack of “–keep-allele-order”:
PLINK 2’s default assumption is that the 6th .bim column contains
reference-genome alleles, and you need to add “–maj-ref” to tell
PLINK 2 to reorder the alleles the same way PLINK 1 does. This
reflects the fact that reference genomes are more widely agreed on
and more stable than they were in 2007.

For brevity, we will ignore –keep-allele-order, –a2-allele, and
the like in the rest of this chapter, but be aware that allele order
matters sometimes. We will also just give the PLINK 1.9 form of a
command when either PLINK version can be used.

3.1.2 PLINK text ({.ped, .

map})

A significant number of older datasets are in PLINK’s original text
fileset format, where the .map file contains variant IDs and posi-
tions, and the .ped file stores both sample IDs/pedigree info and
genotype calls. These can be imported with

plink --file original_data \

--make-bed \

--out converted_data

Replace –file with –tfile to import a “transposed text” fileset ({.
tped, .tfam}).

3.1.3 Other Formats PLINK is capable of importing several other commonly used
genotype data formats. The necessary command lines are all very
similar; you usually just need to replace –vcf/–file with another flag.
Refer to

https://www.cog-genomics.org/plink/1.9/input and
https://www.cog-genomics.org/plink/2.0/input
for details.
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3.1.4 Alternate

Chromosome/Contig Sets

Unless you specify otherwise, PLINK interprets chromosome
codes as if you were working with human data: 1–22 (or “chr1”–
“chr22”) refer to the respective autosomes, 23 refers to the X
chromosome, 24 refers to the Y chromosome, 25 refers to pseu-
doautosomal regions, and 26 refers to mitochondria.

If you are working with another species, use the “–chr-set” flag
to indicate the number of autosomes. A positive parameter indi-
cates a diploid genome, while a negative number tells PLINK to
treat the genome as haploid; so “–chr-set 38” is appropriate for dog
data, while “–chr-set -19” is correct for some bog moss species.

Some datasets also contain unplaced contigs. As long as their
names start with non-numeric characters (e.g., “contig35” is ok,
“35” is not), PLINK will accept them when you include “–allow-
extra-chr” (–aec for short) on the command line.

(Unfortunately, if you need –chr-set or –aec once, you will
usually need to include it every time you run PLINK on data for
that species.)

3.1.5 Missing Variant IDs Sometimes, your input files contain lots of variants which have not
been assigned a unique ID (e.g., a VCF file where lots of “ID”
column entries are “.”). This can prevent some PLINK commands
from working properly (such as the fileset merge operation we will
discuss next), so it is best to address this during or immediately after
data import.

PLINK’s –set-missing-var-ids flag provides one solution. Given
a template string where “@” represents the chromosome code and
“#” represents the base-pair coordinate on the chromosome, it
replaces every “.” variant ID with a template-based ID. For
example,

plink --bfile converted_data \

--set-missing-var-ids @:# \

--make-bed \

--out idfilled_data

would assign the ID “3:5331691” to an unnamed variant at
chromosome 3, position 5331691. This is good enough for
SNP-only data.

PLINK 2 also allows the template string to include REF/ALT
allele codes, supports several ways of handling very long allele
codes, and lets you rewrite all variant IDs with the template instead
of just missing IDs; see https://www.cog-genomics.org/plink/2.
0/data#set_all_var_ids.

3.1.6 Merging So you have converted all your data to PLINK 1 binary format, but
it is split across multiple filesets. To merge them into a single fileset,

l Create a text file with each of the input filename prefixes, one per
line. Call this input_sources.txt.
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l Run

plink --merge-list input_sources.txt \

--out merged_data

Note that, if you are merging a thousand single-sample input
filesets which all have the same sample ID, PLINK will assume all
genotype calls are for the same individual (and, as a consequence,
most or all genotype calls in the merged dataset will be missing;
PLINK’s merger normally only keeps a genotype call when all input
files agree on it). Assign a different sample ID to each individual
before merging.

3.1.7 Filling in Missing

Pedigree Information

VCF files normally do not contain pedigree information. However,
you will often know at least the sexes of most of the samples anyway.
Here is one way to integrate them with your merged PLINK fileset.

l Create a text file where the first two columns are PLINK sample
IDs, and the third column indicates sex (1 or M¼male, 2 or F¼
female) (see Note 3). Call this file sex_info.txt.

l Run

plink --bfile merged_data \

--update-sex sex_info.txt \

--make-bed \

--out merged_data_with_sex

You can import parental IDs in a similar manner; see the
documentation on –update-parents. (Or you can write your own
script to manipulate the .fam file; there is more than one way to do
these things.)

3.2 Missingness

Filters

As of this writing, genotyping chips and genome sequencers are not
perfect. For this and other reasons, many datasets contain a bunch
of “NA” entries in the variant � sample genotype call matrix.

The usual practice is to filter out the samples and variants with
high missing-entry frequencies; these tend to be caused by mistakes
in the lab, bad SNP probes, variant calling limitations, and similar
issues where throwing out the entire row/column is an appropriate
solution. (You still have lots of other rows and columns to work
with, so at least in population genomics it usually is not worth the
effort to try to salvage it.) PLINK’s –mind (for individual missing-
ness) and –geno flags provide a way to do this:

plink --bfile merged_data \

--geno 0.1 \

--mind 0.1 \

--make-bed \

--out missingness_filtered_data
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Walking through this command line,

l –bfile specifies that the primary source of input data for this run
is {merged_data.bed, merged_data.bim, merged_data.fam}.

l “–geno 0.1” tells PLINK to throw out every variant where more
than 10% of the genotype calls are “NA”s.

l “–mind 0.1” tells PLINK to throw out every sample where more
than 10% of the genotype calls are “NA”s. This happens before –
geno, not simultaneously with it (or after it; command-line flag
order is ignored). You can see PLINK 1.9’s full order of opera-
tions at

https://www.cog-genomics.org/plink/1.9/order
l –make-bed generates a new PLINK 1 fileset, with the high-

missingness samples and variants removed. When using
PLINK, you generally do not “edit” data in-place; instead you
generate a new fileset with a different name whenever you apply
filters or other data transformations.

l –out causes the new files to be written to {missingness_filter-
ed_data.bed, missingness_filtered_data.bim, missingness_filter-
ed_data.fam} instead of {plink.bed, plink.bim, plink.fam}.

Most PLINK runs also generate a .log file which includes the
original command line as well as other information printed to
the console; in this case, it would be named missingness_filter-
ed_data.log. As long as you do not delete these .log files or reuse
the same –out arguments at inappropriate times, this makes it
easy to see how each PLINK output file in a directory was
generated.

3.3 Selecting

a Sample Subset

Without Very Close

Relatives

Many population-genomic statistics (such as the allele frequencies
we are about to discuss) and analyses are distorted when there are
lots of very close relatives in the dataset; you are generally trying to
make inferences about the population as a whole, rather than a few
families that you oversampled. PLINK 2 includes an implementa-
tion of the KING-robust [5] pairwise relatedness estimator, which
can be used to prune all related pairs (see Note 4). For example, to
get rid of all first-degree relations (parent–child and sibling–sib-
ling), you could run

plink2 --bfile missingness_filtered_data \

--king-cutoff 0.177 \

--make-bed \

--out relpruned_data

If you want to do fancier things based on this relatedness
estimator, such as trying to reconstruct the entire pedigree, take a
look at the KING program, which can be downloaded from http://
people.virginia.edu/~wc9c/KING/Download.htm
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3.4 Minor Allele

Frequency Reporting,

Filtering

Allele frequencies are a primary object of study in population
genetics and genomics. PLINK’s —freq command reports empiri-
cal allele frequencies, and its —maf filter removes all variants with
minor allele frequency below the given threshold.

For example,

plink --bfile relpruned_data \

--freq \

--out allele_freqs

writes an empirical allele frequency report to allele_freqs.frq,
where the first column contains the chromosome, the second col-
umn contains the variant ID, columns 3–4 contain the minor and
major allele codes in that order, column 5 contains the minor allele
frequency, and column 6 contains the number of allele observa-
tions. (This file format is spelled out at

https://www.cog-genomics.org/plink/1.9/formats#frq,
and all other PLINK 1.9 output file formats are described

elsewhere on the page.)
If you are interested in the allele frequency spectrum (refer to

Chapter 1 for some of its applications), PLINK 2 —freq has an
additional convenience that may come in handy:

plink2 --bfile relpruned_data \

--freq alt1bins=0.01,0.02,0.03,0.04,0.05,0.1,0.2,0.3,0.4 \

--out allele_spectrum

This generates an additional allele_spectrum.afreq.alt1.bins file
which reports the number of variants with MAF in [0, 0.01), [0.01,
0.02), . . ., and [0.4, 0.5]. (And the main allele frequency file is
formatted slightly differently from PLINK 1.9, with a more
VCF-like header row, and single-tab delimiters instead of multiple
spaces. These changes are small enough that it should not be
difficult to switch an old codebase from PLINK 1 to PLINK
2, but be aware that the latter is not a drop-in replacement for the
former.)

To filter out all variants with minor allele frequency below 5%,
you would run

plink --bfile relpruned_data \

--maf 0.05 \

--make-bed \

--out maf_filtered_data

3.5 Hardy–Weinberg

Equilibrium Statistics

Checking for deviation fromHardy–Weinberg equilibrium is useful
for multiple reasons:
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l If there are far more heterozygous calls than would be expected
under Hardy–Weinberg equilibrium, that is usually due to a
systematic variant calling error. Any such variants should be
removed from the dataset.

l Population stratification can cause large violations of Hardy–
Weinberg equilibrium, in the fewer-hets-than-expected direc-
tion. Natural selection, migration, and some mating patterns
can drive smaller violations in either direction.

l Several statistical methods assume approximate Hardy–Wein-
berg equilibrium. You can use a more-stringently-filtered subset
of your data for just these methods.

PLINK includes functions for computing Hardy–Weinberg
equilibrium exact test p-values, based on the method of Wigginton
et al. [6] The –hwe flag filters out variants with p-values more
extreme than a given threshold; the following PLINK 2 command
line is appropriate during initial quality control:

plink2 --bfile maf_filtered_data \

--hwe 1e-25 keep-fewhet \

--make-bed \

--out hwe_filtered_data

The “keep-fewhet” modifier causes this filter to be applied in a
one-sided manner (so the fewer-hets-than-expected variants that
one would expect from population stratification would not be
filtered out by this command), and the 1e-25 threshold is extreme
enough that we are unlikely to remove anything legitimate. (Unless
the dataset is primarily composed of F1 hybrids from an artificial
breeding program.) After you have a good idea of population
structure in your dataset, you may want to follow up with a round
of two-sided –hwe filtering, since large (see Note 5) violations of
Hardy–Weinberg equilibrium in the fewer-hets-than-expected
direction within a subpopulation are also likely to be variant calling
errors; with multiple subpopulations, the –write-snplist and –
extract flags can help you keep just the SNPs which pass all subpop-
ulation HWE filters.

The –hardy command can be used to dump all of the p-values.

3.6 Selecting a SNP

Subset in Approximate

Linkage Equilibrium

Some analyses, such as the PCA we will discuss next, work best on a
genome-spanning subset of SNPs which are in approximate linkage
equilibrium. PLINK 2’s –indep-pairwise command (seeNote 6) is a
computationally efficient method of identifying a reasonable sub-
set. For example,

plink2 --bfile hwe_filtered_data \

--indep-pairwise 200kb 1 0.5 \

--out ldpruned_snplist
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removes SNPs so that no pair within 200 kilobases have
squared-allele-count-correlation (r2) greater than 0.5, and saves
the IDs of the remaining SNPs to ldpruned_snplist.prune.in.
(There is nothing magical about the r2 ¼ 0.5 threshold; it is useful
to adjust it depending on the number of SNPs you want to keep.
The lower the threshold you use, the larger your kilobase window
should be.)

You can then create a fileset with just this SNP subset by
combining –extract (which lets you select an arbitrary subset of
variants, by ID) with –make-bed:

plink --bfile hwe_filtered_data \

--extract ldpruned_snplist.prune.in \

--make-bed \

--out ldpruned_data

3.7 Principal

Component Analysis

Once you have LD-pruned and MAF-filtered your dataset, PLINK
2’s –pca command has a good shot of revealing large-scale popula-
tion structure. For example,

plink2 --bfile ldpruned_data \

--pca 5 \

--out pca_results

writes a tab-delimited table to pca_results.eigenvec, with one
sample per row and one principal component per later column.
(Eigenvalues are written to pca_results.eigenval.)

You will usually want to sanity-check the output at this point,
and verify that the top principal components do not correlate too
strongly with, e.g., sequencing facility or date. (A full discussion of
“batch effects” and how to deal with them could take up an entire
chapter; worst case, you may have to analyze your batches sepa-
rately, or even redo all genotyping/sequencing from scratch. I will
be optimistic here and suppose that no major problem was uncov-
ered by PCA, but be aware that this is frequently your best chance
to catch data problems that would otherwise sink your entire
analysis.)

It is also a good idea to throw out gross outliers at this point;
any sample which is more than, say, 8 standard deviations out on
any top principal component is likely to have been genotyped/
sequenced improperly; you can remove such samples by creating a
text file with the bad sample IDs, and then using –remove + –
make-bed:

plink --bfile ldpruned_data \

--remove bad_samples.txt \

--make-bed \

--out ldpruned_data2
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If you do this, follow it up by repeating the PCA, since the bad
samples might have distorted the principal components:

plink2 --bfile ldpruned_data2 \

--pca 5 \

--out pca_results2

(Occasionally, the new principal components will reveal another
bad sample, and you have to repeat these two steps, etc. EIGEN-
SOFT [7, 8] has some additional built-in principal component
analysis options, including automated iterated outlier removal,
and a top-eigenvalue-based test for significant population
structure.)

Anyway, once there is nothing obviously wrong with the PCA
results, you can load the table in R and plot the top pairs of principal
components against each other:

> pca_table <- read.table("pca_results.eigenvec", header=TRUE, comment.char="")

> plot(pca_table[, c("PC1", "PC2", "PC3", "PC4", "PC5")])

Results are shown in Fig. 1.
If there are obvious clusters in the first few plots, I recommend

jumping ahead to Chapter 4 (on ADMIXTURE) and using it to
label major subpopulations before proceeding.

3.8 Sex Validation

and Imputation

If you have X-chromosome population-genomic data, you can
employ PLINK’s –check-sex command to sanity-check the sex
information in your .fam file. (The method is based on chrX het-
erozygosity rates.) Similarly, –impute-sex uses chrX heterozygosity
rates to fill in missing sex entries when appropriate.

This is typically a two- or three-step process:

0. If your species has pseudoautosomal regions, ensure they are
not encoded as part of the X chromosome. If they are, PLINK
1.9’s –split-x or PLINK 2’s –split-par flag can be used to
change the chromosome codes of the relevant variants before
proceeding.

1. Run –check-sex once without additional parameters, just to see
the distribution of F (inbreeding) coefficients.

plink --bfile ldpruned_data \

--check-sex \

--out f_distribution

Then plot the distribution of values in the sixth column of
f_distribution.sexcheck. If both genders are well-represented in
the dataset, you should see a big tight clump near
1 (corresponding to the males), and a more widely dispersed
set of values centered near 0 (corresponding to the females).
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2. Select a pair of decision boundaries (where an F coefficient
below the first boundary causes the sample to be classified as
female, above the second boundary causes the sample to be
classified as male, and in between causes the sample to be
labeled as unknown-sex), and run –impute-sex (or just –
check-sex again) with the boundaries:

plink --bfile ldpruned_data \

--impute-sex 0.7 0.8 \

--make-bed \

--out sexfilled_data

PC1

-0.04 0.00 0.04 -0.15 -0.05 0.05

-0
.0
2

0.
02

0.
06

-0
.0
4

0.
00

0.
04

PC2

PC3

0.
00

0.
10

-0
.1
5

-0
.0
5

0.
05

PC4

-0.02 0.02 0.06 0.00 0.10 -0.15 -0.05 0.05
-0
.1
5

-0
.0
5

0.
05

PC5

Fig. 1 PCA bi-plot generated by R
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If you also have Y-chromosome genotype calls and can expect
males to have fewer missing chrY calls than females, you can take
this into account in the sex inference process; refer to the –check-
sex/–impute-sex documentation at

https://www.cog-genomics.org/plink/1.9/basic_stats#check_
sex

3.8.1 Subpopulation

Allele Frequencies, and –

read-freq

By default, –check-sex/–impute-sex and several other PLINK com-
mands assume that your dataset is representative of a single popu-
lation, and all samples are members of that population; population
allele frequencies and F coefficients are estimated under these
assumptions.

Thus, if you identified multiple subpopulations in the previous
section, you should perform sex validation/imputation on one
subpopulation at a time. PLINK’s –filter flag provides one way to
do this; put sample IDs in the first two columns of subpops.txt and
subpopulation IDs in the third column, then

plink --bfile ldpruned_data \

--filter subpops.txt AFR \

--make-bed \

--out afr_data

plink --bfile afr_data \

--check-sex \

...

You can then use –update-sex to copy the inferred sexes back to
your main datasets.

Also, you sometimes have access to more accurate (sub)popu-
lation allele frequencies than would be imputed from your imme-
diate dataset. (An extreme case of this is when you are running –
check-sex/–impute-sex separately for a bunch of single-sample
filesets.) To patch in the more-accurate allele frequencies, reformat
them as a PLINK –freq report if necessary, and then use –read-freq:

plink --bfile ldpruned_data \

--read-freq more_accurate.frq \

--check-sex \

--out f_distribution

3.9 Reporting

Linkage

Disequilibrium

Statistics

While the last several operations worked with a LD-pruned subset
of the data, sometimes you will want to handle linkage disequilib-
rium in a more sophisticated manner, or study it directly. PLINK’s
–r2 command can be used for this purpose.
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plink --bfile hwe_filtered_data \

--r2 dprime \

--ld-window 999999 \

--ld-window-kb 1000 \

--ld-window-r2 0.1 \

--out r2_report

The command line above reports squared-allele-count-correla-
tions and an estimate of Lewontin’s D’ (thanks to the additional
“dprime” modifier) for each pair of variants within 1000 kilobases
of each other, whenever r2 � 0.1. The “–ld-window 999999” flag
is needed because PLINK defaults to only considering variant pairs
which are at most 9 lines apart from each other in the .bim file.

–r2 has a bunch of other options, including matrix output
(when you want to look at literally every single pair of variants)
and ways to focus on just a few SNPs; see the documentation at

https://www.cog-genomics.org/plink/1.9/ld#r

3.10 Data Export While the PLINK 1 binary fileset format is widely supported,
occasionally you will need to convert to a different format like
VCF or PLINK text in order to use another tool. This can be
accomplished with the PLINK –export command:

plink --bfile hwe_filtered_data \

--export ped \

--out exported_plink_text

plink2 --bfile hwe_filtered_data \

--ref-from-fa reference.fa \

--export vcf \

--out exported_vcf

The first command generates {exported_plink_text.ped, expor-
ted_plink_text.map}, while the second one generates exported_vcf.
vcf, determining the correct REF alleles from reference.fa in case
they were scrambled by PLINK 1.9. Many other formats are sup-
ported; see

https://www.cog-genomics.org/plink/1.9/data#recode and
https://www.cog-genomics.org/plink/2.0/data#export.

4 Notes

1. SNPs with three or four alleles exist, but are rare enough such
that most software developers ignore them. The usual practice
as of this writing is to “split” a triallelic SNP into two biallelic
records; for example, if A, C, and G nucleotides are all observed
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at a single position and A is the most common, the dataset will
contain one record describing an A/C SNP, and another
record describing an A/G SNP. This is obviously imperfect,
but it is good enough for most genomic analyses.

2. Unfortunately, there is another type of “.bed” file widely used
in genomics: UCSC Browser Extensible Data, a text format for
positional intervals. However, you can usually distinguish
between the two simply by checking for the presence of .bim
and .fam files with the same filename prefix; these are practically
required to make sense of a PLINK .bed file. Or, in a pinch, you
can check whether the first three bytes of the .bed file are
consistent with the specification at https://www.cog-geno
mics.org/plink/1.9/formats#bed.

3. Assuming your species adheres to the XY sex-determination
system. For ZW species, you may want to deliberately reverse
the sexes, and encode Z!X and W!Y.

4. This does not mean that both samples in each related pair are
thrown out. Instead, –king-cutoff tries to keep as much data as
possible, and as a consequence it usually keeps one sample out
of each pair.

5. What p-value threshold does “large” correspond to, you may
ask? Well, this depends on the size of your dataset and some
other characteristics of your data. But a good rule of thumb is
to use “ridiculous” thresholds like 1e-25 or 1e-50 for quality
control when you have at least a thousand samples (or even
1e-200 if you have many more), while only using “normal”
thresholds like 1e-4 or 1e-7 when you are preparing data for an
analysis which actually assumes all your SNPs are in Hardy–
Weinberg equilibrium.

6. The –indep-pairwise command also works in PLINK 1.9, but it
may run a lot more slowly since it is not automatically
parallelized.
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Chapter 4

Exploring Population Structure with Admixture Models
and Principal Component Analysis

Chi-Chun Liu, Suyash Shringarpure, Kenneth Lange, and John Novembre

Abstract

Population structure is a commonplace feature of genetic variation data, and it has importance in numerous
application areas, including evolutionary genetics, conservation genetics, and human genetics. Understand-
ing the structure in a sample is necessary before more sophisticated analyses are undertaken. Here we
provide a protocol for running principal component analysis (PCA) and admixture proportion inference—
two of the most commonly used approaches in describing population structure. Along with hands-on
examples with CEPH-Human Genome Diversity Panel and pragmatic caveats, readers will learn to analyze
and visualize population structure on their own data.

Key words Population structure, Admixture, Principal component analysis, Population stratification

1 Introduction

Population structure is a commonplace feature of genetic variation
data, and it has importance in numerous application areas, includ-
ing evolutionary genetics, conservation genetics, and human genet-
ics. At a broad level, population structure is the existence of
differing levels of genetic relatedness among some subgroups
within a sample. This may arise for a variety of reasons, but a
common cause is that samples have been drawn from geographi-
cally isolated groups or different locales across a geographic contin-
uum. Regardless of the cause, understanding the structure in a
sample is necessary before more sophisticated analyses are under-
taken. For example, to infer divergence times between two popula-
tions requires knowing two populations even exist and which
individuals belong to each.

Two of the most commonly used approaches to describe popu-
lation structure in a sample are principal component analysis [5, 16,
23, 25] and admixture proportion inference [19, 26]. In brief,
principal component analysis reduces a multi-dimensional dataset
to a much smaller number of dimensions that allows for visual
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exploration and compact quantitative summaries. In its application
to genetic data, the numerous genotypes observed per individual are
reduced to a few summary coordinates. With admixture proportion
inference, individuals in a sample are modeled as having a proportion
of their genome derived from each of several source populations. The
goal is to infer the proportions of ancestry from each source popula-
tion, and these proportions can be used to produce compact visual
summaries that reveal the existence of population structure in a
sample.

The history and basic behaviors of both these approaches have
been written about extensively, including by some of us, and so we
refer readers to several previous publications to learn the basic
background and interpretative nuances of these approaches and
their derivatives [1, 2, 9, 10, 12, 17, 18, 20, 21, 23, 25–27, 29].
Here, in the spirit of this volume, we provide a protocol for running
these analyses and share some pragmatic caveats that do not always
arise in more abstract discussions regarding these methods.

2 Materials

The protocol we present is based on two pieces of software: (1) the
ADMIXTURE software that our team developed [2] for efficiently
estimating admixture proportions in the “Pritchard-Stephens-
Donnelly” model of admixture [19, 26]. (2) The smartpca soft-
ware developed by Nick Patterson and colleagues for carrying out
PCA [25]. Both of these pieces of software are used widely. We also
pair them with downstream tools for visualization, in particular
pong [3], for visualizing output of admixture proportion infer-
ences, and PCAviz [31], a novel R package for plotting PCA out-
puts. We also use PLINK [6, 24] as a tool to perform some basic
manipulations of the data (see Chapter 3 for more background on
PLINK).

The example data we use is derived from publicly available
single-nucleotide polymorphism (SNP) genotype data from the
CEPH-Human Genome Diversity Panel [4]. Specifically, we will
look at Illumina 650Y genotyping array data as first described by Li
et al. [15]. This sample is a global-scale sampling of human diversity
with 52 populations in total, and the raw files are available from the
following link: http://hagsc.org/hgdp/files.html. These data have
been used in numerous subsequent publications and are an impor-
tant reference set.

A few technical details are that the genotypes were filtered with
a cutoff of 0.25 for the Illumina GenCall score [13] (a quality score
generated by the basic genotype calling software). Further, indivi-
duals with a genotype call rate <98.5% were removed, with the
logic being that if a sample has many missing genotypes it may be
due to poor quality of the source DNA, and so none of the
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genotypes from that individual should be trusted. Beyond this, to
prepare the data, we have filtered down the individuals to a set of
938 unrelated individuals. We exclude related individuals as we are
not interested in population structure that is due to family relation-
ships and methods such as PCA and ADMIXTURE can inadvertently
mistake family structure for population structure. The starting
data are available as plink-formatted files H938.bed H938.fam,
H938.bim, and an accompanying set of population identifiers
H938.clst.txt in the raw_input sub-directory of the
companion data.

As a pragmatic side note, it is common (and recommended)
when carrying out analyses of population structure to merge one’s
data with other datasets that contain populations which may be
representative sources of admixing individuals. For example, in
analyzing a dataset with African American individuals, it can be
helpful to include datasets containing African and European indi-
viduals in the analysis. These datasets can be merged with your
dataset using software such as plink. However, when merging
several datasets, one should be aware of potential biases that can
be introduced due to strand flips (i.e., one dataset reports geno-
types on the “+ ” strand of the reference human genome, and
another on the “�” strand). One precautionary step to detect
strand flips is to group individuals by what dataset they derive
from and then produce a scatterplot of allele frequencies for pairs
of groups at a time. If strand flips are not being controlled correctly,
one will observe numerous variants on the y¼1� x line, where x is
the frequency in one dataset and y is the frequency in a second
dataset. (Note: This rule of thumb assumes levels of differentiation
are low between datasets, as is the case in human datasets in general,
but one should still keep this in mind interpreting results.)

3 Methods

In this section we walk you through an example analysis using
ADMIXTURE and smartpca. We assume the raw data files are in a
directory raw_input that is below our working directory and that
a second directory out exists in which outputs can be placed. If
following along in an R console, you should use the setwd( )
command to set the working directory correctly.

3.1 Subsetting Data For running some simple examples below, we will first create a subset
of theHGDP sample that is restricted to only European populations.
The European populations in the HGDP have the labels “Adygei,”
“Basque,” “French,” “Italian,” “Orcadian,” “Russian,” “Sardinian”
and “Tuscan,” so we create a list of individuals matching these labels
using an awk command, and then use plink‘s --keep option to
make a new dataset with output prefix “H938_Euro.”
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3.2 Filter Out SNPs to

Remove Linkage

Disequilibrium (LD)

SNPs in high LD with each other contain redundant information.
More worrisome is the potential for some regions of the genome to
have a disproportionate influence on the results and thus distort the
representation of genome-wide structure. A nice empirical example
of the problem is in figure 5 of Tian et al. [30], where PC2 of the
genome-wide data is shown to be reflecting the variation in a
3.8 Mb region of chromosome 8 that is known to harbor an
inversion. A standard approach to address this issue is to filter out
SNPs based on pairwise LD to produce a reduced set of more
independent markers. Here we use plink’s commands to produce
a new LD-pruned dataset with output prefix H938_Euro.
LDprune. The approach considers a chromosomal window of
50 SNPs at a time, and for any pair whose genotypes have an
association r2 value greater than 0.1, it removes a SNP from the
pair. Then the window is shifted by 10 SNPs and the procedure is
repeated:

(Advanced note: For particularly sensitive results, we recom-
mend additional rounds of SNP filtering based on observed princi-
pal component loadings and/or population differentiation
statistics. For example, a robust approach is to filter out large
windows around any SNP with a high PCA loading, see ref. 22.)

3.3 Running

ADMIXTURE

3.3.1 An Example Run

with Visualization

The ADMIXTURE software (v 1.3.0 here) comes as a pre-compiled
binary executable file for either Linux or Mac operating systems. To
install, simply download the package and move the executable into
your standard execution path (e.g. “/usr/local/bin” on many
Linux systems). Once installed, it is straightforward to run ADMIX-
TURE with a fixed number of source populations, commonly
denoted by K. For example, to get started let’s run ADMIXTURE
with K¼6:

ADMIXTURE is a maximum-likelihood based method, so as the
method runs, you will see updates to the log-likelihood as it con-
verges on a solution for the ancestry proportions and allele
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frequencies that maximize the likelihood function. The algorithm
will stop when the difference between successive iterations is small
(the “delta” value takes a small value). A final output is an estimated
FST value [11] between each of the source populations, based on
the inferred allele frequencies. These estimates reflect how differ-
entiated the source populations are, which is important for under-
standing whether the population structure observed in a sample is
substantial or not (values closer to 0 reflect less population
differentiation).

After running, ADMIXTURE produces two major output files.
The file with suffix .P contains an L�K table of the allele frequen-
cies inferred for each SNP in each population. The file with suffix
.Q contains an N�K table of inferred individual ancestry propor-
tions from theK ancestral populations, with one row per individual.

For our example dataset with K¼6, this will be a file called
H938.LDprune.6.Q. This file can be used to generate a plot
showing individual ancestry (see Fig. 1). In R, this can be done
using the following commands:

Each thin vertical line in the barplot represents one individual
and each color represents one inferred ancestral population. The
length of each color in a vertical bar represents the proportion of
that individual’s ancestry that is derived from the inferred ancestral
population corresponding to that color. The above image suggests
there are some genetic clusters in the data, but it’s not a well-
organized data display.
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Fig. 1 Initial rough plot of the ADMIXTURE results for K¼ 6 using R base graphics
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To improve the visualization, one can use a package dedicated
to plotting ancestry proportions [3, 14, 28]. Here we use a post-
processing tool, pong [3], which visualizes individual ancestry with
similarity between individuals within clusters. You will most likely
want to install pong on a local machine as it initializes a local web
server to display the results.

To run pong requires setting up a few files: (1) an ind2pop file
that maps individuals to populations; (2) a Qfilemap file that
points pong towards which “.Q” files to display; these are easy to
build up from the command-line using the Euro.clst.txt file
we built above, and an awk command to output tab-separated text
to a file with the Qfilemap suffix added to whatever file prefix
we’re using to organize our runs:

Note when building the .Qfilemap one needs to use tabs to
separate the columns for pong to read the file correctly.

Then to run pong, we use the following command:

We open a web browser to http://localhost:4000/ to view the
results. Figure 2 shows an example of what you should see. From
this visualization, we can see the admixture model fits most indivi-
duals of the Adygei, Sardinian, Russian, French Basque samples as
being derived each from a single source population (represented by
purple, red, green, and yellow, respectively). The French, Tuscan,
and North Italian samples are generally estimated to have a majority
component of ancestry from a single source population (blue)
though with admixture with other sources. A first conclusion is
that the population labels do not capture the complexity of the

K = 6
1/1 runs

Adygei

Sardinian

French

Orcadian

Tuscan

Russian

North_Italian

French_Basque

Fig. 2 Plot of the ADMIXTURE results for K¼ 6 using PONG
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population structure. There is apparent cryptic structure within
some samples (e.g., Orcadian) and minimal differentiation between
other samples (North Italian and Tuscan samples, for instance).

Because ADMIXTURE is a “greedy,” “hill-climbing” optimi-
zation algorithm it is good practice to do multiple runs from
different initial random starting points. We can do this by using
the -s flag to specify the random seed for each ADMIXTURE run.

Pong has nice functionality for summarizing the output of the
multiple ADMIXTURE runs. It can collect similar solutions into
“modes” and display them in ranked order of the number of runs
supporting each. In the interactive version, you use the
check to highlight multimodality checkbox and whiten
populations with ancestry matrices agreeing with the major mode.
One can also click on and visualize only one cluster. Here we set up
the PONG input files and show an example output.

The resulting figure (Fig. 3) shows that six out of ten runs
converged to the same mode, which appears equivalent to our
initial run above. We observe the appearance of structure within
Sardinia in the second and third modes. The original run had North
Italian and Tuscan samples as a mostly unadmixed, while all three
minor modes model the two population as highly admixed. The
fourth mode (supported by just one run) inferred sub-structure
within the French Basque sample. This instability in the solution is a
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hint that the ADMIXTUREmodel withK¼6 is not a perfect fit to
this data.

3.3.2 Considering

Different Values of K

In a typical analysis, one wants to explore the sensitivity of the
results to the choice of K. One approach is to run ADMIXTURE
with various plausible values of K and compare the performance of
results visually and using cross-validation error rates. Here is a piece
of bash command-line code that will run ADMIXTURE for values of
K from 2 to 12, and that will build a file with a table of cross-
validation error rates per value of K.

Fig. 3 PONG plot summarizing multiple ADMIXTURE runs with different random starting points. The top row
shows the major mode (supported by 6 out of 10 runs as indicated in the blue text). The next three rows show
three other solutions found by ADMIXTURE in 2, 1, and 1 runs, respectively
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Then let’s compile results on cross-validation error across
values of K:

Now let’s inspect the outputs. First let’s make a plot of the
cross-validation error as a function of K (Fig. 4):

The cross-validation error suggests a single source population
can model the data adequately and larger values of K lead to over-
fitting.

To inspect further, we can use the pong software to visualize
the ancestry components inferred at differentK across several runs.
We need to set up some of the results and input files first.
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Fig. 4 Cross-validation error as a function of K for the example dataset
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Here we find how as K increases through to K¼6, the Sardin-
ian, Basque, Adygei, and Russian samples are typically modeled as
descended from unique sources, and at K of 7, 8, 9 we find
structure within the Sardinian, Russian, Orcadian, and Basque
samples is revealed, though for each, the substructure is not very
stable (Fig. 5). The values of K¼10 and above make increasingly
finer scale divisions that are difficult to interpret, and the major
modes for K¼7 and up only consist of one to three runs, suggest-
ing a very multi-modal likelihood surface and a poor resolution of
the population structure.

Overall, it is interesting to note that the visual inspection of the
results suggests several “real” clusters in the data, supported by an
alignment of the clustering with known population labels, even
though the cross-validation supports a value of K¼1. This high-
lights a long-standing known issue with admixture modeling: the
selection of K is a difficult problem to automate in a way that is
robust.

3.3.3 Some Advanced

Options

Running ADMIXTURE with the -B option provides estimates of
standard errors on the ancestry proportion inferences. The -l flag
runs ADMIXTURE with a penalized likelihood that favors more
sparse solutions (i.e., ancestry proportions that are closer to
zero). This is useful in settings where small, possibly erroneous
ancestry proportions may be overinterpreted. By using the -P
option, the population allele frequencies inferred from one dataset
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Fig. 5 Example PONG output showing results from across a range of K values (with ten ADMIXTURE runs per
K value)
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can be provided as input for inference of admixture proportions in a
second dataset. This is useful when individuals of unknown ancestry
are being analyzed against the background of a reference sample
set. Please see the ADMIXTURE manual for a complete listing of
options and more detail, and we encourage testing these options in
test datasets such as the one provided here.

3.4 PCA with

SMARTPCA

3.4.1 Running PCA

Comparing ADMIXTURE and PCA results often helps give insight
and confirmation regarding population structure in a sample. To
run PCA, a standard package that is well-suited for SNP data is the
smartpca package maintained by Nick Patterson and Alkes Price
(at http://data.broadinstitute.org/alkesgroup/EIGENSOFT/).
To run it, we first set up a basic smartpca parameter file from
the command-line of a bash shell:

This input parameter file runs smartpca in its most basic
mode (i.e., no automatic outlier removal or adjustments for LD—
features which you might want to explore later).

As a minor issue, smartpca ignores individuals in the .fam file
if they are marked as missing in the phenotypes column. This awk
command provides a new .fam file that will automatically include
all individuals.

Now run smartpca with the following command.
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You will find the output files in the out sub-directory as speci-
fied in the parameter file.

3.4.2 Plotting PCA

Results with PCAviz

The PCAviz package can be found at https://github.com/
NovembreLab/PCAviz. It provides a simple interface for quickly
creating plots from PCA results. It encodes several of our favored
best practices for plotting PCA (such as using abbreviations for
point characters and plotting median positions of each labelled
group). To install the package use:

The following command in R generates plots showing each
individual sample’s position in the PCA space and the median
position of each labelled group in PCA space:
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First one may notice several populations are separated with PC1
and PC2, with the more isolated populations being those that were
most distinguished from the others by ADMIXTURE (Fig. 6). PC4
distinguishes a subset of Orcadian individuals and PC5 distin-
guishes two Adygei individuals. PC6 corresponds to the cryptic
structure observed within Sardinians in the ADMIXTURE analysis.

As an alternative visualization, it can be helpful to see the
distribution of PC coordinates per population for each labeled
group in the data (see Fig. 7):

As mentioned above in the section on LD, it is useful to inspect
the PC loadings to ensure that they broadly represent variation
across the genome, rather than one or a small number of genomic
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regions [7] (see Fig. 8). SNPs that are selected in the same direction
as genome-wide structure can show high loadings, but what is
particularly pathological is if the only SNPs that show high loadings
are all concentrated in a single region of the genome, as might
occur if the PCA is explaining local genomic structure (such as an
inversion) rather than population structure.
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Fig. 6 Pairwise plots of PC scores generated using the PCAviz package
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The proportion of total variance explained by each PC is a
useful metric for understanding structure in a sample and for
evaluating how many PCs one might want to include in down-
stream analyses (see Fig. 9). This can be computed as λi/∑kλk, with
λi being eigenvalues in decreasing order, and is plotted below:

The results show that the top PCs only explain a small fraction
of the variance (<1.5%) and that after about K¼6 the variance
explained per PC becomes relatively constant; roughly in line with
the visual inspection of the admixture results that revealed K¼6
may be reasonable for this dataset.
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4 Discussion

Our protocol above is relatively straightforward and presents the
most basic implementation of these analyses. Each analysis software
(ADMIXTURE and smartpca) and each visualization package (pong
and PCAviz) contain numerous other options that may be suitable
for specific analyses and we encourage the readers to spend time in
the manuals of each. Nonetheless, what we have presented is a
useful start and a standard pipeline that we use in our research.

Two broad perspectives we find helpful to keep in mind are:
(1) How the admixture model and PCA framework are related to
each other indirectly as different forms of sparse factor analysis [8];
(2) How the PCA framework in particular can be considered as a
form of efficient data compression. Both of these perspectives can
be helpful in interpreting the outputs of the methods and for
appreciating how these approaches best serve as helpful visual
exploratory tools for analyzing structure in genetic data. These
methods are ultimately relatively simple statistical tools being used
to summarize complex realities. They are part of the toolkit for
analysis, and often are extremely useful for framing specific models
of population structure that can be further investigated using more
detailed and explicit approaches (such as those based on coalescent
or diffusion theory, Chapters 7 on MSMC and 8 on CoalHMM).
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Chapter 5

Detecting Positive Selection in Populations Using
Genetic Data

Angelos Koropoulis, Nikolaos Alachiotis, and Pavlos Pavlidis

Abstract

High-throughput genomic sequencing allows to disentangle the evolutionary forces acting in populations.
Among evolutionary forces, positive selection has received a lot of attention because it is related to the
adaptation of populations in their environments, both biotic and abiotic. Positive selection, also known as
Darwinian selection, occurs when an allele is favored by natural selection. The frequency of the favored
allele increases in the population and, due to genetic hitchhiking, neighboring linked variation diminishes,
creating so-called selective sweeps. Such a process leaves traces in genomes that can be detected in a future
time point. Detecting traces of positive selection in genomes is achieved by searching for signatures
introduced by selective sweeps, such as regions of reduced variation, a specific shift of the site frequency
spectrum, and particular linkage disequilibrium (LD) patterns in the region. A variety of approaches can be
used for detecting selective sweeps, ranging from simple implementations that compute summary statistics
to more advanced statistical approaches, e.g., Bayesian approaches, maximum-likelihood-based methods,
and machine learning methods. In this chapter, we discuss selective sweep detection methodologies on the
basis of their capacity to analyze whole genomes or just subgenomic regions, and on the specific polymor-
phism patterns they exploit as selective sweep signatures. We also summarize the results of comparisons
among five open-source software releases (SweeD, SweepFinder, SweepFinder2, OmegaPlus, and RAiSD)
regarding sensitivity, specificity, and execution times. Furthermore, we test and discuss machine learning
methods and present a thorough performance analysis. In equilibrium neutral models or mild bottlenecks,
most methods are able to detect selective sweeps accurately. Methods and tools that rely on linkage disequilib-
rium (LD) rather than single SNPs exhibit higher true positive rates than the site frequency spectrum (SFS)-
basedmethods under themodel of a single sweep or recurrent hitchhiking.However, their false positive rate is
elevated when a misspecified demographic model is used to build the distribution of the statistic under the
null hypothesis. Both LD and SFS-based approaches suffer from decreased accuracy on localizing the true
target of selection in bottleneck scenarios. Furthermore, we present an extensive analysis of the effects of gene
flow on selective sweep detection, a problem that has been understudied in selective sweep literature.

Key words Positive selection, Selective sweep, Software tools, Summary statistics, Machine learning

1 The Selective Sweep Theory

When a strongly beneficial mutation occurs and spreads in a popu-
lation, the frequency of linked neutral (or weakly negatively
selected) variants will increase. In a seminal paper, Smith and
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Haigh [86] described this process, for which they coined the term
genetic hitchhiking. They showed that in large populations, where
random genetic drift is negligible, hitchhiking can drastically
reduce genetic variation near the site/locus favored by natural
selection. Due to the local reduction of genetic diversity, which is
swept by natural selection, the process is called “selective sweep.”

The selective sweep model predicts that in recombining chro-
mosomal regions diversity vanishes at the site of selection immedi-
ately after the fixation of the beneficial allele. Due to
recombination, genetic diversity is predicted to increase as a func-
tion of the distance to the selected site (scaled by the selection
coefficient and the recombination rate). As a result, the genetic
diversity is maintained due to recombination in genomic regions
that are in the proximity of a selective sweep: SNPs are not gener-
ated by novel mutations, but they are old mutations that escaped
selection because of recombination. This result is also roughly
correct in finite populations [49, 90]. Further signatures of the
hitchhiking effect include (1) shifts in the SFS of polymorphisms
such as an excess of low- and high-frequency derived alleles
[22, 37], and (2) an elevated level of LD in the early phase of the
fixation process of a beneficial mutation [51, 91]. It is important to
note that the aforementioned signatures of a selective sweep are
predicted when (1) fixation of the beneficial mutation has just been
completed; (2) recombination rate is positive, i.e., the chromosome
is recombining; (3) the population size is approximately constant
over time; (4) the population is isolated; (5) no gene conversion has
occurred in the proximity of the beneficial mutation. Despite the
relatively strict assumptions of the selective sweep model, several
tests have been developed that exploit the properties of the hitch-
hiking effect to map recent, strong, positive directional selection
along recombining chromosomes of several species.

Searching for strong positive selection in the genomes of indi-
viduals of a natural population has been the focus of a multitude of
studies over the past years [3, 8, 41, 52, 67, 78, 97, 100, 102]. The
goals of these studies have been (1) to provide evidence of positive
selection, (2) estimate the strength of selection, and (3) localize the
targets of selection. Thus, these studies aim to provide insights into
the genetical mechanisms of adaptation either in wild populations
or during domestication. A long-term goal is that the genes that
experienced recent and strong positive selection could be identified
and the associated functions and phenotypes characterized.

Early studies of selective sweep localization followed a two-tier
approach: at first, levels of DNA polymorphism were measured for a
very large number of loci on a genome-wide scale within popula-
tions. The goal of this initial step was to identify loci with reduced
diversity compared to divergence with another species. The diver-
sity–divergence contrast highlights regions with reduced intra-
population diversity compared to what is expected from the
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divergence data. Thus, divergence is treated as a proxy for the
mutation rate. Some studies employed microsatellite markers to
measure polymorphism and searched for regions of depleted varia-
bility as an indicator of a selective sweep due to genetic hitchhiking
in the region. In the second step, a thorough sequencing of the
candidate regions was performed and a selective sweep detection
pipeline was executed. A statistical problem related to this proce-
dure springs from the fact that regions analyzed for the occurrence
of a selective sweep do not represent a random fraction of the
genome. Instead, they are outliers since they are characterized by
decreased amounts of diversity. A proper statistical testing for the
hypothesis of a selective sweep requires the null distribution of the
statistic to be built from neutral regions with the same properties
(e.g., outliers for diversity levels) [93]. With the advent of next
generation sequencing, the candidate gene approach is replaced by
full genome screenings for positive selection, thus the statistical
problem of testing outlier genes for positive selection is diminished
at least for the model organisms. For non-model organisms, where
a reference genome is still missing a candidate gene approach could
provide insights into their adaptation processes.

2 Methods to Detect Selective Sweeps in Genome-Wide Data

2.1 Detecting

Sweeps Based

on Diversity Reduction

The most striking and persistent effect of genetic hitchhiking is the
reduction of diversity. Smith and Haigh [86] predicted the reduc-
tion of heterozygosity immediately after the fixation of the benefi-
cial mutation. Especially in genomic regions with reduced
recombination rate per physical distance, the reduction of diversity
is expected to be evident. Subsequent studies [1, 2, 15, 53, 62, 89,
90] confirmed this prediction forD.melanogaster,D. simulans, and
D. ananassae species. Charlesworth et al. [27], however, showed
that a similar prediction holds for background selection as well: if
neutral variants are linked to a strongly deleterious mutation, the
level of polymorphism diminishes while the deleterious mutation is
gradually removed from the population. The amount of polymor-
phism reduction depends on the selection coefficient of the delete-
rious mutation [35]. For example, for lethal mutations there is no
polymorphism reduction effect since it is being directly removed
from the population. Innan and Stephan [47] demonstrated that in
a hitchhiking model, the estimated level of diversity, θ̂, is negatively
correlated with θ̂=ρ, where ρ is the recombination rate. In contrast,
in a background selection model, the estimated level of diversity is
positively correlated with the same quantity (see also ref. 88 for a
review).
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2.2 The SFS

Signature of a

Selective Sweep

The studies by Braverman et al. [22] and Fay and Wu [37] showed
that a selective sweep shifts the SFS toward high- and
low-frequency derived variants. Neutral variants that are initially
linked to the beneficial variant increase in frequency, whereas var-
iants that are initially not linked to the beneficial variant decrease in
frequency during the fixation of the beneficial mutation.

A breakthrough on detecting selective sweeps was proposed by
Kim and Stephan [52], known as the Kim and Stephan test. They
developed a composite-likelihood-ratio (CLR) test to compare the
probability of the observed polymorphism data under the standard
neutral model with the probability of observing the data under a
model of selective sweep. The Kim and Stephan test is a maximum-
likelihood-based test that reports the value of a¼4Nes, where s is
the selection coefficient that maximizes the CLR. The Kim and
Stephan test was the first to implement a CLR test on sweep
detection. Due to its inefficient implementation, however, it has
been used to detect selection only in candidate loci [16, 80]. Fur-
thermore, it adopts several oversimplified assumptions. First, the
neutral model was derived by an equilibrium neutral population,
i.e., a population with constant population size. Second, the selec-
tion model was derived by Fay and Wu’s model [37], where only
the low- and the high-frequency derived classes are assumed.

2.3 The LD Signature

of a Selective Sweep

The third signature of a selective sweep refers to a specific pattern of
LD that emerges in the neighborhood of the beneficial mutation.
Upon fixation of the beneficial mutation, elevated levels of LD
emerge on each side of the selected site, whereas a decreased LD
level is observed between polymorphisms found on different sides
of the selected site. The high LD levels on the different sides of the
selected locus are due to the fact that a single recombination event
allows multiple polymorphisms on the same side of the sweep to
escape the sweep. Between those SNPs the level of LD will be
high. On the other hand, polymorphisms that reside on different
sides of the selected locus need a minimum of two recombination
events, thus LD is decreased. Figure 1 shows an example of the LD
patterns emerging after a sweep.

The LD-based signature of a selective sweep was proposed and
thoroughly investigated by Kim and Nielsen [51]. In this study,
Kim and Nielsen introduced a simple statistic, named ω-statistic,
that facilitates the detection of the specific LD patterns that emerge
after a sweep. For a window of W SNPs that is split into two
non-overlapping subregions L and R, with l and W� l SNPs,
respectively, the ω-statistic is computed as follows:

ω ¼
l
2

� �þ W�l
2

� �� ��1 P
i,j∈Lr

2
ij þ

P
i,j∈Rr

2
ij

� �
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2
ij
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2.4 Detecting

Sweeps Using

Machine Learning

Methods

The process of detecting genomic regions that have been affected
by positive selection can be treated as a classification problem for
which each genomic region is classified as either neutral or selected.
If the parameters of the selective sweep and the demographic model
are known, then disentangling a selective sweep from demography
can be treated as a typical binary classification problem. In com-
puter science and mathematics, theoretical and algorithmic
advancements have been developed the last decades that perform
classification of datasets. These advancements can be grouped as
machine learning methods, because first they train computers to
understand patterns from the data, and then use this knowledge to
classify an unknown sample. Their application in population genet-
ics still remains limited, even though the last years a few methods
have been developed [57, 71, 82]. The first application of machine
learning in population genetics to our knowledge was developed by
Pavlidis et al. [71], who used a support vector machine approach to
perform the classification. Pavlidis et al. [71] used as features results
from the CLR test (SFS-based) and the ω� statistic as well as the
difference between the locations that each of the aforementioned
tests pinpoint. Lin et al. [57] also developed a machine learning
approach based on the “boosting” algorithm, a statistical method

Fig. 1 The LD signature of a complete hard selective sweep. Assume a popula-
tion with neutral segregating variation (1). A beneficial mutation occurs (shown
as a black allele) in subfigure (2). Since the mutation is beneficial, its frequency
will increase in the population. Neutral variants that are linked to the beneficial
mutation will hitchhike with it (3). Due to recombination, mutations from a
neutral background will get linked with the beneficial mutation (4, 5). The
recombination events are depicted on the locations of the involved chromo-
somes by r1 and r2, respectively. Finally, the selective sweep completes (6). The
LD pattern that emerges from such a process is the elevated LD on each side of
the beneficial mutation and the decreased LD for SNPs that are on different sides
of the beneficial mutation. The figure is adapted from [69]
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that combines simple classification rules using summary statistics to
maximize their joint predictive performance. More recently, Schri-
der and Kern [82] proposed an extremely randomized trees classi-
fier to identify soft selective sweeps, hard selective sweeps, their
linked regions, and neutral regions. Their software is called “S/
HIC.” A new version of “S/HIC” (called diploS/HIC) was pro-
posed by [50] that can also use unphased genotypes in contrast to
“S/HIC.” The application of machine learning tools in population
genetics has been reviewed in [83].

Typically, in a supervised learning problem, the goal is to
accurately predict previously unseen data based on a set of already
seen data (training data). The problem can be formulated as train-
ing the computer to recognize the combinations of feature-values
that are associated with either of the classes. Here, the class of each
data point is encoded as “neutrality/selection.” In contrast to other
disciplines in which machine learning methods are applied, the
number of well-annotated examples that the algorithm requires
for its training is limited. In fact, all “known” targets of selection
do not represent any established truth but are predictions of algo-
rithms that are mostly based on simplistic models. Even though
there is a general agreement about the validity of positive selection
detection in loci such as the LCT [17], the historical truth, i.e.,
whether a locus was indeed selected by natural selection remains
unknown. Even if we did know the definite true targets of selection,
it would still be challenging to build an accurate predictor based on
them. The reason is that those training examples would be obtained
from heterogeneous populations that have experienced and would
incorporate a multitude of other evolutionary forces besides posi-
tive selection. A remedy for the aforementioned problems is to use
simulated results for the training of the machine learning algo-
rithms. On one hand, simulated data ensure the control of hetero-
geneity of the training samples as well as the correctness of the
assigned class. On the other hand, the simulation process does not
capture the whole set of stochastic processes that affect the data.
Thus, even though training and evaluation processes perform well
on simulated data, they might perform poorly on real data. In this
study, we present an extensive testing of machine learning meth-
odologies in Subheading 6.

3 The Problem of Demography

Demography poses severe challenges on the selection detection
process due to the fact that it may generate SNP patterns that
resemble the signatures of genetic hitchhiking. In recombining
chromosomes, selective sweep detection becomes feasible mainly
due to two factors: (1) the fixation of the beneficial mutation, and
(2) the fact that coalescent events occur at a higher rate in the
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presence of a sweep than they do in its absence. It is these two
factors, along with recombination events, that generate the specific
signatures of a selective sweep, enabling us to detect traces of
positive selection in genomes. However, additional factors can
also trigger a high rate of coalescent events, leading to the genera-
tion of similar (to a selective sweep) signatures in the genome, and
thus misleading current selective sweep detection approaches. For
instance, assume a bottleneck event that is characterized by three
phases: (1) a recent phase of large effective population size, (2) a
second phase, prior to the first one, of small population size (the
bottleneck phase), and (3) an ancestral period of large population
size. It is due to the decrease of the effective population size in the
bottleneck phase that a high rate of coalescent events occur in a
relatively short period of time. Furthermore, lineages can escape
the bottleneck, passing to the ancestral phase of large effective
population size, and therefore requiring more time to coalesce. In
a recombining chromosome, genomic regions that are character-
ized by short coalescent trees due to massive coalescent events may
alternate with genomic regions with lineages that have escaped the
bottleneck phase (see Fig. 2). Such alternations can generate SNP

Fig. 2 Bottleneck demographic scenarios (top panel) may result in similar
genealogies to a selective sweep (bottom panel). Both models may produce
very short coalescent trees. As we move from the selection site, selective
sweeps produce genealogies with long internal branches. Similarly, bottlenecks
may produce genealogies with very long internal branches if the ancestral
population size is large
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patterns that are highly similar to those generated by a selective
sweep, yielding the detection process very challenging, if not
infeasible [70].

Besides demographic bottlenecks, other demographic scenar-
ios may also generate SNP patterns that resemble those of a selec-
tive sweep. Recently, Alachiotis and Pavlidis [5] demonstrated that
gene flow (migration) between populations poses severe challenges
to existing sweep detection methods, suggesting that appropriate
sweep signatures for migration models are yet to be found (figure
2 in [5]). Similarly, De and Durrett [31] demonstrated that both
the LD and the SFS are affected if a stepping stone spatial structure
characterizes the population; specifically, the LD decay becomes
slower and the SFS is shifted toward high-frequency derived var-
iants for migration rates that are intermediate (4Nm¼3, where
N is the effective population size andm the probability of migration
per individual and per generation; figure 5 in [31]). Similar results
are obtained from island models.

It is generally believed that, unlike the localized effect of a
selective sweep, neutral demographic changes generate genome-
wide patterns. This idea of “local sweep effects” vs. “global demo-
graphic effects” in the genome has been extensively used to control
the demography-induced false positive rates [56, 65, 73]. In
SFS-based sweep scans, this idea translates to a two-step computa-
tional approach that entails the initial estimation of an average,
genome-wide SFS (background SFS) followed by a detection
step, for those genomic regions that fit the selection model better
than the background SFS. An issue with such an approach, how-
ever, is that it does not take into account the fact that SFS is
characterized by great variation along the genome. In bottlenecks,
or in models with gene flow, which generate great variance along a
recombining chromosome [13, 26, 70, 93], the usage of the aver-
age, genome-wide SFS may be problematic. Therefore, under cer-
tain bottleneck demographic scenarios, there can be neutral-like
genomic regions, as well as sweep-resembling ones, regardless of
the actual existence of a selective sweep. Since both recombination
and the alternation of genealogies along a recombining chromo-
some are stochastic, it is highly challenging to determine which
genealogies are shaped by neutrality and which genealogies are
shaped by positive selection. Current approaches are not able to
completely overcome the confounding effect of bottlenecks on
positive selection in recombining chromosomes, therefore users
should be careful when interpreting results of selective sweep
scans. It should be noted however, that several tools, such as
SweepFinder, SweepFinder2, SweeD, OmegaPlus, and RAiSD
and/or the deployment of the demographic model as the null
model, contribute to alleviating the problem generated by the
confounding effects of demography.
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Demography not only affects the false positive rate (FPR) of the
detection methods, but it also affects the true positive rate (TPR).
This derives from the fact that the SNP patterns that emerge from
the combined action of demography and selection are unknown. For
instance, the SFS-based tools SweepFinder and SweeD (presented
in a following section) assume that if a lineage escapes the selective
sweep due to a recombination event, then, prior to the sweep, its
frequency is given by the neutral (or background) SFS. This is valid
if the selective sweep has occurred in a constant-size population. If,
however, the population has experienced population size changes
(or other demographic events such as migrations), this assumption
does not necessarily hold.

Given the challenges that demographic changes pose to the
accurate detection of positive selection, it is unfortunate (even
though expected) that most natural populations have experienced
various demographic scenarios during their evolutionary history.
For example, the European population of D. melanogaster experi-
enced a severe bottleneck about 15,800 years ago, when the
European population diverged from the African population
[56]. The duration of the bottleneck was about 340 years and the
effective population size during the bottleneck was only 2200
individuals [56], thus the effective population size of the
European population was decreased by a factor of 500, approxi-
mately. Regarding the demography of human populations, the
proposed models suggest several bottleneck (founder) events and
migrations between subpopulations [36]. Domesticated animals
have also experienced a series of bottleneck events during the
domestication process. Using only mtDNA and the approximate
Bayesian computation methodology, Gerbault et al. [40] report
that goats have experienced severe bottleneck events during their
domestication. Approximate Bayesian computation was also used
to provide insights into the demographic history of silkworm
[99]. Using 17 loci in the domesticated silkworm, they reported
that the most plausible scenario explaining the demographic history
of silkworm comprises both bottleneck and gene flow events [99].

4 A Guideline on Selection Detection Tools

4.1 Summary

Statistics

Summary statistics are computationally inexpensive data calcula-
tions. On whole-genome data, typically they are applied following
a sliding window approach. Simpler statistics such as Tajima’s D or
the SNP count do not require phased data, but only SNP calling,
whereas LD-based ones require phased data. Several summary
statistics serve as neutrality tests because their distributions are
affected by the presence of positive selection (for example, Tajima’s
D obtains negative values in the proximity of a strongly beneficial
allele).
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Relying on Tajima’s D, Braverman et al. [22] were able to
detect genomic regions affected by recent and strong positive
selection in simulated datasets, as well as to demonstrate that in
regions of low genetic diversity and low recombination rate (e.g.,
around centromeres or at telomeres) a simple hitchhiking model is
not a sufficient explanation for the observed DNA polymorphisms.
Since then, Tajima’s D has been deployed in numerous studies as a
neutrality test to detect selection [12, 19, 20, 58, 67, 79, 94]. This
summary statistic captures the difference between two estimates of
the diversity level θ¼4Ne μ, where μ is the mutation rate. The first
estimate, π, is based on the number of pairwise differences between
sequences, while the second one, Watterson’s θ (θW), is based on
the number of polymorphic sites. Tajima’s D obtains negative
values in the proximity of a selective sweep, since π decreases with
both high- and low-frequency derived variants, while θW remains
unaffected.

In 2000, Fay and Wu [37] proposed a new statistic, H, which
obtains low values in regions where high-frequency derived variants
are overrepresented. To distinguish between high- and
low-frequency derived variants, Fay and Wu’s H relies on an out-
group sequence. Additionally, Fay and Wu [37] invented a new
unbiased estimator for θ, named θH, which assumes high values in
regions with overrepresented high-frequency derived variants. The
H statistic is defined as the difference between π and θH, and as such
it becomes significantly negative in the proximity of a beneficial
mutation. Since a back-mutation will result in the incorrect infer-
ence of the derived polymorphic state, Fay and Wu’sH requires the
probability of mis-inference to be incorporated in the construction
of the null distribution of the statistic. In 2006, Zeng et al. [101]
improved theH statistic by adding the variance of the statistic in the
denominator, thus scaling H by the variance of the statistic.

Depaulis and Veuille [34] introduced two neutrality tests rely-
ing on haplotypes. The first summary statistic, K, is simply the
number of distinct haplotypes in the sample. In the presence of a
selective sweep K takes low values. The second test measures hap-
lotype diversity, denoted by H (or DVH, Depaulis and Veuille H,
to be distinguished from Fay and Wu’s H). DVH is calculated as
DVH¼ 1�PK

i¼1p
2
i , where pi is the frequency of the ith haplotype.

Both the DVH and theK summary statistics are conditioned on the
number of polymorphic sites, s, which yields the construction of the
null (neutral) distribution of the statistic rather problematic.
Depaulis and Veuille simulated data using a fixed number of poly-
morphic sites s, and without conditioning on the coalescent trees.
This approach is suboptimal because the number of polymorphic
sites is a random variable that follows a Poisson distribution, and it
is determined by the total length of the (local) coalescent tree and
the mutation rate. Thus, to construct the null distribution of the
statistic, a two-step approach is required: first, a coalescent tree is
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generated according to the demographic model and mutations are
placed randomly on its branches (this step can be achieved using
Hudson’s ms [45]), and second, a rejection process is applied in
order to condition on the number of polymorphic sites s, during
which only the simulations that produced s segregating sites are
kept while the rest are discarded. Thus, only a subset of coalescent
trees will be accepted: the trees that given the mutation rate result
in the specified number of segregating sites s.

Typically, summary statistics are applied on whole-genome data
following a sliding-window approach. This allows efficient compu-
tations on large datasets for those statistics used as neutrality tests,
introducing, however, two main problems. The fixed size of the
window length creates the first problem since small changes (even
by only a few bases) of the window length may shift the results from
statistically non-significant to significant [72], regardless of
whether the window size is measured in number of base pairs or
number of SNPs. The second problem, which is common for most
neutrality tests, is that they are not robust to demographic changes
of the population. For instance, Tajima’s D can assume negative
values in a population expansion scenario as well as locally in
genomic regions under a bottleneck scenario. It also becomes
negative in genomic regions that have experienced purifying selec-
tion and in regions affected by positive selection. Fay and Wu’s H
can become negative in demographic models that increase the
high-frequency derived variants. Such demographic models include
gene flow [31] or sampling from one deme that is part of a
metapopulation [87].

4.2 Detecting

Sweeps in Whole

Genomes

The advent of next generation sequencing (NGS) allowed the
analysis of whole genomes at different geographic locations and
environmental conditions, and revealed a need for more efficient
processing solutions in order to handle the increased computa-
tional and/or memory requirements generated by large-scale
NGS data. While typical summary statistics are generally suitable
for NGS data, they are applied on fixed-size windows, and as a
result they do not provide any insight on the extent of a selective
sweep. More advanced methods that rely on the CLR test (e.g.,
SweepFinder [65], SweepFinder2 [33], and SweeD [73]) or on
patterns of LD (e.g., OmegaPlus [6, 7]) perform an optimization
on the size of the window and, therefore, they provide information
on the genomic region affected by a selective sweep at the cost of
increased execution times. The aforementioned methods have been
widely used to detect recent and strong positive selection in a
variety of eukaryotic or prokaryotic organisms, such as human
[18, 65, 75], D. melanogaster [11, 25, 95, 98], lizards [54], rice
[24], butterflies [59], and bacteria [63].
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4.2.1 SweepFinder In 2005, Nielsen et al. [65] released SweepFinder, an advanced
method to detect selective sweeps that relies on information
directly derived from the SFS, either folded or unfolded. Sweep-
Finder implements a composite likelihood ratio (CLR) test. The
numerator of SweepFinder represents the likelihood of a sweep at a
given location in the genome, given its selection intensity α. The
denominator accounts for the neutral model. An important feature
of SweepFinder is that neutrality is modeled based on the empirical
SFS of the entire dataset. All SNPs are considered independent,
therefore allowing the likelihood score per region for the sweep
model to be computed as the product of per-SNP likelihood scores
over all SNPs in a region. SweepFinder was among the first software
releases with the capacity to analyze whole genomes via a complete
and standalone implementation. SweepFinder can process small
and moderate sample sizes efficiently. However, the source code
does not handle floating-point exceptions that occur when a large
number of sequences are analyzed, yielding analyses with more than
1027 sequences impossible.

4.2.2 SweeD Pavlidis et al. [73] released SweeD (Sweep Detector), a stable,
parallel, and optimized implementation of the same CLR test as
SweepFinder. SweeD can parse various input file formats (e.g.,
Hudson’s ms, FASTA, and the Variant Call Format) and provides
the option to employ a user-specified demographic model for the
theoretical calculation of the expected neutral SFS. Also, it allows
the user to provide her/his own points of interest where the CLR
will be assessed (via the gridfile option). Pavlidis et al. [73] showed
that sweep detection accuracy increases with an increasing sample
size, and altered the mathematical operations for the CLR test
implementation in SweeD to avoid numerical instability (floating-
point underflows), allowing the analysis of datasets with thousands
of sequences. The time-efficient analysis of large-scale datasets in
SweeD is mainly due to two factors: (a) parallel processing using
POSIX threads, and (b) temporary storage of frequently used
values in lookup tables. Additionally, SweeD relies on a third-
party library for checkpointing (Ansel et al. [10]) to allow resuming
long-running analyses that have been abruptly interrupted by exter-
nal factors, such as a power outage or a job queue timeout.

4.2.3 SweepFinder2 More recently, DeGiorgio et al. [33] released SweepFinder2.
SweepFinder2 uses the statistical framework of SweepFinder, and
additionally it takes into account local reductions in diversity caused
by the action of negative selection. Therefore, it provides the
opportunity to distinguish between background selection and the
effect of selective sweeps. Thus, it exhibits increased sensitivity and
robustness to background selection and mutation rate variations.
Besides the ability to account for reductions in the diversity caused
by background selection, the implementation of SweepFinder2 is
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very similar to SweepFinder. However, there exist code modifica-
tions that increase the stability of SweepFinder2 on the calculation
of likelihood values. Using simulated data with constant mutation
rate and in the absence of negative selection, SweepFinder2 scores
are closer to those obtained by SweeD rather than the initial
SweepFinder implementation (see Fig. 3).

4.2.4 OmegaPlus In 2012, Alachiotis et al. [7] released a high-performance imple-
mentation of the ω-statistic [51] for the detection of selective
sweeps by searching for a specific pattern of LD that emerges in
the neighborhood of a recently fixed beneficial mutation. The
ω-statistic assumes a high value at a specific location in the genome,
which can be indicative of a potential selective sweep in the region,
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Fig. 3 False positive rates for the selective sweep detection process under various algorithms and demo-
graphic models. Demographic models consist of bottlenecks and are characterized by two parameters: t is the
time in generations since the recovery of the populations, and psr the relative population size reduction during
bottleneck. Prior to the bottleneck, the population size equals to the present-day population size. We show the
results from the study of Crisci et al. [30] (a), our analysis in the current study (b) and the difference between
a and b (c). Note that Crisci et al. studied SweepFinder (SF), SweeD (SWEED), SweeD with monomorphic
(SWEED-Mono), and OmegaPlus (OP). In the current work, we studied SweepFinder (SF), SweepFinder with
average SFS (SWEEDAV), SweeD (SWEED), SweeD with average SFS (SWEEDAV), SweepFinder2 (SF2),
SweepFinder2 with average SFS (SF2AV), and OmegaPlus. Thus, in (c) we show only results from the common
tools (SF, SWEED, OP). In (a) and (b), the darker a cell, the lower the false positive rate. In (c), yellow denotes
that Crisci et al. report higher false positive rate than [69] while blue denotes that the reported false positive
rate by Crisci et al. is lower. The figure is adapted from [69]
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if extended contiguous genomic regions of high LD are detected
on both sides of the location under evaluation, while the level of LD
between the high LD regions remains relatively low. OmegaPlus
evaluates multiple locations along a dataset following an exhaustive
per-region evaluation algorithm, which was initially introduced by
Pavlidis et al. [71]. The algorithm by Pavlidis et al. [71] required
large memory space for the analysis of many-SNP regions and
exhibited increased complexity, yielding the analysis of regions
with thousands of SNPs computationally unfeasible. OmegaPlus
introduced a dynamic programming algorithm to reduce the
computational and memory requirements of the exhaustive evalua-
tion algorithm, enabling the efficient analysis of whole-genome
datasets with millions of SNPs. OmegaPlus exhibits a series of
four different parallelization alternatives [4, 6] for the distribution
of computations to multiple cores to overcome the load balancing
problem in selective sweep detection due to the difference in SNP
density between regions in genomes.

4.2.5 MFDM Test In 2011, Li et al. [55] presented a neutrality test that detects
selective sweep regions using the maximum frequency of derived
mutations (MFDM), which is a paramount signature of a selective
sweep. According to [55], the MFDM test is robust to processes
that occur in a single and isolated population. This is because there
is no demographic scenario in single and isolated populations that
generates a non-monotonic SFS and increases the amount of high-
frequency derived variants. Thus, at least in theory, the test is robust
to demographic models, such as bottlenecks, when they occur in
isolated populations. However, four severe problems arise regard-
ing the robustness of the test, which broadly apply to other tests of
neutrality as well: (1) although bottlenecks generate monotonic
average SFSs, certain genomic regions may locally exhibit increased
amounts of high-frequency derived variants, even in the absence of
positive selection, (2) high-frequency derived variants are a signa-
ture of selective sweeps in constant populations but it is not known
whether and how they will be affected by the combined action of
selection and demography, (3) in populations that exchange
migrants with other demes (non-isolated), the frequency of high-
frequency derived variants may increase (e.g., [31]), and (4) back-
mutations (in general, the violation of the infinite-site model) may
also increase the amount of high-frequency derived variants.

4.3 RAiSD In 2018, Alachiotis and Pavlidis [5] introduced the μ statistic and
released RAiSD (Raised Accuracy in Sweep Detection). The μ
statistic is a composite evaluation test that scores genomic locations
by relying on the enumeration of SNP vector patterns (entire
alignment columns) to quantify changes in the SFS, the levels of
LD, and the amount of genetic variation. RAiSD implements a
SNP-driven, sliding-window algorithm that reuses calculated data

100 Angelos Koropoulis et al.



between overlapping windows to considerably reduce execution
times. It exhibits increased detection accuracy and sensitivity due
to the fact that consecutive SNP windows with variable size in terms
of base pairs are placed along a dataset with a step of 1 SNP. This
achieves increased granularity in SNP-dense regions and avoids
redundant operations in SNP-sparse ones, consequently improving
processing speed without deteriorating the quality of the results.
Furthermore, RAiSD couples the sliding window algorithm with an
out-of-core approach that allocates a negligible amount of memory
(typically few MBs) irrespectively of the dataset size, thus maintain-
ing overall low memory requirements. Details on RAiSD software,
its command line options, as well as working examples are available
on the github repository of RAiSD (https://github.com/alachins/
raisd).

5 Evaluation

The aforementioned software tools (SweepFinder, SweepFinder2,
SweeD, and OmegaPlus, and RAiSD see Table 1) have been inde-
pendently evaluated by three studies: Crisci et al. [30] studied the
effect of demographic model misspecification on selective sweep
detection, while Alachiotis and Pavlidis [4] conducted a perfor-
mance comparison in terms of execution time for various dataset
sizes and number of processing cores. Alachiotis and Pavlidis [5]
evaluated all tools in terms of detection accuracy, sensitivity, and
execution time, with the aim to assess RAiSD. We summarize these
results in the following subsections and partially reproduce the FPR
evaluation analysis by Crisci et al. [30], including SweepFinder2.

Table 1
List of software tools for selective sweep detection

Method Implementation Availability (source code , web service)

SweepFinder
(2005)

SFS Sequential http://people.binf.ku.dk/rasmus/webpage/sf.html , –

OmegaPlus (2012) LD Parallel https://github.com/alachins/omegaplus , http://
pop-gen.eu

SweeD (2013) SFS Parallel https://github.com/alachins/sweed , http://pop-
gen.eu

SweepFinder2
(2016)

SFS Sequential http://www.personal.psu.edu/mxd60/sf2.html , –

RAiSD (2018) Mixed Sequential https://github.com/alachins/raisd , –

The table is adapted from [69]
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5.1 Detection

Accuracy

Crisci et al. [30] calculate the FPR for the neutrality tests using the
following pipeline: (1) simulations from equilibrium models using
Hudson’s ms [45] and constant number of SNPs. This set of
simulations is used only for the determination of the thresholds
for the tools; (2) simulations using sfscode [44] (constant or bot-
tlenecked population). These data are called empirical datasets, and
are used for the estimation of the FPR; (3) execution of the neu-
trality tests on the empirical datasets. The FPR is estimated by
assigning each empirical dataset to a threshold value from an equi-
librium model with similar number of SNPs. Note that, such an
approach differs from the approach that has been followed by other
studies (e.g., [38, 60]), where the null model is specified by the
inferred neutral demographic model. Specifying the null model by
the inferred neutral demographic model controls efficiently for the
FPR. Thus, Crisci et al. effectively studied how demographic model
misspecification affects the FPR. Another major difference between
the approach followed by Crisci et al. and other studies is that, for
the SFS-based methods (SweepFinder, SweeD), Crisci et al. calcu-
late the neutral (or prior-to-sweep) SFS using the candidate region
itself (here 50 kb), instead of the average SFS on a chromosome-
wide scale. Even though the first approach might have a lower FPR,
the later is more powerful to detect selective sweeps: when the
neutral SFS is calculated by a small genetic region that potentially
includes a sweep, the affected (by the sweep) SFS is assumed to
represent neutrality. Thus, the CLR test will assume lower values.
For neutral equilibrium models, i.e., constant population size, they
find that the FPR for SweepFinder ranges from 0.01 to 0.18,
depending on the mutation and recombination rate: the lower the
mutation and recombination rates, the higher the FPR of SweepFin-
der. The FPR for SweeD ranges between 0.04 and 0.07. For Ome-
gaPlus, the FPR ranges between 0.05 and 0.07. In general, the FPR
for all tools is low when the demographic model is at equilibrium.

When the assumption of an equilibrium population is violated
and the empirical datasets are derived from bottlenecked popula-
tions, the FPR increases. Such an increase of the FPR is more
striking when the average SFS of the empirical dataset is used to
represent the SFS of the null model. The reason for such an increase
is that bottlenecked datasets show great variance of the SFS from a
region to another. Thus, even though, on average, a bottlenecked
population will have a monotonically decreasing SFS [104], there
might be regions that show an excess of high-frequency and
low-frequency derived variants, and thus they mimic the SFS of a
selective sweep.

Interestingly, Crisci et al. report low FPR for SweepFinder and
SweeD. For OmegaPlus, they report high FPR for the very severe
bottleneck scenario, where the population size has been reduced by
99%. For SweepFinder and SweeD, the FPR ranges between 0 and
0.08, and 0 and 0.13, respectively. For OmegaPlus, they report
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FPR between 0.05 and 0.91. We repeated the analysis of Crisci et al.
for SweeD, SweepFinder, and OmegaPlus, including SweepFin-
der2. Furthermore, we have included execution results of Sweep-
Finder, SweeD, and SweepFinder2 using the average SFS instead of
the regional SFS. We usedHudson’s ms for all simulations, whereas
Crisci et al. had used sfs_code for the empirical simulated data. In
general our results are comparable to Crisci et al., but we report
higher FPR than Crisci et al. A notable exception is the case of
OmegaPlus in the severe bottleneck case, where our FPR is consid-
erably lower. Perhaps this is due to the simulation software, as we
used Hudson’s ms (coalescent) simulator, while Crisci et al. used
sfs_code (forward). FPR results are shown in Fig. 3.

Since FPR is considerably increasing when a false model (e.g.,
equilibrium) is used to construct the null hypothesis, we repeated
the aforementioned analysis using a bottleneck demographic
model. Using a bottleneck demographic model for the construc-
tion of the null hypothesis reduces the FPR to very low values
(Fig. 4). Here, we have used the bottleneck model characterized
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0.025 0.017 0.078 0.017 0.077 0.017 0.013
0.018 0.004 0.058 0.004 0.058 0.004 0.003
0.014 0.001 0.049 0.001 0.049 0.001 0.001
0.009 0 0.047 0 0.047 0 0
0.001 0 0.007 0 0.007 0 0.061
0.076 0.06 0.098 0.057 0.095 0.057 0.025
0.061 0.023 0.117 0.021 0.117 0.021 0.021
0.027 0.008 0.078 0.008 0.078 0.008 0.003
0.02 0.002 0.054 0.002 0.053 0.002 0.002
0 0 0.005 0 0.005 0 0.215

0.122 0.08 0.113 0.081 0.112 0.081 0.08
0.098 0.044 0.158 0.043 0.158 0.044 0.026
0.036 0.013 0.108 0.013 0.109 0.013 0.008
0.01 0.003 0.047 0.003 0.046 0.003 0.001
0.002 0.008 0.006 0.007 0.006 0.007 0.225
0.12 0.076 0.082 0.078 0.082 0.078 0.06
0.11 0.068 0.142 0.066 0.141 0.067 0.027
0.033 0.016 0.089 0.016 0.09 0.016 0.003
0.018 0.004 0.045 0.004 0.046 0.004 0.001

Low FPR High FPR

Fig. 4 False positive rates for the selective sweep detection process under
various algorithms and demographic models when the demographic model used
for the construction of the threshold value is a bottleneck model instead of an
equilibrium model. t: time since the population size recovery (generations). psr:
relative population size reduction during bottleneck. To compute all threshold
values, we have used the bottleneck model characterized by a population
recovery at time t¼ 1000 generations, and bottleneck population size reduction
by 0.90. The duration of the bottleneckwas 4000 generations. FPR values have been
reduced considerably compared to the case that the equilibriummodel was used for
the calculation of the threshold values (Fig. 3). The figure is adapted from [69]
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by a population size reduction of 0.99, a recovery time of 1000
generations, and bottleneck duration of 4000 generations, even
though empirical datasets were composed by additional models.
The ancestral population size was equal to the present-day popula-
tion size.

Regarding the true positive rate (TPR), Crisci et al. report that
under strong selection in an equilibrium population (2Nes ¼ 1000,
where s is the selection coefficient), TPR for SweepFinder and
SweeD is moderate and ranges between 0.32 and 0.34. For Ome-
gaPlus, TPR is higher and equals to 0.46. For weaker selection
(2Nes ¼ 100), OmegaPlus is still the most powerful tool to detect
selective sweeps. For selective sweep models in bottlenecked popu-
lations, OmegaPlus outperforms SFS-based methods and it is the
only test studied by Crisci et al. able to detect selective sweeps.
Finally, regarding recurrent hitchhiking event (RHH), OmegaPlus
reports higher values of TPR.

5.2 Execution Time The performance comparisons conducted by Alachiotis and Pavli-
dis [4] aimed at evaluating the effect of the number of sequences
and SNPs on execution time, as well as the capacity of each code to
employ multiple cores effectively to achieve faster execution.
Table 2 shows execution times on a single processing core for
different dataset sizes, ranging from 100 sequences to 1000
sequences, and from 10,000 SNPs up to 100,000 SNPs. Addition-
ally, the table provides (in parentheses) how many times faster are
SweeD and OmegaPlus than SweepFinder.

The comparison between SweepFinder and SweeD is the most
meaningful one since both tools implement the same floating-
point-intensive CLR test based on the SFS, thus requiring the
same type and amount of arithmetic operations. The significantly
faster execution of OmegaPlus on the other hand, which relies on
LD, is attributed to the fact that a limited number of computation-
ally intensive floating-point operations are required, with the
majority of operations being performed on integers, such as the
enumeration of ancestral and derived alleles.

The execution times in Table 2 refer to sequential execution.
Multiple cores can be employed by SweeD and OmegaPlus,

Table 2
Comparison of execution times (in seconds) for different dataset sizes (format: D�number of
sequences�number of SNPs) on a single processing core [4]

D� 102� 104 D� 102� 105 D� 103� 104 D� 103� 104

SweepFinder 540 (1�) 4138 (1�) 132,938 (1�) 135,996 (1�)

SweeD 125 (4.3�) 1169 (3.5�) 283 (469�) 1345 (101�)

OmegaPlus 6 (90�) 652 (6.4�) 7 (18,991�) 753 (180�)
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achieving speedups that vary depending on the number of
sequences and SNPs. The parallel efficiency of SweeD decreases
with an increasing sample size, whereas the respective parallel effi-
ciency of OmegaPlus increases. As the number of SNPs increases,
both SweeD and OmegaPlus exhibit poorer parallel efficiency,
which is attributed to load balancing issues that arise with an
increasing variance in the SNP density along the datasets.

6 Machine Learning for Population Genetics

6.1 Machine

Learning Background

One of the main problems of model-based methods, such as SweeD
[73], SweepFinder [65], and OmegaPlus [7], is their inability to
provide accurate results when their assumptions are violated. Since,
however, in natural populations several of the assumptions of
model-based methods (e.g., constant population size) are violated,
there is a need for more flexible methodologies. Machine learning
was introduced in population genetics as an alternative methodol-
ogy to detect genomic regions that evolve under selection by
treating the problem of detecting selection as a classification
problem [83].

The inspiration behind the field of machine learning (ML) was
the concept of artificial intelligence (AI). In AI, the main goal was
to successfully recognize patterns previously unseen by the algo-
rithm. For this purpose, the process of learning began via observing
examples to search for patterns in data and attempt to improve
decisions in the future based on the provided examples. The aim
is for computers to learn, or rather be trained, by these examples
without human assistance, similarly to how humans, and many
other living organisms learn from experience. ML enables the
analysis of massive quantities of data. The data used in ML tasks
can be split into two categories: training data and test data. Training
data are used for learning, whereas test data are used to test/
evaluate performance, or, in other words, how well the algorithm
learned to work for the given task.

6.2 Categories

of Machine Learning

The field of ML can be split into three different categories in terms
of the learning approach. The first category is supervised learning,
which is concerned with predicting the value of a response variable
or label (either a categorical or continuous value) on the basis of the
input variables/features. Supervised learning accomplishes this feat
through the use of a training set of labeled data examples whose
true response values are known. The second category is unsuper-
vised machine learning, where, contrary to supervised learning,
these learning algorithms are used when the information in the
training set is neither classified nor labeled. Unsupervised learning
studies how systems can infer a function to describe a hidden
structure from unlabeled data. The system does not infer the classes
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of the data, but it explores the data and infers hidden structures.
The third category is reinforcement learning, a field strongly linked
to artificial intelligence and game theory. Reinforcement is a
learning method that interacts with its environment by producing
actions and discovering errors or rewards. Trial-and-error search
and delayed reward are the most relevant characteristics of rein-
forcement learning. This method allows machines and software
agents to automatically determine the ideal behavior within a spe-
cific context to maximize its performance. Simple reward feedback
is required for the agent to learn which action is the best. A further
categorization can be made between classification and regression
tasks. Classification deals with identifying a group membership
where the output variable takes class labels. Regression involves
predicting a response when the output variable takes continuous
values.

For an in-depth description of machine learning, Alpaydin’s
introduction to machine learning [66], Michel’s machine learning
[61], and Bishop’s pattern recognition and machine learning [64]
are highly recommended.

6.3 Algorithms

in Machine Learning

There are various approaches to train machines, ranging from basic
decision trees to multilayer artificial neural networks (which
evolved to deep learning), depending on what task should be
accomplished and the type and amount of available data. Here,
we investigate the performance of various well-known and widely
usedML algorithms in the classification problem of selection versus
neutrality. Our goal is to examine whether machine learning algo-
rithms, used in population genetics analyses, can accurately infer
selection. Classification algorithms can be either generative or dis-
criminative. A generative algorithm models how the data was gen-
erated in order to categorize them in different classes. Thus, its aim
is to find the category that is most likely to generate the observed
result. A discriminative algorithm does not care about how the data
was generated, it simply categorizes the given set of features. A
general concern of the ML-related problems is overfitting. Over-
fitting [43] is the phenomenon when results of training cannot
reliably capture previously unseen data due to being tailored on
just the given training data. In other words, if a model performs
significantly better on the training data than on unseen/test data,
then the model probably suffers from overfitting.

In this study, the ML classifiers that we will evaluate are logistic
regression (LR), random forests (RF), k-nearest neighbors (kNN),
and support vector machines (SVM). The ML framework was
implemented in Python using the sklearn [74] package.
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Naive Bayes A generative classifier that uses the Bayes rule to
describe the joint probability of data and classes is called naive
Bayes (NB). An important drawback of NB is that it assumes
conditional independence of features given the class label. How-
ever, in population genetics, conditional independence does not
hold for most of the features neither under neutrality nor under
selection. Thus, naive Bayes may not be appropriate for population
genetics data, and we do not evaluate it in this study.

Logistic Regression It is a classifier that assumes a parametric form
for the distribution P(Y |X) and directly estimates its parameters
from the training data. The central premise of LR is the assumption
that the input space can be separated into two regions, one for each
class, by a linear boundary. Unlike NB, LR does not assume that the
features are conditionally independent.

k-Nearest Neighbor kNN is not strictly a learning classifier but
rather a memory-based classifier. It classifies each of the test data by
its position based on its k closest/nearest neighbors for which the class
is known. To the best of our knowledge, kNN has not been examined as
a selection/neutrality classification algorithm yet.

Random Forests RF is a classifier that works well for classification
problems as it is able to exploit both high- and low-“informative”
features and to deal with the problem of overfitting. The original
classification algorithm that inspired RF was the decision trees
method. Based on the values each of the features may take, “deci-
sion” nodes are created resulting in a tree structure. Upon reaching
a leaf of this tree, a decision is achieved for the label of the input
data. The features with lower entropy (most informative) appear
closer to the root of the tree. However, a single tree might be
heavily biased and as a result the algorithm may overfit. The solu-
tion to the overfitting problem is RF, a classifier that consists of
several different decision trees whose outcomes are combined,
usually by averaging the results, to predict the class of the input.

Support Vector Machines It is a machine learning algorithm
proposed by Cortes et al. [28]. SVMs attempt to split the dataset
into two classes via using a hyperplane that separates those classes.
The goal is to find the ideal hyperplane that best separates those
classes. It uses specific data points of each class to determine the
position of the hyperplane. These points are called the support
vectors. A distance between the hyperplane and the closest support
vector from each class is kept, namely the margin. SVMs attempt to
maximize this margin to maximize the probability of correctly
classifying new data. Due to the ability of SVMs to reach higher
dimensions, they do not suffer from the “curse of dimensionality,”
making them a suitable algorithm for classifying between selection
and neutrality.
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7 Methods

7.1 Data Generation There exist various models that produce single nucleotide poly-
morphisms (SNP) from demographic models. To generate our
data, we used the ms tool, a Monte Carlo computer program
written in C, that generates samples drawn from a population
evolving according to a Wright–Fisher neutral model [42]. The
program assumes an infinite-sites model of mutation, and allows
recombination, gene conversion, symmetric migration among sub-
populations, and a variety of demographic histories. For each sam-
ple, the program generates a random genealogical history of a
segment of a chromosome. Conditional on the genealogy of a
sample, mutations are randomly placed on the genealogy according
to the usual assumption that the number of mutations on a branch
is Poisson distributed with mean given by the product of the
mutation rate and the branch length. The times between nodes in
the genealogy are approximated by continuous (exponential)
distributions.

We simulated neutral datasets and datasets with selection for
60 demographic models that include a variety of bottleneck scenar-
ios (from mild to severe). For the selection data, we used an
extension of ms, called mssel, kindly provided by R.R. Hudson.
Each bottleneck model is characterized by a reduction in popula-
tion size at some point in time and a recovery to the original
population size (backwards in time). For each demographic
model we generated 1000 datasets to incorporate the genealogical
uncertainty in the training process. The mutation parameter of the
model was set to 4Nμ¼2000. In our simulations, we used a
constant value for 4Nμ. We could also sample this parameter from
a distribution (e.g., Gaussian). Even though, results of the neutral-
ity tests could be affected, at least partially, we expect that this effect
will be minor because there is no direct involvement of the number
of SNPs in the tests’ results.

7.2 Computing

Summary Statistics

The raw data, generated from ms, cannot be used directly for the
classification task. Thus, from each polymorphic dataset, we com-
pute a vector of summary statistics that will serve as data features.
We used the software CoMuStats [68] to calculate a multitude of
summary statistics from the ms simulations, such as Tajima’s D
[92], Wall’s B and Q statistics [96], FST values [46], the site
frequency spectrum [42], and others (Table 3).
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7.3 Application

of Classification

Algorithms

7.4 Dataset

Manipulation

When we obtain a collection of datasets, each belonging to an a
priori known class, we follow the next steps for optimal and unbi-
ased results. First, (1) we split the data in two parts. A part of the
data is used for training, whereas the remaining is used as the test
set. We used 20% of the generated dataset as a test set leaving 80%
for training each model. Each classifier has parameters that need to
be set before training begins. Thus, an important step of classifica-
tion is to find the optimal parameter values. This process is called
tuning. Thus, in step (2) we tune the classifier. Finally, in step
(3) we evaluate the performance of the tuned classifier based solely
on the (unseen) test set.

The simplest form of tuning is to use a part of the data for
training and the remaining part for test. Tuning the parameters
takes place by repeatedly evaluating the performance of the algo-
rithm for different parameter values on the test set. This process,
however, leads to overfitting. Another part of the dataset, which is
named as validation set, is held in order to tackle the problem of
overfitting. Using this approach, training proceeds only on the
training set, while tuning the parameters of the classifier is per-
formed on the validation set. When tuning is complete, a final
evaluation can be done on the test set. This method is called cross
validation (CV), and it remedies overfitting by ensuring that the
parameters estimation of the classifier is not strictly associated with
the data we used to estimate them. However, this simple approach
results in tuning the classifier parameters based on a small part of
the data, thus results may be suboptimal. A better strategy is the

Table 3
Description of a subset of the summary statistics generated by CoMuStats

Summary statistic Definition

θW Watterson’s estimator of θ using the number of segregating sites and the sample
size

Tajima’s D Computed as the difference between two measures of genetic diversity: the mean
number of pairwise differences and the number of segregating sites, each scaled
so that they are expected to be the same in a neutrally evolving population of
constant size

B and Q The number of pairs of adjacent segregating sites that are congruent

FST A measure of population differentiation due to genetic structure. It is frequently
estimated from genetic polymorphism data, such as single-nucleotide
polymorphisms (SNP) or microsatellites

SFS The number of segregating sites where the derived allele occurs i times out of
n samples
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so-called k-fold CV, in which the training set is split into k folds. We
use all but one of the folds for training and the resulting model is
validated on the remaining part of the data. This is repeated k times
with a different validation set. The parameters of the classifier that
result in the greatest accuracy, on average, are stored. As a final step,
we train the classifier using the optimal parameters from the tuning
step in the whole training set (training and validation). The accu-
racy is measured solely using the test set.

By using a single test set, the evaluation of the classification
performance may be biased depending on the specific test set.
Thus, an approach called nested k-fold CV can be followed. Nested
k-fold CV effectively uses a series of train/validation/test set splits.
In the inner loop (k-fold CV), the accuracy is approximately max-
imized by fitting a model to each training set, and then inferring the
optimal parameter values using the validation set. In the outer loop
(nested), the generalization error is estimated by averaging test set
scores over several dataset splits.

Another popular method is the stratified nested k-fold cross
validation, which ensures that representation of classes in each fold
is according to their frequency in the original dataset. However,
since our data are simulated, both classes are balanced (equally
represented) by design and, therefore, there was no need to use
stratified CV [77].

7.5 Feature Selection To further increase the performance of our classifiers, we can use for
training only those features (variables) that mostly enable classifica-
tion between the two classes. In other words, by removing those
features that do not contribute enough to the classification, the
performance of the classifier will be increased. This method, which
is widely used in machine learning, is called feature selection [39].

There are two problems related to feature selection. The first is
how much does each feature contribute to solving the classification
problem. Here, we use the mutual information [29] of each feature
with respect to the others. The second problem is related to the
number of features that will be used. This is performed via the
SelectKBest package from python’s sklearn [74]. In detail, we rank
our features from the most informative one to the least informative
one. We use the top m features (2�m�40) successively, and
evaluate their performance.

8 Results

8.1 Reducing

the Feature Space

We first perform the feature selection step. The number of features
we kept was decided solely on the SVM classifier as described in
Subheading 7.5. Each pair of datasets, one for selection and its
neutral counterpart, was studied separately. We calculated the
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average accuracy for each number of features across all 60 pairs. The
results showed that 36 features produced the optimal results
(94.865% average accuracy), as seen in Fig. 5.

The 60 datasets implement bottleneck demographic scenarios
of various severities. Among them, some scenarios are mild,
whereas others are severe. In mild bottlenecks, selection detection
is a rather simple task. However, in severe bottlenecks disentangling
selection from neutrality is challenging and often the accuracy of
the algorithms is diminished [71]. To test the performance of the
feature selection process in challenging scenarios, we chose to
evaluate feature selection only on the five most severe bottleneck
models. As seen in Fig. 5, the number of best performing features
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Fig. 5 Average accuracy of the feature selection procedure among the 60 data-
sets used in the study. (a) Average across all 60 datasets. (b) Average across the
five datasets with the most severe bottleneck
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was reduced to 26, achieving an average accuracy of 86.16%. Aver-
age accuracy is, as expected, lower overall since the best performing
pairs were excluded.

8.2 Evaluation Since the dataset is created from simulated data, we chose to have
balanced classes by generating the same number of samples for both
selection and neutrality. Thus, the trivial (random) classifier would
achieve an average accuracy of 50%. All the classifiers were tested
using the 36 best features.

8.2.1 Logistic Regression Logistic regression works by separating the two classes using a
linear boundary. It starts by setting the line according to the fea-
tures. Then LR modifies the initial guess by changes its position or
its slope to try and improve the accuracy of the classifier. A parame-
ter to tune is the maximum number of attempts to optimize the
accuracy. We set the parameter of maximum number of attempts to
the values 100, 150, 200, and 250. To prevent the model from
overfitting or underfitting, logistic regression uses a regularization
penalty. The goal of that penalty is to not allow extreme values to
influence the classifier. Two options for regularization are Ridge
(L2 regularization) [21] and Lasso (L1 regularization) [21]. Ridge
adds penalty equivalent to square of the magnitude of coefficients.
Lasso adds a penalty equivalent to the absolute value of the magni-
tude of the coefficients. Both were considered during tuning, each
with its own hyperparameters. Ridge uses sag [48] and lbfgs
[9]. Lasso uses saga [32] and liblinear [74].

The highest accuracy (94.92%) was achieved by using Ridge
regression with saga for at most 150 attempts/iterations of the
algorithm attempting to converge, whereas the performance
dropped for more than 150 iterations (Fig. 6).

Fig. 6 Accuracy of logistic regression classifier for Lasso(l1) and Ridge
(l2) regularization, while increasing maximum iteration allowed in order to converge
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8.2.2 Random Forests For the random forests classifier, the tuning parameters are the
maximum depth the tree was allowed to reach, the maximum
number of features to consider for each split, and the number of
decision trees generated. Forests consisting of 50, 100, 150, and
200 trees were examined. For these trees, a maximum depth of
10, 20, 30, and 36 splits was allowed. For each split, either the
square root (FSQRT) or the logarithm (FLOG) of the 36 features was
the maximum number considered. We also used bagging, a method
designed to improve the stability and accuracy of machine learning
algorithms. According to [23], bagging is defined as:

Given a standard training set D of size n, bagging generates
m new training sets D{i} each of size n0, by sampling from D
uniformly and with replacement. By sampling with replacement,
some observations may be repeated in each D{i}. If n0¼n, then for
large n the set D{i} is expected to have the fraction (1 - 1/e)
(�63.2%) of the unique examples of D, the rest being duplicates.
This kind of sample is known as a bootstrap sample. The m models
are fitted using the above m bootstrap samples and combined by
averaging the output (for regression) or voting (for classification).

As Fig. 7a, b shows, increasing the maximum depth of the
decision trees, RFs achieve better accuracy up to a depth of 30 fea-
tures. Further increasing the number of features results in a lower
accuracy. Also, setting the maximum features considered to FSQRT

in each split performed better than FLOG. A forest consisting of
150 trees performed optimally for both FSQRT and FLOG, and by
comparing the two we can deduce that FSQRT is the better
performing method, as seen in Fig. 8.

8.2.3 K Nearest

Neighbors

The two parameters to be tuned for the kNN classifier are the
number of neighbors to consider and the distance metric used to
calculate the distance between two neighbors. The two distance
metrics under consideration are the Euclidean and the Chebyshev
distance.

Euclidean is a better distance metric than Chebyshev for all
neighbors considered (Fig. 9). By increasing the number of neigh-
bors, the accuracy was increasing, reaching a maximum perfor-
mance of 94.25% for 36 neighbors. For more than 36 neighbors,
the accuracy declines.

8.2.4 Support Vector

Machines

Support vector machines map the data to a predetermined high-
dimensional space via a kernel function that enables classification of
non-linearly separable data. The kernel function is used as a mea-
sure of similarity [81]. In particular, the kernel function k(x, �)
defines the distribution of similarities of points around a given
point x. k(x, y) denotes the similarity of point x with another
given point y. The polynomial kernel [81] and the random Bayesian
forests (rbf) [81] are the kernels considered here. For the polyno-
mial kernel, the maximum degree/dimension of the kernel
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function assumes the values 1 (the equivalent of a linear kernel),
2, 3, 4, and 5. For the rbf, the gamma hyperparameter ranged from
�8 to 4. In our setup, we use the Soft-Margin SVMs. Soft-Margin
SVMs permit some errors while trying to find the optimal classifi-
cation surface, thus the model is more robust to overfitting. Soft-
Margin SVMs require a cost parameter that determines the number
of errors we allow. The cost parameter ranges from 1 to 10 and its
optimal value is 1. Based on Fig. 10, we can deduce that polynomial

Fig. 7 Accuracy of random forest classifier for half, 75% and unlimited max depth allowed. Each line
represents a different number of trees spawned (num_trees). (a) Log2 maximum features considered for
each split. (b) Square root of maximum features considered for each split
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is the best performing kernel. It reaches the highest accuracy,
0.9484%, with a degree equal to 1.

The classifier that achieved the best overall performance is the
support vector machines peaking at 0.9484%. Figure 11 compares
the tuned versions of each classifier on each pair of datasets.

Fig. 8 Comparison of best performing cases (150 trees in the random forest) for
log and sqrt maximum features

Fig. 9 Accuracy of kNN classifier for Euclidean and Chebyshev distances, for
1, 5, 21, 25, 27, 29, 31, 35, 36 neighbors
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9 Discussion

We demonstrate the use of machine learning algorithms in disen-
tangling selection from neutrality. This task is treated as a super-
vised learning classification. We evaluated logistic regression, k-
nearest neighbors, random forests, and support vector machines.
All classifiers outperformed the trivial classifier and showed high
accuracy, which, however, depends on the bottleneck severity.

Fig. 10 Accuracy of support vector machines classifier for polynomial (a) and random Bayesian (b) forests
kernel
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Among the classifiers tested in this survey, the kNN classifier
had the worst performance among the examined algorithms, as
seen in Fig. 11. Logistic regression had the best performance in
the datasets with a mild bottleneck, implying that selection can be
separated from neutrality linearly in mild bottlenecks. On the con-
trary, it showed the second worst performance, only better that
kNN, in severe bottlenecks. Random forests classifier showed bet-
ter performance in severe bottleneck models compared to kNN and
LR. An additional advantage of RF is the ability to handle missing
data, which real-world scenarios will likely include. This makes
random forests a suitable classifier for selection inference. Finally,
support vector machines achieved the best average performance.
SVM was slightly outperformed by LR in mild bottlenecks, but
achieved the best accuracy in severe bottlenecks. As a result, we
suggest SVMs as the most robust classifier out of those examined in
this survey.

Choosing the parameters that maximize nested k-fold CVoften
yields an optimistic accuracy [77]. In addition, since we use
simulated data, the accuracies calculated in this report may be
slightly optimistic. Still, results clearly highlight the potential of
machine learning in population genetics.

In this work, we focused on a small part of the genome.
Because of the advancements in sequencing technologies, whole-
genome data are constantly produced, allowing to infer selection
forces acting on genomes. Applying the algorithms on the genome
as a whole will presumably fail to detect selection. This is due to the
fact that recent selection has operated only on small parts of the
whole genome, leaving the rest of it effectively neutral. Thus, if a
classifier has to take a single decision for the whole genome, this will
favor neutrality. A better approach is to split the whole genome into

Fig. 11 Comparison of tuned classifier across all datasets
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smaller regions (sliding windows) and infer selection in each one
separately. The split of the dataset into regions is performed by a
sliding window algorithm that requires two parameters, the size of
each window (in base pairs) and an offset that defines the starting
position of the next window relative to the previous one. The
pseudocode shown in Algorithm 1 describes this process.

Algorithm 1: Whole-genome selection inference in sliding
windows:

Despite the success of machine learning, it still faces challenges.
First, machine learning algorithms are expensive in terms of both
time and computational resources. This is a problem that will be
mitigated as computer hardware and software technology advances.
A general issue of the machine learning field is the dependence on
quality training data. Even if an ideal algorithm would exist, it
would fail to produce valuable results if the quality of the training
dataset was poor. In complex problems, the need for appropriate
training data that, on one hand, are labeled accurately and, on the
other hand, represent correctly real scenarios is of utmost impor-
tance. Especially in population genetics, training examples are
obtained via simulations because it is not possible to obtain real
training example data with accurate class labeling. However,
simulated data only capture a part of the evolutionary processes
that may have shaped real data. Using simulated data guarantees the
data quality, but it comes with the drawback of obtaining optimistic
results during testing. A further approach to improve results is
feature selection, which improves the quality of our data by remov-
ing noisy features. In the matter of selection inference, feature
selection can improve results. If datasets contain missing or cor-
rupted parts, then preprocessing methods exist [14].

For a most thorough study of methods related to learning,
other approaches different than machine learning need to be exam-
ined as well, for example, artificial neural networks and deep
learning algorithms. Currently, there are only a few studies related
to deep learning in population genetics [76, 84, 103], but the
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potential of the field is already apparent. Recently, a breakthrough
algorithm was implemented that outcompeted both real and AI
players in the strategy game Go by just knowing the rules of the
game [85]. The idea of learning without human knowledge in the
field of population genetics is currently far from being formulated
as a proper scientific approach.
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MJ, López Herráez D, Brutsaert T, Parra EJ,
Moore LG, Shriver MD (2010) Identifying
signatures of natural selection in Tibetan and
Andean populations using dense genome scan
data. PLoS Genet 6(9):e1001116. https://
doi.org/10.1371/journal.pgen.1001116

21. Boyd S, Parikh N, Chu E, Peleato B,
Eckstein J, et al (2011) Distributed optimiza-
tion and statistical learning via the alternating
direction method of multipliers. Found
Trends Mach Learn 3(1):1–122

22. Braverman JM, Hudson RR, Kaplan NL,
Langley CH, Stephan W (1995) The hitch-
hiking effect on the site frequency spectrum of
DNA polymorphisms. Genetics 140
(2):783–796

23. Breiman L (2001) Random forests. Mach
Learn 45(1):5–32

24. Caicedo AL, Williamson SH, Hernandez RD,
Boyko A, Fledel-Alon A, York TL, Polato NR,
Olsen KM, Nielsen R, McCouch SR, et al
(2007) Genome-wide patterns of nucleotide
polymorphism in domesticated rice. PLoS
Genet 3(9):e163

25. Catalán A, Glaser-Schmitt A, Argyridou E,
Duchen P, Parsch J (2016) An indel polymor-
phism in the MtnA 3’untranslated region is
associated with gene expression variation and
local adaptation in Drosophila melanogaster.
PLoS Genet 12(4), e1005987

26. Celine Becquet (2003) Signatures of a popu-
lation bottleneck can be localised along a
recombining chromosome. Tech. rep.
http://przeworski.uchicago.edu/cbecquet/
MasterThesis.pdf

27. Charlesworth B, Morgan M, Charlesworth D
(1993) The effect of deleterious mutations on
neutral molecular variation. Genetics 134
(4):1289–1303

28. Cortes C, Vapnik V (1995) Machine learning.
Supp Vector Netw 20:273–297

29. Cover TM, Thomas JA (2012) Elements of
information theory. Wiley, Hoboken

30. Crisci JL, Poh YP, Mahajan S, Jensen JD
(2013) The impact of equilibrium assump-
tions on tests of selection. Front Genet 4:235

31. De A, Durrett R (2007) Stepping-stone spa-
tial structure causes slow decay of linkage dis-
equilibrium and shifts the site frequency
spectrum. Genetics 176(2):969–981.

https://doi.org/10.1534/genetics.107.
071464

32. Defazio A, Bach F, Lacoste-Julien S (2014)
Saga: a fast incremental gradient method with
support for non-strongly convex composite
objectives. In: Advances in neural information
processing systems, pp 1646–1654

33. DeGiorgio M, Huber CD, Hubisz MJ,
Hellmann I, Nielsen R (2016) Sweepfinder2:
increased sensitivity, robustness and flexibility.
Bioinformatics 32(12):1895–1897

34. Depaulis F, Veuille M (1998) Neutrality tests
based on the distribution of haplotypes under
an infinite-site model. Mol Biol Evol 15
(12):1788–1790

35. Ewing GB, Jensen JD (2016) The conse-
quences of not accounting for background
selection in demographic inference. Mol
Ecol 25(1):135–141

36. Excoffier L, Dupanloup I, Huerta-Sánchez E,
Sousa VC, Foll M (2013) Robust demo-
graphic inference from genomic and SNP
data. PLoS Genet 9(10):e1003905

37. Fay JC, Wu CI (2000) Hitchhiking under
positive Darwinian selection. Genetics 155
(3):1405–1413

38. Frantz LA, Schraiber JG, Madsen O, Megens
HJ, Cagan A, Bosse M, Paudel Y, Crooijmans
RP, Larson G, Groenen MA (2015) Evidence
of long-term gene flow and selection during
domestication from analyses of Eurasian wild
and domestic pig genomes. Nat Genet 47
(10):1141–1148

39. Friedman J, Hastie T, Tibshirani R (2001)
The elements of statistical learning. Springer
series in statistics New York, vol 1. Springer,
Berlin

40. Gerbault P, Powell A, Thomas MG (2012)
Evaluating demographic models for goat
domestication using mtDNA sequences.
Anthropozoologica 47(2):64–76)

41. Glinka S, Ometto L, Mousset S, Stephan W,
De Lorenzo D (2003) Demography and nat-
ural selection have shaped genetic variation in
Drosophila melanogaster: a multi-locus
approach. Genetics 165(3):1269–1278

42. Hartl DL, Clark AG, Clark AG (1997) Prin-
ciples of population genetics, vol 116. Sinauer
Associates, Sunderland

43. Hawkins DM (2004) The problem of over-
fitting. J Chem Inf Comput Sci 44(1):1–12

44. Hernandez RD (2008) A flexible forward
simulator for populations subject to selection
and demography. Bioinformatics 24
(23):2786–2787

120 Angelos Koropoulis et al.

https://doi.org/10.1371/journal.pgen.1001116
https://doi.org/10.1371/journal.pgen.1001116
http://przeworski.uchicago.edu/cbecquet/MasterThesis.pdf
http://przeworski.uchicago.edu/cbecquet/MasterThesis.pdf
https://doi.org/10.1534/genetics.107.071464
https://doi.org/10.1534/genetics.107.071464


45. Hudson RR (2002) Generating samples
under a Wright-Fisher neutral model of
genetic variation. Bioinformatics 18
(2):337–338

46. Hudson RR, Slatkin M, Maddison W (1992)
Estimation of levels of gene flow from DNA
sequence data. Genetics 132(2), 583–589

47. Innan H, Stephan W (2003) Distinguishing
the hitchhiking and background selection
models. Genetics 165(4):2307–2312 (2003)

48. Johnson R, Zhang T (2013) Accelerating sto-
chastic gradient descent using predictive vari-
ance reduction. In: Advances in neural
information processing systems, pp 315–323

49. Kaplan NL, Hudson R, Langley C (1989)
The “hitchhiking effect” revisited. Genetics
123(4):887–899

50. Kern AD, Schrider DR (2018) diploS/HIC:
an updated approach to classifying selective
sweeps. G3 Genes Genom Genet
8:1959–1970

51. Kim Y, Nielsen R (2004) Linkage disequilib-
rium as a signature of selective sweeps. Genet-
ics 167(3):1513–1524. https://doi.org/10.
1534/genetics.103.025387

52. Kim Y, Stephan W (2002) Detecting a local
signature of genetic hitchhiking along a
recombining chromosome. Genetics 160
(2):765–777

53. Langley CH, MacDonald J, Miyashita N,
Aguade M (1993) Lack of correlation
between interspecific divergence and intraspe-
cific polymorphism at the suppressor of
forked region in Drosophila melanogaster
and Drosophila simulans. Proc. Natl. Acad.
Sci. 90(5):1800–1803

54. Laurent S, Pfeifer SP, Settles ML, Hunter SS,
Hardwick KM, Ormond L, Sousa VC, Jensen
JD, Rosenblum EB (2016) The population
genomics of rapid adaptation: disentangling
signatures of selection and demography in
white sands lizards. Mol Ecol 25(1):306–323

55. Li H (2011) A new test for detecting recent
positive selection that is free from the con-
founding impacts of demography. Mol Biol
Evol 28(1):365–375. https://doi.org/10.
1093/molbev/msq211

56. Li H, Stephan W (2006) Inferring the demo-
graphic history and rate of adaptive substitu-
tion in Drosophila. PLoS Genet 2(10):e166

57. Lin K, Li H, Schlötterer C, Futschik A (2011)
Distinguishing positive selection from neutral
evolution: boosting the performance of sum-
mary statistics. Genetics 187(1):229–44.
https://doi.org/10.1534/genetics.110.
122614

58. Luo Q, Ahmad K, Fu HY, Wang JD, Chen
RK, Gao SJ (2016) Genetic diversity and pop-
ulation structure of Sorghum mosaic virus
infecting Saccharum spp. hybrids. Ann. Appl.
Biol. 169(3):398–407
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Chapter 6

polyDFE: Inferring the Distribution of Fitness
Effects and Properties of Beneficial Mutations
from Polymorphism Data

Paula Tataru and Thomas Bataillon

Abstract

The possible evolutionary trajectories a population can follow is determined by the fitness effects of new
mutations. Their relative frequencies are best specified through a distribution of fitness effects (DFE) that
spans deleterious, neutral, and beneficial mutations. As such, the DFE is key to several aspects of the
evolution of a population, and particularly the rate of adaptive molecular evolution (α). Inference of DFE
from patterns of polymorphism and divergence has been a longstanding goal of evolutionary genetics.

polyDFE provides a flexible statistical framework to estimate the DFE and α from site frequency
spectrum (SFS) data. Several probability distributions can be fitted to the data to model the DFE. The
method also jointly estimates a series of nuisance parameters that model the effect of unknown demography
as well data imperfections, in particular possible errors in polarizing SNPs. This chapter is organized as a
tutorial for polyDFE. We start by briefly reviewing the concept of DFE, α, and the principles underlying
the method, and then provide an example using central chimpanzees data (Tataru et al., Genetics 207
(3):1103–1119, 2017; Bataillon et al., Genome Biol Evol 7(4):1122–1132, 2015) to guide the user
through the different steps of an analysis: formatting the data as input to polyDFE, fitting different
models, obtaining estimates of parameters uncertainty and performing statistical tests, as well as model
averaging procedures to obtain robust estimates of model parameters.

Key words Distribution of fitness effects, Rate of adaptive molecular evolution, Beneficial mutations,
Polymorphism and divergence data

1 Introduction

The following tutorial requires the successful installation of
polyDFE-v1.1 (see manual for details on installation), and
basic skills in using the command line and R. The latest version of
polyDFE, its manual as well as an R script postprocessing.R that
contains functionswhich facilitate post-processing of polyDFE output
files can be found on https://github.com/paula-tataru/polyDFE.

Julien Y. Dutheil (ed.), Statistical Population Genomics, Methods in Molecular Biology, vol. 2090,
https://doi.org/10.1007/978-1-0716-0199-0_6, © The Author(s) 2020

125

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-0199-0_6&domain=pdf
https://github.com/paula-tataru/polyDFE


1.1 Modelling

the Properties

of Mutations

on Fitness

Genome and exome sequencing studies open the possibility to
survey systematically nucleotide variation in genomes. Several
model-based methods have been developed to infer the properties
of mutations from these surveys. In a nutshell, population genetics
models introduced in Chapter 1 can formalize a fundamental intui-
tion: the fitness effect of a new mutation will influence the fre-
quency at which it segregates in a population. More formally,
assuming a set of independent SNPs, mathematical expectations
can be obtained that relate mutation rates and the fitness effect of
mutations to observable quantities such as the number of SNPs that
are found at a given frequency (i.e., the counts of the site frequency
spectrum, SFS) in a sample of individuals that were re-sequenced or
genotyped [1].

The effects of new mutations on fitness are expected to vary
depending on the region where the mutation happens and what
types of changes are incurred by the mutation. We model the
variation in effects of mutations by making a number of
assumptions:

l We can make an a priori distinction between sites where only
neutrally evolving mutations are segregating and sites that har-
bor mutations potentially under selection. We refer to these as
neutral/selected sites, respectively.

l The number of mutations in a region of known length of
nucleotides arises randomly as a Poisson process with a certain
intensity that depends on the length of the region and the
mutation rate per nucleotide.

l Mutations that happen at neutral sites are lost or drift to fixation
solely due to genetic drift.

l Mutations happening at selected sites are ascribed a fitness effect
through a scaled selection coefficient. Each mutation at a
selected site is treated as exchangeable: no sites are identified a
priori as yielding mutations that are intrinsically good or bad for
fitness. The scaled selection coefficient 4Nes of a mutation is
drawn at random from an underlying distribution, also called
the distribution of fitness effects (DFE).

polyDFE performs maximum likelihood (ML) inference of
DFE parameters from polymorphism data. Various probability dis-
tributions have been used to model DFEs [2]. Currently, polyDFE
uses four types of distributions, referenced as models A through D
and described in detail in the polyDFE manual. In this chapter, we
focus solely on examples where models A and C are used.

Under model A, the DFE is given by a reflected and displaced Γ
distribution. This distribution is parameterized through a mean
scaled selection coefficient S, a shape b, and a maximum scaled
selection coefficient Smax. This continuous distribution is theoreti-
cally motivated as the approximation for the DFE expected under
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an explicit fitness landscape where fitness is determined by k traits
under stabilizing selection and where each mutation will pleiotro-
pically affect every trait [2]. In the general case where Smax is not
restricted to be 0, the DFE will comprise some beneficial muta-
tions, otherwise the DFE will only comprise deleterious mutations.

Under model C, the DFE is given by a mixture of two distribu-
tions. A proportion pb of mutations are favorable and their scaled
selection coefficient is drawn from an exponential distribution with
mean Sb, and the remaining 1� pb are deleterious mutations with
scaled selection coefficient drawn from a reflected Γ distribution
with mean Sd and shape b. If the proportion pb is restricted to be
0, the DFE will only comprise deleterious mutations. Note that the
DFEs containing only deleterious mutations obtained from either
model A (Smax¼0) or model C (pb¼0) are equivalent and are
given by a reflected Γ distribution.

When inferring DFEs from SFS data, a DFE with only deleteri-
ous mutations (henceforth a deleterious DFE) is typically assumed.
In order to obtain information about the selection coefficients of
beneficial mutations, available methods rely on the amount of
divergence data between the species of interest (ingroup) and an
outgroup. polyDFE departs from this approach as it allows the user
to obtain estimates of a DFE also containing beneficial mutations
(henceforth a full DFE) solely from SFS data. In doing so, poly-
DFE has the advantage of not assuming that the DFE is a constant in
both the ingroup and outgroup. The price to pay for relaxing this
assumption is that by only using the SFS, the ML estimates have
more sampling variance, reflecting the uncertainty due to reduced
amounts of data.

1.2 Calculating

the Rate of Adaptive

Evolution, α

Obtaining estimates of the DFE allows one to learn more about
factors governing the rate of adaptive molecular evolution, com-
monly defined as the proportion of fixed adaptive mutations, α.
Besides ML estimates of DFE, polyDFE can be used to obtain ML
estimates of α. Once the DFE is estimated, α can be obtained using
the divergence data as:

α ¼ expected number of beneficial substitutions
observed divergence selected counts

¼
observed divergence selected counts� expected number of neutral

and deleterious substitutions

observed divergence selected counts
,

where the expected number of neutral and deleterious substitutions
is obtained from the DFE [1].

Alternatively, α can be estimated without using the divergence
data by replacing the observed divergence selected counts with
expectations derived from the DFE [1]. The two different
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estimations of α are referred to αdiv and αdfe [1], to reflect the type
of data/information used.

Note that alternative statistics exist for measuring molecular
adaptation, such as ωA, the rate of adaptive evolution relative to the
mutation rate, orKaþ, the rate of adaptive amino acid substitutions
[3, 4]. These have different properties and might be better suited
for studying various aspects of adaptation [4]. Currently, polyDFE
only calculates α, but these statistics can also be obtained once the
DFE is estimated.

2 Pre-processing of the Data

2.1 The Type

of Information

Required by

polyDFE

polyDFE requires as input the derived SFS at both neutral and
selected sites. The input file can optionally also contain counts of
divergence.

When preparing the data, there are three elements that require
some careful attention:

l what is the length of the region that was called for the potential
occurrence of SNPs;

l how are SNPs polarized into an ancestral and a derived allele;

l how missing data is removed.

Software that enables SNP calling will also report the length of the
region, calculated as the number of nucleotide positions where
SNP calling could be performed. This length has to be then (cor-
rectly) divided between the data containing neutral sites and a priori
selected sites. For an example, see the end of Subheading 2.2.

polyDFE assumes that the SFS is derived (polarized) and the
given counts (see Subheading 2.2) are for derived SNP alleles.
Various methods are available to orient SNPs, including parsimony
and more rigorous probabilistic methods [5–7]. All methods
require access to at least one outgroup.

polyDFE cannot deal with missing data. If the SFS contains
missing data, several strategies can be used. If local linkage disequi-
librium is known, SNP imputation can be used to estimate the
missing genotypes. Alternatively, projection methods can be used
to down-sample the SNP data to build a complete SFS with a
reduced number of samples [8, 9].

2.2 Example of a

polyDFE
Input File

This tutorial uses central chimpanzee data [1, 10] to exemplify the
different steps of an analysis. The central chimpanzee data and all
additional files used here can be found on https://github.com/
StatisticalPopulationGenomics. Here is a snippet of the chimpan-
zee data found in the input file central_chimp_sfs:
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The first non-empty non-comment line specifies sequentially
that there is only one (1) neutral and one (1) selected region and
that 24 haplotypes were re-sequenced to obtain the SFS data.

Note that polyDFE can, in principle, analyze jointly multiple
regions with different mutation rates that share the DFE para-
meters [1]. For the remainder of this chapter, we analyze data
pooled into a single SFS for neutral and selected sites. For details
on variability of mutation rates, see the polyDFE manual.

For each region (here two in total), the neutral followed by the
selected ones, there is one line of input that gives sequentially the
entries of the SFS, i.e. how many SNPs had the derived allele in
1 copy (14492 for the neutral region and 12645 for the selected
region), 2 copies (6138 for the neutral region and 4573 for the
selected region), up to 23 copies (845 for the neutral region and
469 for the selected region), followed by the length of the region
(4292115 for the neutral region and 16146528 for the selected
region), the divergence counts for the same region (44048 for the
neutral region and 26481 for the selected region) and the length of
the region where divergence data was obtained (4290192 for the
neutral region and 16139295 for the selected region). The pres-
ence of divergence data in the input file is optional. For further
details on the data format, see the polyDFE manual.

The central chimpanzee data was obtained from exome
sequencing. To divide it into a neutrally evolving region and one
potentially containing sites under selection, SNPs have been classi-
fied into synonymous and non-synonymous, with the first class
assumed to be neutral [10]. This is a general practice when working
with exome data. The length of the neutral (here, synonymous) and
selected (here, non-synonymous) regions is typically calculated
from the total length by using a proportionality principle where a
proportion of the sites are deemed, respectively, synonymous and
non-synonymous. Roughly we expect 3/4 of the sites in exome
regions to be non-synonymous, but there are more rigorous and
precise ways to calculate this quantity [11].

2.3 Note on SFS Data A priori, one expects an L or U shaped SFS, where a lot of derived
alleles are present in low frequencies and possibly a few more have
high frequencies, especially when beneficial mutations contribute
substantially to the SFS. This is borne out of population genetics
theory and the fact that we expect that at selected sites a substantial
fraction of the variation is deleterious to some degree. Large counts
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in intermediate frequencies are only caused by a significant amount
of balancing selection or by cryptic and highly pronounced genetic
differentiation in the sample of sequenced individuals.

3 Model Fitting with polyDFE

3.1 Specifying a DFE

Model to Fit Using

polyDFE

We use a series of examples to illustrate how to run polyDFE, and
how to specify two key things:

l the input file containing the data to be analyzed;

l the DFE model used for the analysis.

The aim of the analysis is to fit a series of models differing by:

l the type of DFE assumed;

l the presence or not of beneficial mutations in the DFE;

l the inclusion of two types of nuisance parameters that apply to
both neutral and selected sites:

– a polarization error Ean;

– a series of nuisance parameters ri, one for each class of fre-
quency in the SFS.

The polarization error Ean accounts for the fact that methods
for orienting the SNPs are not perfect and still leave errors in the
data, where the inferred derived allele is, in fact, the ancestral allele.
When Ean is set and fixed to 0, it is assumed that the data contains no
error. To the best of our knowledge, polyDFE is the only available
method that explicitly incorporates polarization error.

The nuisance parameters ri describe how the SFS can be dis-
torted by sampling, demography, and/or linkage, relative to what is
expected in a stable Wright-Fisher population at mutation-selection-
drift equilibrium. When these parameters are fixed to 1, it is assumed
that the data does not depart from standard expectations. For some
datasets, errors in the SNP orientation can be efficiently captured by
the distortion parameters ri [1, 12], but this is not always the case
[1]. We always recommend inferring a full model where all para-
meters are estimated and use hypothesis testing to decide whether
such additional parameters are needed or not (see Subheading 5.2).
To simply run polyDFE on the chimpanzee data using default set-
tings, the following command line can be used:

where

l -d central_chimp_sfs specifies that polyDFE runs on the
input file central_chimp_sfs.
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However, it is more useful to customize the behavior of
polyDFE through the command line arguments by specifying,
for example, which DFE model is used or which parameters
should be estimated or not:

where

l -m A specifies that model A will be used to infer the DFE.

l -i init_A.txt 1 specifies that the parameter configuration
with ID 1 from the initialization file init_A.txt should be
used. The initialization file is used to control which parameters
should polyDFE estimate and to provide their initial values used
during the estimation process. For example, polyDFE can be
forced to estimate a deleterious DFE. The init_A.txt file
provides examples on how parameters are set to be fixed or
estimated.

l -e specifies that the parameters’ initial values should be esti-
mated automatically, using a combination of approximate ana-
lytical results and a grid search. Using -e is highly recommended
when running an initial analysis.

l -b params_basinhop.txt 1 specifies polyDFE to run a more
involved likelihoodmaximization, see Subheading 3.2 for details.

l >central_chimp_A (the redirection command) specifies that
the output of polyDFE should be stored in the file
central_chimp_A.

To run a full analysis on a dataset, models with increasing com-
plexity (i.e. deleterious or full DFE, and allowing or not for nuisance
parameters) should be used, as specified using -i. The example file
run_polyDFE.txt contains all the command lines that allow a full
analysis of the example dataset using both estimation under models
A and C. As the true shape of the DFE is not known (i.e., is the DFE
in the form of an A or C model?), it is recommended to run poly-
DFE with multiple models and finally use hypothesis testing to find
the best fitting model (see Subheading 5.2).

If the input data also contains divergence counts, polyDFE
uses this information for estimation by default. To use exclusively
the SFS data during the estimation process, the command line
argument -w is used.

3.2 Note

on Likelihood

Maximization

One of the key issues in obtaining reliable ML estimates is to ensure
that the likelihood function is properly maximized over the space of
parameters. This is not trivial, and besides the limitations of the
method itself, this is what in practice will cause polyDFE to return
poor estimates.
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polyDFE implements multiple steps to ensure, as much as
possible, that good estimates are found.

1. The maximization algorithm requires initial values for the para-
meters, and these values can have a big effect on the estimates
found. They can be provided by the user in the initialization file
given through the command line argument -i, but for an
initial run of polyDFE, it is strongly recommended to use the
command line argument -e. This ensures that the maximiza-
tion is started with sensible parameter values.

2. Standard maximization algorithms allow parameters to take
any value over the whole real line. Many of the parameters
polyDFE estimates are constrained within a specific range.
For example, the shape b for the DFE distribution is con-
strained to be positive. To allow for such constraints, polyDFE
transforms the parameters from a given range to the whole real
line. The range of each parameter can be controlled through
the command line argument -r. polyDFE uses large ranges by
default, but providing a range that is tighter around the poten-
tial maximum could improve the maximization process. For
more details, see the polyDFE manual.

3. Standard maximization algorithms, including the ones used in
polyDFE, only ensure that a local maximum likelihood is found.
However, a better solution can possibly exist. To avoid that
polyDFE is stuck in a local solution, the basin hopping algorithm
[13] can be used. This is a stochastic algorithm that runs the
standard maximization algorithmmultiple times, using different
initial values for the parameters. polyDFE runs basin hopping
when the command line argument -b is provided, as in the
previous example. The basin hopping algorithm can be custo-
mized through a parameterization file. In the previous example,
we used -b params_basinhop.txt 1, which specified that
polyDFE should use the parameterization found in para-
ms_basinhop.txt with ID 1. The params_basinhop.txt
file provides examples on how the basin hopping algorithm can
be customized. For more details, see the polyDFE manual.

polyDFE uses maximization algorithms that rely on the gradient
of the likelihood. If a set of parameters truly has a locally maximum
likelihood, then the corresponding gradient is 0. If the gradient of
the best solution found is far away from 0, this is warning sign that a
good solution was not found. For different ways to change the run
of polyDFE to aim for a better gradient, see the polyDFE manual.

4 Post-Processing of the polyDFE Output

polyDFE is accompanied by an R script postprocessing.R con-
tains a series of functions written that parse the output of polyDFE
and calculate other quantities of interest. We provide examples of
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polyDFE output files, as well as how to use the R functions to parse
the output and perform hypothesis testing/model averaging on
DFE and α. The analysis found below is also provided as an example
file analysis.R.

4.1 Example of a

polyDFE
Output File

The output starts with a summary of how polyDFE was run, the
progression of the maximization procedure, the best estimates
found, various expectations under the best estimates (such as, the
expected SFS) and, finally, estimates of α.

Here is a snippet of the output file central_chimp_A created
in the previous example:

For more details on the misattributed polymorphism, see Sub-
heading 4.4.
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4.2 Merging

and Parsing Output

Files

The R functions from postprocessing.R can parse files contain-
ing multiple outputs from polyDFE, which enables an easier analy-
sis. For this, multiple output files can be merged, for example, as
follows:

The file run_polyDFE.txt contains the necessary polyDFE
commands to obtain all of the above output files, which contain
results for model A where:

l central_chimp_A_nor_noeps: ri parameters are fixed to
1 and Ean is fixed to 0;

l central_chimp_A_nor: ri parameters are fixed to 1, but Ean is
estimated;

l central_chimp_A_noeps: ri parameters are estimated, but
Ean is fixed to 0;

l central_chimp_A: both ri and Ean are estimated.

Corresponding files, as given in run_polyDFE.txt, can be
obtained for model C and for a deleterious DFEmodel. Restricting
either model A or model C to only deleterious mutations yields the
same type of DFE: a reflected Γ distribution.

The output file central_chimp_A.txt from above can be
parsed using the parseOutputR function (line 2) into a list where
each entry corresponds to a different run of polyDFE found in the
parsed file (line 3):

One entry in the list contains:

l the name of the input file polyDFE was run on (line 5),

l the DFE model used (line 6),

l the best likelihood found and corresponding gradient (line 7),

l the values of all parameters, including those that were not esti-
mated (line 8),
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l which parameters have been estimated (line 9),

l expectations for SFS and divergence (line 10),

l estimates for α (line 11).

We can also get an overview of the gradients obtained during
the optimization process:

The function getModelName (line 4) returns a string briefly
describing the estimated model: which DFE model was used and
whether the ri and Ean parameters were estimated (+) or not (-).
The runs using model A where Ean was not estimated (A+r- eps),
and models A and C where all parameters have been estimated
(A + r + eps, C + r + eps), have gradients that are larger than
0.001. For these, running additional iterations of basin-hopping
might lead to an improved solution (see Subheading 3.2).

4.3 Summarizing

the DFE Estimated by

polyDFE

The estimated DFEs under the different models can be discretized
using the getDiscretizedDFER function (lines 3–5), and then
plotted for visual comparison (lines 6–13). This is exemplified
below, where the DFE is binned in six classes of 4Nes values, as
shown in Fig. 1:
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Fig. 1 Estimated discretized DFEs for models A, A del (which contains only deleterious mutations) and C, where
the ri parameters were estimated (+ r) or not (� r) and Ean was estimated (+ eps) or not (� eps). The plot to
the right has the y-axis on log scale
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The majority of the mutations are typically deleterious and only
few mutations have beneficial effects (Fig. 1). To more easily com-
pare visually the discretized DFE, it can be useful to use a log-scale
on the y-axis for plotting (lines 10–13, Fig. 1).

To obtain a discretized DFE, the continuous DFE has to be
integrated. This is prone to numerical issues and sometimes the
resulting discretized DFE does not sum exactly to 1. When this is
the case, getDiscretizedDFE issues a warning.

4.4 Estimating α polyDFE automatically calculates and outputs α. If divergence data
was used when polyDFE was run, then both αdiv and αdfe are
estimated, otherwise only the latter is calculated:

When a strictly deleterious DFE model is estimated, as by
construction the DFE does not contain any beneficial mutations,
the estimated αdfe is 0:

α can also be calculated in R from the estimated DFE using the
function estimateAlpha (lines 5, 7). By default, αdfe is calculated
(line 5), but divergence data can be parsed in R using the function
parseDivergenceData (line 3) and provided to estimateAl-
pha (line 7), which then returns αdiv. We can compare the values
that polyDFE outputted with the estimates obtained in R (lines 4–
13). As polyDFE is implemented in C, the values for α returned by
polyDFE are typically slightly different than the ones calculated in
R (lines 8–13), though the difference should be minor:
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Divergence data can contain misattributed polymorphism:
SNPs that were misidentified as substitutions as they were fixed
within the sample [1]. When calculating αdiv, polyDFE automati-
cally corrects for this. Using R, this correction can be turned off
(line 4), but typically the difference in the estimated αdiv is not very
large (lines 3–7):

When calculating α, the expected number of substitutions that
are either non-beneficial (deleterious or neutral) or beneficial is
calculated. polyDFE and the R function estimateAlpha assume
that a mutation that has a positive selection coefficient is beneficial.
However, one could argue that a mutation with a very low positive
selection coefficient is effectively neutral and only mutations that
have a selection coefficient above a threshold Ssup should be consid-
ered as beneficial when calculating α [1, 12]. To obtain such
estimates of α, the supLimit can be changed in R (lines 2–4).
Setting a higher supLimit will mechanically decrease α, as fewer
substitutions will be considered beneficial (lines 2–10):
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5 Hypothesis Testing and Model Averaging

The estimation of DFE and α entails substantial statistical uncer-
tainty. We discuss how to obtain the sampling variance of parameter
estimates and approximate confidence intervals using a bootstrap
approach. We also outline how to perform hypothesis testing and
how to use model averaging as an alternative to the hard thresh-
olding inherent to hypothesis testing. The flexibility of polyDFE
allows performing model averaging with the advantage of generat-
ing parameter estimates where model uncertainty is also
incorporated.

5.1 Bootstrap-Based

Confidence Intervals

In principle, likelihood profiles can be obtained for one or more
parameters by fixing these parameters to a set of values and max-
imizing the likelihood for all other parameters. Using polyDFE,
this can be achieved by using the command line argument -i (see
Subheading 3.1). The profile likelihood can then be used to obtain
approximate confidence intervals for the parameters of interest.

In practice, we recommend to use a bootstrap approach:

1. Generate 100–500 bootstrap datasets.

2. Run polyDFE on these datasets.

3. Calculate the sampling distribution of the ML estimates
returned by polyDFE.

Although a crude likelihood profile can be obtained for a single
parameter with as few as 20–30 runs of polyDFE, the bootstrap
approach has the advantage of yielding sampling distributions for
all parameters of interest in one go, as well as capturing the patterns
of covariation between parameters.

Bootstraps are generated by re-sampling the data at the site
level. More specifically, bootstrap datasets are obtained by para-
metric bootstrapping and assuming that all counts in the SFS and,
possibly, divergence data are independent variables following a
Poisson distribution, with means given by the observed data. This
is in line with the modelling assumption that the number of muta-
tions in each SFS entry and, possibly, divergence data follows a
Poisson process. Using R, 500 bootstrap datasets can, for instance,
be obtained using the commands:

which generate 500 datasets each stored in files cental_-
chimp_sfs_j (line 1) and bootstrap_central_j (line 2),
with 1� j�500, respectively. The name of the output files can be
optionally specified through outputfile (line 2).
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To speed up the analysis when running polyDFE on bootstrap
data, the command line argument -i (see Subheading 3.1) can be
used to initialize the parameters to the values that were found when
running polyDFE on the full dataset. Using the R function cre-
ateInitLines (see the polyDFE manual for details), these values
from a polyDFE output file can be written automatically to an
initialization file that is then given to -i.

Once polyDFE is run on bootstrap data, confidence intervals
for parameters, expected SFS, and discretized DFE can be obtained
using the quantiles of the bootstrap distributions of the quantities
of interest [14].

5.2 Hypothesis

Testing

polyDFE returns ML estimates and therefore, likelihood ratio tests
(LRT) and the Akaike information criteria (AIC) can be used to
compare models.

The likelihood ratio test entails fitting two nested models using
polyDFE, where one reduced model is a special case of a more
general model. A p-value can be obtained by assuming that the log
of the ratio of the maximum likelihoods of the two models follows a
χ2 distribution parameterized by the difference in the number of
degrees of freedom (i.e., number of estimated parameters) between
the two models. A small p-value means that the reduced model is
rejected in favor of the more parameter-rich model.

For instance, one can formally test for the occurrence of bene-
ficial mutations by fitting two models A that differ by the maximum
allowed scaled selection coefficient Smax, where in the general
model Smax is freely estimated, while in the reduced model Smax is
fixed to 0 and thus a deleterious DFE is estimated. Similarly, this
can be done under model C by fixing the amount of beneficial
mutations pb to 0. Note that the two reduced models under models
A and C yield the same type of deleterious DFE, therefore testing
for the occurrence of beneficial mutations under model C can be
obtained by comparing the reduced model A with the general
model C.

Using LRT requires that models are nested, which does not
allow to test whether the full DFEmodel A or C fits the data better.
For this, the Akaike information criteria can be used

AIC ¼ 2m � 2 log ðLÞ
where m is the number of estimated parameters (or degrees of
freedom) and L is the maximum likelihood. Then the preferred
model is the one with the minimum AIC value.

To test for the occurrence of beneficial mutations under
model A, the p-values from the LRTs and AIC values can be
obtained using the R function compareModels as follows:
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The function sequentially compares model number j found in
central_chimp_A.txt with model number j found in cen-
tral_chimp_Del.txt (in the order of appearance in the files),
which vary in the estimation of ri and Ean, as detailed in Subheading
4.2 and run_polyDFE.txt.

The models found within central_chimp_A.txt and the
other output files are also nested. For example, for models number
3 and 4, the ri parameters were estimated, but Ean was either
estimated (model number 4) or fixed to 0 (model number 3).
The LRT for these two models can be obtained as follows:

The compareModels function automatically detects nested-
ness when the same DFE model was used. Recall that the deleteri-
ous DFEs obtained from either model A or model C are equivalent,
but as the deleterious model was obtained frommodel A, to test for
the occurrence of beneficial mutations under model C, nestedness
has to be enforced by setting nested ¼ TRUE:

As noted in Subheading 3.1, sometimes the ri parameters can
also account for polarization errors. This is the case here, as we can
observe that, when the ri parameters are not estimated and fixed to
1 (-r), the LRT and AIC indicate that inferring Ean (+eps) leads to
a better fit of the data. However, when the ri parameters are
estimated (+ r), Ean is not needed for fitting the data (- eps).
This is also supported by the estimated value of Ean, which is very
small when the ri parameters are estimated (+ r), but much larger
otherwise (Table 1):

Table 1
Model testing for ean 6¼ 0

ri fixed to 1 ri estimated

AIC AIC p-Value Ean AIC AIC p-Value Ean
- r - eps - r + eps + r - eps + r + eps

Model A 10473 10283 1.07e–43 0.011 481 484 2.68e–01 0.002

Model C 10114 9758 4.91e–80 0.016 475 478 5.23e–01 0.00012

Model del 13709 13562 2.51e–34 0.010 633 635 8.31e–01 0.00002

Note:-r: ri parameters are not estimated and fixed to 1,+r: ri parameters estimated,-eps: Ean is not estimated and

fixed to 0, + eps: Ean is estimated
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5.3 Model Averaging

with polyDFE
Using model averaging provides a way to obtain the most honest
estimates that account for model uncertainty. In particular, we can
have a series of estimates that can differ by the DFE model assumed
(A, B, C or D), whether or not distortions of the SFS are accounted
for and possibly whether errors happen when polarizing the SNPs.
One can choose the model most supported by the data using LRT
or AIC as described in Subheading 5.2, but model averaging has
the advantage of avoiding a strict thresholding where we decide
that a given model is the best and exclude all other competing
models. This might be necessary, for example, when the data con-
tain only limited information about the DFE [15, 16] and therefore
different models cannot be differentiated, due to AIC values that
are very close (see also Subheading 5.4).

In practice, the parameter of interest x (such as any DFE
parameter, α, entries in the discretized DFE or any other quantities)
is estimated as xj under each model j that has an AIC value of AICj.
These values are combined to yield a model-averaged estimate
where the contribution of each model is averaged using Akaike
weights [17]:

xavg ¼
P

j xj e
�1=2ΔAICj

P
j e

�1=2ΔAICj
ð1Þ

where ΔAICj is obtained as

ΔAICj ¼ AICj � min
j

ðAICj Þ:

When doing model averaging, models that are most sup-
ported by the data have a ΔAICj that is close to 0 and conse-
quently a weight that is close to 1, while models fitting badly
have high ΔAICj values and, accordingly, weights that shrink
towards 0.

The AIC weights can be calculated using the R function
getAICweights (line 3). Then the average value of, for example,
αdiv (lines 4, 5) and αdfe (lines 6, 7) can be calculated as follows:
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Note that getAICweights returns weights that are already
rescaled so that they sum to 1, so the average value of α does not
have to be normalized by the sum of the weights as in Eq. 1.

5.4 Note

on Divergence Data

One of the advantages of polyDFE is that it does not require the
use of divergence data for inferring the DFE and α. This is free of
the assumption that the ingroup and outgroup share the DFE,
which is needed when divergence data is used. Violating this
assumption can lead to biases in the estimates [1]. However, diver-
gence data is always available, as it is needed to orient the SNPs to
calculate the derived SFS (see Subheading 2.1). So then the ques-
tion arises on whether divergence data should be used or not in the
inference.

The impact of using divergence data can be observed when
investigating the AIC values (Table 2). When divergence data was
not used, they are much closer to each other: the best 6 models are
within an AIC difference of approximately 4, while when diver-
gence data is used, only the first two models have an AIC difference
of approximately 2, while the rest of the models have a much poorer
fit. This is because using less data for the inference makes it more
difficult to differentiate between the models. Using or not the
divergence data also has a big impact on the estimates of α
(Table 2):

The model-averaged αdfe (line 14) is estimated to be 0.388
when divergence data is not used, but only 0.225 when divergence
data is used.
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Deciding on whether or not divergence data should be used is
not necessarily straightforward. The previous approaches of LRT
and AIC are not applicable here, as we want to compare twomodels
that are fitted on different datasets. One way is to compare the

Table 2
Model comparison and estimates of α

df log lk Δ AIC αdiv αdfe

Using divergence data

C + r � eps 29 �208.94 0.00 0.179 0.179

C + r + eps 30 �209.14 2.41 0.197 0.197

A + r � eps 28 �212.52 5.17 0.838 0.837

A + r + eps 29 �213.13 8.39 0.836 0.835

A del + r � eps 27 �289.91 157.95 0.066 0.000

A del + r + eps 28 �289.94 159.99 0.066 0.000

C � r + eps 7 �4872.04 9282.21 0.767 0.767

C � r � eps 6 �5051.49 9639.10 0.798 0.800

A � r + eps 6 �5135.66 9807.44 0.929 0.928

A � r � eps 5 �5231.75 9997.62 0.927 0.927

A del � r + eps 5 �6776.33 13086.79 0.187 0.000

A del � r � eps 4 �6850.96 13234.05 0.178 0.000

Not using divergence data

A + r � eps 26 �196.05 0.00 0.770 0.741

A del + r � eps 25 �197.30 0.51 0.159 0.000

A del + r + eps 26 �196.90 1.71 0.167 0.000

A + r + eps 27 �196.07 2.04 0.770 0.741

C + r � eps 27 �196.13 2.16 0.385 0.308

C + r + eps 28 �196.33 4.56 0.580 0.514

C � r + eps 6 �4844.06 9256.02 0.787 0.945

C � r � eps 5 �4878.07 9322.04 0.814 0.970

A del � r + eps 4 �4881.24 9326.37 0.731 0.000

A � r + eps 5 �4881.24 9328.37 0.731 0.000

A � r � eps 4 �5199.53 9962.96 0.909 0.873

A del � r � eps 3 �5328.36 10218.61 0.652 0.000

Note: Results for models A, A del (which contains only deleterious mutations) and C, where the ri parameters were

estimated (+ r) or not (� r) and Ean was estimated (+ eps) or not (� eps)
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observed and expected SFS obtained under the estimated models.
The best models found in both cases contain estimated ri para-
meters, but an Ean that was fixed to 0. When divergence data was
used, the best model is model C, while when divergence data is not
used, the model of choice is model A (Table 2).

The observed SFS (line 1) is given as counts for the total length
of the region, while the expected one (lines 2–4) is given per site, so
before the comparison, the expected SFS has to be normalized
by the length of the region (lines 5, 6). Using a log scale on the
y-axis (lines 10, 11) and coloring the background in alternating
colors (lines 12–16) makes it easier to visually compare the SFS
for 1� i<n, where n is the sample size (line 7). Then the
expected SFS counts scan be plotted (lines 19, 20) next to the
observed SFS counts (line 21):

Visualizing the SFS (Fig. 2) can give insights into how well the
models fit the data, but it does not give any statistical measure on
how well the expected SFS matches the observed. To test that, we
can use a χ2 goodness-of-fit test (lines 4–6). This indicates that
both using the divergence data or not gives a good fit to the SFS,
and that, in general, the selected SFS is more difficult to fit well
(lines 8–10). The χ2 statistic could be used as a way to decide if
divergence data should be used or not (lines 11–13) which shows
that, overall, not using divergence data seems to give a closer fit to
the data:
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The above check can also be done using a model-averaged
expected SFS, as detailed in analysis.R. Doing so does not
change the above conclusion.

6 Conclusion

polyDFE provides a flexible likelihood framework to infer the DFE
and properties of beneficial mutations from SFS and possibly diver-
gence data. The estimation procedure accounts for uncertainty of
the models and data imperfection. polyDFE is continually devel-
oped further with updates posted on https://github.com/paula-
tataru/polyDFE and is currently being extended to test for hetero-
geneous DFE among species or gene categories within a single
species.
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Chapter 7

MSMC and MSMC2: The Multiple Sequentially Markovian
Coalescent

Stephan Schiffels and Ke Wang

Abstract

The Multiple Sequentially Markovian Coalescent (MSMC) is a population genetic method and software for
inferring demographic history and population structure through time from genome sequences. Here we
describe the main program MSMC and its successor MSMC2. We go through all the necessary steps of
processing genomic data from BAM files all the way to generating plots of inferred population size and
separation histories. Some background on the methodology itself is provided, as well as bash scripts and
python source code to run the necessary programs. The reader is also referred to community resources such
as a mailing list and github repositories for further advice.

Key words Demographic inference, Complete genome sequencing, Phasing, Population structure,
Coalescent modelling

1 Introduction

1.1 MSMC MSMC [1] is an algorithm and program for analyzing genome
sequence data to answer two basic questions: How did the effective
population size of a population change through time? When and
how did two populations separate from each other in the past? As
input data, MSMC analyzes multiple phased genome sequences
simultaneously (separated into haplotypes, i.e. maternal and pater-
nal haploid chromosomes) to fit a demographic model to the data.

MSMCmodels an approximate version of the coalescent under
recombination across the input sequences. Specifically, the coales-
cent under recombination is approximated by a Markov model
along multiple sequences [2, 3], which describes how local genea-
logical trees change due to ancestral recombinations (Fig. 1).

These local genealogies as well as the recombination events are
of course invisible and therefore act as latent variables that are to be
integrated out of the joint probability distribution. Since it is
infeasible to do this integration across the entire space of possible
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trees, MSMC focuses only on one particular aspect of those trees:
the first coalescence event. This variable (dark blue in Fig. 1) acts as
a hidden state in the Hidden Markov Model (HMM). Using stan-
dard HMM algorithms, the hidden state (trees and recombination
events) can be integrated out efficiently using dynamic program-
ming. We can thus efficiently compute the likelihood of the data
given a demographic model, and iteratively find a demographic
model that maximizes this likelihood.

The demographic model itself is—in the simplest case of just
one population—parameterized by a sequence of piecewise con-
stant coalescence rates, i.e. inverse effective population sizes. The
time segments are chosen such that they cover the distribution of
times to first coalescence. Therefore, the more sequences are ana-
lyzed, the more recent the window of analysis will be (Fig. 2).

If the input individuals come from two populations, the demo-
graphic model is parameterized by three coalescent rates through
time: A coalescence rate between lineages sampled within the first
population, a coalescence rate between lineages sampled within the
second population, and a coalescence rate between lineages sam-
pled across the two populations (Fig. 3a). As introduced in Schiffels
and Durbin [1], to simplify interpretation of the three inferred
rates, we can plot a simple summary by taking the ratio of the
across-rate and the mean within-rate, which is termed the relative
cross coalescence rate (rCCR) (Fig. 3b). This summary variable
ranges between 0 and 1, and indicates when and how the two
populations diverged. Values close to 1 indicate that the two popu-
lations were really one population at that time. At the time when
the rCCR drops to zero, the two populations likely separated into
two isolated populations. Heuristically, the mid-point of that

time
(past)

Mutations

Recombination

H
aplotypes

First Coalescence t 
(hidden state)

Fig. 1 Schematic description of MSMC as a hidden Markov model along multiple sequences. The sequences
are related by local genealogical trees that change due to ancestral recombination events. The trees and
recombination events are hidden states of the model and can be probabilistically inferred from the patterns of
mutations
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Fig. 3 Studying divergence processes through the cross-coalescence rate. When
sequences are sampled from two different populations, MSMC estimates not one
but three coalescence rates (two within and one across populations) over time
(a), here for a simple scenario of two populations with a clean split about 43,500
years ago (1500 generations with generation time of 29 years). The split time is
indicated by the dashed black line. The relative cross coalescence rate (b) is the
cross coalescence rate divided by the mean within-rate. As it drops from 1 to
zero (forward in time), it indicates when the two populations split. The drop
agrees well with the simulated split time

Simulation
MSMC on 2 hapl.
MSMC on 4 hapl.
MSMC on 8 hapl.

ef
fe

ct
iv

e 
po

pu
la

tio
n 

si
ze

0

2 104

4 104

6 104

8 104

10 104

time [years ago]
103 104 105 106

MSMC

Fig. 2 Population size inference with MSMC from simulated data. Time segments
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younger time segments if more sequences are analyzed

MSMC and MSMC2 149



decline (i.e., the time when the rCCR hits 0.5) is often taken to be
an estimate for the split time between the two populations.

MSMC has been widely applied to human data (for example
[4–8]) and non-human organisms (for example [9–13]).

1.2 MSMC2 MSMC2 is a newer algorithm, and the tool is still actively being
developed. A first version was used in Malaspinas et al. [6] for
analyzing Australian genomes. At the time of this writing, a manu-
script that presents the new algorithm in more detail is in prepara-
tion. MSMC2 was developed to overcome some problems that we
saw with MSMC. In particular, MSMC is computationally inten-
sive, and for all practical purposes limited to analyzing eight haplo-
types at most. But even within this scope, we see that coalescence
rate estimates for more than four haplotypes are sometimes biased
(see, for example, Fig. 2, red curve), with some systematic over- and
underestimations of the true coalescence rates. These biases are in
part caused by approximations in the emission rate of the HMM,
which requires knowledge of the local lengths of leaf branches of
trees. This variable is estimated by a separate HMM that is heuristic
and cannot easily be improved, and which apparently performs
poorly for larger trees. This means that even if we improved the
computational aspects, we could not scale up this algorithm easily
to more haplotypes.

MSMC2 takes a step back from these complications and
approaches the problem of modelling multiple samples in a much
simpler way: Instead of analyzing all input haplotypes simulta-
neously, it uses a much simpler pairwise HMM (very similar to
PSMC) on all pairs of haplotypes. The likelihood of the data is
then simply multiplied across all pairs as a composite likelihood.
This has two interesting consequences: First, the pairwise model
is—in contrast to the MSMC—an exact model under the Sequen-
tially Markovian Coalescent, and does not suffer from biases with
increasing number of genomes. Second, the pairwise model
describes the entire distribution of pairwise coalescence times, not
just the time to first coalescence. MSMC2 can therefore estimate
coalescent rates across the entire distribution of pairwise coales-
cence times, with increasing resolution in more recent times, and
importantly without biased estimates (Fig. 4). In contrast, MSMC
loses power in ancient times with increasing numbers of input
genomes (see Fig. 2).

MSMC2 can also analyze population separations via the relative
cross coalescence rate, and gives similar results as MSMC, but with
computational improvements, as we will point out further below.

We caution that at the time of writing, MSMC2 is still in beta
and some aspects of the interface and algorithm may still change.
Nevertheless, we will cover its use throughout this chapter
alongside MSMC.
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2 Software Overview

MSMC has been implemented in three open source software
packages, summarized in the following. A mailing list for discus-
sions around all three packages exists under https://groups.google.
com/forum/#!forum/msmc-popgen

The main program is written in the D programming language
(www.dlang.org).

A tutorial can be found at https://github.com/stschiff/msmc-
tools/blob/master/msmc-tutorial/guide.md and general docu-
mentation can be found within each package.

2.1 MSMC The main program used in the original publication [1] is accessible
at http://www.github.com/stschiff/msmc. Pre-compiled
packages for Mac and Linux can be found under the Releases tab.
For compilation from source code, a D language compiler is needed
(see www.dlang.org for details).

2.2 MSMC2 MSMC2 (see Subheading 1) can be accessed at http://www.github.
com/stschiff/msmc2. MSMC2 is still under development, but has
been used in a key publication [6], which can be used to cite this
program. A publication describing the novel aspects and compari-
son to other state-of-the-art methods is in preparation at the time
of this writing.

2.3 MSMC-Tools Utilities for preparing input files for MSMC, as well as some other
tasks, can be found in a separate repository at http://www.github.
com/stschiff/msmc-tools and mainly contains python scripts that
help with generating the input data and with processing the
output data.
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Fig. 4 MSMC2 population size estimates. Time segments are covering more
recent times with increasing number of input haplotypes, without losing power in
ancient times (compare with Fig. 2)
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2.4 Data

Requirements

MSMC normally operates on diploid, phased, complete, high cov-
erage genomes. Here we discuss these conditions one by one.

2.4.1 Diploid Data Technically, it is not a strict condition that input sequences be
diploid. However, most populations/organisms that are not dip-
loid do not follow a coalescent under recombination. For example,
bacteria and viruses are asexual without recombination, which
breaks several key assumptions that the MSMC model makes.

In some diploid model organisms, inbred lines are available and
sequenced (for example, in Drosophila). Such inbred lines are
effectively haploid, but originate from a diploid outbred popula-
tion. In this case we think MSMC should work OK, by using each
homozygous haploid input genome as a single “haplotype,”
although we lack explicit experience and overview of potential
caveats in this case.

2.4.2 Phasing When sequencing diploid genomes, modern sequencing platforms
generate unphased data, which randomly permutes the association
of heterozygous alleles to the paternal and maternal haplotypes. For
MSMC, knowledge of the paternal vs. maternal allele is important
when more than two haplotypes are analyzed. Note that for a single
diploid genome as input (i.e., two haplotypes), no phasing is
necessary.

Phasing can be a laborious preprocessing step, which requires
external tools, such as shapeit (https://jmarchini.org/shapeit3/)
or beagle (https://faculty.washington.edu/browning/beagle/bea
gle.html). As a general rule, what helps phasing quality a lot are:

l availability of a reference panel of phased populations

l presence of related individuals (e.g., parent–child duos or
father–mother–child trios)

l long sequencing reads

l long-insert libraries in combination with paired-end sequencing.

Note that MSMC and MSMC2 can in principle handle
unphased data within the input data format (see below), but for
some analyses we recommend to exclude those sites from the
analysis, which can be done within MSMC. Note also that
MSMC2 now can optionally run on unphased genomes for popu-
lation size analysis, but not for population separation analysis. As
described below, this is achieved by running the MSMC2-HMM
only within each diploid genome, but not across pairs of genomes.
This will give lower resolution than with phased data, but may be a
good compromise if phasing is not possible and only population
sizes need to be estimated.
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2.4.3 Complete Genomes MSMC and MSMC2 cannot run on Array data, with selected
SNPs, but require contiguous sequence segments. For many organ-
isms, genomes are shorter than in humans, and from our experi-
ence, MSMC still works fine for much smaller genomes, but we
recommend in these cases to run simulations with shorter genome
length and specified heterozygosity to test performance of the
program on shorter genomes.

For many non-model organisms, reference genomes are only
available via assembly scaffolds, which are sometimes as short as a
few hundred thousand basepairs (compared to hundred million
basepairs for a human chromosome). In our experience, MSMC
works still fine in many such cases, as long as scaffolds are not too
short. Although the exact threshold depends on an organisms mean
heterozygosity, in my experience scaffolds on the order of 500 kb
and longer often work OK. We again recommend simulations of
short chromosomes to assess the power in those cases.

2.4.4 High Coverage

Data

MSMC requires good resolution of heterozygous vs. homozygous
genotypes across the genome, which is only available with high
coverage sequencing data. In our experience, 20-fold coverage
and higher is sufficient. MSMC may work on lower coverage data
as well, but detailed analyses of the effects of false negative/posi-
tives in genotype calling need to be assessed in these cases, ideally
again through simulated data, into which sequencing errors are
randomly introduced to test their effect on the estimates.

3 Input Data Format

MSMC/MSMC2 take several files as input, one for each chromo-
some, each with a list of segregating sites, including a column to
denote how many sites have been called since the last segregating
site. Note that here we use the term “chromosomes” to refer to
coordinate blocks in a reference genome (which could also be an
assembly scaffolds). We use the term “haplotypes,” when we refer
to the phased input sequences from multiple individuals. Here is an
example part of an input file for chromosome 1 for four haplotypes
(two diploid individuals):

1 58432 63 TCCC

1 58448 16 GAAA

1 68306 15 CTTT

1 68316 10 TCCC

1 69552 8 GCCC

1 69569 17 TCCC

1 801848 9730 CCCA

1 809876 1430 AAAG

1 825207 1971 CCCT,CCTC

1 833223 923 TCCC
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The four (tab-separated) columns are:

1. The chromosome (can be an arbitrary string, but has to be the
same for all rows in a file).

2. The position on the chromosome.

3. The number of called homozygous sites since the last segregat-
ing site, which includes the given location. This number must
always be greater than zero and cannot be larger than the
difference between the current position and the previous
position.

4. The ordered and phased alleles of the multiple haplotypes. If
the phasing is unknown or only partially known, multiple
phasings can be given, separated by a comma to indicate the
different possibilities (see the second-last line in the example).
Unknown alleles can be indicated by “?”, but they can also
simply be left out and expressed by a reduced number of called
sites in the line of the next heterozygous site.

The third column is needed to indicate where missing data
is. For simulated data, without any missing data, this column
should simply contain the distance in bp from the previous segre-
gating site, indicating that all sites between segregating sites are
called homozygous reference, without missing data. To the extent
that this number is lower than the distance from the previous site
do the input data contain missing data. Information about
missing vs. homozygous reference calls is crucial for MSMC: If,
for example, missing data is not correctly annotated, long distances
between segregating sites may falsely be seen as long homozygous
blocks, indicating a very recent time to the common ancestor
between the lineages, thereby skewing model estimates.

The generation of such an input file follows three steps:

1. Generating VCF and mask files from individual BAM files.

2. Phasing the input.

3. Combining multiple phased individuals.

In the following, we describe these steps in order

3.1 Generating VCF

and Mask Files from

Individual BAM Files

Starting with a BAM file, bamCaller.py (included in the MSMC-
Tools package) can be used for generating a sample-specific VCF
file and a mask file. This script reads samtools mpileup data from
stdin, so it has to be used in a pipe in which a reference file in fasta
format is also required. Here is an example bash script using sam-
tools 1.0 or higher for generating chromosome-specific VCF files
(sample1.chr*.vcf.gz) and mask files (sample1.mask.
chr*.bed.gz) from a human BAM file:

154 Stephan Schiffels and Ke Wang



Listing 1.1. bash script to call genotypes and masks from a single
BAM file

Further options of bamCaller.py are:

--minMapQ to set the minimum mapping quality, which
defaults to 20.0

--minConsQ to set the minimum consensus quality, which
defaults to 20.0

--legend_file If you aim to phase your data against a reference
panel, e.g. from 1000 Genomes (see Subheading
3.2), you need your VCF to not only contain the
variant sites of the sample, but also the genotypes
at additional sites at which the panel is geno-
typed. This option takes a gzipped file of a format
that is used in the IMPUTE and SHAPEIT ref-
erence panels. It is a simple tab-separated tabular
file format with one header line which gets
ignored. The only important columns for this
purpose are: (1) the chromosome; (2) the posi-
tion; (3) the reference allele; (4) the alternative
allele; (5) the type of the variant, only sites of type
SNP are considered here.

3.2 Phasing If your samples are unrelated and you want to run MSMC on
more than two haplotypes at a time, you would need to statistically
phase the VCFs with a tool like shapeit. There are two different
phasing strategies using shapeit, either with a reference panel or
without a reference panel. If a good reference panel is available for
your samples, shapeit phasing with a reference panel is
recommended.

Here, as an example, we describe phasing a single human
diploid sample against the 1000 Genomes Phase 3 reference
panel. In the following, we assume that shapeit2 is installed, the
1000 Genomes (phase 3) reference panel is available locally (can be
downloaded from https://mathgen.stats.ox.ac.uk/impute/
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1000GP_Phase3.html), and that the unphased VCF file contains all
variable positions in the sample, plus all variable positions in
the 1000 Genomes reference panel. This can be achieved using
the --legend_file option in bamCaller.py.

The script first removes multi-allelic sites in your VCF, gener-
ating .noMultiAllelicSites.vcf.gz with bcftools. Then it makes a list
of sites to be excluded in the main run for phasing by shapeit
-check, because shapeit can only phase SNPs that are in both the
sample and the reference panel with the same allele type. Apart from
the main log file per chromosome sample1.chr$CHR.align-
ments.log, the two following files will be generated from sha-
peit -check:

1. sample1.chr$CHR.alignments.strand: this file describes all
sites in detail that either have incompatible allele types in the
sample and the reference panel or found in the sample but not
in the reference panel.

2. sample1.chr$CHR.alignments.strand.exclude: this file gives a
simple list of physical positions of sites to be excluded from
phasing.

Then the script runs shapeit with --exclude-snp and -no-
mcmc, generating two output files including phased sites only sam-
ple1.chr$CHR.phased.haps.gz and sample1.chr$CHR.
phased.samples. These two files can be converted into VCF
format by shapeit -convert. Afterwards, we merge the phased
VCF sample1.chr$CHR.onlyPhased.vcf.gz and the
unphased (original) VCF sample1.chr$CHR.fixedformat.
vcf.gz, keeping all unphased sites from the original VCF, but
replacing the phased ones.
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Note that this script can also be found in the git repository
accompanying this book chapter (https://github.com/
StatisticalPopulationGenomics/MSMCandMSMC2).

3.3 Combining

Multiple Individuals

into One Input File

At this point, we assume that you have a phased VCF for each
individual per chromosome (potentially containing some unphased
sites not in the reference panel), and one mask file for each individ-
ual per chromosome. In addition, you will need one mappability
mask file per chromosome, which is universal per chromosome and
does not depend on the input individuals. Mappability masks
ensure that only regions in the genome are included, which have
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sufficiently high mappability, i.e. no repeat regions and other fea-
tures that are hard to map with next-generation sequencing data.
Mappability masks can be generated using the SNPable pipeline
described at http://lh3lh3.users.sourceforge.net/snpable.shtml.
For the human reference genome hs37d5, they can be downloaded
here https://oc.gnz.mpg.de/owncloud/index.php/s/
RNQAkHcNiXZz2fd.

For generating the input files for MSMC for one chromosome,
the script generate_multihetsep.py from MSMC-tools is
required, which merges VCF and mask files together, and also
performs simple trio-phasing in case the data contains trios. Here
is an example of generating multihetsep files for two (previously
phased) diploid individuals on chromosome 1.

Another useful option in generate_multihetsep.py is --trio
<child>,<father>,<mother>, allowing the three members of a
trio. All three fields must be integers specifying the index of the
child/father/mother within the VCFs you gave as input, in order.
So for example, if you had given three VCF files in the order of
father, mother, child, you need to give –trio 2,0,1. This option will
automatically apply a constraint for phasing and also strip the child
genotypes from the result.

4 Running MSMC and MSMC2

4.1 Resource

Requirements

Resource usage for MSMC and MSMC2 depend on the size of the
dataset, the number of haplotypes analyzed, the number of time
segments and on the number of CPUs used. The following num-
bers are example use cases and need to be somewhat extrapolated to
other use cases. As a general rule of thumb, run time and number of
CPUs are inversely proportional, and memory and number of
CPUs are linearly proportional. Also, the number of haplotypes
and the number of time segments affect both memory and run time
quadratically.

Use cases for MSMC, assuming 22 human chromosomes and
11 CPUs, default time patterning:

l A single diploid genome: 30 min, 17Gb of RAM.

l Two diploid genomes, same population: 90 min, 32 Gb
of RAM.
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l Two diploid genomes, two populations: 11 h, 35 Gb of RAM.

l Four diploid genomes, two populations: 21 h, 170 Gb of RAM.

Use cases for MSMC2, assuming 22 human chromosome and
11 CPUs, default time patterning:

l A single diploid genome: 18 min, 7 Gb of RAM.

l Two diploid genomes, same population: 2 h, 36 Gb of RAM.

l Two diploid genomes, two populations: 90min, 21 Gb of RAM.

l Four diploid genomes, two populations: 8 h, 100 Gb of RAM.

4.2 Test Data We provide input files for MSMC and MSMC2 for four diploid
human individuals, two Yoruba and two French individuals. The
test input data consists of 22 text files for 22 autosomes in the
MSMC input format described above. The test data can be accessed
at https://github.com/StatisticalPopulationGenomics/
MSMCandMSMC2.

4.3 Running MSMC A typical command line to run MSMC on the test data is

which runs the program on 11 CPUs (option -t), keeps the
recombination rate fixed at the initial value (option -R), and uses as
output-prefix the file prefix out_prefix. The parallelization, here
specified by the number of CPUs (-t11), goes across input files. So
when given 22 input chromosomes as in the test data, which is
typical for human data, running on 11 CPUs means that the first
11 chromosomes can be run in parallel, and then the second 11.
Using more CPUs will help a bit to make things even faster, but
only to the extent that the number of chromosomes exceeds or
equals the number of CPUs. The -R option is recommended for
MSMC except when running on two haplotypes only. Additional
options can be viewed by running msmc -h.

In order to run MSMC to obtain estimates of cross-population
divergences, you need to prepare your input files to contain indivi-
duals from multiple populations. For example, in order to run
MSMC on one Yoruba and one French individual from the test
data, you run (here for chr1 only):

There are two changes here with respect to the first run. First, we
use the options -I 0,1,4,5 -P 0,0,1,1, which specifies that only
the first two haplotypes in each subpopulation should be used
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(indices 0,1 are the first Yoruba individual, indices 4,5 the first
French), and that those selected four haplotypes belong to two sub-
populations. Second, we set -s, which instructs MSMC to skip
ambiguously phased sites. This is important if you have phased your
samples against a reference panel and have private variants unphased.
Empirically, we have found that MSMC is quite robust to unphased
sites when analyzing population size changes in a single population,
but that results on cross-population divergence are affected by
unphased sites, and results are less biased if those sites are
removed [1].

Upon running either of the two commands above, MSMC
produces several output files. First, a file containing log output,
called prefix.log. Second, a file containing the parameter esti-
mates at each iteration step, called prefix.loop.txt. And third,
a file containing the final results, called prefix.final.txt. This
last file looks like this:

Each row of this output file lists one time segment, with scaled
start and end time indicated by second and third column. The
fourth column contains the scaled coalescent rate in each time
segment. In case of cross-population analysis (using the -P flag),
the output will contain two more columns, titled lambda_01 and
lambda_11, giving the coalescence rate estimates between popula-
tions and within the second population, respectively.

Times and rates are scaled. In order to convert to real values,
you need a mutation rate μ per site per generation. All times can
then be converted to generations by dividing the scaled time by μ.
In order to convert generations into years, a generation time is
needed (for humans we typically take 29 years). Population size
estimates are obtained by first taking the inverse of the scaled
coalescence rate, and then dividing that inverse rate by 2μ.

To get the relative cross coalescence rate (rCCR, see Fig. 3), you
need to compute 2λ01/(λ00 + λ11), without any additional scaling. It
can then be informative to compute the time point at which the
relative CCR hits 0.5, to reflect an estimate of the split time between
two populations (provided that a clean-split scenario is appropriate).

4.4 Running MSMC2 Running MSMC2 is very similar to running MSMC if samples
come from a single population. In that case, a typical command
line may look like this:
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Note that here we have omitted the option -R, since MSMC2
can robustly infer recombination rates simultaneously with popula-
tion sizes, so there is no need to keep the recombination rate fixed.
The output of the program is the same as in MSMC.

To analyze individuals from multiple populations, as in the
provided test data the procedure is different from MSMC. In that
case, MSMC2 needs to be run three times independently: Once each
for estimating coalescence rates within population 1, within popula-
tion 2, and across populations. This has two advantages: First, since
runs can be parallelized, the combined running should be faster on
computer clusters. Second, if many pairs of populations are analyzed,
estimates of coalescence rates within populations need to be run only
once and not co-estimatedwith each cross-coalescence rate estimates.

So taking the test data as an example, we have four diploid
individuals from two populations in a single input file, and we can
run on only one individual from each population like this:

Here, we have again used the option -s to remove unphased
sites. A key difference to MSMC is how haplotype pairs in MSMC2
are specified using the -I option. In MSMC2, haplotype configura-
tions passed via -I can be given in two flavors. First, you can enter a
single comma-separated list, like this -I 0,1,4,5. In this case,
MSMC2will run over all pairs of haplotypes within this set of indices.
This is useful for running on multiple phased diploid genomes
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sampled fromone population. In the second flavor, you can give a list
of pairs, like above: -I 0-4,0-5,1-4,1-5. In this case, MSMC2
will run only those specified pairs, which are all pairs between the first
Yoruba and first French individual in this case. Note that if you do
not use this parameter altogether, MSMC2 will run on all pairs of
input haplotypes and assume that they all belong to one population.

As a special feature in MSMC2, the option -I can be used also
to run MSMC2 to get population size estimates from entirely
unphased genomes, using the composite likelihood approach to
run on all pairs of unphased diploids, but not across them. For
example, if your input file contains four diploid unphased samples,
you could use -I 0-1,2-3,4-5,6-7 to instruct MSMC2 to esti-
mate coalescence rates only within each diploid genome.

In order to simplify plotting and analysis of the relative cross
coalescence rate from MSMC2, we provide a tool in the MSMC-
tools repository called combineCrossCoal.py. This tool takes as
input three result files from MSMC2, obtained by running within
each population and across. It will then use interpolation to create a
single joint output file with all three rates that can then be plotted
exactly as in the MSMC case above. To use the script on the three
estimates obtained with the three MSMC2 runs above, simply run

and then use the combined file to proceed with plotting.

4.5 Plotting Results Here is an example of plotting population sizes and relative CCR in
python, as well as computing the midpoint of the rCCR curve,
using the numpy, pandas, and matplotlib libraries. To try this
out, we provide result files for MSMC2 within the book chapter
repository (https://github.com/StatisticalPopulationGenomics/
MSMCandMSMC2), and those result files are used in this script,
which is also included in the same repository:
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This script produces the plot shown in Fig. 5 and prints
out the midpoint of the cross-coalescence rate, which is
69405.8165002096 for the test data, i.e. around 70,000 years
ago for a rough estimate of the split time between French and
Yoruba.

5 Tips and Tricks

5.1 Bootstrapping It is often important to obtain confidence intervals around coales-
cence rate estimates (either for population size estimates or for rCCR
estimates). This can be done using block-bootstrapping. We provide
a script called multihetsep_bootstrap.py in the MSMC-tools
repository. You can run python3 multihetsep_bootstrap.py
-h to get some inline help. The program generates artificial “boot-
strapped” datasets from an input dataset consisting of MSMC input
files, by chopping up the input data into blocks (5 Mb long by
default) and randomly sampling with replacement to create artificial
3 Gb long genomes out of these blocks. By default, 20 datasets are
generated. You can run the tool via
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which creates 20 subdirectories, here beginning with boot-
strap_dir, each containing 30 multihetsep input files created
with the block-sampling strategy described above. You should
then run MSMC or MSMC2 on each of these datasets separately
and plot all results together with the original estimates to visualize
confidence intervals.

5.2 Controlling Time

Patterning

Often, MSMC creates extremely large estimates in the most recent
or the most ancient time intervals. This is a sign of overfitting, and
can be mitigated by using fewer free parameters. By default, MSMC
uses 40 time segments, with 25 free parameters (some neighboring
time segments are forced to have the same coalescence rate).
MSMC2 by default uses 32 time segments with 28 free parameters.

Fig. 5 The figure produced by the plotting script using the test data results
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You can use the -p flag to control the time patterning in detail. For
example, to change the patterning of MSMC2 from 32 to 20 time
segments with 18 free parameters, you could try -p 1*2+16*1
+1*2, which would use 20 time segments, and merge together
the first two and last two to have just one free coalescence rate
parameter, respectively. We recommend to experiment with these
settings, in particular when non-human data is analyzed, where
sometimes the default settings in MSMC and MSMC2 are not
appropriate because the genomes are substantially shorter and
hence fewer parameters should be estimated.
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Chapter 8

Ancestral Population Genomics with Jocx, a Coalescent
Hidden Markov Model

Jade Yu Cheng and Thomas Mailund

Abstract

Coalescence theory lets us probe the past demographics of present-day genetic samples and much informa-
tion about the past can be gleaned from variation in rates of coalescence event as we trace genetic lineages
back in time. Fewer and fewer lineages will remain, however, so there is a limit to how far back we can
explore. Without recombination, we would not be able to explore ancient speciation events because of
this—any meaningful species concept would require that individuals of one species are closer related than
they are to individuals of another species, once speciation is complete. Recombination, however, opens a
window to the deeper past. By scanning along a genomic alignment, we get a sequential variant of the
coalescence process as it looked at the time of the speciation. This pattern of coalescence times is fixed at
speciation time and does not erode with time; although accumulated mutations and genomic rearrange-
ments will eventually hide the signal, it enables us to glance at events in the past that would not be
observable without recombination. So-called coalescence hidden Markov models allow us to exploit this,
and in this chapter, we present the tool Jocx that uses a framework of these models to infer demographic
parameters in ancient speciation events.

Key words Genome analysis, Coalescence, Hidden Markov models, Population history inference

1 Introduction

Understanding how species form and diverge is a central topic of
biology, and by observing emerging species today, we can under-
stand many of the genetic and environmental processes involved.
Through such observations, we can understand the underlying
forces that drive speciation, but to understand how specific specia-
tion events occurred in the past, and understand the specifics of
how existing species formed, we must make the inference from the
signals these events have left behind. The speciation processes leave
genetic “fossils” in the genome of the resulting species, and
through what you might call genetic paleontology we can study
past events from the signals they left behind.

Julien Y. Dutheil (ed.), Statistical Population Genomics, Methods in Molecular Biology, vol. 2090,
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The main objectives of the methods we describe in this chapter
are to infer demographic parameters, Θ, given genetic data, D,
through the model likelihood: LðΘ j DÞ ¼ PrðD j ΘÞ. Here, we
assume that Θ contains information such as effective population
sizes, time points where population structure changes (populations
split or admix), or migration rates between populations. We can
connect data and demographics through coalescence theory
[8]. This theory gives us a way to assign probability densities to
genealogies; densities that depend on the demographic parameters,
f(G | Θ). Then, if we know the underlying genealogy, we can assign
probabilities to observed data using standard algorithms such as
Felsenstein’s likelihood recursion [7] and get PrðD j G,ΘÞ. Theo-
retically, we now simply need to integrate away the nuisance param-
eter G to get the desired likelihood

L ðΘ j DÞ ¼ PrðD j ΘÞ¼
ð
PrðD j G,ΘÞf ðG j ΘÞ dG: ð1Þ

In practice, however, the space of all possible genealogies pre-
vents this beyond a small sample size of sequences and for any
sizeable length of genetic material. Approximations are needed,
and the sequential Markov coalescent (see Chapter 1) and coalescent
hidden Markov models approximate the likelihood in two steps: they
assume that sites are independent given the genealogy, i.e.,

PrðD j G,ΘÞ �
YL
i¼1

PrðDi j Gi,ΘÞ ð2Þ

where L is the length of the sequence and Di is the data and Gi the
genealogy at site i, and assume that the dependency between gen-
ealogies is Markovian:

f ðG j ΘÞ � f ðG1 j ΘÞ
YL
i¼2

f ðGi j Gi�1,ΘÞ: ð3Þ

Both assumptions are known to be invalid, but simulation
studies indicate that this model captures most important summary
statistics from the coalescent [17, 18] and that it can be used to
accurately infer parameters in various demographic models [2, 14,
16]. Because of the form the likelihood now has,

f ðD,G j ΘÞ ¼ f ðG1 j ΘÞ
YL
i¼2

f ðGi j Gi�1,ΘÞ
YL
i¼1

PrðDi j Gi,ΘÞ,

ð4Þ
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which is the form of a hidden Markov model, we can compute the
likelihood efficiently using the so-called Forward algorithm (see
Chapter 3 in Durbin et al. [3]).

This efficiency has permitted us and others (see Chapters 7 and
10) to apply this approximation to the coalescence to infer demo-
graphic parameters on whole genome data [1, 9, 11–13, 19, 24, 25,
27] in addition to inferring recombination patterns [20, 21] and
scanning for signs of selection [4, 22].

2 Software

We have created a theoretical framework for constructing coales-
cent hidden Markov models from demographic specifications
[2, 14–16] and used it to implement various models in the software
package Jocx, available at

https://github.com/jade-cheng/Jocx.git

Jocx handles the state space explosion problem of dealing with
many sequences by creating hidden Markov models for all pairs of
sequences and then combining these into a composite likelihood
when estimating parameters. In brief, a full analysis looks some-
thing like the following. In the remainder of this chapter, we
describe in detail how to apply Jocx to sequence data and how to
interpret the results.

Jocx.py init . iso a.fasta b.fasta

It is very important that the verbatim (typewriter font) sections
are left exactly as in the input. They contain ascii art that is output
from our program.

Jocx.py run . iso nm 0.0001 1000 0.1

Jocx executes CoalHMMs by specifying a model and an opti-
mizer. It uses sequence alignments in the format of “ziphmm”
directories, which is also prepared by Jocx. The program prints to
standard output the progression of the estimated parameters and
the corresponding log likelihood. The source package contains a set
of Python files, and it requires no installation.

2.1 Preparing Data Jocx takes two or more aligned sequences as input; the number of
sequence pairs depends on the CoalHMM model specified for a
particular execution. We will discuss CoalHMM model specifica-
tion later. For example, for inference in a two-population isolation
scenario [14], we need a minimum of one pair of aligned sequences,
with one sequence from each of the two populations. The input
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should be FASTA files with names matching the names of the
sequences we will use in the analysis, and since the sequences will
be interpreted as aligned, they should all have the same lengths.
The preprocessing will skip indels and handle all symbols except A,
C, G, and T as the wildcard N.

In the following example, sequence a and sequence b form an
alignment. Each sequence may have multiple data segments (e.g.,
contigs or chromosomes). In the example, we have two segments,
1 and 2. The names for these data segments need to be consistent
between the two sequences. In the software we have the data-
preparation step and model-inference step. In the data-preparation
step, we supply Fasta sequences by providing their file names, e.g.,
a.fasta and b.fasta.

$ ls

a.fasta b.fasta

$ cat a.fasta | wc -c

1827

$ cat b.fasta | wc -c

1827

$ head ∗.fasta -n 7

==> a.fasta <==

>1

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaagaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaattaaaaaaaaaaacaaaaaaaaaaaaa

>2

aaataaaaaaaaaaaaaaaaaaaaaaaagacaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaataaaaaaaaaaaaaaaaaaaaaaaaaaaa

==> b.fasta <==

>1

ataaaaaaaaaaaaaaaaaaacaaaaaagaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaagaaaaaacaaaaaaaaaaaaaaaaaa

>2

aaaaaaaaaacaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaagaaaaaaaaaaaaaaaaaaaataaaaaaaaataaaaa

We use the ZipHMM framework [26] to calculate likeli-
hoods—in previous experiments we have found that ZipHMM
gives us one or two orders of magnitude speedup in full genome
analyses. To use ZipHMM in Jocx, we must preprocess the
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sequence files. The preprocessing step is customized to each demo-
graphic model and is done using the

$ Jocx.py init

command. This command takes a variable number of argu-
ments, depending on how many sequences are needed for the
demographic model we intend to use. The first two arguments
are the directory in which to put the preprocessed alignment and
the demographic model to use. The sequences used for the align-
ment, the number of which depends on the model, must be
provided as the remaining arguments. In the aforementioned
two-population isolation scenario, the model iso, we need to
process two aligned sequences, so the init command will take
four arguments in total. To create a pairwise alignment for the
isolation model, we would execute the following command:

$ Jocx.py init . iso a.fasta b.fasta

# Creating directory: ./ziphmm_iso_a_b

# creating uncompressed sequence file

# using output directory "./ziphmm_iso_a_b"

# parsing "a.fasta"

# parsing "b.fasta"

# comparing sequence "1"

# sequence length: 900

# creating "./ziphmm_iso_a_b/1.ziphmm"

# comparing sequence "2"

# sequence length: 900

# creating "./ziphmm_iso_a_b/2.ziphmm"

#Creating5-statealignmentindirectory:./ziphmm_iso_a_b/1.ziphmm

#Creating5-statealignmentindirectory:./ziphmm_iso_a_b/2.ziphmm

The result of the init command is the directory ziphmm_
iso_a_b that contains information about the alignment of a.
fasta and b.fasta in a format that ZipHMM can use to effi-
ciently analyze the isolation model. Each Fasta data segment forms
its own ZipHMM subdirectory. In the above example, we have two
data segments, named 1 and 2, so we have two ZipHMM
subdirectories.

$ ls

a.fasta b.fasta ziphmm_iso_a_b

$ find ziphmm_iso_a_b/

ziphmm_iso_a_b/

ziphmm_iso_a_b/1.ziphmm

Ancestral Population Genomics with Jocx, A Coalescent Hidden Markov Model 171



ziphmm_iso_a_b/1.ziphmm/data_structure

ziphmm_iso_a_b/1.ziphmm/nStates2seq

ziphmm_iso_a_b/1.ziphmm/nStates2seq/5.seq

ziphmm_iso_a_b/1.ziphmm/original_sequence

ziphmm_iso_a_b/2.ziphmm

ziphmm_iso_a_b/2.ziphmm/nStates2seq

ziphmm_iso_a_b/2.ziphmm/nStates2seq/5.seq

ziphmm_iso_a_b/2.ziphmm/data_structure

ziphmm_iso_a_b/2.ziphmm/original_sequence

The exact structure of this directory is not important to how
Jocx is used, but you must preprocess input sequences to match
each demographic model you will analyze.

To see the list of all supported models, use the --help option.
Here iso is the two-population two-sequence isolation scenario,
shown below.

$ Jocx.py ----help

:

ISOLATION MODEL (iso)

∗

/ \ tau

A B

3 params -> tau, coal_rate, recomb_rate

2 seqs -> A, B

1 group -> AB

:

For each model, the tool implements, the --help command
will show an ASCII image of the model, annotated with the para-
meters of the model and with leaves labelled by populations. Below
the image, the parameters are listed in the order they will be output
when optimizing the model, followed by the sequences in the order
they must be provided to the init command when creating the
ZipHMM file. Finally, the help lists the pairs of sequences that will
be used in the composite likelihood in the list of “groups.” When
initializing a sequence alignment, you will get a ZipHMMdirectory
per group.

The two-population isolation demographic model is symmet-
ric, so the order of input Fasta sequences does not matter. This is
not always the case. For example, in a three-population admixture
model, shown below, the roles the populations take are different.
Population C is admixed, and it is formed from ancestral siblings of
the two source populations, A and B. The order of input Fasta
sequences, therefore, needs to match.
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In this model, we have five unknown time points and dura-
tions to be estimated, they are three-population isolation time
(iso_time), two time points where the admixed population
merges with each of the two source populations (buddy23_ti-
me_1a, buddy23_time_2a), and finally the duration before all
populations find their common ancestry for the first population
(greedy1_time_1a). The last unknown duration can be calcu-
lated: greedy1_time_2a ¼ greedy1_time_1a + buddy23_
time_1a - buddy23_time_2a.

$ Jocx.py ----help

:

THREE POP ADMIX 2 3 MODEL (admix23)

∗

/ \ greedy1_time_1a

buddy23_time_1a /\ \

/ \_/\ buddy23_time_2a

admix_prop / <-| \ iso_time

A C B

7 params -> iso_time, buddy23_time_1,

buddy23_time_2, greedy1_time_1,

coal_rate, recomb_rate, admix_prop

3 seqs -> A, B, C

3 groups -> AC, BC, AB

:

When executing the init command, the order of the Fasta
sequences should match the order of species names in the help
command:

$ ls

a1.fasta b1.fasta c1.fasta

$ Jocx.py init . admix23 a1.fasta b1.fasta c1.fasta

# Creating directory: ./ziphmm_admix23_a_c

# creating uncompressed sequence file

:

$ ls

a1.fasta b1.fasta c1.fasta

ziphmm_admix23_a_b ziphmm_admix23_a_c ziphmm_admix23_b_c

In the two examples above, each population contributes a
single sequence to the CoalHMM’s construction. Jocx also has
models that support two sequences per population.
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$ Jocx.py ----help

:

THREE POP ADMIX 2 3 MODEL 6 HMM (admix23-6hmm)

∗

/ \ greedy1_time_1a

buddy23_time_1a /\ \

/ \_/\ buddy23_time_2a

admix_prop / <-| \ iso_time

A1 C1 B1

A2 C2 B2

7 params -> iso_time, buddy23_time_1a,

buddy23_time_2a, greedy1_time_1a,

coal_rate, recomb_rate, admix_prop

6 seqs -> A1, A2, B1, B2, C1, C2

6 groups -> A1C1, B1C1, A1B1, A1A2, B1B2, C1C2

:

In this example, we have the same admixture demographic
model as before but with each population contributing two
sequences to form six pairwise alignments, which are then used to
construct six HMMs for the inference.

$ ls

a1.fasta a2.fasta b1.fasta b2.fasta c1.fasta c2.fasta

$ Jocx.py init . admix23-6hmm a1.fasta a2.fasta \

$ b1.fasta b2.fasta \

$ c1.fasta c2.fasta

# Creating directory: ./ziphmm_admix23-6hmm_a1_c1

:

$ ls

a1.fasta b1.fasta c1.fasta

a2.fasta b2.fasta c2.fasta

ziphmm_admix23-6hmm_a1_a2 ziphmm_admix23-6hmm_a1_c1 ziphmm_admix23-6hmm_b1_c1

ziphmm_admix23-6hmm_a1_b1 ziphmm_admix23-6hmm_b1_b2 ziphmm_admix23-6hmm_c1_c2

In the two-population isolation model, we have one demo-
graphic transition for a pair of samples. That is from a
two-population isolation scenario (Fig. 1a) to a single ancestral
population scenario (Fig. 1b). In the three-population admix
model, we have three kinds of demographic transitions for a pair
of samples. They are from a two-population duration (Fig. 1a) to a
three-population duration (Fig. 2a), then to another
two-population duration (Fig. 2b), finally to a single ancestral
population (Fig. 1b). In the three-population duration, only two
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populations are allowed to exchange lineages, shown in Fig. 2a as
the second and third populations; hence we call this duration
buddy23. In the second two-population duration, one of the two
populations only accepts lineages because it is not involved in the
admixture event at the previous state space transition. Since we have
one population that never gives lineages during this time, we call
this duration greedy1.

Fig. 1 Demographic transition in the two-population isolation model for a pair of samples. Backwards in time, the
state space transits from a two-population isolation scenario (a) to a single ancestral population scenario (b)

Fig. 2 Demographic transitions in the three-population admix model for a pair of samples. Backwards in time,
the state space transits from a two-population isolation scenario (Fig. 1a) to a three-population scenario (a),
then to another two-population scenario (b), and finally to a single ancestral population scenario (Fig. 1b)
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2.2 Inferring

Parameters

To infer parameters, we maximize the model likelihood. Jocx
implements three optimization subroutines, Nelder–Mead (NM),
genetic algorithms (GA), and particle swarm optimization (PSO).
After preparing the ZipHMM directories, user can run the
CoalHMM to maximize the likelihood using one of these three
algorithms using the run command.

$ Jocx.py run . iso nm 0.0001 1000 0.1

The first argument of this command, like for the init com-
mand, is the directory where the ZipHMM preprocessed data is
found. The next argument is the demographic model. If we pre-
processed the ZipHMM data with the iso model, we can use iso
here to fit that model. The third argument is the optimization
algorithm, one of nm, ga, and pso.

Following the optimizer option are the initialization values for
the optimization. These arguments should match the number and
order of parameters given by the --help command. In the iso
model, for example, the parameters are these:

$ Jocx.py ----help

:

ISOLATION MODEL (iso)

∗

/ \ tau

A B

3 params -> tau, coal_rate, recomb_rate

2 seqs -> A, B

1 group -> AB

:

In this model, we infer three parameters: the population split
time, tau, the coalescent rate, coal_rate, and the recombination
rate, recomb_rate. In this model, populations are assumed to
have the same coalescent rate, which is why there is only one
parameter for this.

2.2.1 NM NMwas introduced by John Nelder and Roger Mead in 1965 [23]
as a technique to minimize a function in a many-dimensional space.
This method uses several algorithm coefficients to determine the
amount of effect of possible actions.

$ Jocx.py run . iso nm 0.0001 1000 0.1

# algorithm = _NMOptimiser

# timeout = None

# max_executions = 1

#
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# 2017-10-11 11:29:08.069462

:

# execution state score param0 param1 param2

0 init -38.2023478685 0.000376954454165 7480.36836670 0.337649514816

1 fmin-in -40.5337262711 0.000385595244114 661.208520686 0.920281817958

1 fmin-cb -40.3804021200 0.000385595244114 694.268946721 0.920281817958

:

1 fmin-cb -37.8927822292 0.000695082517418 200504630.601 32081.6528250

Optimization terminated successfully.

Current function value: 37.892782

Iterations: 262

Function evaluations: 533

1 fmin-out -37.8927822292 0.000695082517418 200504630.601 32081.652825

In the output of NM’s execution, we have a final report of
whether or not the execution was successful together with the
optimal solution. It is possible for the optimizer to fail for various
reasons, the number of parameters being a major cause of this. If
the parameter space is too large, the Nelder–Mead optimizer often
fail and one of the other optimizers will do better.

2.2.2 GA GA was introduced by John Holland in the 1970s [10]. The idea is
to encode each solution as a chromosome-like data structure and
operate on them through actions analogous to genetic alterations,
which usually involves selection, recombination, and mutation. For
each type of alteration, various authors have developed different
techniques.

$ Jocx.py run . iso ga 0.0001 1000 0.1

# algorithm = _GAOptimiser

# timeout = None

# elite_count = 1

# population_size = 50

# initialization = UniformInitialisation

# selection = TournamentSelection

# tournament_ratio = 0.1

# selection_ratio = 0.75

# mutation = GaussianMutation

# point_mutation_ratio = 0.15

# mu = 0.0

# sigma = 0.01

#

# 2017-10-23 10:31:32.821761

#

# param0 = (1.0000000000000016e-05, 0.001)

# param1 = (99.99999999999996, 10000.0)

# param2 = (0.009999999999999995, 1.0)
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#

#

# POPULATION FOR GENERATION 1

# average_fitness = -5.32373335161

# min_fitness = -10.7962322739

# max_fitness = -0.613544122419

#

# gen idv fitness param0 param1 param2

1 1 -0.61354412 0.00002825 6305.95175380 0.04139445

1 2 -1.38710619 0.00004282 2182.61708962 0.03027973

1 3 -4.45085424 0.00001133 254.73764392 0.01081756

1 4 -9.37092993 0.00067074 116.84983427 0.13757425

1 5 -10.79623227 0.00071728 142.34535478 0.81564586

:

#

# POPULATION FOR GENERATION 2

# average_fitness = -5.83495296756

# min_fitness = -10.5697879572

# max_fitness = -0.613544122419

#

# gen idv fitness param0 param1 param2

2 1 -0.61354412 0.00002825 6305.95175380 0.04139445

2 2 -0.61382451 0.00002825 6305.95175380 0.13757425

2 3 -6.89850999 0.00002825 116.84983427 0.14110664

2 4 -10.47909826 0.00067074 145.01523656 0.81564586

2 5 -10.56978796 0.00067074 142.34535478 0.81564586

:

:

In the output of GA’s execution, we have multiple generations
of solutions, and multiple solutions per generation. Solutions in
each generation are ordered by the fitness, i.e., best solution is at
the top. The final solution is, therefore, the first solution in the last
generation.

2.2.3 PSO PSO was introduced by Eberhart and Kennedy in 1995 [5] as an
optimization technique relying on stochastic processes, similar to
GA. As its name implies, each individual solution mimics a particle
in a swarm. Each particle holds a velocity and keeps track of the best
positions it has experienced and best position the swarm has expe-
rienced. The former encapsulates the social influence, i.e., a force
pulling towards the swarm’s best. The latter encapsulates the cog-
nitive influence, i.e., a force pulling towards the particle’s best.
Both forces act on the velocity and drive the particle through a
hyperparameter space.
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$ Jocx.py run . iso pso 0.0001 1000 0.1

# algorithm = _PSOptimiser

# timeout = None

# max_iterations = 50

# particle_count = 50

# max_initial_velocity = 0.02

# omega = 0.9

# phi_particle = 0.3

# phi_swarm = 0.1

#

# 2017-10-23 10:32:29.123305

#

# param0 = (1.0000000000000016e-05, 0.001)

# param1 = (99.99999999999996, 10000.0)

# param2 = (0.009999999999999995, 1.0)

#

#

# PARTICLES FOR ITERATION 1

# swarm_fitness = -0.832535308472

# best_average_fitness = -4.40169918533

# best_minimum_fitness = -9.77654933959

# best_maximum_fitness = -0.832535308472

# current_average_fitness = -4.40169918533

# current_minimum_fitness = -9.77654933959

# current_maximum_fitness = -0.832535308472

#

# best- best- best- best-

# gen idv fitness param0 param1 param2 fitness param0 param1 param2

1 0 -0.83 0.000044 4619.31 0.20 -0.83 0.000044 4619.31 0.20

1 1 -0.86 0.000048 4502.80 0.26 -0.86 0.000048 4502.80 0.26

1 2 -0.89 0.000061 4669.48 0.58 -0.89 0.000061 4669.48 0.58

1 3 -1.10 0.000035 2970.77 0.31 -1.10 0.000035 2970.77 0.31

1 4 -1.46 0.000057 2148.93 0.15 -1.46 0.000057 2148.93 0.15

:

#

# PARTICLES FOR ITERATION 2

# swarm_fitness = -0.810479293858

# best_average_fitness = -4.02436023707

# best_minimum_fitness = -9.12434788412

# best_maximum_fitness = -0.810479293858

# current_average_fitness = -4.02984771812

# current_minimum_fitness = -9.12434788412

# current_maximum_fitness = -0.810479293858

#

# best- best- best- best-

# gen idv fitness param0 param1 param2 fitness param0 param1 param2

2 0 -0.81 0.000045 4854.87 0.25 -0.81 0.000045 4854.87 0.25
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2 1 -0.82 0.000040 4622.38 0.21 -0.82 0.000040 4622.38 0.21

2 2 -0.91 0.000064 4599.97 0.59 -0.89 0.000061 4669.48 0.58

2 3 -1.12 0.000038 2917.40 0.29 -1.10 0.000035 2970.77 0.31

2 4 -1.39 0.000058 2308.29 0.14 -1.39 0.000058 2308.29 0.14

:

:

In the output of the PSO’s execution, we have multiple gen-
erations and multiple particles (solutions) per generation. Each
particle contains two sets of solutions, the current solution and
the best solution that this particle has encountered throughout
the PSO’s execution. The latter is never worse than the former.
Similar to GA, each generation is ordered by the particles’ fitness.
The final solution is, therefore, the second solution of the first
particle in the last generation.

3 Simulation, Execution, and Result Summarization

In this section, we will use a simulation experiment to show how to
perform a full analysis and extract the final solution. We will use the
software fastSIMCOAL2 [6] to simulate sequences under given
demographic parameters, and we will use the two-population isola-
tion model. All scripts and input files used here can be found in the
Companion Material of this book.

We execute the following command to generate variable sites of
a two-sequence alignment.

$ ./fsc251 -i input.par -n 1

The first argument points to a file containing the demographic
parameters, shown below. The second argument specified the num-
ber of simulations to perform. We need only one pairwise
alignment.

$ cat input.par

//Number of population samples (demes)

2

//Population effective sizes (number of genes)

12000

12000

//Sample sizes

1

1

//Growth rates: negative growth implies population expansion

0

0

//Number of migration matrices : 0 implies no migration between demes

0
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//historical event: time, source, sink, migrants, ...

1 historical event

10000 0 1 1 2 0 0

//Number of independent loci [chromosome]

1 0

//Per chromosome: Number of linkage blocks

1

//per Block: data type, num loci, rec. rate ...

DNA 8000000 0.00000001 0.00000002 0.33

This simulation input file corresponds to the isolation model
demography and model parameters. Our goal is to recover these
parameters through CoalHMM model-based inference. The his-
torical event line contains seven parameters. They are the time
of the event (in generations), source population id, destination
population id, the proportion of a population that migrated in
this event, the new population size of the source population, the
new growth rate, and the new migration matrix to use after this
event. The last line contains five parameters. They are the type of
data, the size of simulated sequence, the recombination rate, and
the migration rate.

ISOLATION MODEL

∗

/ \ Tau

A B

Tau

= Sim_Time ∗ Sim_Mutation_rate

= 10000 ∗ 0.00000002

= 0.0002

Coal_rate

= 1 / (2 ∗ Sim_Population_size ∗ Sim_Mutation_rate)

= 1 / (2 ∗ 12000 ∗ 0.00000002)

= 2083

Recombination_rate

= Sim_Recombination_rate / Sim_Mutation_rate

= 0.00000001 / 0.00000002

= 0.5

The direct output from the simulation program is a directory of
the same name as the input file, and in this case this directory
contains three files:

$ ls input

input_1.arb input_1.simparam input_1_1.arp

The fist file input_1.arb lists the file paths and names of the
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generated alignments. The second file input_1.simparam
records simulation conditions and serves as a log. The last file
input_1_1.arp contains the variable sites of a sequence align-
ment. The content of this file is shown below.

$ less -S ./input/input_1_1.arp

#Arlequin input file written by the simulation program fas-

tsimcoal2

[Profile]

Title="A series of simulated samples"

NbSamples=2

GenotypicData=0

GameticPhase=0

RecessiveData=0

DataType=DNA

LocusSeparator=NONE

MissingData=’?’

[Data]

[[Samples]]

#Number of independent chromosomes: 1

#Total number of polymorphic sites: 10960

# 10960 polymorphic positions on chromosome 1

#414, 1380, 2815, 3855, 4036, 5364, 5772, 5816, ...

#Total number of recombination events: 5381

#Positions of recombination events:

# Chromosome 1

# 3350, 8236, 9270, 10691, 11097, 12316, ...

SampleName="Sample 1"

SampleSize=1

SampleData= {

1_1 1 CCTCGGTTGTTGTCAAGGACAGTAACTATG...

}

SampleName="Sample 2"

SampleSize=1

SampleData= {

2_1 1 GAATAAAAAAAACGTGAATGCAAGTACGAA...

}

[[Structure]]
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StructureName="Simulated data"

NbGroups=1

Group={

"Sample 1"

"Sample 2"

}

We use the script arlequin2fasta.py to convert the Arle-
quin alignment into Fasta files. Since the Arlequin file contains only
the variable sites, we need to specify the total length of the
simulated sequence, which should match the simulation parameter
in the input file intput.par, e.g., 8,000,000 in this example.

$ ./arlequin2fasta.py input/input_1_1.arp 8000000

This creates two Fasta sequences for the pairwise alignment,
and they are ready for Jocx’s analysis.

$ ls

input input.par

$ ./arlequin2fasta.py ./input/input_1_1.arp 8000000

$ ls

input input.par

input_1_1-sample_1-1_1.fasta input_1_1-sample_2-2_1.fasta

Analysis using Jocx follows a two-step procedure as described
earlier. We first prepare the ZipHMMdata directory using the init
command and then infer parameters using the run command. The
following commands conduct a full analysis, and it tests all three
optimization options using ten independent executions per
optimizer.

Jocx.py init . iso \

./input_1_1-sample_1-1_1.fasta \

./input_1_1-sample_2-2_1.fasta

Jocx.py run . iso pso 0.0001 1000 0.1 > pso-0.stdout

Jocx.py run . iso pso 0.0001 1000 0.1 > pso-1.stdout

:

Jocx.py run . iso pso 0.0001 1000 0.1 > pso-9.stdout

Jocx.py run . iso ga 0.0001 1000 0.1 > ga-0.stdout

Jocx.py run . iso ga 0.0001 1000 0.1 > ga-1.stdout

:

Jocx.py run . iso ga 0.0001 1000 0.1 > ga-9.stdout

Jocx.py run . iso nm 0.0001 1000 0.1 > nm-0.stdout

Jocx.py run . iso nm 0.0001 1000 0.1 > nm-1.stdout

:

Jocx.py run . iso nm 0.0001 1000 0.1 > nm-9.stdout
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Upon completion, we receive ten sets of parameter estimates
per optimization method. The format of the stand output, which
contains the inference results, is different for each optimization
method. We can use the following commands to summarize and
plot the outcome. This plotting script is also provided in the
Companion Material.

tail nm∗.stdout -n 1 -q > nm-summary.txt

grep ’500 1’ ga-∗.stdout > ga-summary.txt

grep ’500 1’ pso-∗.stdout > pso-summary.txt

./box-plot-simple.py nm-summary.txt 3 nm-summary.png

./box-plot-simple.py ga-summary.txt 3 ga-summary.png

./box-plot-simple.py pso-summary.txt 3 pso-summary.png

The results are shown in Fig. 3. The first command collects the
inference results from the NM optimizer. The last line in a NM
execution’s standard output contains the final estimates. The sec-
ond two commands collect the inference results from the GA and
PSO optimizers. The first solution/particle in the last generation/
iteration, which is 500 in this experiment, contains the estimates.

$ head ∗summary.txt

==> ga-summary.txt <==

ga-0.stdout: 500 1 -81395.70680891 0.00011837 1815.42025279 0.42354064

ga-1.stdout: 500 1 -81470.10001761 0.00019243 1938.38996498 0.12963492

ga-2.stdout: 500 1 -81424.59984134 0.00021634 1846.60957248 0.19741876

ga-3.stdout: 500 1 -81430.96932585 0.00021685 1886.66976041 0.18309926

ga-4.stdout: 500 1 -81386.45366757 0.00019324 1916.03941578 0.32995308

ga-5.stdout: 500 1 -81463.45628041 0.00004345 1915.25301917 0.23921500

ga-6.stdout: 500 1 -81373.58453032 0.00018669 1968.26116983 0.52133035

ga-7.stdout: 500 1 -81504.94579193 0.00021242 1500.28846236 0.10292456

ga-8.stdout: 500 1 -81374.56618397 0.00019414 2046.25788612 0.52203350

ga-9.stdout: 500 1 -81433.41521075 0.00022051 1876.14477389 0.17886387

==> nm-summary.txt <==

1 fmin-out -81373.5832257 0.000186088241216 1966.58533828 0.52229387809

1 fmin-out -81373.5832257 0.000186088706436 1966.58675497 0.52229303544

1 fmin-out -81373.5832257 0.00018608870264 1966.58640056 0.522294017033

1 fmin-out -81373.5832257 0.000186088642201 1966.5864041 0.522295006576

1 fmin-out -81373.5832257 0.000186088168201 1966.58599993 0.522295026609

1 fmin-out -81373.5832257 0.00018608835674 1966.58624347 0.522297122163

1 fmin-out -81373.5832257 0.000186088509117 1966.58601275 0.52229560587

1 fmin-out -81373.5832257 0.000186088949749 1966.58644739 0.522293271654

1 fmin-out -81373.5832257 0.000186088354698 1966.58755713 0.522294573711

1 fmin-out -81373.5832257 0.000186088870812 1966.5853934 0.522294569147
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==> pso-summary.txt <==

pso-0.stdout: 500 1 -81373.583 0.000186 1966.585 0.522 -81373.583 0.000186

1966.585 0.522

pso-1.stdout: 500 1 -81373.583 0.000186 1966.586 0.522 -81373.583 0.000186

1966.585 0.522

pso-2.stdout: 500 1 -81373.583 0.000186 1966.586 0.522 -81373.583 0.000186

1966.586 0.522

pso-3.stdout: 500 1 -81373.583 0.000186 1966.586 0.522 -81373.583 0.000186

1966.586 0.522

pso-4.stdout: 500 1 -81373.583 0.000186 1966.585 0.522 -81373.583 0.000186

1966.585 0.522

pso-5.stdout: 500 1 -81373.583 0.000186 1966.585 0.522 -81373.583 0.000186

Fig. 3 Summary of ten independent simulations and CoalHMM executions on the two-population isolation
model using the three optimisation methods. The three columns show parameters speciation time, coales-
cence rate, and recombination rate, respectively. The simulated values of these parameters are 0.0002, 2083,
and 0.5. The number written below each box-plot is the median value of the estimates shown on the y-axis.
This median can be used as a point estimate for the parameters
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1966.585 0.522

pso-6.stdout: 500 1 -81373.583 0.000186 1966.586 0.522 -81373.583 0.000186

1966.585 0.522

pso-7.stdout: 500 1 -81373.583 0.000186 1966.586 0.522 -81373.583 0.000186

1966.586 0.522

pso-8.stdout: 500 1 -81373.583 0.000186 1966.585 0.522 -81373.583 0.000186

1966.585 0.522

pso-9.stdout: 500 1 -81373.583 0.000186 1966.586 0.522 -81373.583 0.000186

1966.586 0.522

The plotting script simply places these estimates in box plots.
The first parameter indicates the summary file to plot. The second
parameter indicates the number of parameters that this model has.
For the two-population isolation model, we have three parameters.
Each particle in PSO contains two sets of results, the local best and
swarm best. The second set, swarm’s best, should be used. The last
parameter specifies the output file’s name. At the bottom of each
box plot we print the median value of the estimates.

The demographic parameters we use in this experiment are
0.0002, 2083, and 0.5. They are the split time of the two isolated
populations, the coalescent rate, and the recombination rate,
respectively. These values are roughly recovered by CoalHMM for
all the optimizers.

In summary, the following commands conduct a full simulation
and estimation data analysis, and it summarizes the final results by
creating box plots and printing the median estimate for each
parameter.

$ ./fsc251 -i input.par -n 1

$ ./arlequin2fasta.py input/input_1_1.arp 8000000

$ ./Jocx.py init . iso \

./input_1_1-sample_1-1_1.fasta \

./input_1_1-sample_2-2_1.fasta

$ ./Jocx.py run . iso pso 0.0001 1000 0.1 > pso-0.stdout

:

$ grep ’500 1’ pso-∗.stdout > pso-summary.txt

$ ./box-plot-simple.py pso-summary.txt 3 pso-summary.png

The first command simulates a pairwise sequence alignment
using the fastSIMCOAL2 program. The second command uses a
custom script to convert the simulated alignment from the Arle-
quin format to the Fasta format. The third command prepares the
ZipHMM directories using the Fasta sequences. The fourth com-
mand executes CoalHMM’s model inference and dumps the out-
put to a file. Potentially, multiple independent runs are dispatched
and a HPC cluster is involved in this step. The fifth command
obtains the inference results from the output file. The number
500 here is the maximum iteration count for this experiment, and
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the number 1 indicates the first particle in the last iteration. Finally,
the sixth command plots the parameters and presents the median
estimates as the final results.

4 Conclusions

We have presented the Jocx tool for estimating parameters in
ancestral population genomics. The tool uses a framework of pair-
wise coalescent hidden Markov models combined in a composite
likelihood to implement various demographic scenarios. A full list
of available demography models are available through the tool’s
help command. Using a simple isolation model, we described an
analysis pipeline based on simulating data and then analyzing it
using the three different optimizers implement in Jocx. This pipe-
line is available in the Companion Material associated with this
chapter, and serves as a good starting point for getting familiar
with Jocx before moving to more involved models.
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Chapter 9

Coalescent Simulation with msprime

Jerome Kelleher and Konrad Lohse

Abstract

Coalescent simulation is a fundamental tool in modern population genetics. The msprime library
provides unprecedented scalability in terms of both the simulations that can be performed and the efficiency
with which the results can be processed. We show how coalescent models for population structure and
demography can be constructed using a simple Python API, as well as how we can process the results of such
simulations to efficiently calculate statistics of interest. We illustrate msprime’s flexibility by implementing
a simple (but functional) approximate Bayesian computation inference method in just a few tens of lines
of code.

Key words Population genetics, Coalescent theory, Simulation, Python

1 Introduction

Thanks to the rapid advances in sequencing technology, generating
genome-wide sequence datasets for many species has become rou-
tine and there is great interest in learning about the history of
populations from sequence variation. The coalescent [15, 25, 40]
gives an elegant mathematical description of the ancestry of a
sample of sequences from a more or less idealized population and,
given its focus on samples, has become the backbone of modern
population genetics [16, 43]. However, despite the flood of
sequence data and the plethora of coalescent-based inference
tools now available, many analyses of genome wide variation remain
superficial or entirely descriptive. Progress on developing efficient
inference methods has been hindered in two ways. First, analytic
results for models of population structure and/or history are often
restricted to average coalescence times and small (often pairwise)
samples. Even when it is possible to derive the full distribution of
genealogies for realistic models and sample sizes, the results are
cumbersome and generally rely on automation using symbolic
mathematics software [28]. Second, and perhaps more fundamen-
tally, dealing with recombination has proven extremely challenging
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and we still lack analytic results for basic population genetic quan-
tities for a linear sequence with recombination even under the
simplest null models of genetic drift. Thus, inference methods
that incorporate linkage information [12, 26] generally rely on
substantial simplifying assumptions about recombination [31].

Because analytic approaches relating sequence variation to
mechanistic models of population structure and history are severely
limited, simulations—in particular, coalescent simulations—have
become an integral part of inference in a number of ways. First,
comparisons between analytic results and simulations serve as an
important sanity check for both. Second, while it is often possible
to use analytic approaches to obtain unbiased point estimates of
demographic parameters by ignoring linkage [10], quantifying the
uncertainty and potential biases in such estimates requires para-
metric bootstrapping on data simulated with linkage. Finally, a
range of inference methods directly rely on coalescent simulations
to approximate the likelihood (or in a Bayesian setting, the poste-
rior) of parameters under arbitrarily complex models of demogra-
phy. Inference based on approximate Bayesian computation (ABC)
[2, 6] or approximate likelihoods can be based either on single
nucleotide polymorphisms (SNPs) [9] or multilocus data [3, 4].

This chapter is a tutorial for running and analyzing coalescent
simulations using msprime [23]. As the name implies, msprime is
heavily indebted to the classical ms program [17], and largely
follows the simulation model that it popularized. The methods
for representing genealogies that underlie msprime are based on
earlier work on simulating coalescent processes in a spatial contin-
uum [21, 22]. There are many other coalescent simulators avail-
able—see refs. 1, 5, 14, 27, 46 for reviews—but msprime has some
distinct advantages. Firstly, msprime is capable of simulating sam-
ple sizes far larger than any other simulator, and is generally
extremely efficient. The ability to simulate hundreds of thousands
of realistic human genomes has already enabled simulation studies
that were hitherto impossible [29]. Secondly, msprime can simu-
late realistic models of recombination over whole chromosomes
without resorting to approximations. The Sequentially Markov
Coalescent (SMC) approximation [31] was largely motivated by
the need to efficiently simulate chromosome-length sequences
under the effects of recombination, which was unfeasible with
simulators such as ms [17]. However, for large sample sizes,
msprime is significantly faster than the most efficient SMC simula-
tor [39], rendering this approximation unnecessary for simulation
purposes [23]. (The SMC is an important analytic approximation,
however, and has led to many important advances in inference; see,
e.g., [12, 26, 36, 37]. See also Chapter 1 in this volume for formal
definitions of the SMC approximation, and Chapters 7, 8, and 10
for further applications.) Thirdly, the data structure that msprime
uses to represent the results of simulations is extremely concise and
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can be efficiently processed. This data structure is known as a
succinct tree sequence (or tree sequence for brevity), and its applica-
tions to other areas of population genomics is an active research
topic [24]. The tree sequence data structure reduces the amount of
space required to store simulations and removes the significant
overhead of loading and parsing large volumes of text in order to
analyze simulation data. As we see in Section 3, it also leads to
powerful algorithms for analyzing variation data. Finally,
msprime’s primary interface is through a simple but powerful
Python API, providing many advantages over command-line or
GUI based alternatives. One of the advantages of this approach is
the ease with which we can integrate with state-of-the-art analysis
tools from the Python ecosystem such as NumPy [42], SciPy [20],
Matplotlib [18], Pandas [30], Seaborn [44], and Jupyter Note-
books [35]. Part of the goal of this tutorial is to provide idiomatic
examples for interacting with these toolkits.

We assume a minimal working knowledge of Python, although
it should be possible to follow and replicate the examples given here
with no prior knowledge. All of the examples given here can be
found in the accompanying Jupyter notebook (see the Online
Resources section at the end of this chapter for details.) For those
beginning with Python, we recommend the tutorial that is part of
the official documentation. We also assume a basic knowledge of
coalescent theory; [43] is an excellent introduction.

The chapter is organized as follows. Section 2 provides an
overview of how to run coalescent simulations in msprime, includ-
ing some of the most important extensions to the basic model.
Section 3 illustrates by way of simple examples how we can effi-
ciently process the results of such simulations, with particular
emphasis on the methods required to work with large sample
sizes. We then provide some examples of how to compare simula-
tions with analytic predictions in Section 4, emphasizing idiomatic
ways of interacting with toolkits such as Pandas and Seaborn. In
Section 5, we show how msprime can be used to set up a simple
ABC inference. Inference tools are generally implemented with a
command line or graphical user interface and designed for a more
or less narrow set of inference problems. Thus the aim of Section 5
is to illustrate how msprime’s flexible Python API can be used to
build inference tools for arbitrary demographic histories from first
principles. Finally, we outline some future plans for msprime in
Section 6.

2 Running Simulations

In the following subsections we examine some basic examples of
running simulations with msprime, starting with the simplest pos-
sible models and adding the various complexities required to model
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biological populations. We use a notebook-like approach through-
out, where we intersperse code chunks and their results freely
within the text.

2.1 Trees

and Replication

At the simplest level, coalescent simulation is about generating trees
(or genealogies). These trees (which are always rooted) represent
the simulated history of a sample of individuals drawn from an
idealized population (in later sections we show how to vary the
properties of this idealized population). The function msprime.
simulate runs these simulations and the parameters that we pro-
vide define the simulation that is run. It returns a TreeSequence
object, which represents the full coalescent history of the sample. In
later sections we discuss the effects of recombination, when this
TreeSequence contains a sequence of correlated trees. For now,
we focus on non-recombining sequences and use the method
first( ) to obtain the tree object from this tree sequence.
(In general, we can use the trees( ) iterator to get all trees; see
Section 2.7.) For example, here we simulate a history for a sample
of three chromosomes:

1 import msprime
2 ts = msprime.simulate(3)
3 tree = ts.first()
4 SVG(tree.draw())

This code chunk illustrates the basic approach required to draw
a tree in a Jupyter notebook. We first generate a tree sequence
object (ts), and we then obtain the tree object representing the
first (and only) tree in this sequence. Finally, we draw a representa-
tion of this tree using the IPython SVG function on the output of
the tree.draw( ) method. By default, tree.draw( ) returns a
depiction of the tree in SVG format, but also supports plain text
rendering. For example, print( tree.draw( for-
mat¼unicode) ) prints the tree to the console using Unicode
box-drawing characters. This is a very useful debugging tool. We
have omitted the import statements required for the SVG function
here as it is rather specific to the Jupyter notebook environment. All
code chunks in this chapter are included in the accompanying
Jupyter notebook and are fully runnable.

The output of one random realization of this process is shown
in Fig. 1. The resulting tree has five nodes: nodes 0, 1, and 2 are
leaves, and represent our samples. Node 3 is an internal node, and is
the parent of 0 and 2. Node 4 is also an internal node, and is the
root of the tree. In msprime, we always refer to nodes by their
integer IDs and obtain information about these nodes by calling
methods on the tree object. For example, the code tree.chil-
dren( 4) will return the tuple ( 1, 3) here, as these are the node
IDs of the children of the root node. Similarly, tree.parent( 0)
will return 3.
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The height of a tree node is determined by the time at which
the corresponding ancestor was born. So, contemporary samples
always have a node time of zero, and time values increase as we go
upwards in the tree (i.e., further back in time). Times in msprime
are always measured in generations.

When we run a single simulation, the resulting tree is a single
random sample drawn from the probability distribution of coales-
cent trees. Since a single random draw from any distribution is
usually uninformative, we nearly always need to run many differ-
ent replicate simulations to obtain useful information. The sim-
plest way to do this in msprime is to use the num_replicates
argument.

1 import msprime
2 N = 1000
3 mean_T_mrca = 0
4 for ts in msprime.simulate(10, num_replicates=N):
5 tree = ts.first()
6 mean_T_mrca += tree.time(tree.root)
7 mean_T_mrca = mean_T_mrca / N
8 print(mean_T_mrca)
9

10 >>> 3.6717548653768133

In this example we run 1000 independent replicates of the
coalescent for a sample of 10 chromosomes, and compute the
mean time to the MRCA of the entire sample, i.e., the root of the
tree. The value of 3.7 generations in the past we obtain is of course
highly unrealistic. However, by default, time is measured in units of
4Ne generations (see the next section for details on how to specify
populationmodels and interpret times). It is important to note here
that although time is measured in units of generations, this is of
course an approximation and we may have fractional values. Inter-
nally, during a simulation time is scaled into coalescent units using

3

4

1 0 2

Fig. 1 Coalescent tree with mutations using the tree.draw( ) method
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the Ne parameter and once the simulation is complete, times are
scaled back into units of generations before being presented to the
user. This removes the burden of such tedious time scaling calcula-
tions from the user. We discuss these time scaling issues in more
detail in the next section.

The simulate function behaves slightly differently when it is
called with the num_replicates argument: rather than returning
a single tree sequence, we return an iterator over the individual
replicates. This means that we can use the convenient for loop
construction to consider each simulation in turn, but without
actually storing all these simulations. As a result, we can run
millions of replicates using this method without using any extra
storage.

When simulating coalescent trees, we are often interested in
more than just the mean of the distribution of some statistic. Rather
than compute the various summaries by hand (as we have done for
the mean in the last example), it is convenient to store the result for
each replicate in a NumPy array and analyze the data after the
simulations have completed. For example:

1 import msprime
2 import numpy as np
3 N = 1000
4 T_mrca = np.zeros(N)
5 for j, ts in enumerate(msprime.simulate(10, num_replicates=N)):
6 tree = ts.first()
7 T_mrca[j] = tree.time(tree.root)
8 print([np.mean(T_mrca), np.var(T_mrca)])
9

10 >>> [3.6690718290544053, 4.8541533617765706]

Here we simulate 1000 replicates, storing the time to the
MRCA for each replicate in the array T_mrca. We use the Python
enumerate function to simplify the process of efficiently inserting
values into this array, which simply ensures that j is 0 for the first
replicate, 1 for the second, and so on. Thus, by the time we finish
the loop, the array has been filled with TMRCA values generated
under the coalescent. We then use the NumPy library (which has an
extensive suite of statistical functions) to compute the mean and
variance of this array. This example is idiomatic, and we will use this
type of approach throughout. In the interest of brevity, we will omit
all further import statements from code chunks.

It is usually more convenient to use the num_replicates
argument to perform replication, but there are situations in which
it is desirable to specify random seeds manually. For example, if
simulations require a long time to run, we may wish to use multiple
processes to run these simulations. To ensure that the seeds used in
these different processes are unique, it is best to manually specify
them. For example,
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1 def run_simulation(seed):
2 ts = msprime.simulate(10, random_seed=seed)
3 tree = ts.first()
4 return tree.time(tree.root)
5
6 N = 1000
7 seeds = np.random.randint(1, 2**32 - 1, N)
8 with multiprocessing.Pool(4) as pool:
9 T_mrca = np.array(pool.map(run_simulation, seeds))

10 print(np.mean(T_mrca))
11
12 >>> 3.6459775450221832

In this example we create a list of 1000 seeds between 1 and
232 � 1 (the range accepted by msprime) randomly. We then use
the multiprocessing module to create a worker pool of four pro-
cesses, and run our different replicates in these subprocesses. The
results are then collected together in an array so that we can easily
process them. This approach is a straightforward way to utilize
modern multi-core processors.

Specifying the same random seed for two different simulations
(with the same parameters) ensures that we get precisely the same
results from both simulations (at least, on the same computer and
with the same software versions). This is very useful when we wish
to examine the properties of a specific simulation (for example,
when debugging), or if we wish to illustrate a particular example.
We will often set the random seed in the examples in this tutorial for
this reason.

2.2 Population

Models

In the previous section the only parameters we supplied to simu-
late were the sample_size and num_replicates parameters.
This allows us to randomly sample trees with a given number of
nodes, but, as it leaves the population unspecified, has little con-
nection with biological reality. The most fundamental population
parameter is the effective population size, or Ne. This parameter
simply rescales time; larger effective population sizes correspond
to older coalescence times:

1 def pairwise_T_mrca(Ne):
2 N = 10000
3 T_mrca = np.zeros(N)
4 for j, ts in enumerate(
5 msprime.simulate(2, Ne=Ne, num_replicates=N)):
6 tree = ts.first()
7 T_mrca[j] = tree.time(tree.root)
8 return np.mean(T_mrca)
9

10 print(
11 pairwise_T_mrca(0.5), pairwise_T_mrca(10),
12 pairwise_T_mrca(100))
13
14 >>> (0.99569690432656333, 19.816809844176138, 196.42125227336615)
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Thus, when we specifyNe ¼ 10 we get a mean pairwise coales-
cence time of about 20 generations, and with Ne ¼ 100, the mean
coalescence time is about 200 generations. See ref. 43 for details on
the biological interpretation of effective population size.

By default,Ne ¼ 1 in msprime, which is equivalent to measur-
ing time in units ofNe generations. It is very important to note that
Ne in msprime is the diploid effective population size, which means
that all times are scaled by 2Ne (rather than Ne for a haploid
coalescent). Thus, if we wish to compare the results that are given
in the literature for a haploid coalescent, then we must setNe to 1/
2 to compensate. For example, we know that the expected coales-
cence time for a sample of size 2 is 1, and this is the value we obtain
from the pairwise_T_mrca function when we haveNe ¼ 0.5. We
will usually assume that we are working in haploid coalescent time
units from here on, and so set Ne ¼ 0.5 in most examples. How-
ever, when running simulations of a specific organism and/or
population, it is substantially more convenient to use an appropriate
estimated value for Ne so that times are directly interpretable.

2.2.1 Exponentially

Growing/Shrinking

Populations

When we provide an Ne parameter, this specifies a fixed effective
population size. We can also model populations that are exponen-
tially growing or contracting at some rate over time. Given a
population size at the present s and a growth rate α, the size of
the population t generations in the past is se�αt. (Note again that
time and rates are measured in units of generations, not coalescent
units.)

In msprime, the initial size and growth rate for a particular
population are specified using the PopulationConfiguration
object. A list of these objects (describing the different populations;
see Section 2.4) are then provided to the simulate function.
When providing a list of PopulationConfiguration objects,
the Ne parameter to simulate is not required, as the initial_-
size of the population configurations performs the same task. For
example,

1 def pairwise_T_mrca(growth_rate):
2 N = 10000
3 T_mrca = np.zeros(N)
4 replicates = msprime.simulate(
5 population_configurations=[
6 msprime.PopulationConfiguration(
7 sample_size=2, initial_size=0.5,
8 growth_rate=growth_rate)],
9 num_replicates=N, random_seed=100)

10 for j, ts in enumerate(replicates):
11 tree = ts.first()
12 T_mrca[j] = tree.time(tree.root)
13 return np.mean(T_mrca)
14
15 print(
16 pairwise_T_mrca(0.05), pairwise_T_mrca(0),
17 pairwise_T_mrca(-0.05))
18 >>> (0.96598072124289924, 1.0124999939843193, 1.0694803236032397)
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Here we simulate the pairwise TMRCA for positive, zero, and
negative growth rates. When we have a growth rate of zero, we see
that we recover the usual result of 1.0 (as our initial size, and hence
Ne, is set to 1/2). When the growth rate is positive, we see that the
mean coalescence time is reduced, since the population size is
getting smaller as we go backwards in time, resulting in an increased
rate of coalescence. Conversely, when we have a negative growth
rate, the population is getting larger as we go backwards in time,
resulting in a slower coalescence rate. (Care must be taken with
negative growth rates, however, as it is possible to specify models in
which theMRCA is never reached. In some cases this will lead to an
error being raised, but it is also possible that the simulator will keep
generating events indefinitely. This is particularly important in
simulation based approaches to inference from real data.)

2.3 Mutations We cannot directly observe gene genealogies; rather, we observe
mutations in a sample of sequences which ultimately have occurred
on genealogical branches. We are therefore very often interested
not just in the genealogies generated by the coalescent process, but
also in the results of mutational processes imposed on these trees.
msprime currently supports simulating mutations under the infi-
nitely many sites model (arbitrarily complex mutations are sup-
ported by the underlying data model, however). This is accessed
by the mutation_rate parameter to the simulate function. As
usual, this rate is the per-generation rate.

1 ts = msprime.simulate(3, mutation_rate=1, random_seed=7)
2 tree = ts.first()
3 SVG(tree.draw())

The tree produced by this code chunk is shown in Fig. 2. Here
we have two mutations, shown by the red squares. Mutations occur
above a given node in the tree, and all samples beneath this node
will inherit the mutation. The infinite sites mutations used here are
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Fig. 2 Coalescent tree with mutations
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simple binary mutations, that is, the ancestral state is 0 and the
derived state is 1. One convenient way to access the resulting
sample genotypes is to use the genotype_matrix( ) method,
which returns an m � n NumPy array, if we have m variable sites
and n samples. Thus, if G is the genotype matrix, G[j, k] is the state
of the kth sample at the jth site. In our example above, the site 0 has
a mutation over node 3, and site 1 has a mutation over node 1, and
so we get the following matrix:

1 print(ts.genotype_matrix())
2
3 >>> array([[1, 0, 1],
4 [0, 1, 0]], dtype=uint8)

The genotype matrix gives a convenient way of accessing geno-
type information, but will consume a great deal of memory for
larger simulations. See Section 3.4 for more information on how
to access genotype data efficiently.

When comparing simulations to analytic results, it is very
important to be aware of the way in which the mutation rates are
defined in coalescent theory. For historical reasons, the scaled
mutation rate θ is defined as 2Neμ, where μ is the per-generation
mutation rate. Since all times and rates are specified in units of
generations in msprime, we must divide by a factor of two if we
are to compare with analytic predictions. For example, the mean
number of segregating sites for a sample of two is θ; to run this in
msprime we do the following:

1 N = 10000
2 theta = 5
3 S = np.zeros(N)
4 replicates = msprime.simulate(
5 2, Ne=0.5, mutation_rate=theta / 2, num_replicates=N)
6 for j, ts in enumerate(replicates):
7 S[j] = ts.num_sites # Number of segregrating sites.
8 print(np.mean(S))
9

10 >>> 4.8276000000000003

Note that here we set the mutation rate to θ/2 (to cancel out
the factor of 2 in the definition of θ) andNe ¼ 1/2 (so that time is
measured in haploid coalescent time units). Such factor-of-two
gymnastics are unfortunately unavoidable in coalescent theory.

2.4 Population

Structure

Following ms [17], msprime supports a discrete-deme model of
population structure in which d panmictic populations exchange
migrants according to the rates defined in an d � d matrix. This
approach is very flexible, allowing us to simulate island models
(in which all populations exchange migrants at a fixed rate), one-
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and two-dimensional stepping stone models (where migrants only
move to adjacent demes) and other more complex migration pat-
terns. This population structure is declared in msprime via the
population_configurations and migration_matrix para-
meters in the simulate function. The list of population config-
urations defines the populations; each element of this list must be a
PopulationConfiguration instance (each population has inde-
pendent initial population size and growth rate parameters). The
migration matrix is a NumPy array (or list of lists) of per-generation
migration rates; m[j, k] defines the fraction of population j that
consists of migrants from population k in each generation. (Note
that when running simulations on the coalescence scale, i.e. setting
Ne ¼ 1/2, this is equivalent to the number of migrants per deme
and generation M[j, k] ¼ 2Nem[j, k].)

1 pop_configs = [
2 msprime.PopulationConfiguration(sample_size=2),
3 msprime.PopulationConfiguration(sample_size=2)]
4 M = np.array([
5 [0, 0.1],
6 [0, 0]])
7 ts = msprime.simulate(
8 population_configurations=pop_configs, migration_matrix=M,
9 random_seed=2)

10 tree = ts.first()
11 colour_map = {0:"red", 1:"blue"}
12 node_colours = {
13 u: colour_map[tree.population(u)] for u in tree.nodes()}
14 SVG(tree.draw(node_colours=node_colours))

We create our model by first making a list of two Popula-
tionConfiguration objects. For convenience here, we use the
sample_size argument to these objects to state that we wish to
have two samples from each population. This results in samples
being allocated sequentially to the populations when simulate is
called: 0 and 1 are placed in population 0, and samples 2 and 3 are
placed in population 1. We then declare our migration matrix,
which is asymmetric in this example. Because M[0, 1] ¼ 0.1 and
M[1, 0] ¼ 0, forwards in time, individuals can migrate from popu-
lation 1 to population 0 but not vice versa. This is illustrated in
Fig. 3a which shows the tree produced by this simulation. Each
node has been colored by its population (red is population 0 and
blue population 1). Thus, the leaf nodes 0 and 1 are both from
population 0, and 2 and 3 are both from population 2 (as explained
above). As we go up the tree, the first event that occurs is 2 and
3 coalescing in population 1, creating node 4. After this, 4 coalesces
with node 0, which has at some point before this migrated into
deme 1, creating node 5. Node 1 also migrates into deme 1, where
it coalesces with 5. Because migration is asymmetric here, the
MRCA of the four samples must occur within deme 1.
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The exact history of migration events is available if we use the
record_migrations option. In the next example, we set up a
symmetric island model and track every migration event:

1 pop_configs = [
2 msprime.PopulationConfiguration(sample_size=3),
3 msprime.PopulationConfiguration(sample_size=1),
4 msprime.PopulationConfiguration(sample_size=1)]
5 M = [
6 [0, 1, 1],
7 [1, 0, 1],
8 [1, 1, 0]]
9 ts = msprime.simulate(

10 population_configurations=pop_configs, migration_matrix=M,
11 record_migrations=True, random_seed=101)
12 tree = ts.first()
13 colour_map = {0:"red", 1:"blue", 2: "green"}
14 node_colours = {
15 u: colour_map[tree.population(u)] for u in tree.nodes()}
16 SVG(tree.draw(node_colours=node_colours))

Figure 3b shows the tree produced by this code chunk. Here
we sample three nodes from population 0, but because there is a lot
of migration, the locations of coalescences are quite random. For
example, the first coalescence occurs in deme 2 (green), after node
0 has migrated in. To see the details of these migration events, we
can examine the “migration records” that are stored by msprime.
(These are not stored by default, as they may consume a substantial
amount of memory. The record_migrations parameter must be
supplied to simulate to turn on this feature.) Migration records
store complete information about the time, source, and destination
demes and the genomic interval in question. Here we are interested
in the total number of migration events experienced by each node:
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(b) Three population island

model

Fig. 3 Example trees produced in models with multiple populations and
migration. Nodes are colored by population. (a) Two populations with
asymmetric migration. (b) Three-population island model
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1 node_count = np.zeros(ts.num_nodes)
2 for migration in ts.migrations():
3 node_count[migration.node] += 1
4 plt.bar(np.arange(ts.num_nodes), node_count)
5 plt.xlabel("Node ID")
6 plt.ylabel("Number of migrations");

This code produces the plot in Fig. 4. We can see that node
0 experienced very few migration events before it ended up in deme
2, where it coalesced with 4 (which never migrated). Node 2, on
the other hand, migrated 30 times before it finally coalesced with
7 in deme 0. Note that there are many more migration events than
nodes here, implying that most migration events are not identifi-
able from a genealogy in real data [38].

Other forms of migration are also possible between specific
demes at specific times. These different demographic events are
dealt with in the next section.

2.5 Demographic

Events

Demographic events allow us to model more complex histories
involving changes to the population structure over time, and are
specified using the demographic_events parameter to simu-
late. Each demographic event occurs at a specific time, and the
list of events must be supplied in the order they occur (backwards in
time). There are a number of different types of demographic event,
which we examine in turn.

2.5.1 Migration Rate

Change

Migration rate change events allow us to update the migration rate
matrix at some point in time. We can either update a single cell in
the matrix or all (non-diagonal) entries at the same time.

Fig. 4 Number of migration events for each tree node in a simulation with migration
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1 ts = msprime.simulate(
2 population_configurations=[
3 msprime.PopulationConfiguration(sample_size=2),
4 msprime.PopulationConfiguration(sample_size=2)],
5 demographic_events=[
6 msprime.MigrationRateChange(20, rate=1.0, matrix_index=(0, 1))],
7 random_seed=2)
8 tree = ts.first()

The tree produced by this code chunk is shown in Fig. 5a
(in this example and those following we have omitted the code
required to draw the tree). The samples 0 and 1, and 2 and 3 coa-
lesce quickly within their own populations. However, because the
migration rate between the populations is zero these lineages are
isolated and would never coalesce without some change in demog-
raphy. The migration rate change event happens at time 20, result-
ing in node 5 migrating to deme 1 soon afterwards. The lineages
then coalesce at time 21.4.

2.5.2 Mass Migration This class of event allows us to move some proportion of the
lineages in one deme to another at a particular time. This allows
us to model population splits and admixture events. Population
splits occur when (backwards in time) all the lineages in one popu-
lation migrate to another.

1 ts = msprime.simulate(
2 population_configurations=[
3 msprime.PopulationConfiguration(sample_size=3),
4 msprime.PopulationConfiguration(sample_size=3)],
5 demographic_events=[
6 msprime.MassMigration(15, source=1, dest=0, proportion=1)],
7 random_seed=20)
8 tree = ts.first()

5 (t=2.0)
4 (t=0.4)

6(t=21.4)

(a) Migration rate change

6

9 (t=3.64)
78 (t=2.69)

10(t=17.15)

(b) Mass migration

9 (t=4.5)

8 (t=0.7)
67

10(t=6.9)

2 3 0 1 2 0 1 5 3 4 5 2 4 0 1 3
(c) Admixture

Fig. 5 Example trees produced in models with demographic events. Nodes are colored by population. (a)
Migration rate change. (b) Mass migration. (c) Admixture
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The tree produced by this code chunk is shown in Fig. 5b. In
this case we also have two isolated populations which coalesce down
to a single lineage. The population split at time 15 (which, forwards
in time produced all the individuals in population 1) results in this
lineage migrating back to population 0, where it coalesces with the
ancestor of the samples 0, 1, and 2.

Admixture events (i.e., where some fraction of the lineages
move to a different deme) are specified in the same way:

1 ts = msprime.simulate(
2 population_configurations=[
3 msprime.PopulationConfiguration(sample_size=6),
4 msprime.PopulationConfiguration(sample_size=0)],
5 demographic_events=[
6 msprime.MassMigration(0.5, source=0, dest=1, proportion=0.5),
7 msprime.MigrationRateChange(1.1, rate=0.1),
8 ],
9 random_seed=26)

10 tree = ts.first()

The tree produced by this code chunk is shown in Fig. 5c. We
begin in this example with six lineages sampled in population
0, zero samples in population 1, and with no migration between
these populations. At time 0.5, we specify an admixture event
where each of the four extant lineages (5, 7, 0, and 6) has a
probability of 1/2 of moving to deme 1. Linages 0 and 6 migrate,
and subsequently coalesce into node 8. Further back in time, at
t ¼ 1.1, another demographic event occurs, changing the migra-
tion rate between the demes to 0.1, thereby allowing lineages to
move between them. Eventually, all lineages end up in deme
1, where they coalesce into the MRCA at time t ¼ 6.9.

2.5.3 Population

Parameter Change

This class of event represents a change in the growth rate or size of a
particular population. Since each population has its own individual
size and growth rates, we can change these arbitrarily as we go
backwards in time. Keeping track of the actual sizes of different
populations can be a little challenging, and for this reason msprime
provides a DemographyDebugger class.

To illustrate this, we consider a very simple example in which
we have a single population experiencing a phase of exponential
growth from 750 to 100 generations ago. The size of the popula-
tion 750 generations ago was 2000, and it grew to 20,000 over the
next 650 generations. The size of the population has been stable at
this value for the past 100 generations. We encode this model as
follows:
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1 N1 = 20000 # Population size at present
2 N2 = 2000 # Population size at start (forwards in time) of exponential growth.
3 T1 = 100 # End of exponential growth period (forwards in time)
4 T2 = 750 # Start of exponential growth period (forwards in time)
5 # Calculate growth rate; solve N2 = N1 * exp(-alpha * (T2 - T1))
6 growth_rate = -np.log(N2 / N1) / (T2 - T1)
7 population_configurations = [
8 msprime.PopulationConfiguration(initial_size=N1)
9 ]

10 demographic_events = [
11 msprime.PopulationParametersChange(time=T1, growth_rate=growth_rate),
12 msprime.PopulationParametersChange(time=T2, growth_rate=0),
13 ]
14 dd = msprime.DemographyDebugger(
15 population_configurations=population_configurations,
16 demographic_events=demographic_events)
17 dd.print_history()

It gives the following output:

=============================

Epoch: 0 -- 100.0 generations

=============================

start end growth_rate | 0

-------- -------- -------- | --------

0 | 2e+04 2e+04 0 | 0

Events @ generation 100.0

- Population parameter change for -1: growth_rate -> 0.0035

=================================

Epoch: 100.0 -- 750.0 generations

=================================

start end growth_rate | 0

-------- -------- -------- | --------

0 | 2e+04 2e+03 0.00354 | 0

Events @ generation 750.0

- Population parameter change for -1: growth_rate -> 0

===============================

Epoch: 750.0 -- inf generations

===============================

start end growth_rate | 0

-------- -------- -------- | --------

0 | 2e+03 2e+03 0 | 0

After we set up our model, we use the DemographyDebugger
to check our calculations. We see that time has been split into three
“epochs.” From the present until 100 generations ago, the
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population size is constant at 20,000. Then, we have a demo-
graphic event that changes the growth rate to 0.0035, which
applies over the next epoch (from 100 to 750 generations ago).
Over this time, the population grows from 2000 to 20,000 (note
that the “start” and “end” of each epoch is looking backwards in
time, as we consider epochs starting from the present and moving
backwards). At generation 750, another event occurs, setting the
growth rate for the population to 0. Then, the population size is
constant at 20,000 from generation 750 until the indefinite past.

A more complex example involving a three-population out-of-
Africa human model is available in the online documentation.

2.6 Ancient Samples Up to this point we have assumed that all samples are taken at the
present time. However, msprime allows us to specify arbitrary
sampling times and locations, allowing us to simulate (for example)
ancient samples.

1 ts = msprime.simulate(
2 samples=[
3 msprime.Sample(0, 0), msprime.Sample(0, 0),
4 msprime.Sample(0, 0),
5 msprime.Sample(1, 0.75), # Ancient sample in deme 1
6 ],
7 population_configurations=[
8 msprime.PopulationConfiguration(),
9 msprime.PopulationConfiguration()],

10 migration_matrix=[
11 [0, 1],
12 [1, 0]],
13 random_seed=22)
14 tree = ts.first()

The tree produced by this code chunk is shown in Fig. 6. All of
the trees that we previously considered had leaf nodes at time zero.
In this case, the samples 0, 1, and 2 are taken at time 0 in population
0, but node 3 is sampled at time 0.75 in population 1. Note that in
this case we used the samples parameter to simulate to specify
our samples. This is the most general approach to assigning

5

4

6

3 (t=0.75)

2 0 1

Fig. 6 Example tree produced by simulation with ancient samples
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samples, and allows samples to be assigned to arbitrary populations
and at arbitrary times.

2.7 Recombination One of the key innovations of msprime is that it makes simulation
of the full coalescent with recombination possible at whole-
chromosome scale. Adding recombination to a simulation is sim-
ple, requiring very minor changes to the methods given above.

1 ts = msprime.simulate(
2 10, Ne=1e4, length=1e5, recombination_rate=1e-8, random_seed=3)
3 print(ts.num_trees)
4 >>> 82

In this case, we provide two extra parameters: length, which
defines the length of the genomic region to be simulated, and
recombination_rate, which defines the rate of recombination
per unit of sequence length, per generation. It is often useful to
think of both sequence lengths and recombination rates as defined
in units of base-pairs. (Note, however, that these are continuous
values, so this correspondence should not be taken too literally.
Note also that because msprime assumes an infinite sites mutation
model the length parameter is not connected to the number of
mutational sites. Thus any number of mutations can occur on a
given sequence length, depending on the mutation rate specified.)
For this example, we defined a sequence length of 100 kb, and a
recombination rate of 10�8 per base per generation. The result of
this particular simulation is a tree sequence that contains 82 distinct
trees. Other replicate simulations with different random seeds will
usually result in different numbers of trees.

Up to this point we have focused on simulations that returned a
single tree representing the genealogy of a sample. The inclusion of
recombination, however, means that there may be more than one
tree relating our samples. The TreeSequence object returned by
msprime is a very concise and efficient representation of these
highly correlated trees. To process the trees, we simply consider
them one at a time, using the trees( ) iterator.

1 tmrca = np.zeros(ts.num_trees)
2 breakpoints = np.zeros(ts.num_trees)
3 for tree in ts.trees():
4 tmrca[tree.index] = tree.time(tree.root)
5 breakpoints[tree.index] = tree.interval[0]
6 plt.ylabel("T_mrca (Generations)")
7 plt.xlabel("Position (kb)")
8 plt.plot(breakpoints / 1000, tmrca, "o");

This code generates the plot in Fig. 7 showing the time of the
MRCA of the sample for each tree across the sequence. We find the
TMRCA as before, and plot this against the left coordinate of the
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genomic interval that each tree covers. A full description of tree
sequences and the methods for working with them is beyond the
scope of this chapter (but see the online documentation for more
details).

It is also possible to simulate data with recombination rates
varying across the genome (for example, in recombination hot-
spots). To do this, we first create a RecombinationMap instance
that describes the properties of the recombination landscape that
we wish to simulate. We then supply this object to simulate using
the recombination_map argument. In the following example, we
simulate 100 samples using the human chromosome 22 recombi-
nation map from the HapMap project [19]. Figure 8 shows the
recombination rate and the locations of breakpoints from the sim-
ulation, and the density of breakpoints closely follows the recombi-
nation rate, as expected.

1 # Read in the recombination map and run the simulation.
2 infile = "genetic_map_GRCh37_chr22.txt"
3 recomb_map = msprime.RecombinationMap.read_hapmap(infile)
4 ts = msprime.simulate(
5 sample_size=100,
6 Ne=10**4,
7 recombination_map=recomb_map,
8 random_seed=1)

Although coordinates are specified in floating point values,
msprime uses a discrete loci model when performing simulations.
By default, the number of loci is very large (�232), and the loca-
tions of breakpoints are translated back into the coordinate system
defined by the recombination map. However, the number of loci is

Fig. 7 Time to the MRCA of a sample across a 100 kb region
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configurable and it is possible to simulate a specific number of
discrete loci.

2 length=10, rate=1, num_loci=10)
3 ts = msprime.simulate(2, recombination_map=recomb_map)
4 print(list(ts.breakpoints()))
5 >>> [0, 1.0, 2.0, 3.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]

1 recomb_map = msprime.RecombinationMap.uniform_map(

Here we simulate the history of two samples in a system with
ten loci, each of length 1 with recombination rate of 1 between
adjacent loci per generation. In the output, we see that the break-
points between trees now occur exactly at the integer boundaries
between these loci. This shows that we can also simulate models of
recombination with discrete loci in msprime, as well as the more
standard continuous genome.

3 Processing Results

In the previous section we showed how to run simulations in
msprime, and how to construct population models and demo-
graphic histories. In this section we show how to process the results
of simulations. This is not a comprehensive review of the capabil-
ities of the msprime Python API, but concentrates on some useful
examples. msprime is specifically designed to enable very large
simulations, and the processing methods we demonstrate below
are all very efficient. To illustrate this, we consider a simulation of

Fig. 8 The HapMap genetic map for chromosome 22 (blue) matches the density of breakpoints for a simulated
chromosome (green) well
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200,000 samples of ten megabases from a simple two-population
model with human-like parameters:

1 ts = msprime.simulate(
2 population_configurations=[
3 msprime.PopulationConfiguration(sample_size=10**5),
4 msprime.PopulationConfiguration(sample_size=10**5)],
5 demographic_events=[
6 msprime.MassMigration(time=50000, source=1, destination=0)],
7 Ne=10**4, recombination_rate=1e-8, mutation_rate=1e-8, length=10*10**6,
8 random_seed=3)
9 print((ts.num_trees, ts.num_sites))

10
11 >>> (93844, 102270)

This simulation required about 20 s to complete.

3.1 Computing

MRCAs

We are often interested in finding the most recent common ances-
tor (MRCA) of a pair (or many pairs) of samples. For example,
identity-by-descent (IBD) tracts are defined as contiguous stretches
of genome in which the MRCA for a pair of samples is the same.
Computing IBD segments for a pair of samples is very
straightforward:

1 def ibd_segments(ts, a, b):
2 trees_iter = ts.trees()
3 tree = next(trees_iter)
4 last_mrca = tree.mrca(a, b)
5 last_left = 0
6 segment_lengths = []
7 for tree in trees_iter:
8 mrca = tree.mrca(a, b)
9 if mrca != last_mrca:
10 left = tree.interval[0]
11 segment_lengths.append(left - last_left)
12 last_mrca = mrca
13 last_left = left
14 segment_lengths.append(ts.sequence_length - last_left)
15 return np.array(segment_lengths) / ts.sequence_length
16
17 sns.distplot(ibd_segments(ts, 0, 1), label="Within population")
18 sns.distplot(ibd_segments(ts, 0, 10**5), label="Between populations")
19 plt.xlim(-0.0001, 0.003)
20 plt.legend()
21 plt.xlabel("Fraction of genome length");
22 plt.ylable("Count")

In this example we create a function ibd_segments that
returns a NumPy array of the lengths of IBD segments for a given
pair of samples, a and b. It works simply by computing the MRCA
for the samples at the left-hand side of the sequence and then,
moving rightwards, records a segment each time the MRCA
changes. We then plot the distribution of tract lengths for samples
0 and 1 (which are both in population 0), and also the tract lengths
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for a pair of samples from different populations. The results are
shown in Fig. 9. As we might expect, the tract lengths are shorter
for the between population pair.

Of course, we would need to sample many such pairs of samples
or longer sequences to get a reasonable approximation of the real
distribution of block lengths. Because the main cost of this function
is the iteration over all the trees in the sequence, it would be more
efficient to keep track of the MRCAs for different pairs in a single
iteration rather than repeatedly call the above ibd_segments
function.

3.2 Sample Counts The msprime API provides an extremely efficient way to count the
number of samples that are beneath a particular node in a tree. This
can be used, for example, to compute allele frequencies efficiently
and is the basis for many of the fast algorithms in the API. As a simple
illustration of this technique, consider the following code to com-
pute the number of sites with derived allele frequency less than 1%:

1 N = ts.num_samples
2 threshold = 0.01
3 num_rare_derived = 0
4 for tree in ts.trees():
5 for site in tree.sites():
6 # Only works for infinite sites mutations.
7 assert len(site.mutations) == 1
8 mutation = site.mutations[0]
9 if tree.num_samples(mutation.node) / N < threshold:
10 num_rare_derived += 1
11 print((num_rare_derived, num_rare_derived / ts.num_sites))
12
13 >>> (65258, 0.638095238095238)

Fig. 9 The distribution of the length of IBD segments for a pair of samples taken from the same or different
populations
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In this example we iterate over all the trees in the tree sequence,
and then iterate over all the sites in each tree. We find the frequency
of the derived allele at each site using the num_samples method,
which returns the number of samples subtending a given node. The
underlying implementation ensures that this operation requires
constant time, and so it is very efficient. We see that such rare alleles
are common. (We reiterate that msprime currently generates muta-
tions under the infinitely many sites model so that each mutation
occurs at a unique site. Future versions of msprime or other
software packages may produce tree sequences with back or recur-
rent mutations, where this simple approach will not work. To
emphasize this point and to ensure that the above code chunk is
not accidentally applied in such situations we have included an
assert statement. We use asserts in a similar way in later code
chunks.)

A powerful feature of this sample-counting approach is that we
can perform the same operation over an arbitrary subset of the
samples. For example, suppose we wished to count the number of
sites that are private to a specific population:

1 def num_private_sites(pop_id):
2 pop_samples = ts.samples(pop_id)
3 num_private = 0
4 for tree in ts.trees(tracked_samples=pop_samples):
5 for site in tree.sites():
6 # Only works for infinite sites mutations.
7 assert len(site.mutations) == 1
8 mutation = site.mutations[0]
9 total = tree.num_samples(mutation.node)

10 within_pop = tree.num_tracked_samples(mutation.node)
11 if total == within_pop:
12 num_private += 1
13 return num_private
14
15 private_0 = num_private_sites(0)
16 private_1 = num_private_sites(1)
17 print((ts.num_sites, private_0 + private_1, private_0, private_1))
18
19 >>> (102270, 101607, 51295, 50312)

This example is very similar, except we provide an extra argu-
ment to ts.trees. The tracked_samples argument specifies a
list of samples to be tracked, which can be any arbitrary subset of
the samples in the simulation. Here we indicate that we are inter-
ested in tracking the set of samples within the population in ques-
tion. Again, we iterate over all trees and over all sites within trees.
Then, for each infinite sites mutation we compute two frequencies:
the overall number of samples that inherit from the mutation’s
node, and the number of tracked samples within the focal popula-
tion that inherit from this node. If the total count is equal to the
within-population count, we know that this mutation is private to
the population.
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3.3 Obtaining

Subsets

In some situations it is useful to analyze data for different subsets of
the samples separately. This is possible using the simplify method:

1 samples = [1, 3, 5, 7]
2 ts_subset = ts.simplify(samples)
3 print((
4 ts_subset.num_sites, ts_subset.num_trees,
5 ts.num_sites, ts.num_trees))
6 >>> (11939, 5483, 102270, 93844)

Here we extract the tree sequence representing the history of a
tiny subset of the original samples, with IDs 1, 3, 5, and 7. The
subset tree sequence contains all the genealogical information rele-
vant to the subsamples, but no more. Concretely, both coalescences
that are not ancestral to the subsample and coalescences that pre-
date the MRCA of the subsample are excluded. Thus, the number
of distinct trees is greatly reduced. By default, we also remove any
sites that have no mutations within these subtrees (i.e., those that
are fixed for the ancestral state). These can be retained by using the
filter_sites¼False argument.

Node IDs in the simplified tree sequence are not the same as in
the original. The map_nodes argument allows us to obtain the
mapping from IDs in the original tree sequence to their equivalent
nodes in the new tree sequence.

1 ts_subset, node_map = ts.simplify(samples, map_nodes=True)
2 tree = ts_subset.first()
3 node_labels = {
4 node_map[j]: "{}({})".format(node_map[j], str(j))
5 for j in range(ts.num_nodes)}
6 SVG(tree.draw(node_labels=node_labels, width=400))

The result of running this code chunk is shown inFig. 10.Herewe
draw the first tree in the subset tree sequence, showing the new node
IDs along with the IDs from the original tree sequence in parentheses.
The number of nodes is greatly reduced from the original.

1458(459639)

15(445380)

2880(463632)

2(5) 3(7) 0(1) 1(3)

Fig. 10 Tree of a subset of the samples in a large simulation. Node IDs in the subset and full tree sequences
are shown
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3.4 Processing

Variants

While it is nearly always more efficient to work with mutations in
terms of their context within the trees, it is sometimes more conve-
nient to work with the allelic states of the samples. This information
is obtained in msprime using the variants( ) iterator, which
returns a Variant object for each site in the tree sequence. A
Variant consists of: (a) a reference to the Site in question;
(b) the alleles at this site (the strings representing the actual
states); and (c) the genotypes representing the observed state for
each sample. The genotypes are encoded in a NumPy array, such
that variant.alleles[variant.genotypes[j]] gives the
allelic state for sample j. The values in the genotypes array are
therefore indexes into the alleles list. The ancestral state at a
given site is guaranteed to be the first element in the alleles list,
but no other assumptions about ordering of the alleles list should
be made.

For biallelic sites, working with genotypes is straightforward as
the genotypes array can only contain 0 and 1 values, which corre-
spond to the ancestral and derived states, respectively. The geno-
types values are returned as a NumPy array, and so the full NumPy
library is available for efficient processing. As an example, we show
here how to count the number of sites at which the derived allele is
at frequency less than 10%. Using the genotypes in this way is
convenient, as complex patterns of back and recurrent mutations
can be handled without difficulty.

1 %%time
2 threshold = 0.1
3 num_rare = 0
4 for variant in ts.variants():
5 # Will work for any biallelic sites; back/recurrent mutations OK
6 assert len(variant.alleles) == 2
7 if np.sum(variant.genotypes) / ts.num_samples < threshold:
8 num_rare += 1
9 print(num_rare)

10 >>> 83081
11 CPU times: user 1min 30s, sys: 4 ms, total: 1min 30s

This code is straightforward, as we simply iterate over all var-
iants and count the number of one values in the genotypes array.
Using the np.sum function, this operation is efficient. Generating
all the genotypes for 200,000 samples at 100,000 sites, however, is
an expensive operation and the overall calculation takes about
1.5 min to complete.

In the case of infinite sites mutations, we can recast this opera-
tion to use the efficient sample counting methods described in
Section 3.2. This approach is far more efficient, requiring less
than 2 s to compute the same value.
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1 %%time
2 num_rare = 0
3 for tree in ts.trees():
4 for site in tree.sites():
5 # Only works for infinite sites mutations.
6 assert len(site.mutations) == 1
7 mutation = site.mutations[0]
8 if tree.num_samples(mutation.node) / ts.num_samples < threshold:
9 num_rare += 1

10 print(num_rare)
11 >>> 83081
12 CPU times: user 1.75 s, sys: 36 ms, total: 1.79 s

3.5 Incremental

Calculations

A powerful property of the tree sequence representation is that we
can efficiently find the differences between adjacent trees. This is
very useful when we have some value that we wish to compute that
changes in a simple way between trees. The edge_diffs iterator
provides us with the information that we need to perform such
incremental calculations. Here we use it to keep a running track of
the total branch length of our trees, without needing to perform a
full traversal each time.

1 def get_total_branch_length(ts):
2 current = 0
3 total_branch_length = np.zeros(ts.num_trees)
4 for j, (_, edges_out, edges_in) in enumerate(ts.edge_diffs()):
5 for e in edges_out:
6 current -= ts.node(e.parent).time - ts.node(e.child).time
7 for e in edges_in:
8 current += ts.node(e.parent).time - ts.node(e.child).time
9 total_branch_length[j] = current

10 return total_branch_length

This function returns the total branch length value for each tree
in the sequence as a NumPy array. It works by keeping track of the
total branch length as we proceed from left to right, and storing this
value in the output array for each tree. The edge_diffs method
returns a list of the edges that are removed for each tree transition
(edges_out) and a list of edges that are inserted (edges_in).
Computing the current value for the total branch length is then
simply a case of subtracting the branch lengths for all outgoing
edges and adding the branch lengths for all incoming edges. This is
extremely efficient because, after the first tree has been constructed
there is at most four incoming and outgoing edges [23]. Thus, each
tree transition costs constant time.

1 %%time
2 tbl = get_total_branch_length(ts)
3
4 CPU times: user 7.67 s, sys: 64 ms, total: 7.74 s
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In contrast, if we compute the total branch length by
performing a full traversal for each tree, each tree transition is
very costly when we have a large sample size. In this example,
computing the array of branch lengths using the incremental
approach given here took 8 s. Computing the same array using
the tree.total_branch_length for each tree in a straightfor-
ward way still had not completed after twenty minutes. (This is
because msprime currently implements this operation by a full
traversal in Python; in future, this may change to using the algo-
rithm given here.) Full tree traversals of large trees are expensive,
and great gains can be made if calculations can be expressed in an
incremental manner using edge_diffs.

3.6 Exporting

Variant Data

If the msprime API doesn’t provide methods to easily calculate the
statistics you are interested in, it’s straightforward to export the
variant data into other libraries using the genotype_matrix() or
variants( ) methods. We recommend the excellent scikit-
allel [32] and pylibseq [https://pypi.python.org/pypi/
pylibseq] libraries (pylibseq is a Python interface to libse-
quence [41]). If you wish to export data to external programs,
VCF may be best option, which is supported using the write_vcf
method. The simplifymethod is useful here if you wish to export
data from a subset of the simulated samples.

However, it is worth noting that for large sample sizes, export-
ing genotype data may require a great deal of memory and take
some time. One of the advantages of the msprime API is that we
do not need to explicitly generate genotypes in order to compute
many statistics of interest.

4 Validating Analytic Predictions

In this section we show some examples of validating simple analytic
predictions from coalescent theory using simulations. The number
of segregating sites is the total number of mutations that occurred
in the history of the sample (assuming the infinite sites mutation
model). Since mutations happen as a Poisson process along the
branches of the tree, what we are really interested in is the distribu-
tion of the total branch length of the tree. The results in this section
are well-known classical results from coalescent theory; this section
is intended as a demonstration of how to proceed when comparing
analytic results to simulations. We show some idiomatic examples
for integrating with the state-of-the-art data analysis packages such
as Pandas [30] and Seaborn [44]. All analytic predictions are taken
from [43].
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4.1 Total Branch

Length and

Segregating Sites

The first properties we are interested in are the mean and the
variance of the total branch length of coalescent trees. (Note that,
as before, we set Ne ¼ 1/2 to convert between msprime’s diploid
time scaling to the haploid time scaling of these analytic results.)

1 ns = np.array([5, 10, 15, 20, 25, 30])
2 num_reps = 10000
3 n_col = np.zeros(ns.shape[0] * num_reps)
4 T_total_col = np.zeros(ns.shape[0] * num_reps)
5 row = 0
6 for n in ns:
7 for ts in msprime.simulate(n, Ne=0.5, num_replicates=num_reps):
8 tree = ts.first()
9 n_col[row] = n

10 T_total_col[row] = tree.total_branch_length
11 row += 1
12 df = pd.DataFrame({"n": n_col, "T_total": T_total_col})

We first create an array of the six different n values that we wish
to simulate, and then create arrays to hold the results of the simula-
tions. Because we are running 10,000 replicates for each sample
size, we allocate arrays to hold 60,000 values. This approach of
storing the data in arrays is convenient because it allows us to use
Pandas dataframes in an idiomatic fashion. We then iterate over all
of our sample sizes and run 10,000 replicates of each. For each
simulation, we simply store the sample size value and the total
branch length in a Pandas dataframe. This gives us access to many
powerful data analysis tools (including the Seaborn library, which
we use for visualization here).

After we have created our simulation data, we define our ana-
lytic predictions and plot the data.

1 def T_total_mean(n):
2 return 2 * np.sum(1 / np.arange(1, n))
3
4 def T_total_var(n):
5 return 4 * np.sum(1 / np.arange(1, n)**2)
6
7 mean_T = np.array([T_total_mean(n) for n in ns])
8 stddev_T = np.sqrt(np.array([T_total_var(n) for n in ns]))
9 ax = sns.violinplot(

10 x="n", y="T_total", data=df, color="grey", inner=None)
11 ax.plot(mean_T, "-");
12 ax.plot(mean_T - stddev_T, "--", color="black");
13 ax.plot(mean_T + stddev_T, "--", color="black");
14 group = df.groupby("n")
15 mean_sim = group.mean()
16 stddev_sim = np.sqrt(group.var())
17 x = np.arange(ns.shape[0])
18 ax.plot(x, mean_sim, "o")
19 line, = ax.plot(x, mean_sim - stddev_sim, "ˆ")
20 ax.plot(x, mean_sim + stddev_sim, "ˆ", color=line.get_color());

The plot in Fig. 11a shows the simulated distribution of the
total branch length over replicate simulations (each violin is a
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distribution for a given sample size). We also show our analytic
prediction for the mean and variance of each distribution (the
dashed lines show � 1 standard deviation from the mean). Also
shown are the observed means and standard deviations from the
simulations, as green circles and red triangles, respectively. We can
see that the simulated values match our theoretical predictions for
mean and variance very well. We can also see, however, that these

Fig. 11 Comparisons of the distribution of simulated total branch lengths with
analytic results. (a) The full distribution of simulated values (violin plots) along with
observed and predicted mean and standard deviations for a range of sample sizes.
(b) The full simulated and predicted distribution of total branch length for n ¼ 20
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one-dimensional summaries of the distribution capture some essen-
tial properties but lose some important aspects of the distribution.

Ideally, we wish to capture the full distribution analytically. In
the following code chunk we define the analytic prediction for the
total branch length distribution, and compare it with the simulated
distribution for a sample of size 20. The results are shown in
Fig. 11b. We can see an excellent agreement between the smoothed
kernel density estimate produced by Seaborn and the theoretical
prediction.

1 def T_total_density(n, t):
2 e_t2 = np.exp(-t / 2)
3 return 0.5 * (n - 1) * e_t2 * (1 - e_t2)**(n - 2)
4
5 n = 20
6 T_total_20 = T_total_col[n_col == n]
7 ts = np.linspace(0, np.max(T_total_20), 25)
8 t_densities = np.array([T_total_density(n, t) for t in ts])
9 sns.distplot(T_total_20)

10 plt.plot(ts, t_densities, marker="o", label="Analytical")
11 plt.xlabel("T_total")
12 plt.legend();

Since we cannot directly observe branch lengths, we are usually
more interested in mutations when working with data. The muta-
tion process is intimately related to the distribution of branch
lengths, since mutations occur randomly along tree branches.
One simple summary of the mutational process is the total number
of segregating sites, that is, the number of sites at which we observe
variation. We can obtain this very easily from simulations simply by
specifying a mutation rate parameter. (Note again that we set
Ne ¼ 1/2 and our mutation rate ¼ θ/2 in order to convert to
msprime’s time scales.)

1 def S_dist(n, theta, k):
2 S = 0
3 for i in range(2, n + 1):
4 S += ((-1)**i * scipy.special.binom(n - 1, i - 1)
5 * (i - 1) / (theta + i - 1)
6 * (theta / (theta + i - 1))**k)
7 return S
8
9 n = 20

10 theta = 5
11 num_replicates = 1000
12 simulation = np.zeros(num_replicates)
13 replicates = msprime.simulate(
14 n, Ne=0.5, mutation_rate=theta / 2, num_replicates=num_replicates)
15 for j, ts in enumerate(replicates):
16 simulation[j] = ts.num_sites # number of seg. sites
17 ks = np.arange(np.max(simulation))
18 analytical = np.array([S_dist(n, theta, k) for k in ks])
19 sns.distplot(simulation)
20 plt.plot(ks, analytical, marker=’o’, label="Analytical")
21 plt.xlabel("Segregating sites")
22 plt.legend();
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Here we take 1000 replicate simulations, store the number of
infinite sites mutations for each, and plot this distribution in
Fig. 12a. Also plotted is the analytic prediction, which again pro-
vides an excellent fit.

Fig. 12 Simulations of the number of segregating sites, and comparisons with
analytic predictions. (a) The distribution of the number of segregating sites for
n ¼ 20, θ ¼ 5 and no recombination over 1000 simulation replicates, along
with analytic prediction. (b) The mean and variance of the number of segregating
sites over 10000 simulation replicates with n ¼ 2, θ ¼ 2 and varying recombi-
nation rate, along with analytic predictions
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4.2 Recombination In the previous section we saw how to run simulations to generate
trees under the assumptions of the single-locus coalescent and
compare these with analytic predictions. This assumes that our
data is not affected by recombination, which is often unrealistic.
Here we show how to compute empirical distributions of equiva-
lent quantities, and compare these with classical results from the
literature. Since analytic results for many quantities are generally
unknown for the case of recombination along a linear sequence, we
limit ourselves to the pairwise samples.

1 theta = 2
2 num_replicates = 10000
3 rhos = np.arange(1, 10)
4 N = rhos.shape[0] * num_replicates
5 rho_col = np.zeros(N)
6 s_col = np.zeros(N)
7 row = 0
8 for rho in rhos:
9 replicates = msprime.simulate(

10 sample_size=2, Ne=0.5, mutation_rate=theta / 2,
11 recombination_rate=rho / 2, num_replicates=num_replicates)
12 for ts in replicates:
13 rho_col[row] = rho
14 s_col[row] = ts.num_sites
15 row += 1
16 df = pd.DataFrame({"rho": rho_col, "s": s_col})

In this code chunk we again run 104 replicate simulations for a
range of input parameters, and store the results in a Pandas data
frame. We are interested in the effects of recombination rate in this
example, and so the parameter that we vary is the scaled recombi-
nation rate ρ (noting, again, that we set Ne ¼ 1/2 and recombi-
nation_rate ¼ ρ/2 to convert to msprime’s time scales).

1 def pairwise_S_mean(theta):
2 return theta
3
4 def f2(rho):
5 return (rho + 18) / (rho**2 + 13 * rho + 18)
6
7 def pairwise_S_var(theta, rho):
8 integral = scipy.integrate.quad(lambda x: (rho - x) * f2(x), 0, rho)
9 return theta + 2 * theta**2 * integral[0] / rho**2
10
11 group = df.groupby("rho")
12 plt.plot(group.mean(), "o", label="simulated mean")
13 plt.plot(group.var(), "ˆ", label="simulated variance")
14 plt.plot(
15 rhos, [pairwise_S_mean(theta) for rho in rhos], "-",
16 label="Analytical mean")
17 plt.plot(rhos, [pairwise_S_var(theta, rho) for rho in rhos], "--",
18 label="Analytical variance")
19 plt.xlabel("rho")
20 plt.legend();
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After defining our analytic predictions for the mean and
variance of the number of segregating sites, we then plot the
observed and predicted values in Fig. 12b. Comparing the
simulated results to analytic predictions we see excellent agree-
ment. The mean number of segregating sites is not affected by
recombination, but recombination does substantially reduce the
variance.

5 Example Inference Scheme

The analytical challenges of deriving likelihood functions even
under highly idealized models of population structure and history
have led to the development of likelihood-free inference methods,
in particular Approximate Bayesian Computation (ABC) [2]. ABC
approximates the posterior distribution of model parameters by
drawing from simulations. Because of its flexibility ABC has
become a standard inference tool in statistical population genetics
(see ref. 7, for a review). We will demonstrate how msprime can be
used to set up an ABC inference by means of a simple toy example.
We stress that this is meant as an illustration rather than an
inference tool for practical use. However, given the flexibility of
msprime, it should be relatively straightforward to implement
more a realistic framework focused on specific inference
applications.

We assume that data for 200 loci or sequence blocks (these
could be RAD loci in practice) for a single diploid individual have
been generated from each of two populations. We would like to
infer the amount of gene flow between the two populations. For
the sake of simplicity, we will assume the simplest possible model of
population structure; that is, two populations, of the same effective
size exchanging migrants at a constant rate of m migrants per
generation.

The function run_sims simulates a dataset consisting of a
specified number of loci (num_loci) given a migration rate M.
We generate a single dataset of 50 loci assuming a migration rate
M ¼ 0.3 migrants per generation, which we will use as a (pseudo)
observed dataset in the ABC implementation.
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1 nsamp = 2
2 theta = 2
3 true_M = 0.3
4 num_loci = 200
5
6 def run_sims(m, num_loci=1,theta=0):
7 return msprime.simulate(
8 Ne=1/2,
9 population_configurations=[

10 msprime.PopulationConfiguration(sample_size=nsamp),
11 msprime.PopulationConfiguration(sample_size=nsamp)],
12 migration_matrix=[[0, m], [m, 0]],
13 num_replicates=num_loci,
14 mutation_rate=theta / 2)
15
16 def get_joint_site_frequency_spectra(reps):
17 data = np.zeros((num_loci, nsamp + 1, nsamp + 1))
18 for rep_index, ts in enumerate(reps):
19 # Track the samples from population 0.
20 for tree in ts.trees(tracked_samples=[0, 1]):
21 for site in tree.sites():
22 # Only works for infinite sites mutations.
23 assert len(site.mutations) == 1
24 mutation = site.mutations[0]
25 nleaves0 = tree.num_tracked_samples(mutation.node)
26 nleaves1 = tree.num_samples(mutation.node) - nleaves0
27 data[rep_index, nleaves0, nleaves1] += 1
28 return data
29
30 truth = get_joint_site_frequency_spectra(
31 run_sims(true_M, num_loci=num_loci, theta=2))

The run_sims function returns an iterator with the complete
tree sequence and mutational information of each locus. We use the
function get_joint_site_frequency_spectra to summarize
the polymorphism information as the joint site frequency spectrum
(jSFS) of each locus, i.e. the blockwise site frequency spectrum or
bSFS [sensu 28]. Note that higher level population genetic sum-
maries, e.g. pairwise measures of divergence and diversity such as
DXY [33] and FST [45] or multi-population F statistics [8, 34]
which are often used in ABC inference are just further (and lossy)
summaries of the jSFS.

Since msprime simulates rooted trees, the columns and rows of
the unfolded jSFS correspond to the frequency of derived muta-
tions in each population and the entries of the jSFS are simply
mutation counts. For example, for the first locus we have:

2
3 >>> [[ 0. 1. 4.]
4 [ 5. 0. 7.]
5 [ 0. 0. 0.]]

1 print(truth[0])

224 Jerome Kelleher and Konrad Lohse



One could base inference on the bSFS [4, 28], but we will for
the sake of simplicity use a simpler (and lossy) summary of the data:
the average jSFS across loci. For analyses based on SNPs, it is
convenient to normalize the jSFS by the total number of mutations:

1 truth_mean = np.mean(truth, axis=0)
2 truth_mean /= np.sum(truth_mean)
3 print(truth_mean)
4
5 >>> [[ 0. 0.22099954 0.16139386]
6 [ 0.25630445 0.03255387 0.08482348]
7 [ 0.16093535 0.08298945 0. ]]

To illustrate a simple ABC inference, we will focus on a single
parameter of interest, the migration rateM. ABCmeasures the fit of
data simulated under the prior to the observed data via a vector of
summary statistics. We will use the jSFS as a summary statistic and
approximate the jSFS for each M value as the mean length of
genealogical branches across 100 simulation replicates (num_-
reps). Below we draw 10,000 M values from the prior and use
the functions run_sims and approx_jSFS to approximate the
jSFS for replicate. We assume an exponential distribution, a com-
mon choice of prior [13].

1 num_reps = 100
2 num_prior_draws = 10000
3 prior_M = np.random.exponential(0.1, num_prior_draws)
4
5 def approx_jSFS(m):
6 reps = run_sims(m, num_loci=num_reps)
7 B = np.zeros((num_reps, nsamp + 1, nsamp + 1))
8 for rep_index, ts in enumerate(reps):
9 samp1 = ts.samples(population_id=0)

10 for tree in ts.trees(tracked_samples=samp1):
11 # Note that this will be inefficient if we have
12 # lots of trees. Should use an incremental update
13 # strategy using edge_diffs in this case.
14 for u in tree.nodes():
15 n1 = tree.num_tracked_samples(u)
16 n2 = tree.num_samples(u) - n1
17 if tree.parent(u) != msprime.NULL_NODE:
18 B[rep_index, n1, n2] += tree.branch_length(u)
19 data = np.mean(B, axis=0)
20 return data / np.sum(data)
21
22 with multiprocessing.Pool() as pool:
23 prior_jSFS = pool.map(approx_jSFS, prior_M)

Here we run 100 simulation replicates for each of the 10,000
m values drawn from the prior, giving a total of one million indi-
vidual simulations. We use the multiprocessing module to
distribute these computations over the available CPU cores. Once
this has completed, we compute the Euclidean distance between
the estimated jSFS for each draw from the prior (prior_jSFS) and
the jSFS in the (pseudo)observed data (truth_mean):

Coalescent Simulation with msprime 225



1 distances = np.zeros(num_prior_draws)
2 for j in range(num_prior_draws):
3 distances[j] = np.sqrt(np.sum((prior_jSFS[j] - truth_mean)**2))

In its simplest form, ABC approximates the posterior by sam-
pling from the simulated data via an acceptance threshold. Here we
approximate the posterior distribution of m using the 5% of simu-
lation replicates that most closely match the average jSFS of the
observed data. Figure 13a shows that the posterior distribution
(shown in green) is centered around m ¼ 0.25.

Fig. 13 ABC results. (a) Prior and posterior ABC distributions and estimated 95%
approximate credible interval. (b) Mean and root-mean-square-error of migra-
tion rate estimates computed from pseudo-observed data sets
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1 cutoff = np.percentile(distances, 5)
2 keep = np.where(distances < cutoff)
3 post_m = prior_m[keep]
4 mean_m = np.mean(post_m)
5 ci_m = np.percentile(post_m, 2.5), np.percentile(post_m, 95.75)
6 sns.distplot(prior_m, label="Prior")
7 sns.distplot(post_m, label="Posterior")
8 # Plotting code omitted.

The mean and the 95% approximate posterior credible interval
for m are:

1 print([mean_m, ci_m])
2
3 >>> [0.22494687232052613, (0.14574598726102159, 0.32315656482448107)]

Although the true value of m ¼ 0.3 is contained within the
95% credible interval, the posterior distribution is clearly down-
wardly biased. This bias is in fact expected given that our prior is
also strongly biased towards low m. We can check the effect the
acceptance threshold on the inference and get a sense of the
expected information about m using a cross-validation procedure:
we repeat the inference on pseudo-observed data sets (PODS)
simulated under a known truth. Since we can re-use the same set
of replicates simulated under the prior for inference, such cross-
validation is computationally efficient.

Figure 13b shows the mean and the root mean square error
(RMSE) of m estimates (across 100 PODS) against the acceptance
threshold and confirms that both the downward bias inm estimates
and the associated RMSE increase with larger acceptance thresh-
olds. While this toy example illustrates the principle of ABC infer-
ence, sampling only a small fraction of simulations generated under
the prior is clearly computationally inefficient and more efficient
sampling strategies for ABC inference have been developed [2]. In
practice, we are generally interested in fitting parameter-rich mod-
els and it would be straightforward to implement ABC inference for
complex model of population structure and demography in
msprime.

6 Discussion

In this chapter we have focused on the usage of msprime as a
coalescent simulator, and illustrated its flexibility through concrete
examples. While many examples discuss how to create and run the
simulations themselves, others are concerned with how we analyze
the output of these simulations. We have shown particularly in
Section 3 that these methods can be very efficient, allowing us to
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easily analyze chromosome scale data for hundreds of thousands of
samples. The data structures and APIs used in msprime are cur-
rently being developed to increase their generality and applicability.
Recent work [11, 24] has shown that forward-time simulations can
also benefit from these methods. By recording all genealogical
information for the simulated population in the form of a succinct
tree sequence, we avoid the need to generate and carry forward
neutral mutations; by definition, they do not affect the genealogies,
and can therefore be placed on them afterwards. Not only does this
provide us with much more complete information about the
forward-time simulation, it also leads to substantially faster running
times (up to 50� faster, in the simulations performed). Through
the use of a well-documented interchange API and thoroughly
specified data formats, forward-time simulators can output data
that is compatible with the msprime API, and precisely the same
techniques described here can be used to analyze the results. Thus,
code written to analyze coalescent simulations can equally be
applied to analyze forwards simulations.

There is currently a great deal of activity from a growing
community around msprime. We plan to separate the tree
sequence processing code from the simulator and create a library,
provisionally known as tskit. This standalone library (C and
Python interfaces are planned) will greatly facilitate integration
with forwards-time simulators, allowing them to easily offload
tree sequence processing to tskit. Algorithms for efficiently cal-
culating statistics using the incremental techniques outlined in
Section 3.5 are in development, and promise to be significantly
more efficient than the state of the art. Also in development are
methods to estimate the tree sequence data structure from real
data, which would allow us to use these efficient algorithms on
observed as well as simulated data. New features are being added to
the msprime simulator also, with support for a discrete time
Wright-Fisher model and a family of multiple-merger coalescent
models in development. We hope that in the coming years a diverse
ecosystem of tools and applications using these APIs and data
structures will emerge.

Online Resources:

Jupyter
notebook

https://github.com/StatisticalPopulationGenomics/
msprime

Documentation https://msprime.readthedocs.io/en/stable/

GitHub https://github.com/tskit-dev/msprime

Mailing list https://groups.google.com/forum/#!forum/msprime-
users
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Chapter 10

Inference of Ancestral Recombination Graphs Using
ARGweaver

Melissa Hubisz and Adam Siepel

Abstract

This chapter describes the usage of the program ARGweaver, which estimates the ancestral recombination
graph for as many as about 100 genome sequences. The ancestral recombination graph is a detailed
description of the coalescence and recombination events that define the relationships among the sampled
sequences. This rich description is useful for a wide variety of population genetic analyses. We describe the
preparation of data and major considerations for running ARGweaver, as well as the interpretation of
results. We then demonstrate an analysis using the DARC (Duffy) gene as an example, and show how
ARGweaver can be used to detect signatures of natural selection and Neandertal introgression, as well as to
estimate the dates of mutation events. This chapter provides sufficient detail to get a new user up and
running with this complex but powerful analysis tool.

Key words Ancestral recombination graph, Sequentially Markov coalescent, Markov chain Monte
Carlo, Local ancestry

1 Overview

The ancestral recombination graph (ARG) can be considered the
holy grail of statistical population genetics. The ARG represents the
history of a collection of related genome sequences, in terms of the
coalescence events by which segments of genomes trace to common
ancestral segments and the historical recombination events that
cause patterns of ancestry to differ from one genomic site to the
next (see Chapter 1 for more introduction to these concepts).
Provided the sequences under study are orthologous and co-lin-
ear—meaning that they trace to a common ancestral sequence
without genomic duplications or rearrangements—the ARG is a
complete description of their evolutionary relationships. Moreover,
in statistical terms, the ARG provides a highly compact and precise
description of the correlation structure of such a collection of
sequences. Importantly, the ARG naturally defines a set of recom-
bination breakpoints, a set of haplotypes, and a genealogy for each
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non-recombining interval in the genome—all objects that are use-
ful starting points for countless population genetic analyses.

Many questions in applied population genetics can be reframed
as questions about ARG structure. For example:

l Recombination rate estimation. Recombination rates can be
estimated by simply counting recombination events and dividing
by the total branch-length of the ARG.

l Estimation of allele ages or mutation rates. Mutation events can
easily be mapped to branches within the ARG by maximum
parsimony, enabling straightforward estimation of allele ages
and mutation rates.

l Local ancestry inference. The local ancestry structure of an
admixed individual (i.e., which genomic segments derive from
which distinct source populations) can be determined by tracing
the individual’s two diploid lineages in the ARG and identifying
the source population with which each genomic segment clus-
ters, as well as the recombination events that terminate these
segments.

l Demography inference. More general information about demo-
graphic history (such as population sizes, migration rates, and
divergence times) is also embedded in the ARG. A demographic
model can fairly easily be estimated from a known ARG by
making use of the counts of coalescence events within and
between populations.

l Detection of sequences under selection. Natural selection can be
detected by identifying local distortions in the ARG, for exam-
ple, unusual clusters of coalescence events or extremely deep
times to most recent common ancestry.

In practice, however, the true ARG is impossible to know with
certainty. The “ARG space,” consisting of every possible ancestral
history of a set of genomes, is astronomically large, and the infor-
mation in genome sequences is insufficient to choose a specific
ARG above all others. But, given a model of coalescence, recombi-
nation, and nucleotide substitution, it is possible to compute the
probability of an observed data set under particular ARGs, and it
will generally be true that some ARGs are much more likely to have
produced the data than others. The approach taken by ARGweaver
is to sample from the posterior distribution of ARGs, given a
collection of genome sequence data and a reasonable set of model-
ing assumptions. This approach is computationally expensive, and it
has the drawback of producing a complex and unwieldy output—a
collection of potential ARGs, none of which is exactly correct, but
which, in the aggregate, reflect certain properties of the true ARG.
Nevertheless, as we will show, this approach can be extremely
powerful, potentially providing insights into the structure of the
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data and the evolutionary history of the sample that are not easily
obtained using simpler methods. In this chapter we will discuss
how ARGweaver works, how and when a user might want to apply
it, and what can be done with sampled ARGs once they have been
obtained.

1.1 What Is an ARG? An ARG represents all ancestral relationships among a collection of
genomes (see Fig. 1). If n is the number of (haploid) genomes
under study (usually from n

2 diploid individuals), then at the present
day, there are n lineages in the ARG. As we trace these lineages back
in time at a particular genomic location, we will find that distinct
lineages gradually coalesce into shared ancestral lineages, until all
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Fig. 1 (a) Schematic of an ARG with four lineages in the present, and two
ancestral recombination events along a region of length L. Tracing the lineages
upwards from present day, two lineages merge when a coalescence event is
encountered, whereas a lineage splits into two when a recombination event is
encountered at a particular breakpoint (b2 or b3). The ARG continues tracing the
history backwards until all lineages have reached a common ancestor. (b) An
alternative view of the ARG depicted in A, showing the local tree between each
pair of recombination breakpoints. The dotted lines on the tree show the
recombination event which transforms the tree on the left side of the breakpoint
into the tree on the right side. (c) The data underlying this ARG, where only
derived alleles at variant sites are shown. Figure adopted from [23]
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n lineages have found a single most recent common ancestor. These
coalescence events define a tree known as a genealogy that fully
describes the evolutionary relationships among the present-day
genomes at the locus in question.

However, recombination events in the history of the sample can
cause the genealogy to change from one genomic location to the
next. Looking backward in time, a recombination at a particular
genomic location has the effect of splitting a lineage into two, with
one path representing the evolutionary history to one side of the
breakpoint and another path representing the history to the other
side. The ARG captures these recombination events together with
the coalescence events. As one follows a lineage upward in the
ARG, that lineage may either merge with another lineage, repre-
senting a coalescence event, or it may split into two lineages,
representing a recombination event (Fig. 1a). In the case of recom-
bination events, the junction in the ARG is also labeled with the
genomic position of the recombination (this information is not
relevant for coalescence events).

Based on these labels for recombination events, one can extract
a local tree for any position in the genome from the ARG. First, one
identifies the lineage associated with each present-day sample.
These lineages are traced backward through the ARG, and coales-
cences between them are noted. When a recombination event is
identified, one of the two possible paths is selected based on the
relationship of the position in question to the annotated recombi-
nation breakpoint. Specifically, if the position is to the left of the
breakpoint, then the left path is taken; and if the position is to the
right of the breakpoint, then the right path is taken. (Because
recombination breakpoints by definition occur between nucleo-
tides, one of these two cases must hold.) Thus, the paths from the
present-day samples to the root will coalesce only, never splitting,
and therefore must define a tree. Furthermore, the tree will be the
same for all genomic positions between two recombination break-
points, differing only between positions on opposite sites of a
breakpoint.

Another way to think about the ARG is that it defines a series of
operations on trees along the length of a chromosome. As one
walks along a chromosome from left to right, the local tree remains
fixed until a recombination breakpoint is encountered, and then
that tree is altered to form a new tree, in the specific manner defined
by the change in path at the corresponding recombination node in
the ARG (Fig. 1b). The ARG, therefore, can be thought of as being
interchangeable with a sequence of local trees and the associated
recombination events that transform each tree to the next. In
practice, this is the representation of the ARG assumed by the
Sequentially Markov Coalescent (SMC

0
) and used by ARGweaver,

and in this chapter we will generally treat the ARG as a collection of
trees and recombination events. Nevertheless, it should be noted
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that this representation does not strictly capture all of the informa-
tion in the ARG. The full ARG also describes “trapped genetic
material” that falls between two linked ancestral loci, but is not
passed on to any present-day sample. Ignoring this trapped material
substantially simplifies modeling and inference algorithms, with
what appear to be only minor costs in accuracy [12, 14, 23].

1.2 Why Would You

Want to Estimate

an ARG?

As discussed above, if the ARG could be estimated accurately and
easily, it would be useful for almost every question in population
genetics. In practice, of course, there are limitations in the accuracy
of inferred ARGs, and they require substantial time and effort to
obtain. So, when does it make sense to take the trouble to run
ARGweaver, instead of making use of simpler or more standard
population genetic summary statistics and tools? Some reasons to
consider sampling ARGs with ARGweaver include:

l Trees/genealogies. ARGweaver estimates explicit genealogies
(with branch lengths) along the genome, considering both pat-
terns of local mutation and local linkage disequilibrium. It may
be particularly interesting to inspect trees at particular regions
suspected to be under selection or to have experienced
introgression.

l Times/dates.These trees allow the timings of various events to be
estimated, including times to most recent common ancestry,
other coalescence times, and the ages of derived alleles. If
desired, posterior expected values of these times can be com-
puted by averaging over the sampled trees.

l Ancient introgression. ARGweaver is a powerful method for
detecting introgression and identifying specific introgressed
haplotypes, particularly ancient introgression events that con-
ventional methods may miss (e.g., [6]).

l Bayesian treatment of uncertainty. Unlike many simpler meth-
ods, ARGweaver attempts to fully account for the uncertainty in
the ARG given the sequence data and an evolutionary model, by
sampling from a posterior distribution of ARGs. This approach
can mitigate biases from the inference method in addressing
biological questions of interest.

l Flexibility in addressing “custom” evolutionary questions. By pro-
ducing explicit ARGs, ARGweaver allows almost any evolution-
ary question to be addressed, including unusual ones not easily
addressed with standard summary statistics (For example: at
what fraction of sites do individuals A and B coalesce with one
another before either coalesces with individual C? What is the
average TMRCA for genes of functional categoryX? Are recom-
bination events more likely to occur in introns or intergenic
regions?)
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l Technical limitations of the data. ARGweaver can accommodate
unphased data, low-coverage sequences, archaic samples, and
other unusual data types that may not be easy to analyze using
other methods.

1.3 Practical

Considerations

ARGweaver is designed to run on genome sequencing data for
small to moderate numbers of individuals—anywhere from 2 to a
maximum of about 100. These individuals should be unrelated but
come from the same species or from recently diverged species (such
as humans and chimpanzees). Phasing of diploid genome
sequences is not necessary—ARGweaver can phase “on the fly,”
integrating over possible phasings—but the algorithm converges
faster and, in some cases, performs better on phased data (depend-
ing on the rate of phasing errors). Similarly, ARGweaver can be
used on low-coverage sequencing data, making use of genotype
probabilities to weight the observed bases, but high-coverage
sequence data is always preferable.

In gauging the feasibility of ARG inference, it is important to
recognize that the processes of mutation and recombination are
opposing forces in reconstructing an ARG. The more mutations
there are, the more information there is to guide the inference of
tree topologies (genealogies). Recombination events, however,
break up the sequences into smaller blocks, effectively limiting the
information for tree inference in each block. Thus, the quality of
ARG inference depends on the ratio of mutation to recombination
rates per nucleotide position. In human data, this ratio is close to
one, but recombination events tend to be concentrated in recom-
bination hotspots, which makes the effective ratio greater than one
for most of the genome. ARGweaver appears to work quite well in
this setting. Nevertheless, the method works better when this ratio
is even higher, and it will break down if this ratio falls significantly
below one. Another consideration is ARGweaver’s assumption of at
most one recombination event per site (see below), which generally
appears to have little effect but could lead to biased estimates in
cases of particularly high recombination rates, large sample sizes,
large evolutionary distances, or large effective population sizes.
Finally, because ARGweaver depends on haplotype-scale informa-
tion for inference, it is generally not useful for short sequences,
deriving, for example, from RAD-seq or a de novo short-read
assembly.

In terms of the number of genomes analyzed, the “sweet spot”
for ARGweaver is generally between a handful of individuals and a
few dozen. As the number of genomes increases, more approximate
models (such as the Li and Stevens model [8]) or conventional
population genetic summary statistics become increasingly accurate
and informative, and the relative advantage of using ARGweaver
over other methods decreases. In addition, the run time and size of
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the ARGweaver output increase with the number of genomes, and
these factors become prohibitive with more than about 100 sam-
ples. Running ARGweaver genome-wide generally requires break-
ing the genome into chunks of a few megabases and running
ARGweaver in parallel on each chunk using a computer cluster.
When running ARGweaver genome-wide is not a realistic possibil-
ity, it may still be of interest to apply ARGweaver to specific geno-
mic regions of interest, such as candidate selective sweeps or
introgressed regions. It may also be useful to run ARGweaver on
subsets of the available genome sequences, for example, to shed
light on genealogy structure, ancient introgression, or allele age—
features ARGweaver may estimate more accurately than other
methods.

Another practical consideration is that while ARGweaver’s out-
put is richly informative, it is not straightforward to interpret. The
program does come with tools to compute various local summary
statistics from sampled ARGs, including times to the most recent
common ancestor, allele ages, and distances between samples. But
many less standard analyses will require custom programs to extract
the desired information from ARGs or local genealogies.

1.4 ARGweaver

Algorithm Overview

ARGweaver uses a Markov chain Monte Carlo (MCMC) algorithm
to sample ARGs at frequencies proportional to their probability,
conditional on the observed DNA sequence data (X) and the
model parameters (θ). The MCMC algorithm starts with an initial
ARG, G0, and then repeatedly removes a subset of the ARG and
resamples that subset from an appropriate conditional probability
distribution. This process generates a sequence of ARGs, G0, G1,
. . ., Gm, where m is the total number of iterations of the algorithm.
AlthoughG0 may be a poor guess with low probability, by sampling
each new Gi according to the appropriate distribution, the chain
will eventually converge to the desired distribution—i.e., for suffi-
ciently large i, Gi will represent a draw from the posterior distribu-
tion over ARGs given the data and the model, P(Gi|X, θ). In
practice, it is customary to plot the posterior probability as a func-
tion of the iteration number, i, observe the point at which it ceases
to trend upward and becomes stable, and then to discard the ARGs
sampled before this point (from what is known as the “burn-in” of
the MCMC algorithm).

Even once the algorithm has converged, successive samples Gi

and Gi+1—while they both represent samples from the posterior
distribution—are not independent samples. Rather they are
strongly correlated, since only part of the ARG is resampled on
each step of the algorithm. Therefore, in order to achieve a distri-
bution of nearly independent ARGs—both to save space and pro-
cessing time, and to better assess the variance of estimates derived
from the samples—it is useful to “thin” the chain, recording only
every jth sample (the default thinning parameter in ARGweaver is
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j ¼ 10). After discarding the initial “burn-in” and performing
thinning, the ARGs Gi that remain can be stored and treated as a
collection of samples representative of the distribution of ARGs
given the data and the model, P(G|X, θ).

The technical details of the ARGweaver algorithm will not be
reviewed here (see ref. 23), but the main idea is to remove a single
haploid genome from the ARG, and then to “thread” this genome
back through the ARG, by sampling both its coalescence points
with the remaining sequences and the associated recombination
points. There is also another, slightly more complicated, version
of this threading operation, called “subtree threading,” that resam-
ples internal branches in genealogies, and is essential for ARGwea-
ver to efficiently explore the full space of possible ARGs. In both
cases, a hidden Markov model (HMM) is used to efficiently sample
new coalescent points for the new lineage across the chromosome.
This HMM depends on several key modeling assumptions, which
are important for users to understand, and which, therefore, will be
reviewed in the next section.

1.4.1 ARGweaver Model

and Assumptions

The HMM underlying ARGweaver depends on the following
assumptions:

l SMC
0
or SMC: The Sequentially Markov Coalescent model [14]

or the closely related SMC
0
[12] is assumed. These models posit

that the distribution over genealogies at each nucleotide posi-
tion directly depends only on the genealogy at the previous
position, not on the genealogies at positions further
upstream—a feature known in probability theory as the Markov
property, after the Russian mathematician Andrey Markov. More
formally, the SMC and SMC

0
assume that the genealogy at

position i + 1 is independent of the genealogies at positions
1, . . ., i � 1, given the genealogy at position i. The SMC

0

slightly improves on the original SMC (see ref. 12 for details).
The differences between these models are not important here,
and the choice of model seems to have only a subtle effect on the
inferred ARGs. While the SMC

0
is technically more accurate, the

SMC model may be considerably faster on data sets with large
numbers of samples. ARGweaver therefore allows the user to
choose either model (SMC by default, --smc-prime for the
SMC

0
).

l Discrete time: All recombination and coalescent events are
assumed to occur at a predefined collection of discrete time
points. The total number of time points, K, can be chosen by
the user (using --ntimes <K>) and can be arbitrarily large,
with the ARGweaver model approaching a continuous-time
model as K approaches infinity. However, the computational
complexity of the threading algorithm is proportional to K2,
so, in practice, Kmust be kept modest in size. The default value
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of K in ARGweaver is 20. The time points are uniformly spaced
on a logarithmic scale, so that they are more closely clustered at
recent time points, when there are more lineages and coales-
cence rates are larger. The algorithm forces all lineages to coa-
lesce by the final time point, tK.

l No more than one recombination event between neighboring
nucleotides. For simplicity, the algorithm permits at most one
recombination event at every “step” along the sequence, mean-
ing between two adjacent nucleotide positions. This assumption
means that adjacent genomic positions must either have identi-
cal genealogies or ones that differ by a single recombination
event. In practice, this assumption is minimally restrictive,
because the information about genealogies comes primarily
from variable sites, which tend to be sparse along the genome.
If ARGweaver should need to account for multiple recombina-
tion events between variable sites, it typically can spread those
events across a series of intervening invariant sites with minimal
impact on accuracy. If the data are such that multiple recombi-
nations between neighboring sites occur frequently, then it is
likely that the haplotype structure is too broken down to make
use of ARGweaver.

l Population size known: ARGweaver assumes that the effective
population size Ne (which determines the coalescence rate) is
provided by the user. In the simplest case, a single global value of
Ne can be provided. But ARGweaver can accommodate different
values ofNe for different discrete time intervals. Values ofNe can
typically be obtained from the literature or estimated from the
same data using one of the many available programs for inferring
demographic histories (such as SMC++ [29], PSMC [7],
MSMC [27, see also Chapter 7], G-PhoCS [3], and diCal
[28]). Note the user-provided values of Ne define a “prior” for
coalescence rates in ARGweaver, so it is not necessary for them
to be perfectly estimated; ARGweaver will consider the data
together with this prior distribution in sampling coalescence
events.

l Mutation and recombination rates known. The ARGweaver
model also depends on pre-definedmutation and recombination
rates. These rates can be assumed to be constant across the
genome, or variable rates can be provided in a position-specific
map along the genome. These values are also “priors” in the
same sense as the population size (see above).

l Jukes-Cantor model of base substitution. ARGweaver makes use
of a Jukes-Cantor model for nucleotide substitutions. This
model assumes that all nucleotide substitutions are equally prob-
able—an obvious oversimplification, but one that seems to have
minimal costs at the close evolutionary distances typically
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considered by ARGweaver. The symmetries inherent in the
Jukes-Cantor model can be exploited to optimize the likelihood
calculations in ARGweaver.

2 Ancient Hominins Analysis

In the remainder of this chapter we will set up, and then walk
through, an analysis of real sequence data using ARGweaver. We
will use three high-quality ancient hominin genome sequences that
are freely available: the Altai Neandertal [21], Vindija Neandertal
[22], and Denisovan [15] genome sequences, as well as a diverse set
of 14 human genomes that were sequenced to high coverage for
the Altai Neandertal paper [21]. All steps of the analysis will be
described in detail, with code snippets, and the complete set of
commands required to replicate the analysis is provided in the
companion material for this book.

The data set used in our example is ideal for several reasons.
First, the Neandertal and Denisovan genome sequences provide an
exciting opportunity to examine many interesting aspects of human
history and adaptation. Neandertals and Denisovans are sister
groups of archaic hominins that diverged from humans roughly
600 kya, and then split from each other around 400 kya
[22]. Importantly, these divergence times are recent enough that
modern and archaic humans share many polymorphic sites across
their genomes. As we will show, this shared variation can be infor-
mative about evolutionary history. In addition, the genetic evi-
dence strongly suggests multiple cases of interbreeding among
these three groups following their initial divergence [15, 21, 24],
an intriguing topic that can be examined using ARGweaver. On a
more practical level, these genomes have all been sequenced to high
coverage and all sequencing reads have been processed consistently.
The genotypes are published in standard VCF format with geno-
type quality and sequencing depth information given at every
genomic position with aligned reads, which, as we will discuss,
simplifies the set up for ARGweaver.

Before launching into the actual analysis, which is presented in
Subheading 5, we will discuss some important preliminaries relat-
ing to program installation and file formats (remainder of Subhead-
ing 2), model parameters (Subheading 3), and commonly used
program options (Subheading 4).

2.1 Pre-requisites ARGweaver is designed to run under either the Linux or Mac OSX
operating system. Windows(c) users may run ARGweaver via a
Linux virtual machine. The specific commands for performing the
example analysis in this chapter are available as a bash script,
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provided in the online supplement for this book. Besides a bash
shell, the script requires:

l Python: (http://python.org), used by several ARGweaver scripts.

l SAMtools [9]: (http://htslib.org), used here for the tabix and
bgzip tools, which are useful for indexing and fast retrieval of
VCF and BED files.

l bedops [18]: (http://bedops.readthedocs.io), a useful tool for
computing intersections of genomic intervals.

l PHAST [20]: (http://compgen.cshl.edu/phast), used for com-
puting neutral substitution rates.

l R (https://www.r-project.org), used for plotting results.

l The R package “ape” [19] (https://bioconductor.org), used for
plotting trees.

l git (https://git-scm.com) for downloading ARGweaver.

l g++ (https://gcc.gnu.org) or any C++ compiler for compiling
ARGweaver.

2.2 Obtaining

and Installing

ARGweaver

The first step in our example is to download and install ARGweaver.
The program is available at http://github.com/CshlSiepelLab/
ARGweaver.git. It can be downloaded and compiled on Linux or
Mac machines with the following commands:

git clone https://github.com/CshlSiepelLab/ARGweaver.git

cd ARGweaver.git

make

These commands create several executables in the bin/ direc-
tory, the most important of which is called arg-sample. All the
executables are meant to be run from the command line in a Unix
shell such as Bash.

Within the ARGweaver software is also suite of R tools useful
for plotting ARGweaver results. This package is optional, but was
used to create many of the plots in this chapter. It can be installed
from the same directory with the command:

R CMD INSTALL R/argweaver

2.3 Sequence File

Format

The main data required by ARGweaver is sequence data for every
individual. ARGweaver accepts Variant Call Format (VCF) files [2],
provided that they are indexed (this can be done with the command
tabix -p vcf file.vcf.gz, which creates a file file.vcf.gz.
tbi). A single VCF file containing all samples may be provided with
the argument --vcf; if only a subset of the individuals are to be
used, they can be specified with the --subsites option. Or, if the
genotypes are in multiple VCF files, a list of these files can be given
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with the option --vcf-files. In our example, there is a single
VCF file for each individual, so we use the second option.

It is worth noting that VCF input has some limitations when
used with ARGweaver. Namely, ARGweaver will ignore any phas-
ing information in the VCF, and sites with insertion/deletion
polymorphisms or more than two alleles. If the data is phased, the
SITES format will have to be used (see below).

2.4 SITES Format ARGweaver has its own sequence data format, called SITES format,
which is used both as an alternative input format, as well as an
output format for sampling phase. All lines in SITES files are
tab-delimited. The first line starts with the string “NAMES” and
then lists the name of every haploid genome (two per individual).
The second line starts with the string “REGION” and is followed
by the chromosome name, start position, and end position. All
subsequent lines contain two columns: the position of a variant
site and a string giving the observed alleles at this site in each of the
genomes, in the order given on the first line. Importantly, any
position not listed in the file is considered invariant across samples.
Here is a short example of a sites file with the two Neandertal
individuals and two variant sites on chromosome 2:

NAMES Altai_1 Altai_2 Vindija_1 Vindija_2

REGION 2 24000001 24010000

24000417 GGCG

24008883 TTTA

2.4.1 Phasing Options For an ARG to be fully defined for diploid organisms, the geno-
types at heterozygous positions must be “phased” into two distinct
haploid genome sequences. The low-cost, short-read sequencing
methods most widely in use, however, generally produce unphased
data, in which the chromosomal origin of each allele at a heterozy-
gous site is unknown. Thus, an important consideration in running
ARGweaver is how to address phasing.

ARGweaver can either accept predefined haplotype phases or it
can treat the phase as unknown and sample possible phasings as it
samples ARGs. The program’s default behavior is to assume hap-
loid genome sequences are fully specified (phased input). The
option --unphased causes ARGweaver to sample the phase
instead. In unphased mode, whenever ARGweaver re-threads a
leaf branch, it does so by integrating over possible phasings of the
individual corresponding to that leaf. After the threading is com-
plete, it resamples the phase for this individual conditional on the
threading choice. This new phase is retained until the next time a
leaf for the same individual is re-threaded. The phase sampling step
is fast and does not contribute significantly to the run time of each
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sampling iteration, but it may delay overall convergence of the
algorithm.

As noted above, the program does not read phase information
from VCF files, so the --unphased option is implicit when using
VCF input. In this case, the program internally creates two haploid
lineages, <ind>_1 and <ind>_2, for each diploid individual,
<ind>, listed in the VCF file. (Throughout this chapter, we assume
diploid input to ARGweaver; in principle, ARGweaver could be
used with haploid input, but the assumed model of recombination
is best matched to sexually reproducing species.) These haploid
labels will be used in some of the output files of ARGweaver.
With SITES input and the --unphased option, the program
requires the user to indicate the haploid pairs corresponding to
each individual. They will be detected automatically if the genomes
are named with the convention <ind>_1 and <ind>_2. Other-
wise, the option --unphased-file <file.txt> may be used,
where <file.txt> has two columns with haploid sample names,
and each row corresponds to a single individual.

In unphased mode, ARGweaver will output the current phased
data (in SITES.gz format) every time an ARG is sampled. This
explicit phasing information makes it possible to map mutations
onto branches of the sampled ARGs, among other features. It has
the additional benefit of allowing ARGweaver to function as an
ARG-based computational phasing method. In practice, however,
other existing phasing methods are more efficient, and are likely to
achieve greater accuracy, especially if they are able to leverage large
reference panels of phased genomes [10].

Nevertheless, even when the data has been pre-phased by
another computational method, it may still be worthwhile to use
the --unphased option. The reason is that the error rates from
computational phasing methods can be quite high, and in
unphased mode ARGweaver may be able to “correct” phasing
choices that are incompatible with the ARGs it samples. In this
case, the pre-phased data can still be passed to ARGweaver in
SITES format and will be used for initialization, so convergence
will be much faster than with unphased input.

2.5 Masked Regions Whether using VCF or SITES input, ARGweaver assumes that any
site which does not appear in the input file is invariant. An “invari-
ant” site in ARGweaver is one in which all individuals have been
sequenced and are confidently called homozygous for the same
allele (usually the reference allele). This absence of genetic variation
is informative about the ARG. For example, a genomic region with
many invariant sites will tend to have short branches in the inferred
ARG, because fewer mutations are expected on shorter branches.

On the other hand, some sites have unknown genotypes, for
example, due to low sequencing depth, poor sequence quality, or
poor alignability. For ARGweaver, an unknown genotype means
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something quite different from an invariant site—it suggests miss-
ing data, meaning that no information is provided about the ARG
at that genomic location. At a region with many unknown sites, the
sampled trees will tend to reflect the neutral coalescent model
provided to ARGweaver, because there will be little data available
to override this “prior.”

Therefore, it is essential to distinguish between “invariant” and
“unknown” sites in the input files to ARGweaver. Making this
distinction often requires some additional effort, because other
population genetic methods often do not depend strongly on it,
and many data sets are not processed in a way that tracks this
difference. In particular, genotypes that are unknown should be
“masked,” either by using the genotype NN or by using masking
options (described below), so that ARGweaver knows to integrate
over all possible genotypes at those positions. Unmasked sites that
are not specified in the input can then reasonably be assumed to be
invariant.

ARGweaver supports several kinds of masking. For regions
with poor alignability (such as repeat regions), it is customary to
mask out the entire region across all individuals. This can be done
by providing ARGweaver with a BED-formatted file indicating the
regions to mask, and using the option --maskmap <mask_file.
bed>. (Note that unlike VCF and SITES files, BED files have zero-
based start coordinates.) On the other hand, some regions have
poor genotype quality only in particular individuals, for example,
due to low sequencing coverage or read quality. In these cases, the
regions can be delineated in an auxiliary file which is specified using
the option --ind-maskmap <ind_mask_file.txt>. This file
should have two columns, giving the name of each individual and
the name of a file containing a BED-formatted mask specific to that
individual. Additional options include --mask-cluster <a,b>,
which will mask any region of length b that has � a variant sites
(possibly indicating alignment errors or mutational hotspots);
--vcf-min-qual <Q>, which will mask any genotype with qual-
ity less than Q (for VCF files with quality scores); or --vcf-geno-
type-filter<filter>, which can mask genotypes based on any
keys used in the VCF genotype field. For example, --vcf-geno-
type-filter ~DP<10;DP>50;GQ<10~ will mask sites where the
depth is less than 10 or greater than 50, or where the genotype
quality is less than 10.

In our example analysis, we use a union of several mappability
and uniqueness filters developed for the ENCODE project
[30]. Details for where these filters were obtained can be found in
the online resource. We also use --vcf-min-qual 30 --mask-
cluster 2,5. These filters seem sufficient for our illustration,
however other filters may be needed for a thorough, careful analy-
sis. In particular, it may be important to mask CpG sites, which
have unusually high mutation rates.
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2.5.1 Genomic vs

Variant VCFs

Many population genomic data sets are now available in VCF
format, and it may be tempting to run ARGweaver directly on
such a data set. However, VCF is a common file type used for a
wide variety of purposes, and it is critical to understand what criteria
were used for inclusion or non-inclusion of sites in the files before
analyzing them. In particular, VCF files often contain only those
positions where high-confidence variants are detected. As discussed
above, this convention will make it impossible to distinguish
unknown and invariant sites. Thus, more preparation will be neces-
sary for a proper analysis with ARGweaver.

Further processing of such incomplete VCF files generally
requires returning to the alignments from which the VCF files
were derived. If those alignments are available in the form of a
BAM file, then the necessary information can be extracted in a fairly
straightforward manner. If they are not available, it may be neces-
sary to regenerate them from the raw reads. Once a BAM file is in
hand, the best option is usually to re-run a genotype caller (such as
GATK [31]) on the BAM file to generate more complete VCF files
including most likely genotypes at every site, as well as quality
scores, sequencing depth, and genotype probabilities. A possible
shortcut, adequate for many purposes, is to use bamtools [1] to
extract the sequencing depth per site from the BAM file, and use
the depth as a proxy for genotype quality. For example, if a position
is not in the VCF file but has a sequencing depth greater than some
cutoff (perhaps 20), then it is very likely invariant. In practice, this
thresholding can be accomplished by first creating a BED file for
each individual containing the regions with sequencing depth
below the desired cutoff, and then using the --ind-maskmap
option to mask these regions.

In our example, we are lucky to be using VCF files that provide
genotype probabilities and confidence scores at every location hav-
ing aligned reads. However, care must still be taken to deal with
these files correctly. ARGweaver assumes that any site absent from a
VCF file is invariant, but in this case those sites are actually
unknown. To correct this assumption, we create a BED file contain-
ing all the regions absent from the VCF for each individual, and use
the --ind-maskmap option to specify that these regions should be
masked in their respective genomes. This is done with the bedops
tool [18], and the commands are shown in the example script that
comes with this chapter.

2.5.2 Genotype

Probabilities

If a genome has only been sequenced at low coverage, there may be
too many errors in the genotypes to produce meaningful ARGs.
Nevertheless, it is possible to run ARGweaver on low-quality data
by having it weight possible genotypes by their probabilities of
being correct. There are two ways to specify these probabilities.
First, if VCF files are annotated with PL (phred-likelihood) or GL
(genotype-likelihood) fields, then the option --use-genotype-
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probs may be used to integrate over the possible genotypes.
Second, genotype probabilities can be encoded directly into the
SITES file. In this case, each row (following the header) may have
an additional 4n columns, in the order p1,A, p1,C , p1,G , p1,T , p2A ,
. . ., pn,T , where pi,b is the probability of the ith haploid genome

having base b. If these columns are present, then --use-geno-
type-probs is implied.

The use of genotype probabilities will slow down ARGweaver,
and therefore this feature should only be used if absolutely neces-
sary. There is a modest computational cost, of course, in taking the
genotype probabilities into account. The larger issue, however, is
that the use of genotype probabilities causes almost every site to be
considered “variant,” which prohibits the use of site compression
(see Subheading 4.3). Nevertheless, genotype probabilities may be
useful for low-coverage data when the scale of the analysis is not too
large.

3 Choosing Model Parameters

ARGweaver assumes fixed rates of mutation, recombination, and
coalescence (based on population sizes), which must be specified by
the user. As noted above, these parameters can be thought of as
defining a “prior” distribution for ARGs, which can be overcome
by consideration of the data in determining the “posterior” samples
produced by the program. However, these prior estimates can have
an appreciable influence on the sampled ARGs, so they should be
set as accurately as possible.

3.1 Mutation Rates ARGweaver can accept a single mutation rate to be used across the
entire genomic region that is being analyzed (with the option --
mutrate <rate>), or it can use a specified map of mutation rates
(--mutmap <ratefile.bed>). If using a rate map, the file speci-
fying the map should have four columns: chromosome, start coor-
dinate (0-based), end coordinate, and the rate. The rates should be
specified in units of expected mutations per base pair per
generation.

The mutation rate is particularly important for calibrating the
timing of ancestral events. If the given mutation rate is off by a
factor ofm, then the estimated ages of events will tend to be off by a
factor of 1/m, so that too high a mutation rate will make events
seem to have happened much more recently than they actually did.
After a period of controversy [26], estimates of mutation rates for
humans have stabilized in recent years, but there is still considerable
debate about the best average rates to use for evolutionary analyses
[16, 25]. In addition, mutation rates are known to vary across
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species and along the genome in each species, which further com-
plicates their use in ARGweaver.

For our example analysis, we address these issues by using levels
of divergence between several closely related primates (human,
chimpanzee, gorilla, orangutan, and gibbon) to estimate relative
mutation rates in sliding 100 kb windows. We first mask out con-
served regions of the genome in order to estimate the neutral
substitution rate, which should be proportional to the average
mutation rate. Then, we scale all the relative rates so that the
average rate is 1.45e � 8 mutations per base pair per generation
[17]. The online resource for this chapter contains the full script for
obtaining these rates, as well as the rates themselves.

3.2 Recombination

Rates

Recombination rates are specified in ARGweaver in units of the
probability of a recombination between two neighboring bases per
generation. As with mutation rates, the rate may be assumed con-
stant across the region (--recombrate<rate>), or a map of rates
may be provided to the program (--recombmap <ratefile.
bed>).

As discussed earlier, there is an important interplay between the
mutation and recombination processes in the ARGweaver model.
ARGweaver always tries to find ARGs that best fit the data given the
model. If too high a recombination rate is used, then ARGweaver
may overfit the data, so that it samples as many recombination
events as needed to produce trees that allow for minimal numbers
of mutations at polymorphic sites. Conversely, an unrealistically low
rate will lead to ARGs containing too few recombination events,
resulting in local trees that are incompatible with the site patterns in
the data (this will be seen as a large number of “noncompats” in the
output stats file). Thus, it is important to specify the recombination
rates as accurately as possible.

In humans, there are many estimates of recombination rates;
for our example analysis we will use one based on a collection of
African-American genomes [5]. For other species that may not have
existing maps, a genome-wide estimate from the closest model
organism should be sufficient.

It is worth noting that, for reasons of computational efficiency,
the mutation and recombination map should generally only be
specified at modest levels of resolution along the genome sequence.
The reason is that ARGweaver must recompute the transition and
emission probabilities of its HMM at all positions at which the
mutation or recombination rates change, as well as at those at
which the local tree changes. Thus, if the rates change more fre-
quently than the local trees, there will be a considerable increase in
the run time of the algorithm. For this reason, in our example
analysis we smooth out the recombination rates by taking the
average across 5 kb windows. The mutation rates were calculated
in larger windows so they are already smooth.
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3.3 Population Size The prior model for ARGweaver assumes that all samples are drawn
from a single, panmictic population. The panmixia aspect of the
prior is weak in the sense that actual structure in the population is
usually evident in the data and will be reflected in the sampled
ARGs. At the same time, the population size does determine the
prior rate at which branches coalesce, so an incorrect prior may
skew certain features of the sampled ARGs, such as the relative
coalescence times between samples, and the relative rates of candi-
date recombination events.

The simplest way to specify population size is as a constant-
sized population. A quick estimate for the population size can be
obtained using Watterson’s estimator. If S is the number of segre-
gating sites over L nucleotides in n haploid genomes, and μ is the
mutation rate per base pair per generation, then Watterson’s esti-
mator for the diploid effective population size is:

N ¼ S
4μL

 Xn�1

i¼1

1
i

!�1

: ð1Þ

A slightly better method, for the purposes of ARGweaver, is to
use the nucleotide diversity (otherwise known as pi), which is
computed as the average number of pairwise differences between
any two haploid genomes per base-pair. If using VCF input, this
calculation can be accomplished using VCFTools [2] with the
command vcftools --site-pi. The nucleotide diversity can
be divided by 4μ to obtain an estimate of the diploid effective
population size, N.

For most populations, a more realistic model allows for a
changing population size over time. Programs such as SMC++
[29], MSMC [27, see also Chapter 7], PSMC [7], G-PhoCS [3],
or diCal [28]) can be used to obtain estimates of a demographic
history that includes such changes. The option --popsize-
file <popsize_file.txt> can then be used to specify the
corresponding history in ARGweaver. The specified popsize file
should have two columns: a time (in generations) and a diploid
population size. The times should be increasing, with the first time
being zero. An example is shown below:

0 10000

1500 200

2500 20000

This file would represent a bottleneck scenario where there is a
population of size 10,000 for the past 1500 generations, but
between generations 1500 and 2500 ago, the population size was
only 200. Before 2500 generations ago, the population size was
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20,000. Note that ARGweaver will round all times in the file to the
nearest discrete time point used by the model.

Our example analysis illustrates some of the inherent short-
comings in assuming a single population. The sequence data we
will analyze consists of humans sampled from across the globe,
including non-Africans (whose populations endured a severe bot-
tleneck associated with the out-of-Africa event, followed by a rapid
recent expansion), Africans (whose effective population size is
larger, and more stable over time), and ancient hominins (whose
effective population sizes are much smaller than those of humans).
There simply is no single history which would be a good fit for our
data set. In this case, we will simply forge ahead with ARGweaver’s
default population size of 10,000, which is about the correct order
of magnitude for most of our lineages over most of their shared
history. However, it is critical that we keep our model misspecifica-
tion in mind as we interpret our results. In a real analysis, we would
probably eventually want to use simulations to understand the
implications of our over-simplifying assumptions. At the same
time, the fact that we do estimate ARGs that appear to be reason-
able in most respects demonstrates that ARGweaver is somewhat
robust to the choice of population size.

3.4 Time

Discretization

Before running ARGweaver, it is worth thinking about the time
discretization scheme and adjusting it to ensure it is appropriate for
the analysis at hand. There are three options to consider. First, the
number of time points can be changed with the option --
ntimes <ntime>, with the default number of points being 20.
While more resolution may be desired, the running time will
increase proportionally to the square of this number.

Second, the option --maxtime <time> indicates the maxi-
mum time point in the model, in units of generations. All lineages
are forced to coalesce by this time, so it usually makes sense to
choose a very ancient time. The default in ARGweaver of 200,000
generations is about 20 times the effective human population size
and a reasonable choice for most human analyses.

The third relevant option is --delta <delta>. The times are
distributed on a scale so that recent time points are more close
together than distant points. This convention allows for greater
resolution on recent time scales, when there are usually more
coalescence events (since there are more distinct lineages). The
distribution is controlled by the delta (δ) parameter, where
which bring the points closer together at recent times when it is
set to larger values. The exact formula for setting the time points is:

tðiÞ ¼ ðexpð i
K�1 logð1þ δtmaxÞÞ � 1Þ=δ, for K time points and

i ∈{0, 1, . . ., K � 1}. Very small values of δ(< 1/tmax) will yield
roughly linear distribution of times, whereas very large values δ will
place the first few time points so close together that they represent
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fractions of a generation. The default value of δ ¼ 0.01 produces a
reasonable distribution for the default tmax of 200,000 generations.
The discrete times are written to the terminal and log file at the start
of an ARGweaver run, and it is advisable to inspect these values and
possibly adjust δ (by restarting the run) as necessary.

It is important to carefully consider your goals when deciding
how to set maxtime and delta. If you are interested in recent
history, then you may want to increase delta, and your choice of
maxtime may not be crucial. If you are interested in balancing
selection or deep coalescences, it will be important to choose a
larger maxtime and possibly a smaller delta as well.

4 Other Options

4.1 Sampling

Frequency

Another decision to be made is how frequently to sample from the
MCMC chain. The option --sample-step <n> tells ARGweaver
to output the ARG sampled on every nth step of the MCMC
algorithm. If any of the individuals are unphased, then the program
will also output the corresponding phased samples.

As mentioned above, it is customary to “thin” MCMC samples
to reduce autocorrelation between the final samples, but it is diffi-
cult to know how much thinning will be required prior to an
ARGweaver run. Some have argued that thinning is inefficient
and unnecessary, and that most properties of the distribution can
be better estimated using the full sample [11]. In the case of
ARGweaver, however, there is a substantial cost associated with
storing and processing each sampled ARG, and adjacent ARGs in
the chain are very highly correlated, so some degree of thinning is
justified. We will use the default sampling frequency of 10, and
return to the issue of autocorrelation as we interpret the results.

4.2 Ancient Samples If the samples are not all from present day (as with the Neandertals
and Denisovan in our example), their ages (in generations before
the present) can be specified to ARGweaver. The computed ARGs
will then have shorter branches for these samples than for the
modern samples. The ages can be specified in a file with two
columns—sample name and age in generations—and passed to
ARGweaver with the option --age-file <age_file.txt>.
The ages will be rounded to the nearest time point in the model.
Any sample not found in the file is assumed to have age zero, and at
least one sample must have age zero (so sample ages should be
given relative to the youngest sample).

In our example, we use ages of 4206 generations for the Altai
Neandertal, 2482 generations for the Denisovan sample, and 1793
generations for the Vindija Neandertal, corresponding to ages of
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122 kya, 72 kya, and 52 kya, respectively [22], and an assumed
generation time of 29 years.

4.3 Site

Compression

Site compression is usually important for keeping ARGweaver’s run
time manageable. The option --compress-seq <c> will com-
press blocks of c sites together, resulting in a speed-up of the
code of approximately a factor of c. The breakpoints between
each block are chosen in a flexible manner so that there is no
more than one variant site in the same block. If a block contains a
variant site, then the new “compressed site” takes on the site
pattern of its variant site; otherwise the compressed site is invariant.
The mutation and recombination rates are also increased by a factor
of c, since they reflect per-site rates. (This rate inflation is done
internally by arg-sample; the user should provide rates per
uncompressed base pair.)

There are several issues to consider with this option. Compres-
sion will fail (with a program abort soon after stating) if variant sites
are too close together to compress at the requested level. Compres-
sion also causes a loss of resolution; if --compress-seq50 is used,
then the breakpoints in the ARGs will occur at most every 50 base
pairs. Most importantly, recall that ARGweaver assumes that only
one recombination event can occur between any two sites. This
assumption applies to compressed sites also, so its effect is magni-
fied as the compression factor increases. Therefore, if compression
is too high, ARGweaver may not be able to place enough recombi-
nation events between variant sites, resulting in poor ARG
estimates.

One way to think about how much compression is allowable is
to consider the distribution of distances between variant sites,
ignoring singleton sites, which contain no topological information.
In our data set, non-singleton variant (NSV) sites occur, on aver-
age, about every 300 bases. Therefore, one might be tempted to
select a compression factor of 50, which would allow an average of
�6 recombinations between each pair of NSV sites. However, bear
in mind that the distance between NSV sites is approximately
exponentially distributed, which means that at an average distance
is 300, only �15% of NSV sites are more than 50 base pairs apart.
We therefore will use a compression factor of 10 in our example,
which should allow about 97% of pairs of NSV sites to have more
than one recombination between them.

In general, we recommend using compression conservatively,
so that multiple recombinations are still possible between most
pairs of adjacent NSVs. Too high compression will lead to a high
number of “noncompats” in the .stats file (described in the next
section), so the compression factor may need to be adjusted if this is
observed.
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5 Running ARGweaver

With all preliminaries addressed, we are now ready to run ARG-
weaver and work through our example analysis. The command to
run ARGweaver is as follows:

arg-sample --vcf-files vcf_files.txt \

--region $region \

--vcf-min-qual 30 \

--subsites inds.txt \

--maskmap filter.bed.gz \

--mask-cluster 2,5 \

--ind-maskmap ind_mask_files.txt \

--age-file sample_ages.txt \

--mutmap subst_rate_autosome.bed.gz \

--recombmap recomb_rate_autosome.bed.gz \

--compress-seq 10 \

-o $outdir/out

As ARGweaver runs, it produces several output files, all with
names having the prefix specified by the -o option. These files
include:

l A log file (<outroot>.log) , which records the same output
that is written to the terminal, including details about the model
and data, progress, time, and memory usage, etc., as the itera-
tions continue.

l A stats file (<outroot>.stats), consisting of one row perMCMC
iteration, with columns including:

– prior: log probability of the sampled ARG given the model

– likelihood: log probability of the data given the sampled ARG

– joint: total log probability of the ARG and the data (prior +
likelihood)

– recombs: number of recombination events in the sampled
ARG

– arglen: total length of all branches summed across sites

– noncompats: the number of variant sites that cannot be
explained by a single mutation under the sampled ARG

l Sampled ARGs (<outroot>.<iter>.smc.gz) are written at
the sampling frequency requested by the option --sample-
step. These are in ARGweaver’s SMC format, which is text-
readable and lists non-recombining genomic intervals, the tree
in each interval (using Newick format), and the recombination
events that occur between intervals. The recombination events
are described as subtree pruning and regrafting (SPR) events,
which define where a particular branch breaks and recoalesces
back onto the tree.
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l Phased sites files (<outroot>.<iter>.sites.gz) If the data is
unphased, then it will also print the current phased sequence
data (in SITES format) for each ARG that is printed. These
phased SITES files do not contain information about positions
that are masked in all individuals; those regions are written to a
file named <outroot>.masked_regions.bed.

5.1 Time/Memory

Requirements

ARGweaver requires substantial computation time, but the mem-
ory usage is low. In our example, a 1 Mbase region took 6 h to
complete 1000 MCMC iterations, with a maximum memory usage
of 135 Mbytes. The program does not support multithreading.
Rather, parallelization is usually achieved by running many geno-
mic segments at the same time on different CPU cores.

5.2 Monitoring

Convergence

The stats file produced by ARGweaver can be used to monitor
ARGweaver’s convergence. Figure 2 shows an example of how
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Fig. 2 Traces of various statistics over MCMC iterations. The values should stabilize as the chain reaches
convergence; earlier iterations should be discarded as “burn-in.” Values related to the probability of the data,
including the prior, likelihood, and joint probability, should increase as the MCMC converges from a poor initial
guess to higher probability ARGs. The number of “noncompats” tends to decrease until stabilization, since the
true ARG usually explains observed site patterns without requiring multiple mutations. The number of
recombinations and length of the ARG may increase or decrease before convergence, depending on the
data and the model. In this example, a burn-in of 600 iterations seems adequate
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statistics change as the sampler reaches equilibrium (known as
“stationarity” in the MCMC literature). In this example, the rele-
vant statistics seem to become fairly stable after about 600 itera-
tions, so we will use 600 for the “burn-in” for this run.

It is also useful to examine the autocorrelation of the statistics
in the stats file (after removing the burn-in samples). The autocor-
relation of the “joint” statistic is shown in Fig. 3, and it appears that
in this case autocorrelation reaches insignificant levels in roughly
20 iterations. Autocorrelations for the other statistics look similar
and are insignificant between 20–30 iterations (not shown). There-
fore, the sampled ARGs should be thinned to at least every 20th
MCMC iteration in order to achieve a sample of effectively inde-
pendent ARGs. It is not necessary to perform thinning in order to
estimate the mean or quantiles of ARG statistics, so we will not do
that here. Still, it is useful to keep the thinning interval in mind, in
order to compute how many effectively independent samples we
have. If we run 1000 MCMC iterations, and discard the first 600 as
burn-in, and use a thinning interval of 20, we are left with an
effective sample size of only 20. This size may be sufficient for
inspecting example trees, but is not enough to obtain good esti-
mates of derived quantities such as coalescence times. So, in this
case we may want to continue running the MCMC chain for
(at least) an additional 1600 iterations in order to end up with
100 effectively independent samples.

5.2.1 Resuming a Run In our original command, we ran the MCMC for the default
number of iterations, which is 1000. It is easy to resume a run, by
adding the option --resume and specifying the final number of
iterations desired, for example, --iters 2600. In this case it will
start from iteration 1000 and perform 1600 additional iterations.
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Fig. 3 The autocorrelation in the “joint” likelihood statistic for the run shown in
Fig. 2, as plotted by the R function “acf.” The region between the blue lines
represents the 95% confidence interval for no correlation
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6 Interpreting Results

When enough iterations have been completed, the fun begins! It is
time to look at the ARGs and see what might be learned from them.
There are countless ways that one might parse and examine a set of
ARGs, and custom code may eventually be required for a specific
analysis. However, there are some tools in ARGweaver that can be
used to get started.

Many of the plots we will show in this and following sections
were created by the R package that comes with ARGweaver. We will
not show the code to create the plots in this chapter, but it is in the
companion material that accompanies this book. The R package
Gviz [4] was used to create the gene annotation plots.

6.1 Leaf Trace Plots Leaf trace plots were introduced in the ARGweaver paper [23] as
way to visualize the ARG. In these diagrams, the leaves of the local
trees, as they change along the genome sequence, are drawn as
horizontal lines, with the vertical distance between neighboring
lines proportional to the distance between adjacent leaves in the
local tree (see top panel of Fig. 4). Leaf traces should be interpreted
with caution, because there are many possible leaf trace plots for the
same ARG (depending on arbitrary choices made in ordering the
leaves), and the distance between non-adjacent lines in the leaf trace
plot is not directly interpretable. Furthermore, the leaf trace is
drawn for a single ARG, rather than showing the distribution across
sampled ARGs. Nevertheless, the leaf trace is an intuitive graphical
description of an ARG that can be used to survey its overall
structure.

A leaf trace plot can be created by first running the arg-lay-
out executable on a single SMC file. Then, the “plotLeafTrace”
function in the ARGweaver R package can plot the resulting file.

Leaf traces around the DARC gene are shown in the top panel
of Fig. 4. The first feature that is apparent is that the plot changes
quickly along the x-axis in some regions, and more slowly in others,
reflecting the posterior estimate of the local recombination rate.
The vertical height of the plot also gives a quick indication of the
total height of the local trees along the region. That is, a large
“spread” of the traces indicates a deep (ancient) time to most recent
common ancestry (TMRCA), whereas a small spread indicates a
shallow TMRCA. If the traces are colored by population of origin,
the leaf trace can also provide an idea of the level of population
structure in the data. The leaf trace in our example suggests that the
DARC gene is in the middle of a low-diversity region with a
relatively high recombination rate.
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6.2 Computing Basic

ARG Statistics

After examining leaf trace plots, the next way to explore the ARG is
to look at various statistics across the genomic region. The first step
is to convert the ARGs into a more convenient format. We cur-
rently have an SMC file for every sampled ARG, named
<outprefix>.0.smc.gz, . . ., <outprefix>.<num_iter>.
smc.gz. We use the command smc2bed-all <outprefix>,
which will combine all the information into a single sorted and
indexed BED file, with columns: chromosome, start coordinate
(0-based), end coordinate, MCMC iteration number, and Newick
tree (representing the local tree for the ARG sampled in this region
and iteration).

Now, the executable arg-summarize can be used to extract
statistics. Some of the more useful options to arg-summarize
include:

l --tmrca: time to the most recent ancestor

l --pi: average distance between any two leaves

l --branchlen: total tree length

l --popsize: estimate of diploid population size based on coa-
lescence rates in the local tree

l --tmrca-half: time at which half the samples find a current
ancestor

l --rth: Relative TMRCAHalf life (RTH), defined as the ratio of
tmrca-half to tmrca. Unusually low values of this statistic suggest
a recent “clustering” of coalescent events, possibly indicating a
partial selective sweep [23]

l --node-dist <leaf1,leaf2>: Distance between leaf1 and
leaf2 on the tree

l --node-dist-all: Like node-dist, but for all pairs of leaves

l --min-coal-time <ind1,ind2>: Return minimum coales-
cence time between two individuals (over all four haploid pair
combinations)

l --subset-inds <ind_list.txt>: Before computing statis-
tics, prune all individuals not listed in given file

l --mean: Rather than reporting statistics for every MCMC
iteration, report the mean across iterations for all
non-recombining intervals. This applies to all statistics requested
(i.e., --tmrca,--pi, etc.)

l --quantile <q1,q2,...>: Same as --mean, but instead
report one or more quantiles of statistics across samples

For example, the command:

arg-summarize -a <outprefix>.bed.gz --tmrca \

--subset africans_inds.txt \

--quantile 0.05,0.5,0.95
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would compute the 5%, 50% (median), and 95% quantiles of
the time to the most recent common ancestor, in the subset of the
ARG only containing individuals listed in the file african_inds.
txt.

ARGweaver supports many additional options not described
here. A full list can be obtained using the command arg-
summarize --help.

Figure 4 shows a plot of several of these statistics (recombina-
tion rate, pi, popsize, RTH, TMRCA) in the region surrounding
the DARC gene. The highlighted region is known to harbor
variants which have reached near-fixation throughout Africa and
are thought to provide resistance to malaria; however, this region
tends not to be detected by most tests for selective sweeps
[13]. Looking at Fig. 4, there are some suggestions of possible
positive selection in Africa, such as low estimates for pi, population
size, and RTH in the highlighted region. It is possible that the
relatively high recombination rate in this region has led to a fast
breakdown of haplotype structure, which would make a selective
sweep difficult to detect.

It is important when looking at these plots to remember the
underlying population structure; a low RTH seems to be fairly
common in non-African populations due to the population bottle-
neck, but is more rare in African populations. Similarly, we expect
the local population size estimates for the African genomes to be
higher than for the non-Africans. Overall, while the RTH in Africa
at the highlighted region is low, it is doubtful that this region would
be a significant outlier in a genome-wide scan.

6.2.1 Examining Local

Trees

Often one of the most useful ways to gain insight into the ARG is to
look directly at the estimated local trees. ARGweaver’s R package
comes with some tools to visualize the trees (the package internally
makes use the “ape” package [19]). For example, Fig. 5 shows one
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mapped to the branch as shown
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of the sampled trees at the position of rs2814778, the SNP which
defines the African haplotype.

This tree is interesting in several ways. First, it suggests a tight
grouping among the African and non-African populations. While
this is not particularly unusual for non-Africans (due to the out-of-
Africa bottleneck), it is quite rare to observe this level of clustering
among Africans. Importantly, the San individual does not cluster
with the rest of the Africans, providing a hint as to why the African
TMRCA was not unusually low in Fig. 4. In fact, it is known that
the FY*O mutation shown in Fig. 5 is not common in the San
population, whereas it has reached near-fixation throughout most
of the rest of Africa [13].

These observations suggest that perhaps the statistics shown in
Fig. 4 do not fully capture the interesting aspects of this tree.
Figure 6 shows the same statistics, but also calculated using a subset
of Africans that excludes San. This subset (shown in dark blue) is
much more of a regional outlier, with unusually low pi, population
size, and TMRCA. Notably, the RTH statistic is no longer low in
this case; this is because RTH is designed to detect partial sweeps,
and the putative sweep is complete in the subset excluding San.

One must of course be cautious about the biases that might
result from inspecting the sampled trees, deciding how they are
interesting, and then revising the statistical tests to detect these
same interesting features. Nevertheless, it is sometimes only by
visual inspection and exploration of the sampled trees that the
patterns in the data start to become clear. The basic statistics that
can be computed with arg-summarize are often too crude to give
a clear understanding of the ARG features. For example, TMRCA is
unaffected by any feature besides the final coalescence time. The pi
statistic is also very heavily dominated by long branches, especially
due to the logarithmic timescale used by ARGweaver. Finally, RTH
is sometimes informative of partial sweeps; however, it fails to
detect complete sweeps or partial sweeps that have not yet hit
50% frequency, and it also will give many false positives if the
underlying population is expanding or has experienced a
bottleneck.

It is therefore sometimes necessary to “browse” through the
trees to get an idea of what interesting signals may exist. In our
example, we revised our tests both because of the structure of the
observed trees, and because this structure was concordant with the
known geographical distribution of the DARC haplotypes. In order
to determine if this locus is truly special, it would be necessary to
compare its trees/statistics to ones from across the genome, or
generated from neutral simulations based on a more realistic demo-
graphic model.
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6.2.2 Allele Age The sampled ARGs allow mutations to be mapped to the branches
of local trees, which in turn allows the times at which those muta-
tions occurred to be estimated. The arg-summarize program
supports computing such “allele ages,” based on a single sites file.
However, this program is not designed to perform allele age com-
putations when the data is unphased, as it would need to use the
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shown in dark blue)
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sampled phase corresponding with each sampled ARG to properly
map the mutations. This problem can be addressed using a script
called allele_age, which will call arg-summarize for each pair
of sampled ARG and phase, and report the age for each MCMC
iteration.

There are some caveats to interpreting the allele age. First of all,
it is typically the case that, at a small fraction of sites, the local tree
will not be able to explain a particular variant site with a single
mutation (indicating a violation of the “infinite sites” model), so
that the mutation time is poorly defined. It is also possible that the
assignment of derived/ancestral alleles will not be consistent across
all the ARGs; some ARGs may explain an observed variant as a
young, low-frequency allele, whereas other samples may flip the
ancestral and derived alleles and describe the same variant as an old,
high-frequency allele. Also, when a mutation is mapped to a
branch, it is equally likely to have arisen anywhere along the branch,
so mutations mapped to longer branches will have much more
uncertainty in their time estimates than those mapped to short
branches.

The allele_age function outputs a number of extra columns
to help clarify these issues. For each MCMC sample, it outputs the
identity of the inferred derived and ancestral alleles, as well as a flag
indicating whether the mutation can be explained by the infinite
sites model under the sampled tree. It also outputs both the mean
allele age (the midpoint of the branch where it was mapped) and the
minimum allele age (the most recent point on the branch).

In our DARC example, we find that on average 4.5% of sites do
not obey the infinite sites model. The infinite sites violations tend
to be concentrated in the same sites across all MCMC replicates
(with 2.6% of sites requiring multiple mutations in > 95% of repli-
cates, and 92% of sites requiring multiple mutations in < 5% of
replicates). This rate of infinite-site violations is not unexpected,
and is likely due to a number of factors, including low levels of
genotyping error accumulating over 17 samples, true instances of
multiple mutations (especially at sites with high mutation rates such
as CpG sites), model misspecification, or uncertainty in phasing or
the ARG.

Looking at the allele underlying the tree in Fig. 5, we estimate
that the allele is between 100 and 300 ky old. This large amount of
uncertainty is not surprising, as the mutation is mapped to a fairly
long branch above the African subtree.

6.2.3 Neandertal

Introgression

Careful inspection of the local trees in our example region reveals
another interesting feature. Several of the trees downstream from
DARC, such as the one shown in Fig. 7, exhibit an atypical place-
ment of one of the Han haplotypes (Han_2), which is clustered
tightly with the Neandertal genomes. In other respects, this tree is
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quite typical. It is therefore possible that this is a region of Nean-
dertal introgression into the Han individual included in our data
set.

To investigate further, we can use arg-summarize to com-
pute the minimum coalescence time between the Han individual
and each of the ancient hominins (for every sampled ARG, at every
genomic location), and look at the distribution of these times. The
result is plotted in Fig. 8. We see that there is a region between
roughly 159.20Mb and 159.21Mb where the Han genome coa-
lesces with both the Neandertal and the Altai genomes significantly
more recently than 500 kya, roughly the minimum to be expected
in the absence of introgression. (The threshold of 500 kya gener-
ously allows for uncertainty in dating coalescence events; the actual
population divergence time is closer to 600 kya.) No other individ-
ual besides Han has coalescence times significantly below 500 kya in
this region (not shown), indicating that this observation is not
likely to be an artifact of using an incorrect local mutation rate.
Thus, it seems likely that this is a short introgressed region in the
Han.

Another way to examine this region is to look at the site
patterns within it. The subsites program can retrieve sites for
particular individuals or genomic intervals; we can use the sampled
phased SITES file from the ARGweaver run to examine the site
patterns. The R package also has a function (plotSites()) to
visualize site patterns. Figure 9 shows the site patterns in this
putatively introgressed region. It confirms that there are four sites
shared by one of the Han haplotypes and at least one Neandertal,
which are not shared by any other modern human, making the
region a very good candidate for introgression. Most other soft-
ware for detecting introgression would not confidently find such a
short region.
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7 Discussion

We hope that this chapter is sufficient to help new users decide
whether ARGweaver is an appropriate tool to apply to their data,
and to get started with an initial analysis. In our example, we
explored a few relatively simple statistics that suggested instances
of positive selection and Neandertal introgression near the DARC
locus. In other work, we have also shown that ARGweaver can be
used to detect balancing and negative selection [23], as well as
more subtle patterns of introgression [6]. However, there are
many more evolutionary questions that ARGweaver could poten-
tially shed light upon; in fact, one of the most exciting aspects of
ARGweaver is that its possible uses have yet to be fully explored.
One could imagine delving deeper into the study of natural selec-
tion, for example estimating selection coefficients, or distinguishing
selection on new variants from selection on standing variation.
Beyond natural selection, the ARG could also be useful to detect
patterns of population structure, explore genotype/phenotype cor-
relation, phase haplotypes, estimate recombination rates, etc. As we
discussed in the introduction, almost all population genetics ques-
tions can be framed as questions about ARG structure. In some
cases it may be sufficient to compute summary statistics from the
ARG using arg-summarize, but in others, it will be necessary to
write custom code for analyzing the ARG.

There is no doubt that an ARGweaver analysis requires more
time and effort than an analysis based on a typical “off-the-shelf”
tool for population genetics. For this reason, ARGweaver generally
should not be the first tool that one reaches for when analyzing a
new data set. Nevertheless, as we have shown, this additional effort
can prove worthwhile for certain kinds of analyses. One such
instance is when the genomic data are rare and precious, as is the
case with the Neandertal, Denisovan, and other ancient genomes,
which is why we highlight the use of those genomes in this chapter.
Another circumstance in which ARGweaver may be especially use-
ful is when simpler methods fall short, for example, by being
underpowered, or inappropriate in some way for the data or the
question at hand. Because ARGweaver utilizes all the genome data,
without reducing it to summary statistics, and models the full
recombination and coalescence process (within the limitations of
the SMC

0
), it should generally have more statistical power than

other methods. In addition, its ability to work on low-quality
and/or unphased genomes, and produce full evolutionary his-
tories, makes it a uniquely flexible approach that may fill in gaps
left behind by more traditional methods. For these reasons, ARG-
weaver is a “power tool” many population geneticists may wish to
add to their toolboxes.
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Chapter 11

Population Genomics of Transitions to Selfing
in Brassicaceae Model Systems

Tiina M. Mattila, Benjamin Laenen, and Tanja Slotte

Abstract

Many plants harbor complex mechanisms that promote outcrossing and efficient pollen transfer. These
include floral adaptations as well as genetic mechanisms, such as molecular self-incompatibility (SI) systems.
The maintenance of such systems over long evolutionary timescales suggests that outcrossing is favorable
over a broad range of conditions. Conversely, SI has repeatedly been lost, often in association with
transitions to self-fertilization (selfing). This transition is favored when the short-term advantages of selfing
outweigh the costs, primarily inbreeding depression. The transition to selfing is expected to have major
effects on population genetic variation and adaptive potential, as well as on genome evolution. In the
Brassicaceae, many studies on the population genetic, gene regulatory, and genomic effects of selfing have
centered on the model plant Arabidopsis thaliana and the crucifer genus Capsella. The accumulation of
population genomics datasets have allowed detailed investigation of where, when and how the transition to
selfing occurred. Future studies will take advantage of the development of population genetics theory on
the impact of selfing, especially regarding positive selection. Furthermore, investigation of systems includ-
ing recent transitions to selfing, mixed mating populations and/or multiple independent replicates of the
same transition will facilitate dissecting the effects of mating system variation from processes driven by
demography.

Key words Self-fertilization, Arabidopsis, Capsella, Self-incompatibility, Mating system evolution,
Heterozygosity, Effective population size, Recombination rate, Transposable element, Efficacy of
selection

1 Introduction

Flowering plants harbor a great variety of mating systems and
associated floral and reproductive adaptations [1], and there is a
rich empirical and theoretical literature on the causes of this diver-
sity [2–6]. About half of all flowering plants harbor genetic self-
incompatibility (SI), a molecular recognition system that allows
plants to recognize and reject self pollen, and that has arisen multi-
ple times in the history of flowering plants [7]. Despite the fact that
molecular SI systems are widespread, loss of SI, often accompanied
by a shift to higher selfing rates, has occurred even more frequently,
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in many independent plant lineages [8]. This transition can be
favored under conditions when the benefits of selfing, such as
reproductive assurance [2] and the 3:2 inherent genetic transmis-
sion advantage of selfing [9], outweigh the costs of inbreeding
depression and reduced opportunities for outcrossing through pol-
len (pollen discounting). As the favorability of the transition hinges
on ecological factors including access to mates and pollinators that
may vary greatly spatially or temporally, it is perhaps not surprising
that the transition to selfing has occurred repeatedly [10]. Over a
longer term, however, the loss of SI is associated with a reduction in
the net diversification rate [11], a finding that provides tentative
support for Stebbins’s suggestion that selfing is an evolutionary
dead end [12]. While the underlying ecological and evolutionary
mechanisms behind this observation remain unclear, it was sug-
gested already by Stebbins [12] that decreased adaptive potential in
selfers would lead to higher extinction rates, a suggestion that is
supported by theoretical modeling [13]. However, selfing does not
only affect adaptation but also the impact of purifying selection
[14, 15], and the relative importance of accumulation of deleteri-
ous mutations vs. reduced potential for adaptation in selfing
lineages currently remains unclear. To fully understand the impact
of mating system shifts on evolutionary processes, it is necessary to
combine theoretical and empirical investigations, and ideally to
study several parallel transitions from outcrossing to selfing. Molec-
ular population genetics has proven to be a powerful tool to shed
light on the role of natural selection in shaping the patterns of
variation in selfing species. Here we will give an outline of recent
work in this area, with a focus on two main model systems in the
Brassicaceae.

2 The Molecular Basis of the Loss of SI and Evolution of Self-Fertilization
in Brassicaceae

The effects of the transition to self-fertilization on population
genomic variation and molecular evolution have been extensively
studied in two systems from the Brassicaceae family, Arabidopsis
andCapsella. Both of these genera have outcrossing SI as well as SC
species with high selfing rates, and thus serve as good models to
study this evolutionary transition [16–18]. The most widely stud-
ied SC species are Arabidopsis thaliana and Capsella rubella, which
have both been estimated to be highly selfing [19–22]. The pat-
terns of variation and molecular evolution in these selfers are often
contrasted with those in their diploid sister species Arabidopsis
lyrata and Capsella grandiflora, which are both SI and outcrossing.
Investigations of the other SC species from these genera such as
allopolyploid Arabidopsis suecica [23] and Arabidopsis kamchatica

270 Tiina M. Mattila et al.



[24–26], diploid Capsella orientalis and allopolyploid Capsella
bursa-pastoris [18] have given further insight into the evolution
of selfing. In Fig. 1, we provide an overview of the evolutionary
relationships among the best-studied Arabidopsis and Capsella
species.

Knowledge on the molecular basis of the breakdown of SI is at
the center of studies investigating the early genetic causes of the
transition to selfing in the Brassicaceae. In Brassicaceae, the SI
recognition system includes two key genes at the nonrecombining
self-incompatibility locus (S-locus) as well as modifier genes. The
gene SRK encodes an S-locus receptor kinase that is located on the
stigma surface and acts as the female specificity determinant,
whereas the gene SCR encodes a pollen ligand that is deposited
on the pollen surface and acts as the male specificity determinant
[27]. This reaction is a key-lock protein interaction between the
female determinant on the stigma and the male determinant on the
pollen coat [27]. When SRK on the stigma binds to SCR from the
same S-haplotype, a downstream reaction is triggered which culmi-
nates in the prevention of pollen tube growth and fertilization
[28]. The evolution of selfing proceeds by disruptions of the SI
reaction, for example due to loss-of-function mutations in key S-
locus genes or in unlinked modifier genes (e.g., [29]), after which
the selection at these loci is relaxed and the genes may be degraded
further.

There has been intense interest in the role of parallel molecular
changes underlying repeated shifts to selfing associated with the
loss of SI (reviewed in [30]). In particular, theory predicts that
mutations that disrupt the function of the male specificity determi-
nant might spread more easily than those that disrupt the female
specificity determinant [31, 32], and there is accumulating support
for this prediction. For instance, in A. thaliana, Tsuchimatsu et al.
[33] showed that an inversion in SCR underlies SC in many
European accessions. In some accessions, SI can be restored by
introduction of functional SRK-SCR allele from self-incompatible
sister species A. lyrata but variability between accessions exists
[34, 35]. In Capsella homologous machinery has been shown to
underlie the SI reaction [36] and there is widespread transspecific
shared polymorphism between C. grandiflora and SI Arabidopsis
species at the S-locus [37]. The loss of SI in C. rubella is due to
changes at the S-locus [36, 38], and experiments suggest that
breakdown of the male specificity function is responsible for this
loss [36]. However, the molecular basis of the breakdown of SI in
C. rubella remains unclear [39] and this is also true for the other SC
Capsella species. With recent progress in long-read sequencing,
which facilitates assembly of the S-locus, this area is ripe for further
investigation.
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272 Tiina M. Mattila et al.



3 Population Genetics Consequences of Selfing

3.1 Theoretical

Expectations

Self-fertilization has drastic consequences on the patterns and dis-
tribution of genetic variation, and for the impact of natural selec-
tion. The level of selfing is therefore an important factor to consider
in population genetics. Here we summarize the expected popula-
tion genetic consequences of selfing (Fig. 2) and then present
empirical results from Arabidopsis and Capsella that illustrate the
theoretical expectations.

Selfing has two major key effects; it results in reduced hetero-
zygosity and a reduced effective population size (Ne). Under com-
plete selfing, heterozygosity is halved every generation. Hence, the
heterozygosity of a completely selfing population is almost fully
eliminated already after six generations of complete selfing. A side
effect is a rapid generation of isolated lines of different genotypes
[40] which is expected to result in stronger population structure in
selfing species compared to outcrossers [41]. Moreover, selfers are
expected to exhibit a reduction in Ne for several reasons. First,
selfing immediately results in a twofold reduction of the number
of independently sampled gametes, and this is expected to reduce
theNe by a factor of two [42, 43]. Even greater reductions inNe are
expected if selfers undergo more frequent extinction and recoloni-
zation dynamics than outcrossers [44], or if the origin of selfing
species is often associated with bottlenecks [14]. Furthermore,
because selfing results in a rapid decrease in heterozygosity, recom-
bination is less efficient at breaking up linkage disequilibrium in
selfers than in outcrossers [45]. In this situation, background selec-
tion or recurrent hitchhiking (linked selection) will have a greater
impact, reducing neutral genetic diversity beyond what would be
expected in an outcrosser [46]. Together, these factors decrease the
overall genetic diversity [41] and increase the linkage disequilib-
rium (LD) of selfing populations [43].

The combined effect of reduced Ne and effective recombina-
tion rate will also affect the efficacy of selection genome-wide. On
the one hand, when Ne is reduced, a higher proportion of the
genome behaves neutrally and alleles that were slightly deleterious
in large populations become effectively neutral [47]. In addition, as
an effect of the reduced effective recombination rate in selfers, Hill-
Robertson interference [48] will increase and therefore limit

�

Fig. 1 (continued) Novikova et al. [106]. The timing of the population split between C. rubella and
C. grandiflora is based on Slotte et al. [76] and the timing of the origin of C. bursa-pastoris and the split
between C. orientalis and the C. grandiflora/C. rubella lineage is based on Douglas et al. [18]. Photographs of
Arabidopsis species were taken by Jon Ågren (A. thaliana), Robin Burns (A. suecica), Johanna Lepp€al€a
(A. arenosa), Tiina Mattila (A. lyrata), Vincent Castric (A. halleri), and Rie Shimizu-Inatsugi (A. kamchatica).
All Capsella photographs were taken by Kim Steige
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selection efficacy further. As a consequence, one may expect selfing
lineages to have an excess of nonsynonymous divergence compared
to synonymous divergence (dN/dS orKa/Ks) as well as polymorph-
isms (πN/πS), mainly due to weakened selection against slightly
deleterious variants [41]. Further, reduced efficacy of selection
and recombination rate may also decrease the level of codon
usage bias [49, 50]. However, it should be noted that spurious
signals of relaxed purifying selection can result as a result of recent
demographic change [51], because the time to reach equilibrium
after a bottleneck is longer for nonsynonymous than for synony-
mous polymorphism. Ideally, forward population genetic simula-
tions incorporating selection and demography should therefore be
undertaken to validate inference of relaxed purifying selection.

The dynamics of alleles with different levels of dominance will
also be affected by the mating system [52], in ways that can some-
times counteract the effect of reduced Ne. For instance, in selfing
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Fig. 2 A network showing the effect of selfing on population parameters (orange) and population genetics
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combination of parameter values)
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species, increased homozygosity renders recessive alleles visible to
selection, and as a result, fixation probabilities of recessive advanta-
geous alleles are expected to be higher in selfers than in outcrossers
[53]. Harmful recessive alleles can also be removed more efficiently,
resulting in purging of recessive deleterious alleles, unless the
reduction in Ne in selfers is severe enough that genetic drift over-
powers the homozygosity effect [54].

Selfing and outcrossing populations have also been shown to
differ in the dynamics of adaptive alleles. The reduced efficacy of
selection will decrease the probability of slightly beneficial mutation
fixation but also the fixation time of beneficial mutation in selfers is
faster in comparison with the outcrossing species regardless of the
dominance level [13, 55]. Further, in selfing populations, adapta-
tion is more likely to result from newmutations (hard sweeps) while
in outcrossers adaptation from standing variation (soft sweeps) is
predicted to be more frequent [13, 15]. On the other hand, the
effect of linked selection is expected to be stronger in selfing species
due to reduced effective recombination rate which will increase the
fixation probability of linked harmful mutations [56] and poten-
tially limiting the adaptive potential of selfers.

Mating system has also been hypothesized to affect the trans-
posable element (TE) content of the genome. TEs are mobile
genetic elements that make up a large yet variable proportion of
many plant genomes [57, 58]. Theory predicts that both mating
system variation and differences in the effective population size
(Ne) should affect TE content, because these factors affect possibi-
lities for TEs to spread, the potential for evolution of self-regulation
of transposition, and the efficacy of selection against deleterious TE
insertions. For instance, outcrossing enhances opportunities for TE
spread [59], and transposition rates should evolve to be highest in
outcrossers, which should therefore be expected to have higher TE
content than highly selfing species [60]. Likewise, if the harmful
effects of TEs are mostly recessive or codominant, increased homo-
zygosity in selfers leads to more efficient purifying selection against
TEs in selfers [61]. On the other hand, natural selection against
slightly deleterious TE insertions could be compromised in selfing
species, because of their reduced effective population size
[41]. Increased homozygosity in selfers might also decrease the
deleterious effect of TEs, because this decreases the probability of
ectopic recombination [62]. Under this scenario, a transition to
selfing would be expected to lead to an increase in TE content.
Different models therefore yield contrasting predictions regarding
the expected effect of mating system variation on TE content.

3.2 Empirical Results Several empirical results have confirmed the theoretical predictions
regarding the population genetics effects of selfing. Figure 3 sum-
marizes some empirical population genetics results from selfing and
outcrossing Arabidopsis and Capsella species. First, while it is
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difficult to disentangle the effect of past demographic events from
the effect of selfing, both C. rubella and A. thaliana present high
levels of population structure [21, 22, 63]. Indeed, population
structure is stronger in the selfer C. rubella than in the outcrossing
C. grandiflora, consistent with theoretical expectations for selfers
[22] (Fig. 3).

Furthermore, evidence for a reduction in Ne has been found in
natural populations of C. rubella and A. thaliana. In C. rubella
both synonymous diversity and population recombination rate are
significantly lower than in the outcrossing sister species
C. grandiflora [22, 64]. Similarly, the selfer A. thaliana shows
lower synonymous polymorphism in comparison with the outcross-
ing A. lyrata [65, 66] (Fig. 3). An early study also found evidence
for a faster decay of linkage disequilibrium (LD) inA. lyrata than in
A. thaliana [66]. However, more recent work has shown that there
is also high variation in nucleotide diversity and LD patterns in
A. thaliana, both between different parts of the genome and across
different geographic regions and habitats [67–70]. Patterns in
A. lyrata are also complicated by strong population size decrease
in several extensively studiedA. lyrata populations [71], which also
decreases the population recombination rate. Hence, it is worth
noticing that both diversity and LD are both highly dependent on
the past demographic history and the local variation in the recom-
bination rate across the genome. The decay of LD also depends on
whether estimates are based on local or global population samples
[72]. In A. thaliana LD decays faster in a world-wide sample in
comparison with local populations [68, 70] which may be due to
local populations having a low number of founders [72].

Empirical evidence for the impact of selfing on the efficacy of
selection started with early investigations of divergence and poly-
morphism inA. thaliana and its outcrossing sister speciesA. lyrata,
using a limited number of loci. This study found very limited
evidence for relaxed selection in A. thaliana [73]. However,
using genome-wide polymorphism data, Slotte et al. [74] found
evidence for weaker purifying selection on nonsynonymous sites in
A. thaliana relative to the outcrosser C. grandiflora. Further stud-
ies confirmed decreased codon usage bias in both A. thaliana and
C. rubella in comparison with the outcrossing A. lyrata and
C. grandiflora [50] (Fig. 3e). Analyses of population genomic
data from C. rubella and C. grandiflora further found evidence
for a higher ratio of nonsynonymous to synonymous polymor-
phism in C. rubella [75, 76]. Forward population genomic simula-
tions demonstrated that this was likely primarily a result of the
reduced Ne in C. rubella, and not due to a major shift in the
distribution of fitness effects (DFE) in association with the shift
to selfing [76]. More recently, a study that directly estimated the
DFE based on analyses of site frequency spectra found evidence for
a higher proportion of nearly neutral nonsynonymous mutations in
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the selfers C. orientalis and C. bursa-pastoris relative to the out-
crosser C. grandiflora [18]. These results are in general agreement
with the theoretical expectation that purifying selection should be
relaxed in selfers.

While some models predict that a shift to selfing should lead to
a reduced prevalence of TEs, other models predict the opposite. So
far, empirical evidence from Arabidopsis and Capsella do not
unequivocally support either of these predictions. On one hand,
the comparison of structure of the A. thaliana and A. lyrata
genome sequences suggested that the A. thaliana genome
contained large numbers of small deletions, especially in TEs
[77]. This result is consistent with the hypothesis that in selfing
species TEs are more efficiently removed [61]. One the other hand,
Lockton and Gaut [78] found that many TE families are in higher
frequency and are subjected to weaker selection in A. thaliana in
comparison withA. lyrata. Furthermore, comparison of C. rubella,
C. grandiflora, A. thaliana and A. lyrata revealed that the TE
frequency and density in Capsella showed a stronger resemblance
to A. thaliana than to A. lyrata [76]. This may indicate that the
reason for the TE abundance difference between the Arabidopsis
species is accumulation of TEs in the A. lyrata genome rather than
decline in the selfing A. thaliana lineage.

Focusing on TE content in selfing and outcrossing Capsella
species, Ågren et al. [79, 80] found an increase in TE number in
C. rubella but a slight decrease in the selfer C. orientalis, in com-
parison with the outcrossing C. grandiflora. In the polyploid selfer
C. bursa-pastoris, no evidence for a difference in TE dynamics was
found in comparison with its parental species, C. grandiflora and
C. orientalis [80]. Thus, while there is some evidence for a reduced
prevalence of TEs in selfers, the results are not unequivocal, and
further work is needed to clarify whether the contrasting findings
might be related to the timing of the shift to selfing and demo-
graphic history. Indeed, there is evidence for an effect of demo-
graphic history on selection against TEs in A. lyrata, where large
refugial populations exhibited a signature of purifying selection
against TE insertions, whereas in bottlenecked populations, TEs
were evolving neutrally [81]. In addition to broad comparative
genomic studies contrasting species that differ in their mating
system, studies of intraspecific variation can thus provide insight
into population genomics and selection on TEs [82]. Because TEs
are important contributors to variation in plant genome size and
TE silencing can also affect gene regulation [83–85], it is of con-
siderable interest to improve our understanding of the impact of
mating system on variation in TE content.

278 Tiina M. Mattila et al.



4 Discovering the Geographic Origin and the Timing of the Mating System Shift

Understanding the timing, mode, and geographic location of the
shift to selfing is of key importance for proper interpretation of
population genomic data from selfing species [86]. For instance,
improved understanding of the timing and geographical location of
the shift can be key for interpretation of genetic structure, and can
allow one to account for underlying neutral (demography induced)
processes when investigating changes in the efficacy of selection.

In A. thaliana, several studies have estimated the timing of the
emergence of selfing based on patterns of polymorphism and
demographic modeling. A. thaliana is native to the Eurasia and
Africa [87–89] and widely spread especially in Europe. It has also
recently spread into North America in association with humans
[21]. All the currently known accessions are SC, indicating that
the evolution of this trait preceded the worldwide spread of the
species. Linkage disequilibrium patterns suggested that the transi-
tion to selfing in A. thaliana occurred as early as 1,000,000 years
ago [90] while coalescent modeling using S-locus diversity sug-
gested a younger origin with an upper estimate of approximately
400,000 years ago [91].

The recent development of large-scale population genomics
datasets from 1135 A. thaliana accessions [63], offers one of the
best population genomics resource for studying plant population
genetics and molecular evolution. A recent demographic modeling
study exploited this resource and included additional accessions
covering roughly the African distribution of the species to investi-
gate the timing and geographic origin of the shift to selfing in
A. thaliana [89]. Using a combination of the MSMC method
that infers cross-coalescent times and fluctuations in the effective
population size using a whole-genome data from multiple popula-
tions [92] and the site frequency spectrum based diffusion approxi-
mation method δaδi [93], Durvasula et al. [89] inferred the
demographic history of the different groups from Africa and Eur-
ope. They suggest that partial loss of SI occurred
500,000–1,000,000 years ago subsequent to the migration of the
ancestral founding A. thaliana population to Africa approximately
800,000–1,200,000 years ago. Although the existence of multiple
nonfunctional S-haplotypes suggests that the final loss of SI
occurred multiple times independently [94, 95], the new study
including African accessions shows that all the currently known
S-haplotypes are found coexisting in Morocco, suggesting that
selfing originated in this geographic region [89]. This result was
further supported by the higher estimated Ne in African popula-
tions, and they estimated that the species spread out-of-Africa some
90,000–140,000 years ago.
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The postglacial colonization of A. thaliana within Europe has
likely proceeded through acquirement of a weedy lifestyle
[63]. The first European colonists likely occurred in the southern
and eastern part of Europe [63, 96, 97] and the massive spread over
central and northern parts of Europe occurred later, possibly asso-
ciated with human action [63]. Population structure analysis
revealed that there are two distinct groups in Central Europe and
these two groups have admixed in Central Europe [98–100]. Two
distinct lineages are also present in Scandinavia with accessions
from Finland as well as from the northern parts of Sweden and
Norway forming their own cluster while the southern Swedish
accessions cluster with the southern accessions [99, 101]. Using a
whole-genome population-genomics approach Lee et al. [102]
found five different clusters within EuropeanA. thaliana accessions
and they suggest that that these groups have given rise to the
current distribution of the species within Europe.

Another selfing example from Arabidopsis, where the demo-
graphic and colonization history has been studied, is the polyploid
species A. suecica, which is a selfing allopolyploid between
A. thaliana and A. arenosa (Fig. 1). The species is spread in central
Sweden and southern Finland. Early investigation explored
52 microsatellites and four nuclear sequences [103] and inferred a
single and recent origin of the species approximately
12,000–300,000 YA followed by northward spread using a Bayes-
ian coalescent population modeling. This single origin has also
been supported by other studies based on the amount of variation
in chloroplast sequence data [104, 105]. However, recent investi-
gation of whole-genome resequencing data from 15 A. suecica
accessions concluded that the multiple origins hypothesis cannot
be ruled out [106]. Based on the S-locus haplotype dominance
patterns in these accessions they suggest that A. suecica could
have been SC, at least to some degree, immediately after the species
emergence approximately 15,100–16,600 years ago (Fig. 1).

In Capsella it has been estimated that the timing of the loss of
SI is much more recent. Isolation-migration analyses based on
39 gene fragments and assuming a mutation rate of 1.5 � 10�8

suggested that the shift to selfing was concomitant with speciation
of C. rubella from an outcrossing ancestor similar to present-day
C. grandiflora, and that this occurred some 20,000 years ago
[64]. Likewise, an investigation of the diversity patterns at the
S-locus across the European range of the species suggested that
loss of SI took place in Greece approximately 40,000 years ago
[37], since the presumably ancestral long form of SRK allele is
present in this region while the other accessions harbor a shorter
form. Divergence estimates based on analysis of genome-wide
founding haplotypes suggested that selfing evolved later, approxi-
mately 50,000–100,000 years ago [75]. Assuming a different
mutation rate of 7.1 � 10�9, Slotte et al. [76] analyzed genome-
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wide site frequency spectra using δaδi, estimated that the timing of
the split between C. grandiflora and C. rubella occurred
<200,000 years ago (Fig. 1). Later on, coalescent-based analyses
of genome-wide joint site frequency spectra from C. grandiflora,
C. orientalis and C. bursa-pastoris were used to infer the timing of
allopolyploid speciation resulting in the selfing species C. bursa-
pastoris ([18], Fig. 1). Together these analyses have provided an
evolutionary framework for further genomic studies of the conse-
quences of selfing and allopolyploidy in Capsella (Fig. 1).

5 Some Caveats

As many authors point out, estimates of population split times are
usually based on assumptions that contain considerable uncertainty
(see, e.g., ref. 103). For example, a fixed mutation rate or a distri-
bution around a mean is often assumed. The direct mutation rate
estimate from A. thaliana mutation accumulation lines of
7.1 � 10�9 [107] is commonly used for Arabidopsis, whereas, as
pointed out above, early estimates in Capsella were based on a
mutation rate of 1.5 � 10�8 [108] while later studies (e.g., Slotte
et al. [76] and Douglas et al. [18]) have used the Ossowski et al.
[107] mutation rate estimate. Other assumptions may include
constant generation time, recombination rate and analyses may
further be restricted to a limited number of demographic models.
These factors may be variable between studies and it is important to
pay attention to these details when evaluating the results of demo-
graphic modeling.

A more severe limitation concerns the effect of selection on
linked sites on demographic inference. Simulations have shown that
the increased intensity of background selection in selfers can rapidly
lead to a strong reduction in neutral diversity [109]. Based on these
findings, some authors have questioned whether it is possible to
reliably infer demographic changes associated with the shift to
selfing based on neutral polymorphism [109]. The impact of linked
selection on patterns of neutral polymorphism is indeed a general
problem for demographic inference [110–112]. To some degree, it
may be possible to circumvent this problem by judiciously choosing
which sites to use for demographic inference [46], and by using
forward population genetic simulations in software such as SLiM
[113, 114] to assess whether results are robust to the effect of
selection on linked sites. As an example, a recent study on Arabis
alpina used site frequency spectra for sites in genomic regions with
high recombination rates and low gene density, which should be
least affected by linked selection, to infer the demographic history
of selfing Scandinavian populations [115]. The reliability of
this inference was further checked with forward simulations incor-
porating background selection and a shift to selfing [115]. This
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study therefore demonstrated one way to assess the effect of linked
selection on demographic inference in selfing populations.

6 Future Directions

In this chapter, we have given a brief overview of population
genomic studies of the transition to selfing, focusing on the two
model systems Arabidopsis and Capsella. One limitation of most of
the studies presented here is that they have focused on comparing
pairs of species with contrasting mating systems. Ideally, to be able
to distinguish between idiosyncrasies of one particular contrast and
effects of selfing per se, future comparative population genomic
studies of the effect of selfing should include multiple phylogeneti-
cally independent contrasts.

An additional limitation is that most studies have focused on
contrasting only highly selfing and obligate outcrossing species,
although there is a lot more diversity to plant mating systems. For
instance, a substantial proportion (approximately 42%) of flowering
plants undergoes a mix of outcrossing and self-fertilization
[116]. Despite this fact, and despite the existence of theoretical
and simulation-based work on the expected population genomic
consequences of partial selfing [15, 54, 56, 117], there is a dearth
of empirical population genomic studies including mixed mating
populations and species (but see, e.g., 115, 118). One exception is a
recent study which tested for a difference in the impact of purifying
selection among obligate outcrossing, mixed-mating, and highly
selfing populations of Arabis alpina [115]. This study found no
major detectable difference in purifying selection between mixed
mating and outcrossing populations, whereas purifying selection
efficacy was significantly lower in Scandinavian selfing populations,
most likely as a result of a postglacial colonization bottleneck
[115]. These results are consistent with the expectation that a low
level of outcrossing may be sufficient to prevent accumulation of
deleterious alleles [117]. However, further empirical studies in
more mixed mating species and populations, ideally including
larger sample sizes, are required to establish the generality of this
pattern.

Another less empirically studied issue is how the prevalence of
positive selection and especially how selective sweeps are impacted
by mating system. In A. thaliana, the proportion of amino acid
substitutions driven by positive selection has been estimated to be
close to 0% [74, 119] while for example in the outcrossing relative
C. grandiflora this proportion has been estimated to be as high 40%
[74]. However, making inferences on the underlying cause of this
difference is not straightforward. For example, positive selection
has also been shown to be rare in the outcrossing A. lyrata [120]
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suggesting that other factors, such as for instance demographic
history, may also result in low rates of adaptive substitutions. The
theoretical work on the effect of dominance on fixation probabil-
ities has yielded results that could be tested by taking advantage of
genome-wide population genetics datasets and methodological
developments regarding sweep detection (e.g., [121, 122]). For
example, with suchmethodology, it is possible to test whether there
is a difference in the relative occurrence of hard and soft sweeps in
selfers and outcrossing populations as predicted by theoretical work
[13]. Further advances in the classification of mutations into differ-
ent dominance classes [123] will allow for testing hypotheses
related to the behavior of recessive, additive, and dominant alleles
in selfing vs. outcrossing species.
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Chapter 12

Genomics of Long- and Short-Term Adaptation in Maize
and Teosintes

Anne Lorant, Jeffrey Ross-Ibarra, and Maud Tenaillon

Abstract

Maize is an excellent model for the study of plant adaptation. Indeed, post domestication maize quickly
adapted to a host of new environments across the globe. And work over the last decade has begun to
highlight the role of the wild relatives of maize—the teosintes Zea mays ssp. parviglumis and ssp. mex-
icana—as excellent models for dissecting long-term local adaptation.
Although human-driven selection associated with maize domestication has been extensively studied, the

genetic basis of natural variation is still poorly understood. Here we review studies on the genetic basis of
adaptation and plasticity in maize and its wild relatives. We highlight a range of different processes that
contribute to adaptation and discuss evidence from natural, cultivated, and experimental populations. From
an applied perspective, understanding the genetic bases of adaptation and the contribution of plasticity will
provide us with new tools to both better understand and mitigate the effect of climate changes on natural
and cultivated populations.

Key words Maize, Teosinte, Adaptation, Plasticity, Convergence

1 Introduction

A combination of archeobotanical records and genetic data has
established that maize (Zea mays ssp. mays) was domesticated
around 9000 years ago in the Balsas river valley of Mexico from
the wild teosinte Zea mays ssp. parviglumis [1–3]. Unlike complex
domestication scenarios involving multiple domestication events in
the common bean (Phaseolus vulgaris L.) and the lima bean (Pha-
seolus lunatus L.) [4] or multiple progenitors from different regions
in barley (Hordeum vulgare; [5], maize stands a relatively simple
scenario involving only a single domestication event resulting in a
moderate decrease of genetic diversity of roughly 20% [6].

With the rise of coalescent simulation tools since the late 1990s
[7], researchers have repeatedly attempted to establish demo-
graphic scenarios of maize domestication. All concur with a simple
bottleneck model, that is, a reduction of effective population size

Julien Y. Dutheil (ed.), Statistical Population Genomics, Methods in Molecular Biology, vol. 2090,
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(Ne), with <10% of the teosinte population contributing to the
maize gene pool [8–11]. A recent investigation indicates that this
bottleneck was followed by a major expansion resulting in anNe for
modern maize much larger than that of teosinte [11]. However,
the complexity of the forces acting to shape diversity at a genome-
wide scale makes it difficult to disentangle them. On the one hand,
domestication has likely promoted strong positive selection at ~2%
to 4% of loci [10] producing one of the most famous textbook
example of selective sweeps at tb1, a gene responsible for the
reduced branching phenotype in maize [12]. On the other hand,
purifying selection has also reduced neutral genetic diversity
[11]. Such selection may lead to an excess of rare variants, a foot-
print easily confounded with both positive selection and population
expansion [13].

After its initial domestication, the geographic range of maize
has rapidly exceeded that of its wild relatives, with documented
routes of diffusion northward and southward out of Mexico
[14, 15] and to the European continent [16]. Today the maize
gene pool worldwide consists of locally adapted open-pollinated
populations (landraces) as well as modern inbred lines, derived
from landraces, that are used in hybrid production for modern
breeding. Such spatial movement has exerted a diversity of selective
pressures, triggering changes in the phenology of individuals that
ultimately determines the completion of the annual cycle and indi-
vidual fitness [17, 18].

In the last decade, the annual teosintes Zea mays ssp. parviglu-
mis and ssp. mexicana have emerged as models for dissecting long-
term adaptation to natural selection [19]. While their distribution is
rather limited geographically, teosintes span extremely various envi-
ronmental conditions in terms of temperatures, precipitations and
elevations. Migration is also somewhat limited by the complex
landscape of Mexico [20, 21]. Moreover, both teosinte taxa display
a high level of nucleotide diversity [22] consistent with large esti-
mates of effective population sizes from 120k to 160k
[23]. Together, these conditions set the stage for extensive local
adaptation.

Populations respond to environmental changes in three ways:
(1) by shifting their range via migration to environments whose
conditions are similar to their original conditions; (2) by genetic
adaptation through the recruitment of preexisting or new alleles
that increase the fitness of individuals carrying them; or (3) by
phenotypic adjustments without genetic alterations, a mechanism
called phenotypic plasticity.

Recent range shifts driven by global warming have been
reported in tree species distributed in California, Oregon and
Washington with an average shift compared to mature trees of
about 27 m in altitude and 11kms northward, toward colder envir-
onments [24]. Likewise, rising temperatures have likely caused the
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upslope migration reported for vascular plants species across
European boreal-to-temperate mountains [25].

Such measurement in natural populations of teosintes are cur-
rently unavailable making the assessment of recent migration in
response to climate change unknown. However, a niche modeling
study showed that the range of annual teosintes appears to be quite
similar to what it was at the time of domestication [26]. From the
same study, relatively minor shifts of the niche have occurred even
over the dramatic changes of the last glacial maximum, suggesting
that migration over long ranges was not necessary.

In this chapter, we focus on adaptation and phenotypic plastic-
ity. We review methods used to explore genetic adaptation and the
factors constraining it. Next, we review empirical reports of short-
and long-term adaptation in maize and teosintes. Finally, we discuss
the role genetic convergence and phenotypic plasticity have played
during adaptation.

2 How to Explore Adaptation?

Genetic adaptation can be defined as the modulation of allele
frequencies through natural and/or artificial selection. Natural
selection is imposed by changes in environmental conditions, or
artificial selection by humans. Identification of adaptive loci
(Fig. 1a, b) and/or traits (Fig. 1c, d) uses spatial or temporal
variation in conjunction with quantification of traits in native envir-
onments (Fig. 1f) or in common gardens (Fig. 1g) [27–30]. While
the temporal approach includes retrospective studies that follow the
phenotypic and genetic composition of populations through time
(for instance [31] to infer past selective events, the spatial approach
relies on samples of populations that are geographically separated
[30, 32].

In Zea, experimental approaches have been coupled with gen-
otyping of sampled/evolved populations to identify the genomic
bases of observed phenotypic changes. More often, however, stud-
ies have focused only on species-wide population genomic analyses
tracing patterns of variation. These include searches for (1) spatial
associations of allele frequencies with environmental factors or
phenotypes (Fig. 1a); (2); shifts in allele frequencies across genetic
groups (e.g., comparing wild and cultivated samples) using genome
scans (Fig. 1b); and (3) differential gene expressions related to
population/subspecies differentiation. An increasingly popular
approach that was initiated in 2003 by Jaenicke-Despres [33] is
the use of ancient DNA, as maize cobs are often well preserved
making them an attractive source for ancient DNA studies. Such
studies provide access to temporal samples to address past selective
events that shaped genomes.
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3 What Constraints Adaptation?

Genetic adaptation can proceed through a single beneficial muta-
tion that occurs after the onset of selection pressure, in which case
the classical genetic footprint of a “hard” selective sweep is
observed. Alternatively, it can proceed through a single mutation
segregating in the population before the onset of selection (stand-
ing genetic variation), or through recurrent beneficial mutations.
In these latter cases, adaptation produces a “soft” sweep
footprint [34].

Hard sweeps are characterized by local shifts in allele frequen-
cies due to the hitchhiking of neutral sites around a selected de
novo variant occurring on a specific haplotype. Such changes in
allele frequencies can easily be detected by genome scans. In con-
trast, soft sweeps, which derive from multiple adaptive alleles
sweeping in the population, are substantially harder to detect at a
genome-wide scale.
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The relative contribution of hard and soft sweeps has been a
long-standing debate and ultimately raises the important question
of what limits adaptation. Experimental evolution in model organ-
isms with short generation time such as Escherichia coli, yeast and
Drosophila melanogaster have provided insights into those ques-
tions [35–40]. What emerges from these studies is that relevant
parameters include the mutation rate, drift and selection
[41, 42]. We surveyed these parameters in eight divergent selection
experiments undertaken in maize (Table 1) and detail below our
interpretations. By applying continuous directional selection on a
given quantitative trait, such experiments aim to quantify and
understand the limits of selection. However, it should be noted
none of the cited work has included multiple replicates.

One of the most puzzling observations across experiments is
that the response to selection is generally steady over time. In the
Golden Glow (GG) experiment, the response varies from 4.7% to
8.7% of the original phenotypic value per cycle of selection across
24 cycles [48]. In the Krug Yellow Dent (KYD), it was estimated at
1.6% and 2.5% per cycle respectively, for high and low seed size
direction [59]. In the Iowa Stalk Synthetic (BSSS), the response
was of 3.9% per cycle for higher grain yield [50]. In the Iowa Long
Ear Synthetic (BSLE), an increase of 1.4% and a decrease of 1.9%
per cycle for high and low ear length were observed [59]. The
results were more equivocal for Burn’s White (BW), for which the
response is much stronger and steadier toward high (between 0.1%
and 0.3%) than low values (between 0% and 0.32%) for both protein
and oil content. This pattern of shift between a strong and steady
response to a plateau-like response for the low trait values is
explained by physiological limits. Hence after 65 generations a
lower limit for protein content is reached where the percentage of
oil in the grain (close to 0% in the late generations) is no longer
detectable [46, 47]. A similar situation has been reported for some
of the late flowering families of MBS847 and F252 that are not able
to produce seeds in the local climate conditions where they are
selected, while the early still display a significant response after
16 generations [43]. Overall, mutations do not appear limiting
regardless of the design, whether it started from highly inbred
material or a diverse set of intercrossed landraces (Table 1).

What differs from one experiment to another, however, is the
genomic footprint of the response to selection. Such footprints
have been investigated in all but the BW and BSLE design. In
GG, in which the mutational target size—the number of sites
affecting the trait—was restricted, the effective population size
was the highest of all and the selection was intense. The signal is
consistent with genome-wide soft sweeps [48, 49]. In KYD, char-
acterized by a larger mutational target, stronger drift (smaller effec-
tive population size), but weaker selection, both hard and soft
sweeps are observed [45]. In BSSS, in which the mutational target
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size is the largest, the effective population size small and the selec-
tion intense, the signal is consistent with hard sweeps [51]. The
F252 and MBS populations display the most limited standing
variation and at the same time the strongest drift and selection of
all experiments; in these a rapid fixation of new mutations explains
the response to selection [43, 44]. Effective population size primar-
ily determines the likelihood of soft sweeps. Hence, when θ (four
times the product of effective population size and the beneficial
mutation rate) is equal or above 1, and selection is strong enough,
adaptation proceeds from multiple de novo mutations or standing
variation [60]. Below 1, soft sweeps’ contribution diminishes with
θ. In the experiments from Table 1, selection is strong but θ � 1 in
all cases. Nevertheless, hard and soft sweeps were associated respec-
tively with the lowest (F252 and MBS) and highest (GG) effective
population size, consistent withNe being a key player. Comparisons
among experiments thus contribute to understanding the para-
meters of importance and their interactions that together shape
the genomic patterns of the response to selection.

An additional layer of complexity that may substantially impact
evolutionary trajectories is that of genetic correlations among traits.
Such correlations may emerge from genes with pleiotropic effects,
epistatic interactions among genes, and/or loci in tight linkage
affecting various traits. While some studies have found that covari-
ance between traits rarely affect adaptation [61], several examples
instead suggest that they may either constrain or facilitate adapta-
tion as predicted by Lande [62]. For instance, in Arabidopsis thali-
ana a recent study indicates that polymorphisms with intermediate
degrees of pleiotropy favored rapid adaptation to microhabitats in
natura [63]. In the case of domestication, tight linkage between
genes conferring the so-called domestication syndrome has been
invoked as a mechanism facilitating adaptation to the cultivated
environment in allogamous species, preventing gene flow from
wild relatives to break coadapted suites of alleles [64]. It turns out
that rather than clustering, plant domestication genes identified so
far are single locus which are mainly transcription factors (reviewed
in [65]) most of which likely display strong epistatic interactions.
tb1 in maize, for instance, interacts with another locus on a different
chromosome to alter the sex of maize inflorescences. The intro-
gression of the tb1 teosinte allele alone changes only ~20% of the
inflorescence sex but the introgression of both alleles converts 90%
of maize’s female flowers to male [66]. The maize tb1 allele segre-
gates at low frequency in teosinte populations but is rarely found
associated with the domesticated allele of chromosome 3, as both
are likely to evolve under negative selection in teosinte
[12, 66]. Their association in maize has however facilitated the
acquisition of the domesticated phenotype.
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4 Mechanisms of Genetic Adaptation in Maize and Teosintes

Populations of teosinte have long evolved under natural selection.
In contrast, maize populations have been under artificial human
selection that moved phenotypes toward optimal traits tailored to
agriculture during a shorter time frame of ~9000 years [1, 2,
22]. These time scales have left distinct genetic signatures. In
theory, traits fixed by domestication should involve genes with
larger effect sizes, and standing variation should be a major con-
tributor to domestication [67]. This is supported by crosses
between maize and teosintes that led to the discovery of six main
QTLs responsible for major phenotypic differences between them,
notably vegetative architecture and inflorescence sexuality
([68, 69], reviewed in [70]). Among these QTLs, genes with
major phenotypic effects have been discovered such as tb1 and
tga1 (teosinte glume architecture1). In addition to these major
genes, a collection of targets (2–4% of the genome according to
[6, 10]) have likely contributed to the domesticated phenotype. In
contrast, Genome Wide Association (GWA) studies on traits
selected over much longer time scale such as drought tolerance or
flowering time have highlighted only minor effect loci that rarely
contribute to more than 5% of the phenotypic variation [54, 67, 71,
72].

In addition to the time frame over which adaptation occurs,
another important factor for evolution is the nature of variation for
selection to act on. Maize and teosintes are genetically very diverse,
with as much nucleotide diversity in coding regions between two
maize lines as there are between humans and chimpanzees
[73]. This diversity is even higher in intergenic regions
[74, 75]. Some adaptive mutations are found in coding sequences.
Examples include nonsynonymous changes in the tga1 gene
responsible for the “naked kernel” maize phenotype, and in the
diacylglycerol acyltransferase (DGAT1–2) gene resulting in elevated
kernel oil content in maize lines [76, 77]. But most observations
support adaptation from regulatory noncoding sequences. Indeed,
in comparison with Arabidopsis, where adaptive variants are
enriched in coding sequences [78], in maize and teosintes these
are predominantly found in noncoding region: estimates in Zea
show that noncoding variants may explain as much phenotypic
variation as those in coding regions [79, 80]. Selection on regu-
latory sequences drive important expression changes; hence, genes
displaying footprints of selection in maize are usually more
expressed than in teosintes [6], and are associated with modified
coexpression networks [81].

Adaptive variation also results from structural variants. In con-
trast to the Arabidopsis or rice genomes where Transposable Ele-
ments (TEs) account for 20–40% of sequence, the maize genome is
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composed of about 85% TEs [82, 83]. Genome size varies consid-
erably within Zea resulting in over 30% differences among maize
lines or landraces [79, 84, 85]. Because of their deleterious effect,
TEs are often negatively selected and silenced by DNAmethylation
[86]. But some may also impact gene expression and function in a
beneficial manner by various mechanisms such as gene inactivation
or differential expression caused by insertion in regulatory regions
[87] or TE-mediated genomic rearrangements causing gene inser-
tion, deletion or duplication (reviewed in [88]). A handful of
examples of their beneficial impact has been reported in Zea. A
classic example in maize is at the tb1 locus, where a transposon
inserted in the cis-regulatory region, doubling expression
[89]. Teosinte, like most grasses, produces numerous branches
tipped by a male inflorescence. In contrast, maize has only one
main stalk terminated by a single tassel with repressed development
of lateral branches. The increased expression level of tb1 is the
major contributor to this apical dominance [89]. Beyond TEs,
Copy Number Variants (CNVs) are also common in the maize
genome [90] and they contribute significantly to phenotypic varia-
tion [79, 91].

Another important player in adaptation in Zea is gene flow.
Indeed, teosinte populations are found in sympatry with maize and
hybridization between them is common [92]. Highland maize
shows up to 20% mexicana introgression, which has likely facili-
tated their adaptation to high elevations [3, 93]. An ancient DNA
study revealed that ancestral highland maize already showed evi-
dence of introgression from mexicana [15]. Introgressed regions
found at high frequency in highland maize overlap with previously
identified QTLs driving adaptive traits [93, 94], emphasizing the
importance of introgression during post-domestication adaptation.
Similarly, recent results suggest that admixture between distinct
genetic groups has facilitated adaptation to mid-latitudes in
North America and Europe [16].

5 Local Adaptation in Maize and Teosintes

Strictly defined, a genotype can be considered locally adapted if it
has a higher fitness at its native site than any other nonnative
genotypes [95]. Locally adapted alleles can be either neutral or
deleterious in other environments. Two models depict those situa-
tions, namely conditional neutrality and antagonistic pleiotropy
[96]. Despite numerous studies, the genetic processes underlying
local adaptation in natural populations are still poorly understood.
This is mainly due to traits driving local adaptation being mostly
quantitative [29]. This complex determinism may involve numer-
ous, but not necessarily substantial, allele frequency changes.
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Studies showed that highland maize landraces outperform low-
land maize populations in their native environment but perform
worse than any other population at lower elevation sites [97],
suggesting strong adaptation for high altitude.

Natural selection acts on phenotypic traits, changing the fre-
quency of underlying alleles and shifting population phenotypes
toward local optima. Since these optima rely on local conditions,
genes ecologically important usually differ between
sub-populations in heterogeneous environments, resulting in
divergence in allele frequencies over time. This characteristic has
been utilized in genome scans to mine correlations between allele
frequencies and environmental variables (Fig. 1a). Such studies
have revealed that, in teosintes, these loci impact flowering time
and adaptation to soil composition [20, 98, 99]. Flowering time
was also a key component of maize’s local adaptation to higher
latitudes during post-domestication. Maize evolved a reduced sen-
sitivity to photoperiod, in part due to a CACTA-like TE insertion in
the promoter region of the ZmCCT gene that drives photoperiod
response in early flowering maize [100, 101]. An example of adap-
tation driven by soil interactions is the tolerance of maize and
teosintes to aluminum in highly acidic soils. In these lines, the
adaptation is linked to tandem duplications of the MATE1 gene
involved in the extrusion of toxic compounds [91].

Numerous other biotic and abiotic factors are likely involved in
adaptation in maize and teosintes, including predation, parasitism,
moisture, and herbicide [102, 103]. For example, a study on
parviglumis has shown that in response to herbivory, immunity
genes involved in the inhibition of insects’ digestive proteases
experienced a recent selective sweep in a region ofMexico, probably
reflecting local adaptation [104].

Interestingly, four large inversion polymorphisms seem to play
an important role in local adaptation. Among them, a 50 Mb
inversion on chromosome 1 is found at high frequency in parviglu-
mis (20–90%), low frequency in mexicana (10%), and is absent in
maize. This inversion is highly correlated with altitude and signifi-
cantly associated with temperature and precipitation
[20, 105]. Inversions on chromosomes 3, 4 and 9 also displayed
environmental association in teosintes and maize landraces for the
first two and in teosintes for the last one [20, 72]. Local adaptation
to different habitats or niches is a gradual process that can promote
divergence and, in the long run, ecological speciation [106]. Geno-
typing of a broad sample of 49 populations covering the entire
geographic range of teosintes has recently provided some evidence
of this. Aguirre-Liguori et al. [98] showed that both within parvi-
glumis and mexicana, populations distributed at the edge of the
ecological niche experience stronger local adaptation, suggesting
that local adaptation may have contributed to divergence between
these two subspecies.
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6 How Convergent Is Adaptation?

Convergent adaptation is the result of independent events of similar
phenotypic changes to adapt to analogous environmental con-
straints [107]. In this review, we concentrated on genetic conver-
gence in populations of the same, or closely related, species which
are the result of convergent evolution at the molecular level. By
molecular convergence, we include convergence at the same nucle-
otide positions, genes or orthologues. Several studies illustrate this,
suggesting that genomes may respond in predictable ways to selec-
tion [108–112]. The selected alleles can originate from indepen-
dent mutation events in different lineages, from shared ancestral
variation or by introgression [111].

A classical way to study convergence is experimental evolution.
During these experiments, replicates of the same genotype are
grown for many generations in new environments. Such studies
have often shown that convergent evolution is common
[37, 113]. Domestication can be thought of as an example of
long-term experimental evolution, and domesticates provide
striking examples of phenotypic convergence, with common traits
usually referred to as the domestication syndrome. These pheno-
types include, but are not limited to, larger fruits or gains, less
branching, loss of shattering, and loss of seed dormancy
[114]. QTL mapping can be performed to identify the genes
controlling these phenotypes in different species. As an example,
seeds on wild grasses shed naturally at maturity. During domestica-
tion this trait was rapidly selected against since it causes inefficient
harvesting [115]. QTLmapping of sorghum, rice and maize reveals
that the Shattering1 genes are involved in the loss of the dispersal
mechanism and were under convergent evolution during their
domestication [116].

But genetic convergence can also be observed over much
shorter evolutionary time, at the intraspecific level across popula-
tions. Here genome scans for extreme differentiation in allele fre-
quency between multiple pairs of diverged populations along
gradients, for instance, are typically employed. This method has
been used to test for convergent adaptation in highland maize
landraces and teosintes. Fustier et al. [99] found several instances
(24/40) of convergence involving the same haplotype in two gra-
dients of adaptation to high altitude in teosintes. In maize, the
Mesoamerican and South American populations independently
adapted from distinct lowland populations to high elevation con-
ditions [14]. These populations exhibit several similar phenotypic
characteristics not observed in lowland populations such as changes
in inflorescence morphology and stem coloration. A study found
that highland adaptation is likely due to a combination of intro-
gression events, selection on standing genetic variation and
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independent de novo mutations [117]. These studies also showed
that convergent evolution involving identical nucleotide changes is
uncommon and most selected loci arise from standing genetic
variation present in lowland populations. This is not surprising
given the relative short time frame of highland adaptation in
maize compared to teosinte subspecies.

Recently, a new method has been developed to infer modes of
convergence [118], using covariance of allele frequencies in win-
dows around a selected site to explicitly compare different models
of origin for a selected variant. This novel method should give a
better insight on the genetic mechanisms underlying convergence.

7 What Is the Role of Phenotypic Plasticity?

Phenotypic plasticity is defined as the capacity of a genotype to
produce a range of expressed phenotypes in distinct environments.
This is achieved through differential developmental pathways in
response to changing conditions [119, 120]. Plasticity can be an
important process during adaptation. Indeed, populations with
flexible phenotypes are predicted to better cope with environmental
changes and to display a greater potential for expansion [121]. This
process is particularly important for plants as they are fixed in a
specific location and not sheltered from the environment [122].

When the environment changes, the phenotypic optimum of a
population is likely altered as well. As a result, individuals that show
a plastic response in the direction of the new optimum will have a
fitness advantage. In contrast, individuals that exhibit no plasticity
or that produce phenotypes too far from the optimum will be
selected against.

Plasticity has limits, however, and may entail a fitness cost. For
instance, compared to developmentally fixed phenotypes, plastic
individuals in constant environments may display lower fitness or
produce a less adapted phenotype. Possible reasons include sensory
mechanisms that have a high energetic cost, the epistatic effects of
regulatory genes involved in the plastic response, lag time between
the perception and the phenotypic response and genetic correla-
tions among traits [123–125].

Phenotypic plasticity is difficult to study as it arises from genetic
and environmental interactions which are often hard to disentan-
gle. After a number of generations of constant selection, for exam-
ple, the fixation of genetic variation that constitutively expresses the
trait can lead to a loss of plasticity via a process called genetic
assimilation [126–128]. Hence an initially plastic phenotype may
result in genetic adaptation after genetic assimilation. Some exam-
ples of plastic responses are well documented in plants, for example,
the response to vernalization in Arabidopsis regulating flowering
time in some ecotypes [122]. Another example is the change in
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seed dormancy in response to the environment which prevents
germination when conditions are unlikely to lead to the survival
of the plant [124].

Taxa in Zea are good models to investigate plasticity as maize is
grown worldwide and adapted to a diversity of environments. In
addition, studies of teosintes allow comparison to ancestral levels of
plasticity. A recent experiment evaluated plasticity in maize by
studying Genotype by Environment interactions (GxE) for a num-
ber of phenotypes in 858 inbred lines across 21 locations across
North America [129]. Results demonstrated that genes selected for
high yield in temperate climates in North America correlated with
low variance in GxE. This suggests a loss of plasticity accompanying
selection for stable crop performance across environments, a major
goal for breeders. In addition, GxE was mainly explained by regu-
latory regions [129], an observation in agreement with previous
findings indicating that most phenotypic variation in maize is due
to gene regulation [130].

Recent work on maize and parviglumis growing under envi-
ronmental conditions mimicking those encountered at the time of
maize domestication (comparatively lower CO2 atmospheric con-
centration and lower temperatures) gives better insights into this
phenomenon. The results showed that teosintes grown in these
conditions exhibit contemporary maize-like phenotypes [131]. In
contrast, modern maize has lost this plastic response. Over 2000
candidate loci associated with phenotypic changes showed altered
expression in teosintes but not in maize, implying that they are no
longer environmentally responsive (Fig. 2; [132]). Such loss of
phenotypic plasticity may limit the ability of maize to cope with
environmental variability in the face of current climate changes.

8 Conclusion

Ongoing global warming has drastic effects on maize production,
with an estimated impact of temperature and precipitation on yield
of 3.8% worldwide between 1980 and 2008 [133]. Predicted
changes that include further increases in temperatures and decline
in rainfall, as well as shifts of pests and diseases, represent a huge
challenge. There is thus a pressing need to better understand the
dynamics and genomic basis of adaptation. Future climate projec-
tions predict that changes in temperature will impact the distribu-
tion and survival of both cultivated maize and its wild relatives
[26, 134]. Most modeling studies, however, have focused on the
climate tolerance of species, while the response to climate can
depend on other factors such as plasticity and local adaptation.
This suggests that the response should be studied at the level of
individual populations to better understand the basis of adaption.
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Fig. 2 Schematic representation of differences in plastic responses between maize and teosintes in Early-
Holocene (EH) conditions. (a) Parviglumis plants exhibit maize-like phenotypes in the EH conditions (vegetative
architecture, inflorescence sexuality and seed maturation). Phenotypes of parviglumis in modern conditions
are typical of today’s plants. These changes in phenotypes are associated with altered expression levels of
over 2000 candidate loci in teosinte; here we represent the schematic expression of one gene between the
two environments in teosinte. (b) In contrast, these same traits and underlying gene expression remain
unchanged in maize between EH and modern conditions
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Chapter 13

Neurospora from Natural Populations: Population Genomics
Insights into the Life History of a Model Microbial Eukaryote

Pierre Gladieux, Fabien De Bellis, Christopher Hann-Soden,
Jesper Svedberg, Hanna Johannesson, and John W. Taylor

Abstract

The ascomycete filamentous fungus Neurospora crassa played a historic role in experimental biology and
became a model system for genetic research. Stimulated by a systematic effort to collect wild strains initiated
by Stanford geneticist David Perkins, the genus Neurospora has also become a basic model for the study of
evolutionary processes, speciation, and population biology. In this chapter, we will first trace the history that
brought Neurospora into the era of population genomics. We will then cover the major contributions of
population genomic investigations using Neurospora to our understanding of microbial biogeography and
speciation, and review recent work using population genomics and genome-wide association mapping that
illustrates the unique potential of Neurospora as a model for identifying the genetic basis of (potentially
adaptive) phenotypes in filamentous fungi. The advent of population genomics has contributed to firmly
establish Neurospora as a complete model system and we hope our review will entice biologists to include
Neurospora in their research.

Key words Ascomycete, Filamentous fungi, Population genomics, Biogeography, Speciation, Reverse
ecology, Introgression, Self–nonself recognition, Selective sweep

1 Introduction: Fungi and Population Genomics

Among complex eukaryotes, fungi have excellent potential as mod-
els for population studies at diverse levels, and in particular at the
genomic level [1–3]. Population genetics as a discipline has long
been largely concerned with plants and animals [4], but this trend is
currently being tempered by the massive production of fungal
genomic data. The first eukaryote to have its genome sequenced
was fungal (the baker’s yeast Saccharomyces cerevisiae) and the rate
of genomic sequences production is higher in the fungal kingdom
than in any other eukaryotic kingdom. For instance, as of
mid-2017, an estimated 2000 fungal genomes have been
sequenced and assembled, and several thousand resequenced gen-
omes are available for population genomic investigations [5]. Fungi
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have relatively small and low-complexity genomes by eukaryotic
standards (typically 30–40 Mb, ~10,000 genes), many fungi have
haploid genetics, and these genomic advantages have contributed
to making fungi the leading kingdom for eukaryotic genome
sequencing [6]. It also follows that fungal population genomics is
the only variety of eukaryotic population genomics that is truly
“genomic,” given that, unlike fungi, most plant and animals gen-
omes cannot be sequenced telomere-to-telomere in relatively large
numbers within a reasonable time. However, in the context of
evolutionary and ecological genetics, what has long been lacking
is access to—and essential information on—fungal natural popula-
tions [4]. The genus Neurospora stood out early as an outstanding
model for fungal population studies, with large numbers of isolates
that could be sampled in a predictable manner in various ecosys-
tems [2]. In this chapter we will begin by briefly summarizing the
biological features, human and historical factors that have contrib-
uted to bring Neurospora into the realm of evolutionary biology
and ecology. We will then cover the major contributions ofNeuros-
pora to our understanding of fungal biogeography, fungal specia-
tion and the permeability of barriers to gene flow. Finally, we will
review the early contributions of Neurospora to our current knowl-
edge of the genetic basis of (potentially adaptive) phenotypes in
filamentous fungi.

2 The Rise of Neurospora as a Model for Evolutionary and Ecological Genetics

Neurospora is one of the most easily recognized of filamentous
ascomycetes (Fig. 1). Originally described as a contaminant in
French army bakeries [7], Neurospora is most often encountered
as powdery masses of bright, carotenoid-colored mycelium and
mitospores (¼conidia, see Note 1) on the surface of burned or
heated substrates. Visible, pink to orange colonies on scorched
vegetation or cooked foodstuffs form the primary source of Neu-
rospora collections, but aconidial noncolored species can also be
isolated from heat-treated soil. The ecological components of the
life cycle of Neurospora are not fully understood and might involve
close association with plants, such as endophytism [8]. Sex, how-
ever, is well understood, beginning with the discovery of sexual
fruiting bodies (perithecia, see Note 1) with meiotic products
aligned in linear tetrads by mycologists Cornelius Shear and Ber-
nard Dodge [9]. These ordered tetrads stimulated the use of Neu-
rospora as the fungal rival of Drosophila and maize as a model for
genetic research [10–12]. The fact that Neurospora is an haplont
(which facilitates recognition of recessive loss-of-function muta-
tions) and that it can be grown on simple minimal media (making
it possible to impose further nutritional requirements by mutation)
were other salient biological features that popularized Neurospora
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for genetic investigations [12, 13]. In 1941, George Beadle and
Edward Tatum used Neurospora to obtain the first biochemical
mutants and to show that genes control metabolic reactions,
which was referred to as the “one gene–one enzyme” hypothesis
[14, 15]. Beadle and Tatum’s experiments helped “convince many
skeptical biologists that genes control the fundamental processes of
life, and not just the final touches of development, such as wing
shape or eye pigment” and “started a new era by bringing genetics
and biochemistry together” [13].

In parallel with the adoption of Neurospora as a model for
molecular and cell biology, David Perkins introduced Neurospora
into the realm of evolutionary biology and ecology in 1968 by
putting in place the long-term study of wild populations [11].
The initial objective of the systematic sampling initiative set up by
Perkins was to provide genetic variants for laboratory investiga-
tions. Although the mode of primary colonization of Neurospora
and other fundamental aspects of the ecology of these organisms
remain a particular mystery, a distinctive advantage of Neurospora
relative to many microbes was the relative ease of sampling in
diverse ecosystems [2, 16]. Perkins, Dave Jacobson and other
scholars eventually gathered a collection of >5000 isolates, access
to which is still provided by the Fungal Genetics Stock Center
(University of Kansas). Surveys of the wild strains have continued
to provide genetic variants for a variety of laboratory investigations
on mitochondria and senescence plasmids, genes governing vege-
tative incompatibility or mating types, and meiotic drive or trans-
posable elements [4, 17, 18]. Neurospora entered the genomic era
in 2003 with the release of its genomic sequence [19], and the
Perkins collection was quickly perceived as a boon by functional,
ecological, and evolutionary genomicists. Recently, wild isolates

Fig. 1 Neurospora colonies growing on the surface of coffee ground (a) and burned shrub (b)
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proved valuable for variation-guided functional analyses of cell–cell
recognition, via either genome-wide association studies or QTL
mapping [20–22]. Resequencing data for wild isolates has also
been used to identify genes that underlie variation in phenotypes
related to self-recognition and cold tolerance [22, 23]; reviewed
below in the final section 5). More generally, the collection also
advanced knowledge of the systematics, biogeography, population
biology, and evolutionary history ofNeurospora and ascomycetes in
general [2, 17, 24]; reviewed in next two sections 3 and 4).

3 Neurospora Population Genomics Has Revealed Cryptic Species with Large
Variation in the Extent of Their Geographical Distribution

3.1 Nothing Is

Generally Everywhere

Microbes have long been thought to have large geographic distri-
butions, in contrast to the highly restricted ranges of larger organ-
isms. Fungi were not immune to this misconception, and the idea
that dispersal ability per se does not limit the geographic distribu-
tion of these organisms remains quite widespread today, even
among biologists. The misconception that many fungi had global
distributions is largely based on two factors. First, the observation
that almost all fungi produce tiny, powder-like propagules on
structures promoting their dissemination by wind [32] and second,
reliance on morphological species recognition criteria that have
proved to be too broad for fungi, and have given an inaccurate
picture of fungal diversity, distributions and ecologies [33, 34].

3.2 Geographic

Endemicity Within

Globally Distributed

Neurospora

Morphospecies

Studies on wildNeurospora isolates have altered our understanding
of fungal biogeography, providing a perfect illustration that the
inferred geographic range of a fungal species depends upon the
method of species recognition. More generally, studies on wild
Neurospora isolates have shown that fungal species are highly
structured and that fungal distribution have been shaped by geo-
logical and climatic events the same way as macrobes have
[34, 35]. Conventional criteria based on morphology are of little
use to ascertain taxonomic status inNeurospora as most conidiating
species cannot be distinguished from one another by the size, color
and shape of their vegetative and reproductive organs [9, 16,
17]. Hence, by morphological species recognition, only two species
of conidiatingNeurospora are found: one with eight ascospores per
ascus, and one with four ascospores per ascus (seeNote 1). The two
morphospecies are both cosmopolitan in temperate and tropical
latitudes (Table 1). In vitro mating compatibility tests and phylo-
genetic analyses, however, reveal that the two morphological spe-
cies have their own biogeography and encompass multiple endemic
species: under biological species recognition seven species are
found, while under phylogenetic species recognition at least
twenty-six species are identified (Table 1). Similar to many plant
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Table 1
Conidiating species of Neurospora

Morphological
species

Biological
species

Phylogenetic
species Distribution References

Neurospora
with four-
ascospores
per ascus

N. tetraspermaa N. tetrasperma
sp.b

Western Europe, Pacific Islands,
Oceania, America, South and
Southeast Asia, Western tropical
Africa

Perkins
database;
[16, 24]

Lineages 1, 2,
7, 8

Gulf of Mexico [25–28]

Lineage 3 Gulf of Mexico, Eastern North
America

[25–27]

Lineage 4 South-East Asia, America [25–28]

Lineage 5 Oceania [25–28]

Lineage 6 Polynesia, Mexico, Southeast Asia [25–28]

Lineage 9 Western tropical Africa [25, 27,
28]

Lineage 10 Western Europe [27, 28]

Lineage 11 Canary Islands [16, 26]

Neurospora
with eight-
ascospores
per ascus

N. sitophila NDc Western Europe, Asia, Turkey,
Polynesia, Oceania, America,
Western tropical Africa

Perkins
database;
[16, 24]

N. crassa N. perkinsii Western Tropical Africa [29, 30]

N. crassa Western Europe, South Asia, Gulf of
Mexico, Western Tropical Africa

[16, 24,
29, 30]

N. intermedia N. intermedia South and Southeast Asia, Polynesia,
Western Tropical Africa, Gulf of
Mexico

[29, 30]

N. hispaniola N. hispaniola Hispaniola [29, 30]

N. metzenbergii N. metzenbergii Madagascar, Gulf of Mexico [29, 30]

N. discreta N. discreta
sensu stricto

Gulf of Mexico [31]

N. discreta PS4 Western Europe, North America,
Papua New Guinea, Western
tropical Africa

[16, 24,
31]

N. discreta PS5,
PS6, PS8

Western tropical Africa [31]

N. discreta PS7 Gulf of Mexico, Central America [31]

N. discreta PS9 New Zealand [31]

(continued)
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and animal genera, the distribution of some of the phylogenetic
species appears to be quite limited (e.g.,N. hispaniola was reported
in the Hispaniola island only) while others have very broad distri-
butions (e.g., globally distributed N. discreta PS4). Genealogies of
multiple genes have been widely used in fungi, including Neuros-
pora [24, 25, 29–31], improving our understanding of the struc-
ture of fungal biodiversity. The observation that fungal species
defined by morphology typically harbor several to many endemic
species can be explained by the relative paucity of morphological
characters and the slower rate of morphological change for organ-
isms with less elaborate development and fewer cells, allowing
genetic isolation to precede recognizable morphological changes
[34]. Just as genetic isolation can precede morphological change,
phylogenetic divergence can precede reproductive isolation, such
that one biological species can embrace several phylogenetic spe-
cies, as was shown when biological and phylogenetic species recog-
nition were compared in Neurospora [36]. Species recognition by
genealogical concordance, popular as it has been, has limitations,
related to heterogeneity in the congruence of sequenced loci with
the species tree, and inadequate sampling of substrates throughout
the geographic range of species; Neurospora is not an exception.

3.3 On the Difficulty

of Species Diagnosis

in Neurospora

and Fungi

Morphology is of little use to identify species in Neurospora, like in
many microscopic filamentous fungi. Perkins and collaborators
have published a bountiful collection of protocols to induce and
assess mating in vitro inNeurospora, but systematic analyses of pre-
and postmating barriers in large collection of isolates is challenging
to implement in modern labs. Species recognition based on genea-
logical concordance among gene trees became the gold-standard in
Neurospora, revealing cryptic species diversity [34]. Species recog-
nition by genealogical concordance, however, suffers from two
limitations. The first limitation is the requirement for the use of
the same sets of sequenced loci across studies. The second limita-
tion is that the resolving power of sequenced loci is most often not

Table 1
(continued)

Morphological
species

Biological
species

Phylogenetic
species Distribution References

N. discreta
PS10

New Zealand, Brazil [31]

aSubdivision within the biological species, and high congruence between the phylogenetic and biological species

recognition are found when using a quantitative measurement of the reproductive success, incorporating characters

such as viability and fertility of offspring [25]
bMany strains in the Perkins database, or listed in publications, remain to be phylogenetically identified
cND: No data on the existence of cryptic species within N. sitophila
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known a priori, and markers not chosen based prior knowledge of
the species tree.

Figure 2 provides an illustration of the phylogenetic diversity
encompassed by the genusNeurospora, but also of the limitations of
species recognition by genealogical concordance. Sequences at six
loci previously identified by Nygren et al. [38] were retrieved from
GenBank, extracted from publicly available genomes [22, 28, 39]
and extracted from the genomes of isolates originating from

N. tetrasperma

N. discreta PS4, PS5

N. discreta
PS9, PS6, PS8, PS7

N. crassa

Nhis

Nsit

Nper, Nint, Nmet

100

100

100

100

100

69

100

72
100

100
99

83

39

60

100

100

100

Corcoran et al. 2016

De Bellis et al. unpublished

Hann-Soden et al., unpublished

Reference

Nygren et al. 2011

Zhao et al. 2015

Fig. 2 Total evidence genealogy inferred using RAxML v8 [37] based on the concatenation of sequences at six
loci published by [38], including Bml, mak-2, nik-1, ORF1, pkc, and tef-1. Phylogenetic species identified by
genealogical concordance across multiple gene genealogies are indicated by shaded areas and bootstrap
supports in the total evidence phylogeny. Taxon names are reported only for best-sampled conidiating
species. Nhis, N. hispaniola; Nsit, N. sitophila; Nper, N. perkinsii; Nint, N. intermedia; Nmet,
N. metzenbergii. Marker sequences were retrieved from genomic sequences using blastn for all datasets
but the ref. [38] dataset which was downloaded from NCBI. Samples from Hann-Soden et al. (Unpublished)
and some of the samples from Nygren et al. [38] were isolated from heat-treated soil, while the remaining
samples were isolated from burned vegetation
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multiple sites in North America (De Bellis et al., unpublished) and
isolated from the soil spore bank treated with heat (Hann-Soden
et al., unpublished). Sequences at the six loci were concatenated
and the resulting total evidence tree recapitulates the phylogenetic
species identified by applying species recognition by genealogical
concordance sensu Dettman et al. [29]. Two important insights
emerge from this analysis. The first striking feature is that the
species identified are different from the species previously identified
by Dettman et al. [29] using three loci not included in the Nygren
et al. [38] loci. Many of the phylogenetic and biological species
previously identified do not stand as distinct species in this analysis.
Another important result is the relatively large number of species
that can coexist within the same spore bank (not shown here). In
summary, using half a dozen loci for phylogenetic species delinea-
tion makes it more operational but also limits its ability to resolve
population subdivision. Genomic data should have increased power
to resolve species limits and evolutionary relationships, but stan-
dard species recognition by genealogical concordance remains use-
ful until the cost of sequencing a set of markers is higher than
sequencing a full genome.

3.4 Population

Structure Within

Neurospora

Phylogenetic Species

Phylogenetic analyses and mating compatibility tests have great
potential to augment knowledge of the taxonomy, ecology and
biogeography of fungal genera and species, but these approaches
are not operational when the goal is to infer fine-scale population
genetic structure [34, 40]. High-throughput sequencing technol-
ogies have made it possible for individual laboratories to acquire
whole-genome sequences across populations and test hypotheses of
geographic endemicity or genome evolution previously formulated
based on sequence diversity and reproductive biology. Population
genomic studies of eight-spore biological species of Neurospora are
illustrative of the finer resolution afforded by genomic information
to characterize population structure. For instance, in selecting
populations of Neurospora for genome wide association studies,
researchers relied on populations previously identified by concor-
dance of gene or microsatellite genealogies that included a strain
with a reference genome and that spanned significant environmen-
tal variation. In the case of N. crassa, the population boarded the
Gulf of Mexico and for N. discreta PS4, the population displayed a
remarkably large latitudinal distribution along western North
America. However, in N. crassa phylogenomic analyses and
model-based Bayesian clustering of transcriptomic data for 50 iso-
lates revealed not 1 population, but multiple divergent lineages,
with the two best sampled lineages found in Louisiana and the
Caribbean [23] (Fig. 3). Subsequent phylogenomic analyses of
SNPs from the resequenced transcriptomes of 112 N. crassa indi-
viduals from the same geographic area as the Louisiana population
showed no population subdivision, providing an ideal setting for a
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genome-wide association study (see last section). In the same way,
phylogenomic analyses and model-based Bayesian clustering of
whole genome information for 128 N. discreta PS4 isolates
revealed not one population, but six divergent lineages [39]
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(A) Population genomic structure of Neurospora discreta PS4
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Fig. 3 (a) Population genomic structure of Neurospora discreta PS4 as inferred from whole genome
resequencing of 128 isolates (ref. [39] and De Bellis et al., Unpublished). Left: RAxML8 whole genome
genealogy; center: ancestry proportions in K ¼ 7 clusters as inferred using sparse Nonnegative Matrix
Factorization [41]; right: sampling sites in North America and proportions of isolates assigned to four
European/North American clusters as pie charts. (b) Population genomic structure of American Neurospora
crassa as inferred from reanalysis of previously published transcriptome resequencing data [23]. Left:
Neighbor-Net inferred from biallelic SNPs without missing data using Splitstree [42]; center: ancestry
proportions in K ¼ 4 cluster as inferred using Structure 2.3.4 [43–45] based on a random 10% of the
134 k SNPs without missing data; right: sampling sites in America and sum of membership proportions in four
Structure clusters as pie charts. US/Mexico State Abbreviations: AK Alaska, CA California, FL Florida, ID Idaho,
LA Louisiana, MT Montana, NV Nevada, WA Washington, YU Yucatan. ISO country codes: CH Switzerland, CI
Côte d’Ivoire, CR Costa Rica, ES Spain, GY Guyana, HA Haiti, PA Panama, PG Papua New Guinea, PT Portugal,
TH Thailand, VE Venezuela
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(De Bellis et al. unpublished) (Fig. 3). Demographic inference
based on a diffusion approximation to the site frequency spectrum
[46] estimated relatively recent divergence times (�0.4 M genera-
tions) between the lineages discovered within N. crassa and
N. discreta PS4 [23, 39]. Relating these divergence time estimates
with historical events requires a generation time, which is a peren-
nial question in Neurospora, and in fungi in general. Extensive
observations of Neurospora colonies at burn sites led to only a few
observations of fruiting bodies in nature, possibly owing to the
difficulty in the recognition of black perithecia on/within burned
substrate, or the delay of sexual reproduction after conidial blooms
[18]. Perithecia were observed on maize cobs [47], under the bark
of fire-injured trees [2, 48], or protruding through cracked tissues
of scorched sugar cane [49]. However, it remains unknown
whether sexual cycles in Neurospora are synchronized with wild-
fires. As proposed by Turner et al. [18], “Perhaps the dramatic
conidiating blooms seen on burned or scorched vegetation are
exceptional sporadic events punctuating a mode of growth that is
otherwise inconspicuous or invisible.” Given these uncertainties, a
plausible scenario is that divergence within North American
N. crassa andN. discreta PS4 (�0.4M generations) has been driven
by climate oscillations of the Pleistocene (2.6 Mya–11 kya), but
alternatives cannot be ruled out without further information on the
generation time and other aspects of the population biology of
Neurospora.

3.5 Comparative

Population Genomics

of Selfing

and Outcrossing

Neurospora Species

Like plant evolutionary biologists, the evolutionary causes and
consequences of self-fertilization is a question of long-standing
interest to research scholars working with Neurospora [50, 51]. It
was recognized at an early stage that the variety of lifestyles in
Neurospora shows promise for comparative studies [12]. In contrast
to the eight-spored Neurospora species, meiotic products in the
morphospecies N. tetrasperma are packaged into four relatively
large ascospores [52]. In nature and in the laboratory, the myce-
lium that emerges from germinating N. tetrasperma ascospores is
normally heterokaryotic with component nuclei of opposite mating
type (A and a; seeNote 2).Neurospora tetrasperma therefore super-
ficially resembles true homothallic (see Note 3) species [53] in that
each ascospore can usually produce a self-fertile mycelium and
complete the sexual cycle without needing to find a compatible
mate [52]. As a consequence, the breeding system (see Note 4) of
N. tetrasperma is referred to as “pseudohomothallic” (see Note 3)
[54]. Such reproductive systems (seeNote 4) based on heterokary-
osis (see Note 5) are unique to fungi, and they can be described as
“a form of heterothallism with provisions to allow prolonged
inbreeding” (see Note 3) [55]. In the laboratory, heterokaryotic
(see Note 5) wild-type strains self, but self-sterile homokaryotic
(A or a) conidia (see Note 5) derived from wild-type strains are
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functionally heterothallic (see Note 3), and can be outcrossed
[4, 17, 52, 56]. Recently the frequency of homokaryotic conidium
production by pseudohomothallic N. tetrasperma strains collected
from New Zealand and the UK was systematically studied
[27]. Large differences in the number of homokaryotic conidia
produced by different populations were observed, with the rate of
homokaryotic conidia being twice as high as previously reported
[56], suggesting ample opportunities for outcrossing sex. Labora-
tory crosses employing homokaryotic isolates of opposite mating
types obtained from different strains, however, revealed a high
frequency of sexual dysfunction caused by vegetative incompatibil-
ity between interacting mycelia [55, 57]. These mating compatibil-
ity studies suggest that outcrossing may be limited in nature and
that large difference in self-sterile spore production across
N. tetrasperma populations is not necessarily associated with large
difference in outcrossing rates.

More recently, population genomics was used to test if vegeta-
tive incompatibility is effectively blocking outcrossing in
N. tetrasperma populations, by quantifying the level of outcrossing
in situ and correlating this factor to population structure and
genome evolution [28]. Phylogenomic analysis and model-based
clustering of whole genome information for large set of strains
confirmed nine of the ten cryptic phylogenetic species previously
identified [25–27] and revealed an additional lineage in Europe,
but no subdivision within species was detected [28, 58]. Nucleotide
diversity was of the same order of magnitude in populations of
N. tetrasperma as seen in populations of outcrossers N. crassa and
N. discreta, suggesting no strong reduction of within-population
diversity in N. tetrasperma as would be expected under inbreeding
(Fig. 4). Analyses of linkage disequilibrium (Chapter 1) were con-
sistent also consistent with selfing [28] (Fig. 4). The ratio of non-
synonymous to synonymous nucleotide diversity (πN/πS) was
relatively high in N. tetrasperma (>0.7), suggesting a relatively
high proportion of slightly deleterious mutation consistent with
selfing, although πN/πS ratios were comparable to those observed
in the outcrosser N. crassa (Fig. 4). There is a difference between
the 8-spored, heterothallic and 4-spored pseudohomothallic spe-
cies, however, when it comes to species recognition by concordance
of gene genealogies. With N. discreta and N. crassa, 400 k year old
lineages were not diagnosed as species, but the 700 k year old
lineages (not appreciably from 400 k in this instance) withinN. tet-
rasperma were diagnosed as distinct phylogenetic species. This
difference is consistent with theoretical predictions, because popu-
lation differentiation should increase as consequence of lower
within-deme diversity and the combined action of other reproduc-
tive and life-history traits which tend to increase isolation [61].
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4 Neurospora Population Genomics Has Refined Our Views on the Permeability
of Barriers to Gene Flow

Population genomics offers great potential for enhanced character-
ization of cryptic population subdivision in Neurospora, revealing
that the genus, which is ubiquitous in temperate, subtropical and
tropical regions, is structured into a variety of species and divergent
lineages within species. The observed richness inNeurospora species
and lineages does not result in complete geographic separation (i.e.,
allopatry) and many lineages or species have overlapping ranges

Fig. 4 Summary statistics of population genomic variation in best-sampled Neurospora lineages. For
N. discreta unpublished whole-genome resequencing data (De Bellis et al., Unpublished) were aligned against
the reference genome FGSC8579. For N. crassa, transcriptome resequencing were downloaded from Short
Read Archive (accession SRA026962; [23]) and aligned against reference OR74A v2.0 (hosted at Ensembl
Fungi). For N. tetrasperma, VCF files were downloaded from the Dryad Digital Repository (https://datadryad.
org/resource/doi: https://doi.org/10.5061/dryad.162mh; [28]). LD decay values for N. tetrasperma and
N. crassa were previously published by [23, 28]. Computations were carried out in Egglib v3 [59], excluding
codon-coding nucleotide triplets with missing data. πS is the nucleotide diversity at synonymous sites.
LD-decay 50% is the distance over which linkage disequilibrium (LD) decays to half its maximum. For
N. tetrasperma L8 and L10, actual values of LD-decay 50% are 31 kb and >500 kb and bars were truncated
for clarity for these two lineages. πN/πS is the ratio of nonsynonymous to synonymous nucleotide diversity,
which gives, under near neutrality, an estimate of the proportion of effectively neutral mutations that are
strongly dependent on the effective population size Ne [60]. The mating-type chromosome of N. tetrasperma
was excluded from calculations. Ndis NW Northwestern Neurospora discreta lineage (purple in Fig. 2), Ndis SW
Southwestern Neurospora discreta lineage (orange in Fig. 2), Ndis SE Southeastern Neurospora discreta
lineage (dark green in Fig. 2), Ndis PG Neurospora discreta lineage from Papua New Guinea (light blue in
Fig. 2), Ntet L5 Neurospora tetrasperma lineage 5, Ntet L8 Neurospora tetrasperma lineage 8, Ntet L10
Neurospora tetrasperma lineage 10, Ncra LA Neurospora crassa Louisiana lineage, Ncra CAR Neurospora
crassa Caribbean lineage
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(i.e., sympatry or parapatry) (Table 1). Not only multiple species
[4, 62], but also multiple lineages within species [39] (Fig. 3), may
be collected from the same sites, just centimeters from each other,
raising the question of hybridization and admixture
[63, 64]. Although true hybrids have not been found in nature
[29], the production in the lab of small but significant numbers of
viable hybrid progeny has been known since the description of the
genus ([65] cited by [58]) and repeatedly confirmed since then
(e.g., [18, 36, 66]). For instance, crosses between allopatric
N. intermedia and N. crassa in the lab can typically yield 1–15%
black (i.e., potentially viable) ascospores (see Note 1) [36]. The
problem with studying hybridization in Neurospora and in fungi in
general has been that neither a discerning eye nor simple mating
tests can reliably identify hybrids among strains in situ; this is where
genomic approaches come to the rescue of the mycologist.

Genomic studies of Neurospora populations provided indirect
evidence for hybridization and introgression. The first element
supporting the existence of hybridization came from the outcross-
ing heterothallic N. crassa (see Note 3). A genomic island of ele-
vated relative and absolute divergence identified between the
Louisiana and Caribbean populations of N. crassa [23] showed an
unusually large number of fixed differences, suggesting that diver-
gence between haplotypes was older that the splitting of popula-
tions. Haplotypic structure at the genomic island was also different
between the two populations, with less haplotype diversity and
nonuniform haplotype boundaries in the Louisiana population.
Together these observations point to the introgression and selec-
tive sweep of a single migrant tract in Louisiana from a more
genetically diverged population or species that remains to be iden-
tified. Further indirect evidence for hybridization came from com-
parative and population genomic investigations of the
pseudohomothallic N. tetrasperma (see Note 3), providing a good
illustration of the impact of mating system on population structure
in fungi. As described in the previous section, the meiotic pathway
of N. tetrasperma was reprogrammed so that each ascospore
receives mat A and mat a haploid nuclei produced from a single
diploid nucleus, which favors selfing. This particular meiotic pro-
cess is dependent on the segregation of mating-type alleles at the
first division of meiosis, which is assured by the suppression of
recombination between the centromere and the mating-type
locus [67]. Because recombination is suppressed, a large part of
the mating-type chromosomes of N. tetrasperma degenerates,
accumulating nonsynonymous polymorphisms/substitutions and
nonoptimal codons [28]. However, genome-wide analyses of
N. tetrasperma revealed patterns of divergence consistent with a
history of introgressive hybridization with several heterothallic
relatives, and in particular large tracts of DNA of allospecific origin
restricted to the mating-type chromosome. It is also worth noting
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that these hybridization events occurred despite the morphologi-
cally enforced, preferentially selfing, mating system of
N. tetrasperma. The introgressed tracts have been fixed within
N. tetrasperma lineages and some of them carry signatures of
selective sweeps, suggesting that they confer an adaptive advantage
in natural populations. An hypothesis is that the introgression of
nondegenerated mating type chromosomes from related species
may contribute to maintain integrity of mating type chromosome
and constitute a process of genomic reinvigoration acting to reduce
the mutational load. These findings corroborate a prediction made
by Metzenberg and Randall, and reported by ref. [18] as a personal
communication: “periodically during evolution, a deteriorated
mating type chromosome is replaced following a cross between
N. tetrasperma and one of the heterothallic species.”

The population genomic studies presented so far show evi-
dence of introgressive hybridization, but none has caught popula-
tions in the act of mixing. The most recent evidence for population
admixture comes from the study of the population genomic struc-
ture of a single species, the outcrossing N. discreta PS4. Phyloge-
nomic analyses and model-based clustering of whole-genome data
showed four, well-diverged lineages: Papua New-Guinea (PNG),
Alaska and Europe (AK-EU), California and Washington state
(CA-WA), and New Mexico and Washington state (NM-WA).
Admixture analyses using Frappe and a genome scan for lineage-
diagnostic SNPs revealed an Alaskan strain that possesses 12% of the
genome of the apparently allopatric, NM-WA lineage [39]. Yet, at
the same time, there was no evidence of admixture at one collecting
site in Washington where the CA-WA and NM-WA lineages are
clearly sympatric. The finding of one admixed individual suggested
that reproductive isolation is not complete between all pairs of
lineages within N. discreta and that there might have been oppor-
tunities for gene flow between them. Analyses of postdivergence
gene flow using the dadi package [46], which infers demographic
parameters based on a diffusion approximation to the site frequency
spectrum, supported models of gene flow following secondary
contact, both between North American and PNG lineages, and
among lineages in North America/Europe. The finding of nonzero
migration rates between all lineages suggests that their geographic
distributions have been overlapping to some extent. In North
America/Europe, lineages may have diverged following repeated
periods of isolation in separate glacial refugia [68], interspersed
with periods of secondary contact potentially permitting gene
flow that only began relatively recently, as suggested by the finding
of a late generation hybrid in Alaska indicative of ongoing
admixture.

The best supported models of secondary contact between
North American/European lineages assumed heterogeneous gene
flow across the genome, and parameter estimates indicated that
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only a small fraction of the genome experienced relatively higher
migration rates between lineages. This heterogeneity in introgres-
sion rates may reflect the indirect effects of selection, with limited
gene flow in the neighborhood of barrier loci (genetic incompat-
ibilities or genomic features under divergent ecological selection),
higher gene flow at adaptively introgressed regions, and basal gene
flow in regions not affected by selection [69]. The widespread
compatibility of crosses attempted in vitro between North Amer-
ican/European indicated a lack of intrinsic premating barriers (i.e.,
assortative mating by mate choice), intrinsic postmating prezygotic
barriers (i.e., gametic incompatibility) or a form of intrinsic early
postzygotic isolation (i.e., zygotic mortality), and the absence of
these barriers may have contributed to facilitate gene flow following
secondary contact. The lack of intrinsic premating barriers appears
to be general among Neurospora lineages and species, and may
result from constraints on the evolution of pheromone-receptor
systems involved in mating [70]. The peptide pheromones that
mediate premating attraction between mating-type compatible iso-
lates are identical between Neurospora and outgroups [71], consis-
tent with a lack of pheromone-based mate choice. Together these
findings and observations suggest that the barriers that limit gene
flow following secondary contact and account for the observed
heterogeneity in migration rates are mostly extrinsic barriers (e.g.,
immigrant inviability) or late intrinsic barriers (e.g., hybrid inviabil-
ity or sterility). This work also illustrates the great potential of
speciation genomics for increasing our understanding of fungal
biogeography, revealing features such as sympatry in the recent
past or admixture between apparently allopatric species, that
would not be accessible without genomic data, especially given
the scarcity of exploitable fossil records in fungi. Further work on
the fine-scale population genetic structure of Neurospora is
required to quantify lineage diversity at the local scale and the
extent of interlineage admixture, and more detailed investigations
of barriers to gene flow (e.g., by measuring hybrid inviability and
sterility) should provide more insights on the factors contributing
to the maintenance or mixing of lineages in sympatry.

5 Studies Neurospora Provide Insights into the Genetic Basis of (Potentially
Adaptive) Phenotypes in Wild Microbial Eukaryotes

The difficulty of defining the boundaries of populations has been a
major impediment for studying the genetic basis of differences
between individuals within populations and of adaptive differences
between populations. However, by revealing geographic ende-
mism, genomic approaches to characterizing fungal populations
have offered new opportunities to identify the molecular
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underpinnings of key biological features in Neurospora. In cases
where segregating phenotypic traits could be scored in a Neuros-
pora population, quantitative trait locus (QTL) mapping or
genome-wide association studies (GWAS) could be used success-
fully to identify the underlying genomic features. The rates of LD
decay observed inN. crassa orN. discreta for instance (Table 1) are
suitable for linkage mapping. QTL mapping was used to identify
loci in N. crassa associated with a reinforced, post-mating, female
mate choice barrier between N. crassa and N. intermedia
[72]. However, due to the presence of large regions of linkage
inherent to the QTL approach, the authors could not identify the
genes responsible for the quantitative trait. When combined with
dense, genome-wide marker coverage and lack of population struc-
ture, GWAS can overcome the limitations of QTL studies and offer
higher resolution by increasing the range of genetic and phenotypic
variation surveyed, by avoiding the generation of time-consuming
crosses and taking advantage of many more generations of recom-
bination. GWAS has been used successfully in N. crassa to identify
the genetic basis of the complex trait of germling communication,
the process by which conidia germinating near each other can sense
each other, reorient their growth toward one another, and fuse (see
Note 6). By quantifying the proportion of communicating germl-
ings in germinating populations of conidia representing 24 Louisi-
ana N. crassa isolates, and using RNAseq to genotype isolates,
Palma-Guerrero et al. [21] successfully associated a calcium sensor
with the cell-to-cell communication trait.

Another strategy used for rapid trait mapping in segregating
populations or crosses is bulked segregant analysis, that is, the
genotyping or sequencing of bulked pools of segregating indivi-
duals with the most extreme phenotypes. The advantage of bulked
segregant analysis over standard QTL analysis or GWAS is that
there is no necessity for genotyping all individuals in the segregat-
ing population or progeny, which can increase the number of
progeny surveyed and hence decrease the size of linked regions
surrounding quantitative trait loci compared to classical
approaches. As a proof of principle for mutationmapping by bulked
segregant analysis, Pomraning et al. [73] used bulked segregant
analysis to map the mutation(s) underlying temperature-responsive
cell cycle regulation in the classic N. crassa ndc-1 (nuclear division
cycle-1) mutant. Two hundred progeny from a wild x mutant cross
were tested for the arrest of the nuclear division cycle just prior to
DNA synthesis when grown at 37 �C, and a subset of 63 progeny
with extreme phenotypes was sequenced en masse in two pools,
allowing identification of a single mutation in a single gene.

In cases where bulked segregant analysis does not pinpoint a
single gene, population genomic approaches can be used to identify
the genes associated with traits. This approach has been demon-
strated by studies of the genetic basis of cell communication and
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fusion inNeurospora (seeNote 6).Heller et al. [20, 74] used bulked
segregant analysis to map the genes responsible for kind discrimi-
nation among germlings and rapid cell death following germling
fusion (i.e., “germling regulated death”), identifying 100 kb and
180 kb regions of linkage associated with the self-recognition traits.
The genes within these regions could be filtered down to just two
genes using genome scans for polymorphism and divergence.

Although Neurospora has favorable characteristics for linkage
mapping studies, such as a small genome, the ability to cheaply
maintain large immortal populations in lab, and haploid genetics,
the difficulty in working with Neurospora—or any microbe—has
been the identification of relevant phenotypes beyond simple traits.
However, high-throughput sequencing has made it possible to use
an unbiased “reverse ecology” approach to identifying adaptive
phenotypes [75], in which genes with functions related to ecologi-
cally relevant traits are identified by examining genomic signatures
of natural selection. An American N. crassa population bordering
the Gulf of Mexico had been chosen for GWAS but when 50 of the
isolates had been genotyped using RNAseq, analyses of population
subdivision revealed multiple clusters and no cluster had sufficient
sample size for a GWAS [23]. Fortunately, two clusters had at least
20 members, one in Louisiana and one further south in the Carib-
bean. Demographic inference based on a diffusion approximation
to the site frequency spectrum [46] estimated a relatively higher
population migration rate from Louisiana into the Caribbean (0.77
effective migrants per generation) than in the other direction, and a
relatively recent divergence time (�0.4 Mya) in agreement with the
small proportion of fixed differences (9.4% of total SNPs; [23]).
The Louisiana and Caribbean areas differ by 2–10� of latitude and
winter temperatures are on average 9 �C cooler in Louisiana. The
resulting hypothesis, that the Louisiana lineage had adapted to life
at lower temperature, was not disproved by measuring fitness (i.e.,
growth) of isolates from each lineage at low (10 �C) and medium
(25 �C) temperature. Genome scans to detect regions of extreme
divergence in coding sequences, using measures of both relative
and absolute divergence [76], revealed more than 30 such regions,
but only 2 were identified by all divergence metrics. These two
regions encompassed genes known to protect against cold tempera-
tures: a cold shock RNA helicase and a prefoldin chaperone that, in
yeast, protects actin from cold temperatures. To test the association
between genotypes at candidate genes and fitness in cold tempera-
ture, the authors took advantage of the comprehensive N. crassa
gene deletion collection to devise growth tests [77]. Among the
eight genes found in the two regions of extreme genomic diver-
gence, only the RNA helicase and prefoldin knockouts showed loss
of cold tolerance.

The identification of genes underlying the ability of mycelia to
distinguish self from nonself (i.e., allorecognition genes; see Note
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6) in N. crassa by genomics and evolutionary approaches provides
another example in which genes, and not phenotypes, were identi-
fied first. In filamentous fungi, allorecognition can result in somatic
incompatibility (see Note 6), which is a type of programmed cell
death that is triggered following fusion of genetically different cells.
In N. crassa, somatic allorecognition controls both the fusion of
germlings (as in the example of “germling regulated death” cited
above) and the fusion of hyphae. Hyphal allorecognition is geneti-
cally controlled by the so-called het loci, and the het loci that have
been characterized to date encode proteins carrying a HET domain
(encoding a cell death effector) and show signatures of long-term
balancing selection [78, 79]. Mining resequencing data from
26 Louisiana isolates for HET domain loci displaying elevated levels
of variability, excess of intermediate frequency alleles, and deep
gene genealogies identified 34 HET domain loci out of 69. Trans-
formation, incompatibility assays, and genetic analyses revealed that
one of the 34 candidates functioned as a het locus (het-e) that had
been identified almost 50 years ago but awaited cloning [80]. The
remaining 33 loci are, of course, prime targets for future investiga-
tions. These findings are encouraging and the collection of addi-
tional and more precise information on the biological and
geographical origin of the samples, but also on relevant phenotypes
(e.g., related to interactions with other microbes), should make it
possible to exploit even better the potential of such reverse ecology
approaches in the future.

6 Conclusion

Almost a century has passed since Shear and Dodge [9] described
Neurospora, 70 years since Beadle and Tatum made it genetically
conspicuous [14], and 50 years since Perkins et al. [17] initiated the
global collections that fueled a host of research programs that
continue to this day. More than 25 years ago, Perkins cautiously
wrote that “Research on molecular, cellular and genetic mechan-
isms is certain to continue. It remains to be seen whether the
promise of Neurospora for population genetics will be fulfilled.”
Perkins would surely be happy to witness the tight integration
between the two areas of research that now prevails, and to observe
that the ways wild strains have proved useful for functional and
evolutionary studies far exceeding what he and his collaborators
anticipated when systematic collection was initiated in 1968. Much
remains to be uncovered about the species richness of Neurospora
and the distribution of known Neurospora species, although our
understanding of Neurospora biogeography and speciation history
is more advanced than it is for the vast majority of free-living
microbes. The frequency of wild fires is not a limiting factor,
providing a plethora of opportunities to collect new strains, and
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ongoing work also suggests that both conidial and aconidial species
can be retrieved from soil. In the Perkins and Jacobson collection,
the phenotype of F1 crosses to N. crassa is reported for more than
3600 isolates, and other phenotypes such as meiotic drive pheno-
type (i.e., spore killer type [66]), color, burned/nonburned sub-
strate for more than 5000. Only a small fraction of this collection
has been sequenced, and even with the many genomes already at
hand, there is little indication of diminishing returns as additional
species or populations are sequenced. The will be no lack of eco-
logical or evolutionary questions. Most of the questions listed by
Turner et al. [18] in their conclusion remain to be answered, and
much remains to be done to dispel our ignorance about many
aspects of the biology of microbial eukaryotes. We predict that, in
the future, the message of hope of Perkins and Turner [4] “We are
hopeful that the Neurospora work reviewed here will encourage
wider studies in the genetics of fungal populations and will contrib-
ute to an increased appreciation of the potential contribution of the
fungi.” will not need to be reiterated in any future review about the
population genomics of Neurospora.

7 Notes

1. An ascospore is a sexual spore of an ascomycete fungus, gener-
ated through meiosis (¼meiospore). An ascus is a cell bearing
ascospores. A perithecium is a spherical type of fruiting body in
ascomycete fungi, containing ascus. A conidium is an asexual
spore of a fungus, generated through mitosis (¼mitospore).

2. Mating type loci are genes that control sexual compatibility.
Neurospora has two mating type alleles, referred to as Mat A
et al.

3. Homothallism defines situations where the successful fusion of
gametes does not require functionally different mating-type
alleles. Heterothallism defines situations where the successful
fusion of gametes can occur only between haploids carrying
functionally different mating-type alleles. Pseudohomothallism
qualifies heterothallic species for which self-fertility is enforced
by a modified program of meiosis that maintains a constant
state of heterokaryosis, where nuclei of opposite mating type
share a mycelium and are transmitted together in sexual or
asexual spores.

4. The reproductive system is the combination of the reproductive
mode, the breeding system and the mating system [81]. The
reproductive mode qualifies the process by which genes are
transmitted across generation; reproductive mode can be asex-
ual, sexual, or mixed when there is an alternation of sexual and
asexual reproduction during the life cycle. The breeding system
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refers to the physiologic determinants of mating compatibility,
regulated strictly, in fungi, in the haploid stage by mating-type
loci. The breeding system of fungi can be heterothallic or
homothallic, pseudohomothallism being a specific case of het-
erothallism (seeNote 3). Themating system refers to the degree
of genetic relatedness between mates. Outcrossing corresponds
to the mating between cells derived from meioses in two differ-
ent unrelated individuals, whereas inbreeding corresponds to
the mating between related individuals. Inbreeding can be
caused by selfing, the mating between meiotic products of the
same diploid genotype, and several types of selfing can be
distinguished in fungi [82]. Contrary to persistent misconcep-
tions in the fungal literature, the breeding system has little
influence on the mating system. For instance heterothallism,
does not prevent selfing [27, 83].

5. Heterokaryotic refers to multinucleate fungal cells that have two
or more genetically different (but somatically compatible)
nuclei. Homokaryotic refers to multinucleate fungal cells
where all nuclei are genetically identical.

6. Allorecognition refers to self–nonself recognition between con-
specific individuals, while xenorecognition refers to self–nonself
recognition between heterospecific individuals. Somatic incom-
patibility refers to the possible outcome of allorecognition
processes, which limit successful somatic fusion to very closely
related individuals or tissues [84].
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74. Heller J, Clavé C, Gladieux P, Saupe SJ, Glass
NL (2018) NLR surveillance of essential
SEC-9 SNARE proteins induces programmed
cell death upon allorecognition in filamentous
fungi. PNAS 115(10):E2292–E2301

75. Li YF, Costello JC, Holloway AK, Hahn MW
(2008) “Reverse ecology” and the power of
population genomics. Evolution 62
(12):2984–2994

76. Cruickshank TE, Hahn MW (2014) Reanalysis
suggests that genomic islands of speciation are
due to reduced diversity, not reduced gene
flow. Mol Ecol 23(13):3133–3157

77. Colot HV, Park G, Turner GE, Ringelberg C,
Crew CM, Litvinkova L et al (2006) A high-
throughput gene knockout procedure for Neu-
rospora reveals functions for multiple transcrip-
tion factors. Proc Natl Acad Sci 103
(27):10352–10357

78. Glass NL, Dementhon K (2006) Non-self rec-
ognition and programmed cell death in fila-
mentous fungi. Curr Opin Microbiol 9
(6):553–558

79. Muirhead CA, Glass NL, Slatkin M (2002)
Multilocus self-recognition systems in fungi as
a cause of trans-species polymorphism. Genet-
ics 161(2):633–641

80. Wilson JF, Garnjobst L (1966) A new incom-
patibility locus in Neurospora crassa. Genetics
53(3):621–631

81. Neal PR, Anderson GJ (2005) Are ‘mating
systems’ ‘breeding systems’ of inconsistent
and confusing terminology in plant reproduc-
tive biology? Or is it the other way around?
Plant Syst Evol 250(3-4):173–185. https://
doi.org/10.1007/s00606-004-0229-9
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Chapter 14

Population Genomics of Fungal Plant Pathogens
and the Analyses of Rapidly Evolving Genome
Compartments

Christoph J. Eschenbrenner, Alice Feurtey, and Eva H. Stukenbrock

Abstract

Genome sequencing of fungal pathogens have documented extensive variation in genome structure and
composition between species and in many cases between individuals of the same species. This type of
genomic variation can be adaptive for pathogens to rapidly evolve new virulence phenotypes. Analyses of
genome-wide variation in fungal pathogen genomes rely on high quality assemblies and methods to detect
and quantify structural variation. Population genomic studies in fungi have addressed the underlying
mechanisms whereby structural variation can be rapidly generated. Transposable elements, high mutation
and recombination rates as well as incorrect chromosome segregation during mitosis and meiosis contrib-
ute to extensive variation observed in many species. We here summarize key findings in the field of fungal
pathogen genomics and we discuss methods to detect and characterize structural variants including an
alignment-based pipeline to study variation in population genomic data.

Key words Fungal pathogens, Genome compartments, Transposable elements, De novo assembly,
Multiple genome alignments

1 Introduction

The kingdom Fungi comprises a diverse group of pathogens that
infect animals and plants. Understanding the evolution and infec-
tion biology of fungal pathogen species is evidently necessary to
know how to combat the diseases caused by these organisms.
Primary objectives to be addressed in population genomic studies
of fungal pathogens relate to the origin of the pathogen, routes of
migration, and epidemiology. Moreover, genome data can shed
light on the underlying determinants of pathogenicity, which may
be new targets in disease control. Finally, as we will outline in this
chapter, fungal pathogens provide interesting model systems to
study the evolution of genome architecture.

In this chapter, our focus will be on fungi that cause disease on
plants. Genome data permitted the reconstruction of the
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evolutionary histories of some of the most important fungal plant
pathogens. For example, the speciation history of the ascomycete
wheat pathogen Zymoseptoria tritici has been reconstructed by
whole genome coalescence analyses revealing that this pathogen
emerged with the onset of wheat domestication in the Middle East
during the Neolithic Revolution 10–12,000 years ago [1, 2]. Popu-
lation genetic analyses of isolates representing a world-wide collec-
tion of Z. tritici was applied to infer the migration history of the
pathogen and showed a subsequent dispersal of the pathogen with
the spread of wheat cultivation to Europe, Asia and later to New
World countries [3]. Another important and recently emerged
wheat pathogen is the wheat blast fungus Magnaporthe oryzae.
The wheat blast disease first emerged in South America and strict
quarantine strategies were employed to contain the pathogen
within one region and avoid dispersal to other continents. How-
ever, the disease was recently reported in Bangladesh. Islam and
colleagues were able to track the origin of the wheat blast outbreak
in Bangladesh to South America using a genome-wide SNP dataset
from 20 isolates collected from different host species in Brazil and
Bangladesh [4]. This type of phylogenomic studies and “genomic
surveillance” has proven of great relevance to monitor plant disease
outbreaks and support the design of improved disease management
strategies.

Genome data from fungal plant pathogens has also been a
resource for the discovery of genes encoding virulence determi-
nants. In particular quantitative trait locus (QTL) mapping and
genome-wide association studies (GWAS) have proven powerful
in this field. QTL mapping, based on phenotypic analyses and
marker segregation in progeny populations, have been applied to
identify the avirulence gene AvrStb6 in Z. tritici [5, 6]. However,
QTL analysis has several drawbacks: it relies on the analyses of
crosses between two strains. This limits the resolution of the
study, depending on the amount of variation between the two
strains. Moreover, many fungi propagate primarily by asexual
reproduction and many sexual species cannot be crossed under
laboratory conditions excluding the possibility of QTL analysis.
GWAS on the other hand uses outbred population and polymorph-
isms that represent the standing genetic variation in a population,
providing a higher resolution along the genome [7]. GWAS ana-
lyses have been used to identify polymorphisms associated with
fungicide sensitivity, mycotoxin production and aggressiveness of
the wheat pathogen Fusarium graminearum [8], virulence deter-
minants of the pine tree pathogenHeterobasidion annosum [9], and
toxin production of another wheat pathogen Parastagnospora
nodorum [10].

Another way to detect genes relevant for pathogenicity in
fungi, is to apply evolutionary predictions to identify signatures of
recent or past selection. Genes involved in host–pathogen
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interactions are expected to evolve by antagonistic selection, either
following an “arms-race” or a “trench-warfare” scenario of coevo-
lution [11, 12]. The “arms-race” scenario refers to positive selec-
tion that repeatedly fixes new advantageous alleles at the locus
under selection. The trench-warfare scenario on the other hand
refers to the continuous maintenance of different alleles in the
population by balancing and diversifying selection. Thus, identify-
ing genes with signatures of positive or balancing selection in
pathogen genome will likely uncover genes playing a role in host–
pathogen interaction. Evolutionary predictions have been used to
identify a number of virulence determinants in fungal plant patho-
gens and confirm the prediction that virulence determinants indeed
often exhibit a signature of positive selection and accelerated evo-
lution [13, 14].

Genome sequencing of hundreds of pathogenic fungal species
has revealed extensive variation in genome structure and size
[12]. Sequenced genomes range in size from 2 Mb in the Micro-
sporidia to 2 Gb in Pucciniales species, and comprise different levels
of ploidy and in some species even aneuploidy [15]. A consistent
finding from comparative studies of pathogenic fungi is an extreme
extent of genome plasticity whereby closely related species or indi-
viduals of the same species can have highly different genome struc-
ture and size, and vary in gene content and gene organization
[12]. There is evidence that this genome plasticity is crucial for
the pathogenic lifestyle. Indeed, variation is essential for pathogens
to rapidly adapt to changes in their environment, in particular
changes in host resistances, and a highly flexible genome composi-
tion appears to be an adaptive mechanism for pathogens to rapidly
generate new genetic variation.

The field of fungal pathogen genomics has focused on the
sources and patterns of genomic variation, and the contribution
of this variation to gene evolution, in particular the evolution of
virulence related genes, so called effectors. Effector genes encode
secreted proteins that are involved in the suppression of host
defenses and these genes are located in genomic segments exhibit-
ing structural variation, including accessory chromosomes and
islands of repetitive DNA (e.g., [16–19]). The challenge of study-
ing patterns of evolution in these regions lies in the difficulty of
assembling and comparing structurally different sequences.

Population genomic analyses, taking structural variation into
account, have been instrumental in determining the underlying
drivers of rapid evolution and genome variation in most pathogenic
fungal species. This chapter will summarize some of the key dis-
coveries from population genomics analyses of fungal pathogens.
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2 Key Discoveries from Population Genomics in Plant Fungal Pathogens

2.1 High

Recombination Rates

and Population

Admixture Contribute

to Rapid Adaptation

of Fungal Plant

Pathogen Genomes

Population genomic data has been applied in a few studies to
address the rapid evolution of fungal plant pathogens (reviewed
in [12, 20]). Mechanisms that generate genetic variation in a pop-
ulation include mutational processes, recombination and gene flow.
The fate of this variation is then determined by selection, genetic
drift and the effective population size of the organism. Many
aspects make it difficult to study the population genetics and
demography of fungi and to assess the contribution of different
evolutionary mechanisms to evolution. Most population genetic
analyses rely on evolutionary models that make assumptions
about the underlying genetic structure of the population (e.g.,
random mating, infinite site model, a low and constant recombina-
tion rate, clonality, skewed offspring, and constant population size).
In fungi, many species reproduce both asexually and sexually. More
generally, the reproductive mode of fungi can be considered as a
continuum ranging from predominantly clonal to strictly
out-crossing. Furthermore, the reproductive mode of a particular
taxa may change over time. For example, a species may propagate
asexually for a certain time followed by a time of more frequent
sexual reproduction. Extensive differences in the content of trans-
posable elements between closely related species may support the
occurrence of prolonged periods of asexual reproduction in many
individual lineages [21, 22].

In population genetic analyses, it is often necessary to have a
clear definition of generation time, in order to convert relative time
to actual years. However, the generation time of a fungal individual
that produces both by asexual and sexual reproduction is difficult to
define. In these organisms, not only sexual generations can con-
tribute to novel genetic variation but also asexual generations
where high mutations rates generate clonal variation. Furthermore,
little is known about the variation in sexual or asexual generations
per year. However, the frequency of sexual mating and spore for-
mation may vary from year to year according to environmental
conditions and the availability of compatible sexual partners. In
summary, analyses of fungal population genomic data, based on
existing population models involve many uncertainties caused by
our limited understanding of the population biology of fungal
pathogen species and by the inadequacy of classic population
genetic assumptions to the life history traits of these organisms.

Despite these limitations, population genomic data has, for a
few model species, provided new insight into genome the evolution
and population biology of the plant pathogens. For example, the
impact of recombination on genome evolution has been studied in
both ascomycete and basidiomycete pathogens. Badouin and
coworkers used population genomic data to infer linkage
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disequilibrium (LD) along the genome of two closely related spe-
cies of the anther smut fungus Microbotryum [23]. Using informa-
tion about the extent of LD and the site frequency spectrum (SFS),
the authors could determine the distribution and frequency of
selective sweeps along the genomes and thereby demonstrate the
recent impact of natural selection on gene and genome evolution in
the two species. While recombination in Microbotryum has been
crucial to fix adaptive mutations, suppression of recombination in
other parts of the genome has shaped evolution of mating type
chromosomes. On these chromosomes recombination suppression
has contributed to the generation and maintenance of “super
genes” comprising the genes responsible for pre- and postmating
compatibility [24].

The impact of recombination has also been studied in Z. tritici
and its close relative Zymoseptoria ardabiliae using population
genomic data. These analyses revealed exceptionally high rates of
recombination, including recombination hotspots localizing in
protein coding genes [25]. Furthermore a strong correlation of
recombination with both positive and negative selection was
recently demonstrated [26]. Thereby, a negative correlation of
recombination and pN/pS, the proportion of nonsynonymous to
synonymous polymorphisms, demonstrates an important role of
recombination in removing nonadaptive mutations. On the other
hand, a positive correlation of recombination with the rate of
adaptive nonsynonymous mutations, ωA, was reported, showing
that recombination likewise contributes to the efficient fixation of
advantageous mutations in this species.

The impact of intra-specific gene flow on the population
genetic structure and dynamic was elegantly demonstrated by a
transcriptome sequencing of wheat leaves infected with the yellow
stripe rust pathogen Puccinia striiformis [27]. P. striiformis is an
obligate pathogen and difficult to culture on artificial media. Direct
sequencing of infected leaf material thus provides a powerful
approach to capture the genetic diversity of isolates in the field.
Bueano-Sancho and colleagues used data from 246 infected leaves
of wheat, triticale, and rye collected in 2 years and at different
geographical locations. They used population genetic analyses to
infer the population structure and recent patterns of gene flow and
admixture of the European rust population and demonstrate
extremely diverse populations and rapid seasonal shifts of the rust
populations [27]. A significant impact of gene flow on the popula-
tion genetic structure of fungal pathogens has been demonstrated
in other studies also using population genomic data, for example, in
the rice blast pathogen Magnaporthe oryzae [28] and the ash die-
back pathogen Hymenoscyphus fraxineus [29].

The impact of new mutations has also been extensively studied
in fungal plant pathogen genomes. This is because many species
show exceptionally high rates of mutational changes in some
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segments of their genomes, and the ability to rapidly generate new
genetic variation by mutations likely represents an adaptive trait. In
the next section we outline the peculiarity of many plant pathogen
genomes with respect to genome architecture of the distribution of
mutation-prone genome regions.

3 Fungal Plant Pathogen Genomes Are Often Compartmentalized,
A Trait Driven by Transposable Elements

The origin of genome compartments in fungal pathogens is still
poorly understood, but can only be studied with well-assembled
and aligned genome sequences that allow us to study patterns of
nucleotide variation within and around these particular genomic
regions. Improved genome assemblies have provided insight into
the repetitive fraction of fungal pathogen genomes. Repeat con-
tents can vary from less than 1% in Fusarium graminearum to more
than 80% in some rust and mildew species [30, 31]. The factors
determining repeat accumulation are poorly understood, but can
include sexual versus asexual reproduction and different genome
defense mechanisms such as DNAmethylation and Repeat Induced
Point mutations (RIP). Transposable elements may accumulate
during prolonged asexual reproduction in the absence of recombi-
nation; however, some of the sequenced species with the highest
repeat content, such as many rust fungi, are sexual, suggesting that
other factors likewise are important determinants of transposable
element activities.

In some fungal pathogen species a large portion of the repeti-
tive elements are found in particular accessory segments or entire
chromosomes that are nonessential but in some species important
for virulence. The genome of the asexual fungus Verticillium dah-
liae comprises particular islands enriched with transposable element
and encoding effector genes [16, 32]. These islands are present in
different lineages of the pathogen and contribute to variation in
virulence. Interestingly, these genomic islands harbor little nucleo-
tide variation among individuals that share a particular island,
possibly reflecting the strong impact of natural selection on the
genes encoded by these regions. Variation in virulence phenotypes
is thus given by the presence–absence polymorphism of an entire
genomic fragment.

The genome of the fungus Leptosphaeria maculans infecting oil
seed rape also comprises repeat rich compartments that encode
effector proteins [17]. These regions show a particular mutation
pattern conferred by RIP. RIP acts to inactivate transposable ele-
ments by introducing mutations in repetitive sequence. RIP pro-
duces cytosine to thymine (C to T) mutations and can thereby
locally impacts the GC content of the sequence [33]. This is the
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case for L. maculans where the repeat-rich islands have become AT
isochores with highly distinct GC content compared to the remain-
ing genome.

Genome compartments can also be contained in the genome as
accessory chromosomes. The wheat pathogen Zymoseptoria tritici
has a large number of such accessory chromosomes, eight of them
have been sequenced in the reference isolate. These chromosomes
can be lost and rearranged during mitosis as well as meiosis
[34, 35]. Beside this large complement of accessory chromosomes,
Z. tritici also exhibits a considerable amount of chromosome
length polymorphisms of the core chromosomes as demonstrated
by electrophoretic separation of chromosomes and PacBio
sequencing [36, 37]. In the soil-borne pathogen Fusarium oxy-
sporum lineage-specific chromosomes encode virulence determi-
nants that enable the fungus to be pathogenic on specific host
species by the defeat of host defenses [22].

How are accessory chromosomes lost and how are they main-
tained in populations? A few studies mainly focusing on
F. oxysporum and Z. tritici have started to address these questions.
These studies have demonstrated the exceptionally fast rate of
accessory chromosomes loss during mitosis [38, 39]. In
F. oxysporum amplification and maintenance of the chromosomes
likely depend on the horizontal exchange of these chromosomes by
vegetative fusion of hyphae. In Z. tritici however, the accessory
chromosomes can be amplified during meiosis by a meiotic drive
mechanism [40]. In both species, mechanisms that allow the loss of
chromosomes as well as mechanisms that reamplify the chromo-
somes may have evolved to rapidly generate new genetic variation in
the populations of pathogens.

4 Interspecific Hybridization Contributes to Genome Evolution of Fungal Plant
Pathogens

Reproductive barriers between fungal species are in many cases
poor predictors of species boundaries. Sexual mating and fusion
of hyphae between nonconspecific individuals have been frequently
described and demonstrate a pathway of gene exchange across
species boundaries in the kingdom Fungi. We have recently
reviewed the literature on fungal hybridization [41] and will here
only mention a few prominent examples of hybridization and gene
exchange between fungal species.

Hybridization has been shown to be responsible for the rapid
emergence of new virulent lineages of different fungal plant patho-
gens, including Ophiostoma nova-ulmi, the causal agent of Dutch
Elm disease and the powdery mildew pathogen Blumeria graminis-
triticale on crop species Triticale [42, 43]. For the Dutch Elm
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disease fungus, occasional hybridization events have played a role in
the exchange of virulence determinants between otherwise distinct
lineages. B. graminis-triticale, on the other hand, is the product of
few hybridization events between powdery mildew species infecting
wheat and rye, respectively. The evidence for a hybridization event
is a particular mosaic distribution of genetic variation that clearly
reflects the two parental genomes recombined in one genome
[43]. The two examples demonstrate very different outcome of
hybridization ranging from a few signatures of introgression to
entirely mixed parental genomes and hybrid speciation.

The exchange of genetic material can also occur as horizontal
gene transfer where only a fragment of DNA is integrated into the
genome of one species from another organism. The wheat patho-
gens Parastagonospora nodorum and Pyrenophora tritici-repentis are
two distantly related ascomycete pathogens. However, their gen-
omes comprise one region of exceptionally high sequence identity
[44]. This region that is flanked by transposable elements includes a
gene that encodes a proteinaceous toxin, ToxA. ToxA is a virulence
factor that confers necrosis in susceptible wheat cultivars and the
acquisition of the ToxA gene by P. tritici-repentis from P. nodorum
by horizontal gene transfer, allowed the emergence a new virulent
lineage of P. tritici-repentis infecting wheat. Interestingly, genome
sequencing revealed that the ToxA gene also is present in another
wheat pathogen Bipolaris sorokiniana suggesting that this gene
may be carried by a bacterial or viral vector frequently associated
with wheat [45].

Multiple signatures of hybridization and interspecific gene
exchange supports a high extent of flexibility in terms of genome
content and structure in fungal plant pathogens. The finding that
introgression and horizontal gene transfer in some cases involve
virulence determinants underlines the importance of studying not
only these regions, but also the processes whereby they occur.
However, hybridization events between more distantly related spe-
cies may be challenging to identify with population genomic data.
This is because outlier loci in the genome that comprise highly
diverged haplotypes can be difficult to assemble by reference-
based assembly approaches. Below we discuss how to circumvent
this issue by alignment of de novo assembled genomes.

5 Discovering Variation in Population Genomic Data

5.1 Variant Calling

Through Short-Read

Mapping: Methods

and Limits

Most population genomics approaches are based on the mapping of
short sequencing reads, using software such as bwa or bowtie to a
well-assembled reference genome [46–48]. Tools such as GATK,
SAMtools mpileup, or FreeBayes can be used to call single nucleotide
variants and small indels from the mapping file and output this
information in a Variant Call Format (VCF) file [49–52]. Here,
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we will not go further into details about these methods for SNP
discovery as these have been extensively reviewed elsewhere (e.g.,
[53–55]).

Variant discovery through mapping of short reads to a refer-
ence is supported by a large number of well-documented tools.
However, these methods have drawbacks, some of them especially
relevant in nonmodel organisms such as most fungal pathogens. As
mentioned above, many pathogenicity-related genes locate in
repeat rich compartments of fungal pathogen genomes, and
mapping based approaches may not be ideal for the characterization
of genetic variation in these regions. Alignment in low-complexity
or repetitive regions, although facilitated by paired or mated reads,
is often challenging due to the difficulty of correctly mapping the
sequence to the reference [55]. Dependence on a reference genome
can also be an issue in nonmodel organisms for which a complete
reference genome is not always available. Indeed, any misassembly
or single nucleotide error in the reference genome could be
reflected in the final variants. Poor assembly quality would also
lead to structural variation being impossible to discover. Finally,
mapping of short reads will not perform efficiently in presence of
high genetic variability. Such high variability may be found locally in
genomes that have experienced introgression or in some regions
have a higher mutation rate. In either case, reads containing multi-
ple alternative alleles might not map correctly, resulting in the
under-representation of the diverging haplotypes [55].

Another limitation to mapping-based approaches is the detec-
tion of structural variation. To detect translocations or inversions,
genomes can be de novo assembled and compared in a multiple
genome alignment (Fig. 1). Fungal genomes are convenient for
this approach as they often are relatively small and can be sequenced
in the haploid phase, therefore preventing issues with heterozygos-
ity and phasing.

Sequencing technologies based on longer reads (e.g., PacBio
SMRT or Nanopore sequencing) provide improved resources for
de novo assembly. These technologies have proven valuable in the
improved detection of structural variation in plant pathogen gen-
omes, including repeat-rich accessory segments on core chromo-
somes [56, 57]. Below, we describe methods to use de novo
genome assembly based on both long and short read sequencing
and give the details of a pipeline which allows variants calling from
these assembled genomes.

6 De Novo Assembly and the Rise of Long-Read Sequencing

A number of assemblers are available for the different types of
sequencing reads available including short reads produced by Illu-
mina sequencing and long reads produced, for example, by SMRT
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sequencing. For de novo assembly of short read data programs like
SPAdes [58], SOAPdenovo2 [59] or IDBA-UD [60] based on de
Brujn graph assemblies are available [61]. De Brujn graph-based
assemblers work by splitting the short reads into even shorter units
of uniform size, the so-called k-mers. These k-mers provide the
basis for the reconstruction of the genome sequence based on
overlap of different k’mers while information about the local con-
nectivity of each k’mer is preserved by a De Bruijn graph structure
(see, e.g., ref. 62, 63). To properly handle repetitive regions the De

Fig. 1 Generation of population genomic datasets using multiple genome alignment (MGA). Genomes of
multiple individuals are generated by short or long read sequencing and assembled de novo. De novo genome
assemblies are aligned to generate a MGA. The alignment consists of alignment blocks of different sizes
(number of sequences) and lengths (base-pair of alignment). The MGA is projected against a single reference
sequence (here shown in red). The projection rearranges each alignment block so that the reference sequence
represents the positive strand of the genome. Variable positions can be called directly from the MGA and
summarized in a VCF file
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Bruijn graph assembler masks repetitive and low-complexity
regions and assemble the remaining genome into many contigs
and scaffolds.

De novo genome assemblies of long read data is based on other
algorithms and build on the alignment of overlapping reads
[64, 65]. Long read sequencing with SMRT technology provides
an average read length of 10 kb that can be assembled with assem-
blers like Canu [64], Falcon [65], or SMRTAssembly (©Pacific
Biosciences). Nanopore sequencing is producing even longer
reads, mostly dependent on the length of the extracted DNA
fragment, by a MinION instrument. Methods to assemble gen-
omes based on this technology partially overlap with the ones used
with SMRT technology, for example, with theCanu assembler [64]
and are reviewed in de Lannoy et al. [66]. Nanopore reads have
been used to improve the N50 of the maize pathogen Rhizoctonia
solani by an order of magnitude compared to previous efforts
[67]. This improvement is even more pronounced in genomes
with high repetitive content (e.g., [56, 68]). In the oat crown
rust fungus Puccinia coronata f. sp. avenae with a genome-wide
repeat content of more than 50%, long read sequencing has enabled
detailed characterization of structural variants [69]. Moreover,
assembly of long read data provided a map of SNPs not only
between individuals but also between nuclei in the dikaryotic
hyphae of P. coronata f. sp. avenae, a level of variation so far poorly
studied in fungi.

The main inconvenience with long-read sequencing methods
so far is the high error rate. To circumvent this issue, it is necessary
to either increase the sequencing depth or to combine the advan-
tages of short and long reads. Indeed, assemblies of long and short
read data from the same genome is also possible with “hybrid
assemblers” like hybridSPAdes whereby the long read data ensures
the assembly of long scaffolds and the short read data provides high
coverage of individual nucleotides in the assembly [70]. Instead of
using both types of reads during the assembly process, it is also
possible to correct long-read de novo assembly with short-read
data, using software like Pilon [71]. Such an approach was recently
used to assemble genomes of the species Leptosphaeria and Zymo-
septoria [37, 72].

It is important to note that different assemblers (for short-read
data as well as long-read data) may perform differently with differ-
ent genome datasets depending on the repeat content and sequence
complexity. Moreover, the long-read technologies are improving at
a very rapid rate and new tools and methods are constantly devel-
oped. We therefore advise reviewing the latest methods, testing
different assemblers with a given dataset and comparing the result-
ing assemblies with tools such as Quast to determine the best
performance [73]. To evaluate the quality of the assemblies, key
parameters to compare are the total length of the assembly, the
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number of contigs and the overall size of the assembled fragments
which can be summarized by the N50 value (defined as the largest
contig length, L, whereby contigs of length superior or equal to
L accounts for at least 50% of the bases of the assembly).

For population genomics analyses of the fungal wheat patho-
gen Z. tritici we have developed a pipeline based on de novo
genome assembly and multi genome alignments (Fig. 1). This
method has allowed us to quantify and characterize accessory
regions in the genome of Z. tritici and to identify hitherto overseen
signatures of introgression along the genome of the pathogen [74].
Following de novo assembly of either short or long read sequenc-
ing, the next step in our pipeline is the generation of a multiple
genome alignment with a multiple genome aligner such a TBA
[75], Mugsy [76], or progessiveMauve [77]. These aligners first
generate pairwise alignments of all genomes and next combine
these into a multiple genome alignment. The resulting alignment,
for example, in “multiple alignment format” maf file consists of a
large number of local alignment blocks, that differ in their length
and the number of sequences included in the block (see Chapter 2).
The variation in sequence numbers per block along the genome
may reflect actual presence/absence variation in genome segments,
but can also reflect the parts of the genome that is prone to
assembly and/or alignment errors. A thorough filtering and
realignment of the alignment blocks is therefore necessary to ensure
that the observed patterns are biologically relevant. Programs like
Mafft or T-Coffee are available for realignment of alignment blocks
to ensure the optimal comparison of sequences [78, 79].

Filtering and variant detection from a multiple genome align-
ment can be done with programs like Maffilter [80] (see also
Chapter 2). Maffilter allows the list of variant sites identified across
the aligned genomes to be outputted as a VCF file. This format is
identical to the one used by classic variant calling following a
mapping approach. This is especially convenient, as it will allow
for these variants to be used as input by any population genomics
programs designed to work on this well-known format. Another
advantage of this pipeline is that it allows to detect variants simul-
taneously using sequencing data produced by different technolo-
gies, for example, in the case here some genomes are obtained by
Illumina sequencing and other by PacBio SMRT sequencing (Feur-
tey et al. unpublished).

7 Detection of Structural Variation in Genomes

Structural variation is increasingly being recognized as an impor-
tant level of genetic variation to study. In a study of a single human
genome, Pang and colleagues found that the genome differed from
the reference human genome by only 0.1% when considering SNPs
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but by approximately 1.2% when considering other source of
genetic variation such as insertions, deletions, or copy number
variations [81]. In fungal plant pathogens, structural variation is
recognized as an important type of variation as highlighted in some
of the examples summarized above.

Methods based on read mapping can be applied to characterize
structural variation along genomes [82]. These methods rely on
several types of information to detect structural variants including
read-depth, and the distribution of paired-end and split reads. Read
depth in a mapping, that is, the number of sequencing reads align-
ing to a specific locus, can give information about copy number
variations and deletions. For example, a locus with a higher depth
than expected could indicate a duplication and a lower depth (close
to 0 in a haploid genome, half the expected depth in a diploid
genome) a deletion [83].

Deletions in the resequenced genome compared to the refer-
ence genome will cause the insert size of paired-end reads (the
DNA fragment including the sequenced reads and the gap
sequence between the reads) to appear larger than expected, while
an insertion will make the insert look smaller than expected. Fur-
thermore, pairs in which one read aligns to the genome while the
other does not may reflect an insertion of a TE if the second read
aligns to a repeated element somewhere else in the genome. Like-
wise translocations, inversions, and other kinds of structural var-
iants can be inferred from pairs of reads. Aligning DNA genomic
sequencing reads using an aligner created for RNAseq and thus able
to split a read sequence (usually, due to intronic sequences being
spliced out of the read) would allow detecting deletions since the
deleted sequence will look like a splicing junction site. Software that
can detect such structural variants include Pindel,Delly, or LUMPY
[84–86]. More details about these methods and software can be
found for instance in [83, 87, 88].

Although these methods can uncover many structural variants
from short and long reads, they do have their limits. Some of these
methods make strict assumptions about the sequencing data, which
are not always met in real data. Methods based on read depth
assume that the sequencing depth is uniform across the genome
and that variation mainly is explained by structural variants. How-
ever, variation in GC content and sequence composition along the
genome can also cause variation in sequencing efficiency and
thereby sequencing depth [83, 89]. Moreover, genomic segments
such as accessory chromosomes or large insertions which do not
always exist in a reference genome cannot be detected by mapping
of short reads to a reference [88].

Whole genome assembly is able to uncover all types of struc-
tural variation, including large DNA fragments, which are not
present in the reference genome. Another advantage of whole
genome assembly is that, if the quality of the assembly is good, it
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provides strong evidence that no structural variant has gone unde-
tected [88]. When the number of genomes is low, structural var-
iants can be identified visually using, for instance, Symap or circos,
which provide easily interpretable visualization of genome align-
ments [90, 91]. Specific software able to detect structural variants
from de novo assemblies have also been developed such as Assem-
blytics and AsmVar, an automatization step that accounts for struc-
tural variants a population level [92, 93]. In summary several tools
are available to detect and characterize structural variants in popu-
lation genomic data. In organisms, like fungal pathogens, with
highly variable genomes, accounting for structural variants is essen-
tial in order to understand genome evolution and the impact of
mutation and recombination along the genome.

8 Conclusion

Analyses of genetic variation in fungal plant pathogen genomes
have to a large extent focused on highly variable regions, on
species-specific traits and presence–absence variation. More
detailed analyses in a few species point to these regions being of
particular interest as they can encode important pathogenicity fac-
tors. Variation in these regions is therefore considered to be adap-
tive in accordance with rapid host–pathogen coevolution.
Population genomic studies that aim to characterize genetic varia-
tion in highly variable regions rely on high quality assemblies and
alignments. De novo assemblies of long read sequence data provide
an important new resource to capture variation in these regions,
including variation in transposable element sequences.

The processes that drive genome evolution in fungal pathogen
genomes is still poorly understood. We have demonstrated excep-
tionally high rates of recombination and particular mechanisms that
introduce newmutations at high a rate. Furthermore, we know that
fungal pathogens can exchange genes with other species either by
sexual mating or fusion of asexual structures. However, the under-
lying mechanism of these processes, as well as the impact of natural
selection on genetic variation generated by these is still to be
unraveled.

With their small genome size and in many cases particular
genome architecture, fungal pathogens, however, provide excellent
models organisms for fundamental studies of genome evolution.
Moreover, a better understanding of evolutionary processes occur-
ring in pathogen populations is crucial for the development of
agricultural ecosystems with higher disease resistance [94].
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Chapter 15

Population Genomics on the Fly: Recent Advances
in Drosophila

Annabelle Haudry, Stefan Laurent, and Martin Kapun

Abstract

Drosophila melanogaster, a small dipteran of African origin, represents one of the best-studied model
organisms. Early work in this system has uniquely shed light on the basic principles of genetics and resulted
in a versatile collection of genetic tools that allow to uncover mechanistic links between genotype and
phenotype. Moreover, given its worldwide distribution in diverse habitats and its moderate genome-size,
Drosophila has proven very powerful for population genetics inference and was one of the first eukaryotes
whose genome was fully sequenced. In this book chapter, we provide a brief historical overview of research
in Drosophila and then focus on recent advances during the genomic era. After describing different types
and sources of genomic data, we discuss mechanisms of neutral evolution including the demographic
history of Drosophila and the effects of recombination and biased gene conversion. Then, we review recent
advances in detecting genome-wide signals of selection, such as soft and hard selective sweeps. We further
provide a brief introduction to background selection, selection of noncoding DNA and codon usage and
focus on the role of structural variants, such as transposable elements and chromosomal inversions, during
the adaptive process. Finally, we discuss how genomic data helps to dissect neutral and adaptive evolution-
ary mechanisms that shape genetic and phenotypic variation in natural populations along environmental
gradients. In summary, this book chapter serves as a starting point to Drosophila population genomics and
provides an introduction to the system and an overview to data sources, important population genetic
concepts and recent advances in the field.

Key words Drosophila melanogaster, Population genetics, Demography, Recombination, Selection,
Background selection, Selective sweeps, Inversions, Transposable elements, Clines

1 Introduction

The fruit fly Drosophila melanogaster is a small Dipteran that origi-
nates from sub-Saharan Africa [1] and has since then colonized all
continents except for Antarctica as a human commensal
[2, 3]. Within the last 15–20,000 years it expanded its range to
Europe and Asia and was only recently introduced to Australia and
the Americas (~200 years ago according to [1, 4]). Because of its
short life cycle and its simple maintenance, it was first adopted as a
laboratory model organism by William Castle and later by Thomas
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HuntMorgan at the beginning of the twentieth century [3, 5]. At a
time when the basic principles of heredity were still under heavy
debate, Morgan used theDrosophila system to experimentally prove
and extend the fundamental predictions of Mendelian genetics,
which led to the discovery of genes and their location on chromo-
somes. This early work was rewarded with Nobel prizes to Morgan
and several of his former students and research assistants and forms
the basis of our present day understanding of genetic mechanisms
[6]. Subsequently, theDrosophila system was further exploited, and
resulted in the development of numerous genetic tools such as
balancer chromosomes, gene-specific knockout mutants and other
transgenic constructs, including the Gal4/UAS system to study
gene expression or more recently, the CRISPR/Cas9 system for
site-specific genome engineering. Moreover, with its condensed
genome of ~180 Mb, D. melanogaster was among the first eukary-
otic organisms whose genome was fully sequenced, assembled and
annotated [7].

Beside major advances in functional genetics Drosophila has
also proven powerful for population genetic inference. Accordingly,
numerous major population genetics discoveries have first been
made in flies. Theodosius Dobzhansky, together with coworkers
and students, was one of the first to systematically investigate
genetic variation in Drosophila—particularly by focusing on chro-
mosomal inversions. His groundbreaking work gave a first insight
into the evolutionary processes that shape genetic variation and
subsequently paved the ground for the modern synthesis of evolu-
tionary biology (seeNote 1) [8, 9]. By sequencing the Adh gene in
11 lines collected in 5 natural populations, Hudson generated the
first fruit fly DNA sequence polymorphism data, identifying only
one nonsynonymous polymorphism out of 43 SNPs [10]. As early
as the 1980s, methods based on restriction enzymes were applied to
D. melanogaster to quantify natural genetic variation across multi-
ple loci [11, 12], followed by the first analyses of Sanger sequenced
DNA fragments from dozens of genes [13]. These studies provided
the first insights into genome-wide patterns of variation in DNA
sequences, revealing abundant silent nucleotide site diversity, less
abundant nonsynonymous diversity and rarer small insertions and
deletions and transposable element insertions [14]. Based on the
null hypothesis of neutral evolution, Hudson et al. proposed a first
statistical test of selection based on comparing polymorphism and
divergence: the Hudson–Kreitman–Aguadé (HKA) test [15],
which postulates that genes should all exhibit the same ratio of
within-species variability (polymorphism) to between-species diver-
gence at neutral sites. As an extension of the HKA test, McDonald
and Kreitman developed a novel test to specifically detect positive
selection on protein sequences, first used to detect positive selec-
tion at the Adh locus in Drosophila, and which has since become a
ubiquitous test of neutrality [16]. The ratio of nonsynonymous to
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synonymous divergence is expected to be equal to the ratio of
nonsynonymous to synonymous polymorphism if nonsynonymous
sites are neutral or deleterious, but higher if they are adaptive. Some
of the strongest evidence for adaptive molecular evolution docu-
mented in all organisms has come from application of the McDo-
nald–Kreitman test and methods based on it (reviewed in [17, 18]).
Finally, a major discovery made in D. melanogaster was that the
level of nucleotide variability is positively correlated with the local
recombination rate [19], suggesting that selection may constitute a
major constraint on levels of genomic diversity.

In summary, the fruit fly D. melanogaster is an ideal model for
studying neutral and adaptive genome evolution in outbred, sexual
organisms since it is characterized by a long history as a genetic
model organism [5], exhibits well-documented, rapid, and wide-
spread adaptations over short (<20 generations) timescales in nat-
ural populations [20, 21], has powerful genetic tools [5, 22] a well-
annotated genome [23], and genome-wide polymorphisms data for
several populations (see Subheading 2.2 for details). Moreover, the
genomes of over 25 of its congeners have been recently sequenced
[24]. In particular, comparative genomics analyses on 12 species
provided fundamental new insights into genome evolution [25]
and led to the ModENCODE Project [26], which aims at identify-
ing functional elements in the D. melanogaster and Caenorhabditis
elegans genomes. In this chapter, we will focus on population
genomics studies (see Note 2), mostly based on next generation
sequencing data, and review different aspects of both neutral and
selective evolution based on the Drosophila system.

2 Data Sources

2.1 Data Acquisition

Techniques

One particular strength of the Drosophila system is its simple main-
tenance under laboratory conditions. Drosophila is commonly pro-
pagated as isofemale lines which originate from a single wild-caught
and inseminated female. This allows researchers to conduct molec-
ular and phenotypic measurements across several years using the
same genetic material and to preserve natural genetic variation
under laboratory conditions. In this paragraph we briefly review
the nature of the genetic material that has been sequenced in large
genome sequencing projects and how these different approaches
potentially affect patterns of variation and missing data.

2.1.1 Isofemale Inbred

Lines

Isofemale inbred lines are started from single gravid females whose
progeny are allowed to interbreed. These lines can be maintained
for several years as long as flies are regularly transferred to new vials
with fresh fly-food (a well-known task for any student in a Drosoph-
ila lab having worked in a fly-room). A high degree of inbreeding
due to small population sizes leads to a rapid reduction of genetic
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variation and heterozygosity at every generation within each iso-
female line. Inbred lines are often referred to as F (Filial genera-
tions) followed by the number of the generations of full-sib mating
(F3, F10, F20, . . .). Due to their near-complete homozygosity,
every line should be considered as contributing a single genome
to the total sample (and not two, as it could be assumed for an
outbred sample). Since isofemale lines are propagated separately
and are not allowed to interbreed, they are a versatile tool to
preserve genetic variation under laboratory conditions, given that
sufficient isofemale lines per population are maintained [27]. One
significant issue with this approach is that lines derived from equa-
torial populations have shown to be particularly resistant to
inbreeding, a problem that has been linked to the presence of
inversion polymorphisms hosting recessive lethal mutations. In
these lines, large regions (>500 kb) of residual heterozygosity can
be observed [28] which complicates the determination of patterns
of polymorphism and divergence in this population [29, 30].More-
over, given the small population sizes at which isofemale lines are
usually propagated, novel mutations that appeared after the capture
of the wild-caught ancestors are likely to accumulate in each line
over time. Isofemale lines that are maintained in the laboratory for
long periods of time will thus slightly deviate from their ancestors
and be poorer indicators of natural variation compared to recently
established lines.

2.1.2 Haploid Embryo

Sequencing

To circumvent problems caused by residual heterozygosity, Langley
et al. proposed to sequence the amplified genome of a single
haploid embryo [29]. Most eggs fertilized by recessive male sterile
mutants ms(3)K81 fail to develop [31]. The few that do, however,
only contain one haploid maternal genome. Such a single haploid
embryo derived from a cross between a female from any line of
interest and anms(3)K81male provides enough genomic DNA for
whole-genome amplification and sequencing [29]. Although
whole-genome amplification increases variance in coverage and
the frequency of chimeric reads, this technique provides a powerful
approach to uniquely generate high-quality sequencing data using
standard paired-end sequencing protocols. Similar to isofemale
inbred lines, this technique provides a single genome per sequenced
individual (female) but allows for obtaining phased DNA sequences
even in the presence of inbreeding-resistant polymorphic
inversions.

2.1.3 Genomic

Sequencing and Phasing

of Hemiclones

Whole-genome sequencing of hybrid F1 crosses—the so-called
hemiclones—which share one common parent [32], represents an
alternative approach to generate phased haplotype sequencing data.
Wild-type Drosophila strains are therefore crossed with the same
highly inbred or fully isogenic lab-strain that acts as a reference. The
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resulting F1 hemiclones are then sequenced as single individuals
alongside their lab-strain parent to bioinformatically distinguish
between the reference and the unknown wild-type allele. This
method has been recently employed inD.melanogaster and allowed
to combine cytological screens with whole-genome sequencing to
generate and analyze fully phased genomes with known inversion
polymorphisms [33]. Additionally, this approach was used to
sequence and characterize a panel of more than 200 wild-type
chromosomes from a North American D. melanogaster
population [34].

2.1.4 Pooled Sequencing

(Pool-Seq)

Pool-Seq is a sequencing technique, where tissues or whole bodies
of multiple individuals are pooled prior to DNA extraction, library
preparation, and whole-genome sequencing. In contrast to single
individual sequencing, Pool-Seq is very cost-efficient and has
proven powerful to accurately estimate population-wide allele fre-
quencies [35–37]. However, Pool-Seq also comes at the cost of
losing information about individual genotypes and haplotype struc-
ture. Moreover, it remains very difficult to distinguish
low-frequency variants from sequencing errors, which further com-
plicates population genetics inference [38, 39] and precludes cal-
culating classic population genetic estimators without statistical
adjustments (see for example [40–43]).

It is important to note that these approaches neither allow to
measure genotype variation in natural populations, which is the
proportion of heterozygote individuals within a population nor
the proportion of heterozygote sites within a single diploid
individual.

2.2 Consortia

and Available Datasets

The first finished genome draft of D. melanogaster was published
more than 17 years ago, and was among the very first fully
sequenced eukaryotic genomes [7]. Since then, the quality of the
reference sequence has further improved, and the number of func-
tional annotations, such as gene models or regulatory elements,
keeps increasing continuously. Both sequence and annotation data
are publicly available at www.flybase.org, a bioinformatics database
that is the main repository of genetic and molecular information for
D. melanogaster (and other species from the Drosophilidae family).
D. melanogaster was also one of the first species for which full-
genome intraspecific variation data was collected. The first whole-
genome population genetics study in D. melanogaster surveyed
natural variation in three African (Malawi) and six North American
(North Carolina) strains using low-coverage sequencing [44].

2.2.1 Drosophila Genetic

Reference Panel (DGRP)

and Drosophila Population

Genomics Project (DPGP)

The first two projects to systematically investigate the genomic
variability in natural D. melanogaster populations were the DGRP
[45] and DPGP [46] initiatives. Both consortia independently
sequenced more than 160 isofemale inbred lines (F20), all sampled
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in Raleigh, North Carolina, USA; a sample that was later extended
to 205 lines [47]. The major aim was to generate whole-genome
sequencing data that can be used for genome-wide association
studies. The genetic and phenotypic data are available from
http://dgrp2.gnets.ncsu.edu. While the DGRP data are well suited
for quantitative genetics analyses (using stable, well-described, and
homogeneous genetic material), they only provide information
about the genetic variation at a single location (North-Eastern
USA) although a large portion of the genetic diversity of the species
is known to reside in its ancestral range in sub-Saharan Africa
[48, 49]. The DGRP data is thus neither suitable for investigating
the demographic history of worldwide populations nor the patterns
and processes leading to local adaptations that likely facilitated the
range expansion and ultimately led to a cosmopolitan distribution
of D. melanogaster.

2.2.2 Drosophila

Population Genomics

Projects

The Drosophila population genomic project (DPGP, http://www.
dpgp.org) is an ongoing major population genomic sequencing
effort: beside the Raleigh population, the DPGP sequenced a pop-
ulation of Malawi (Africa) that exhibited >40% more polymor-
phism genome-wide compared to the North-American one
[46]. Then, the DPGP2 sequenced 139 wild-derived strains repre-
senting 22 populations from sub-Saharan Africa [50]. The analyses
of the DPGP2 data confirmed that the most genetically diverse
populations are located in Southern Africa (e.g., Zambia). After-
ward, the DPGP3 increased the sample size for a Zambian popula-
tion (Siavonga) up to 197 lines [51]. Most DPGP2 and all DPGP3
lines were sequenced from haploid embryos as described above.

2.2.3 The Drosophila

Genome Nexus

The Drosophila Genome Nexus is a population genomic resource
that integrates single-individual D. melanogaster genomes from
multiple published sources [51, 52], including DPGP and DGRP
among others [30, 53–55]. The aim was to generate a comprehen-
sive dataset using the same bioinformatics methods to facilitate
comparisons among them. The latest iteration (DGN v.1.1 [52]),
contains a total of 1121 genomes, from 83 populations in Africa,
Europe, North America, and Australia. It especially highlighted
differences in levels of heterozygosity among the different datasets.
The genome browser PopFly allows for the visualization and
retrieval of numerous population genomics statistics, such as esti-
mates of nucleotide diversity, linkage disequilibrium, recombina-
tion rates [56].

2.2.4 Dros-RTEC

and DrosEU

Complementary to previous efforts, which aim at sequencing single
individual genomes in large numbers from a single population
(DGRP, DPGP, DPGP3) or in small numbers from multiple loca-
tions (DPGP2 [30]), two consortia in North America (Dros-RTEC

362 Annabelle Haudry et al.

https://www.dropbox.com/referrer_cleansing_redirect?hmac=Uj0HUMQkkruj%2Fy%2BE2SkjEperaWjVd0w0hWKFQI7eJp0%3D&url=http%3A%2F%2Fdgrp2.gnets.ncsu.edu
http://www.dpgp.org
http://www.dpgp.org


[57]) and in Europe (DrosEU [43]) recently started to generate
Pool-Seq data from wild-caught flies from numerous sampling sites
to quantitatively assess genetic variation and differentiation
through time and space in natural populations. To date, DrosEU
has sequenced and analyzed 48 samples frommore than 30 localities
all across Europe, which revealed strong and previously unknown
population structure—mostly along the longitudinal axis—in Eur-
ope. Moreover, population genetic analyses of these data allowed
for a description of novel candidates for selective sweeps, to detect
previously unknown clines of mitochondrial haplotypes, inversions
and transposable elements (TE) and to isolate novel viral species in
the microbiome. The Dros-RTEC consortium similarly sequenced
72 samples ofD. melanogaster collected from 23 localities mostly in
North America [57]. Due to their focus on rapid seasonal adapta-
tion, many localities were sampled at different time points over the
course of 1–6 years, which allows for a quantitative investigation of
genome-wide seasonal fluctuations in SNPs and inversion poly-
morphisms. These analyses revealed that previous candidates for
seasonality exhibit highly predictable annual allele frequency fluc-
tuations and those signatures of seasonal adaptation parallel spatial
differentiation along latitudinal gradients.

2.2.5 Other Data In addition to these concerted sampling and sequencing efforts,
there is a rapidly growing number that similarly sequenced pools of
flies from natural populations. For example, Pool-Seq data of popu-
lations from the temperature gradients along the North American
and Australia were generated [58–60]. Large pools of flies collected
from Vienna/Austria and Bolzano/Italy were sequenced by
[61]. More recently, Kofler and colleagues [62] generated and
analyzed Pool-Seq data from more than 550 South African flies.
In combination with the aforementioned Pool-Seq data from large
consortia, these data represent highly valuable resources to tackle
fundamental questions about the adaptive process on complex
spatial and temporal scales.

3 Neutral Evolution

3.1 Demographic

Analyses

D. melanogaster is one of eight species described in the melanoga-
ster subgroup of the subgenus Sophophora. Within this group, two
species are cosmopolitan (D. melanogaster and D. simulans), while
the remaining six are endemic to the Afrotropical region
(D. sechellia, D. mauritania, D. erecta, D. orena, D. teissieri,
D. yakuba). This has led early studies to suggest an Afrotropical
origin of D. melanogaster and D. simulans and is now widely
accepted [4]. As expected under this hypothesis, the genome-
wide average diversity measured in Afrotropical populations of
D. melanogaster is higher than in non-African populations
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[44, 48, 63, 64]. In addition and similarly to Homo sapiens, the
genetic variation outside sub-Saharan Africa represents a subset of
the diversity found within sub-Saharan African populations, which
further suggest that South-Eastern tropical Africa represents the
ancestral range of the species [65].

In an influential review summarizing the results of early popu-
lation variation surveys in D. melanogaster [4], David and Capy
categorized worldwide natural populations into three groups:
ancestral, ancient, and new populations (Fig. 1). Ancestral popula-
tions are located in sub-Saharan Africa, where they probably have
split from the sister species D. simulans approximately 2.3 million
years ago [71]. Ancient populations are located in Eurasia and
migrated out of their ancestral range presumably at the end of the

Fig. 1 Map illustrating worldwide distribution, migration routes and clinal differentiation of the cosmopolitan
species D. melanogaster. Populations are separated in ancestral (red), ancient (orange) and newly introduced
(blue) populations, according to the categorization in David and Capy [4]. The expected ancestral range
(Zambia) is highlighted in dark red. Primary colonization routes across populations are shown by colored
arrows: the European colonization started approximately ~10–19,000 years ago [66, 67], followed by a spread
to Asia ~5000 years ago [66] and a more recent range expansion to Australia and North America within the
last 200 years [2]. Patterns of recent admixture (dotted grey arrows) were documented from European alleles
in Africa [50], and from African alleles to North America and Australia [68, 69]. Clinal genetic and phenotypic
differentiation (dash-dotted black arrows and color gradient) are documented along latitudinal gradients in
North America [58, 68] and Australia [60, 68], and along longitudinal gradients in Africa [70] and in Europe
[43]. At the time of the review, no information about demography of South-American populations was
available. The dark grey areas depict expected habitable geographic regions and were modeled from 4951
unique worldwide sampling-points in the TaxoDros database (http://taxodros.uzh.ch) and climatic data from
the WorldClim database (http://worldclim.org) using the R-package dismo (http://rspatial.org/sdm/). Note that
distribution models can be confounded by unequal sampling and may thus explain the missing predicted
distribution in South-Western Africa, Central Asia, and Russia
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last ice age. The third group, new populations, is located in America
and Australia, and represents a blend of ancestral and ancient
populations that recently colonized these two continents along
European shipping routes during the last centuries. Although
these early insights were based on a small number of loci, they
have proven to be surprisingly robust and 30 years later, the cate-
gorization of David and Capy is still widely accepted. Several stud-
ies, however, took advantage of the increasing amount of genetic
data and the rapidly developing field of model-based inference in
population genetics, to investigate the demographic history of the
species within a probabilistic framework. These studies evaluated
the likelihood of competing demographic scenarios and provided
estimates for demographic parameters such as the age of the split
between African and non-African populations, and population sizes
at different times of the colonization process. In the next paragraph
we review how genome-wide data and statistical modeling updated
the insights formulated by David and Capy [4].

Early population genetics surveys identified East and
South African populations to be closer to mutation-drift equilib-
rium compared to West African populations, which were character-
ized by higher linkage disequilibrium and lower diversity levels
[63–65]. These findings suggest that East and South Africa include
the ancestral range of the species. Demographic inference using
samples from sub-Saharan Africa indicated that the ancestral popu-
lation has experienced a population size expansion approximately
60,000 years ago (ranging from 26,000 to 95,000 [72]). This
ancestral expansion is found in all published models incorporating
the African population and is necessary to fit the excess of rare
variants measured in samples from the ancestral range (e.g., Zam-
bia, Zimbabwe). These models, however, assume that all sampled
mutations are neutral, which is unlikely because of putatively
unknown regulatory elements and the presence of background
selection [73]. A simulation showed that ignoring background
selection in demographic inference leads to an overestimation of
growth models [74]. Estimations of the coalescence rate through
time using smc++ indicated that the rate of coalescence in a sample
from the Zambian population (Siavonga, DPGP3) has been con-
stantly decreasing in the last 100,000 years [75], which is in line
with the population expansion scenario suggested by previous
studies. Furthermore, Terhorst et al. [75] measured a strong reduc-
tion in the coalescent rate for times older than 100,000 years,
suggesting either a very large ancestral population size or substan-
tial population structure in the ancestral population [76]. Neither
of these two processes is accounted for in current demographic
models for D. melanogaster and more work is needed to evaluate
whether the decreased ancestral rate measured by [75] is reflecting
true ancestral processes or rather aspects of the genomic data that
are not accounted by the method.More specifically, it remains to be
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clarified whether this approach can correctly recover neutral demo-
graphic processes when applied to small compact genomes with a
high proportion of nonneutral regions. More recently, Kapopoulou
et al. [77] estimated the age of the split between ancestral (Zambia)
and West African populations to be approximately 72,000 years,
which suggests that the population expansion reported by earlier
studies could well reflect a genuine early range expansion of the
species on the African continent.

3.1.1 Out of Africa Analysis of European samples revealed that the time of split
between African and European populations occurred around
13,000 years [66, 72]. These early studies, however, did not
include gene flow between populations in their models and there-
fore predicted that their estimates were probably younger than the
true age of divergence between African and European lineages.
Indeed, Kapopoulou et al. [78] recently confirmed this prediction
using genome-wide polymorphism data and by explicitly account-
ing for the effect of gene flow in their inference procedure. Their
demographic results identified gene flow as an important factor in
the recent history of European and African populations and
reported divergence time estimates of approximately
48,000 years. Independently, Pool et al. [50] reported pervasive
influence of European admixture in many African populations with
greater admixture proportion in urban locations. The “ancient”
status of Southeast Asian populations has also been confirmed by
[66, 79]. Similarly to the European case described above, diver-
gence time estimates between Asian and European populations
strongly depend on whether or not gene flow is taken into account
in the inference method (22,000 vs. 5000 years, respectively).

North-American populations are considered as newly intro-
duced because the colonization process has been observed directly
by entomologists in the second half of the nineteenth century
[2]. Strikingly,D. melanogaster was identified as the most common
species across the USA only 25 years after its introduction, suggest-
ing a dramatic population expansion after colonization [2]. A
genome-wide analysis of 39 flies sampled as part of the DGRP
project [45], using an approximate Bayesian computation method
(ABC) revealed the admixed nature of this population with
European and African admixture proportions of 85% and 15%,
respectively [67]. These estimations confirmed similar conclusions
reached earlier using microsatellite data [80]. This very recent
secondary contact between African and European lineages is likely
responsible for the North-South clinal genetic variation observed
in Northern America and Australia (Fig. 1), but local adaptation
could contribute to the maintenance of this clinal variation by
opposing itself to the homogenizing effect of gene flow
[54, 68]. Arguello et al. [79] recently confirmed the importance
of Afro-European admixture in the ancestry of North American and
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Australian flies using a larger dataset and a more precise inference
procedure. The mosaic ancestry of American and Australian fly
populations therefore represents an exciting opportunity to study
how migration and selection interact along a clinal heterogeneous
environment. Methods based on hidden Markov models were
developed to estimate patterns of local ancestry in samples of
North-American populations (where the term local refers to an
arbitrary subgenomic unit) [69, 81]. In samples with a predomi-
nant European genetic background, their results identify significant
differences in the proportion of African ancestry between func-
tional classes of genomic loci.

3.2 Recombination In most sexually reproducing eukaryotes, recombination ensures
both the proper segregation of homologous chromosomes during
meiosis and the creation of new combinations of alleles at each
generation. During meiosis, a substantial number of double-strand
breaks result in meiotic recombination between homologs. These
double-strand breaks are repaired either as crossover (CO) or non-
crossover (NCO) gene conversions: COs imply reciprocal exchange
between flanking regions, whereas NCOs do not. Both forms of
recombination are key factors in genome evolution as their rates
determine the probability to which extent genomic sites are linked
or evolve independently and hence affect the evolutionary fate of
the alleles. A fundamental understanding of recombination rates is
thus crucial in population genomic studies. In Drosophila, meiotic
recombination only occurs in females, but not in males [82], a
dimorphism known as “achiasmy” (an extreme case of hetero-
chiasmy observed in many species [83]).

In the 1990s, several studies revolutionized population genet-
ics by showing that the level of genetic diversity in populations of
Drosophila species was lower in regions of low recombination
[19, 84, 85]. Recombination itself seems to be the major factor
determining patterns of nucleotide diversity along the genome.
Indeed, mutation associated with recombination can be excluded
as the cause of this correlation, at least in Drosophila, given the lack
of correlation between recombination and divergence
[19, 45]. The frequent occurrence of these patterns [86] has moti-
vated further exploration and estimation of genome-wide patterns
of recombination and diversity.

Classically, the estimation of recombination rates generally
relies on the “Marey approach” that compares a genetic map,
which quantifies distances as CO frequency (in cM) to a physical
map (distances in base pairs). A user-friendly web service called
MareyMap Online [87] allows to get recombination rate estimates
based on such an approach. In their landmark study, Begun and
Aquadro [19] found a strong positive correlation between nucleo-
tide diversity estimated at 20 genes and local rates of COs in natural
populations of D. melanogaster. They used the coefficient of
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exchange as a measure of recombination rate, based on the physical
distance among cytological markers in combination with DNA
content estimates from densities of polytene chromosomes
[88]. The fully sequenced Drosophila genome, which became avail-
able in 2000 [7], represents a highly accurate physical map that was
necessary to generate detailed recombination maps. Marais et al.
[89] fitted a third-order polynomial, which provided a first over-
view of the distribution of COs along each chromosomal arm. They
showed that CO rates decline in proximity to telomeres and cen-
tromeres. Accounting for specific recombination patterns of the
telomeric and centromeric regions, Fiston-Lavier and colleagues
provided corrected estimates of local recombination rates in
D. melanogaster [90].

Besides classical recombination maps based on crosses, alterna-
tive approaches take population genetic variation into account to
estimate CO rates. Patterns of linkage disequilibrium (LD) in a
population result from historical recombination events. Recombi-
nation (CO) rates across the genome can thus be inferred from
linkage disequilibrium, through the population-scaled recombina-
tion parameter ρ ¼ 4Ner where Ne is the effective population size,
and r the CO rate between base pairs per generation [91]. Mc Vean
et al. [92] developed a coalescent-based method implemented in
the software LDHat for the estimation of local recombination rates
(4Ner per kilobase) using a composite likelihood approximation
[93], based on the segregation of a high density of physically
mapped SNPs. Originally developed for human populations, this
method has been applied to many species including Drosophila
[46]. Besides providing a recombination map with a higher resolu-
tion, Langley et al. showed that r and ρ were strongly positively
correlated at a large scale [46], indicating these independent esti-
mates are both capturing heterogeneity in recombination. How-
ever, compared to humans, D. melanogaster harbors much higher
SNP densities, population recombination parameters are an order
of magnitude higher and footprints of positive selection are more
widespread. Since the LDhat method assumes neutral evolution, it
can infer spurious recombination hotspots under certain conditions
of selection. Chan et al. [94] proposed a corrected method (LDhel-
met), which is more robust to the effects of selection and computed
an improved fine-scale, genome-wide recombination map in
D. melanogaster, including a handful of hotspots of at least ten
times the background recombination rate.

Combining both crosses and population variation approaches,
Comeron et al. [95] proposed a method to distinguish between the
two possible outcomes of the repairing of double strand breaks
associated with meiotic recombination: CO and NCO gene con-
versions. While COs involve DNA exchange between chromatid
arms of homologous chromosomes on a large-scale, NCOs are
nonreciprocal recombination events with a swap of small DNA
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fragment. First described in Drosophila [96–98], CO interference
prevents the formation of two COs in close proximity and thus,
reduces the probability of double CO events (~1 CO per chromo-
some per meiosis [99]). Based on the size of genetic regions
affected by gene conversion, Comeron et al. [95] estimated sepa-
rately rates of CO and NCO from crosses, making use of the very
high density of SNPs in D. melanogaster (139 million), which
allowed them to design a 2 kb-resolution map of recombination.
Unlike COs, NCOs appear to be uniformly distributed throughout
the genome [95], insensitive to the centromere effect and without
interference [100], and more frequent (rates of NCO: CO could
reach values over 100 [95]).

While extrapolated and direct recombination estimates are con-
sistent on a large scale, the latter ones show greater variability at the
center of the chromosomal arms [101]. Altogether, these recombi-
nation maps provide baseline estimates for population genomic
studies, especially to model the expected variation under selection
at linked sites (see Subheading 4.2 and [102]).

3.3 Biased Gene

Conversion

Both CO and NCO recombination involve gene conversion. In
particular, the presence of heterozygous sites within heteroduplex
DNA results in the formation of mismatches, which lead to the
conversion of one allele by the other during the repair. There is
evidence, from diverse eukaryotic lineages, that GC:ATmismatches
tend to be more often repaired in GC than in AT alleles, a process
called GC-biased gene conversion (gBGC [103, 104]). gBGC has
been inferred as the main driver of GC-content evolution in verte-
brates [103, 105–107] and several other taxa [108–111]. gBGC is
a nonadaptive mechanism that mimics natural selection, because it
confers a higher transmission probability of GC over AT alleles in
heterozygotes. Therefore, gBGC needs to be accounted for in
molecular evolution studies to correctly model neutral evolution
of the genome [112, 113]. The impact of gBGC inD. melanogaster
is, however, less clear: GC content is positively correlated with CO
rate [89, 114, 115], but not with NCO rate [95]. Globally, whole-
genome polymorphism and divergence data did not support a
gBGC model in D. melanogaster [116], except for the
X chromosome [117, 118] where it may partly explain the stronger
signal of selection on codon usage compared to autosomes [119].

3.4 Population

Genetics

of Chromosomal

Inversions

Chromosomal inversions were first discovered in D. melanogaster
almost exactly 100 years ago [120]. They represent structural
mutations that result in the reversal of genetic order in the affected
genomic region relative to the noninverted (“standard”) arrange-
ment [121, 122]. Inversions can have strong effects on genome
evolution in various different ways: breakpoints may disrupt genes
(e.g., [118]) or result in gene duplications due to staggered breaks
[123, 124]. Moreover, inversions can trigger positional effects,
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where expression patterns of genes are altered due to changes in
their relative chromosomal position ([125–127] but see [128]).
However, their most fundamental effect is the strong suppression
of recombination in heterozygotes, since crossing-over within the
inverted region results in abnormal chromatids [129–131]. As
shown in humans where inversions can cause numerous diseases,
many of these effects have deleterious consequences [132]; how-
ever there are some rare adaptive cases (reviewed in Subheading
4.5). Upon their discovery, inversions have been predominantly
studied in species of the genus Drosophila. Particularly the pioneer-
ing work of Theodosius Dobzhansky and colleagues in
D. pseudoobscura and D. persimilis [8, 9, 133, 134] gave a first
insight into the evolutionary processes that shape genetic variation
and differentiation in natural populations [135–137]. However,
only due to recent advances in whole-genome sequencing technol-
ogy, it became possible to quantitatively test for different evolu-
tionary models and characterize the genetic effects of inversions on
a genome-wide scale. Consistent with the action of spatially varying
selection, many inversions in Drosophila are commonly found to
exhibit steep clines along environmental gradients [138–141]. Sev-
eral of these, such as the latitudinal gradient of the well-studied In
(3R)Payne inversion in D. melanogaster, are replicated on multiple
continents and persist over time ([33, 142] but see [143]). Recent
large-scale genomic datasets of D. melanogaster, for the first time,
allow a quantitative assessment of the genetic and evolutionary
pattern associated with inversions. Analyses of genome-wide data
from African flies allowed for (1) determination of the age and
geographic origin of various cosmopolitan and endemic inversions.
These analyses revealed that most common cosmopolitan inver-
sions are of African origin and predate the out-of-Africa migration
[144]. Furthermore, these data provide (2) a first insight into the
amount and distribution of genetic variation and differentiation
associated with inversions. Data analyses of the DGRP, for example,
found that inversions contribute strongest to genetic differentia-
tion and substructure within a population from Raleigh/North
Carolina [47]. Moreover, only with the help of dense genome-
wide sequencing, it became possible to show that genetic differen-
tiation is not homogeneously elevated within inversions, but decays
toward the inversion center [33, 141, 144–146]. Consistent with
theoretical predictions [147–149], these data suggest that there is a
limited amount of genetic exchange among karyotypes rather than
a complete inhibition of recombination. In addition, local peaks of
strong differentiation close to the inversion center suggest that
several inversions, for example In(3R)Payne, contain various adap-
tive loci which are in strong linkage with the inversion breakpoints
[33, 141, 144, 145]. Analyses of genomic data in combination with
long-range PCR further helped (3) to reconstruct the exact genetic
composition of inversion breakpoints [150] and (4) facilitated the
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development of inversion-specific marker SNPs, which now make it
possible to reliably estimate inversion abundance and frequency in
single-individual and Pool-Seq data, respectively [33, 141,
151]. Together, these analyses highlight that whole-genome data
for the first time allows to quantitatively elucidate the mechanisms
underlying the evolution of chromosomal inversions.

3.5 Population

Genomics

of Transposable

Elements

Transposable elements (TEs) are mobile, self-replicating, repeated
DNA sequences found in every eukaryotic genome at varying
proportions among taxa [152, 153], among closely related species
[24] and among individuals of the same species ([154] for maize;
[155] for Arabidopsis; [156] for Drosophila). Because of their
mutagenic potential (either by inserting into functional regions or
by promoting chromosomal rearrangements via ectopic recombi-
nation—Note 3), TEs are thought to play a significant role in
populations’ evolution and adaptation [157]. According to the
nearly neutral theory, TE insertions are expected to be generally
neutral or deleterious to the host genome [158]. However, rare
cases of adaptive insertions have also been documented (see Sub-
heading 4.6 for examples in Drosophila). The general model of TE
dynamics is the transposition-selection balance model [159]. It
assumes that the maintenance of TEs in the population is explained
by an equilibrium between (1) the increase in copy number
through a constant transposition rate and (2) their removal driven
by natural selection, through the combined effect of excision and
purifying selection acting against the deleterious effects of inserted
TEs [159, 160]. This model predicts that most TEs should be
segregating at low TE frequency in D. melanogaster populations
(see [161] for detailed review). The burst-transposition model [162]
relaxes the assumption of constant transposition rate over time in
proposing periods of intense TE transposition (bursts) to explain
TE dynamics. According to this model, recent insertions have not
yet reached an equilibrium between their transposition rate and
negative selection. TEs may thus be at low frequency even under a
strictly neutral model. Here, a positive correlation between inser-
tions age and their frequency is expected (recently active TEs
should be at low population frequency while long-time inactive
TEs could reach fixation).

D. melanogaster has been used as a model species for the study
of TE population dynamics for more than 25 years [163] and
recent whole-genome population data fuelled this area of research
allowing for testing of previous hypotheses. A bulk of new pro-
grams was recently developed to estimate TE insertion frequency in
a population using NGS datasets (see [164] for review). On top of
the 5434 annotated TEs described in the reference genome,
10,208 and 17,639 insertions were discovered in European [165]
and North American DGRP [166] populations, respectively. How-
ever, these numbers needs to be considered cautiously as the

Population Genomics of Fruit Flies 371



performance of methods detecting polymorphic TE insertions
based on short read data depends on many variables, such as the
sequencing coverage, the element family, the age of insertion, the
size of the copy, the genomic location (see a benchmark in [167]).
The large predominance of low frequency insertions along with the
scarcity of insertions in exonic regions observed in both datasets
supports the transposition-selection balance model. In contrast,
Kofler, Betancourt and Schlötterer provided evidence that half of
the TE families have had transposition rates that vary with time
[165], giving support to the burst-transposition model. However,
they also found an excess of rare variants in young TE insertions
compared to neutral expectations which suggests the action of
purifying selection [166]. Overall, population genomics analyses
of TEs provide empirical support for both hypotheses and indicate
that they are not mutually exclusive. This is in agreement with
previous in situ analyses suggesting that models of evolution
could vary among elements and populations [168]. Although
dynamics of some TE families can be explained by a neutral
model with transposition rates varying over time, purifying selec-
tion is necessary to fully explain the patterns of population distri-
bution of TEs [161, 169].

4 Selection

D. melanogaster has been a model species for many studies aiming
at describing the genetic basis of adaptation. Comparisons between
theoretical models of positive and negative selection with empirical
data have started in the early 1980s, when PCR coupled with
Sanger sequencing allowed to directly measure natural variation.
The positive correlation between local rates of recombination and
genetic diversity [19] was among the most important observations
made by these early studies and has been interpreted as evidence for
the widespread effect of selection along the genome. This postulate
challenged the paradigm of the Nearly Neutral extension of the
Neutral Theory [170, 171], which assumes that the large majority
of polymorphic and divergent sites are neutral or slightly deleteri-
ous. Since then, the search for genes underlying adaptation as well
as the quantification of the genome-wide impact of selection has
stimulated the development of statistical methods aiming at detect-
ing past adaptive processes from DNA polymorphism data. In
1991, McDonald and Kreitman developed their reference test of
selection, and detected adaptation on the Adh locus in Drosophila
[16]. Based on theMcDonald and Kreitman test ratios, the fraction
α of nonsynonymous substitutions driven to fixation by position
selection can be estimated by 1 � (DsPn)/(DnPs), with Ds and Dn

the number of synonymous and nonsynonymous substitutions,
respectively and Ps and Pn the number of synonymous and
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nonsynonymous polymorphisms, respectively ([172] and see
Chapter 6 for more details). Numerous studies have provided
evidence for pervasive molecular adaptation in D. melanogaster,
suggesting that approximately 50% of the amino acid changing
substitutions (α ¼ 0.5), and similarly large proportions of noncod-
ing substitutions, were adaptive [173–178].

4.1 Hitchhiking

Effects

The first mathematical formulation of the effect of a positively
selected allele on intra-specific genetic diversity was proposed by
Maynard Smith and Haigh in 1974 and coined the “hitchhiking
model” [179]. Selection reduces diversity not only at selected sites,
but also at linked neutral sites, and the number of variants linked
together around a single selected target is inversely proportional to
the recombination rate. The hitchhiking model summarizes the
relation between the strength of selection on a single adaptive
mutant allele, the local recombination rate, and the distribution
of surrounding neutral alleles across sites and samples. Under such
a linkage model, when a beneficial allele establishes itself in the
population, the high rate at which this establishment occurs creates
an irregularity in the distribution of neutral alleles around the
selected allele. This characteristic signature resulting from positive
selection has been coined “selective sweep” (hard sweep), a termi-
nology used to describe both the adaptive process and the resulting
signal in genetic data. This model served as basis for the develop-
ment of statistical tools designed to capture the signal of a selective
sweep in the presence of different confounding factors ([180, 181]
and see Chapter 5 for more discussion on sweep detection).
D. melanogaster has been among the first organisms for which
this approach has been used to map selective sweeps [72, 182,
183], eventually yielding to the identification of several candidate
genes/regions for adaptations (Table 1) that allowed
D. melanogaster to extend its geographic range to very heteroge-
neous environments and to recent anthropogenic changes
[184, 200, 205]. However, the particular demographic history of
the species, and especially the severe founding events followed by
population expansion should be considered as a confounding fac-
tor, strongly increasing the rate of false positives and thus reducing
the performance of sweep detection methods in this specific
biological system [206–209]. These insights into the confounding
effects of adaptive and neutral processes motivated two lines of
research: (a) characterizing neutral models accounting for the
major demographic events having affected the genome-wide distri-
bution of neutral alleles (see paragraph above) and (b) more general
formulation of the adaptive process initially described by [179].

Soft sweep theory extended the Maynard Smith’s and Haigh’s
hitchhiking model, by including the possibility of (1) recurrent
mutations leading to beneficial alleles and (2) segregating neutral
alleles becoming positively selected (i.e., selection from standing
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Table 1
Documented selective sweeps in African and non-African populations of D. melanogaster

Gene(s) involved in
the sweep

Sweep
size (kb) Populations

Biological
function Reference

Acetylcholineesterase
(Ace)

�1.5 Non-African
populations

Insecticide
resistance

Karasov et al. [184]; Messer
and Petrov [185]; Kapun
et al. [43]

Argonaute-
2 (AGO2)

>50 D. melanogaster,
D. simulans
and D. yakuba

Resistance to viral
infection

Obbard et al. [186]

brinker gene (brk) 83–124 European
population

Cold tolerance Glinka et al. [187]; Wilches
et al. [188]

CG18 508 and
Fcp3C

14 Non-African
populations

DuMont and Aquadro
[189]

CHKov1 ~25 Non-African
populations

Resistance to viral
infection

Magwire et al. [190]

Cyp6g1 Non-African
populations

Insecticide
resistance

Schmidt et al. [191]; Battlay
et al. [192, 193]; Kapun
et al. [43]

Diminutive (dm) 25 African and
non-African
populations

Positive regulator
of body size

Jensen et al. [194]

Fezzik (fiz) 1.8 European
population

Growth Saminadin-Peter et al. [195]
Glaser-Schmitt and
Parsch [196]

HDAC6 2.7 African population Stress surveillance Svetec et al. [197]

Notch 14 Non-African
populations

Development DuMont and Aquadro
[189]

phantom (phm) 12–20 European
population

Cytochrome
P450 enzyme

Orengo and Aguade [198]

polyhomeotic-
proximal (ph-p)

30 European
population

Reduced
temperature-
induced
plasticity

Beisswanger and Stephan
[199]; Voigt et al. [200]

roughest (rst) 0.361 African population Apoptosis Pool et al. [201]

Suppressor of
Hairless (Su[H])

1.2 African population Growth; Notch
signalling

Depaulis et al. [202]

wings apart-like
(wapl)

�60 European
populations

Chromatin
organization

Beisswanger et al. [203]

>50 candidates North-American
population

Garud et al. [204]
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variation; reviewed in [210]). Both cases predict an association of
the beneficial alleles with several background haplotypes (versus a
single one in the hard sweepmodel). Garud et al. [204] scanned the
DGRP dataset to capture signature of hard and soft sweeps, and
found a significantly higher number of candidate genomic regions
than expected under the neutral admixture model previously cali-
brated for this population [67]. Furthermore, they found that
among their top 50 candidates most cases were better explained
by soft than hard sweeps, suggesting that standing genetic variation
and recurrence of beneficial alleles play an important role in real-life
adaptive processes in D. melanogaster. However, the statistical sig-
nificance of their results is highly dependent on an appropriate
calibration of neutral demographic models, suggesting that the
performance of soft-sweep detection methods still needs to be
tested under a large range of demographic models. In the mean-
time, the results of genome-wide soft-sweep detection studies
should be evaluated carefully when used to support claims about
adaptive processes [211].

4.2 Recurrent

Hitchhiking

and Background

Selection

Beyond the study of single instances of selective sweeps,
D. melanogaster and D. simulans have also been used to investigate
the genome-wide effect of recurring sweeps on genetic variation.
The relevant model is the recurrent hitchhiking model [212],
which describes genome-wide patterns of variation as a function
of the occurrence rate of selective sweeps and the distribution of
fitness effects of advantageous mutations. Several studies have
developed model-based inference approaches to estimate these
two parameters using polymorphism and divergence data, reviewed
in [213, 214]. All consistent with a strong impact of selection on
the pattern of diversity in this species, a wide range of the strength
of selection on beneficial mutations (Nes, where Ne is the effective
population size and s the selection coefficient) was estimated, rang-
ing from 1–10 [215, 216], ~12 [217], ~40 [218], 350–3500
[72, 172, 219] to ~10,000 [220]. These studies showed that the
rate and strength of positive selection was large enough such that a
significant amount of neutral alleles in the genome cannot be seen
as evolving independently from adaptive sweeping alleles (the
dependencies being caused by genetic linkage between beneficial
and neutral alleles). Essentially, the disparate estimates reflect varia-
tion in the calibration of the different models, in particular accord-
ing to (1) the type of selection assumed, (2) the modeled
relationship between diversity estimates and selection (strength
and frequency) through the action of recombination. These results
also revealed the difficulty of telling apart whether genome-wide
selection is characterized by a small number of large effect or a large
number of small effect adaptive alleles.

The relative importance of positive selection in Drosophila has
been challenged, however, by studies describing the effect of strictly
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deleterious alleles on linked neutral variants [73, 221, 222]. This
hitchhiking effect caused by selection against recurrent deleterious
mutations called background selection has been shown to be a
valid alternative explanation for low variability in genome regions
with low recombination rates [73, 223]. Importantly, Comeron
generated a map describing the strength of background selection
along the genome as a function of the local recombination and
deleterious mutation rate [224]. This study showed that a large
proportion (70%) of the observed variation in the level of diversity
across autosomes can be explained by background selection alone
and therefore called for the inclusion of background selection in
further population genomics analyses. Elyashiv et al. recently pro-
posed a method to jointly estimate the parameters of distinct modes
of linked selection, accounting for both positive (selective sweeps)
and negative background selection [225]. Applied on
D. melanogaster, they showed that negative selection at linked
sites has had an even more drastic effect on diversity patterns in
D. melanogaster than previously appreciated based on classical
selective sweeps models (1.6–2.5-fold). Their results further sug-
gest that 4% of substitutions between D. melanogaster and
D. simulans have experienced strong positive selection (s � 10–
3.5) and that 35% to 45% of substitutions have been weakly selected
(s between 10–5.5 and 10�6).

4.3 Selection

on Noncoding DNA

Since the 2000s, whole-genome comparative analyses accumulated
evidence that only a small portion of conserved sequences across
species (i.e., potentially functional) was composed of protein-
coding genes [226, 227]. In the meantime, genomic surveys iden-
tified noncoding genomic sequences showing exceptionally high
levels of similarity across species, which were termed conserved
noncoding elements or CNEs (reviewed in [228]). In Drosophila,
CNEs are estimated to cover ~30–40% of the genome
[226, 229]. The high levels of evolutionary conservation observed
in these regions are postulated to be the result of functional con-
straints since many CNEs partially overlap with cis-regulatory ele-
ments [230] and functional noncoding RNAs [231, 232]. In
Drosophila, several classes of noncoding DNA evolve considerably
slower than synonymous sites yet show an excess of between-
species divergence relative to polymorphism when compared with
synonymous sites [175]. While the former observation indicates
selective constraints, the latter is a signature of adaptive evolution,
which resembles patterns of protein evolution in Drosophila
[173, 174]. To quantify the intensity and the relative importance
of selection in shaping the evolution of noncoding DNA, several
studies applied extensions of the McDonald–Kreitman approach,
combining polymorphism and divergence analyses. When analysing
noncoding DNA in a population from Zimbabwe, Andolfatto esti-
mated that ~20% of nucleotide divergence in introns and intergenic
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DNA and ~60% in UTRs were driven to fixation by positive selec-
tion [175]. Using a hierarchical Bayesian framework, he estimated
that significant positive selection acted on noncoding sequences,
especially in UTRs [175]. This was recently supported by a whole-
genome survey of 50 European populations that showed that
UTRs and noncoding RNAs are the noncoding genomic regions
most subjected to adaptive selection, with >40% of divergence
being driven by positive selection [229]. Specifically focusing on
CNEs of the X chromosome, Casillas et al. [233] observed a large
excess of low-frequency derived SNP alleles within CNE relative to
non-CNE regions in an African and two European populations.
While low levels of purifying and positive selection also act outside
of CNEs, Casillas et al. [233] estimated that 85% of the CNEs were
functional and evolved under moderately strong purifying selection
(Nes ~10–100). Altogether, these studies strongly suggest that
CNEs are not solely neutral genomic regions with extremely low
mutation rates known as mutation “cold spots” [234] but shaped
by both purifying selection and adaptive evolution in Drosophila.
Moreover, these findings support the important role of noncoding
regulatory changes in evolution.

4.4 Selection

on Synonymous Codon

Usage

The McDonald and Kreitman test and its extensions are built
around the hypothesis that synonymous or fourfold degenerate
sites (see Note 4) mostly evolve neutrally, while nonsynonymous
sites are under strong purifying or positive selection. However,
both synonymous and fourfold degenerate sites might be subject
to selection on synonymous codon usage (see original reference for
Drosophila by [235], and more recent review by [236]). Compari-
son of polymorphism and divergence patterns suggested that both
strong (4Nes � 1) and weak (4Nes � 1) selection applies to synon-
ymous sites inD. melanogaster [237, 238]. In this species, the level
of codon bias is positively correlated to the levels of expression
[239], but negatively correlated to the levels of divergence
[240, 241]. Both findings suggest selection on codon usage bias.
As in most Drosophila species, all preferred codons are GC-ending
[239, 242]; selection on codon bias is therefore expected to
increase GC content at synonymous sites. Several attempts to
detect selection on codon usage bias in D. melanogaster have
come to conflicting conclusions. Some studies detected evidence
for selection favoring GC-ending codons [119, 243], although the
intensity of selection may be weaker in D. melanogaster compared
to other Drosophila species [244]. Other studies did not find sup-
port for such on-going selection [245, 246], but rather revealed an
excess of substitutions toward AT-ending codons. This may either
reflect a reduction in selection efficacy (4Nes) or a shift in the
mutational bias in D. melanogaster lineage [247]. The population
genetics of codon usage bias can however be affected by confound-
ing, nonadaptive processes such as GC-biased gene conversion
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([113] but see Subheading 3.3). In a recent study, Jackson et al.
[248] modeled base composition evolution, and found evidence
for selection on fourfold degenerate sites along both
D. melanogaster and D. simulans lineages over a substantial period.
They showed that while selection intensity on codon usage was
rather stable in D. simulans in the recent past, it was declining in
D. melanogaster. In conclusion, the observed AT-biased substitu-
tion pattern could not only result from a mutational bias, but likely
partially reflects an ancestral reduction in selection intensity.

4.5 Adaptive

Chromosomal

Inversions

There is ample evidence that inversions play a pivotal role during
adaptive processes and various hypotheses have been developed to
explain their evolutionary impact [135–137, 249]: (1) According
to the “coadaptation” model, inversions have higher fitness and
spread because they suppress maladaptive crossing-over which
would unlink coadapted alleles at epistatically interacting loci with
high marginal fitness [9, 250]. Genomic analyses in
D. pseudoobscura support this model and provide evidence that
loci in tight linkage with an inversion show epistatic interactions
[251]. (2) Under the “local adaptation model,” an inversion bears
higher fitness because it captures and protects locally adapted loci
from recombination with maladaptive migrant haplotypes as initi-
ally proposed by [252] and recently revised by [253]. A remarkable
conclusion of this model is that the selective advantage of an
inversion is determined only by the migration rate of maladapted
haplotypes and the amount of linkage among the locally adapted
loci. (3) The frequent occurrence of fixed inversions in different
species of the genus Drosophila [254–257] and in other species
groups [258, 259] suggests that many divergent inversions evolved
by underdominance and are important components of the specia-
tion process by suppressing gene flow among young sym- or para-
patric species [260]. Similarly, inversions play a key role in the
evolution of sex chromosomes by keeping together alleles in sex
determining factors and sexually antagonistic genes [261]. (4) Con-
versely, inversions can also be maintained due to overdominance or
other types of balancing selection. In line with this model, many
inversions, particularly in Drosophila, are commonly found to seg-
regate at intermediate frequencies in natural and experimental
populations [262].

4.6 Adaptive

Insertions

of Transposons

Like other type of mutations, TE insertions are expected to be
mostly deleterious or evolutionary neutral. However, some trans-
posable elements could be beneficial and positively selected. There
are several possible mechanisms by which a TE can be advanta-
geous; either by directly affecting the gene function of individual
genes, or by modifying regulatory elements [263, 264]. Due to
recent technical advances in sequencing technology (NGS) and due
to the rapidly growing number of whole-genome data, the ability to
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detect selected TE insertions has considerably increased in the past
few years. Different methods have been developed to infer selection
acting on TE insertions. Villanueva-Cañas et al. [265] provide a
detailed overview over the main approaches and their specificities:
(1) DNA sequence conservation analyses can be used to detect
past events of domestication of TEs as regulatory elements, where
TE insertions are conserved among closely related species due to
purifying selection (see for example [229]). (2) Methods developed
to detect selection on linked polymorphisms from SNPs (see
Subheading 4.1 and Chapter 5 for more discussion) can also be
applied to identify positively selected TEs. Based on either a bias in
frequency spectra or haplotype structure, over 35 putatively adap-
tive TEs were identified in genome-wide studies inD. melanogaster
to date [161, 165, 266, 267]. (3) A third method is built around
environmental association analyses that include genome scans for
selection performed in parallel in populations from different envir-
onments to detect specific adaptation driven by environmental
conditions. Using this approach, González et al. [268] discovered
several recent TE insertions in D. melanogaster that are putatively
involved in local adaptation. These TEs exhibit low population
frequencies in ancestral population (Africa) but are common in
derived populations (North America and Australia). (4) Using a
coalescent framework approach, Blumenstiel et al. [169] identified
seven additional putative adaptive insertions exhibiting higher pop-
ulation frequency than expected according to their estimated allele
age. (5) Finally, selection on TE insertions should be validated at
the phenotypic level using functional assays to identify the molec-
ular and fitness effects. One well-documented example is the inser-
tion Bari-Jheh that was found to affect the level of expression of its
nearby genes under oxidative stress conditions and to increase
resistance to this stress [269, 270].

Beside the impact of single TE insertions, there is growing
evidence for a more global effect of TEs on molecular functions.
Especially, in Drosophila, TEs seem to play a role in a diversity of
cellular processes [161], such as the establishment of dosage com-
pensation [271], heterochromatin assembly [272] and brain geno-
mic heterogeneity [273].

4.7 Faster-X

Evolution

According to a theory proposed by Charlesworth et al. [274], the
rates of evolution of X-linked loci are expected to be faster than
autosomal ones if mutations are partially recessive (0 < h < 1/2,
with h the coefficient of dominance) and expressed in both sexes or
males only. In heterogametic males (XY), X-linked mutations are
hemizygous and therefore directly exposed to selection, whereas
new recessive autosomal mutations are masked from expression in
heterozygotes individuals. Moreover, the effective recombination
rate is ~1.8-fold greater on the X compared to autosomes [213],
which reduces Hill–Robertson interference and increases the
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efficiency of selection. The increased selection in hemizygous males
together with the higher efficiency of selection due to the increased
recombination may act synergistically to account for the “faster-X
evolution,” which is generally supported by genomic data collected
in Drosophila populations (reviewed in [275]). Levels of polymor-
phism are similar on X-linked loci to autosomal ones in African
populations, but lower in derived populations [30, 50], which
might be a consequence of selective sweeps in response to the
adaptation of new environments [276]. However, recombination
seems to play a secondary role in determining pattern of diversity
along the X-chromosome. Contrary to autosomes, the X-chromo-
some exhibits global nucleotide diversity only weakly correlated
with recombination rate (Fig. 2), and a nonsynonymous diversity
completely independent [277].

In contrast with polymorphism, divergence among Drosophila
relatives is greater for the X than for autosomes (reviewed in
[275]). Higher efficiency of selection on X is supported by the
estimated higher percentage of sites undergoing both strongly
deleterious and adaptive evolution than autosomes, and a lower
level of weak negative selection in D. melanogaster [45, 46,
277]. Codon usage bias in Drosophila is also higher for X-linked
genes than for autosomal ones, possibly due to the higher effective
recombination rate and their resulting reduced susceptibility to
Hill–Robertson effects [119]. In the end, faster-X evolution also
implies that genes for reproductive isolation have a higher proba-
bility of being X-linked, what is generally true [161].
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Fig. 2 Correlation between nucleotide diversity and recombination. Nucleotide
diversity (π) calculated in 10 kb nonoverlapping windows was estimated for 48
European populations (DrosEU data, [43] and compared to recombination rate (r)
obtained from [95] for the four autosomal arms (2L, 2R, 3L, and 3R) and the
X chromosome. We therefore averaged π in equally sized bins according to
discrete log-transformed values of r observed in the corresponding genomic
regions. The shaded polygons surrounding average values (central lines) for
each of the 48 populations show the 95% confidence intervals
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5 Perspectives: Temporal and Geographical Clines

Organisms with broad geographic distributions, such as various
species of the genus Drosophila, are commonly found along envi-
ronmental gradients. Such transects have long been in the focus of
evolutionary geneticists, as they provide natural test beds to inves-
tigate the evolutionary underpinnings of local adaptation
[278]. Studying spatially or temporally changing genotypes and
phenotypes, which are commonly referred to as “clines” [279],
has a long history in D. melanogaster [280–282]. While there is
growing evidence for longitudinal clines in Africa [70] and in
Europe [43], most data have been collected from latitudinal gra-
dients along the North American and Australian east coasts. A large
body of literature documents steep and persistent clines in many
fitness-related phenotypes, which are often recapitulated on multi-
ple continents. These include, for example, clines in body-, wing-
and organ-size [283–287], lifetime fecundity and lifespan [288] as
well as heat and cold resistance [289–291]. Similarly, various
genetic polymorphisms such as microsatellites [292], SNPs [293],
TEs [266] and inversions [141–143] have been found to vary
clinally. Besides these well-defined spatial clines there is growing
evidence for rapid adaptation on seasonal timescales leading to
temporal clines. These are characterized by predictable annual fluc-
tuations in allele frequencies [20] and variation in life history traits
[21] and innate immunity [294].

Ongoing advances in next-generation sequencing technology
prompted the development of analytical methods to identify puta-
tive targets of local and clinal adaptation (reviewed in [295]) and
only recently allowed to extend the hunt for clinal genetic variation
from single loci to genome-wide scales. A rapidly increasing num-
ber of studies in D. melanogaster have started to comprehensively
investigate clinal genomic patterns—mostly by comparing the end-
points of latitudinal gradients from the Australian and North Amer-
ican east coasts [58–60, 293]. Many of these pioneering studies
identified common patterns in the distribution of genome-wide
clinal variation which provide insights, but also raise new questions
about the evolutionary mechanisms involved in adaptation:
(1) Loci with extensive clinal differentiation are not homo-
geneously distributed along the genome, but strongly clustered
within large inversions [58, 60, 141], which suggests that inver-
sions play an important role during local adaptation—potentially by
keeping together coadapted loci associated with polygenic trait
variation [252, 253]. However, the identity of these loci and the
affected traits remain largely unknown so far. (2) Many clinal poly-
morphisms, such as the chromosomal inversion In(3R)Payne and
variants of the alcohol dehydrogenase (Adh) locus, are paralleled on
multiple continents [33, 58, 59, 293] and change frequencies in a

Population Genomics of Fruit Flies 381



predictable fashion. While parallel adaptive evolution due to spa-
tially varying selection along analogous environmental gradients on
different continents may shape many clinal patterns, other non-
adaptive evolutionary forces could have similar effects. For exam-
ple, a handful of studies found independent evidence for varying
levels of admixture with African genetic variation both in North
America [54, 67, 80] and Australia [68]. These findings highlight
that clines, which are often considered to be the prime outcome of
spatially or temporally varying selection, are potentially con-
founded with neutral evolutionary processes such as spatially
restricted gene flow or admixture [296]. At last, (3) all aforemen-
tioned studies failed to identify large numbers of clinal loci with
large or even fixed allele differences at the opposite endpoints of the
latitudinal gradients. For example, no more than 0.1% of all SNPs
exhibited allele frequency differences >0.5 between Florida and
Maine, while not a single SNP exceed an allele frequency difference
of 0.92 in the analyses of [58]. These findings are consistent with
observations from otherDrosophila species, which also found mod-
erate and gradual clinal allele frequency changes [140, 297, 298],
but in stark contrast to common model expectations for clinal
evolution [299]. Together, these first analyses of clinal genomic
data clearly show that it still remains challenging to disentangle the
evolutionary contribution of selection and demography to clinal
variation in natural populations.

Efforts of two large population genomic consortia are currently
underway to densely sample natural populations through time and
space both in North America [57] and Europe [43]. These com-
prehensive datasets will markedly extend earlier efforts that focused
mostly on the comparison of clinal endpoints. Particularly the
analyses of previously largely ignored European D. melanogaster
populations will allow to make clear predictions about the adaptive
process in derived populations from North America and Australia.

6 Notes

1. The mathematical framework that integrated Darwin’s theory
of evolution and the mechanisms of heredity discovered by
Mendel.

2. Defined as genome scale analyses of polymorphism including
polymorphism/divergence comparisons, but not analyses
strictly based on divergence.

3. Ectopic recombination: recombination between two similar
nonhomologous sequences, that is, two TE copies of the
same family inserted at different genomic locations. Such
DNA exchange between nonorthologous regions leads to
chromosomal rearrangement.
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4. Fourfold degenerate sites consist in sites for which all four
possible nucleotides at this position would encode for the
same amino acid, representing a subset of all synonymous sites.
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Multiple and diverse structural changes affect
the breakpoint regions of polymorphic inver-
sions across the Drosophila genus. Sci Rep
6:36248. https://doi.org/10.1038/
srep36248

125. Wargent JM, Hartmann-Goldstein IJ (1974)
Phenotypic observations on modification of
position-effect variegation in Drosophila mel-
anogaster. Heredity (Edinb) 33:317–326.
https://doi.org/10.1038/hdy.1974.98

126. Salm MPA, Horswell SD, Hutchison CE et al
(2012) The origin, global distribution, and
functional impact of the human 8p23 inver-
sion polymorphism. Genome Res
22:1144–1153. https://doi.org/10.1101/
gr.126037.111

127. Said I, Byrne A, Serrano Vet al (2018) Linked
genetic variation and not genome structure
causes widespread differential expression
associated with chromosomal inversions.
Proc Natl Acad Sci U S A 115:5492–5497.
https://doi.org/10.1073/pnas.
1721275115

128. Lavington E, Kern AD (2017) The effect of
common inversion polymorphisms In(2L)
t and In(3R)Mo on patterns of transcriptional
variation in Drosophila melanogaster. G3
(Bethesda) 7:3659–3668. https://doi.org/
10.1534/g3.117.1133

129. Dobzhansky T, Sturtevant AH (1938) Inver-
sions in the chromosomes of Drosophila
Pseudoobscura. Genetics 23:28–64

130. Dobzhansky T, Epling C (1948) The suppres-
sion of crossing over in inversion heterozy-
gotes of Drosophila Pseudoobscura. Proc

388 Annabelle Haudry et al.

https://doi.org/10.1016/j.tig.2014.05.002
https://doi.org/10.1371/journal.pgen.1005189
https://doi.org/10.1371/journal.pgen.1005189
https://doi.org/10.1017/S0016672307009032
https://doi.org/10.1017/S0016672307009032
https://doi.org/10.3389/fgene.2017.00016
https://doi.org/10.3389/fgene.2017.00016
https://doi.org/10.1093/molbev/msy015
https://doi.org/10.1093/molbev/msy015
https://doi.org/10.1534/genetics.104.032250
https://doi.org/10.1534/genetics.104.032250
https://doi.org/10.1007/s00239-008-9150-0
https://doi.org/10.1007/s00239-008-9150-0
https://doi.org/10.1093/molbev/mst220
https://doi.org/10.1093/molbev/mst220
https://doi.org/10.1098/rsbl.2008.0376
https://doi.org/10.1093/molbev/mss222
https://doi.org/10.1093/molbev/mss222
https://doi.org/10.1073/pnas.3.9.555
https://doi.org/10.1073/pnas.7.8.235
https://doi.org/10.1073/pnas.7.8.235
https://doi.org/10.1111/j.1399-0004.1980.tb00121.x
https://doi.org/10.1111/j.1399-0004.1980.tb00121.x
https://doi.org/10.1038/srep36248
https://doi.org/10.1038/srep36248
https://doi.org/10.1038/hdy.1974.98
https://doi.org/10.1101/gr.126037.111
https://doi.org/10.1101/gr.126037.111
https://doi.org/10.1073/pnas.1721275115
https://doi.org/10.1073/pnas.1721275115
https://doi.org/10.1534/g3.117.1133
https://doi.org/10.1534/g3.117.1133


Natl Acad Sci U S A 34:137–141. https://
doi.org/10.1073/pnas.34.4.137

131. Garcia C, Valente VLS (2018) Drosophila
chromosomal polymorphism: from popula-
tion aspects to origin mechanisms of inver-
sions. Intech

132. Puig M, Casillas S, Villatoro S, Cáceres M
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Chapter 16

Genomic Access to the Diversity of Fishes

Arne W. Nolte

Abstract

The number of fishes exceeds that of all other vertebrates both in terms of species numbers and in their
morphological and phylogenetic diversity. They are an ecologically and economically important group and
play an essential role as a resource for humans. This makes the genomic exploration of fishes an important
area of research, both from an applied and a basic research perspective. Fish genomes can vary greatly in
complexity, which is partially due to differences in size and content of repetitive DNA, a history of genome
duplication events and because fishes may be polyploid, all of which complicate the assembly and analysis of
genome sequences. However, the advent of modern sequencing techniques now facilitates access to
genomic data that permit genome-wide exploration of genetic information even for previously unexplored
species. The development of genomic resources for fishes is spearheaded by model organisms that have been
subject to genetic analysis and genome sequencing projects for a long time. These offer a great potential for
the exploration of new species through the transfer of genomic information in comparative analyses. A
growing number of genome sequencing projects and the increasing availability of tools to assemble and
access genomic information now move boundaries between model and nonmodel species and promises
progress in many interesting but unexplored species that remain to be studied.

Key words Teleostei, Genomic makeup, Genome size, Ploidy, Nonmodel organisms

1 Diversity of Fishes

Fishes are the most diverse group of vertebrates on earth [1]. As of
2017, a total of 33,554 species of fishes have been described [2],
and many more remain to be discovered. They have colonized
marine and freshwater habitats alike and display tremendous anato-
mical and ecological diversity. The term fishes (Pisces) includes the
most basal jawless fishes (lampreys and hagfishes) that live as para-
sites or scavengers and the lobe-finned fishes (lungfish and coela-
canths) that gave rise to the tetrapods. The exclusion of the latter
renders fishes as a whole a paraphyletic group. The ray-finned fishes
comprise the basal bichirs (Polypteridae) and sturgeons (Ascipen-
deridae) as well as the holostei [Bowfins (Amiidae) and gars (Lepi-
sosteidae)]. The most speciose group by far is the Teleosts that have
undergone a spectacular diversification since the Cretaceous period
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[3]. They are prevalent in many aquatic ecosystems and are of
manifold importance to man. Fishes are found in the deepest
ocean trenches and up to 5200 m elevation in the Himalayas
[2]. They have colonized rivers, lakes, and oceans but also extreme
habitats like caves where they live in constant darkness, the Arctic,
or desert springs with high temperature and salt conditions. Some
killifishes even survive dry periods by laying drought-resistant eggs,
and these fishes are also among the most short-lived ones [4]. The
oldest fishes to date may be Greenland sharks that have been
estimated to be close to 400 years old [5]. The south-east Asian
Paedocypris with a standard length of 7.9 mm possibly represents
the world’s smallest vertebrate [6] while the largest nonmammalian
vertebrate is given by the whale shark that may reach a length of up
to 13 m. The diversity of reproductive modes in fishes includes egg
laying and oviposition or the birth of fully developed young. Egg
laying fishes have evolved numerous modes of brood care including
mouthbrooding, substrate brooding, nest building, pelvic fin
brooding, or ventral pouch brooding whereby the parental care
may be performed through the father, the mother or both parents.
Eggs of fishes may be released into the pelagial zone in mass
spawning events and left to themselves, deposited into caves, mus-
sels, gravel rudds or nests out of plant matter or air bubbles [7]. All
fishes have a direct development, but may go through extended and
distinct larval periods including the blind and worm-like ammo-
coetes larvae of lampreys or the marine leptocephalus larvae of eels
and tarpon as opposed to the fully developed offspring of fishes that
give birth. The feeding types of fishes are equally diverse. While
some feed on microscopic algae (Silver carp, Hypophthalmichthys
molitrix), scrape algae of surfaces (Nase, Chondrostoma nasus) or
feed on higher plants (grass carp, Ctenoparyngodon idella) the
majority of fishes feed on animals. Again, there is a range from
plankton feeders (herring, Clupea harengus), to piscivorous fishes
(pike, Esox lucius) and top predators like sharks that may prey upon
marine mammals. There a numerous highly specialized feeding
strategies in which fishes specialize on detritus, decaying wood,
snails, or mussels. They eat scales, skin, eyes or parasites of other
fishes or specialize on crabs, shrimp, insects, coral, fruit, sponges,
and many other food items that are taken on occasion. The exploi-
tation of these different food sources is typically facilitated by
evolutionary accommodation of the feeding apparatus, which con-
stitutes a key element that has determined the impressive adaptive
radiation of fishes. Another factor that has contributed to the
diversity of fishes is the many means by which they use their body
or fins to move. Fishes can swim, whereby different species use fins
very differently to propel themselves and for fine maneuvering.
Some are constant swimmers whereas others are sit-and-wait pre-
dators or almost sessile in very confined spaces where they tend to
camouflage. Some eel-shaped species, puffer fish or flatfishes are
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able to bury themselves into different substrates. Different fishes
can use their modified mouth or fins to cling to hard substrates,
enabling them to persist in strong currents or to climb steep water-
falls. Finally, mudskippers have even colonized the intertidal zone
above the water level where they can move rapidly using body
movements and modified fins. Fishes use the same senses to acquire
signals from their environment like humans, including vision with
highly developed eyes that enable them to see color, and sometimes
ultraviolet or polarized light. They can hear sounds with the help of
the Weberian apparatus and they have a sensory system equipped to
feel pain. The smell or taste of fishes is well developed within the
nose, but also through taste buds that are distributed across their
body. Beyond these, fishes can detect currents or waves underwater
through their lateral line and head canal system, and some are able
to detect electrical fields of prey items or the earth’s magnetic field
for orientation. Although fishes are mostly harmless to humans,
there are species that are highly toxic or venomous, and that are of
medical importance. Tissues of the Japanese pufferfish (Takifugu
sp.) contain tetrodotoxin that can kill humans if consumed and
tropical marine predators like moray eels or barracuda may accu-
mulate toxins that originate from dinoflagellate blooms. Finally,
there are also venomous species, such as the stonefish (Synanceia
verrucosa) or the related lionfish (Pterois volitans) that possess
venom and inflict painful and life-threatening injuries when
touched or unintentionally stepped on.

The diversity of fishes has permitted them to exploit niches in
aquatic ecosystems in many specialized ways and to become domi-
nant components in food webs. Fishes represent top predators that
convert energy from lower trophic levels to biomass that is har-
vested by humans and other top predators. For this reason, fishes
have been naturalized across the globe in hope to create prolific
food resources for human consumption, including the release of
carp, trout, salmon, Tilapia, Nile perch, eel, catfish, and many
other species outside their native range. However, it is now clear
that considerable detrimental side effects on local ecosystems are
common whenever such introductions were successful. Humans
also employ fishes in attempts to manipulate ecosystems as
biological control agents, for example, the silver carp (Hypophthal-
michthys) or grass carp (Ctenopharyngodon) to control algae, or
aquatic weeds or mosquito fish (Gambusia) to control malaria
vectors, again often accompanied by undesirable side effects.

Humans have long kept fishes as ornamental pets, and the
history of domestication and aquaculture dates back a long time.
Goldfish were already bred in China in 1000 AD [8]. Nowadays,
they often are the first pets that children are acquainted with, and
seed a positive image fishes have for humans. Additional species
such as Koi Carp (Cyprinus carpio), Siamese fighting fish (Betta
splendens), platyfish (Xiphophorus maculatus), zebrafish (Danio
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rerio), flowerhorn chichlids (Amphilophus hybrids), and many wild
ornamental species are kept as pets. Other marine and freshwater
including tuna, flatfishes, sea bass, seabream or freshwater fishes like
trout, salmon, carp, Tilapia, catfishes, and sturgeon are targets of
intensive aquaculture to meet the growing demands for food.
Likewise, wild populations of fishes are managed and exploited as
the most important food resource from aquatic environments.
Together, aquaculture and fisheries provide food, income, and
livelihoods of hundreds of millions of people and the world per
capita fish supply reached a record high of 20 kg in 2014 [9]. Given
the growing world population and the limited availability of space
for agriculture, fish will play a central role in providing future
generations with adequate nutrition. They not only play a direct
role but are used to produce fish oil as a food complement, fish meal
as food for other livestock and manure to fertilize fields. Accord-
ingly, whole industries are built around fisheries, fish farming, and
fish products. Fishes play an important socioeconomic role in rec-
reational angling, and some can serve as flagship species to trans-
port conservation issues into a broader public.

Due to their economic value and because of the essential role
fishes play in ecosystems, they are subject to management, conser-
vation efforts, and scientific studies. Fishes are targets of applied
research that aims at improving harvests, but also out of broader
interest in fish biology or because fishes can serve as model verte-
brates in studies that aim at obtaining results of direct relevance to
humans in fundamental medical research or ecotoxicology. Fishes
are prime models in evolutionary studies. It is this prevalence of
fishes and the diverse ways in which they are exploited by humans
that makes them targets for genomic exploration.

2 The Genomic Makeup of Fishes

Compared to other vertebrates, fishes seem to have more plastic
and variable genomes, which is associated with the fact that they
display frequent polyploidization, have high speciation rates and
carry a diversity of repetitive genetic elements [10, 11]. The major-
ity of fishes that are intensively studied have relatively compact
genomes, but fish genomes may vary in size between 0.35 and
133 Gb [12]. Among these, the teleosts have the most compact
genomes ranging from 0.35 to 10 Gb, followed by Chondrichthyes
(1.5–17.5 Gb) and finally the lobiform Dipnoi (80–132 Gb)
[13]. The Japanese pufferfish Takifugu rubripes was targeted in
one of the first fish genome sequencing projects because of its
compact genome size of 0.39 Gb, which still marks the lower end
of the spectrum of vertebrate genome sizes. The three-spined
stickleback (Gasterosteus aculeatus) genome has a size of 0.46 Gb,
the one of the Zebrafish Danio rerio has 1.67 Gb and the Japanese
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Medaka 0.70 Gb. The genome of a basal “fishes” such as the sea
lamprey Petromyzon marinus has a size of 0.65 Gb and the sarcop-
terygian Latimeria chalumnae has a genome size of 2.86 Gb that is
only a little bit smaller than our own. The largest fish genome can
be found in the marbled lungfish Protopterus aethiopicus (133 Gb),
which represents the largest genome known from any metazoan.
Fish genome size and diversity are affected by their variable content
of repetitive DNA elements [14] that make a more important
relative contribution in fish genomes than in mammals [12, 15,
16]. Besides affecting genome size and structure, repetitive genetic
elements have been found to be involved in functional genetic
divergence among fishes, such as the rapid evolution of new
sex-determining loci or the emergence of barriers to reproduction
that reduce the viability of hybrid offspring [11, 17, 18]. The
diversity of repetitive genetic elements in fishes exceeds that in
higher vertebrates and the relative contribution of repetitive
genetic elements may vary from 6% in Tetraodon to 55% in Danio.
The distribution of TE families across the phylogeny demonstrates
that their presence and abundance may be highly lineage-specific,
and that periods of TE diversification occur independently among
different lineages of fishes. The Sarcopterygii have lost TE diversity,
a trend that manifested even more in the notable reduction of TE
diversity in birds and mammals [15]. While the diversity of TEs in
fish genomes represents an important component of their between
and within lineage genomic diversity, repetitive elements pose chal-
lenges for the assembly and thus the analysis of their genomes [19].

Genome duplication events have been postulated to represent
major evolutionary events that have facilitated the extraordinary
diversification of fishes [20]. There is evidence that rounds of
genome duplications have occurred in the stem lineage of the
vertebrates, and that an additional round of tetraploidization fol-
lowed by rediploidization has occurred early in the evolution of the
ray-finned fishes (Actinopterygii). This process has generated
redundant gene copies that may have vanished but also taken up
new functions [11, 21, 22]. The evolution of multigene families
such as the Hox cluster has been explained through ancient gene
duplications and adds another level of complexity to the genetic
makeup of fishes [23]. Species of fishes that deviate notably toward
larger genome sizes include a range of species that have undergone
lineage-specific and more recent genome duplications. Examples
include the ancient tetraploid Salmonidae (trout, salmon, white-
fishes), but also taxa like the sturgeons (Acipenseridae) where
ploidy ranges from diploid to octaploids and that may carry several
hundred chromosomes [24]. Although the genome size increases,
it is common that redundant gene copies are lost in a process of
rediploidization that occurs even after multiple rounds of polyploi-
dization [25, 26]. However, it is also possible that copies of
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duplicated genes diverge after polyploidization to acquire new
functions. Paralogy relationships within genomes can still be
tracked as genomes rediploidize, as in the Atlantic salmon
genome [27].

While many genome duplication events may be quite ancient
[24], there is a range of polyploid species of more recent origin.
The range of modes of reproduction of these fishes often leads to
patterns of inheritance that deviate from a classical Mendelian
pattern. While this comprises interesting phenomena in itself, it
poses challenges for the exploration of their genome content as a
single organism may contain more than two alleles of a given gene
and because divergence between gene copies will reach levels that
would otherwise be encountered in separated species. These issues
are typically not considered in default parameters of data analyses
tools, which can introduce massive bias in attempts to identify
orthologous and paralogous sequences and in all studies on genetic
variation. Examples include the Eurasian diploid–polyploid species
complexes of Cobitis loaches in which polyploid hybrids can carry
sets of chromosomes originating from parental species that do not
co-occur with the hybrid lineages any more [28, 29]. Comparable
examples belong to the cypriniform fishes such as the Iberian
cyprinid Squalius alburnoides or the North American Minnow
Phoxinus eos-neogaeus. All of these taxa of recent polyploidy origin
are allotetraploid, that is, they have arisen as hybrids between two
divergent lineages that can apparently only continue to exist when
species-specific sets of chromosomes are inherited as a whole. They
may use different reproductive modes to pass their genetic material
on to the offspring including normal meiosis, asexual reproduction
through gynogenesis, where male sperm initiates development but
genetic material is excluded, and hybridogenesis [30–33]. An
example from central America and the first vertebrate in which
unisexuality was discovered [34] includes the Amazon molly, a
species of hybrid origin, in which gynogenetic females mate with
males of another species to initiate development but exclude the
male genetic material from the developing zygote [35, 36]. Experi-
mental studies [37] suggest that fishes are flexible and actively
choose their mode of diploid – polyploid reproduction depending
on the genotype of the parents, which explains the diversity and
success of such lineages in nature. There is one species of fish, the
North- and Central-American mangrove killifish Kryptolebias mar-
moratus that exhibits true hermaphroditism and must have existed
as a self-fertilizing lineage for a long time [38, 39].

Although Teleostei are at the base of the evolution of the
vertebrates, the explosive diversification that has resulted in most
of today’s diversity of ray-finned fishes (Actinopterygii) has taken
place between the late Mesozoic and early Cenozoic [40]. Gene
sequences and the order of genes within the genome (synteny) have
been conserved. This now permits a transfer of positional genomic
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information between fully sequenced genomes of model organisms
and the wealth of emerging model systems [41, 42]. Conservation
of synteny can be visualized by means of oxford grids (Fig. 1) or
more elaborate circle graphs (see Fig. 2 in [27]) all of which illus-
trate which regions of the genome contain homologous sequences
that are arranged in the same order.

Such inference can infer homology among chromosomes,
chromosome fissions and fusion and remnants of duplicated chro-
mosomes. A related issue is that conserved synteny can support
inference about homology when gene annotations are transferred
between species. Finally, knowledge about syntenic relationships
between two genomes lets one predict which genetic elements can
be found near a given marker, even if that part of the genome of one
of the species is not fully sequenced or assembled. Together with
the rapidly growing number of fully sequences fish genomes that
sample the fish phylogeny more and more densely, these inferences
contribute greatly to the exploration of as yet unexplored species
[23]. Even when genomes are not fully sequenced, the conserva-
tion of synteny can be exploited to validate newly generated genetic
maps [43] or to explore the most likely gene content of QTL
regions that have not been fully sequenced in the target species
[42, 44]. The number of fully sequenced and annotated fish

Fig. 1 Oxford grids exploring synteny relationships between Cottus ssp. (European sculpin) linkage groups (x-
axis) and chromosomes of model organisms such as the Stickleback (Gasterosteus aculeatus) or the zebrafish
(Danio rerio) (y-axis). For this purpose, genomic fragments for which the position in Cottus was genetically
mapped were BLAST searched against fully sequenced genomes of the other species. Numbers in fat squares
indicate shared markers among known chromosomes and Cottus linkage groups. The synteny of Cottus and
the stickleback is well conserved while the zebrafish genome is more divergent both in terms of chromosome
organization and in the low number of markers that could be mapped overall (n given at bottom right of each
graph). This highlights the utility of the stickleback genome as a genomic reference for the exploration of
Cottus. (Modified from [42])
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genomes that are made available through databases such as
Ensembl [45] is currently rapidly growing due to the development
of sophisticated assembly strategies and the rise of long read
sequencing that spans genomic fragments that are difficult to
assemble.

Fig. 2 The exploration of fishes like alpine char (Salvelinus umbla, top) or
grayling (Thymallus thymallus, middle) is facilitated through advances in
genomics in the closely related Atlantic salmon (Salmo salar). The former can
be referred to as satellite species of the latter as a transfer of genomic
information is very promising. This in turn supports studies on their own
biology in manifold ways. Less well-known fishes like loaches (Cobitis spp.,
bottom) have been difficult to study because of their hybrid origin and polyploid
genomes. Long read sequencing and continuing development of approaches to
assemble genomes now enable better access to such fascinating systems in
fundamental research. (All pictures A. Hartl)

404 Arne W. Nolte



3 Genomics in Studies on the Biology of Fishes

Fishes are studied genetically to infer basic biological and evolu-
tionary processes. The details of such studies have often relied on
population genetic approaches in which descriptors of population
structure were inferred. This included studies on the distribution of
lineages across their ranges [46] and the outcome of secondary
contact when such lineages hybridize [47]. Studies often aimed to
infer population structure from an evolutionary perspective [48]
but also with the goal to improve stock management [49]. While
such studies have been extremely successful in identifying units of
biodiversity and evolutionary patterns, they have often relied on
information from anonymous, neutrally evolving genetic markers
and they applied the neutral evolutionary theory. However, there is
a deep interest in identifying the loci that drive evolutionary pro-
cesses and that determine the phenotypic properties of organisms.
The latter aspects require that additional information be integrated
with population genetic patterns observed at a given marker. First,
anonymous markers need to be assigned to genome positions to
infer whether they are associated with genetic elements and their
functions. Moreover, a dense sampling of markers ordered along
the genome permits powerful statistical analyses as patterns of
individual markers can be combined in sliding window analyses
that test for shared signals. Such data is useful to detect genetic
signatures of selection that are expected when adaptive evolution-
ary change takes place. Moreover, genetic elements themselves have
to be cataloged and functionally studied to understand their molec-
ular functions and the higher-level phenotypes they affect. While
such analyses have been conducted in the field of developmental
biology and quantitative genetics the data that becomes available
now permits the inference of populations genetic differentiation in
conjunction with likely causative genetic variants in genome-wide
studies of the association of phenotypes with genetic variation. A
hallmark example in fishes is given by [50] who have studied
genome-wide genetic variation in sticklebacks to identify genetic
loci involved in the phenotypic and ecological diversity. Other
intensively studied groups of fishes have been subject to intense
genomic exploration as well as shedding light on study systems that
have intrigued biologists for a long time [51]. Population genetics
in fishes will doubtlessly move forward toward integrative analyses
[52] that rely heavily on the interpretation of evolutionary or
ecological patterns in nature in the light of detailed genomic and
functional genetic information.

Fish genomics is driven by the progress that has been made in
intensively studied species such as the zebrafish (Danio rerio) or
medaka (Oryzias latipes). These species have long been favorite
ornamental fishes and make excellent laboratory animals because
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of their short generation times and the ease of their care and
breeding. Fundamental biological processes were uncovered in
these fishes and could then be explored, generalized and extended
to other species. The transfer of knowledge from model organisms
has already decidedly influenced areas of applied research such as
medical studies, ecotoxicology, environmental sensing systems, and
sustainable aquaculture strategies [53]. The integration of knowl-
edge from model organisms with the so-called satellite species that
are related closely enough to facilitate the transfer of genomic
information paves the way to study ecologically relevant taxa, and
more broadly the evolution and diversity of all known fishes and
other species [54]. The applicability of this approach will tremen-
dously increase as the progress in next-generation sequencing fully
includes nonmodel organisms and more and more fish genomes
and biological knowledge about different species accumulates. The
wave of next-generation sequencing has turned fishes into a highly
informative group, a “new model army,” in which long-standing
questions on the evolution of their biodiversity can be addressed
[23] (Fig. 2).

The zebrafish and the medaka were the first fish model systems
that were intensively studied genetically and for which methods to
conduct mutagenesis screens were established [55, 56]. Studies on
these fishes were at the forefront of developmental biology, bio-
medical, and genomic studies. Moreover, they complemented each
other in that they differ notably in their phylogenetic position and
properties, which provided insights into the possibilities and power
of comparative analyses between these models [57]. Since then, a
large community of researchers has exploited the zebrafish system
to pioneer many fields of fish genetics. Sophisticated methods that
have been first developed in model systems [58] are now becoming
applicable in other species. The wealth of knowledge that is avail-
able for the zebrafish has been collected in the form of a dedicated
book [59] and is accessible online in the ZFIN database [60]. Like-
wise, there are comprehensive books [61, 62] and a website [63]
for the medaka. Beyond the fully sequenced and annotated gen-
omes, these resources (1) provide information on the laboratory
use (protocols) of zebrafish and medaka, (2) summarize informa-
tion on known mutants and transgenic strains as well as wild type
strains, (3) provide access to genetic, genomic and developmental
information, (4) aid in the transfer of information between species
and databases, and (5) facilitate the use of fishes as a model for
human focused medical research. Finally, they (6) serve as a general
platform for researchers, and a collection of husbandry and labora-
tory protocols are provided. Only a few other model organisms
parallel this rich set of genomic resources and genomic information
is increasingly added to and curated in public open access
databases [45].
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A growing number of additional fish genomes have been fully
sequenced and extend the genomic exploration of fishes. Each was
initially planned with a different biological emphasis and each has
distinct advantages related to the biology of the species or its use
from a human perspective. Disadvantages relative to zebrafish and
medaka vary and may be relatively longer generation times, more
demanding husbandry and difficulties in breeding them. Pufferfish
genomes such as the ones from Takifugu rubipes and Tetraodon
nigroviridis were initially targeted because of their compact
genome sizes [64, 65]. These studies revealed that Pufferfish,
nonetheless, carries a number of genes that is comparable to the
human genome and targeted a species that are of fundamental
biology questions and economic importance. Other species were
targeted with a more focused view on phenomena that are of
medical importance. The genome of the African Killifish Notho-
branchius furzeri was sequenced to gain access to a species that
served as a model to study senescence [66]. This species is
extremely short lived and can thus serve to genetically map traits
related to ageing in relatively short experimental timescales. A
species that has received interest from the field of developmental
biology is theMexican cave tetraAstyanax mexicanus [67] that lives
in subterranean caves and is distinguished from its surface dwelling
relatives by a number of reduced traits such as the loss of vision but
also by the gain of other sensory abilities. Its genome has enabled
mapping of the genetic basis of these traits and added great detail to
our understanding of the genetic changes that cause phenotypic
evolution. The platyfish (Xiphophorus maculatus) was sequenced as
a model to study the development of skin melanoma, and to study
the genetics of live-bearing and sex determination [68]. A growing
number of fishes is targeted for their economic importance and
with the goal to study genomic resources that may be relevant to
improve aquaculture. However, studies on Atlantic salmon [27],
turbot [69], the European sea bass [70], and tilapia [71] illustrate
that their genomes also gave rich insights into questions related to
environmental adaptation, development, and genome evolution.
Other fish species have been specifically targeted with the aim to
develop model systems to study evolutionary processes that have
given rise to the diversity of fishes. As a prime example, the stickle-
back has been dubbed a supermodel that is amenable for the full
integration of behavioral, developmental, ecological, and genetic
data [72]. Its genome has been sequenced and served in hallmark
studies in the field of ecological genomics that illustrated the power
of genomics to unravel evolutionary processes and to link genotype
with phenotype information [50, 73]. These studies, among many
others, have carried a species that has received long-standing inter-
est of researchers as a model in behavioral studies into the genomic
era. Likewise, cichlids have been favorite study systems to under-
stand the explosive diversification that must have occurred in the
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east African lakes of the rift valley where hundredth of species have
evolved within each of the separated lakes. These systems have
received interest to study the process of speciation, functional
morphology of the feeding apparatus, and color polymorphism
and its role in mate choice. Progress in these fields as well as in
aspects of the molecular evolution of this group of fishes has been
greatly facilitated by several cichlid genomes [51].

Clearly, the previous trend to sequence genomes only for par-
ticularly well-studied species for which a wealth of information is
available will not be the only path for future research. Numerous
genome sequencing projects that are not mentioned here and their
number is growing exponentially. The resulting sequences and the
tools to assemble and access the information make genome
sequencing project feasible for more and more species that are
interesting for a smaller community or single researchers. This
trend clearly moves boundaries between model species and non-
model species and promises progress in many exceptional species
that remain to be studied.
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Genomic data integration for ecological and
evolutionary traits in non-model organisms.
BMC Genomics 15(1):490

55. Shima A, Shimada A (1991) Development of a
possible nonmammalian test system for
radiation-induced germ-cell mutagenesis

using a fish, the Japanese medaka (Oryzias
latipes). Proc Natl Acad Sci U S A
88:2545–2549

56. Mullins MC, Hammerschmidt M, Haffter P,
Nüsslein-Volhard C (1994) Large-scale muta-
genesis in the zebrafish: in search of genes
controlling development in a vertebrate. Curr
Biol 4(3):189–202

57. Wittbrodt J, Shima A, Schartl M (2002)
Medaka—a model organism from the far east.
Nat Rev Genet 3(1):53–64

58. Kirchmaier S, Naruse K, Wittbrodt J, Felix
Loosli F (2015) The genomic and genetic tool-
box of the teleost medaka (Oryzias latipes).
Genetics 199(4):905–918

59. Westerfield M (2007) The zebrafish book, 5th
ed; a guide for the laboratory use of zebrafish
(Danio rerio). University of Oregon Press,
Eugene

60. Howe DG, Bradford YM, Conlin T, Eagle AE,
Fashena D, Frazer K, Knight J, Mani P,
Martin R, Moxon SA, Paddock H, Pich C,
Ramachandran S, Ruef BJ, Ruzicka L,
Schaper K, Shao X, Singer A, Sprunger B, Van
Slyke CE, Westerfield M (2013) ZFIN, the
Zebrafish Model Organism Database:
increased support for mutants and transgenics.
Nucleic Acids Res 41(Database issue):
D854–D860

61. Kinoshita M, Murata K, Naruse K, Tanaka M
(2012) Medaka: biology, management, and
experimental protocols. Wiley, New York.
9780813808710

62. Naruse K, Tanaka M, Takeda H (eds) (2011)
Medaka: a model for organogenesis, human
disease, and evolution. Springer, New York.
ISBN 978-4-431-92690-0

63. NBRP Medaka. https://shigen.nig.ac.jp/
medaka/

64. Aparicio S, Chapman J, Stupka E et al (2002)
Whole-genome shotgun assembly and analysis
of the genome of Fugu rubripes. Science
297:1301–1310

65. Jaillon O, Aury JM et al (2004) Genome dupli-
cation in the teleost fish Tetraodon nigroviridis
reveals the early vertebrate proto-karyotype.
Nature 431:946–957

66. Valenzano DR, Benayoun BA et al (2015) The
African turquoise killifish genome provides
insights into evolution and genetic architecture
of lifespan. Cell 163:1539–1554

67. McGaugh SE, Gross JB et al (2014) The cave-
fish genome reveals candidate genes for eye
loss. Nat Commun 5:5307

68. Schartl M, Walter RB, Shen Y et al (2013) The
genome of the platyfish, Xiphophorus macula-
tus, provides insights into evolutionary

410 Arne W. Nolte

https://shigen.nig.ac.jp/medaka/
https://shigen.nig.ac.jp/medaka/


adaptation and several complex traits. Nat
Genet 45:567–572

69. Figueras A, Robledo D et al (2016) Whole
genome sequencing of turbot (Scophthalmus
maximus; Pleuronectiformes): a fish adapted to
demersal life. DNA Res 23:181–192

70. Tine M, Kuhl H et al (2014) European sea bass
genome and its variation provide insights into
adaptation to euryhalinity and speciation. Nat
Commun 5:5770

71. Conte MA, Gammerdinger WJ et al (2017) A
high quality assembly of the Nile Tilapia
(Oreochromis niloticus) genome reveals the
structure of two sex determination regions.
BMC Genomics 18:341

72. Gibson G (2005) The synthesis and evolution
of a super-model. Science 307:1890–1891

73. Colosimo PF, Hosemann KE et al (2005)
Widespread parallel evolution in sticklebacks
by repeated fixation of Ectodysplasin alleles.
Science 307(5717):1928–1933

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

Exploration of Fish Genomes 411

http://creativecommons.org/licenses/by/4.0/


Chapter 17

Avian Population Genomics Taking Off: Latest Findings
and Future Prospects

Kira E. Delmore and Miriam Liedvogel

Abstract

Birds are one of the most recognizable and diverse groups of organisms on earth. This group has played an
important role in many fields, including the development of methods in behavioral ecology and evolution-
ary theory. The use of population genomics took off following the advent of high-throughput sequencing
in various taxa. Several features of avian genomes make them particularly amenable for work in this field,
including their nucleated red blood cells permitting easy DNA extraction and small, compact genomes. We
review the latest findings in the population genomics of birds here, emphasizing questions related to
behavior, ecology, evolution, and conservation. Additionally, we include insights in trait mapping and the
ability to obtain accurate estimates of important summary statistics for conservation (e.g., genetic diversity
and inbreeding). We highlight roadblocks that will need to be overcome in order to advance work on the
population genomics of birds and prospects for future work. Roadblocks include the assembly of more
contiguous reference genomes using long-reads and optical mapping. Prospects include the integration of
population genomics with additional fields (e.g., landscape genetics, phylogeography, and genomic
mapping) along with studies beyond genetic variants (e.g., epigenetics).
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1 Introduction

Birds have played a central role in our understanding of many
research fields. Notable examples include (1) the development of
methods essential for behavior and ecology by Margaret Nice [1]
using populations of song sparrows (Melospiza melodia), and
(2) the definition of species as groups of populations reproductively
isolated from one another by Ernst Mayr [2], inspired by the
geographic distribution of birds and galvanizing the field of evolu-
tion. Current declines in natural populations of birds worldwide
may cause work by researchers like Nice and Mayr to be over-
shadowed by efforts in conservation. Concern about the loss of
birds to the millinery trade triggered Harriet Hemenway and Mina
Hall to establish the National Audubon Society in 1886. This
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society is one of the first nonprofit environmental organizations
and generates datasets essential for population monitoring and
forecasting to this day (e.g., annual Christmas and Great Backyard
Bird Counts to census birds worldwide and eBird, an online data-
base of bird observations).

The influential role of birds across varied research fields
continued with the development of population genetics. This field
emerged in the 1980s following the advent of sequencing technol-
ogies to quantify marker based genetic variation, including
sequence variation in mitochondrial DNA (mtDNA) and length
polymorphisms in microsatellites. Tools from population genetics
can be used to evaluate the role mutation, genetic drift, selection
and gene flow play in generating variation within and between
populations [3, 4], with relevance to behavior, ecology, evolution,
and conservation. Avian blood has nucleated red blood cells,
making it ideally suited for DNA extraction and subsequent popu-
lation genetic analyses, early examples include the use of mtDNA to
identify taxonomic units for conservation (e.g., dusky seaside spar-
rows [Ammodramus maritimus nigrescens], [5, 6]).

The last 10 years has seen a change in both the scale and depth
of genetic analyses, with the transition from the use of one or a few
genetic markers to tens of thousands of markers genome-wide
marking the development of population genomics. This transition
was stimulated by de novo assembly of reference genomes along
with the advent of high-throughput sequencing (HTS). HTS is dis-
cussed in detail elsewhere (e.g., [7, 8]), but briefly, is a set of
platforms that sequence DNA from multiple genomic regions and
individuals in parallel. HTS has increased the proportion of the
genome that can be sampled and decreased the time and cost of
sequencing, allowing its use on most organisms of interest. Again,
birds are well-suited for this extension. Not only can good amounts
of DNA be generated easily, but they also have small (mean
~1.45 billion base pairs; [9]), compact (e.g., fewer transposable
elements [TEs] and repetitive regions; [10]) genomes, allowing
for relatively easy genome assembly and mapping at high coverages.
The first avian reference genomes were the chicken (Gallus gallus,
[11]) and zebra finch (Taeniopygia guttata, [12]), assembled using
Sanger sequencing and followed by an explosion of bird genomes
assembled using HTS [13].

We review the population genomics in birds here, emphasizing
the role this group has played in both the development of this field
and its application to questions in behavior, ecology, evolution, and
conservation. Population genomics can be used to answer ques-
tions at both the genome and locus levels. Work at the genome level
informs our understanding of population processes (e.g., demog-
raphy and population structure), while work at the locus level helps
identify genomic regions affected by mutation, drift, selection
and/or gene flow [3]. We follow this division in this chapter,
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introducing some of the latest findings from birds, highlighting the
benefits of applying population genomics tools to these questions
(vs. traditional population genetic techniques with fewer markers),
and finishing by outlining future prospects along this trajectory.

2 Latest Findings

2.1 Relevance of

Genomic Insight for

Evolution

Demography is the study of changes in effective population size
(Ne) through time, gene flow and divergence. Information on these
dynamics is essential for understanding the evolution of species,
populations and traits and important for setting baselines beyond
which evolutionary processes can be examined. This is especially
true in the current literature, where genome scans are being used to
identify loci associated with phenotypic traits and/or involved in
adaptation and speciation (see below; e.g., [14–17]). Early demo-
graphic analyses were based on the coalescent (or divergence),
assuming that pairwise sequence divergence is proportional to the
time of the coalescent, and relying on nonrecombining loci (e.g.,
mtDNA, Fig. 1a left, [18]). These analyses were expanded to
include nuclear loci and permit estimates of changes in population
size and gene flow, but remained limited to a small number of
demographic scenarios and markers and were computationally
expensive [19]. The availability of genome-wide data and new
tools for their analysis has revolutionized this field and its progres-
sion is demonstrated well by a series of studies on collared and pied
flycatchers (Ficedula albicollis and F. hypoleuca).

Early demographic work with collared and pied flycatchers
suggested these species diverged during the Pleistocene, expanded
their ranges following the last glacial maximum, and came into
secondary contact in Central Europe where introgression from
pied into collared flycatchers is greater [20, 21]. Nadachowska-
Brzyska et al. [22] used whole genome resequencing (WGS) data to
expand on these findings, comparing 15 demographic models
using an Approximate Bayesian Computation (ABC) approach. A
model with recent divergence time (230,000–240,000 years ago
[ya]), unidirectional gene flow (0.16–0.36 pied individuals per
generation) and ancient reductions in population size (e.g.,
600,000–80,000 in collared) provided the best fit to the data
(Fig. 1 right). This work represents one of the first times an ABC
approach with HTS was applied to study demography in a non-
model system, providing a level of detail unattainable with earlier
methods [22]. Flycatchers exhibit strong reproductive isolation,
with evidence for both pre- and postzygotic barriers to gene flow
(e.g., nearly complete female sterility, [23]). Accordingly, these
results suggest speciation in birds can occur quite rapidly.

Nadachowska-Brzyska et al. [24] validated findings from the
ABC analysis using the Pairwise Sequentially Markovian Coalescent
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Fig. 1 Conceptualized figure showing examples of questions that were answered using genetic data and how
they have been expanded with the transition from population genetics (left) to genomics (right). Panel a is
relevant to demography and show a minimum spanning network where circles represent haplotypes, sizes of
circles reflect abundance, and bars across branches represent single nucleotide changes that can be used to
estimate divergence time (yellow), and more detailed analyses using genomic data where a demographic
scenario with recent migration and population size changes derived from recent ABC analyses (N—effective
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(PSMC, Li and Durbin [25]; similar to the model described in
Chapter 7) and WGS data. PSMC estimated a slightly later diver-
gence time between the species (386,000–888,000 ya) and
provided additional information on changes in population size
over time, with collared flycatchers undergoing an expansion
100,000–200,000 ya and subsequent decline, likely corresponding
with glaciation period marine isotope stage (MIS)
6 (191,000–130,000 ya). Pied flycatchers did not exhibit the
same decline, perhaps because they can tolerate glacial climates
more effectively than collared flycatchers that occur at lower lati-
tudes and altitudes. Instead, pied flycatchers appear to be increasing
in population size, suggesting they are outcompeting collared fly-
catchers in the present day, which falls in line with behavioral
observations in the system [23]. Results from this study on fly-
catchers support earlier work using data from 38 bird species [26],
documenting similar variability in estimates of population size over
time. Together these results provide important inferences about the
population dynamics of temperate species that have experienced
glacial cycles throughout their history and caution against assuming
simple demographic history (e.g., constant population sizes, a sin-
gle expansion, and/or similar trends for populations).

Of perhaps less evolutionary interest, but equal importance,
Nadachowska-Brzyska et al. [24] conducted a thorough analysis of
the impact of sequence coverage and missing data on the accuracy
of demographic inference with PSMC. They conclude at least 18�
mean coverage is needed and nomore than 25%missing data can be
permitted. These kinds of considerations are important when
implementing analyses with genomic data as biases resulting from
poor filtering can have a significant impact on results. In the case of
PSMC, low filtering cutoffs lead to homozygous sites being con-
sidered heterozygous, affecting the size of recombination blocks
and estimates ofNe (both magnitude and the shape of curves). It is
important to note that newer versions of PSMC exist and provide
many benefits but are not easily applied to birds. For example,

�

Fig. 1 (continued) population size [anc—ancestral population], Ts—divergence time). Panel b is relevant to
conservation and shows the geographic distribution of individuals differentiated at a small number of markers
and potentially requiring separate management status, and more recent comparisons of heterozygosity and
the proportion of nonsynonymous to synonymous mutations between an endangered/vulnerable species and
one of least concern providing more detail when establishing management plans. Panel c is relevant to the
genetic basis of phenotypes and shows a candidate gene identified in Drosophila and Mus musculus and
surveyed in populations of birds as a potential regulator of migration and more recent uses of genomic data to
identify selective sweeps related to a phenotype in an unbiased way (based on [30]). Panel d is relevant to the
genetics of speciation and shows how speciation was originally conceived as complete loss of gene flow
between population, and more recent ideas where speciation can still occur if regions of the genome continue
to exchange genes, with black blocks representing areas where gene flow is no longer occurring and fixed
alleles between population arise (based on [40])
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multiple sequentially Markovian coalescent (MSMC, seeChapter 7)
can provide information on more recent population dynamics but
requires accurate phasing, which can be difficult to obtain for birds
as reference panels of known haplotypes are often used and derive
from trios (adult and both parents) or pedigreed populations which
are also difficult to obtain for birds.

2.2 Relevance of

Genomic Insight for

Conservation

Demographic analyses provide us with information on population
dynamics mostly in the past. Population genomics can also be used
to understand dynamics in present day populations and are espe-
cially relevant for conservation (e.g., helping inform the manage-
ment of threated species). Of prime importance is the application of
these tools to study genetic factors that can compound reductions
in population size already experienced by threatened species and
transfer of findings from common species to those that are under
threat. Here the availability of HTS is allowing researchers to obtain
far more accurate and precise estimates not only of population
structure and dynamics, but also loss of genetic diversity and
inbreeding (Fig. 1b). Using a comparative framework and genome
sequences spanning nearly the full phylogenetic spectrum of birds
Li et al. [27] highlighted the potential of these data for conserva-
tion. We will discuss this work below but want to emphasize the
importance of the application of population genomics to these
questions for birds where 1375/10,000 species (13%) are
threatened with extinction (IUCN https://www.iucn.org/). Habi-
tat loss is among the main threats and the ramifications of extinc-
tion in birds will be far reaching, as they are essential for ecosystem
functioning (e.g., as seed dispersers) and serve as important indi-
cators of ecosystem health (e.g., tracking changes in habitat, water
and climate).

Li et al. [27] is one of 27 papers that were released by the Avian
Phylogenomics Project in December 2014 based on 48 genomes
assembled using HTS. These authors classified each species as
endangered/vulnerable (EV) or of no conservation concern and
observed that EV species exhibited lower levels of heterozygosity
and more nonsynonymous (and potentially deleterious) mutations
than species of no conservation concern. Nonsynonymous muta-
tions were associated with increased linkage disequilibrium (see also
Chapter 1) across the genome. Combined, these findings suggest
EV species may be at risk of inbreeding depression. Estimates of
inbreeding can also be obtained using pedigrees in the form of
inbreeding coefficients (the probability of a locus being identical
by decent). Nevertheless, as noted already pedigrees are rare in wild
bird populations so the application of HTS in the framework used
by Li et al. [27] will be imperative for understanding risks to natural
populations of birds [28].

Li et al. [27] took their work one step further, obtaining WGS
data from eight individuals of the critically endangered crested ibis
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(Nipponia nippon). These data were used to document changes in
population size similar to work described by Nadachowska-Brzyska
et al. [24] with flycatchers. However, of potentially greater impor-
tance for conservation, Li et al. [27] also used these data to develop
a set of genetic loci to track individuals of the species. 166,000
degenerate STR (short tandem repeats) loci were identified.
Among these loci, 23 were informative and will have many applica-
tions, including the estimation of sex and paternity along with the
reconstruction of pedigrees to identify birds for breeding pro-
grams. Similar applications are being promoted by many authors
as a way of implementing rapid biodiversity screening for risk
assessment, including the quantification of genetic diversity and
population structure in natural populations. This work will allow
researchers to identify taxonomic units quickly, permitting the
delineation of geographic areas for conservation and management.

2.3 Locus-Level

Work to Examine the

Genetic Basis of

Phenotypic Traits

The application of population genomics to questions of demogra-
phy and conservation are examples of genome-level analyses. Pop-
ulation genomics can also be used at the locus-level and include
bottom-up approaches to examining the genetic basis of pheno-
typic traits, including morphological and behavioral traits. These
analyses involve the identification of populations that differ in a trait
of interest with a strong genetic component and the estimation of
summary statistics along the genomes of these populations to
detect selective sweeps (see also Chapter 1). Selective sweeps can
derive from positive or divergent selection and evidence for these
events include reductions in nucleotide diversity and increased
linkage disequilibrium within populations. Elevated differentiation
between populations also provides evidence for selective sweeps
[29, 30]. The number of studies examining the genetic basis of
phenotypic traits in birds is increasing and one pattern that is
emerging is the importance of inversions for the control of pheno-
typic traits. Inversions are a form of rearrangement where portions
of a chromosome are flipped, disrupting chromosome pairing dur-
ing meiosis and preventing recombination from occurring. These
regions should be inherited largely as single units, explaining how
loci involved in the expression of phenotypic traits can work in
concert.

One well-known example of an inversion associated with a
phenotypic trait in birds comes from the ruff (Philomachus pugnax)
where an inversion controls the expressive of different reproductive
morphs. Additional examples are beginning to accumulate and
include the willow warbler (Phylloscopus trochilus) and white-
crowned sparrow (Zonotrichia leucophrys gambelii). Two subspecies
of willow warblers form a ring around the Baltic Sea and differ in
migratory orientation, forming a migratory divide in central Scan-
dinavia. Using genome-wide SNP data, Lundberg et al. [31] iden-
tified three regions of the genome that exhibit extremely high
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differentiation compared to the rest of the genome and form
distinct haplotype clusters. These clusters suggest recombination
is rare in these regions and could be explained by inversion poly-
morphisms. Haplotypes at one region correlated with environmen-
tal features (altitude and latitude) while the other two correlated
with migratory orientation. Tuttle et al. [32] used WGS to identify
a series of potential inversions on avian chromosome 2 between two
color morphs of white-crowned sparrows that also differ in repro-
ductive behavior (promiscuous vs. monogamous). This region
spans ~100 Mb and includes 1100 genes. FST between morphs is
elevated in this region and linkage disequilibrium is high. One
morph is homozygous for alleles at this inversion and the other
heterozygous. These authors used a phylogenetic analysis to show
the inversion evolved before sparrows diverged from their most
closely related relative.

There are several benefits of using the bottom-up approach of
population genomics to study the genetic basis of phenotypic traits.
Early work on this topic was limited to a set of candidate genes that
were often identified in model organisms that were distantly related
from the focal species (e.g., [33]). Work with HTS allows research-
ers to study all genes in the genome, permitting unbiased assays of
genomic variation and allowing for the de novo identification of
candidate genes and new biological processes underlying traits
(Fig. 1c). This genome-wide perspective also provides a broader
understanding of how phenotypic traits are controlled, including
the number, size and distribution of loci that underlie these traits.
The bottom-up approach also has considerably more power than
other methods. For example, genome-wide association studies
(GWAS) can be used, but often require data from hundreds of
individuals as they are conducted in single populations that vary
in a trait of interest and have low levels of linkage disequilibrium.
Bottom-up approaches can use of as few as 10 individuals/popula-
tion which can be important for nonmodel organisms like birds
where large numbers of individuals may be hard to sample. Never-
theless, there are still some problems associated with the bottom-up
approach, including the fact that processes other than positive or
divergent selection can generate signals similar to selective sweeps
(e.g., background selection, see also Chapter 1). We discuss these
problems and potential solutions below.

2.4 Locus-Level

Work to Understand

the Genetics of

Adaptation and

Speciation

Similar to work focused on identifying the genetic basis of pheno-
typic traits, the estimation of summary statistics along the genome
can be used to study the processes of adaptation and speciation
more broadly. In this case, studies normally compare closely related
populations from the same or related species and focus on estimates
of genomic differentiation like FST. One of the chief findings from
this work is that differentiation can be highly variable across the
genome, with areas of elevated FST interspersed with areas of
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reduced FST (e.g., [34–39]). An important inference drawn from
these findings is that speciation can proceed through a few focal
changes and does not require divergence across the entire genome
(Fig. 1d, [40]). While this conclusion does not seem to be contro-
versial, the processes that generate variable patterns of differentia-
tion have received considerable interest and include two main
models, divergence-with-gene-flow and selection-in-allopatry.

The divergence-with-gene-flow model posits that divergent
selection at loci involved in speciation must be protecting some
regions of the genome from gene flow, elevating an otherwise
homogenized (or low) landscape of differentiation [41, 42]. This
model received considerable enthusiasm when it was first developed
as it suggests researchers can identify loci involved with speciation
relatively easily, by looking for areas of elevated differentiation
between closely related populations. Recent work has encouraged
caution with this approach and work with birds has been at the
forefront of this wave, promoting a second model to explain varia-
tion in FST, selection-in-allopatry. The selection-in-allopatry model
posits that variation in the strength of selection can explain varia-
tion in differentiation on its own [43]. This model derives from the
observation that FST is a relative measure of differentiation that
includes a term for within population variation. As a result, it can be
elevated by reductions in within population variation alone. These
reductions can derive from any form of linked selection, including
genetic hitchhiking and background selection that is unrelated to
speciation ([43, 44]; also increases in neutral variance generated by
population structure [45]) and mean that gene flow is not neces-
sarily needed to explain variation in genomic differentiation.

Contrasts between windowed-estimates of FST and dXY have
been used to support the selection-in-allopatry model. dXY is an
absolute measure of differentiation that does not include a term for
within population variation. Accordingly, it should be unaffected
by reductions in within population variation and show limited
associations with estimates of FST across the genome. Work with
birds supports this prediction. Burri et al. [46] estimated FST and
dXY between collared and pied flycatchers and noted that dXY was
not elevated where FST was elevated. In fact, dXY seemed to show
the opposite pattern of FST, being reduced where FST was elevated.
Burri et al. [46] argued that recurrent linked selection in regions of
reduced recombination in ancestral populations were responsible
for this pattern. This form of selection would reduce dXY to zero
prior to population splitting. Similar findings have been documen-
ted between Swainson’s thrushes [35], greenish warblers (Phyllos-
copus trochiloides, [36]), stonechats (Saxicola rubicola, [37]), and
Darwin’s finches (Geospiza fortis, [38]).

Burri et al. [46] added an additional dimension to the
selection-in-allopatry model. These authors documented an associ-
ation between FST and recombination rates in flycatchers,
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suggesting genomic features like reduced recombination that
extend the effects of linked selection by preventing linked neutral
sites from recombining off their shared background could also play
a role in generating variation in FST. Delmore et al. [47] evaluated
this idea further using a comparative analysis, estimating genomic
differentiation (FST and dXY) between eight population pairs of
birds that span a broad taxonomic scale (sharing a common ances-
tor ~52 million ya). Features of the local genomic landscape are
highly conserved across birds, including chromosome number,
recombination rate and synteny [48–54]. Accordingly, Delmore
et al. [47] predicted that if genomic features are generating varia-
tion in differentiation across genomes they should generate corre-
lated patterns of differentiation across population pairs of birds. In
support of this prediction, a significant proportion of variation in
windowed-estimates of FST and dXY could be explained by correla-
tions across pairs (up to 3% for FST and 26% for dXY). In addition,
genomic regions showing high repeatability across pairs were cor-
related with several genomic features (e.g., reduced recombination
rates [approximated using GC content], elevated gene densities
and chromosome size [higher on micro- vs. macrochromosomes]).

As a final note on the genetics of adaptation and speciation,
support for the divergence-with-gene-flow model versus the
selection-in-allopatry model will likely depend on the geographic
context in which speciation occurs. Much of the work on speciation
genomics in birds focuses on species in the temperate region that
have experienced periods of allopatry and sympatry [55]. Accord-
ingly, a model including allopatric periods (selection-in-allopatry)
will likely be more relevant. In addition, there are variants to the
selection-in-allopatry model. For example, Delmore et al. [35] and
Irwin et al. [36] describe a scenario where selective sweeps upon
secondary contact could also reduce dXY in regions of elevated FST,
with globally adaptive alleles evolving during allopatric periods and
sweeping across both populations when they come into secondary
contact. These alternatives are not mutually exclusive.

3 Roadblock: Genome Assemblies, Novel Genes and Structural Variants

Much of the work in population genomics makes use of reference
genomes to place (or map) resequencing reads from individuals or
populations. Reference genomes for birds are of variable quality
[56]. As noted earlier, the first references were assembled using
Sanger sequencing. They represent the most complete reference
genomes for birds, but are not perfect. For example, annotations
are still lacking for some of the microchromosomes in these refer-
ences [57] and most chromosomes still include random sequences
that cannot be placed. Each reference also includes unassigned
scaffolds with unknown chromosome location. More recent
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genomes assembled using HTS often integrate data from short
insert libraries and mate pairs. Data from small insert libraries are
used to construct contigs and contigs are combined into scaffolds
using mate pair libraries. Mate pair libraries help bridge complex
regions of the genome that cannot be assembled (e.g., highly
repetitive or heterozygous regions) but resulting genomes remain
quite incontinguous, consisting of thousands of scaffolds for
genome that consist of only 33 chromosomes (on average). In
addition, these scaffolds are often assigned to chromosomes using
synteny with the chicken or zebra finch genome. While karyotype
and synteny are conserved across birds, intrachromosomal rearran-
gements are quite common [58] and it is possible that regions of
the genome containing genes relevant to your focal species will not
be present in these highly domesticated species. It is also highly
likely that structural variations (e.g., inversions and duplications)
controlling phenotypic traits and involved in adaptation and speci-
ation are missing or misassembled.

One of the next steps in the population genomics of birds will
be to improve these genome assemblies. Linkage maps would help
join scaffolds but are hard to generate in birds as for several crosses
cannot easily be made in the lab and a limited number of pedigreed
populations in the wild exist. Nevertheless, alternative methods to
join scaffolds are being developed and include both long-read
technologies (e.g., Nanopore and 10� genomics) and optical
mapping with BioNano technology (Fig. 2a). Optical maps are
generated by shearing DNA into large molecules (>250 kb), line-
arizing them in nanochannels, and barcoding them with restriction
enzymes. These maps are visualized with fluorescence microscopy
and generated for each fragment before being combined into a
consensus map. Nick sites from restriction enzymes are used to
order and orient HTS scaffolds generated using traditional techni-
ques and estimate gap size between them, ultimately producing
hybrid assemblies with an increased N50 (defined as the minimum
threshold of sequence length above which all scaffolds cover at least
50% of the total assembly size) and less, longer scaffolds for each
genome. One example of a hybrid genome assembly generated
using optical mapping comes from the ostrich (Struthio camelus).
The original Illumina-based assembly had an N50 of 3.59 Mb and
414 scaffolds. Using optical mapping the N50 was increased to
17.71 and the number of scaffolds was reduced to 75 [59].

The desired quality of reference genomes will depend on the
objectives of each study. If for example, researchers are interested in
specific genes associated with a trait of interest, they may be missing
from annotation. If structural variants are of interest (and results
from birds thus far suggest they may be), more contiguous gen-
omes will be needed to identify them. On the other hand, many
studies, especially those interested in genome-level processes like
demography and population structure, may not need a high quality
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Fig. 2 Conceptualized figure showing roadblocks and prospects for future work for population genomics in
birds. Panel a shows a roadblock that will need to be overcome (incomplete genome assemblies), using
optical mapping (yellow) to extend traditional genomes based on contigs (blue and pink) and scaffolds (orange)
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reference genome as specific loci or variants are not of interest. The
same considerations apply to choosing sequence technologies for
resequencing individuals or populations. If locus-level questions are
of interest, whole genome resequencing data will likely be needed
as linkage disequilibrium can drop off quite quickly in birds
[35, 60]. If specific loci are not important (e.g., for analyses of
population structure or preliminary work characterizing genomic
regions), restriction site associated DNA sequencing (RAD) or
Genotyping-by-sequencing (GBS), where DNA is cut with restric-
tion enzymes and sequencing limited to those cut sites may be
sufficient [61]. Target capture approaches can also be used if spe-
cific loci are not important, including enrichment of ultraconserved
elements and their flanking regions [62].

4 Prospects

4.1 Continued

Application of

Population Genomics

for Conservation

The use of HTS data can provide more accurate estimates of genetic
diversity in threatened populations and allow for the development
of reference platforms to quickly survey populations. Another
major goal of conservation genetics is to identify population struc-
ture and delineate species boundaries. A few studies have begun
doing this (e.g., Bell’s vireo [Vireo bellii, [62]]; Mottled duck
[Anas fulvigula, [63]]), but caution will be needed as the increased
resolution provided by HTS may permit the identification of fine
scale population structure that does not warrant separate taxo-
nomic status. Work to identify adaptive variants important for
population survival and maintenance will also be important
(Fig. 2b). To the best of our knowledge this has not yet been
done in birds, but there are examples from fisheries; for example,
two ecotypes of kokanee salmon (Oncorhynchus nerka) that differ in
their reproductive strategies (stream vs. shore-spawning) exist that
are panmictic outside the breeding season and morphologically
indistinguishable. These ecotypes are currently managed as separate

�

Fig. 2 (continued) from short read HTS assemblies. The remaining panels show prospects, including (b) the
potential to identify selective sweeps in populations of conservation concern associated with traits of
importance (here a region protecting the population from pathogen infection), (c) controlling for the effects
processes unrelated to adaptation and speciation have on differentiation—estimating FST between a focal pair
and allopatric populations that do not differ in the trait of interest, subtracting allopatric FST from focal FST to
obtain net FST, (d) extension of Fig. 1d (right) with genomic features (shown in blue, e.g., reduced recombina-
tion) that extend the effects of linked selection causing alleles nearby and those under selection to fix at later
stages of speciation, (e) complete reference genomes with high quality annotation allow for analyses of
general regulatory and epigenetic mechanisms, such as characterization of open chromatin regions, histones,
and mapping of chemical marks (e.g., methylation), and (f) integrating three fields together that differ in their
temporal and geographic scales to gain a broader understanding of behavior, ecology, evolution, and
conservation (based on [80])
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stocks and marker based genetic characterization supports this
separation [64, 65]. These authors used RAD sequencing to show
these ecotypes are genetically differentiated from one another and
identified 12 contigs using transcriptome sequencing that matched
pathogens known to reduce the fitness of salmonids. These contigs
were limited to stream-spawners, suggesting this ecotype has
evolved a way to reduce pathogen load. Combined these results
suggest different management strategies for both ecotypes. See
Chapter 14 for more information on the genomics of fishes.

4.2 Control for

Alternative Processes

in Genome Scans and

Expand Studies to

Focus on the Process

of Speciation

The estimation of genomic differentiation between closely related
populations had led to the observation that levels of differentiation
are highly variable across the genome. There is interest in using
these differentiation patterns to identify loci involved in adaptation
and speciation but processes other than positive or divergent selec-
tion can elevate differentiation and include background selection
that is not related to adaptation or speciation. Accordingly, future
work on this topic must control for regions affected by these
processes and the framework outlined by Vijay et al. [66] using
the crow species complex (genus Corvus) provides one approach.
These authors obtained WGS data from populations at different
stages of differentiation and from different color morphs (all-black
or pied). One of the objectives of their study was to identify
genomic regions associated with this color difference using popula-
tions in three hybrid zones between the morphs. They estimated
FST between allopatric populations that did not differ in color and
used these values as a null beyond which FST in hybrid zones had to
exceed to provide evidence of positive selection relevant to color
(Fig. 2c). Interestingly, these hybrid zones did not share the same
peaks of differentiation, suggesting different genes were involved in
each color transition. Instead, each contact zone had at least one
gene in a differentiated region that was associated with the Wnt
signalling component of the melanogenesis pathway suggesting the
pathways but not necessarily the same genes to be important.

Scans of genomic differentiation across genomes can also be
expanded to study the process of speciation, rather than a snapshot
in what is a continuous process from initial population divergence
to complete reproductive isolation (Fig. 2d). Speciation is also not a
deterministic process; populations can go extinct of fuse back into a
single unit before reaching speciation. Results from Delmore et al.
[47] provide one example. Recall, these authors documented con-
sistent patterns of differentiation across eight species pairs of birds
implicating linked selection at genomic features in generating vari-
ation in genomic differentiation. Linked selection at genomic fea-
tures is expected to have a greater effect at later stages of speciation
when enough mutations have accumulated in populations to reflect
processes occurring at these features [67]. Under this prediction,
patterns of species pairs at later stages of speciation should show
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increasing levels of consistency. The species pairs included in Del-
more et al. [47] span the full speciation continuum and an analysis
comparing correlation coefficients between population pairs in
windowed-estimates of FST support this prediction, with pairs
later in the continuum (e.g., with more narrow hybrid zones)
exhibiting more consistent patterns. This pattern was not observed
using dXY and likely relates to the fact that dXY reflects processes that
have accumulated over multiple speciation events. Accordingly, it
will not matter when dXY is estimated in the process of speciation, it
will always reflect linked selection at genomic features.

4.3 Expand Beyond

Studies of Genetic

Variation Alone

Thus far we have focused mainly on genetic variants, SNPs or
structural features like inversions. As noted, more direct evaluations
of structural variants are needed but additional expansions would
also profit research in birds. For example, it is possible that in
addition to genetic sequence variation, expression dynamics
and/or epigenetic mechanisms often play an important role in the
expression of complex traits (Fig. 2e). These traits are typically
controlled by many loci of small effect [68, 69] that may depend
on the regulation of gene expression to produce the downstream
phenotype ([70] but see [71–73]). Changes in gene expression can
derive from chemical and molecular modifications, including meth-
ylation, phosphorylation, acetylation, accessibility of DNA in chro-
matin, and occupancy of regulatory sequences by transcription
factors.

Epigenetic studies are beginning to accumulate in birds and
include investigations of vocalization (zebra finch [74]); learning
and cognition (great tit [Parus major, [75]]), and beak size and
shape (Darwin’s finches, [76, 77]). It is likely that these studies will
increase in prevalence as the field moves from studying relatively
simple traits (e.g., color) to more complex traits (e.g., behavior,
such as migration). Along with this expansion, greater precision will
be needed, and study designs require a carefully controlled experi-
mental framework, making sure hindering noise (diet has a huge
effect on expression profiles, profiles vary significantly across sexes,
developmental stages) is kept to a minimum. Even within tissues,
especially within brain, epigenetic makeup depends on the exact
location of brain area. In birds this has been studied for bird song:
behaviorally regulated gene expression profiles vary depending on
time and between anatomical structures. It was hypothesized that
drivers of this variability are signalling cascades modulate by tran-
scription factors, cis and trans regulatory regions and epigenetic
chromatin states [74]. This study focused on identifying transcrip-
tionally active chromatin regions for song nuclei involved in their
focal trait (singing). Their results suggest the presence of epigenetic
modifications that prime gene regulation differ between brain
regions, so that specific target regions are in a chromatin state
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that allows to immediately modulate transcription of behavior spe-
cific genes once the behavior kicks in (upon neuronal firing).

4.4 Integrate

Population Genomics

with Additional Fields

We will finish our review by highlighting the importance of inte-
grating population genetics with additional fields to answer broader
questions relevant to ecology, behavior, conservation, and evolu-
tion. Specifically, the fields of landscape genetics and phylogeogra-
phy were originally developed as bridges to population genetics, to
study the interaction between landscape features and micro- or
macroevolutionary processes, respectively. Both involve geographic
sampling beyond what is done for population genetics. The advent
of HTS has blurred the boundaries between these three fields, with
principles from landscape genetics and phylogeography being used
to (1) identify loci under selection, (2) identify correlations
between genomic data and the environment, and (3) reconstruct
their history of divergence within species [60, 80]. One example
comes from [78] who focused on populations of white-breasted
nuthatches (Sitta carolinensis) that occupy the sky islands of Ari-
zona. RAD sequencing showed that genetic differentiation
between these islands was mediated largely by ecological distance
rather than geographic distance, identifying eight loci associated
with ecological distance (e.g., strong associations with minimum
precipitation of driest month and maximum temperature of the
hottest month). This integration provides a more complete picture
of adaptation and speciation (Fig. 2f) and could be especially
important for conservation, allowing researchers to understand
how organisms relate to their environment and will handle future
changes to their landscape.

Similar integrations with genetic mapping have the potential of
being quite powerful as well, using the top-down approach of
genetic mapping to identify loci associated with a trait of interest
and the bottom-up approach of population genomics to examine
the selective context underlying these traits. Work by Delmore et al.
[79] demonstrates the utility of this integration. These researchers
focused on a hybrid zone between two subspecies groups of Swain-
son’s thrushes (Catharus ustulatus) in western North America that
differ in migratory orientation. Hybrids between these groups take
intermediate and inferior routes, likely helping reduce gene flow
between subspecies (i.e., maintain subspecies boundaries). Del-
more et al. [79] focused on hybrids, tracking these birds on migra-
tion with light-level geolocators and genotyping them using GBS.
Admixture mapping using these data identified a region on chro-
mosome 4 associated with migratory orientation. This region
includes 60 genes, many involved in cell signalling, the nervous
system and the circadian clock and had been identified in smaller-
scale studies of migration in other animal groups supporting the
idea there may be a common genetic basis to migration in animals.
Delmore et al. [79] took traditional genetic mapping one step
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further by obtaining resequencing data form pure populations and
showing this region is strongly differentiated between the subspe-
cies, suggesting it is under divergent selection, supporting behav-
ioral observations of inferior hybrid behavior showing differences
in migration could be helping maintain subspecies boundaries.

5 Conclusion

We look forward to both participating and watching how the field
of population genomics evolves for birds in the coming years. As
sketched in this chapter, birds have played an important role in the
development and application of population genomics, with work
on demography and genetic variation at the genome level inform-
ing evolution and conservation and work at the locus level
providing information on the genetic basis of phenotypic traits,
adaptation and speciation. The improvement of reference genomes,
use of long-read mapping for studying structural variation and
expansion beyond genetic variation to epigenetics will take us a
long way to expanding population genomics in birds. Integrations
with other fields and beyond landscape genetics and phylogenetics
(e.g., inclusion of functional genomics and genome editing) are
also on the horizon for some species and will undoubtedly help to
unravel many mysteries concerning the behavior, ecology, evolu-
tion, and conservation of birds.

Glossary

Admixture mapping: A genetic mapping approach that makes use of
recombination and backcrossing in natural hybrid zones instead of
producing crosses (Quantitative trait locus [QTL] mapping) and/or
examining variation within a single population (Genome wide associa-
tion studies [GWAS]).

Background selection: Reduction in diversity at sites linked to a variant
under purifying selection, removing deleterious mutations from the
populations.

Contigs: Continuous sequences derived from overlapping reads.

Genetic hitchhiking: Reduction in diversity at sites linked to variant
under positive selection.

High-throughput sequencing: Set of platforms that sequence DNA
from multiple genomic regions and individuals in parallel.

Inbreeding depression: Reduced fitness of a population resulting from
inbreeding, the breeding of related individuals.
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Linkage disequilibrium: Nonrandom association of loci in the
genome, causing specific loci to be inherited together more often
than expected by chance.

Phasing: Estimation of haplotypes from genotype data, of alleles on a
particular chromosome that are inherited together.

Scaffolds: Series of contigs linked together. Noncontinuous—contigs
separated by gaps of known length.

Selective sweeps: The reduction or loss of variation at loci linked to one
experiencing positive or divergent selection.

Whole genome resequencing (WGS): Form of HTS that theoretically
obtains data from the entire genome. When Illumina technology is
used, this results in short reads (no more than 250 bp) with insert size
of ~300 kb that are aligned/mapped to a reference genome and used
to call variants, often SNPs.
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Amount of introgression in flycatcher hybrid
zones reflects regional differences in pre and
post-zygotic barriers to gene exchange. J Evol
Biol 18:1416–1424

21. S€aetre G-P, Borge T, Lindell J et al (2001)
Speciation, introgressive hybridization and
nonlinear rate of molecular evolution in fly-
catchers. Mol Ecol 10:737–749

22. Nadachowska-Brzyska K, Burri R, Olason PI
et al (2013) Demographic divergence history
of pied flycatcher and collared flycatcher
inferred from whole-genome re-sequencing
data. PLoS Genet 9:e1003942

23. Saetre G-P, Saether SA (2010) Ecology and
genetics of speciation in Ficedula flycatchers.
Mol Ecol 19:1091–1106

24. Nadachowska-Brzyska K, Burri R, Smeds L,
Ellegren H (2016) PSMC analysis of effective
population sizes in molecular ecology and its
application to black-and-white Ficedula fly-
catchers. Mol Ecol 25:1058–1072

25. Li H, Durbin R (2011) Inference of human
population history from individual whole-
genome sequences. Nature 475:493–496.
https://doi.org/10.1038/nature10231

26. Nadachowska-Brzyska K, Li C, Smeds L et al
(2015) Temporal dynamics of avian popula-
tions during Pleistocene revealed by whole-
genome sequences. Curr Biol 25:1375–1380

27. Li S, Li B, Cheng C et al (2014) Genomic
signatures of near-extinction and rebirth of
the crested ibis and other endangered bird spe-
cies. Genome Biol 15:557

28. Kardos M, Taylor HR, Ellegren H et al (2016)
Genomics advances the study of inbreeding
depression in the wild. Evol Appl 9:1205–1218

29. Siol M, Wright SI, Barrett SC (2010) The pop-
ulation genomics of plant adaptation. New
Phytol 188:313–332

30. Nielsen R, Williamson S, Kim Y et al (2005)
Genomic scans for selective sweeps using SNP
data. Genome Res 15:1566–1575

31. Lundberg M, Liedvogel M, Larson K et al
(2017) Genetic differences between willow
warbler migratory phenotypes are few and clus-
ter in large haplotype blocks. Evol Lett
1:155–168

32. Tuttle EM, Bergland AO, Korody ML et al
(2016) Divergence and functional degradation
of a sex chromosome-like supergene. Curr Biol
26:344–350

33. Delmore KE, Liedvogel M (2016) Investigat-
ing factors that generate and maintain variation

in migratory orientation: a primer for recent
and future work. Front Behav Neurosci 10:3

34. Ellegren H, Smeds L, Burri R et al (2012) The
genomic landscape of species divergence in
Ficedula flycatchers. Nature 491:756–760
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Chapter 18

Population Genomics of the House Mouse
and the Brown Rat

Kristian K. Ullrich and Diethard Tautz

Abstract

Mice (Mus musculus) and rats (Rattus norvegicus) have long served as model systems for biomedical
research. However, they are also excellent models for studying the evolution of populations, subspecies,
and species. Within the past million years, they have spread in various waves across large parts of the globe,
with the most recent spread in the wake of human civilization. They have developed into commensal
species, but have also been able to colonize extreme environments on islands free of human civilization.
Given that ample genomic and genetic resources are available for these species, they have thus also become
ideal mammalian systems for evolutionary studies on adaptation and speciation, particularly in the combi-
nation with the rapid developments in population genomics. The chapter provides an overview of the
systems and their history, as well as of available resources.

Key words House mouse, Population genomics, Evolution, Rodents, Adaptation

1 Introduction

Population genomics can address very different biological ques-
tions related to speciation, divergence of closely related species,
within species population structure or within population evolution-
ary processes that affect adaptation. In the era of next-generation
sequencing (NGS) with increasing taxonomic sampling, the crucial
factor to apply population genomics is not any longer the number
of genetic markers (quantity) but it is quality and complexity of the
massive amount of available information that needs to be integrated
and interpreted.

In this chapter, we focus on studies of population genomics in
rodents and in particular on the Murinae. Murinae as a subfamily of
rodents comprises more than one hundred genera and it is among
mammals one of the largest subfamilies with species native to most
continents. Murinae includes the house mouse (Mus musculus) and
the brown rat (Rattus norvegicus) of which laboratory strains have
been used since decades for biomedical research, as well as to serve
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as models to study human diseases. Further, as human commensal
species, both harbor also vectors for spreading infectious diseases
that makes the wild living animals and populations of special inter-
est. But also their evolutionary histories make them perfect models
for studying general evolutionary processes, such as speciation,
rapid adaptation and behavioral changes.

1.1 History

of the House Mouse

A recent book, “Evolution of the House Mouse” [1], provides a
broad overview on a variety of evolutionary aspects for the house
mouse. Other general reviews can be found in [2, 3]. Here, we
provide a short summary.

Mice consist of four major clades (Coelomys, Mus, Nannomys,
and Pyromys), of which the subgenus Mus harbors the species Mus
musculus, the house mouse. House mouse genetics began early in
the twentieth century based on the first inbred strains from wild
derived animals to study modes of inheritance [4, 5]. The world-
wide distribution range of the house mouse is depicted in Fig. 1. It
shows three main subspecies, the southeastern Asian house mouse
(Mus musculus castaneus), the eastern European house mouse (Mus
musculus musculus) and the western European house mouse (Mus
musculus domesticus). Next to these main subspecies, there exist
other subspecies (e.g., M. m. molossinus, a presumptive hybrid
species between M. m. castaneus and M. m. musculus; [6], M. m.
gentilulus [7, 8],M. m. homoulus [9], and further recently diverged
ones like M. m. helgolandicus [10]). Most inbred strains and the
reference genome sequence are derived fromM. m. domesticus. The
mouse genome was the first sequenced mammalian genome pub-
lished in 2002 (Mouse Genome Sequencing Consortium, 2002)
[8]. The genome consists of 19 autosomes and 2 sex chromosomes
(X and Y) with a total length of 2.7 Gbp (currently with 22,612
coding and 15,402 noncoding genes annotated). The mouse
ENCODE [11] consortium and genome assemblies of wild-
derived inbred strains of the main subspecies have further enhanced
the available genomic information [12–14], complemented by
detailed recombination maps [15–17]. Genomic and transcrip-
tomic data from wild derived populations of the subspecies and
the sister species Mus spretus were reported in [14].

As one of the prominent human commensals, the dispersal and
phylogenetic history of the house mouse were intensively studied.
The ancestor of all subspecies within Mus musculus was initially
thought to have lived in India [1, 18], but a broader sampling has
shown that the Iranian plateau shows the highest diversity of
lineages, including some as yet unnamed lineages [10]. The main
subspecies started to diverge ~350–500 thousand years ago. As
recently diverged species, one finds frequently phylogenetic discor-
dance at different loci, whereby the statistical analysis of discor-
dance patterns shows a strong deviation from a neutral model of
pure lineage sorting [19]. Based on population data, it was shown
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that this is most likely due to secondary adaptive introgression, even
across large geographic distances [20, 21]. The overall phyloge-
nomic analysis suggests that M. m. musculus and M. m. castaneus
are sister groups and that M. m. domesticus is more basal [12, 19].

The subspecies meet in several zones of secondary contact,
where they form hybrid zones [2, 18, 22]. Fertility of offspring is
impaired across these hybrid zones, and this serves as a general
model to study the genetic basis of hybrid sterility as part of
speciation processes (e.g., [22–26]).

Studies on house mouse phylogeography showed that the
spread of the populations, especially those of M. m. domesticus,
reflects human colonization and settlement history. For example,
by looking into mtDNA haplotypes of worldwide distributed
mouse samples, some historical human movements, such as
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following the seafarer routes of Vikings [27–29] or the coloniza-
tion history of sub-Antarctic islands, could be reconstructed
[30, 31].

Systematic population-level sampling of mouse populations has
been introduced by Ihle et al. [32], where the sampling regime has
taken care of the fact that mice tend to show inbreeding in family
groups. Initial microsatellite based scans of populations that were
sampled in this way suggested a high rate of positive selection
between closely related populations [33]. The colonization history
of Western European populations was traced by fossil evidence [34]
and shown to be less than 3000 years ago. Nonetheless, these
populations show clear genomic differentiation [20, 32, 33], dif-
ferences in gene expression [35, 36], ultrasonic vocalization and
mate choice [37, 38]. They harbor also a number of deme-specific
MHC haplotypes [39].

Despite genomic resources, including a variant database of
17 laboratory inbred strains [12, 40], there was the need to derive
laboratory strains that harbor most of the natural variation found in
wild-derived populations [41, 42]. Genotype arrays were estab-
lished that were constructed to maximize variant information at
low sequencing costs [43]. The still commonly used genotyping
arrays are MegaMUGA with a set of 77,808 SNP markers and
GigaMUGA with a set of 143,259 SNP markers [44], which only
represent a fraction of variants found between any sequenced
inbred strain and the reference genome (~4 to 5 million SNPs;
[12, 45]). However, researchers started to complement their ana-
lyses with NGS based datasets and genomic resources for wild
populations of the house mouse are now common ground for
subsequent analysis [14].

1.2 Brown Rat

History

Mice and rats approximately diverged 7–12 million years ago
[46]. Similar to house mice, brown rats (Rattus norvegicus) have
been used for more than two centuries for biomedical studies to
learn about the basis of human diseases and to deal with human pest
management [47, 48]. The genome of the brown rat was published
in 2004 [49] and consists of 20 autosomes and 2 sex chromosomes
(X and Y) with a total length of 2.8 Gb (currently with 22,250
coding and 8934 noncoding genes annotated). The house mouse
genome and the brown rat genome show a high number of shared
syntenic homologous blocks with different levels of recombination
[50]. Approximately 30% of the rat genome aligns only with the
mouse genome, which might correspond to rodent-specific repeats
[49]. A syntenic view of both genomes is given in Fig. 2 to illustrate
the pairwise chromosome assignment obtained from the Synteny
Portal (see Table 1 for web page URL link; [51]).

The origin of the laboratory brown rat (Rattus norvegicus) and
the black rat (Rattus rattus) most likely lies in central Asia
[52]. Spatial population genomics studies were conducted on
brown rats living in New York City [53] and, like in mice studies,
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mtDNA haplotype data could disentangle the phylogeography of
brown rats in the countries surrounding the South Atlantic Ocean
[54]. While the phylogeography of black rats, like the phylogeo-
graphy of house mice, reflects human colonization and settlement
history [53, 55, 56, 57], brown rats did not appear in Europe until
the sixteenth century. Their dispersal routes from Asia to Europe
are still under debate [57]. For example, one route is thought to
lead via northeast China and Siberia, while another route inferred
on whole-genome sequencing may represent an expansion via a
Southern East Asia route [58]. Figure 3 illustrates the sampling
distribution of Rattus norvegicus from publicly available whole-
genome data sets.

Fig. 2 Syntenic blocks between house mouse and rat. House mouse (GRCm38/mm10) and brown rat
(Rnor_6.0/rn6) chromosome-wide syntenic blocks obtained via the web-based Synteny Portal [51]
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2 Population Genomics

As mammal species expand, they are faced with new abiotic and
biotic factors, such as different climatic conditions, different food
or new pathogens, prey and/or predators, which potentially lead to
adaptation and contributes to shaping the genome over time.
Evolutionary changes in the genome can result from mutation,
gene flow, random genetic drift, recombination and selection.
Genome-wide scans for deviation from modelled neutrality aim at
revealing such evolutionary processes. Genome-wide scans can help
to identify genotypic and phenotypic variation, and by taking
demographic events into account, they can even detect genes
under recent positive selection [59]. Negative selection leads to
sequence conservation by removing disadvantageous alleles. Posi-
tive selection can yield to an excess of nonsynonymous fixed differ-
ences or lead to an altered allele-frequency spectrum (AFS).
Multiple approaches exist to detect adaptation, each with its own
caveats. For example, dN/dS ratios can be used in comparative
studies to detect selection on genes. But this analysis is limited to
species that represent a certain evolutionary distance to allow a
sufficient number of substitutions to have occurred [60]. When
samples are drawn from different populations of the same species, it
is necessary to study frequency changes of polymorphisms instead
of substitutions. As compared to studies with a limited number of
neutral markers, population genomics uses high marker density to
robustly infer genome-wide effects, usually as signals of departure
from expectations of the neutral theory of molecular evolution (see
Chapter 5 for a detailed description how to detect positive
selection).

Table 1
Useful public URL links for house mouse resources

Database URL

SyntenyPortal http://bioinfo.konkuk.ac.kr/synteny_portal/

Mouse ENCODE
consortium

http://www.mouseencode.org/

Ensembl Mouse strains https://www.ensembl.org/Mus_musculus/Info/Strains

UCSC wildmouse tracks https://genome.ucsc.edu/cgi-bin/hgTracks?hgS_
doOtherUser¼submit&hgS_otherUserName¼dtautz&hgS_
otherUserSessionName¼wildmouse

Colloborative Cross http://csbio.unc.edu/CCstatus/CCGenomes

Inbred Strain Variant
Database

http://isvdb.unc.edu/
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2.1 House Mouse

Genetic Variation

Population genetic studies revealed a fairly large effective popula-
tion size (Ne) for wild natural populations of mice in the order of
Ne¼ 5� 105 to 2� 106 [61, 62] with two to three generations per
year. Based on a genotyping array, the effective population sizes for
the subspecies were estimated to range betweenNe¼ 0.25� 105 to
1.2 � 105 for M. m. musculus, Ne ¼ 0.58 � 105 to 2 � 105 for
M. m. domesticus and Ne ¼ 2 � 105 to 7 � 105 for M. m. castaneus
[63]. This assumption was validated recently by a population geno-
mic study on nucleotide diversity within the subspecies of M. m.
castaneus [64]. In the same study an excess of adaptive substitutions

Fig. 3 Sampling locations of rats for which public population scale WGS data exist. Population scale sampling
locations of brown rats obtained from [58]
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in protein-coding genes, UTRs and conserved noncoding elements
(CNE) were observed [64]. A follow-up study based on the same
data recently inferred the recombination landscape within the same
subspecies and revealed that genetic diversity is positively correlated
with the rate of recombination [17] (see ref. 13 for the recombina-
tion landscape in the collaborative cross [41] and see ref. 65 for
mouse inbred strains). The frequency-weighted mean estimate of
the recombination rate was inferred from a broad-scaled map to
4Ner/bp ¼ 0.0092 for autosomes per bp and to 4Ner/
bp ¼ 0.0026 for the X chromosome [17].

One candidate gene that is known to influence recombination
break points in mammals is PRDM9 [66–69]. PRDM9 is highly
polymorphic in natural populations of the house mouse [70, 71]
and it was recently shown that some alleles are preferred over others
in hybrid mice [72]. What is remarkable in the study of Booker
et al. [17] is the high level of variability of recombination hot spots
within one population and between wild-derived and classical
inbred strains, which is worth further consideration. For example,
phasing approaches should depend on an accurate recombination
map and the question arises whether global heterogeneous recom-
bination rates provide sufficient information for fine-scaled phasing
inference.

Researchers need to rely on high-quality genome information
to perform reference-based whole-genome analysis to retain variant
information for the populations under study. However, in some
cases the sequence divergence of the analyzed population and the
reference is high and might produce mapping artefacts [73]. To
cope with such situations Sarver et al. [74] performed a pseudo-
reference based approach using exome data to infer the phyloge-
netic relationship and gene tree incongruence of the Mus clade.
While Sarver et al. [74] used the D-statistic [75] to detect intro-
gression between M. m. musculus and M. m. domesticus, other
methods have been recently applied to infer introgression signals
[8, 20, 21, 76, 77].

In their genomic comparison, Harr et al. [14] incorporated the
two other house mouse subspecies M. m. domesticus and M. m.
musculus together with the M. m. castaneus samples. In total this
study covers a divergence time of roughly two million years by
complementing the data with samples from the sister species
M. spretus and the recently diverged species M. m. helgolandicus
[14]; see Fig. 1. In combination with the short generation time of
mice, this constitutes a substantial molecular divergence, which is,
for example, larger than the divergence between humans and
Hominidae across the same time scale. Figure 4 represents the
inferred population sizes for the subspecies M. m. domesticus and
the diverged species M. m. helgolandicus, this data set was analyzed
with the smc++ software setting the mutation rate to μ ¼ 5 � 10�9

per base pair per generation [78].
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Population genetic variation in segmental duplications (copy
number variation) was systematically studied by Pezer et al.
[79]. They found among the most copy-number variable genes
three highly conserved genes that encode the splicing factor
CWC22, the spindle protein SFI1, and the Holliday junction rec-
ognition protein HJURP. These genes showed population-specific
expansion patterns that suggested an involvement in local adapta-
tions. Other variable genes were found to encode proteins that are
relevant for environmental and behavioral interactions, such as
vomeronasal and olfactory receptors, as well as major urinary pro-
teins. In a follow-up study, it was suggested that duplications in the
Androgen-binding protein gene region might specifically have con-
tributed to species diversification [80].

Another study also identified the CWC22 region as a region
which shows major segmental duplication in the house mouse. It
received the genetic name R2d and it was shown that the structural
mutation rate appears to depend on the diploid configuration at
that locus [81]. By reconstructing the origin and history of copy-
number variants (CNVs), the study of Morgan et al. [81] is a nice
example how important refined analyses are to disentangle complex
genome structures. This is particularly true for genomic regions
that are duplicated and are absent from the reference genome,
which the author termed the “missing genome” [81].

Mus musculus domesticus
(including all 27 individuals)

Mus musculus helgolandicus
(3 individuals)

subpopulation from Iran
(8 individuals)

subpopulation from France
(8 individuals)

subpopulation from Germany
(8 individuals)

Years

Fig. 4 Inferred population history for subspecies of the house mouse. Effective
population size inference across populations of the house mouse subspecies
M. m. domesticus and Mus musculus helgolandicus. SNP data from [14] was
filtered to only retain intergenic regions without any feature annotation. For each
population a separate smc++ [78] model was created setting the per generation
mutation rate to 5 � 10�9 (see Note 1 for a detailed method description)
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The sequence and structural diversity of Y chromosomes in
natural populations was studied in [82]. The mouse Y chromosome
is in comparison to other mammals larger and harbors more anno-
tated genes. The authors could show that CNVon the long arm of
both sex chromosomes is highly variable, but sequence diversity as
compared to autosomes is low in nonrepetitive regions.

The autosomal AFS of neutral intergenic regions was used to
infer demography of all subspecies with the software “∂a ∂i”
[83]. All simple models applied predicted effective population
sizes that fall inside the range mentioned above (M. m. domesticus:
Ne¼ 1.6� 105,M. m. musculus:Ne¼ 1.6� 105,M. m. domesticus:
Ne ¼ 4.2 � 105; [82] but could not explain the reduction of sex
chromosome diversity. Important findings are for instance that
there is a moderately strong selective sweep on the Y chromosome
in the M. m. domesticus population and that positive selection of
genes expressed in the male germline might shape the sex
chromosomes.

2.2 Brown Rat

Genetic Variation

Rats and in particular the speciesRattus norvegicus have an effective
population size comparable to that of the mice subspecies M. m.
domesticus and M. m. musculus. Denium et al. [84] estimated the
effective population size to be Ne ¼ 1.24 � 105, based on silent
mutations of 12 wild-derived animals. The authors highlight a
recent bottleneck in rats (20,000 years ago) based on a ‘PSMC’
[85] analysis (see Chapter 7 for a discussion of MSMC and
MSMC2). This bottleneck might be the cause of negative estimates
of the rate of adaptive evolution in proteins and noncoding ele-
ments. Compared to mice, rats show a larger proportion of mildly
deleterious mutations and concordantly a lower rate of highly
deleterious mutations [84]. However, the reduction in diversity
around exons is comparable to values obtained for mice [64]. Con-
sidering the different Ne of mice and rats, Denium et al. [84]
estimated linkage disequilibrium (LD) decay to be six to seven
times faster in mice than in rats.

As for mice, researchers looked into speciation and introgres-
sion events using population genomics. Teng et al. [86] used the
Himalayan field rat (Rattus nitidius) as an outgroup, which is
geographically restricted to Southeast Asia, to investigate introgres-
sion in brown rats sampled in China. With whole-genome data
from 44 individuals, the Ne for brown rats and Himalayan field
rats was estimated toNe brown rats ¼ 2.53 � 105 andNe Himalayan field

rats ¼ 5.18� 105, which reflects a difference of similar order to that
of the house mice subspecies M. m. musculus and M. m. castaneus.
According to the “PSMC” analysis the sibling speciesR. norvegicus
and R. nitidius diverged ~650 thousand years ago, that is, within a
time frame where the mouse divergence is suggested to be at the
level of subspecies. The proportion of admixed fragments was
estimated to 1.59% with admixture block sizes from 100 kbp to
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1.42 Mbp [86]. Among the 346 introgressed regions detected,
92 loci were classified as adaptive. The strongest candidate is
located on chromosome 1 overlapping with the “vomeronasal
1 receptor cluster,” a chemical communication protein. As in
mice [20], the regions were enriched in biological terms like “che-
mosensory perception” and “immune response.” Next to regions
showing signals of introgression, 352 regions were identified as
having undergone a selective sweep based on allele frequency dif-
ferentiation between populations “XP-CLR” [87] and cross popu-
lation extended haplotype homozygosity calculations “XP-EHH”
[88] which, like introgressed regions, are enriched in proteins
involved in immune-response and metabolism.

Zeng et al. [58] extended the publicly available whole-genome
sample set of brown rats to a world-wide distribution. With more
than 100 individuals the authors investigated the geographic origin
and migration paths. In contrast to previous hypothesis thatRattus
norvegicus dispersed from northern Asia to Europe, their data
supports the southern East Asian dispersal route to Europe
[58]. Similar to Teng et al. [86], Zeng et al. [58] consistently
identified candidate genes with signatures of positive selection
that are associated with the immune-response by comparing
European and Chinese populations.

3 Examples of Genes Under Positive Selection

In this section, we discuss three of several examples of genes that
have been shown to be involved in adaptation in mice and rats. One
prominent example is the evolution of the resistance against warfa-
rin, a rodent pest management poison.

3.1 Rodent

Resistance

to Anticoagulants:

Vkorc1

As vectors for human diseases, rodents have been reduced over half
a century by rodenticides. Common compounds of rodenticides
target the blood coagulation (e.g., warfarin) and target the vitamin
K reductase reaction [89]. Several mutations have been found in
house mice and brown rats within the Vkorc1 gene that confer
resistance against warfarin [90]. Song et al. [76] suggested that
an allele introgressed from the Algerian mouse (Mus spretus) into
M. m. domesticus led to anticoagulant resistance. Both species live
today in sympatry in south-western Europe. Vkorc1 was subject to
adaptive protein evolution in M. spretus since it separated from
other Mus lineages and four introgressed polymorphisms could be
linked to a strong resistance phenotype [76, 91]. Based on whole-
genome data [14], this region shows negative Tajima’s D values
within western European mouse populations in contrast to a popu-
lation from Iran (see Fig. 5a), compatible with recent positive
selection acting on it.
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Fig. 5 Views from the UCSC genome browser showing haplotypes, nucleotide diversity and Tajima’s D values
for M. m. domesticus subpopulations. UCSC tracks are shown for (a) Vkorc1 region on chromosome 7 and (b)
Xpr1 region on chromosome 1. Tracks were obtained from data published in [14] via a “public track hub”
showing haplotypes from SNPs, nucleotide diversity (pi) and Tajima’s D values for the subpopulations from
France (DOM-FRA), Germany (DOM-GER) and Iran (DOM-IRA). pi and Tajima’s D was calculated on 10 kbp
windows (see Table 1 for web page URL link)
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3.2 Pathogen

Related Resistance:

Xpr1

Next to artificial human-made selection pressure, there exists natu-
ral selection caused by pathogens. Hasenkamp et al. [92] have
studied the gene Xpr1, coding for the receptor of murine leukemia
virus (MLV) They found that the gene has been subject to a recent
selective sweep in the population from Iran and that the selected
haplotype has adaptively introgressed into a population from
France, where it has mixed with existing haplotypes and thus creates
a higher average population diversity than in the nonintrogressed
population fromGermany (see Fig. 5b). It seems that theXpr1 gene
itself is under frequent positive selection and that alleles coping
with new virus variants can rather quickly spread into other sub-
populations if these are actively dealing with infectious cycles of that
virus variant [92].

3.3 Segmental

Duplications

and Selective Sweeps:

R2D2

As mentioned above, R2d is a CNV region on chromosome 2 that
was found to cause nonrandom segregation [93]. Didion et al. [93]
showed that signatures of selective sweeps obtained via genome-
wide scans can be mimicked by “selfish” alleles. Within the 127 kbp
genome region of R2d there is one annotated gene, namely Cwc22,
which is a spliceosomal protein. Based on haplotype sharing, analy-
sis of almost 400 individuals sampled across Europe revealed that all
individuals with an extreme excess of shared identity showed a high
copy number of R2d. If only one subpopulation was analyzed, the
haplotype sharing methods failed to detect this “selfish” sweep.
However, if individuals from different geographically locations
were included in the analysis, R2d was identified as a selective
sweep. Morgan et al. [81] showed for the same locus that an initial
duplication event ~3.5 million years ago led to R2d1 and R2d2
and, therefore, mouse strains containing a single copy must have
lost the second one. The authors identified nonallelic gene conver-
sion in R2d1, which were transferred from R2d2 and caused the
appearance of deep coalescence among R2d1 sequences
[81]. Given both the patterns of concerted evolution, as well as
the evolutionary dynamics of the selfish alleles, this could be a case
of evolution through “molecular drive” [94].

3.4 The t-Haplotype

as Meiotic Drive

Element

Meiotic drive elements, or segregation distorters, transmit them-
selves to over 50% of the progeny of heterozygous individuals. The
mouse t-haplotype, located within several inversions on chromo-
some 17, is a classic example of such a meiotic drive element
[1]. Despite a strong driving capacity, t-haplotypes remain at rela-
tively low frequency in natural populations, since homozygous
individuals have strongly reduced viability [95]. The population
genomics of the t-haplotype was studied in [96] based on the
data provided in [14]. They found evidence for an accumulation
of nonsynonymous substitutions within the inversions, but also
signatures of recombination events that appear to have regenerated
coding sequences that had accumulated deleterious mutations.
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Based on the corresponding transcriptome data in [14] they could
show that individuals carrying a t-haplotype display also a change in
the testis expression of genes outside of the t-complex.

4 Conclusion

Per sample cost reduction for sequencing has led to an exponential
increase in available whole-genome data for model and nonmodel
organisms. Being among the longest studied mammals, both house
mouse and brown rat have proven to serve as models for studying
the processes that shape genome evolution in natural populations,
including introgression and positive selection. However, while the
public domain is steadily filled with population genomic usable
datasets, there is still a gap between studies that predict candidates
and studies that functionally validate them. As a consequence,
functional studies to prove that genes have a direct impact on fitness
in a certain species should be extended. The experimental set up to
measure fitness will always depend on the species level and should
be imbedded in an environmental context.

5 Note

1. SMC++ [78] analysis is based on 24Musmusculus domesticus and
3 Mus musculus helgolandicus individuals described earlier
[14]. SMC++ version 1.12.1was used to infer population history
for Mus musculus domesticus subpopulations based on a Variant
Call Format (VCF) file obtained via the following URL: http://
wwwuser.gwdg.de/~evolbio/evolgen/wildmouse/vcf/AllMouse.vcf_
90_recalibrated_snps_raw_indels_reheader_PopSorted.vcf.gz. First,
bcftools version 1.3.1 [97] was used to filter SNP positions
(bcftools filter) aside indel regions (--SnpGap 3), setting geno-
types of failed samples to missing values (--set-GTs.) and exclud-
ing all sites with either low coverage or low genotype quality
(FORMAT/DP<5 | FORMAT/GQ<30). Further, bcftools was
used to retain only biallelic SNPs (bcftools view -m2 -M2 -v snps)
and SMC++was used to convert the VCFfile to SMC++ format.
Only subpopulations indicated above were retained from the
input VCF file and only autosomes were extracted individually
by additionally masking all exons, regulatory features, simple
repeats, and missing sites from the reference mm10 (exons
URL: ftp://ftp.ensembl.org/pub/release-90/gtf/mus_musculus/
Mus_musculus.GRCm38.90.chr.gtf; regulatory features URL:
ftp://ftp.ensembl.org/pub/release-90/regulation/mus_musculus/
mus_musculus.GRCm38.Regulatory_Build.regulatory_features.
20161111.gff;
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simple repeats URL: http://hgdownload.soe.ucsc.edu/
goldenPath/mm10/database/simpleRepeat.txt). The per gener-
ation mutation rate was set to 5 � 10�9 to fit a size history for
each subpopulation based on the extracted autosome data (scm
++ estimate 5e-9 chr∗.smc.gz) and plotted with SMC++ (smc++
plot) as shown in Fig. 4.
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91. Goulois J, Hascoët C, Dorani K et al (2017)
Study of the efficiency of anticoagulant roden-
ticides to control Mus musculus domesticus
introgressed with Mus spretus Vkorc1. Pest
Manag Sci 73:325

92. Hasenkamp N, Solomon T, Tautz D (2015)
Selective sweeps versus introgression-
population genetic dynamics of the murine leu-
kemia virus receptor Xpr1 in wild populations
of the house mouse (Mus musculus). BMC
Evol Biol 15:248

93. Didion JP, Morgan AP, Yadgary L et al (2016)
R2d2 drives selfish sweeps in the house mouse.
Mol Biol Evol 33:1381

94. Dover G (1982) Molecular drive: a cohesive
mode of species evolution. Nature 299:111

95. Lindholm AK, Dyer KA, Firman RC et al
(2016) The ecology and evolutionary dynamics
of meiotic drive. Trends Ecol Evol 31:315

96. Kelemen RK, Vicoso B (2018) Complex his-
tory and differentiation patterns of the
t-haplotype, a mouse meiotic driver. Genetics
208:365

97. Li H, Handsaker B, Wysoker A et al (2009)
The sequence alignment/map format and
SAMtools. Bioinformatics 25:2078–2079

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

452 Kristian K. Ullrich and Diethard Tautz

http://creativecommons.org/licenses/by/4.0/


Chapter 19

Population Genomics in the Great Apes

David Castellano and Kasper Munch

Abstract

The great apes play an important role as model organisms. They are our closest living relatives, allowing us
to identify the genetic basis of phenotypic traits that we think of as characteristically human. However, the
most significant asset of great apes as model organisms is that they share with humans most of their genetic
makeup. This means that we can extend our vast knowledge of the human genome, its genes, and the
associated phenotypes to these species. Comparative genomic studies of humans and apes thus reveal how
very similar genomes react when exposed to different population genetic regimes. In this way, each species
represents a natural experiment, where a genome highly similar to the human one, is differently exposed to
the evolutionary forces of demography, population structure, selection, recombination, and admixture/
hybridization. The initial sequencing of reference genomes for chimpanzee, orangutan, gorilla, the
bonobo, each provided new insights and a second generation of sequencing projects has provided diversity
data for all the great apes. In this chapter, we will outline some of the findings that population genomic
analysis of great apes has provided, and how comparative studies have helped us understand how the
fundamental forces in evolution have contributed to shaping the genomes and the genetic diversity of the
great apes.

Key words Population genomics, Great apes, Incomplete lineage sorting, Demography, Distribution
of fitness effects, Recombination, X chromosome, Selective sweeps

1 Species Trees and Incomplete Lineage Sorting

The sequencing of all the great ape genomes [1–6] has allowed us
to paint a detailed picture of the species relationship between
humans and their closest relatives. By joint analysis of full genomes
from pairs of species, coalescent hidden Markov models
(CoalHMM) (see Chapter 8) can efficiently model both sequence
divergence and recombination by approximating the full ancestral
recombination graph as a Markov process along the genome. The
states in these hiddenMarkov models represent different gene trees
separated by recombination events. Such models can jointly esti-
mate both the time of reproductive isolation (the time of specia-
tion) and the size of the ancestral population that gave rise to the
two species. Figure 1 provides an overview of the estimated split
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times and ancestral population sizes. The estimated split times are
computed assuming that the mutation rate across the species tree
has remained constant at the rate of 0.6� 10�9 per year as observed
in humans. However, speciation dates produced using a constant
mutation rate does not square with the physical dating of ancestral
fossil species. To reconcile DNA and fossil evidence, it has been
proposed that the yearly mutation rate has slowed down across in
the great ape lineage [8], possibly resulting from the development
of larger body sizes and longer generation times.

The time to the most recent common ancestor of sequences
sampled from two species lies much further into the past than the
time when the species split apart. For this reason, a common
ancestor of two lineages from separate species may not be found
in the population ancestral to the two species, but even further into
the past, in a population ancestral to additional species. When
sampling more than two species, this allows for the possibility
that lineages from other than the most closely related species find
a common ancestor before those most closely related. This is espe-
cially true for the relationship between human, chimpanzee, and
gorilla. Between the speciation events separating human and chim-
panzee and that separating human and gorilla, a lot of ancestral

~0%
15,000

26 Myr

5%
32,000

30%
86,000

18 Myr

8.6 Myr

5.2 Myr

0.5 Myr

1.2 Myr

Human Neanderthal Bonobo Chimpanzee Gorillas Orangutans Gibbons

4%
67,000

24%
167,000

Fig. 1 Species tree of humans and the great apes. Dashed lines represent speciation events with estimated
dates. Gray numbers show estimated sizes of ancestral populations, and percentages show the estimated
amount of incomplete lineage sorting (see below) between two descendant species and their immediate
outgroup (e.g., 30% ILS between human, chimpanzee, and gorilla). (The figure is adapted from Mailund et al.
[7])

454 David Castellano and Kasper Munch



polymorphism was conserved in the large ancestral population. The
more rapid the succession of speciation events, and the larger the
ancestral population between them is, the more ancestral polymor-
phism will be conserved. The implication is that individual gene
trees along the alignment of these three species will not always
group the same two species as the species tree does. The phenome-
non is called incomplete lineage sorting (ILS) because the lineages
of individual gene trees are not completely sorted according to
species (see Chapter 1 for further details).

One coalescent hidden Markov model compares three closely
related species and exploits information from sequence divergence
and ILS to estimate the time of the two speciation events as well as
the size of the ancestral population [9, 10]. From this model, it is
also possible to extract the proportion of discordant gene trees with
a topology different from the species tree. Applying this method to
the human, chimpanzee, and gorilla showed that for ~15% percent
of the genome, humans are more closely related to gorillas than
chimpanzees, and for another ~15%, chimpanzees and gorillas are
more closely related to each other than to humans [3] (see Fig. 1).
The same model has been applied to alignments of bonobo, chim-
panzee, and human, and showed that ~5% of the genome is subject
to ILS [4]. Because the proportion of ILS is determined by ances-
tral population size and the time between speciation events, we can
compute the estimated proportions of ILS for trios of species where
these parameters have been estimated by other means. Between
human, gorilla, and orangutan it is expected to be ~4%, and for
human, orangutan, and gibbon it is expected to be ~24% [7]. The
great apes thus also showcase how misleading phylogenies built
from individual genes may be since a phylogeny built from long
regions of a recombining sequence will not represent the popula-
tion genetic processes that distribute individual lineages among
species.

2 Gene Flow and Demography

Most coalescent hidden Markov models assume that speciation is
instantaneous and that the initial split of two populations is not
followed by gene flow between the diverging populations. Other
coalescent hidden Markov models account for the possibility that
such gene flow has occurred [11]. Among species splits in great ape
evolution, most have involved a period of gene flow before consol-
idation of the populations as separate species [11]. The divergence
of the orangutan from the human–chimp–bonobo–gorilla ancestor
involved several hundred thousand years of gene flow. The specia-
tion of humans and chimpanzees-bonobo most likely also included
an extended period of gene flow. Only the speciation separating the
bonobo from the chimpanzees seem to be a clear example of an
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abrupt and permanent split, possibly produced as the Congo River
provided a physical barrier between the populations.

An alternative way to estimate gene flow between separating
populations is using methods such as MSMC [12] (see Chapter 7)
that can estimate the relative rate of cross-coalescence between
populations from the present and into the past. This approach
measures the proportion of gene pairs that find common ancestry
between two sampled populations rather than within them.
Inspecting a curve of this relative cross-coalescence rate can help
identify both the time of speciation and whether this was a clean
split rather than a protracted period of reduced gene flow. MSMC
as well as a similar method modeling only one diploid sample
(PSMC [13]) also estimate the historical effective population size
of a species. Such methods have been used to identify how the great
apes have responded to environmental changes and show that great
apes have experienced a decline in their effective population size
across the last few hundred thousand years [5]. Comparing the
curves of historical effective population sizes may also reveal when
the species split apart. Across the time in the past where two species
share an ancestor their historical population sizes will be the same,
but at the time this ancestral population split into two, the size of
these two populations will be free to follow different trajectories
through time and will reveal the species split as a separation of the
curves of historical population sizes. Along with methods such as
approximate Bayesian computation, PSMC has helped describe the
relationship between chimpanzee subspecies [5] showing that east-
ern and central chimpanzees are most closely related, forming a
group separate from Nigeria–Cameroon and western chimpanzees.

3 Selection

One of the most intriguing questions in great ape evolution is how
the adaptive evolution of particular genes has contributed to shap-
ing phenotypes in present-day species. A study comparing a large
number of orthologous genes addressed adaptive evolution along
the branches of humans and chimpanzees by comparing the rate of
evolution at synonymous sites (sites where a mutation will not
change the encoded protein) with nonsynonymous sites (sites
where mutation replaces an amino acid) [14]. Many of the identi-
fied genes were involved in sensory perception and immune
defenses, but the genes showing the strongest evidence of positive
selection were genes involved in tumor suppression and apoptosis,
and genes involved in spermatogenesis [15]. Another way to iden-
tify selection in primate genomes is by measuring the patterns of
genetic diversity along the genomes. Slightly deleterious variants
will reduce genetic diversity in a genomic region around the dele-
terious variant, a process called background selection (see
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Charlesworth [16] for a review), in effect reducing the local effec-
tive population size. Positive selection also removes variation in a
region around it, leaving a signature in local genetic variation that
can be distinguished from that of background selection if the
positive selection is strong enough and occurred recently. When a
new variant is subject to strong positive selection, variation in the
flanking regions is depleted because linked variants are carried to
fixation along with the selected variant. This is called a selective
sweep because it sweeps variation in a region around the selected
variant and produces a wide genomic region where all individuals
from a species share a recent common ancestor [17]. The size of the
swept region depends on the strength of selection, the size of the
population and the rate of genetic recombination. Several methods
have been developed to detect sweeps from information in popula-
tion samples such as the site frequency spectrum, linkage disequi-
librium and population differentiation [18] (see Chapter 5). Due to
the relatively small sample sizes available in great apes, no striking
examples of recent sweeps on great ape autosomes have been
reported (but see Sect. 5 for strong selective sweeps on the X
chromosome). However, thanks to the McDonald and Kreitman
test framework there are many estimates of the proportion of
beneficial nonsynonymous substitutions (α) across primates (see
Chapter 1 for a formal definition of α). Genome-wide estimates in
humans and nonhuman primates are very low, α < 10–20% [1, 19–
23], but α can be as high as 50% for some particular genes like
immune genes, testis genes, or virus interacting protein genes
[24, 25].

It is still debated if positive or negative selection is more promi-
nent in shaping diversity along great ape genomes, and we are still
trying to figure out whether selective sweeps are mainly due to new
mutations [17] or selection on standing variation [26], and which
are more important for adaptation and the surrounding patterns of
DNA diversity. One argument to suggest that sweeps from new
mutations contribute significantly to variation in diversity is that
great apes with larger population sizes show more dramatic reduc-
tions in diversity near genes [27]. This dependence of population
size is consistent with the action of positive selection rather than
negative selection and suggests that new beneficial mutations lead-
ing to sweeps arise more often in species with a larger number of
individuals subject to mutation. Identification of selective sweeps,
from depressions in diversity or distortions of the site frequency
spectrum, is limited to the recent past, where a sample of indivi-
duals is expected to be represented by many ancestors. An alterna-
tive method to quantify the impact of sweeps on longer timescales
is to identify extended regions devoid of incomplete lineage sort-
ing. A sweep in an ancestral species will induce common ancestry
for all lineages in a wide region around the selected variant and thus
precludes the possibility of incomplete lineage sorting in the
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region. By identifying and comparing such regions in both the
ancestor to human and chimpanzee and the ancestor to human
and orangutan, it was possible to show that the human–chimpanzee
ancestor experienced a higher frequency of strong sweeps than the
human–orangutan ancestor [28].

Addressing the forces of positive and negative selection in the
great apes, we need to know what proportion of new mutations are
advantageous, neutral, or deleterious and whether these propor-
tions differ across these species. The distribution of fitness effects
(DFE) describes the proportions of new mutations that are effec-
tively neutral and new mutations that are under selection [29, 30]
(see Chapter 1). The DFE further distinguishes between advanta-
geous mutations, which increase the fitness of the organism, and
deleterious mutations, which impair survival or fertility. Several
methods are available to infer this continuum of selective effects
from DNA sequence data [19–21, 31–34]. Initial studies in
humans with modest sample sizes found ~25% of effectively neutral
nonsynonymous mutations (�1 > 2Ns < 1), ~15% of weakly
deleterious nonsynonymous mutations (�10 > 2Ns ��1) and
~60% of moderately to strongly deleterious nonsynonymous muta-
tions (2Ns � �10) [19–21, 31–34]. A recent study with a large
sample size was able to further refine the estimate of new nonsy-
nonymous mutations which are strongly deleterious (2Ns��100)
to 14–22% and the proportion of weakly deleterious mutations
(�10 > 2Ns � �1) to 25–33% [32]. The DFE for new nonsynon-
ymous mutations is quite similar across great apes despite the
differences in the species long-term Ne [22, 35]. This similarity
may be explained by the highly leptokurtic DFE of these species,
which predicts that substantial changes in Ne will only have a
modest impact on the selective effects of mutations. Nonetheless,
very different methods and assumptions have been invoked to
estimate the DFE across species, and even the shape of the DFE is
still a contentious issue. There is very limited knowledge about the
DFE of new noncoding mutations, and all we know relies on
measures of DNA conservation across mammals and primates.
Thus, for noncoding DNA we are only able to say which propor-
tion of new mutations are effectively neutral (�1 > 2Ns < 1) and
effectively selected against (2Ns � �1). These rough conservation
scores show that only 2–5% of point mutations at noncoding sites
might be under purifying selection in humans and the rest of
primates [36–40].

Balancing selection is another mode of selection that differs
from directional selection in that it does not drive selected variants
toward fixation or extinction (see Chapter 1 for a definition of
balancing selection). Instead, it maintains genetic variation by sta-
bilizing alleles at intermediate frequencies. There are several meth-
ods to detect loci under recent and/or long-term balancing
selection [22, 41, 42]. A recent study in great apes has confirmed
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that immune genes are enriched in signals of balancing selection,
and it has found that genes involved in the formation of the skin are
also under balancing selection [22]. Some of these polymorphisms
maintained by balancing selection are even shared between humans
and chimpanzees; the most prominent example is the major histo-
compatibility complex (MHC).

4 Recombination

The rate of recombination varies along the genome. The local
recombination rate in each part of the genome can be estimated
from patterns of linkage disequilibrium (LD) [43]. It can also be
inferred from individually called recombination events by compar-
ing many parent and offspring genomes [44] or by examining
genomes of individuals with mixed ancestry [45]. The landscape
of varying recombination rate across the genome is referred to as a
recombination map. For humans, recombination maps have been
produced by all three approaches. Among the great apes, detailed
recombination maps only exist for bonobo, chimpanzee, and
gorilla. These are produced using the same LD-based method
used in humans, allowing direct comparison of recombination
maps across species. In all four species, recombination rate varies
on a large scale (millions of bases), and this variation is associated
with the size of chromosomes, the chromosomal position, the
sequence GC content, the gene density, and several other factors
[46]. At the fine scale (thousands of bases) recombination rate is
determined by the location of the so-called recombination hotspots
where about 60% of recombinations occur despite that these hot-
spots constitute only ~6% of the genome [47]. The location of
hotspots is determined by the affinity of the PRDM9 protein for
certain DNAmotifs present at hotspots. This affinity is encoded in a
zinc-finger array whose DNA contacting residues are under strong
positive selection. It is now clear that biased gene conversion favors
alleles that disrupt hotspots. This depletion of hotspot motifs may
result in selection for PRMD9 variants recognizing alternative
motifs, producing a turnover of hotspot locations [48]. A compar-
ative analysis of recombination maps of the four species [49, 50]
showed that recombination rate on a megabase scale is highly
conserved across species, but that the location recombination hot-
spots are completely different. Only a few hotspots are shared even
between chimpanzee subspecies, revealing that turnover of hotspot
locations commence at short evolutionary timescales [50].

Comparative studies of recombination have less power than
comparative studies of genome sequences: whereas sequence
change can be assigned to individual species branches using stan-
dard models of molecular evolution, change in recombination rate
has so far only been observed as differences between pairs of

Population Genomics in the Great Apes 459



species. This is because the differences between two species cannot
be resolved into the change that occurred in each species without
knowledge of recombination rates in the species common ancestor.
Fortunately, it is now also possible to construct recombination
maps for ancestral species if enough incomplete lineage sorting is
present [2]. This approach takes advantage of the fact that gene
trees with different topologies must be separated by a recombina-
tion event. When sequences are sampled from three different spe-
cies, the majority of recombination events separating gene trees
with different topology will occur in the species ancestral to the
two most closely related species. This approach has been used to
produce a recombination map of the ancestor of human and chim-
panzee [3]. By resolving the differences between humans and
chimpanzees into the changes that occurred in each species since
their divergence it was shown that recombination rate had evolved
more rapidly in humans than in chimpanzees and that striking
changes in recombination rate had resulted from a genomic inver-
sion and a chromosome fusion in the human lineage.

5 The X Chromosomes of Great Apes

The unique mode of inheritance of X chromosomes exposes them
to population genetic process that differs from that of the auto-
somes. In a simple population genetic model, the effective popula-
tion size of the X chromosome will be 3/4 that of the autosomal
one. However, this ratio is influenced by many factors such as a
difference in generation time and reproductive variance between
the sexes, or a stronger propensity of one sex to migrate between
subpopulations. More recently it has been suggested that linked
selection on the X chromosome in the form of selective sweeps may
contribute significantly to a reduced X–autosome ratio. Analysis of
diversity along the X chromosomes of the great apes identified
extreme selective sweeps in the form of wide regions with strongly
reduced diversity and a higher proportion of singleton polymorph-
isms [51]. The swept regions overlap partially between species,
suggesting some amount of recurrent positive selection on the
same genes. A separate study exploiting patterns of ILS to measure
the cumulative effect of sweeps in the human–chimpanzee ancestor,
identified a set of wider regions, spanning the regions identified in
extant great ape species [52]. This suggests that regions of the X
chromosome are subject to recurrent very strong positive selection.
Since these extreme sweeps are only observed on the X chromo-
somes, it is possible that this is the result of selection of “selfish
genes.” Such selfish genes, catering only for the preferential trans-
mission of X or Y chromosomes into viable sperm are potentially
subject to a particular kind of positive selection called meiotic drive.
Even modest transmission distortions will provide selective advan-
tages strong enough to explain the magnitude of these sweeps.

460 David Castellano and Kasper Munch



6 Conclusion

The examples of insights provided above represent only the first
glimpses of the evolutionary history we share with the great apes as
well as the evolution that is private to each species. As genetic
diversity across the ranges of each great ape is assayed in more
detail, we will get a much deeper understanding of how diverse
population genetic processes have shaped genomes very similar to
our own.
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